WO2020103163A1 - 一种呼气末正压确定方法及装置、通气设备、存储介质 - Google Patents

一种呼气末正压确定方法及装置、通气设备、存储介质

Info

Publication number
WO2020103163A1
WO2020103163A1 PCT/CN2018/117323 CN2018117323W WO2020103163A1 WO 2020103163 A1 WO2020103163 A1 WO 2020103163A1 CN 2018117323 W CN2018117323 W CN 2018117323W WO 2020103163 A1 WO2020103163 A1 WO 2020103163A1
Authority
WO
WIPO (PCT)
Prior art keywords
peep
value
peep value
preferred
physiological parameter
Prior art date
Application number
PCT/CN2018/117323
Other languages
English (en)
French (fr)
Inventor
刘玲
刘京雷
杨毅
周小勇
邱海波
万聪颖
潘纯
陈俊
谢剑锋
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
东南大学附属中大医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 东南大学附属中大医院 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2018/117323 priority Critical patent/WO2020103163A1/zh
Priority to EP18940745.5A priority patent/EP3884981A4/en
Priority to CN201880006498.9A priority patent/CN111479605A/zh
Publication of WO2020103163A1 publication Critical patent/WO2020103163A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0051Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes with alarm devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/46Resistance or compliance of the lungs

Definitions

  • Embodiments of the present invention relate to the technical field of medical devices, and in particular, to a method and device for determining end-expiratory positive pressure, ventilation equipment, and storage media.
  • PEEP Positive end-expiratory pressure
  • the embodiments of the present invention are expected to provide a method and device for determining end-expiratory positive pressure, ventilation equipment, and a storage medium, which can automatically determine the preferred PEEP.
  • An embodiment of the present invention provides a method for determining positive end-expiratory pressure, which is applied to a ventilation device.
  • the method includes:
  • the preferred PEEP value for ventilating the patient is determined according to the change in the at least one physiological parameter.
  • the at least one physiological parameter is driving pressure
  • the step of determining the preferred PEEP value for ventilating the patient according to the change in the at least one physiological parameter includes:
  • the PEEP value corresponding to the minimum driving pressure value is the preferred PEEP value.
  • the at least one physiological parameter is compliance
  • the step of determining the preferred PEEP value for ventilating the patient according to the change in the at least one physiological parameter includes:
  • the PEEP value corresponding to the maximum compliance value is the preferred PEEP value.
  • the at least one physiological parameter is the dead space ratio
  • the step of determining the preferred PEEP value for ventilating the patient according to the change in the at least one physiological parameter includes:
  • the PEEP value corresponding to the minimum value of the dead space ratio is the preferred PEEP value.
  • the at least one physiological parameter is an oxygenation index
  • the step of determining the preferred PEEP value for ventilating the patient according to the change in the at least one physiological parameter includes:
  • the PEEP value corresponding to the maximum point of the oxygenation index change rate is the preferred PEEP value.
  • the at least one physiological parameter includes: at least two of driving pressure, compliance, dead space ratio, and oxygenation index, and the ventilating to the patient is determined according to the change of the at least one physiological parameter
  • the steps of the preferred PEEP value include:
  • the preferred PEEP value for ventilating the patient is determined according to the determined candidate PEEP values.
  • the method further includes:
  • the preferred PEEP value is output.
  • the method further includes:
  • An embodiment of the present invention provides a device for determining positive end-expiratory pressure, which is applied to a ventilation device.
  • the device includes:
  • the ventilation control module changes the PEEP value of the ventilation device to the patient in steps
  • a physiological parameter monitoring module monitoring at least one physiological parameter of the patient
  • the calculation module calculates the change of the at least one physiological parameter after each change of the PEEP value, and determines a preferred PEEP value for ventilating the patient according to the change of the at least one physiological parameter.
  • the at least one physiological parameter is the driving pressure
  • the calculation module determines that the PEEP value corresponding to the minimum driving pressure value is the preferred PEEP value.
  • the at least one physiological parameter is compliance
  • the calculation module determines that the PEEP value corresponding to the maximum compliance value is the preferred PEEP value.
  • the at least one physiological parameter is the dead space ratio
  • the calculation module determines that the PEEP value corresponding to the minimum value of the dead space ratio is the preferred PEEP value.
  • the at least one physiological parameter is an oxygenation index
  • the calculation module determines that the PEEP value corresponding to the maximum point of the oxygenation index change rate is the preferred PEEP value.
  • the at least one physiological parameter includes: at least two of driving pressure, compliance, dead space ratio and oxygenation index,
  • the calculation module determines corresponding candidate PEEP values according to changes in physiological parameters, and determines a preferred PEEP value for ventilating the patient according to the determined candidate PEEP values.
  • the device further includes: an output module;
  • the output module outputs the preferred PEEP value according to a preset prompt strategy.
  • the device further includes: a ventilation control module;
  • the ventilation control module provides mechanical ventilation to the patient according to the preferred PEEP value.
  • An embodiment of the present invention provides a ventilation device including any of the above-mentioned devices for determining end-expiratory positive pressure, including an air source, an inspiratory branch, an expiratory branch, and a display;
  • the gas source provides gas during mechanical ventilation
  • the suction branch is connected to the air source to provide a suction path during the mechanical ventilation
  • the expiratory branch provides an expiratory path during the mechanical ventilation
  • the end-expiratory positive pressure determination device is connected to the inspiratory branch and the expiratory branch;
  • the positive end-expiratory pressure determination device determines the preferred PEEP value during the mechanical ventilation
  • the display is connected to the end-expiratory positive pressure determination device and displays a respiratory waveform during the mechanical ventilation.
  • An embodiment of the present invention provides a storage medium that stores a program for determining end-expiratory positive pressure, and the program for determining end-expiratory positive pressure may be executed by a processor to implement any of the above-mentioned expirations Method for determining the final positive pressure.
  • Embodiments of the present invention provide a method and device for determining end-expiratory positive pressure, a ventilation device, and a storage medium.
  • the method includes: changing the PEEP value of the ventilation device to the patient in steps; monitoring at least one physiological parameter of the patient; and calculating each PEEP The change in at least one physiological parameter after the value is changed; the preferred PEEP value for ventilating the patient is determined according to the change in at least one physiological parameter.
  • the end-expiratory positive pressure determination device changes the PEEP value step by step, and after each change of the PEEP value, calculates the change in at least one physiological parameter value, and determines the preferred PEEP value for ventilating the patient according to the change in at least one physiological parameter At this time, the end-expiratory positive pressure determination device can determine different preferred PEEP values for mechanical ventilation according to physiological parameters of different patients, and can automatically determine the preferred PEEP value.
  • FIG. 1 is a flowchart 1 of a method for determining a positive end-expiratory pressure according to an embodiment of the present invention
  • FIG. 3 is an exemplary step-by-step change curve of the dead space ratio when changing the PEEP value provided by an embodiment of the present invention
  • FIG. 4 is an exemplary change curve of oxygenation index when the PEEP value is changed stepwise according to an embodiment of the present invention
  • FIG. 5 is a second flowchart of a method for determining a positive end-expiratory pressure according to an embodiment of the present invention
  • FIG. 6 is a flowchart 3 of a method for determining a positive end-expiratory pressure according to an embodiment of the present invention
  • FIG. 7 is a flowchart 4 of a method for determining a positive end-expiratory pressure according to an embodiment of the present invention
  • FIG. 8 is a flowchart 5 of a method for determining a positive end-expiratory pressure according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram 1 of an end-expiratory positive pressure determination device 1 according to an embodiment of the present invention.
  • FIG. 10 is a second schematic structural diagram of a device for determining positive end-expiratory pressure 1 according to an embodiment of the present invention
  • FIG. 11 is a schematic structural diagram 1 of a ventilation device according to an embodiment of the present invention.
  • FIG. 12 is a second structural diagram of a ventilation device according to an embodiment of the present invention.
  • An embodiment of the present invention provides a method for determining positive end-expiratory pressure, which is applied to a ventilation device.
  • the ventilation device is a medical device with a ventilation function, and may be a ventilator or an anesthesia machine. The selection is made according to the actual situation, and the embodiment of the present invention does not specifically limit it.
  • the method for determining positive end-expiratory pressure provided by the embodiment of the present invention is applicable to the scenario of mechanically ventilating a patient using a ventilation device. As shown in FIG. 1, the method may include:
  • the end-expiratory positive pressure determination device is included in the ventilation device, wherein the end-expiratory positive pressure determination device is composed of a ventilation control module, a physiological parameter detection module, a calculation module, and an output module.
  • the ventilation control module in the end-expiratory positive pressure determination device changes the PEEP value of the ventilation to the patient step by step in ascending or descending order from the initial PEEP value.
  • the initial PEEP value can be manually set by the doctor each time PEEP is titrated, or a preset value in the device for determining the end-expiratory positive pressure, which is specifically selected according to the actual situation, which is not done in this embodiment of the present invention Specific restrictions.
  • the physiological parameter monitoring module in the end-expiratory pressure determination device detects at least one physiological parameter of the patient.
  • the physiological parameters may include driving pressure, compliance, dead space ratio, and oxygenation index, etc., which are specifically selected according to actual conditions, and are not specifically limited in the embodiments of the present invention.
  • the doctor may select at least one physiological parameter from the driving pressure, compliance, dead space ratio, and oxygenation index for physiological parameter detection in the device for determining end-expiratory positive pressure
  • the module monitors at least one physiological parameter value corresponding to different PEEP values.
  • physiological parameter monitoring module in the end-expiratory pressure determination device monitors at least one physiological parameter of the patient.
  • the physiological parameter detection module in the end-expiratory positive pressure determination device measures the airway platform pressure value corresponding to the PEEP value; the driving pressure value is calculated according to the PEEP value and the airway platform pressure value, specifically according to the PEEP value and the air pressure
  • the pressure value of the road platform, the calculated driving pressure value is shown in formula (1),
  • ⁇ P is the driving pressure value
  • Pplat is the airway platform pressure value
  • the physiological parameter detection module in the end-expiratory positive pressure determination device calculates the tidal volume based on the inspiratory time and the inspiratory flow rate; and calculates the compliance value based on the tidal volume, PEEP value and airway platform pressure value, and calculates The compliance value is shown in formula (2),
  • the physiological parameter detection module in the positive end-expiratory pressure determination device measures the arterial blood carbon dioxide partial pressure value and the expiratory carbon dioxide partial pressure value corresponding to the PEEP value; according to the arterial blood carbon dioxide partial pressure value and the expiratory value For the partial pressure of carbon dioxide, calculate the proportion of dead space corresponding to the PEEP value.
  • the physiological dead space is a gas that does not participate in gas exchange in the tidal volume, and is composed of alveolar dead space and anatomical dead space.
  • the alveolar dead space is the gas that enters the alveoli, due to the uneven distribution of blood flow in the lungs
  • the part of the gas that does not participate in the gas exchange, the anatomical dead space is the gas volume existing in the airway above the terminal bronchioles, that is, the part of the tidal volume that is exhaled without change in the early exhalation.
  • the ventilation control module in the end-expiratory positive pressure determination device changes the PEEP value
  • the patient is drawn once, and the blood gas analyzer measures the corresponding PEEP value.
  • the carbon dioxide sensor measures the partial pressure of carbon dioxide in the expiratory phase.
  • the physiological parameter detection module in the positive end-expiratory pressure determination device measures the arterial oxygen partial pressure value and the inhaled oxygen concentration value corresponding to the PEEP value; the PEEP value is calculated according to the arterial oxygen partial pressure value and the inhaled oxygen concentration value Corresponding oxygenation index value.
  • the oxygenation index Arterial oxygen partial pressure With inhaled oxygen concentration The quotient of, where, The acquisition process of The acquisition process is the same, and each time when the ventilation control module of the end-expiratory positive pressure determination device changes the PEEP value, the patient is drawn a blood and measured by the blood gas analyzer; clinically Can be provided by ventilating equipment.
  • the calculation module of the end-expiratory pressure determination device calculates the change of at least one physiological parameter each time the PEEP value changes.
  • the calculation module of the end-expiratory pressure determination device calculates that each time the PEEP value is changed, the drive pressure Change in value.
  • the airway pressure change curve of 5 breathing cycles is displayed in the first coordinate system, and the airway flow rate change curve of the 5 breathing cycles is displayed in the second coordinate system, where
  • Each breathing cycle includes an exhalation phase and an inhalation phase; in the first coordinate system, the ascending curve represents the inhalation phase, and the descending curve and the flat line together form the exhalation phase.
  • the airway pressure value corresponding to the flat line is Pplat
  • the airway pressure value corresponding to the second flat line is PEEP
  • the PEEP for the first breathing cycle is 0cmH 2 O
  • Pplat is 15cmH 2 O
  • the second breathing cycle PEEP is 2cmH 2 O
  • Pplat is 15cmH 2 O
  • PEEP of the third breathing cycle is 4cmH 2 O
  • Pplat is 16cmH 2 O
  • PEEP of the fourth breathing cycle is 6cmH 2 O
  • Pplat is 18cmH 2 O
  • the first The PEEP of the five breathing cycles is 8cmH 2 O and the Pplat is 21cmH 2 O
  • the calculation module of the end-expiratory positive pressure determination device can calculate the driving pressure corresponding to each breathing cycle according to the PEEP and Pplat of each breathing cycle Changes.
  • the calculation module of the end-expiratory pressure determination device calculates the compliance every time the PEEP value is changed Change in value.
  • the abscissa represents time
  • the ordinate represents airway flow velocity, where the positive airway velocity is the inspiratory stage, and the negative airway velocity is the exhalation
  • the tidal volume is the inspiratory time in the respiratory cycle multiplied by the corresponding inspiratory flow rate
  • the calculation module of the end-expiratory positive pressure determination device can calculate the PEEP, Pplat, and tidal volume values for each respiratory cycle Changes in compliance with each breathing cycle.
  • the calculation module of the end-expiratory pressure determination device calculates that each time the PEEP value is changed, the death The change of the proportion of the cavity.
  • V D / V T value when the PEEP value drops from 20cmH 2 O to 18cmH 2 O, the V D / V T value shows a downward trend; when the PEEP value drops from 18cmH 2 O to 16cmH 2 O, V D / V The value of T showed a downward trend; when the value of PEEP decreased from 16cmH 2 O to 14cmH 2 O, the value of V D / V T decreased; when the value of PEEP decreased from 14cmH 2 O to 12cmH 2 O, the value of V D / V T decreased.
  • the calculation module of the end-expiratory pressure determination device calculates the oxygenation every time the PEEP value is changed The rate of change of the index.
  • the calculation module of the end-expiratory positive pressure determination device calculates separately The rate of change and judge The rate of change of the situation.
  • the calculation module of the end-expiratory pressure determination device calculates the change of at least one physiological parameter after each change in the PEEP value
  • the calculation module of the end-expiratory pressure determination device determines the preference of ventilating the patient according to the change of at least one physiological parameter PEEP value.
  • the calculation module of the end-expiratory positive pressure determination device after the calculation module of the end-expiratory positive pressure determination device calculates the change of the compliance value after each change of the PEEP value, the calculation module of the end-expiratory positive pressure determination device will change the PEEP corresponding to the maximum compliance The value is determined to be the preferred PEEP value.
  • the calculation module of the end-expiratory pressure determination device calculates the PEEP change value and the Pplat change value, and the end-expiratory positive pressure
  • the calculation module of the determining device compares the magnitude between the change value of PEEP and the change value of Pplat, and determines the PEEP value when the change value of PEEP is equal to the change value of Pplat as the preferred PEEP.
  • the PEEP of the first breathing cycle is 0cmH 2 O
  • Pplat is 15cmH 2 O
  • the PEEP of the second breathing cycle is 2cmH 2 O
  • Pplat is 15cmH 2 O
  • the third breathing is 4 cmH 2 O
  • the Pplat is 16 cmH 2 O
  • the PEEP of the fourth breathing cycle is 6 cmH 2 O
  • Pplat is 18 cmH 2 O
  • the PEEP of the fifth breathing cycle is 8 cmH 2 O
  • the Pplat is 21 cmH 2 O.
  • the ventilation control module of the end-expiratory positive pressure determination device raises PEEP to a PEEP value
  • the increase in Pplat is less than the increase in PEEP, which characterizes the patient ’s respiratory system after increasing PEEP. Compliance is improved, at this time, the effect of PEEP is beneficial; when the elevated value of Pplat is equal to the elevated value of PEEP, it indicates that the respiratory system compliance of the patient after increasing PEEP is not improved; the elevated value of Pplat is greater than that of PEEP
  • the value is high, it indicates that the patient's respiratory system compliance decreases after increasing PEEP. At this time, the PEEP value is too high.
  • the calculation module of the end-expiratory pressure determination device calculates the change of the dead space ratio after each change in the PEEP value
  • the calculation module of the end-expiratory pressure determination device minimizes the dead space ratio
  • the PEEP value corresponding to the value is determined as the preferred PEEP value.
  • the ventilation control module of the end-expiratory positive pressure determination device sets PEEP to 12 cm H 2 O to perform mechanical operation on the patient. Ventilation.
  • the calculation module of the end-expiratory pressure determination device calculates the rate of change of the oxygenation index corresponding to each PEEP value
  • the calculation module of the end-expiratory pressure determination device sets the maximum point of the change rate of the oxygenation index The corresponding PEEP value is determined as the preferred PEEP value.
  • the ventilation control module of the end-expiratory positive pressure determination device sets PEEP to 12 cmH 2 O to perform mechanical ventilation on the patient.
  • the calculation module of the end-expiratory pressure determination device determines the corresponding candidate PEEP values according to the changes of the physiological parameters, and then the calculation module of the end-expiratory pressure determination device determines the ventilation to the patient according to the candidate PEEP values
  • the PEEP value is preferred.
  • the calculation module of the end-expiratory positive pressure determination device determines the PEEP value corresponding to the minimum driving pressure, the PEEP value corresponding to the maximum compliance, the PEEP value corresponding to the minimum dead space ratio, and the oxygenation index change rate After the PEEP value corresponding to the maximum point, the calculation module of the end-expiratory positive pressure determination device obtains any one of the PEEP value corresponding to the minimum driving pressure and the PEEP value corresponding to the maximum compliance; Any one of the PEEP value corresponding to the PEEP value and the maximum compliance value, the PEEP value corresponding to the minimum dead space ratio, and the PEEP value corresponding to the maximum point of the oxygenation index change rate are averaged ; Determine the average value as the preferred PEEP value.
  • the calculation module of the end-expiratory positive pressure determination device may select any one of the PEEP value corresponding to the minimum driving pressure and the PEEP value corresponding to the maximum compliance, and the PEEP value corresponding to the minimum dead space ratio Find the mean; determine the mean as the preferred PEEP value.
  • the calculation module of the end-expiratory positive pressure determining device may select any one of the PEEP value corresponding to the minimum driving pressure and the PEEP value corresponding to the maximum compliance, and the PEEP corresponding to the maximum point of the oxygenation index change rate The values are averaged; the average is determined to be the preferred PEEP value.
  • the calculation module of the end-expiratory positive pressure determination device determines the PEEP value corresponding to the minimum PEEP value and the maximum compliance PEEP value, the PEEP value corresponding to the minimum dead space ratio and the The PEEP value corresponding to the maximum point of the oxygenation index change rate is to be averaged; the average is determined as the preferred PEEP value.
  • the output module of the end-expiratory pressure determination device outputs the preferred PEEP value according to a preset reminder strategy to prompt the doctor to The preferred PEEP value is used for ventilation.
  • the end-expiratory positive pressure determination device changes the PEEP value step by step, and after each change of the PEEP value, calculates the change in at least one physiological parameter value, and determines the preferred PEEP for ventilating the patient according to the change in at least one physiological parameter Value, at this time, the end-expiratory positive pressure determination device determines different preferred PEEP values for mechanical ventilation according to physiological parameters of different patients, and can automatically determine the preferred PEEP value.
  • the ventilation device includes a device for determining end-expiratory positive pressure, wherein the device for determining end-expiratory pressure is composed of a ventilation control module and physiological parameters.
  • the detection module, the calculation module and the output module are composed.
  • the method for determining positive end-expiratory pressure provided by the embodiment of the present invention is suitable for the scenario where the ventilation device determines the preferred PEEP value according to the driving pressure parameter of the patient. As shown in FIG. 5, Methods can include:
  • the ventilation control module of the end-expiratory positive pressure determination device changes the PEEP value of the ventilation device to the patient in steps.
  • the physiological parameter detection module of the end-expiratory positive pressure determination device monitors the driving pressure of the patient.
  • the physiological parameter detection module of the end-expiratory pressure determination device monitors the driving pressure of the patient.
  • the physiological parameter detection module in the end-expiratory positive pressure determination device measures the airway platform pressure value corresponding to the PEEP value; the driving pressure value is calculated according to the PEEP value and the airway platform pressure value, specifically according to the PEEP value and the air pressure
  • the pressure value of the road platform, the calculated driving pressure value is shown in formula (1),
  • ⁇ P is the driving pressure value
  • Pplat is the airway platform pressure value
  • the calculation module of the end-expiratory positive pressure determination device calculates the change of the driving pressure after each change of the PEEP value.
  • the calculation module of the end-expiratory pressure determination device calculates the change of the drive pressure after each change in the PEEP value.
  • the airway pressure change curve of 5 breathing cycles is displayed in the first coordinate system, and the airway flow rate change curve of the 5 breathing cycles is displayed in the second coordinate system.
  • each breathing cycle includes an expiratory phase and an inspiratory phase
  • the ascending curve represents the inspiratory phase
  • the descending curve and the flat line together constitute the expiratory phase.
  • the airway pressure value corresponding to a flat line is Pplat
  • the airway pressure value corresponding to the second flat line is PEEP.
  • the PEEP of the first breathing cycle is 0cmH 2 O
  • Pplat is 15cmH 2 O
  • the second The PEEP of the breathing cycle is 2cmH 2 O
  • the Pplat is 15cmH 2 O
  • the PEEP of the third breathing cycle is 4cmH 2 O
  • the Pplat is 16cmH 2 O
  • the PEEP of the fourth breathing cycle is 6cmH 2 O
  • the Pplat is 18cmH 2 O
  • the PEEP of the fifth breathing cycle is 8cmH 2 O and the Pplat is 21cmH 2 O
  • the calculation module of the end-expiratory positive pressure determination device can calculate the corresponding drive of each breathing cycle according to the PEEP and Pplat of each breathing cycle Pressure changes.
  • the calculation module of the end-expiratory positive pressure determination device changes with the step of the PEEP value, and the PEEP value corresponding to the minimum value of the driving pressure is the preferred PEEP value.
  • the calculation module of the end-expiratory positive pressure determination device After the calculation module of the end-expiratory positive pressure determination device calculates the change of the driving pressure after each change of the PEEP value, the calculation module of the end-expiratory positive pressure determination device changes the PEEP value corresponding to the minimum value of the drive pressure as the step of the PEEP value changes It is the preferred PEEP value.
  • the end-expiratory positive pressure determination device finds the PEEP value with the smallest driving pressure from the PEEP values in different stages, and determines the PEEP value with the smallest driving pressure as the preferred PEEP value.
  • the output module of the end-expiratory positive pressure determination device outputs a preferred PEEP value according to a preset prompt strategy.
  • the output module of the end-expiratory positive pressure determination device outputs The PEEP value is preferred.
  • the output module of the end-expiratory pressure determination device when the calculation module of the end-expiratory pressure determination device calculates the preferred PEEP value, the output module of the end-expiratory pressure determination device outputs the preferred PEEP value according to a preset prompt strategy.
  • the output module of the end-expiratory positive pressure determination device prompts the doctor of the preferred PEEP value, at which time the doctor can control the ventilation control module to use the PEEP value to provide mechanical ventilation to the patient.
  • the preset prompting strategy may be voice prompting or displaying prompting information on the display interface, which is specifically selected according to actual conditions, and is not specifically limited in this embodiment of the present invention.
  • the ventilation control module of the end-expiratory positive pressure determination device provides mechanical ventilation to the patient according to the preferred PEEP value.
  • the ventilation control module of the end-expiratory pressure determination device presents the patient with Provide mechanical ventilation.
  • the ventilation control module of the end-expiratory positive pressure determination device uses the preferred PEEP value to provide mechanical ventilation to the patient.
  • S205 and S206 are two parallel steps after S204, which are specifically selected and executed according to actual conditions, and are not specifically limited in the embodiment of the present invention.
  • the ventilation device includes a device for determining end-expiratory positive pressure, wherein the device for determining end-expiratory pressure is composed of a ventilation control module and physiological parameters.
  • the detection module, the calculation module, and the output module are composed of a method for determining positive end-expiratory pressure provided by an embodiment of the present invention, which is suitable for a scenario in which a ventilation device determines a preferred PEEP value according to a patient's compliance parameter.
  • Methods can include:
  • the ventilation control module of the end-expiratory positive pressure determination device changes the PEEP value of the ventilation device to the patient in steps.
  • the physiological parameter detection module of the end-expiratory positive pressure determination device monitors the patient's compliance.
  • the physiological parameter detection module of the positive end-expiratory pressure determination device monitors the patient's compliance.
  • the physiological parameter detection module in the end-expiratory positive pressure determination device calculates the tidal volume based on the inspiratory time and the inspiratory flow rate; and based on the tidal volume, PEEP value, and airway platform pressure Calculate the compliance value, and calculate the compliance value as shown in formula (2),
  • the calculation module of the end-expiratory positive pressure determination device calculates the change in compliance after each change in the PEEP value.
  • the calculation module of the end-expiratory pressure determination device calculates the change in compliance after each change in the PEEP value.
  • the abscissa represents time
  • the ordinate represents airway flow velocity, where the positive airway velocity is the inspiratory phase and the airway velocity is negative
  • the tidal volume is the inspiratory time in the breathing cycle multiplied by the corresponding inspiratory flow rate
  • the calculation module of the end-expiratory positive pressure determination device can be based on the PEEP, Pplat and tidal volume values of each respiratory cycle Calculate the change of compliance corresponding to each breathing cycle.
  • the calculation module of the end-expiratory positive pressure determination device changes with the step of the PEEP value, and the PEEP value corresponding to the maximum compliance value is the preferred PEEP value.
  • the calculation module of the end-expiratory pressure determination device calculates the change in compliance after each change in the PEEP value
  • the calculation module of the end-expiratory pressure determination device changes the PEEP value corresponding to the maximum compliance as the step of the PEEP value changes It is the preferred PEEP value.
  • the end-expiratory positive pressure determination device finds the PEEP value with the highest compliance from the PEEP values in different stages, and determines the PEEP value with the largest compliance as the preferred PEEP value.
  • the output module of the end-expiratory positive pressure determination device outputs a preferred PEEP value according to a preset prompt strategy.
  • the ventilation control module of the end-expiratory positive pressure determination device provides mechanical ventilation to the patient according to the preferred PEEP value.
  • S305 and S306 are two parallel steps after S304, which are specifically selected and executed according to actual conditions, and are not specifically limited in the embodiment of the present invention.
  • Yet another embodiment of the present invention provides a method for determining positive end-expiratory pressure, which is applied to a ventilation device.
  • the ventilation device includes a device for determining end-expiratory positive pressure.
  • the detection module, the calculation module and the output module are composed of a positive end-expiratory pressure determination method provided in the embodiments of the present invention, which is suitable for scenarios where the ventilation device determines the preferred PEEP value according to the patient's dead space ratio parameter, as shown in FIG. ,
  • the method may include:
  • the ventilation control module of the end-expiratory positive pressure determination device changes the PEEP value of the ventilation device to the patient in steps.
  • the physiological parameter detection module of the end-expiratory positive pressure determination device monitors the proportion of the dead space of the patient.
  • the physiological parameter detection module of the end-expiratory pressure determination device monitors the proportion of the dead space of the patient.
  • the physiological parameter detection module in the positive end-expiratory pressure determination device measures the arterial blood carbon dioxide partial pressure value and the expiratory carbon dioxide partial pressure value corresponding to the PEEP value; according to the arterial blood carbon dioxide partial pressure value and the expiratory value For the partial pressure of carbon dioxide, calculate the proportion of dead space corresponding to the PEEP value.
  • the physiological dead space is a gas that does not participate in gas exchange in the tidal volume, and is composed of alveolar dead space and anatomical dead space.
  • the alveolar dead space is the gas that enters the alveoli, due to the uneven distribution of blood flow in the lungs
  • the part of the gas that does not participate in the gas exchange, the anatomical dead space is the gas volume existing in the airway above the terminal bronchioles, that is, the part of the tidal volume that is exhaled without change in the early exhalation.
  • the ventilation control module in the end-expiratory positive pressure determination device changes the PEEP value
  • the patient is drawn once, and the blood gas analyzer measures the corresponding PEEP value.
  • the carbon dioxide sensor measures the partial pressure of carbon dioxide in the expiratory phase.
  • the calculation module of the end-expiratory positive pressure determination device calculates the change in the proportion of dead space after each change of the PEEP value.
  • the calculation module of the end-expiratory pressure determination device calculates the change of the proportion of the dead space every time the PEEP value changes.
  • Embodiments of the present invention the coordinate system shown in FIG. 3 PEEP value 20cmH 2 O, 18cmH 2 O, 16cmH 2 O, 14cmH 2 O, 12cmH 2 O, 10cmH 2 O, 8cmH 2 O, 6cmH 2 O and 0cmH 2 O corresponding to the V D / V T value, when the PEEP value drops from 20cmH 2 O to 18cmH 2 O, the V D / V T value shows a downward trend; when the PEEP value decreases from 18cmH 2 O to 16cmH 2 O, V D / V T value shows a downward trend; when PEEP value drops from 16cmH 2 O to 14cmH 2 O, V D / V T value shows a downward trend; when PEEP value decreases from 14cmH 2 O to 12cmH 2 O, V D / V T value decreased; PEEP value when dropped from 12cmH 2 O 10cmH 2 O, V D / V T values rise
  • the calculation module of the end-expiratory positive pressure determination device changes with the step of the PEEP value, and the PEEP value corresponding to the minimum value of the dead space ratio is the preferred PEEP value.
  • the calculation module of the end-expiratory pressure determination device calculates the change of the dead space ratio after each change of the PEEP value
  • the calculation module of the end-expiratory pressure determination device changes with the step of the PEEP value, the minimum value of the dead space ratio
  • the corresponding PEEP value is the preferred PEEP value.
  • the end-expiratory positive pressure determination device finds the PEEP value of the minimum dead space ratio from the PEEP values of different stages, and determines the PEEP value of the minimum dead space ratio as the preferred PEEP value.
  • the output module of the end-expiratory positive pressure determination device outputs a preferred PEEP value according to a preset prompt strategy.
  • the ventilation control module of the end-expiratory positive pressure determination device provides mechanical ventilation to the patient according to the preferred PEEP value.
  • S405 and S406 are two parallel steps after S404, which are specifically selected and executed according to actual conditions, and are not specifically limited in the embodiment of the present invention.
  • the ventilation device includes a device for determining end-expiratory positive pressure, wherein the device for determining end-expiratory pressure is composed of a ventilation control module and physiological parameters.
  • the detection module, the calculation module and the output module are composed.
  • the method for determining positive end-expiratory pressure provided by the embodiment of the present invention is suitable for the scenario where the ventilation device determines the preferred PEEP value according to the oxygenation index parameter of the patient, as shown in FIG. 8,
  • the method may include:
  • the ventilation control module of the end-expiratory positive pressure determination device changes the PEEP value of the ventilation device to the patient in steps.
  • the physiological parameter detection module of the end-expiratory positive pressure determination device monitors the oxygenation index of the patient.
  • the physiological parameter detection module of the end-expiratory pressure determination device monitors the patient's oxygenation index.
  • the physiological parameter detection module in the positive end-expiratory pressure determination device measures the arterial oxygen partial pressure value and the inhaled oxygen concentration value corresponding to the PEEP value; according to the arterial oxygen partial pressure value and the inhaled oxygen For the concentration value, calculate the oxygenation index value corresponding to the PEEP value.
  • the oxygenation index Arterial oxygen partial pressure With inhaled oxygen concentration The quotient of, where, The acquisition process of The acquisition process is the same, and each time when the ventilation control module of the end-expiratory positive pressure determination device changes the PEEP value, the patient is drawn once and measured by the blood gas analyzer; clinically Can be provided by ventilating equipment.
  • the calculation module of the end-expiratory positive pressure determination device calculates the change of the oxygenation index after each change of the PEEP value.
  • the calculation module of the end-expiratory pressure determination device calculates the change of the oxygenation index after each change in the PEEP value.
  • the calculation module of the end-expiratory positive pressure determination device calculates separately The rate of change and judge The rate of change of the situation.
  • the calculation module of the end-expiratory positive pressure determination device changes with the step of the PEEP value, and the PEEP value corresponding to the maximum point of the oxygenation index change rate is the preferred PEEP value.
  • the calculation module of the end-expiratory pressure determination device calculates the change of the oxygenation index after each change in the PEEP value
  • the calculation module of the end-expiratory pressure determination device changes with the step of the PEEP value, and the point of maximum change rate of the oxygenation index
  • the corresponding PEEP value is the preferred PEEP value.
  • the end-expiratory positive pressure determination device finds the PEEP value at the maximum point of the oxygenation index change rate from the PEEP values at different stages, and determines the PEEP value at the maximum point of the oxygenation index change rate as the preferred PEEP value .
  • the output module of the end-expiratory positive pressure determination device outputs a preferred PEEP value according to a preset prompt strategy.
  • the ventilation control module of the end-expiratory positive pressure determination device provides mechanical ventilation to the patient according to the preferred PEEP value.
  • S505 and S506 are two parallel steps after S504, which are specifically selected and executed according to actual conditions, and are not specifically limited in the embodiment of the present invention.
  • Yet another embodiment of the present invention provides a device for determining positive end-expiratory pressure 1.
  • the device for determining positive end-expiratory pressure 1 includes:
  • the ventilation control module 10 changes the PEEP value of the ventilation device to the patient in steps
  • the physiological parameter monitoring module 11 monitors at least one physiological parameter of the patient
  • the calculation module 12 calculates the change of at least one physiological parameter after each change of the PEEP value, and determines the preferred PEEP value for ventilating the patient according to the change of the at least one physiological parameter.
  • At least one physiological parameter includes driving pressure.
  • the calculation module 12 determines that the PEEP value corresponding to the minimum value of the driving pressure is the preferred PEEP value.
  • At least one physiological parameter includes compliance.
  • the calculation module 12 determines that the PEEP value corresponding to the maximum compliance value is the preferred PEEP value.
  • At least one physiological parameter includes a dead space ratio.
  • the calculation module 12 determines that the PEEP value corresponding to the minimum value of the dead space ratio is the preferred PEEP value. .
  • At least one physiological parameter includes an oxygenation index.
  • the calculation module 12 determines that the PEEP value corresponding to the maximum point of the oxygenation index change rate is the preferred PEEP value.
  • the at least one physiological parameter includes at least two of driving pressure, compliance, dead space ratio, and oxygenation index.
  • the calculation module 12 determines the corresponding candidate PEEP values according to the changes of the physiological parameters; and determines the preferred PEEP value for ventilating the patient according to the determined candidate PEEP values.
  • the calculation module 12 can obtain each candidate PEEP value determined according to the change of each physiological parameter according to the change of each physiological parameter.
  • the corresponding alternative PEEP value can be obtained according to the change in driving pressure, and the corresponding alternative PEEP value can be obtained according to the change in compliance, so that two alternative PEEP values can be obtained.
  • the method for determining the candidate PEEP value according to the change of the physiological parameter is the same as the method for determining the preferred PEEP value according to the physiological parameter above, which will not be repeated here.
  • the calculation module 12 may determine the preferred PEEP value for ventilating the patient according to the two candidate PEEP values.
  • the calculation module 12 may take the average of the two candidate PEEP values as the preferred PEEP value, or may determine a preferred PEEP value from multiple candidate PEEP values according to a preset weight coefficient, etc.
  • Alternative PEEP values are all preferred PEEP values.
  • the device further includes: an output module 13;
  • the output module 13 outputs a preferred PEEP value according to a preset prompt strategy.
  • the output module 13 may simultaneously output the determined multiple candidate PEEP values for reference by the doctor.
  • the ventilation control module 10 may further provide mechanical ventilation to the patient according to the preferred PEEP value.
  • the calculation module 12 obtains two or more candidate PEEP values according to the changes of each physiological parameter, the calculation module 12 also needs to Multiple alternative PEEP values determine a preferred PEEP.
  • the average value of multiple candidate PEEP values may be used as the preferred PEEP value, or a preferred PEEP value may be determined from the multiple candidate PEEP values according to a preset weight coefficient or the like.
  • An embodiment of the present invention provides a device for determining end-expiratory positive pressure 1, which changes the PEEP value of a ventilation device to a patient in steps; monitors at least one physiological parameter of the patient; calculates each change in PEEP value The change in at least one physiological parameter; the preferred PEEP value for ventilating the patient is determined according to the change in at least one physiological parameter.
  • the end-expiratory positive pressure determination device 1 changes the PEEP value step by step, and after each change of the PEEP value, calculates the change of at least one physiological parameter value, and determines according to the change of at least one physiological parameter Out of the preferred PEEP value for ventilating the patient, at this time, the end-expiratory positive pressure determining device 1 determines different preferred PEEP values for mechanical ventilation according to physiological parameters of different patients, and can automatically determine the preferred PEEP value.
  • FIG. 1 is a schematic structural diagram 1 of a ventilating device according to an embodiment of the present invention.
  • the ventilation device includes a controller 2, and the controller 1 includes the above-described positive end-expiratory pressure determination device 1, and further includes: a gas source 3, an inspiratory branch 4, an expiratory branch 5, and a display 6;
  • Air source 3 to provide gas during the process of mechanical ventilation
  • the suction branch 4 is connected to the air source 3 to provide the suction path during mechanical ventilation;
  • Expiratory branch 5 providing an expiratory path during mechanical ventilation
  • the controller 2 is connected to the inhalation branch 4 and the exhalation branch 5;
  • the end-expiratory positive pressure determination device 1 determines the preferred PEEP value during the process of mechanical ventilation
  • the display 5 is connected to the controller 2 and displays the respiratory waveform during the mechanical ventilation.
  • FIG. 12 is a second structural diagram of a ventilation device according to an embodiment of the present invention. As shown in FIG. 12, the patient can be connected to the ventilation device through the patient circuit to achieve mechanical ventilation, wherein the ventilation device includes the above-mentioned positive end-expiratory pressure determination device.
  • An embodiment of the present invention provides a computer-readable storage medium that stores a program for determining end-expiratory positive pressure, and the program for determining end-expiratory positive pressure may be executed by a processor to implement the above-mentioned exhalation Method for determining positive end pressure.
  • the computer-readable storage medium may be volatile memory (volatile memory), such as random access memory (Random-Access Memory, RAM); or non-volatile memory (non-volatile memory), such as read-only memory (Read -Only Memory, ROM), flash memory (flash memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD); it can also be one of the above-mentioned memory or any combination of their respective devices, Such as mobile phones, computers, tablet devices, personal digital assistants, etc.
  • volatile memory such as random access memory (Random-Access Memory, RAM)
  • non-volatile memory such as read-only memory (Read -Only Memory, ROM), flash memory (flash memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD
  • ROM read-only memory
  • flash memory flash memory
  • HDD Hard Disk Drive
  • SSD solid-state drive
  • the methods in the above embodiments can be implemented by means of software plus a necessary general hardware platform, and of course, can also be implemented by hardware, but in many cases the former is better Implementation.
  • the technical solutions of the present invention can be embodied in the form of software products in essence or part of contributions to the existing technology, and the computer software products are stored in a storage medium (such as ROM / RAM, magnetic disk,
  • the CD-ROM includes several instructions to enable a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the method described in each embodiment of the present invention.
  • the end-expiratory positive pressure determination device changes the PEEP value step by step, and after each change of the PEEP value, calculates the change of at least one physiological parameter value, and determines the ventilation to the patient according to the change of at least one physiological parameter
  • the PEEP value is preferred.
  • the end-expiratory positive pressure determination device determines different preferred PEEP values for mechanical ventilation according to physiological parameters of different patients, and can automatically determine the preferred PEEP value.

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种呼气末正压确定方法及装置、通气设备、存储介质,该方法可以包括:阶梯改变通气设备向患者通气的PEEP值(S101);监测患者的至少一个生理参数(S102);计算每次PEEP值改变后至少一个生理参数的变化(S103);根据至少一个生理参数的变化确定向患者通气的优选PEEP值(S104)。

Description

一种呼气末正压确定方法及装置、通气设备、存储介质 技术领域
本发明实施例涉及医疗器械技术领域,尤其涉及一种呼气末正压确定方法及装置、通气设备、存储介质。
背景技术
呼气末正压(PEEP,positive end expiratory pressure)是呼吸机治疗的关键参数之一。由于PEEP可以增加呼气末肺容积,使得肺泡在呼气末不易陷闭,使得PEEP在治疗呼吸窘迫综合征(ARDS,Acute Respiratory Distress Syndrome)、非心源性肺水肿、肺出血时起到重要的作用。由于临床上每个病人的病情不同,使得每个病人所需的优选PEEP也是不同的。PEEP过高或者过低都有可能导致病人的脑、肝、肾等器官的损伤及功能显示,因此如何确定优选PEEP是临床上的一个痛点和难点。
发明内容
为解决上述技术问题,本发明实施例期望提供一种呼气末正压确定方法及装置、通气设备、存储介质,能够自动确定优选的PEEP。
本发明实施例的技术方案可以如下实现:
本发明实施例提供一种呼气末正压确定方法,应用于通气设备,所述方法包括:
阶梯改变所述通气设备向患者通气的PEEP值;
监测所述患者的至少一个生理参数;
计算每次PEEP值改变后所述至少一个生理参数的变化;
根据所述至少一个生理参数的变化确定向所述患者通气的优选PEEP值。
在上述方法中,所述至少一个生理参数为驱动压;
所述根据所述至少一个生理参数的变化确定向所述患者通气的优选PEEP值的步骤包括:
随着PEEP值的阶梯改变,所述驱动压最小值对应的PEEP值为所述优选PEEP值。
在上述方法中,所述至少一个生理参数为顺应性;
所述根据所述至少一个生理参数的变化确定向所述患者通气的优选PEEP值的步骤包括:
随着PEEP值的阶梯改变,所述顺应性最大值对应的PEEP值为所述优选PEEP值。
在上述方法中,所述至少一个生理参数为死腔占比;
所述根据所述至少一个生理参数的变化确定向所述患者通气的优选PEEP值的步骤包括:
随着PEEP值的阶梯改变,所述死腔占比最小值对应的PEEP值为所述优选PEEP值。
在上述方法中,所述至少一个生理参数为氧合指数;
所述根据所述至少一个生理参数的变化确定向所述患者通气的优选PEEP值的步骤包括:
随着PEEP值的阶梯改变,所述氧合指数变化率最大点对应的PEEP值为所述优选PEEP值。
在上述方法中,所述至少一个生理参数包括:驱动压、顺应性、死腔占比和氧合指数中的至少两个,所述根据所述至少一个生理参数的变化确定向所述患者通气的优选PEEP值的步骤包括:
根据各生理参数的变化确定对应的各备选PEEP值;
根据确定的各备选PEEP值确定向所述患者通气的优选PEEP值。
在上述方法中,所述根据所述至少一个生理参数的变化确定向所述患 者通气的优选PEEP值之后,所述方法还包括:
根据预设提示策略,输出所述优选PEEP值。
在上述方法中,所述根据所述至少一个生理参数的变化确定向所述患者通气的优选PEEP值之后,所述方法还包括:
根据所述优选PEEP值向所述患者提供机械通气。
本发明实施例提供一种呼气末正压确定装置,应用于通气设备,所述装置包括:
通气控制模块,阶梯改变所述通气设备向患者通气的PEEP值;
生理参数监测模块,监测所述患者的至少一个生理参数;
计算模块,计算每次PEEP值改变后所述至少一个生理参数的变化,并根据所述至少一个生理参数的变化确定向所述患者通气的优选PEEP值。
在上述装置中,所述至少一个生理参数为驱动压,
随着PEEP值的阶梯改变,所述计算模块确定所述驱动压最小值对应的PEEP值为所述优选PEEP值。
在上述装置中,所述至少一个生理参数为顺应性,
随着PEEP值的阶梯改变,所述计算模块确定所述顺应性最大值对应的PEEP值为所述优选PEEP值。
在上述装置中,所述至少一个生理参数为死腔占比,
随着PEEP值的阶梯改变,所述计算模块确定所述死腔占比最小值对应的PEEP值为所述优选PEEP值。
在上述装置中,所述至少一个生理参数为氧合指数,
随着PEEP值的阶梯改变,所述计算模块确定所述氧合指数变化率最大点对应的PEEP值为所述优选PEEP值。
在上述装置中,所述至少一个生理参数包括:驱动压、顺应性、死腔占比和氧合指数中的至少两个,
所述计算模块根据各生理参数的变化确定对应的各备选PEEP值,并根 据确定的各备选PEEP值确定向所述患者通气的优选PEEP值。
在上述装置中,所述装置还包括:输出模块;
所述输出模块,根据预设提示策略,输出所述优选PEEP值。
在上述装置中,所述装置还包括:通气控制模块;
所述通气控制模块,根据所述优选PEEP值向所述患者提供机械通气。
本发明实施例提供一种包含上述任一项所述呼气末正压确定装置的通气设备,包括气源、吸气支路、呼气支路和显示器;
所述气源,在机械通气的过程中提供气体;
所述吸气支路与所述气源连接,在所述机械通气的过程中提供吸气路径;
所述呼气支路,在所述机械通气的过程中提供呼气路径;
所述呼气末正压确定装置与所述吸气支路、所述呼气支路连接;
所述呼气末正压确定装置,在所述机械通气的过程中确定优选PEEP值;
所述显示器与所述呼气末正压确定装置连接,在所述机械通气的过程中显示呼吸波形。
本发明实施例提供一种存储介质,所述存储介质存储有呼气末正压确定程序,所述呼气末正压确定程序可以被处理器执行,以实现上述任一项所述的呼气末正压确定方法。
本发明实施例提供一种呼气末正压确定方法及装置、通气设备、存储介质,该方法包括:阶梯改变通气设备向患者通气的PEEP值;监测患者的至少一个生理参数;计算每次PEEP值改变后至少一个生理参数的变化;根据至少一个生理参数的变化确定向患者通气的优选PEEP值。采用上述方案,呼气末正压确定装置阶梯改变PEEP值,并在每次改变PEEP值之后,计算至少一个生理参数值的变化,并根据至少一个生理参数的变化确定出向患者通气的优选PEEP值,此时,呼气末正压确定装置可以根据不同病人的生 理参数,确定不同的优选PEEP值以进行机械通气,能够自动确定优选的PEEP值。
附图说明
图1为本发明实施例提供的一种呼气末正压确定方法的流程图一;
图2为本发明实施例提供的一种示例性的阶梯改变PEEP值时P plat的变化曲线;
图3为本发明实施例提供的一种示例性的阶梯改变PEEP值时死腔占比的变化曲线;
图4为本发明实施例提供的一种示例性的阶梯改变PEEP值时氧合指数的变化曲线;
图5为本发明实施例提供的一种呼气末正压确定方法的流程图二;
图6为本发明实施例提供的一种呼气末正压确定方法的流程图三;
图7为本发明实施例提供的一种呼气末正压确定方法的流程图四;
图8为本发明实施例提供的一种呼气末正压确定方法的流程图五;
图9为本发明实施例提供的一种呼气末正压确定装置1的结构示意图一;
图10为本发明实施例提供的一种呼气末正压确定装置1的结构示意图二;
图11为本发明实施例提供的一种通气设备的结构示意图一;
图12为本发明实施例提供的一种通气设备的结构示意图二。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
本发明一实施例提供一种呼气末正压确定方法,应用于通气设备,通气设备为具备通气功能的医疗设备,可以为呼吸机或麻醉机。具体的根据实际情况进行选择,本发明实施例不做具体的限定。本发明实施例提供的呼气末正压确定方法适用于利用通气设备对病人进行机械通气的场景下。如图1所示,该方法可以包括:
S101、阶梯改变通气设备向患者通气的PEEP值。
本发明实施例中,通气设备中包括呼气末正压确定装置,其中,呼气末正压确定装置由通气控制模块、生理参数检测模块、计算模块和输出模块组成,在利用通气设备对病人进行机械通气的过程中,呼气末正压确定装置中的通气控制模块从初始PEEP值开始依次按照升序或者降序的顺序阶梯改变向患者通气的PEEP值。
需要说明的是,初始PEEP值可以在每一次进行PEEP滴定时由医生手动设置的,或者呼气末正压确定装置中的预设值,具体的根据实际情况进行选择,本发明实施例不做具体的限定。
S102、监测患者的至少一个生理参数。
当呼气末正压确定装置的通气控制模块阶梯改变通气设备向患者通气的PEEP值之后,呼气末正压确定装置中的生理参数监测模块检测患者的至少一个生理参数。
本发明实施例中,生理参数可以包括驱动压、顺应性、死腔占比和氧合指数等,具体的根据实际情况进行选择,本发明实施例不做具体的限定。
本发明实施例中,在PEEP滴定时,医生可以从驱动压、顺应性、死腔占比和氧合指数中选择出至少一个生理参数,以供呼气末正压确定装置中的生理参数检测模块监测不同的PEEP值对应的至少一个生理参数值。
呼气末正压确定装置中的生理参数监测模块监测患者的至少一个生理参数的具体方式在以下详述。
本发明实施例中,呼气末正压确定装置中的生理参数检测模块测量 PEEP值对应的气道平台压力值;根据PEEP值和气道平台压力值,计算驱动压值,具体的根据PEEP值和气道平台压力值,计算驱动压值如公式(1)所示,
ΔP=Pplat-PEEP          (1)
其中,ΔP为驱动压值,Pplat为气道平台压力值。
本发明实施例中,呼气末正压确定装置中的生理参数检测模块根据吸气时间和吸气流速,计算潮气量;并根据潮气量、PEEP值和气道平台压力值计算顺应性值,计算顺应性值如公式(2)所示,
顺应性=潮气量/(Pplat-PEEP)         (2)
本发明实施例中,呼气末正压确定装置中的生理参数检测模块测量PEEP值对应的动脉血二氧化碳分压值和呼气中二氧化碳分压值;根据动脉血二氧化碳分压值和呼气中二氧化碳分压值,计算PEEP值对应的死腔占比值。
需要说明的是,生理死腔是潮气量中不参与气体交换的气体,由肺泡死腔和解剖死腔组成,其中,肺泡死腔为进入肺泡的气体中,由于血流在肺内分布不均而不参与气体交换的那部分气体,解剖死腔为存在于终末细支气管以上气道内的气体容量,即指潮气量中在呼气初期不发生改变就被呼出的那部分气体。
本发明实施例中,死腔占比V D/V T的计算公式如公式(3)所示,
Figure PCTCN2018117323-appb-000001
其中,
Figure PCTCN2018117323-appb-000002
为动脉血二氧化碳分压值,当呼气末正压确定装置中的通气控制模块每更改一次PEEP值时,对病人进行一次抽血,并由血气分析仪测量该PEEP值对应的
Figure PCTCN2018117323-appb-000003
为呼气中二氧化碳分压值,当呼气末正压确定装置中的通气控制模块每更改一次PEEP值时,由二氧化碳传感器测得呼气阶段的二氧化碳分压值。
本发明实施例中,呼气末正压确定装置中的生理参数检测模块测量PEEP值对应的动脉氧分压值和吸入氧浓度值;根据动脉氧分压值和吸入氧浓度值,计算PEEP值对应的氧合指数值。
本发明实施例中,氧合指数
Figure PCTCN2018117323-appb-000004
为动脉氧分压
Figure PCTCN2018117323-appb-000005
与吸入氧浓度
Figure PCTCN2018117323-appb-000006
的商值,其中,
Figure PCTCN2018117323-appb-000007
的获取过程与
Figure PCTCN2018117323-appb-000008
的获取过程相同,均为当呼气末正压确定装置的通气控制模块每更改一次PEEP值时,对病人进行一次抽血,并由血气分析仪测得的;临床上的
Figure PCTCN2018117323-appb-000009
可以由通气设备提供。
S103、计算每次PEEP值改变后至少一个生理参数的变化。
当呼气末正压确定装置的生理参数监测模块检测到患者的至少一个生理参数之后,呼气末正压确定装置的计算模块计算每次PEEP值改变后,至少一个生理参数的变化。
本发明实施例中,当呼气末正压确定装置的生理参数监测模块监测出PEEP值对应的驱动压值之后,呼气末正压确定装置的计算模块计算每次改变PEEP值时,驱动压值的变化情况。
示例性的,如图2所示,在第一坐标系中显示了5个呼吸周期的气道压力变化曲线,在第二坐标系中显示了该5个呼吸周期的气道流速变化曲线,其中,每个呼吸周期包括呼气阶段和吸气阶段;在第一坐标系中,上升曲线表征吸气阶段,下降曲线和持平线共同组成了呼气阶段,在每个呼气阶段,第一条持平线对应的气道压力值为Pplat,第二条持平线对应的气道压力值为PEEP,其中,第一个呼吸周期的PEEP为0cmH 2O,Pplat为15cmH 2O、第二个呼吸周期的PEEP为2cmH 2O,Pplat为15cmH 2O、第三个呼吸周期的PEEP为4cmH 2O,Pplat为16cmH 2O、第四个呼吸周期的PEEP为6cmH 2O,Pplat为18cmH 2O,第五个呼吸周期的PEEP为8cmH 2O,Pplat为21cmH 2O,则呼气末正压确定装置的计算模块能够根据每个呼吸周期的PEEP和Pplat,计算出每个呼吸周期对应的驱动压的变化情况。
本发明实施例中,当呼气末正压确定装置的生理参数监测模块监测出PEEP值对应的顺应性值之后,呼气末正压确定装置的计算模块计算每次改变PEEP值时,顺应性值的变化情况。
示例性的,如图2所示,在第二坐标系中,横坐标表征时间,纵坐标表征气道流速,其中,气道流速为正的是吸气阶段,气道流速为负的是呼气阶段,潮气量即为呼吸周期中的吸气时间乘以对应的吸气流速,则呼气末正压确定装置的计算模块能够根据每个呼吸周期的PEEP、Pplat和潮气量值,计算出每个呼吸周期对应的顺应性的变化情况。
本发明实施例中,当呼气末正压确定装置的生理参数监测模块监测出PEEP值对应的死腔占比值之后,呼气末正压确定装置的计算模块计算每次改变PEEP值时,死腔占比值的变化情况。
示例性的,图3的坐标系中显示了PEEP值为20cmH 2O、18cmH 2O、16cmH 2O、14cmH 2O、12cmH 2O、10cmH 2O、8cmH 2O、6cmH 2O和0cmH 2O对应的V D/V T值,则PEEP值从20cmH 2O降到18cmH 2O时,V D/V T值呈下降趋势;PEEP值从18cmH 2O降到16cmH 2O时,V D/V T值呈下降趋势;PEEP值从16cmH 2O降到14cmH 2O时,V D/V T值呈下降趋势;PEEP值从14cmH 2O降到12cmH 2O时,V D/V T值呈下降趋势;PEEP值从12cmH 2O降到10cmH 2O时,V D/V T值呈上升趋势;PEEP值从10cmH 2O降到8cmH 2O时,V D/V T值呈上升趋势;PEEP值从8cmH 2O降到6cmH 2O时,V D/V T值持平;PEEP值从6cmH 2O降到0cmH 2O时,V D/V T值呈上升趋势。
本发明实施例中,当呼气末正压确定装置的生理参数监测模块监测出PEEP值对应的氧合指数值之后,呼气末正压确定装置的计算模块计算每次改变PEEP值时氧合指数的变化率。
示例性的,图4的坐标系中显示了PEEP值为20cmH 2O、18cmH 2O、16cmH 2O、14cmH 2O、12cmH 2O、10cmH 2O、8cmH 2O、6cmH 2O和0cmH 2O对应的
Figure PCTCN2018117323-appb-000010
值,呼气末正压确定装置的计算模块分别计算
Figure PCTCN2018117323-appb-000011
的变 化率,并判断
Figure PCTCN2018117323-appb-000012
的变化率的变化情况。
S104、根据至少一个生理参数的变化确定向患者通气的优选PEEP值。
当呼气末正压确定装置的计算模块计算出每次PEEP值改变后至少一个生理参数的变化之后,呼气末正压确定装置的计算模块根据至少一个生理参数的变化确定出向患者通气的优选PEEP值。
本发明实施例中,当呼气末正压确定装置的计算模块计算出每次PEEP值改变后顺应性值的变化之后,呼气末正压确定装置的计算模块将顺应性最大值对应的PEEP值确定为优选PEEP值。
进一步地,在呼气末正压确定装置的生理参数监测模块测量PEEP值对应的Pplat值之后,呼气末正压确定装置的计算模块计算PEEP的变化值和Pplat变化值,呼气末正压确定装置的计算模块比较PEEP的变化值和Pplat变化值之间的大小,将PEEP的变化值等于Pplat变化值时的PEEP值确定为优选PEEP。
示例性的,如图2所示,第一个呼吸周期的PEEP为0cmH 2O,Pplat为15cmH 2O、第二个呼吸周期的PEEP为2cmH 2O,Pplat为15cmH 2O、第三个呼吸周期的PEEP为4cmH 2O,Pplat为16cmH 2O、第四个呼吸周期的PEEP为6cmH 2O,Pplat为18cmH 2O,第五个呼吸周期的PEEP为8cmH 2O,Pplat为21cmH 2O。计算可得,第二个呼吸周期的△PEEP为2,△Pplat为0,则对于PEEP为2cmH 2O而言,△PEEP>△Pplat;第三个呼吸周期的△PEEP为2,△Pplat为1,则对于PEEP为4cmH 2O而言,△PEEP>△Pplat;第四个呼吸周期的△PEEP为2,△Pplat为2,则对于PEEP为6cmH 2O而言,△PEEP=△Pplat;第五个呼吸周期的△PEEP为2,△Pplat为3,则对于PEEP为8cmH 2O而言,△PEEP<△Pplat。则呼气末正压确定装置的计算模块将PEEP为6cmH 2O确定为优选PEEP值。
需要说明的是,当呼气末正压确定装置的通气控制模块每将PEEP升高到一个PEEP值时,Pplat的升高值小于PEEP的升高值时,表征增加PEEP 后病人的呼吸系统的顺应性改善,此时,PEEP的作用是有益的;Pplat的升高值等于PEEP的升高值时,表征增加PEEP后病人的呼吸系统的顺应性没有改善;Pplat的升高值大于PEEP的升高值时,表征增加PEEP后病人的呼吸系统的顺应性下降,此时,PEEP值过高。
本发明实施例中,当呼气末正压确定装置的计算模块计算出每次PEEP值改变后,死腔占比值的变化之后,呼气末正压确定装置的计算模块将死腔占比最小值对应的PEEP值确定为优选PEEP值。
示例性的,如图3所示,PEEP为12cmH 2O时,V D/V T值最小,此时,呼气末正压确定装置的通气控制模块将PEEP设置为12cmH 2O对病人进行机械通气。
本发明实施例中,当呼气末正压确定装置的计算模块计算出每次PEEP值对应的氧合指数变化率之后,呼气末正压确定装置的计算模块将氧合指数变化率最大点对应的PEEP值确定为优选PEEP值。
示例性的,如图4所示,PEEP为12cmH 2O时
Figure PCTCN2018117323-appb-000013
值的变化率最高,此时,呼气末正压确定装置的通气控制模块将PEEP设置为12cmH 2O对病人进行机械通气。
进一步地,呼气末正压确定装置的计算模块根据各生理参数的变化确定对应的各备选PEEP值,之后呼气末正压确定装置的计算模块根据各备选PEEP值确定向患者通气的优选PEEP值。
具体的,在呼气末正压确定装置的计算模块确定出驱动压最小值对应的PEEP值、顺应性最大值对应的PEEP值、死腔占比最小值对应的PEEP值和氧合指数变化率最大点对应的PEEP值之后,呼气末正压确定装置的计算模块获取驱动压最小值对应的PEEP值和顺应性最大值对应的PEEP值中的任一个PEEP值;对驱动压最小值对应的PEEP值和顺应性最大值对应的PEEP值中的任一个PEEP值、死腔占比最小值对应的PEEP值和氧合指数变化率最大点对应的PEEP值中的至少两个PEEP值求取均值;将均值确定 为优选PEEP值。
可选的,呼气末正压确定装置的计算模块对驱动压最小值对应的PEEP值和顺应性最大值对应的PEEP值中的任一个PEEP值,和死腔占比最小值对应的PEEP值求取均值;将均值确定为优选PEEP值。
可选的,呼气末正压确定装置的计算模块对驱动压最小值对应的PEEP值和顺应性最大值对应的PEEP值中的任一个PEEP值,和氧合指数变化率最大点对应的PEEP值求取均值;将均值确定为优选PEEP值。
可选的,呼气末正压确定装置的计算模块对驱动压最小值对应的PEEP值和顺应性最大值对应的PEEP值中的任一个PEEP值、死腔占比最小值对应的PEEP值和氧合指数变化率最大点对应的PEEP值求取均值;将均值确定为优选PEEP值。
进一步地,当呼气末正压确定装置的计算模块确定出向患者通气的优选PEEP值时,呼气末正压确定装置的输出模块根据预设提示策略,输出该优选PEEP值,以提示医生可以利用该优选PEEP值进行通气。
可以理解的是,呼气末正压确定装置阶梯改变PEEP值,并在每次改变PEEP值之后,计算至少一个生理参数值的变化,并根据至少一个生理参数的变化确定出向患者通气的优选PEEP值,此时,呼气末正压确定装置根据不同病人的生理参数,确定不同的优选PEEP值以进行机械通气,能够自动确定优选的PEEP值。
具体的呼气末正压确定装置根据不同的参数值的变化确定优选PEEP值的过程在以下实施例体现。
本发明另一实施例提供一种呼气末正压确定方法,应用于通气设备,通气设备中包括呼气末正压确定装置,其中,呼气末正压确定装置由通气控制模块、生理参数检测模块、计算模块和输出模块组成,本发明实施例提供的一种呼气末正压确定方法适用于通气设备根据患者的驱动压参数确定优选PEEP值的场景下,如图5所示,该方法可以包括:
S201、呼气末正压确定装置的通气控制模块阶梯改变通气设备向患者通气的PEEP值。
这里,本申请实施例的S201的描述与实施例一中的S101的描述一致,此处不再赘述。
S202、呼气末正压确定装置的生理参数检测模块监测患者的驱动压。
当呼气末正压确定装置的通气控制模块阶梯改变通气设备向患者通气的PEEP值之后,呼气末正压确定装置的生理参数检测模块监测患者的驱动压。
本发明实施例中,呼气末正压确定装置中的生理参数检测模块测量PEEP值对应的气道平台压力值;根据PEEP值和气道平台压力值,计算驱动压值,具体的根据PEEP值和气道平台压力值,计算驱动压值如公式(1)所示,
ΔP=Pplat-PEEP       (1)
其中,ΔP为驱动压值,Pplat为气道平台压力值。
S203、呼气末正压确定装置的计算模块计算每次PEEP值改变后驱动压的变化。
当呼气末正压确定装置的生理参数检测模块监测患者的驱动压之后,呼气末正压确定装置的计算模块计算每次PEEP值改变后驱动压的变化。
本发明实施例中,如图2所示,在第一坐标系中显示了5个呼吸周期的气道压力变化曲线,在第二坐标系中显示了该5个呼吸周期的气道流速变化曲线,其中,每个呼吸周期包括呼气阶段和吸气阶段;在第一坐标系中,上升曲线表征吸气阶段,下降曲线和持平线共同组成了呼气阶段,在每个呼气阶段,第一条持平线对应的气道压力值为Pplat,第二条持平线对应的气道压力值为PEEP,其中,第一个呼吸周期的PEEP为0cmH 2O,Pplat为15cmH 2O、第二个呼吸周期的PEEP为2cmH 2O,Pplat为15cmH 2O、第三个呼吸周期的PEEP为4cmH 2O,Pplat为16cmH 2O、第四个呼吸周期的 PEEP为6cmH 2O,Pplat为18cmH 2O,第五个呼吸周期的PEEP为8cmH 2O,Pplat为21cmH 2O,则呼气末正压确定装置的计算模块能够根据每个呼吸周期的PEEP和Pplat,计算出每个呼吸周期对应的驱动压的变化情况。
S204、呼气末正压确定装置的计算模块随着PEEP值的阶梯改变,驱动压最小值对应的PEEP值为优选PEEP值。
当呼气末正压确定装置的计算模块计算每次PEEP值改变后驱动压的变化之后,呼气末正压确定装置的计算模块随着PEEP值的阶梯改变,驱动压最小值对应的PEEP值为优选PEEP值。
本发明实施例中,呼气末正压确定装置从不同阶段的PEEP值中查找出驱动压最小的PEEP值,并将驱动压最小的PEEP值确定为优选PEEP值。
S205、呼气末正压确定装置的输出模块根据预设提示策略,输出优选PEEP值。
当呼气末正压确定装置的计算模块随着PEEP值的阶梯改变,驱动压最小值对应的PEEP值为优选PEEP值之后,呼气末正压确定装置的输出模块根据预设提示策略,输出优选PEEP值。
本发明实施例中,当呼气末正压确定装置的计算模块计算出优选PEEP值时,呼气末正压确定装置的输出模块根据预设提示策略,输出该优选PEEP值。
可选的,呼气末正压确定装置的输出模块向医生提示该优选PEEP值,此时医生可以控制通气控制模块利用该PEEP值向患者提供机械通气。
可选的,预设提示策略可以为语音提示或者在显示界面上显示提示信息等方式,具体的根据实际情况进行选择,本发明实施例不做具体的限定。
S206、呼气末正压确定装置的通气控制模块根据优选PEEP值向患者提供机械通气。
当呼气末正压确定装置的计算模块随着PEEP值的阶梯改变,驱动压最小值对应的PEEP值为优选PEEP值之后,呼气末正压确定装置的通气控制 模块根据优选PEEP值向患者提供机械通气。
本发明实施例中,呼气末正压确定装置的通气控制模块利用优选PEEP值,向患者提供机械通气。
S205和S206为S204之后的两个并列的步骤,具体的根据实际情况进行选择执行,本发明实施例不做具体的限定。
本发明另一实施例提供一种呼气末正压确定方法,应用于通气设备,通气设备中包括呼气末正压确定装置,其中,呼气末正压确定装置由通气控制模块、生理参数检测模块、计算模块和输出模块组成,本发明实施例提供的一种呼气末正压确定方法适用于通气设备根据患者的顺应性参数确定优选PEEP值的场景下,如图6所示,该方法可以包括:
S301、呼气末正压确定装置的通气控制模块阶梯改变通气设备向患者通气的PEEP值。
这里,本申请实施例的S301的描述与实施例二中的S201的描述一致,此处不再赘述。
S302、呼气末正压确定装置的生理参数检测模块监测患者的顺应性。
当呼气末正压确定装置的通气控制模块阶梯改变通气设备向患者通气的PEEP值之后,呼气末正压确定装置的生理参数检测模块监测患者的顺应性。
本发明实施例中,本发明实施例中,呼气末正压确定装置中的生理参数检测模块根据吸气时间和吸气流速,计算潮气量;并根据潮气量、PEEP值和气道平台压力值计算顺应性值,计算顺应性值如公式(2)所示,
顺应性=潮气量/(Pplat-PEEP)        (2)
S303、呼气末正压确定装置的计算模块计算每次PEEP值改变后顺应性的变化。
当呼气末正压确定装置的生理参数检测模块监测患者的顺应性之后, 呼气末正压确定装置的计算模块计算每次PEEP值改变后顺应性的变化。
本发明实施例中,如图2所示,在第二坐标系中,横坐标表征时间,纵坐标表征气道流速,其中,气道流速为正的是吸气阶段,气道流速为负的是呼气阶段,潮气量即为呼吸周期中的吸气时间乘以对应的吸气流速,则呼气末正压确定装置的计算模块能够根据每个呼吸周期的PEEP、Pplat和潮气量值,计算出每个呼吸周期对应的顺应性的变化情况。
S304、呼气末正压确定装置的计算模块随着PEEP值的阶梯改变,顺应性最大值对应的PEEP值为优选PEEP值。
当呼气末正压确定装置的计算模块计算每次PEEP值改变后顺应性的变化之后,呼气末正压确定装置的计算模块随着PEEP值的阶梯改变,顺应性最大值对应的PEEP值为优选PEEP值。
本发明实施例中,呼气末正压确定装置从不同阶段的PEEP值中查找出顺应性最大的PEEP值,并将顺应性最大的PEEP值确定为优选PEEP值。
S305、呼气末正压确定装置的输出模块根据预设提示策略,输出优选PEEP值。
这里,本申请实施例的S305的描述与实施例二中的S205的描述一致,此处不再赘述。
S306、呼气末正压确定装置的通气控制模块根据优选PEEP值向患者提供机械通气。
这里,本申请实施例的S306的描述与实施例二中的S206的描述一致,此处不再赘述。
S305和S306为S304之后的两个并列的步骤,具体的根据实际情况进行选择执行,本发明实施例不做具体的限定。
本发明再一实施例提供一种呼气末正压确定方法,应用于通气设备,通气设备中包括呼气末正压确定装置,其中,呼气末正压确定装置由通气控制模块、生理参数检测模块、计算模块和输出模块组成,本发明实施例 提供的一种呼气末正压确定方法适用于通气设备根据患者的死腔占比参数确定优选PEEP值的场景下,如图7所示,该方法可以包括:
S401、呼气末正压确定装置的通气控制模块阶梯改变通气设备向患者通气的PEEP值。
这里,本申请实施例的S401的描述与实施例二中的S201的描述一致,此处不再赘述。
S402、呼气末正压确定装置的生理参数检测模块监测患者的死腔占比。
当呼气末正压确定装置的通气控制模块阶梯改变通气设备向患者通气的PEEP值之后,呼气末正压确定装置的生理参数检测模块监测患者的死腔占比。
本发明实施例中,呼气末正压确定装置中的生理参数检测模块测量PEEP值对应的动脉血二氧化碳分压值和呼气中二氧化碳分压值;根据动脉血二氧化碳分压值和呼气中二氧化碳分压值,计算PEEP值对应的死腔占比值。
需要说明的是,生理死腔是潮气量中不参与气体交换的气体,由肺泡死腔和解剖死腔组成,其中,肺泡死腔为进入肺泡的气体中,由于血流在肺内分布不均而不参与气体交换的那部分气体,解剖死腔为存在于终末细支气管以上气道内的气体容量,即指潮气量中在呼气初期不发生改变就被呼出的那部分气体。
本发明实施例中,死腔占比V D/V T的计算公式如公式(3)所示,
Figure PCTCN2018117323-appb-000014
其中,
Figure PCTCN2018117323-appb-000015
为动脉血二氧化碳分压值,当呼气末正压确定装置中的通气控制模块每更改一次PEEP值时,对病人进行一次抽血,并由血气分析仪测量该PEEP值对应的
Figure PCTCN2018117323-appb-000016
为呼气中二氧化碳分压值,当呼气末正压确定装置中的通气控制模块每更改一次PEEP值时,由二氧化碳传感器测得 呼气阶段的二氧化碳分压值。
S403、呼气末正压确定装置的计算模块计算每次PEEP值改变后死腔占比的变化。
当呼气末正压确定装置的生理参数检测模块监测患者的死腔占比之后,呼气末正压确定装置的计算模块计算每次PEEP值改变后死腔占比的变化。
本发明实施例中,图3的坐标系中显示了PEEP值为20cmH 2O、18cmH 2O、16cmH 2O、14cmH 2O、12cmH 2O、10cmH 2O、8cmH 2O、6cmH 2O和0cmH 2O对应的V D/V T值,则PEEP值从20cmH 2O降到18cmH 2O时,V D/V T值呈下降趋势;PEEP值从18cmH 2O降到16cmH 2O时,V D/V T值呈下降趋势;PEEP值从16cmH 2O降到14cmH 2O时,V D/V T值呈下降趋势;PEEP值从14cmH 2O降到12cmH 2O时,V D/V T值呈下降趋势;PEEP值从12cmH 2O降到10cmH 2O时,V D/V T值呈上升趋势;PEEP值从10cmH 2O降到8cmH 2O时,V D/V T值呈上升趋势;PEEP值从8cmH 2O降到6cmH 2O时,V D/V T值持平;PEEP值从6cmH 2O降到0cmH 2O时,V D/V T值呈上升趋势。
S404、呼气末正压确定装置的计算模块随着PEEP值的阶梯改变,死腔占比最小值对应的PEEP值为优选PEEP值。
当呼气末正压确定装置的计算模块计算每次PEEP值改变后死腔占比的变化之后,呼气末正压确定装置的计算模块随着PEEP值的阶梯改变,死腔占比最小值对应的PEEP值为优选PEEP值。
本发明实施例中,呼气末正压确定装置从不同阶段的PEEP值中查找出死腔占比最小值的PEEP值,并将死腔占比最小值的PEEP值确定为优选PEEP值。
S405、呼气末正压确定装置的输出模块根据预设提示策略,输出优选PEEP值。
这里,本申请实施例的S405的描述与实施例二中的S205的描述一致,此处不再赘述。
S406、呼气末正压确定装置的通气控制模块根据优选PEEP值向患者提供机械通气。
这里,本申请实施例的S406的描述与实施例二中的S206的描述一致,此处不再赘述。
S405和S406为S404之后的两个并列的步骤,具体的根据实际情况选择执行,本发明实施例不做具体的限定。
本发明另一实施例提供一种呼气末正压确定方法,应用于通气设备,通气设备中包括呼气末正压确定装置,其中,呼气末正压确定装置由通气控制模块、生理参数检测模块、计算模块和输出模块组成,本发明实施例提供的一种呼气末正压确定方法适用于通气设备根据患者的氧合指数参数确定优选PEEP值的场景下,如图8所示,该方法可以包括:
S501、呼气末正压确定装置的通气控制模块阶梯改变通气设备向患者通气的PEEP值。
这里,本申请实施例的S501的描述与实施例二中的S201的描述一致,此处不再赘述。
S502、呼气末正压确定装置的生理参数检测模块监测患者的氧合指数。
当呼气末正压确定装置的通气控制模块阶梯改变通气设备向患者通气的PEEP值之后,呼气末正压确定装置的生理参数检测模块监测患者的氧合指数。
本发明实施例中,本发明实施例中,呼气末正压确定装置中的生理参数检测模块测量PEEP值对应的动脉氧分压值和吸入氧浓度值;根据动脉氧分压值和吸入氧浓度值,计算PEEP值对应的氧合指数值。
本发明实施例中,氧合指数
Figure PCTCN2018117323-appb-000017
为动脉氧分压
Figure PCTCN2018117323-appb-000018
与吸入氧浓度
Figure PCTCN2018117323-appb-000019
的商值,其中,
Figure PCTCN2018117323-appb-000020
的获取过程与
Figure PCTCN2018117323-appb-000021
的获取过程相同,均为当呼气末正压确定装置的通气控制模块每更改一次PEEP值时,对病人进行一次抽血, 并由血气分析仪测得的;临床上的
Figure PCTCN2018117323-appb-000022
可以由通气设备提供。
S503、呼气末正压确定装置的计算模块计算每次PEEP值改变后氧合指数的变化。
当呼气末正压确定装置的生理参数检测模块监测患者的氧合指数之后,呼气末正压确定装置的计算模块计算每次PEEP值改变后氧合指数的变化。
本发明实施例中,图4的坐标系中显示了PEEP值为20cmH 2O、18cmH 2O、16cmH 2O、14cmH 2O、12cmH 2O、10cmH 2O、8cmH 2O、6cmH 2O和0cmH 2O对应的
Figure PCTCN2018117323-appb-000023
值,呼气末正压确定装置的计算模块分别计算
Figure PCTCN2018117323-appb-000024
的变化率,并判断
Figure PCTCN2018117323-appb-000025
的变化率的变化情况。
S504、呼气末正压确定装置的计算模块随着PEEP值的阶梯改变,氧合指数变化率最大点对应的PEEP值为优选PEEP值。
当呼气末正压确定装置的计算模块计算每次PEEP值改变后氧合指数的变化之后,呼气末正压确定装置的计算模块随着PEEP值的阶梯改变,氧合指数变化率最大点对应的PEEP值为优选PEEP值。
本发明实施例中,呼气末正压确定装置从不同阶段的PEEP值中查找出氧合指数变化率最大点的PEEP值,并将氧合指数变化率最大点的PEEP值确定为优选PEEP值。
S505、呼气末正压确定装置的输出模块根据预设提示策略,输出优选PEEP值。
这里,本申请实施例的S505的描述与实施例二中的S205的描述一致,此处不再赘述。
S506、呼气末正压确定装置的通气控制模块根据优选PEEP值向患者提供机械通气。
这里,本申请实施例的S506的描述与实施例二中的S206的描述一致,此处不再赘述。
S505和S506为S504之后的两个并列的步骤,具体的根据实际情况进行选择执行,本发明实施例不做具体的限定。
本发明再一实施例提供了一种呼气末正压确定装置1,如图9所示,呼气末正压确定装置1包括:
通气控制模块10,阶梯改变通气设备向患者通气的PEEP值;
生理参数监测模块11,监测患者的至少一个生理参数;
计算模块12,计算每次PEEP值改变后至少一个生理参数的变化,并根据至少一个生理参数的变化确定向患者通气的优选PEEP值。
可选的,至少一个生理参数包括驱动压。随着PEEP值的阶梯改变,计算模块12确定驱动压最小值对应的PEEP值为优选PEEP值。
可选的,至少一个生理参数包括顺应性。随着PEEP值的阶梯改变,计算模块12确定顺应性最大值对应的PEEP值为优选PEEP值。
可选的,至少一个生理参数包括死腔占比。随着PEEP值的阶梯改变,计算模块12确定死腔占比最小值对应的PEEP值为优选PEEP值。。
可选的,至少一个生理参数包括氧合指数。随着PEEP值的阶梯改变,计算模块12确定氧合指数变化率最大点对应的PEEP值为优选PEEP值。
可选的,至少一个生理参数包括:驱动压、顺应性、死腔占比和氧合指数中的至少两个。此时,计算模块12根据各生理参数的变化确定对应的各备选PEEP值;并根据确定的各备选PEEP值确定向患者通气的优选PEEP值。
具体地,计算模块12根据各生理参数的变化可以得到根据各生理参数变化确定的各备选PEEP值。例如,根据驱动压的变化可以得到对应的备选PEEP值,根据顺应性的变化可以得到对应的备选PEEP值,这样,就可以得到两个备选PEEP值。根据生理参数的变化确定备选PEEP值的方法同上面根据生理参数确定优选PEEP值的方法,此处不再赘述。接着,计算模块12可以根据这两个备选PEEP值确定向患者通气的优选PEEP值。具体实 现时,计算模块12可以取这两个备选PEEP值的均值作为优选PEEP值,也可以根据预设权重系数等由多个备选PEEP值确定一个优选PEEP值,还可以将这两个备选PEEP值都作为优选PEEP值。
可选的,如图10所示,装置还包括:输出模块13;
输出模块13,根据预设提示策略输出优选PEEP值。
在优选PEEP值包括两个及以上备选PEEP值的情况下,输出模块13可以同时输出确定的多个备选PEEP值,以供医生参考。
可选的,通气控制模块10还可以进一步根据优选PEEP值向患者提供机械通气。当然,在需要跟进优选PEEP值向患者提供机械通气的情况下,如果计算模块12根据各生理参数的变化得到根据两个及以上备选PEEP值时,计算模块12还需要根据预测策略由这多个备选PEEP值确定一个优选PEEP。具体实现时,可以将多个备选PEEP值的均值作为优选PEEP值,也可以根据预设权重系数等由多个备选PEEP值确定一个优选PEEP值。
本发明实施例提供一种呼气末正压确定装置1,该呼气末正压确定装置1阶梯改变通气设备向患者通气的PEEP值;监测患者的至少一个生理参数;计算每次PEEP值改变后至少一个生理参数的变化;根据至少一个生理参数的变化确定向患者通气的优选PEEP值。也就是说,本发明实施例提供的呼气末正压确定装置1阶梯改变PEEP值,并在每次改变PEEP值之后,计算至少一个生理参数值的变化,并根据至少一个生理参数的变化确定出向患者通气的优选PEEP值,此时,呼气末正压确定装置1根据不同病人的生理参数,确定不同的优选PEEP值以进行机械通气,能够自动确定优选的PEEP值。
本发明实施例还提供了一种通气设备,图为本发明实施例提供的一种通气设备的结构示意图一。如图11所示,通气设备包括控制器2,控制器1中包括上述呼气末正压确定装置1,还包括:气源3、吸气支路4、呼气支路5和显示器6;
气源3,在机械通气的过程中提供气体;
吸气支路4与气源3连接,在机械通气的过程中提供吸气路径;
呼气支路5,在机械通气的过程中提供呼气路径;
控制器2与吸气支路4、呼气支路5连接;
呼气末正压确定装置1,在机械通气的过程中确定优选PEEP值;
显示器5与控制器2连接,在所述机械通气的过程中显示呼吸波形。
图12为本发明实施例提供的一种通气设备的结构示意图二。如图12所示,病人可以通过病人管路与通气设备连接,从而实现机械通气,其中,通气设备包括上述呼气末正压确定装置。
本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有呼气末正压确定程序,所述呼气末正压确定程序可以被处理器执行,以实现上述呼气末正压确定方法。计算机可读存储介质可以是是易失性存储器(volatile memory),例如随机存取存储器(Random-Access Memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(Read-Only Memory,ROM),快闪存储器(flash memory),硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);也可以是包括上述存储器之一或任意组合的各自设备,如移动电话、计算机、平板设备、个人数字助理等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上 述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。
工业实用性
在本发明实施例中,呼气末正压确定装置阶梯改变PEEP值,并在每次改变PEEP值之后,计算至少一个生理参数值的变化,并根据至少一个生理参数的变化确定出向患者通气的优选PEEP值,此时,呼气末正压确定装置根据不同病人的生理参数,确定不同的优选PEEP值以进行机械通气,能够自动确定优选的PEEP值。

Claims (18)

  1. 一种呼气末正压确定方法,应用于通气设备,所述方法包括:
    阶梯改变所述通气设备向患者通气的PEEP值;
    监测所述患者的至少一个生理参数;
    计算每次PEEP值改变后所述至少一个生理参数的变化;
    根据所述至少一个生理参数的变化确定向所述患者通气的优选PEEP值。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个生理参数为驱动压;
    所述根据所述至少一个生理参数的变化确定向所述患者通气的优选PEEP值的步骤包括:
    随着PEEP值的阶梯改变,所述驱动压最小值对应的PEEP值为所述优选PEEP值。
  3. 根据权利要求1所述的方法,其特征在于,所述至少一个生理参数为顺应性;
    所述根据所述至少一个生理参数的变化确定向所述患者通气的优选PEEP值的步骤包括:
    随着PEEP值的阶梯改变,所述顺应性最大值对应的PEEP值为所述优选PEEP值。
  4. 根据权利要求1所述的方法,其特征在于,所述至少一个生理参数为死腔占比;
    所述根据所述至少一个生理参数的变化确定向所述患者通气的优选PEEP值的步骤包括:
    随着PEEP值的阶梯改变,所述死腔占比最小值对应的PEEP值为所述优选PEEP值。
  5. 根据权利要求1所述的方法,其特征在于,所述至少一个生理参数为氧合指数;
    所述根据所述至少一个生理参数的变化确定向所述患者通气的优选PEEP值的步骤包括:
    随着PEEP值的阶梯改变,所述氧合指数变化率最大点对应的PEEP值为所述优选PEEP值。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述至少一个生理参数包括:驱动压、顺应性、死腔占比和氧合指数中的至少两个,所述根据所述至少一个生理参数的变化确定向所述患者通气的优选PEEP值的步骤包括:
    根据各生理参数的变化确定对应的各备选PEEP值;
    根据确定的各备选PEEP值确定向所述患者通气的优选PEEP值。
  7. 根据权利要求1所述的方法,其特征在于,所述根据所述至少一个生理参数的变化确定向所述患者通气的优选PEEP值之后,所述方法还包括:
    根据预设提示策略,输出所述优选PEEP值。
  8. 根据权利要求1所述的方法,其特征在于,所述根据所述至少一个生理参数的变化确定向所述患者通气的优选PEEP值之后,所述方法还包括:
    根据所述优选PEEP值向所述患者提供机械通气。
  9. 一种呼气末正压确定装置,应用于通气设备,所述装置包括:
    通气控制模块,阶梯改变所述通气设备向患者通气的PEEP值;
    生理参数监测模块,监测所述患者的至少一个生理参数;
    计算模块,计算每次PEEP值改变后所述至少一个生理参数的变化,并根据所述至少一个生理参数的变化确定向所述患者通气的优选PEEP值。
  10. 根据权利要求9所述的装置,其特征在于,所述至少一个生理参数为驱动压,
    随着PEEP值的阶梯改变,所述计算模块确定所述驱动压最小值对应的PEEP值为所述优选PEEP值。
  11. 根据权利要求9所述的装置,其特征在于,所述至少一个生理参数为顺应性,
    随着PEEP值的阶梯改变,所述计算模块确定所述顺应性最大值对应的PEEP值为所述优选PEEP值。
  12. 根据权利要求9所述的装置,其特征在于,所述至少一个生理参数为死腔占比,
    随着PEEP值的阶梯改变,所述计算模块确定所述死腔占比最小值对应的PEEP值为所述优选PEEP值。
  13. 根据权利要求9所述的装置,其特征在于,所述至少一个生理参数为氧合指数,
    随着PEEP值的阶梯改变,所述计算模块确定所述氧合指数变化率最大点对应的PEEP值为所述优选PEEP值。
  14. 根据权利要求9-13任一项所述的装置,其特征在于,所述至少一个生理参数包括:驱动压、顺应性、死腔占比和氧合指数中的至少两个,
    所述计算模块根据各生理参数的变化确定对应的各备选PEEP值,并根据确定的各备选PEEP值确定向所述患者通气的优选PEEP值。
  15. 根据权利要求9所述的装置,其特征在于,所述装置还包括:输出模块;
    所述输出模块,根据预设提示策略,输出所述优选PEEP值。
  16. 根据权利要求9所述的装置,其特征在于,
    所述通气控制模块,根据所述优选PEEP值向所述患者提供机械通气。
  17. 一种包含权利要求9-16任一项所述呼气末正压确定装置的通气设备,其特征在于,包括气源、吸气支路、呼气支路和显示器;
    所述气源,在机械通气的过程中提供气体;
    所述吸气支路与所述气源连接,在所述机械通气的过程中提供吸气路径;
    所述呼气支路,在所述机械通气的过程中提供呼气路径;
    所述呼气末正压确定装置与所述吸气支路、所述呼气支路连接;
    所述呼气末正压确定装置,在所述机械通气的过程中确定优选PEEP值;
    所述显示器与所述呼气末正压确定装置连接,在所述机械通气的过程中显示呼吸波形。
  18. 一种存储介质,其特征在于,所述存储介质存储有呼气末正压确定程序,所述呼气末正压确定程序可以被处理器执行,以实现权利要求1-8任一项所述的呼气末正压确定方法。
PCT/CN2018/117323 2018-11-23 2018-11-23 一种呼气末正压确定方法及装置、通气设备、存储介质 WO2020103163A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/117323 WO2020103163A1 (zh) 2018-11-23 2018-11-23 一种呼气末正压确定方法及装置、通气设备、存储介质
EP18940745.5A EP3884981A4 (en) 2018-11-23 2018-11-23 METHOD AND APPARATUS FOR DETERMINING POSITIVE PRESSURE AT THE END OF EXHAUST, VENTILATION DEVICE, AND INFORMATION CARRIER
CN201880006498.9A CN111479605A (zh) 2018-11-23 2018-11-23 一种呼气末正压确定方法及装置、通气设备、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117323 WO2020103163A1 (zh) 2018-11-23 2018-11-23 一种呼气末正压确定方法及装置、通气设备、存储介质

Publications (1)

Publication Number Publication Date
WO2020103163A1 true WO2020103163A1 (zh) 2020-05-28

Family

ID=70774315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117323 WO2020103163A1 (zh) 2018-11-23 2018-11-23 一种呼气末正压确定方法及装置、通气设备、存储介质

Country Status (3)

Country Link
EP (1) EP3884981A4 (zh)
CN (1) CN111479605A (zh)
WO (1) WO2020103163A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5915381A (en) * 1995-12-01 1999-06-29 Siemens Elema Ab Breathing apparatus and method for controlling same
US20080236582A1 (en) * 2007-03-31 2008-10-02 Tehrani Fleur T Weaning and decision support system for mechanical ventilation
CN102369036A (zh) * 2009-03-27 2012-03-07 马奎特紧急护理公司 呼吸设备的peep调节
CN103608062A (zh) * 2011-03-18 2014-02-26 马奎特紧急护理公司 支持换气的呼吸设备和方法
CN106462660A (zh) * 2014-04-11 2017-02-22 康尔福盛2200公司 肺通气装置
CN107970510A (zh) * 2016-10-25 2018-05-01 德尔格制造股份两合公司 用于适当地调节呼气末正压(peep)的方法和设备
WO2018153964A1 (en) * 2017-02-22 2018-08-30 Koninklijke Philips N.V. Automatic peep selection for mechanical ventilation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802571B2 (en) * 2003-11-21 2010-09-28 Tehrani Fleur T Method and apparatus for controlling a ventilator
EP1579882A1 (en) * 2004-03-26 2005-09-28 Stephan Dr. Böhm Non-invasive method and apparatus for optimizing the respiration for atelectatic lungs
US20070062533A1 (en) * 2005-09-21 2007-03-22 Choncholas Gary J Apparatus and method for identifying FRC and PEEP characteristics
US8408203B2 (en) * 2009-04-30 2013-04-02 General Electric Company System and methods for ventilating a patient

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5915381A (en) * 1995-12-01 1999-06-29 Siemens Elema Ab Breathing apparatus and method for controlling same
US20080236582A1 (en) * 2007-03-31 2008-10-02 Tehrani Fleur T Weaning and decision support system for mechanical ventilation
CN102369036A (zh) * 2009-03-27 2012-03-07 马奎特紧急护理公司 呼吸设备的peep调节
CN103608062A (zh) * 2011-03-18 2014-02-26 马奎特紧急护理公司 支持换气的呼吸设备和方法
CN106462660A (zh) * 2014-04-11 2017-02-22 康尔福盛2200公司 肺通气装置
CN107970510A (zh) * 2016-10-25 2018-05-01 德尔格制造股份两合公司 用于适当地调节呼气末正压(peep)的方法和设备
WO2018153964A1 (en) * 2017-02-22 2018-08-30 Koninklijke Philips N.V. Automatic peep selection for mechanical ventilation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, WEIMING; LU, GUOPING: "Lung Recruitment Maneuvers and Positive End-Expiratory Pressure Titration in Children with Acute Respiratory Distress Syndrome", CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS, vol. 20, no. 9, 30 September 2018 (2018-09-30), pages 706 - 712, XP055709763, ISSN: 1008-8830 *

Also Published As

Publication number Publication date
CN111479605A (zh) 2020-07-31
EP3884981A4 (en) 2021-12-15
EP3884981A1 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
US8408203B2 (en) System and methods for ventilating a patient
US11247009B2 (en) Anomaly detection device and method for respiratory mechanics parameter estimation
US10918339B2 (en) Weaning from ventilation using capnography
CN107530514A (zh) 用于呼吸障碍的通气治疗的方法和装置
CN108513540B (zh) 用于保护性换气的方法、系统和软件
JP2007083032A5 (zh)
JP6622402B2 (ja) 自動換気を行いかつ自動換気に関する動作状態を識別する麻酔時人工呼吸装置
EP2376158B1 (en) Airway pressure release ventilation
WO2022105586A1 (zh) 一种医疗设备系统以及通气治疗辅助设备
Wilcox et al. Mechanical ventilation in emergency medicine
JP2018531740A (ja) 人工呼吸装置および患者の自動換気のための方法
WO2020103163A1 (zh) 一种呼气末正压确定方法及装置、通气设备、存储介质
WO2021189198A1 (zh) 一种对患者进行通气监测的方法和装置
Glover et al. Managing extubation and the post extubation period in the intensive care unit
WO2022193600A1 (zh) 麻醉深度指示方法、用于提示麻醉深度的装置和麻醉机
WO2022141125A1 (zh) 呼吸支持设备及其控制方法和存储介质
CN111672002B (zh) 一种呼吸机的压力调节方法及装置
US20210008313A1 (en) Ventilator Setting Adjustment System
WO2023050108A1 (zh) 一种医疗通气设备及通气控制方法
WO2023122903A1 (zh) 通气控制方法及装置
Alahmadi Strategies mitigating hypoxaemia in high-risk populations during anaesthesia and respiratory critical care: computational modelling studies
WO2020258338A1 (zh) 一种气体浓度测量方法及装置、医用通气设备、存储介质
Khirani et al. Ventilator support in chronic obstructive pulmonary disease: invasive and noninvasive
D'Orsi et al. Mathematical modeling of lung mechanics and pressure‐controlled ventilation design for barotrauma minimization: A numerical simulation study
CN116603141A (zh) 用于呼吸机调节的辅助装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018940745

Country of ref document: EP

Effective date: 20210623