WO2020103041A1 - 蓝牙连接控制方法及路由器 - Google Patents

蓝牙连接控制方法及路由器

Info

Publication number
WO2020103041A1
WO2020103041A1 PCT/CN2018/116751 CN2018116751W WO2020103041A1 WO 2020103041 A1 WO2020103041 A1 WO 2020103041A1 CN 2018116751 W CN2018116751 W CN 2018116751W WO 2020103041 A1 WO2020103041 A1 WO 2020103041A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
routing module
interval mode
routing
connection interval
Prior art date
Application number
PCT/CN2018/116751
Other languages
English (en)
French (fr)
Inventor
叶泽钢
周政霖
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2018/116751 priority Critical patent/WO2020103041A1/zh
Priority to CN201880096025.2A priority patent/CN112805970A/zh
Publication of WO2020103041A1 publication Critical patent/WO2020103041A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • H04W28/0221Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices power availability or consumption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update

Definitions

  • the present application relates to the field of communication technology, in particular to a Bluetooth connection control method and router.
  • each Bluetooth sub-routing module will have a limit on the number of connected slave devices. Therefore, in order to achieve more slave device access, the existing Bluetooth router will be provided with multiple Bluetooth sub-routing modules. However, the multiple Bluetooth sub-routing modules in the Bluetooth router will continue to work, resulting in higher power consumption of the Bluetooth router.
  • the technical problem to be solved by the present application is to provide a Bluetooth connection control method and router that are beneficial to reduce the power consumption of the router.
  • a first aspect of an embodiment of this application provides a router, including:
  • Sub-routing unit including several sub-routing modules
  • the main routing module is used to control the connection interval mode between the first sub-routing module and the main routing module in the sub-routing unit to be the fast connection interval mode, so that the first sub-routing module is in the fast connection interval mode;
  • the first sub-routing module is used to perform a scanning operation when it is determined that the number of accesses of the slave devices connected to the first sub-routing module does not reach a preset number, so as to access slave devices in a Bluetooth broadcasting state.
  • the second aspect of the application embodiment provides a Bluetooth connection control method, including:
  • connection interval mode between the first sub-routing module and the main routing module in the sub-routing unit Controlling the connection interval mode between the first sub-routing module and the main routing module in the sub-routing unit to be the fast connection interval mode
  • the first sub-routing module is controlled to perform a scanning operation, so that the slave device in the Bluetooth broadcasting state accesses to all Describe the first sub-routing module.
  • the embodiment of the present application provides a Bluetooth connection control method and a router, by determining that the number of accesses of the sub-routing module does not reach the preset number, the sub-routing module in the fast connection interval mode continues to perform scanning Operation is beneficial to increase the utilization rate of resources and reduce system power consumption.
  • FIG. 1 is a flowchart of steps of a Bluetooth connection control method in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a Bluetooth connection control system in the first embodiment of the present application.
  • FIG. 3 is a schematic diagram of a Bluetooth connection control system in the second embodiment of the present application.
  • FIG. 4 is a block diagram of the hardware structure of the router in an embodiment of the present application.
  • FIG. 1 shows a flowchart of steps of a Bluetooth connection control method in an embodiment of the present application.
  • the Bluetooth connection control method includes the following steps:
  • Step 100 Control a connection interval mode between a sub-routing module in the sub-routing unit and the main routing module to be a fast connection interval mode.
  • FIG. 2 is a schematic diagram of the Bluetooth connection control system in the first embodiment of the present application.
  • the Bluetooth connection control system 90 may include a router 50 and one or more slave devices, such as a slave device 602, a slave device 604, and a slave device 606.
  • the slave device may include a Bluetooth chip to communicate with the router 50 through the Bluetooth network.
  • the router 50 can convert the data transmitted from the device to other types of data (such as Wi-Fi type data), so that the slave device can access to other networks through the router 50 or store the data on a remote server through the router 50 Inside.
  • the Bluetooth chip in the slave device can work in the slave mode, where the slave device in the slave mode can perform Bluetooth broadcasting to wait for the Bluetooth device in the master mode to scan.
  • the slave device 602, the slave device 604, and the slave device 606 may be handwritten.
  • the Bluetooth chip in the notebook can work in the sleep state; when the trigger operation is detected, such as the user using the stylus to draw graphics or text on the notebook, the Bluetooth chip in the notebook You can enter the wake-up state from the sleep state and perform a Bluetooth broadcast operation to wait for being scanned by the Bluetooth device in the main mode.
  • the router 50 includes a main routing module 510 and a sub-routing unit 520.
  • the sub-routing unit 520 includes a number of sub-routing modules. Each sub-routing module can be a Bluetooth chip working in a main mode, where the main mode works The next Bluetooth chip or device can scan the surrounding Bluetooth devices to connect or communicate with the broadcast Bluetooth devices.
  • the sub-routing unit 520 may include a sub-routing module 522, a sub-routing module 524, and a sub-routing module 526.
  • the main routing module 510 is used to control the connection interval mode between each sub-routing module and the main routing module 510.
  • the connection interval mode between the main routing module 510 and the sub-routing module includes a fast connection interval mode and a slow connection interval mode, where the connection interval indicates that the main routing module and the sub-routing module exchange data adjacent to each other.
  • the time interval between connection events, the connection interval can be 1.25 microseconds, and the value of the connection interval can be 6 (7.5ms) ⁇ 3200 (4s).
  • the fast connection interval mode can indicate that the sub-routing module communicates with the main routing module at a faster transmission speed (such as a connection interval value of 6), and the slow connection interval mode can indicate that the sub-routing module can communicate at a slower transmission speed (such as connection interval Is 1000) to communicate with the main routing module.
  • the main routing module 510 may send a slow connection parameter command to each sub-routing module in the sub-routing unit 520, so that the connection interval mode of each sub-routing module is in the slow connection interval mode .
  • the main routing module 510 sends a quick connection parameter instruction to a sub-routing module in the sub-routing unit 520, so that the sub-routing module that receives the quick connection parameter instruction changes its connection interval mode,
  • the scan operation is performed to access the Bluetooth broadcast sent from the device in the wake-up state.
  • the main routing module 510 may send the slow connection parameter instruction to the sub-routing module 522, the sub-routing module 524 and the sub-routing module 526, and the sub-routing module 522, the sub-routing module 524 and the sub-routing module 526 receive After the connection parameter instruction, the connection interval mode between it and the main routing module 510 is controlled to be the slow connection interval mode respectively.
  • the main routing module 510 can store parameter information of the sub-routing module 522, the sub-routing module 524, and the sub-routing module 526, such as bandwidth, power consumption, and other parameter information.
  • the main routing module 510 can select the minimum bandwidth or the minimum power of each sub-routing module
  • the consumed sub-routing module transmits the quick connection parameter instruction.
  • the main routing module 510 may send the fast parameter instruction to the sub-routing module with the minimum bandwidth or minimum power consumption, such as the sub-routing module 522.
  • the sub-routing module 522 may change the connection interval mode with the main routing module 510. For example, the sub-routing module 522 performs the scanning operation at the same time when the slow connection interval mode is converted to the fast connection interval mode.
  • the sub-routing module 522 When the sub-routing module 522 performs the scanning operation, it can obtain the Bluetooth broadcast sent from the device after wake-up, and the sub-routing module 522 can parse the Bluetooth broadcast to obtain the service UUID (Universally Unique Identifier, universal unique identification of the slave device that sends the Bluetooth broadcast Code) or MAC address (Media Access Control Address, media access control address) and other identification information.
  • UUID Universally Unique Identifier, universal unique identification of the slave device that sends the Bluetooth broadcast Code
  • MAC address Media Access Control Address, media access control address
  • the master routing module 510 also stores identification information such as the service UUID or MAC address of the corresponding slave device. Therefore, after the sub-routing module parses the Bluetooth broadcast to obtain the identification information corresponding to the slave device (such as the slave device 602), it can obtain the identification information stored in the main routing module 510, and store the parsed identification information with the main routing module 510 Matching information. When the identification information stored in the main routing module 510 contains the parsed identification information, it indicates that the slave device has been identified. At this time, the sub-routing module can access the slave device (such as the slave device 602) to receive the slave device. data.
  • identification information such as the service UUID or MAC address of the corresponding slave device. Therefore, after the sub-routing module parses the Bluetooth broadcast to obtain the identification information corresponding to the slave device (such as the slave device 602), it can obtain the identification information stored in the main routing module 510, and store the parsed identification information with the main routing module 510 Matching information. When the identification information stored in the main routing module
  • the sub-routing module may not access the slave device, or perform a pairing operation between the sub-routing module and the slave device, and after the pairing is successful, the sub-router The module is connected to the slave device.
  • the main routing module 510 may randomly select a sub-routing module from the sub-routing unit 520 to receive the quick connection parameter instruction, so as to facilitate the randomly selected sub-routing module to receive the quick connection parameter instruction Change the connection interval mode between itself and the main routing module.
  • the main routing module 510 may directly send the fast connection parameter instruction to one sub-routing module in the sub-routing unit 520, and send the slow connection parameter instruction to other sub-routing modules.
  • the main routing module 510 may send the fast connection parameter instruction to the sub-routing module 522, so that the sub-routing module 522 is in the fast connection interval mode, and also sends the slow connection parameter instruction to the sub-routing module 524 and The sub-routing module 526, so that sub-routing modules such as the sub-routing module 524 and the sub-routing module 526 that are not connected to the slave device are in a slow connection interval mode.
  • FIG. 3 is a schematic diagram of a Bluetooth connection control system in a second embodiment of the present application.
  • the sub-routing unit 520 may include a sub-routing module 522, a sub-routing module 524 and a sub-routing module 526 that are physically connected in sequence, wherein the sub-routing module 522 is located at the first connection position
  • the sub-routing module 524 is connected to the sub-routing module 522 and located at the second connection position
  • the sub-routing module 526 is connected to the sub-routing module 524 and located at the third connection position.
  • each sub-routing module in the sub-routing unit 520 may be in a dormant state; after a preset time when the router 50 is powered on, the main routing module 510 may send a quick connection parameter command to the first connection location The sub-routing module 522 to control the sub-routing module 522 at the first connection position to be in the fast connection interval mode. After receiving the fast connection parameter instruction, the sub-routing module 522 controls the connection interval mode between the sub-routing module and the main routing module 510, And perform a scan operation to access the Bluetooth broadcast sent from the device in the wake-up state.
  • Step 102 Determine whether the number of slave devices connected to the sub-routing module reaches the preset number; if yes, go to step 104; if not, go to step 106.
  • Each sub-routing module can access a corresponding preset number of slave devices, where the preset number is related to the maximum bandwidth supported by the sub-routing module. For example, when the bandwidth occupied by the accessed slave device reaches the maximum value of the bandwidth supported by the sub-routing module, it may be determined that the slave device accessed by the sub-routing module has reached a preset number.
  • Step 104 Control the sub-routing module to stop performing the scanning operation, and control a sub-routing module in the sub-routing unit that is not connected to the slave device to perform the scanning operation.
  • the router 50 controls only one sub-routing module in the sub-routing unit 520 to be in the fast connection interval mode and perform the scanning operation at the same time, and controls the sub-routing module without access to the slave device to be in the slow connection interval mode Or control the sub-routing module that is not connected to the slave device to sleep.
  • the master routing module 510 may control the sub-routing module that is not connected to the slave device to perform a scanning operation.
  • the sub-routing module 522 is in the fast connection interval mode and performs the scanning operation at the same time.
  • the sub-routing module 522 stops the scanning operation and sends a transmission upper limit instruction to The main routing module 510.
  • the master routing module 510 may select a sub-routing module that is not connected to the slave device, such as a sub-routing module 524. At this time, the main routing module 510 may send the quick connection parameter instruction to the sub-routing module 524.
  • the sub-routing module 524 After receiving the fast connection parameter instruction, the sub-routing module 524 changes the connection interval mode with the main routing module 510, such as switching from the slow connection interval mode to the fast connection interval mode.
  • the sub-routing module 524 performs a scanning operation while receiving the quick connection parameter instruction to connect the slave device in the awake state to the sub-routing module 524.
  • the router 50 includes two sub-routing modules in the fast connection interval mode including the sub-routing module 522 and the sub-routing module 524, and only the sub-routing module 524 has one sub-routing module to perform the scanning operation, and no sub-routing is connected to the slave device.
  • Module 526 is in slow connection interval mode.
  • the slave device may disconnect from the router 50. For example, there are some disconnected slave devices in the sub-routing module 522. At this time, the number of accesses of the sub-routing module 522 does not reach the preset Quantity. If the number of accesses of the sub-routing module 524 to the slave device reaches a preset number, the master routing module 510 may receive the upper limit instruction transmitted by the sub-routing module 524.
  • the main routing module 510 can control the sub-routing module 522 that has not reached the preset number to continue to perform the scanning operation to access the wake-up state From the slave device to the sub-routing module 522, it is beneficial to improve the utilization rate of resources, and can reduce the shortage of wasting resources caused by the control of the sub-routing module in the slow connection interval mode to perform the scanning operation.
  • the master routing module 510 may control the sub-routing module in the sleep state to perform a scanning operation.
  • the sub-routing module 522 is in the fast connection interval mode and performing the scanning operation at the same time.
  • the sub-routing module 522 stops the scanning operation and sends a wake-up instruction to the sub-routing module located at the next connection position of the sub-routing module 522, such as the sub-routing module 524.
  • the sub-routing module 524 wakes up from the sleep state, and changes the connection interval mode with the main routing module 510 to the fast connection interval mode, and also performs a scan operation at the same time to connect the slave device in the wake-up state to Within the subrouting module 524.
  • the sub-routing module 522 may also stop the scanning operation and send a transmission upper limit instruction to the main routing module 510.
  • the main routing module 510 may select a sub-routing module located in the second position to perform a scanning operation, such as the sub-routing module 524. At this time, the main routing module 510 may send a wake-up instruction to the sub-routing module 524.
  • the sub-routing module 524 After the sub-routing module 524 receives the wake-up instruction, the sub-routing module 524 wakes up from the dormant state, and changes the connection interval mode with the main routing module 510 to the fast connection interval mode, and also performs a scanning operation to turn the wake-up state
  • the slave device below is connected to the sub-routing module 524.
  • the router 50 includes two sub-routing modules in the fast connection interval mode, a sub-routing module 522 and a sub-routing module 524, and only one sub-routing module 524 performs scanning operations, and the sub-routing module 526 is still in a dormant state .
  • Step 106 Control the sub-routing module to continue to perform the scanning operation.
  • the master routing module 510 may The control sub-routing module 522 continues to perform operations to access the wake-up slave device.
  • the above Bluetooth connection control method selects to control the access of the sub-routing module not connected to the slave device or to control the sub-routing module not connected to the slave device to reach the preset number after determining that the access number of the sub-routing module reaches the preset number
  • the sub-routing module is connected to control only one sub-routing module in the fast connection interval mode and performing the scanning state in the sub-routing unit, which is beneficial to improve the utilization rate of resources and reduce the system power consumption.
  • FIG. 4 shows a block diagram of the hardware structure of the router in an embodiment provided by the present application.
  • the router 50 can be applied to the above embodiments.
  • the following describes the router 50 provided in this application.
  • the router 50 may include a processor 500, a storage device 502, a main routing module 510, and a sub-routing unit 520 , And computer programs (instructions) stored in the storage device 502 and running on the processor 500, the router 50 may also include other hardware parts, such as buttons, input and output interfaces, etc. Repeat again.
  • the processor 500 may exchange data with the storage device 502, the main routing module 510, and the sub-routing unit 520 via the bus 506.
  • the processor 500 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the processor 500 is the control center of the router 50, and uses various interfaces and lines to connect the various parts of the entire router 50.
  • the main routing module 510 may have the functions of the processor 500 and the storage device 502, and the sub-routing module in the main routing module 510 and the sub-routing unit 520 may also be a Bluetooth chip circuit.
  • the storage device 502 may be used to store the computer program and / or module.
  • the processor 500 executes or executes the computer program and / or module stored in the storage device 502 and calls the storage device 502. Data to realize various functions of the above Bluetooth connection control method.
  • the storage device 502 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, application programs required for at least one function, and the like.
  • the storage device 502 may include a high-speed random access storage device, and may also include a non-volatile storage device, such as a hard disk, a memory, a plug-in hard disk, a smart memory card (Smart, Media, Card, SMC), and a secure digital (Secure Digital) , SD) card, flash memory card (Flash Card), at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • a non-volatile storage device such as a hard disk, a memory, a plug-in hard disk, a smart memory card (Smart, Media, Card, SMC), and a secure digital (Secure Digital) , SD) card, flash memory card (Flash Card), at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • a non-volatile storage device such as a hard disk, a memory, a plug-in hard disk, a smart memory card (Smart, Media, Card, SMC), and a secure digital
  • the processor 500 runs the program corresponding to the executable program code by reading the executable program code stored in the storage device 502, for executing the Bluetooth connection control method performed by the router in any of the foregoing embodiments step.
  • the computer program may be divided into one or more modules / units, and the one or more modules / units are stored in the storage device 502 and executed by the processor 500 to complete This application.
  • the one or more modules / units may be a series of computer program instruction segments capable of performing specific functions, and the instruction segments are used to describe the execution process of the computer program in the router 50.
  • the sub-routing unit 520 includes several sub-routing modules, and each sub-routing module can work in the Bluetooth chip in the main mode.
  • the sub-routing unit 520 may include a first sub-routing module, a second sub-routing module, and a third sub-routing module.
  • the processor 500 is used to control the connection interval mode between the main routing module 510 of each sub-routing module through the main routing module 510.
  • the connection interval mode between the main routing module 510 and the sub-routing module includes a fast connection interval mode and a slow connection interval mode.
  • the processor 500 may control the main routing module 510 to send a slow connection parameter instruction to each sub-routing module in the sub-routing unit 520, so that the connection of each sub-routing module The interval mode is in the slow connection interval mode.
  • the processor 500 controls the main routing module 510 to send a quick connection parameter instruction to a sub-routing module in the sub-routing unit 520, so that the sub-routing module receiving the quick connection parameter instruction changes its Connect to the interval mode and perform the scan operation at the same time to access the Bluetooth broadcast sent from the device in the wake-up state.
  • the processor 500 controls the main routing module 510 to send the slow connection parameter instruction to the first sub-routing module, the second sub-routing module, and the third sub-routing module, the first sub-routing module, the second sub-routing
  • the module and the third sub-routing module control the connection interval mode between it and the main routing module 510 to be the slow connection interval mode.
  • the storage device 502 may store parameter information of the first sub-routing module, the second sub-routing module, and the third sub-routing module, such as bandwidth, power consumption, and other parameter information.
  • the processor 500 may select each sub-routing module to have a minimum bandwidth or a minimum The sub-routing module of power consumption, and controls the main routing module 510 to transmit the fast connection parameter instruction to the sub-routing module of minimum bandwidth or minimum power consumption. After a preset time (for example, 1 second) after power-on, the main routing module 510 may send the fast parameter instruction to the sub-routing module with the smallest bandwidth or minimum power consumption, such as the first sub-routing module. When receiving the fast parameter instruction, the first sub-routing module can change the connection interval mode with the main routing module 510, such as switching from the slow connection interval mode to the fast connection interval mode, the first sub-routing module simultaneously performs the scanning operation .
  • the first sub-routing module When the first sub-routing module performs the scanning operation, it can obtain the Bluetooth broadcast sent from the device after waking up, and the first sub-routing module can parse the Bluetooth broadcast to obtain the service UUID (Universally Unique Identifier, universal Unique identification code) or MAC address (Media Access Control Address, media access control address) and other identification information.
  • UUID Universally Unique Identifier, universal Unique identification code
  • MAC address Media Access Control Address, media access control address
  • the storage device 502 also stores identification information such as the service UUID or MAC address of the slave device. Therefore, after the sub-routing module obtains the identification information corresponding to the slave device from the Bluetooth broadcast, it can obtain the identification information stored in the storage device 502, and match the analyzed identification information with the identification information stored in the storage device 502. When the identification information stored in the storage device 502 contains the parsed identification information, it indicates that the slave device has been identified. At this time, the sub-routing module may access the slave device to receive the data sent by the slave device.
  • identification information such as the service UUID or MAC address of the slave device. Therefore, after the sub-routing module obtains the identification information corresponding to the slave device from the Bluetooth broadcast, it can obtain the identification information stored in the storage device 502, and match the analyzed identification information with the identification information stored in the storage device 502. When the identification information stored in the storage device 502 contains the parsed identification information, it indicates that the slave device has been identified. At this time, the sub-routing module may access the slave device to
  • the processor 500 may control the main routing module 510 to randomly select a sub-routing module from the sub-routing unit 520 to receive the fast connection parameter instruction.
  • the processor 500 can control the main routing module 510 to directly send the fast connection parameter instruction to a sub-routing module in the control sub-routing unit 520, and send the slow connection parameter instruction to other Sub-routing module.
  • the processor 500 may control the main routing module 510 to send the fast connection parameter instruction to the first sub-routing module, so that the first sub-routing module is in the fast connection interval mode, and also sends the slow connection parameter instruction To the second sub-routing module and the third sub-routing module, so that sub-routing modules such as the second sub-routing module and the third sub-routing module that are not connected to the slave device are in the slow connection interval mode.
  • the processor 500 may control the main routing module 510 to send the fast connection parameter instruction to the first sub-routing module, so that the first sub-routing module is in the fast connection interval mode, and also sends the slow connection parameter instruction To the second sub-routing module and the third sub-routing module, so that sub-routing modules such as the second sub-routing module and
  • the processor 500 may control the master routing module 510 to select a sub-routing module that does not access the slave device to perform a scanning operation.
  • the first sub-routing module is in the fast connection interval mode and performing the scanning operation at the same time.
  • the first sub-routing module stops the scanning operation and sends a transmission
  • the upper limit instruction is to the processor 500.
  • the processor 500 may control the master routing module 510 to select a sub-routing module that is not connected to the slave device, such as a second sub-routing module. At this time, the processor 500 may control the main routing module 510 to send the quick connection parameter instruction to the second sub-routing module.
  • the second sub-routing module After receiving the fast connection parameter instruction, the second sub-routing module changes the connection interval mode with the main routing module 510, such as switching from the slow connection interval mode to the fast connection interval mode.
  • the second sub-routing module performs a scanning operation while receiving the quick connection parameter instruction, so as to connect the slave device in the wake-up state to the second sub-routing module.
  • the router 50 includes the first sub-routing module and the second sub-routing module in the fast connection interval mode, and only one sub-routing module of the second sub-routing module performs the scanning operation, but no slave device
  • the third sub-routing module is in slow connection interval mode.
  • the slave device may disconnect from the router 50. For example, there are some disconnected slave devices in the first sub-routing module. At this time, the number of accesses of the first sub-routing module has not reached The preset number. If the number of accesses of the second sub-routing module to the slave device reaches a preset number, at this time, the processor 500 may receive the upper limit instruction transmitted by the second sub-routing module.
  • the processor 500 can control the main routing module 510 to select the first sub-routing module that does not reach the preset number to continue to perform the scanning operation, To access the slave device in the wake-up state to the first sub-routing module, in this way, is conducive to improving the utilization rate of resources.
  • the sub-routing unit 520 may include a first sub-routing module, a second sub-routing module, and a third sub-routing module that are physically connected in sequence, wherein the first sub-routing module is located at the first connection position, and the second sub-routing module The routing module is located at the second connection position, and the third sub-routing module is located at the third connection position.
  • each sub-routing module in the sub-routing unit 520 can be in a dormant state; after a preset time when the router 50 is powered on, the processor 500 can control the main routing module 510 to send a quick connection parameter instruction located at the first A sub-routing module at a connection position to control the first sub-routing module at the first connection position to be in the fast connection interval mode.
  • the first sub-routing module controls the communication between the first sub-routing module and the main routing module 510 Connect to interval mode and perform a scan operation to access the Bluetooth broadcast sent from the device in the wake-up state.
  • the first sub-routing module in the router 50 is in the fast connection interval mode and the sub-routing module performing the scanning operation, while the second sub-routing module and the third sub-routing module are in the slow connection interval mode. Scan operation.
  • the master routing module 510 may control the sub-routing module in the sleep state to perform a scanning operation.
  • the first sub-routing module is simultaneously in the fast connection interval mode and performing a scanning operation.
  • the first sub-routing module stops the scanning operation, and sends a wake-up instruction to the sub-routing module located at the next connection position of the first sub-routing module, such as the second sub-routing module.
  • the second sub-routing module wakes up from the sleep state, and changes the connection interval mode with the main routing module 510 to the fast connection interval mode, and also performs a scanning operation at the same time to connect the slave device in the wake-up state To the second sub-routing module.
  • the main routing module 510 can be controlled to select the first sub-routing module to continue to perform operations to access the wake-up slave device.
  • the above router selects to control the access of the sub-routing module that is not connected to the slave device or to control the sub-routing module of the sub-routing module that has been connected to the slave device not to reach the preset number Module access to control only one sub-routing module in the fast connection interval mode and the execution of scanning status in the sub-routing unit, which is beneficial to improve the utilization rate of resources and reduce system power consumption.
  • the above router can control the sub-routing module in the fast connection interval mode to continue to perform the scanning operation when it is determined that the number of sub-routing module access does not reach the preset number, which is beneficial to increase the utilization rate of resources and reduce system power consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种蓝牙连接控制方法及路由器。该路由器(50)包括子路由单元(520)包括若干子路由模块(522、524、526)及主路由模块(510),主路由模块(510)用于控制子路由单元(520)中第一子路由模块与主路由模块(510)的连接间隔模式为快速连接间隔模式,以使得所述第一子路由模块处于快速连接间隔模式;所述第一子路由模块用于在确定接入到所述第一子路由模块的从设备(602、604、606)的接入数量没有达到预设数量时执行扫描操作。本申请实施例可在确定子路由模块的接入数量没有达到预设数量控制处于快速连接间隔模式的子路由模块继续执行扫描操作,有利于提高资源的利用率,降低系统功耗。

Description

蓝牙连接控制方法及路由器 技术领域
本申请涉及通信技术领域,尤其涉及一种蓝牙连接控制方法及路由器。
背景技术
由于蓝牙协议的限制,每个蓝牙子路由模块均会有一个连接从设备的数量限制,因此,为实现更多从设备的接入,现有的蓝牙路由器中会设置多个蓝牙子路由模块。然而,由于蓝牙路由器中设置的多个蓝牙子路由模块均会持续工作,导致了蓝牙路由器的功耗较高。
发明内容
本申请所要解决的技术问题在于,提供一种有利于降低路由器功耗的蓝牙连接控制方法及路由器。
本申请实施例第一方面提供一种路由器,包括:
子路由单元,包括若干子路由模块;
主路由模块,用于控制所述子路由单元中第一子路由模块与所述主路由模块的连接间隔模式为快速连接间隔模式,以使得所述第一子路由模块处于快速连接间隔模式;所述第一子路由模块用于在确定接入到所述第一子路由模块的从设备的接入数量没有达到预设数量时执行扫描操作,以接入处于蓝牙广播状态下的从设备。
申请实施例第二方面提供一种蓝牙连接控制方法,包括:
控制子路由单元中的第一子路由模块与主路由模块之间的连接间隔模式为快速连接间隔模式;
判断接入到所述第一子路由模块的从设备的接入数量是否达到预设数量;
在接入到所述第一子路由模块的从设备的接入数量没有达到预设数量时,控制所述第一子路由模块执行扫描操作,以处于蓝牙广播状态下的从设备接入至所述第一子路由模块。
相较于现有技术,本申请实施方式提供了一种蓝牙连接控制方法及路由器, 通过在确定子路由模块的接入数量没有达到预设数量控制处于快速连接间隔模式的子路由模块继续执行扫描操作,有利于提高资源的利用率,降低系统功耗。
附图说明
为了更清楚地说明本申请实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请的一实施例中的蓝牙连接控制方法的步骤流程图。
图2是本申请的第一实施例中的蓝牙连接控制系统的示意图。
图3是本申请的第二实施例中的蓝牙连接控制系统的示意图。
图4是本申请的一实施例中的路由器的硬件结构框图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与 其它实施例相结合。
下面对本申请实施例进行详细介绍。
请参阅图1,所示为本申请的一实施例中的蓝牙连接控制方法的步骤流程图。该蓝牙连接控制方法包括如下步骤:
步骤100,控制子路由单元中的一个子路由模块与主路由模块之间的连接间隔模式为快速连接间隔模式。
请一并参阅图2,所示为本申请的第一实施例中的蓝牙连接控制系统的示意图。
蓝牙连接控制系统90可包括路由器50及一个或多个从设备,如包括从设备602、从设备604及从设备606。从设备可包括蓝牙芯片,以通过蓝牙网络与路由器50进行通信。路由器50可将从设备传输的数据转换为其他类型的数据(如Wi-Fi类型的数据),以使得从设备可通过路由器50接入到其他网络或通过路由器50将数据存储于远端的服务器内。本实施例中,从设备内的蓝牙芯片可工作于从模式下,其中,工作于从模式下的从设备可进行蓝牙广播,以等待工作于主模式下的蓝牙设备扫描。从设备602、从设备604及从设备606可为手写本。当手写本未检测到触发操作时,手写本内的蓝牙芯片可工作于休眠状态;当检测到触发操作时,如用户使用手写笔在手写本上绘制图形或文字等,手写本内的蓝牙芯片可从休眠状态进入唤醒状态,并执行蓝牙广播操作,以等待被主模式下的蓝牙设备扫描。
本实施例中,路由器50包括主路由模块510及子路由单元520,子路由单元520包括若干子路由模块,每一子路由模块可为工作于主模式下的蓝牙芯片,其中,工作于主模式下的蓝牙芯片或设备可扫描周围广播的蓝牙设备,以与广播的蓝牙设备连接或通信。本实施例中,子路由单元520可包括子路由模块522、子路由模块524及子路由模块526。
主路由模块510用于控制每一子路由模块和主路由模块510之间的连接间隔模式。本实施例中,主路由模块510与子路由模块之间的连接间隔模式包括快速连接间隔模式及慢速连接间隔模式,其中,连接间隔表示主路由模块与子路由模块进行数据交换时相邻两个连接事件之间的时间间隔,连接间隔可以1.25微秒为单位,连接间隔的值可为6(7.5ms)~3200(4s)。快速连接间隔模式 可表示子路由模块以较快的传输速度(如连接间隔的值为6)与主路由模块通信,慢速连接间隔模式可表示子路由模块以较慢的传输速度(如连接间隔的值为1000)与主路由模块通信。
当路由器50上电时,主路由模块510可发送慢速连接参数指令至子路由单元520中的每一子路由模块,以使得每一子路由模块的连接间隔模式均处于慢速连接间隔模式下。在路由器50上电的预设时间后,主路由模块510发送快速连接参数指令至子路由单元520中的一个子路由模块,以使得接收到快速连接参数指令的子路由模块改变其连接间隔模式,并同时执行扫描操作,以接入唤醒状态下从设备发送的蓝牙广播。
例如,上电时,主路由模块510可将慢速连接参数指令发送至子路由模块522、子路由模块524及子路由模块526,子路由模块522、子路由模块524及子路由模块526接收到连接参数指令后,分别控制其与主路由模块510之间的连接间隔模式均为慢速连接间隔模式。主路由模块510可存储子路由模块522、子路由模块524、子路由模块526的参数信息,如带宽、功耗等参数信息,主路由模块510可选择各子路由模块中具有最小带宽或最小功耗的子路由模块传输快速连接参数指令。在上电1秒后,主路由模块510可将快速参数指令发送到最小带宽或最小功耗的子路由模块,如子路由模块522。当接收到快速参数指令时,子路由模块522可改变与主路由模块510之间的连接间隔模式,如由慢速连接间隔模式转换为快速连接间隔模式,子路由模块522同时执行扫描操作。子路由模块522执行扫描操作时,可获取唤醒后从设备的发送蓝牙广播,子路由模块522可对蓝牙广播进行解析,以得到发送蓝牙广播的从设备的服务UUID(Universally Unique Identifier,通用唯一识别码)或MAC地址(Media Access Control Address,媒体访问控制地址)等标识信息。
在一实施例中,主路由模块510内还存储有对应从设备的服务UUID或MAC地址等标识信息。因此,当子路由模块从蓝牙广播解析得到从设备(如从设备602)所对应标识信息后,可获取主路由模块510内存储的标识信息,并将解析得到的标识信息与主路由模块510存储的标识信息进行匹配。当主路由模块510存储的标识信息内包含解析得到的标识信息时,表示已识别了该从设备,此时,子路由模块可接入该从设备(如从设备602),以接收从设备发 送的数据。当主路由模块510存储的标识信息内没有包含解析得到的标识信息时,子路由模块可不接入该从设备,或是执行子路由模块与从设备之间的配对操作,并在配对成功后由子路由模块接入该从设备。
在其他实施例中,当路由器50上电时,主路由模块510可从子路由单元520中随机选择一个子路由模块接收快速连接参数指令,以便利随机选择的子路由模块在接收快速连接参数指令改变自身与主路由模块的连接间隔模式。
在一实施例中,在路由器50上电时,主路由模块510可直接发送快速连接参数指令至子路由单元520中的一个子路由模块,并发送慢速连接参数指令至其他的子路由模块。如在路由器50上电时,主路由模块510可发送快速连接参数指令至子路由模块522,以使得子路由模块522处于快速连接间隔模式,还同时发送慢速连接参数指令至子路由模块524及子路由模块526,以使得子路由模块524及子路由模块526等没有接入从设备的子路由模块处于慢速连接间隔模式。此时,路由器50中只有子路由模块522同时处于快速连接间隔模式及执行扫描操作的子路由模块,而子路由模块524及子路由模块526则处于慢速连接间隔模式,也没有执行扫描操作。
请一并参阅图3,所示为本申请的第二实施例中的蓝牙连接控制系统的示意图。
与第一实施例相比,本实施例中,子路由单元520可包括依次物理连接的子路由模块522、子路由模块524及子路由模块526,其中,子路由模块522位于第一连接位置,子路由模块524连接于子路由模块522并位于第二连接位置,子路由模块526连接于子路由模块524并位于第三连接位置。
当路由器50上电时,子路由单元520内的各子路由模块均可处于休眠状态;在路由器50上电的预设时间后,主路由模块510可发送快速连接参数指令至位于第一连接位置的子路由模块522,以控制位于第一连接位置的子路由模块522处于快速连接间隔模式,子路由模块522接收到快速连接参数指令后,控制其与主路由模块510之间的连接间隔模式,并执行扫描操作,以接入唤醒状态下的从设备发送的蓝牙广播。此时,路由器50中只有子路由模块522同时处于快速连接间隔模式及执行扫描操作的子路由模块,而子路由模块524及子路由模块526则处于休眠状态,也没有执行扫描操作。
步骤102,判断接入到所述子路由模块的从设备的接入数量是否达到预设数量;若是,执行步骤104;若否,执行步骤106。
每一子路由模块可接入对应的预设数量的从设备,其中,预设数量与子路由模块所支持的带宽最大值相关。例如,当接入的从设备所占用的带宽达到子路由模块所支持的带宽的最大值时,可确定子路由模块接入的从设备已达到预设数量。
步骤104,控制所述子路由模块停止执行扫描操作,并控制子路由单元中没有接入从设备的一个子路由模块执行扫描操作。
为减少路由器50工作时的功耗,路由器50控制子路由单元520中只有一个子路由模块同时处于快速连接间隔模式及执行扫描操作,并控制没有接入从设备的子路由模块处于慢连接间隔模式或是控制没有接入从设备的子路由模块处于休眠状态。
在一实施例中,当子路由模块接入的从设备的接入数量达到预设数量时,主路由模块510可控制没有接入从设备的子路由模块执行扫描操作。
例如,子路由模块522同时处于快速连接间隔模式及执行扫描操作,在子路由模块522接入从设备的接入数量达到预设数量时,子路由模块522停止扫描操作,并发送传输上限指令至主路由模块510。主路由模块510可选择没有接入从设备的子路由模块,如子路由模块524。此时,主路由模块510可发送快速连接参数指令至子路由模块524。子路由模块524接收到快速连接参数指令后,改变与主路由模块510之间的连接间隔模式,如由慢速连接间隔模式转换为快速连接间隔模式。子路由模块524在接收到快速连接参数指令的同时执行扫描操作,以将唤醒状态下的从设备接入到子路由模块524内。此时,路由器50内包括子路由模块522及子路由模块524两个处于快速连接间隔模式的子路由模块,而只有子路由模块524一个子路由模块执行扫描操作,没有接入从设备的子路由模块526则处于慢连接间隔模式。
在一时间内,从设备可能会断开与路由器50之间的连接,如子路由模块522中存在一些已断开连接的从设备,此时,子路由模块522的接入数量没有达到预设数量。若子路由模块524接入从设备的接入数量达到预设数量,此时,主路由模块510可接收到子路由模块524传输的上限指令。由于处于快速连接 间隔模式下的子路由模块522接入数量没有达到预设数量,因此,主路由模块510可控制没有达到预设数量的子路由模块522继续执行扫描操作,以接入唤醒状态下的从设备至子路由模块522上,有利于提高资源的利用率,可减少控制处于慢速连接间隔模式的子路由模块执行扫描操作而带来的资源的浪费的不足。
在一实施例中,当子路由模块接入的从设备的接入数量达到预设数量时,主路由模块510可控制处于休眠状态的子路由模块执行扫描操作。
例如,子路由模块522同时处于快速连接间隔模式及执行扫描操作,在子路由模块522接入从设备的接入数量达到预设数量时,由于子路由模块522处于第一连接位置,子路由模块522停止扫描操作,并发送传唤醒指令至位于子路由模块522的下一连接位置的子路由模块,如子路由模块524。此时,子路由模块524由休眠状态进行唤醒状态,并改变与主路由模块510之间的连接间隔模式为快速连接间隔模式,还同时执行扫描操作,以将唤醒状态下的从设备接入到子路由模块524内。
在其他实施方式中,当处于第一位置的子路由模块522的接入数量达到预设数量时,子路由模块522亦可停止扫描操作,并发送传输上限指令至主路由模块510。主路由模块510可选择位于第二位置的子路由模块执行扫描操作,如子路由模块524。此时,主路由模块510可发送唤醒指令至子路由模块524。子路由模块524接收到唤醒指令后,子路由模块524由休眠状态进行唤醒状态,并改变与主路由模块510之间的连接间隔模式为快速连接间隔模式,还同时执行扫描操作,以将唤醒状态下的从设备接入到子路由模块524内。此时,路由器50内包括子路由模块522及子路由模块524两个处于快速连接间隔模式的子路由模块,而只有子路由模块524一个子路由模块执行扫描操作,子路由模块526仍处于休眠状态。
步骤106,控制所述子路由模块继续执行扫描操作。
当子路由模块522接入从设备的接入数量没有达到预设数量时,表示子路由模块522还可接入从设备,因此,为减少资源的浪费及功耗的损失,主路由模块510可控制子路由模块522继续执行操作,以接入唤醒后的从设备。
上述蓝牙连接控制方法在确定子路由模块的接入数量达到预设数量后选择 控制未接入从设备的子路由模块接入或是控制已接入从设备的子路由模块中没有达到预设数量的子路由模块接入,以控制子路由单元中只有一个同时处于快速连接间隔模式及执行扫描状态的子路由模块,有利于有利于提高资源的利用率,降低系统功耗。
请一并参阅图4,所示为本申请提供的一实施例中的路由器的硬件结构框图。如图4所示,所述路由器50可应用上述的各实施方式,下面对本申请所提供的路由器50进行描述,路由器50可包括处理器500、存储装置502、主路由模块510及子路由单元520,以及存储在所述存储装置502中并可向所述处理器500上运行的计算机程序(指令),所述路由器50还可以包括其他的硬件部分,例如按键、输入输出接口等,在此不再赘述。所述处理器500可通过总线506与存储装置502、主路由模块510及子路由单元520进行数据交换。
所述处理器500可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器500是所述路由器50的控制中心,利用各种接口和线路连接整个路由器50的各个部分。在一实施例中,主路由模块510可具有处理器500及存储装置502的功能,主路由模块510及子路由单元520中的子路由模块亦可为蓝牙芯片电路。
所述存储装置502可用于存储所述计算机程序和/或模块,所述处理器500通过运行或执行存储在所述存储装置502内的计算机程序和/或模块,以及调用存储在存储装置502内的数据,实现上述蓝牙连接控制方法的各种功能。所述存储装置502可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等。此外,存储装置502可以包括高速随机存取存储装置,还可以包括非易失性存储装置,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储装置件、闪存器件、或其他易失性固态存储装置件。
所述处理器500通过读取存储装置502中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行前面任一实施例中路由器所执行的蓝牙连接控制方法的步骤。
示例性的,所述计算机程序可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储装置502中,并由所述处理器500执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序在所述路由器50中的执行过程。
本实施例中,子路由单元520包括若干子路由模块,每一子路由模块可工作于主模式下的蓝牙芯片。例如,本实施例中,子路由单元520可包括第一子路由模块、第二子路由模块及第三子路由模块。
处理器500用于通过主路由模块510控制每一子路由模块所主路由模块510之间的连接间隔模式。本实施例中,主路由模块510与子路由模块之间的连接间隔模式包括快速连接间隔模式及慢速连接间隔模式。
在一实施例中,当路由器50上电时,处理器500可控制主路由模块510发送慢速连接参数指令至子路由单元520中的每一子路由模块,以使得每一子路由模块的连接间隔模式均处于慢速连接间隔模式下。在路由器50上电的预设时间后,处理器500控制主路由模块510发送快速连接参数指令至子路由单元520中的一个子路由模块,以使得接收到快速连接参数指令的子路由模块改变其连接间隔模式,并同时执行扫描操作,以接入唤醒状态下从设备发送的蓝牙广播。
例如,上电时,处理器500控制主路由模块510将慢速连接参数指令发送至第一子路由模块、第二子路由模块及第三子路由模块,第一子路由模块、第二子路由模块及第三子路由模块接收到连接参数指令后,控制其与主路由模块510之间的连接间隔模式均为慢速连接间隔模式。存储装置502可存储第一子路由模块、第二子路由模块、第三子路由模块的参数信息,如带宽、功耗等参数信息,处理器500可选择各子路由模块中具有最小带宽或最小功耗的子路由模块,并控制主路由模块510传输快速连接参数指令至最小带宽或最小功耗的子路由模块。在上电预设时间(如1秒)后,主路由模块510可将快速参数指 令发送到最小带宽或最小功耗的子路由模块,如第一子路由模块。当接收到快速参数指令时,第一子路由模块可改变与主路由模块510之间的连接间隔模式,如由慢速连接间隔模式转换为快速连接间隔模式,第一子路由模块同时执行扫描操作。第一子路由模块执行扫描操作时,可获取唤醒后从设备的发送蓝牙广播,第一子路由模块可对蓝牙广播进行解析,以得到发送蓝牙广播的从设备的服务UUID(Universally Unique Identifier,通用唯一识别码)或MAC地址(Media Access Control Address,媒体访问控制地址)等标识信息。
在一实施例中,存储装置502内还存储有从设备的服务UUID或MAC地址等标识信息。因此,当子路由模块从蓝牙广播解析得到从设备所对应标识信息后,可将获取存储装置502内存储的标识信息,并将解析得到的标识信息与存储装置502存储的标识信息进行匹配操作,当存储装置502存储的标识信息内包含解析得到的标识信息时,表示已识别了该从设备,此时,子路由模块可接入该从设备,以接收从设备发送的数据。
在一实施例中,当路由器50上电时,处理器500可控制主路由模块510从子路由单元520中随机选择一个子路由模块接收快速连接参数指令。
在一实施例中,在路由器50上电时,处理器500可控制主路由模块510直接发送快速连接参数指令至控制子路由单元520中的一个子路由模块,并发送慢速连接参数指令至其他的子路由模块。如在路由器50上电时,处理器500可控制主路由模块510发送快速连接参数指令至第一子路由模块,以使得第一子路由模块处于快速连接间隔模式,还同时发送慢速连接参数指令至第二子路由模块及第三子路由模块,以使得第二子路由模块及第三子路由模块等没有接入从设备的子路由模块处于慢速连接间隔模式。此时,路由器50中只有第一子路由模块同时处于快速连接间隔模式及执行扫描操作的子路由模块,而第二子路由模块及第三子路由模块则处于慢速连接间隔模式,也没有执行扫描操作。
当子路由模块接入的从设备的接入数量达到预设数量时,处理器500可控制主路由模块510选择没有接入从设备的子路由模块执行扫描操作。
例如,第一子路由模块同时处于快速连接间隔模式及执行扫描操作,在第一子路由模块接入从设备的接入数量达到预设数量时,第一子路由模块停止扫 描操作,并发送传输上限指令至处理器500。处理器500可控制主路由模块510选择没有接入从设备的子路由模块,如第二子路由模块。此时,处理器500可控制主路由模块510发送快速连接参数指令至第二子路由模块。第二子路由模块接收到快速连接参数指令后,改变与主路由模块510之间的连接间隔模式,如由慢速连接间隔模式转换为快速连接间隔模式。第二子路由模块在接收到快速连接参数指令的同时执行扫描操作,以将唤醒状态下的从设备接入到第二子路由模块内。此时,路由器50内包括第一子路由模块及第二子路由模块两个处于快速连接间隔模式的子路由模块,而只有第二子路由模块一个子路由模块执行扫描操作,没有接入从设备的第三子路由模块则处于慢连接间隔模式。
在一时间内,从设备可能会断开与路由器50之间的连接,如第一子路由模块中存在一些已断开连接的从设备,此时,第一子路由模块的接入数量没有达到预设数量。若第二子路由模块接入从设备的接入数量达到预设数量,此时,处理器500可接收到第二子路由模块传输的上限指令。由于处于快速连接间隔模式下的第一子路由模块接入数量没有达到预设数量,因此,处理器500可控制主路由模块510选择没有达到预设数量的第一子路由模块继续执行扫描操作,以接入唤醒状态下的从设备至第一子路由模块上,如此,有利于提高资源的利用率。
在一实施例中,子路由单元520可包括依次物理连接的第一子路由模块、第二子路由模块及第三子路由模块,其中,第一子路由模块位于第一连接位置,第二子路由模块位于第二连接位置,第三子路由模块位于第三连接位置。
当路由器50上电时,子路由单元520内的各子路由模块均可处于休眠状态;在路由器50上电的预设时间后,处理器500可控制主路由模块510发送快速连接参数指令位于第一连接位置的子路由模块,以控制位于第一连接位置的第一子路由模块处于快速连接间隔模式,第一子路由模块接收到快速连接参数指令后,控制其与主路由模块510之间的连接间隔模式,并执行扫描操作,以接入唤醒状态下的从设备发送的蓝牙广播。此时,路由器50中只有第一子路由模块同时处于快速连接间隔模式及执行扫描操作的子路由模块,而第二子路由模块及第三子路由模块则处于慢速连接间隔模式,也没有执行扫描操作。
当子路由模块接入的从设备的接入数量达到预设数量时,主路由模块510 可控制处于休眠状态的子路由模块执行扫描操作。
例如,第一子路由模块同时处于快速连接间隔模式及执行扫描操作,在第一子路由模块接入从设备的接入数量达到预设数量时,由于第一子路由模块处于第一连接位置,第一子路由模块停止扫描操作,并发送传唤醒指令至位于第一子路由模块的下一连接位置的子路由模块,如第二子路由模块。此时,第二子路由模块由休眠状态进行唤醒状态,并改变与主路由模块510之间的连接间隔模式为快速连接间隔模式,还同时执行扫描操作,以将唤醒状态下的从设备接入到第二子路由模块内。
当第一子路由模块接入从设备的接入数量没有达到预设数量时,表示第一子路由模块还可接入从设备,因此,为减少资源的浪费及功耗的损失,处理器500可控制主路由模块510选择第一子路由模块继续执行操作,以接入唤醒后的从设备。
上述路由器在确定子路由模块的接入数量达到预设数量后选择控制未接入从设备的子路由模块接入或是控制已接入从设备的子路由模块中没有达到预设数量的子路由模块接入,以控制子路由单元中只有一个同时处于快速连接间隔模式及执行扫描状态的子路由模块,有利于提高资源的利用率,降低系统功耗。另外,上述路由器可在确定子路由模块的接入数量没有达到预设数量控制处于快速连接间隔模式的子路由模块继续执行扫描操作,有利于提高资源的利用率,降低系统功耗。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种路由器,其特征在于,所述路由器包括:
    子路由单元,包括若干子路由模块;
    主路由模块,用于控制所述子路由单元中第一子路由模块与所述主路由模块的连接间隔模式为快速连接间隔模式,以使得所述第一子路由模块处于快速连接间隔模式;所述第一子路由模块用于在确定接入到所述第一子路由模块的从设备的接入数量没有达到预设数量时执行扫描操作,以接入处于蓝牙广播状态下的从设备。
  2. 如权利要求1所述的路由器,其特征在于,所述主路由模块用于控制与所述子路由单元中没有接入从设备的子路由模块之间的连接间隔模式为慢速连接间隔模式。
  3. 如权利要求2所述的路由器,其特征在于,当所述路由器上电时,所述主路由模块用于控制所述子路由单元中各子路由模块的连接间隔模式均为慢速连接间隔模式;在所述路由器上电的预设时间后,所述主路由模块用于控制所述第一子路由模块的连接间隔模式为快速连接间隔模式。
  4. 如权利要求2所述的路由器,其特征在于,所述第一子路由模块在确定接入的终端的数量达到预设数量时停止执行扫描操作,并传输上限指令至所述主路由模块;所述主路由模块选择没有接入从设备的第二子路由模块,并控制所述第二子路由模块与所述主路由模块之间的连接间隔模式由慢速连接间隔模式转换为快速连接间隔模式,所述第二子路由模块用于执行扫描操作。
  5. 如权利要求4所述的路由器,其特征在于,当接收到所述第一子路由模块传输的上限指令时,所述主路由模块用于控制处于快速连接间隔模式下的子路由模块中一个接入数量没有达到预设数量的子路由模块执行扫描操作。
  6. 如权利要求4所述的路由器,其特征在于,所述主路由模块发送连接参数更改指令至所述第二子路由模块,所述第二子路由模块接收到所述连接参数更改指令后将与所述主路由模块之间的连接间隔模式由慢速连接间隔模式转换为快速连接间隔模式。
  7. 如权利要求1所述的路由器,其特征在于,所述子路由单元中各子路由 模块依次物理电路相连。
  8. 如权利要求7所述的路由器,其特征在于,所述第一子路由模块在确定接入的终端的数量达到预设数量时停止执行扫描操作,并传输唤醒指令至位于所述第一子路由模块下一连接位置的第二子路由模块,所述第二子路由模块接收到所述第一子路由模块传输的唤醒指令后由休眠状态转换唤醒状态,所述第二子路由模块执行扫描操作并设置与所述主路由模块的连接间隔模式为快速连接间隔模式。
  9. 如权利要求8所述的路由器,其特征在于,当所述路由器上电时,所述主路由模块控制位于第一连接位置的所述第一子路由模块处于快速连接间隔模式,并控制所述子路由单元中除所述第一子路由模块之外的其他子路由模块均处于休眠状态。
  10. 如权利要求1所述的路由器,其特征在于,所述处于快速连接间隔模式下的子路由模块用于判断接入的从设备所占用的带宽是否达到所述处于快速连接间隔模式下的子路由模块所支持的带宽的最大值;若是,所述处于快速连接间隔模式下的子路由模块确定所述接入数量达到所述预设数量。
  11. 一种蓝牙连接控制方法,应用于路由器,其特征在于,所述蓝牙连接控制方法包括:
    控制子路由单元中的第一子路由模块与主路由模块之间的连接间隔模式为快速连接间隔模式;
    判断接入到所述第一子路由模块的从设备的接入数量是否达到预设数量;
    在接入到所述第一子路由模块的从设备的接入数量没有达到预设数量时,控制所述第一子路由模块执行扫描操作,以将处于蓝牙广播状态下的从设备接入至所述第一子路由模块。
  12. 如权利要求11所述的蓝牙连接控制方法,其特征在于,所述蓝牙连接控制方法还包括:
    控制所述主路由模块与所述子路由单元中没有接入从设备的子路由模块之间的连接间隔模式为慢速连接间隔模式。
  13. 如权利要求12所述的蓝牙连接控制方法,其特征在于,所述蓝牙连接控制方法还包括:
    当所述路由器上电时,控制所述主路由模块与所述子路由单元中各子路由模块的连接间隔模式均为慢速连接间隔模式;
    在所述路由器上电的预设时间后,控制所述第一子路由模块由慢速连接间隔模式转换为快速连接间隔模式。
  14. 如权利要求12所述的蓝牙连接控制方法,其特征在于,所述判断接入到所述第一子路由模块的从设备的接入数量是否达到预设数量之后,还包括:
    在接入的终端的接入数量达到预设数量时,控制所述第一子路由模块停止执行扫描操作;
    控制所述第一子路由模块传输上限指令至所述主路由模块,以由所述主路由模块选择没有接入从设备的第二子路由模块;
    控制所述第二子路由模块与所述主路由模块之间的连接间隔模式由慢速连接间隔转换为快速连接间隔模式;
    控制所述第二子路由模块执行扫描操作。
  15. 如权利要求14所述的蓝牙连接控制方法,其特征在于,所述控制所述第一子路由模块传输上限指令至所述主路由模块之后,还包括:
    控制处于快速连接间隔模式下的子路由模块中一个接入数量没有达到预设数量的子路由模块执行扫描操作。
  16. 如权利要求14所述的蓝牙连接控制方法,其特征在于,所述主路由模块发送连接参数更改指令至所述第二子路由模块,所述第二子路由模块接收到所述连接参数更改指令后将与所述主路由模块之间的连接间隔模式由慢速连接间隔模式转换为快速连接间隔模式。
  17. 如权利要求11所述的蓝牙连接控制方法,其特征在于,所述子路由单元中各子路由模块依次物理相连。
  18. 如权利要求17所述的蓝牙连接控制方法,其特征在于,所述判断接入到所述第一子路由模块的从设备的接入数量是否达到预设数量之后,还包括:
    在接入的终端的接入数量达到预设数量时,控制所述第一子路由模块停止执行扫描操作;
    传输唤醒指令至位于所述第一子路由模块下一连接位置的第二子路由模块;
    接收到所述第一子路由模块传输的唤醒指令后,控制所述第二子路由模块由 休眠状态转换唤醒状态;
    控制所述第二子路由模块执行扫描操作,并设置所述第二子路由模块与所述主路由模块的连接间隔模式为快速连接间隔模式。
  19. 如权利要求18所述的蓝牙连接控制方法,其特征在于,所述蓝牙连接控制方法还包括:
    当所述路由器上电时,控制位于第一连接位置的所述第一子路由模块处于快速连接间隔模式;
    控制所述子路由单元中除所述第一子路由模块之外的其他子路由模块均处于休眠状态。
  20. 如权利要求11所述的蓝牙连接控制方法,其特征在于,所述判断接入到所述第一子路由模块的从设备的接入数量是否达到预设数量,具体包括:
    判断处于快速连接间隔模式下的子路由模块接入的从设备所占用的带宽是否达到所述处于快速连接间隔模式下的子路由模块所支持的带宽的最大值;
    若是,确定所述接入数量达到所述预设数量。
PCT/CN2018/116751 2018-11-21 2018-11-21 蓝牙连接控制方法及路由器 WO2020103041A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/116751 WO2020103041A1 (zh) 2018-11-21 2018-11-21 蓝牙连接控制方法及路由器
CN201880096025.2A CN112805970A (zh) 2018-11-21 2018-11-21 蓝牙连接控制方法及路由器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/116751 WO2020103041A1 (zh) 2018-11-21 2018-11-21 蓝牙连接控制方法及路由器

Publications (1)

Publication Number Publication Date
WO2020103041A1 true WO2020103041A1 (zh) 2020-05-28

Family

ID=70774417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116751 WO2020103041A1 (zh) 2018-11-21 2018-11-21 蓝牙连接控制方法及路由器

Country Status (2)

Country Link
CN (1) CN112805970A (zh)
WO (1) WO2020103041A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150230278A1 (en) * 2014-02-10 2015-08-13 Hon Hai Precision Industry Co., Ltd. Wireless local area network access device and method of controlling wireless signals
CN105897576A (zh) * 2016-06-23 2016-08-24 中国电子科技集团公司第五十四研究所 一种共享路由控制逻辑的路由器设计方法
CN107172633A (zh) * 2017-06-09 2017-09-15 上海斐讯数据通信技术有限公司 一种路由器的状态控制方法及无线路由器
CN108551692A (zh) * 2018-01-31 2018-09-18 惠州高盛达科技有限公司 子母路由智能配对方法及其系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5083464B2 (ja) * 2009-05-25 2012-11-28 日本電気株式会社 ネットワークオンチップとネットワークルーティング方法とシステム
US9215643B2 (en) * 2009-09-04 2015-12-15 Hitachi, Ltd. Route selecting device and mobile radio communication system
CN106506697A (zh) * 2016-12-23 2017-03-15 上海斐讯数据通信技术有限公司 一种分布式无线接入设备系统的管理方法及系统
CN106658683B (zh) * 2016-12-23 2021-01-05 台州市吉吉知识产权运营有限公司 一种分布式无线设备唤醒管理方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150230278A1 (en) * 2014-02-10 2015-08-13 Hon Hai Precision Industry Co., Ltd. Wireless local area network access device and method of controlling wireless signals
CN105897576A (zh) * 2016-06-23 2016-08-24 中国电子科技集团公司第五十四研究所 一种共享路由控制逻辑的路由器设计方法
CN107172633A (zh) * 2017-06-09 2017-09-15 上海斐讯数据通信技术有限公司 一种路由器的状态控制方法及无线路由器
CN108551692A (zh) * 2018-01-31 2018-09-18 惠州高盛达科技有限公司 子母路由智能配对方法及其系统

Also Published As

Publication number Publication date
CN112805970A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
KR101691446B1 (ko) 디바이스를 지능적으로 제어하는 방법, 장치, 및 시스템, 그리고 플러그앤플레이 디바이스
JP5100854B2 (ja) 通信装置、及び通信方法
CN110012527B (zh) 唤醒方法及电子设备
WO2022037176A1 (zh) 核间通信方法、装置、电子组件以及电子设备
TWI488458B (zh) 電腦系統及電腦裝置的遠端遙控方法
US20230205870A1 (en) Control instruction processing method, apparatus and device, and computer storage medium
CN109219028B (zh) 基于云端的等价设备蓝牙通信方法和装置
US9629091B2 (en) Wireless personal area network device
AU2013388030A1 (en) Method, apparatus, and system for intelligently controlling device, and plug-and-play device
WO2023082622A1 (zh) 一种主从设备兼容的通信模块设计方法及装置
CN112399211B (zh) 一种操作方法及融合网关
CN110502928B (zh) 双操作系统、工作状态控制方法、装置及存储介质
JP5143191B2 (ja) 周辺装置を利用するためのシステム、サーバ装置、方法
JP2012015803A (ja) 通信装置、プログラム、及び通信方法
CN109451354B (zh) 一种唤醒终端的方法及终端
CN108494895B (zh) 交互智能平板、网域冲突控制方法、装置及介质
CN112616176B (zh) 设备的唤醒方法及装置、控制方法及装置
WO2020103041A1 (zh) 蓝牙连接控制方法及路由器
EP3048858B1 (en) Wireless customer premise equipment and accessing method therefor
CN103986588A (zh) 电脑系统及电脑装置的远端遥控方法
EP3694151A1 (en) Terminal network sharing method, apparatus, air conditioning adjustment device, and storage medium
US20130198548A1 (en) Apparatus and method for saving power of usb device
CN113961497A (zh) 通信电路系统、方法、芯片以及存储介质
CN108966200B (zh) 基于蓝牙连接查询等价设备的蓝牙通信方法和装置
CN107402898B (zh) 一种信息处理的方法及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940704

Country of ref document: EP

Kind code of ref document: A1