WO2020101544A2 - Airfield (paving) slab with a snow melting system - Google Patents

Airfield (paving) slab with a snow melting system Download PDF

Info

Publication number
WO2020101544A2
WO2020101544A2 PCT/RU2019/050213 RU2019050213W WO2020101544A2 WO 2020101544 A2 WO2020101544 A2 WO 2020101544A2 RU 2019050213 W RU2019050213 W RU 2019050213W WO 2020101544 A2 WO2020101544 A2 WO 2020101544A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat
layer
channels
reflecting layer
thickness
Prior art date
Application number
PCT/RU2019/050213
Other languages
French (fr)
Russian (ru)
Inventor
Антон Павлович ГОЧАЧКО
Original Assignee
Антон Павлович ГОЧАЧКО
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Антон Павлович ГОЧАЧКО filed Critical Антон Павлович ГОЧАЧКО
Publication of WO2020101544A2 publication Critical patent/WO2020101544A2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C5/00Pavings made of prefabricated single units
    • E01C5/06Pavings made of prefabricated single units made of units with cement or like binders
    • E01C5/08Reinforced units with steel frames

Definitions

  • the invention relates to hard surfaces of roads and airfields, assembled from prefabricated pre-stressed reinforced elements.
  • the prior art known prestressed reinforced concrete slabs for coating roads and airfields (GOST 56600-2015, 25912-2015) class with compression B30 and above.
  • the disadvantage is the need for snow removal, which complicates their operation and increases the risk of accidents due to insufficient adhesion of tires / chassis to the surface.
  • There is a method of anti-icing and snow removal of such coatings which consists in installing cable electric or tubular liquid heating systems (snowmelt) under them.
  • the disadvantage of this method is the high energy consumption due to the occurrence of heat exchange elements at a depth of 200-300 mm from the surface, i.e. heating a heat-resistant concrete layer of 140-200 mm (product range in the specified GOSTs), as well as a layer of compacted sand of the order of 50-100 mm in addition to the useful work of melting snow.
  • the claimed slab contains 3 cement concrete layers: front (1), bearing (2), and heat-reflecting (3) between them.
  • front (1) and heat-reflecting (3) layer Through the boundary of the front (1) and heat-reflecting (3) layer, through channels of circular cross-section (4) are symmetrically made, and electric heating cables or tubes with a coolant are stretched through them when laying the coating, connected to the power grid or pipelines along the long sides of the road or runway.
  • the plate is made by vibration compaction in a collapsible steel form with alternating filling of layers.
  • Channels (4) are formed by pre-laying steel rods equal to the diameter of the channels in the transverse direction of the plate through the holes in the side faces of the molds with release treatment and extraction after setting the strength of the plates.
  • a gap of 10 mm is formed between the rods and the non-tensioned reinforcing cage (5) in order to avoid voids during vibration-sealing of the heat-reflecting layer.
  • the upper boundary of the channels is at least 7 mm from the front surface of the plate.
  • the front (1) layer is poured first and is made of cement concrete of a class with compression not lower than B30 and corrugation using a corrugated steel sheet placed at the bottom of the mold according to the specified GOSTs.
  • the thickness of 10-20 mm is achieved by increasing the grade of workability of the mixture to P3-P5 by adding a plasticizer, reducing the fraction of crushed stone from 5-20 mm to 2-5 mm in comparison with traditional compositions.
  • the heat-reflecting (3) layer is poured in second, made of cement concrete of a class with compression not lower than B30, contains hollow aluminosilicate microspheres as a filler, which reduce the thermal conductivity of concrete to increase the fraction of heat from the heating element, which is distributed upward to heat the face layer and snow melting. Reducing the thermal conductivity of concrete while maintaining strength characteristics when adding microspheres is known and proven in a number of patents (RU 2515450, RU 2154619, RU 2355656).
  • the effective layer thickness depends on the duration of the heat pulse for the calculation of thermal resistances, for the climate of the middle zone of the Russian Federation and Northern Europe it is 30-50 mm, and its increase is irrational due to the high prices of microsphere-based concrete.
  • the carrier (2) layer is poured into the mold last. Since the density of standard concrete B30 (2500 kg / m3) is higher than that of heat-reflecting (900 kg / m3), and there is crushed stone in the composition, during normal vibration compaction it inevitably shifts down to the heat-reflecting layer, worsening its heat-insulating properties. To prevent crushed stone displacement, it is necessary to use a fraction of 2-5 mm instead of the standard 5-20 mm, increase workability up to P5 - self-leveling, or with a minimum vibration compaction cycle, lay the solution mechanically, almost at right angles to the plane of the heat-reflecting layer.
  • the thickness of the carrier layer is from 80 mm (PDN-14 plate) to 160 mm (PAG-20 plate). Due to the placement of the heater in the channels near the surface of the slab and the location of a concrete layer under it with reduced heat conductivity, the technical result is achieved.
  • the problem to which the claimed invention is directed is to increase the efficiency of the heating system when arranging hard surfaces of roads or airfields from prefabricated prefabricated elements such as PDN (PAG) plates.
  • the technical result of the claimed invention is to increase the proportion of heat spent on melting snow, compared with the existing heating method.
  • a reinforced concrete slab with a tensile and non-tensile reinforcing cage contains a front and a bearing layer, between which a heat-reflecting layer is located, and through the front and heat-reflecting layers there are symmetrically made through channels of circular cross section for drawing flexible heating elements through them .
  • the front layer is made of a thickness of 10-20 mm from cement concrete class with compression not lower than B30.
  • the heat-reflecting layer is made of a thickness of 30-50 mm from cement concrete class with compression not lower than B30.
  • the heat-reflecting layer is made with a thermal conductivity of not more than 0.25 W / m * K.
  • the heat-reflecting layer contains hollow aluminosilicate microspheres.
  • the carrier layer is made of a thickness of 80-160 mm from cement concrete class with compression not lower than B30.
  • the upper boundary of the non-tensile reinforcing cage is located at a distance of at least 10 mm from the through channels.
  • the upper boundary of the through channels is located at a distance of at least 7 mm from the front surface of the plate.
  • Patent Literature 1
  • Non-Patent Literature 1

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Structures (AREA)

Abstract

The invention relates to hard surfaces for roads and airfields, which are assembled from prefabricated, composite, prestressed reinforced elements. A reinforced concrete slab with a prestressed and non-prestressed reinforcement cage comprises a face layer and a load-bearing layer with a heat-reflecting layer disposed therebetween. Along the boundary of the face layer and the heat-reflecting layer are symmetrically arranged through-channels with a circular cross-section for receiving flexible heating elements. The face layer has a thickness of 10-20 mm and is made of concrete with a compressive strength grade not less than B30. The heat-reflecting layer has a thickness of 30-50 mm and is made of concrete with a compressive strength grade not less than B30. The heat-reflecting layer has a thermal conductivity coefficient not greater than 0.25 Wt/m*K. The heat-reflecting layer contains hollow aluminium silicate microspheres. The load-bearing layer has a thickness of 80-160 mm and is made of concrete with a compressive strength grade not less than B30. The upper boundary of the non-prestressed reinforcement cage is situated at a distance of not less than 10 mm from the through-channels. The upper boundary of the through-channels is situated at a distance of not less than 7 mm from the top surface of the slab. Using the invention makes it possible to provide that a greater share of the heat from the heating element is spent on melting snow by comparison to the existing method of heating hard surfaces made up of composite elements.

Description

Аэродромная (дорожная) плита с системой снеготаянияAirfield (road) plate with snow melting system
Изобретение относится к твердым покрытиям дорог и аэродромов, собираемым из готовых сборных предварительно напряженных армированных элементов.The invention relates to hard surfaces of roads and airfields, assembled from prefabricated pre-stressed reinforced elements.
Из уровня техники известны предварительно напряженные железобетонные плиты для покрытий дорог и аэродромов (ГОСТ 56600-2015, 25912-2015) класса при сжатии B30 и выше. Недостатком является необходимость снегоочистки, что затрудняет их эксплуатацию и повышает риск аварийности из-за недостаточного сцепления шин/шасси с поверхностью. Известен способ антиобледенения и снегоочистки таких покрытий, заключающийся в установке под ними кабельных электрических или трубчатых жидкостных систем подогрева (снеготаяния). Недостатком способа являются высокие энергозатраты, обусловленные залеганием теплообменных элементов на глубине 200-300 мм от поверхности, т.е. нагревом теплоемкого слоя бетона 140-200 мм (номенклатура изделий в указанных ГОСТах), а также слоя трамбованного песка порядка 50-100 мм помимо полезной работы по плавлению снега.The prior art known prestressed reinforced concrete slabs for coating roads and airfields (GOST 56600-2015, 25912-2015) class with compression B30 and above. The disadvantage is the need for snow removal, which complicates their operation and increases the risk of accidents due to insufficient adhesion of tires / chassis to the surface. There is a method of anti-icing and snow removal of such coatings, which consists in installing cable electric or tubular liquid heating systems (snowmelt) under them. The disadvantage of this method is the high energy consumption due to the occurrence of heat exchange elements at a depth of 200-300 mm from the surface, i.e. heating a heat-resistant concrete layer of 140-200 mm (product range in the specified GOSTs), as well as a layer of compacted sand of the order of 50-100 mm in addition to the useful work of melting snow.
Заявленная плита содержит 3 цементобетонных слоя: лицевой (1), несущий (2), и теплоотражающий (3) между ними. По границе лицевого (1) и теплоотражающего (3) слоя симметрично выполнены сквозные каналы круглого сечения (4), а сквозь них при укладке покрытия протягиваются электронагревательные кабели или трубки с теплоносителем, подключаемые к электросети или трубопроводам вдоль длинных сторон дороги или ВПП. Плита выполнена виброуплотнением в разборной стальной форме с поочередной заливкой слоев. Каналы (4) формируются предварительной закладкой стальных прутков, равных диаметру каналов, в поперечном направлении плиты через отверстия в боковых гранях форм с антиадгезионной обработкой и извлечением после набора прочности плит. Между прутками и ненапрягаемым арматурным каркасом (5) формируется зазор 10 мм во избежание возникновения пустот при виброуплотнении теплоотражающего слоя. Верхняя граница каналов находится на расстоянии не менее 7 мм от лицевой поверхности плиты. Лицевой (1) слой заливается первым и выполнен из цементобетона класса при сжатии не ниже B30 и рифлением с помощью рифленого стального листа, размещаемого на дне формы согласно указанным ГОСТам. Толщина 10-20 мм достигается ростом марки удобоукладываемости смеси до П3-П5 путем добавления пластификатора, уменьшением фракции щебня с 5-20 мм до 2-5 мм по сравнению с традиционными составами. Автором выявлено, что в подобных условиях бетон при виброуплотнении в форме распределяется равномерно при удалении верхней границы прутков не менее чем на 7 мм от поверхности. Теплоотражающий (3) слой заливается вторым, выполнен из цементобетона класса при сжатии не ниже B30, содержит как заполнитель полые алюмосиликатные микросферы, снижающие теплопроводность бетона для повышения доли тепла от нагревательного элемента, распределяющейся вверх на нагрев лицевого слоя и таяние снега. Снижение теплопроводности бетонов с сохранением прочностных характеристик при добавлении микросфер известно и доказано в ряде патентов (RU 2515450, RU 2154619, RU 2355656). Эффективная толщина слоя зависит от продолжительности теплового импульса по расчету тепловых сопротивлений, для климата средней полосы РФ и Северной Европы составляет 30-50 мм, а ее увеличение нерационально из-за высоких цен бетонов на основе микросфер. Для примера автором выведен состав теплоотражающего бетона (масс. %, в/ц=0,85) B30 (испытания: ГОСТ 10180-2012) с коэффициентом теплопроводности 0,25 Вт/м*К (испытания: ГОСТ 7076-99), что значительно ниже, чем 1,7-2,0 Вт/м*К стандартных бетонов: - полые алюмосиликатные микросферы фракционным составом 0-500 мкм - 45%; полые алюмосиликатные микросферы фракционным составом 0-50 мкм - 9%; серый портландцемент М-700 (В62,5) - 40%; каменная мука/микрокремнезем/золошлаки - 5%; гиперпластификатор + смесь армирующих волокон - 1%. Несущий (2) слой заливают в форму последним. Поскольку плотность стандартного бетона B30 (2500 кг/м3) выше, чем у теплоотражающего (900 кг/м3), а в составе есть щебень, при обычном виброуплотнении он неизбежно смещается вниз - в теплоотражающий слой, ухудшая его теплоизоляционные свойства. Для предотвращения смещения щебня нужно применять фракцию 2-5 мм вместо стандартной 5-20 мм, повышать удобоукладываемость вплоть до П5 - самовыравнивающейся, либо с минимальным циклом виброуплотнения, укладывать раствор механически, почти под прямым углом к плоскости теплоотражающего слоя. В зависимости от толщины плиты (механических нагрузок) и теплоотражающего слоя толщина несущего слоя составляет от 80 мм (плита ПДН-14) до 160 мм (плита ПАГ-20). За счет размещения нагревателя в каналах вблизи поверхности плиты и нахождения под ним слоя бетона со сниженной теплопроводностью технический результат достигнут.The claimed slab contains 3 cement concrete layers: front (1), bearing (2), and heat-reflecting (3) between them. Through the boundary of the front (1) and heat-reflecting (3) layer, through channels of circular cross-section (4) are symmetrically made, and electric heating cables or tubes with a coolant are stretched through them when laying the coating, connected to the power grid or pipelines along the long sides of the road or runway. The plate is made by vibration compaction in a collapsible steel form with alternating filling of layers. Channels (4) are formed by pre-laying steel rods equal to the diameter of the channels in the transverse direction of the plate through the holes in the side faces of the molds with release treatment and extraction after setting the strength of the plates. A gap of 10 mm is formed between the rods and the non-tensioned reinforcing cage (5) in order to avoid voids during vibration-sealing of the heat-reflecting layer. The upper boundary of the channels is at least 7 mm from the front surface of the plate. The front (1) layer is poured first and is made of cement concrete of a class with compression not lower than B30 and corrugation using a corrugated steel sheet placed at the bottom of the mold according to the specified GOSTs. The thickness of 10-20 mm is achieved by increasing the grade of workability of the mixture to P3-P5 by adding a plasticizer, reducing the fraction of crushed stone from 5-20 mm to 2-5 mm in comparison with traditional compositions. The author revealed that under such conditions, concrete during vibration compaction in the mold is evenly distributed when the upper border of the rods is removed by at least 7 mm from the surface. The heat-reflecting (3) layer is poured in second, made of cement concrete of a class with compression not lower than B30, contains hollow aluminosilicate microspheres as a filler, which reduce the thermal conductivity of concrete to increase the fraction of heat from the heating element, which is distributed upward to heat the face layer and snow melting. Reducing the thermal conductivity of concrete while maintaining strength characteristics when adding microspheres is known and proven in a number of patents (RU 2515450, RU 2154619, RU 2355656). The effective layer thickness depends on the duration of the heat pulse for the calculation of thermal resistances, for the climate of the middle zone of the Russian Federation and Northern Europe it is 30-50 mm, and its increase is irrational due to the high prices of microsphere-based concrete. For example, the author derived the composition of heat-reflecting concrete (wt.%, W / c = 0.85) B30 (tests: GOST 10180-2012) with a thermal conductivity of 0.25 W / m * K (tests: GOST 7076-99), which significantly lower than 1.7-2.0 W / m * K of standard concretes: - hollow aluminosilicate microspheres with a fractional composition of 0-500 microns - 45%; hollow aluminosilicate microspheres with a fractional composition of 0-50 microns - 9%; gray Portland cement M-700 (B62.5) - 40%; stone flour / silica fume / ash and slag - 5%; hyperplasticizer + a mixture of reinforcing fibers - 1%. The carrier (2) layer is poured into the mold last. Since the density of standard concrete B30 (2500 kg / m3) is higher than that of heat-reflecting (900 kg / m3), and there is crushed stone in the composition, during normal vibration compaction it inevitably shifts down to the heat-reflecting layer, worsening its heat-insulating properties. To prevent crushed stone displacement, it is necessary to use a fraction of 2-5 mm instead of the standard 5-20 mm, increase workability up to P5 - self-leveling, or with a minimum vibration compaction cycle, lay the solution mechanically, almost at right angles to the plane of the heat-reflecting layer. Depending on the thickness of the plate (mechanical loads) and the heat-reflecting layer, the thickness of the carrier layer is from 80 mm (PDN-14 plate) to 160 mm (PAG-20 plate). Due to the placement of the heater in the channels near the surface of the slab and the location of a concrete layer under it with reduced heat conductivity, the technical result is achieved.
Задачей, на решение которой направлено заявленное изобретение, является повышение эффективности системы подогрева при обустройстве твердых покрытий автомобильных дорог или аэродромов из готовых сборных элементов типа плит ПДН (ПАГ). Технический результат заявленного изобретения заключается в повышении доли тепла, расходуемой на таяние снега, по сравнению с существующим способом подогрева.The problem to which the claimed invention is directed, is to increase the efficiency of the heating system when arranging hard surfaces of roads or airfields from prefabricated prefabricated elements such as PDN (PAG) plates. The technical result of the claimed invention is to increase the proportion of heat spent on melting snow, compared with the existing heating method.
Технический результат заявленного изобретения достигается за счет того, что железобетонная плита с напрягаемым и ненапрягаемым арматурным каркасом содержит лицевой и несущий слои, между которыми расположен теплоотражающий слой, а по границе лицевого и теплоотражающего слоев симметрично выполнены сквозные каналы круглого сечения для протягивания сквозь них гибких нагревательных элементов. В частном случае заявленного изобретения лицевой слой выполнен толщиной 10-20 мм из цементобетона класса при сжатии не ниже B30. В частном случае заявленного изобретения теплоотражающий слой выполнен толщиной 30-50 мм из цементобетона класса при сжатии не ниже B30. В частном случае заявленного изобретения теплоотражающий слой выполнен с коэффициентом теплопроводности не более 0,25 Вт/м*К. В частном случае заявленного изобретения теплоотражающий слой содержит полые алюмосиликатные микросферы. В частном случае заявленного изобретения несущий слой выполнен толщиной 80-160 мм из цементобетона класса при сжатии не ниже B30. В частном случае заявленного изобретения верхняя граница ненапрягаемого арматурного каркаса располагается на расстоянии не менее 10 мм от сквозных каналов. В частном случае заявленного изобретения верхняя граница сквозных каналов располагается на расстоянии не менее 7 мм от лицевой поверхности плиты.The technical result of the claimed invention is achieved due to the fact that a reinforced concrete slab with a tensile and non-tensile reinforcing cage contains a front and a bearing layer, between which a heat-reflecting layer is located, and through the front and heat-reflecting layers there are symmetrically made through channels of circular cross section for drawing flexible heating elements through them . In the particular case of the claimed invention, the front layer is made of a thickness of 10-20 mm from cement concrete class with compression not lower than B30. In the particular case of the claimed invention, the heat-reflecting layer is made of a thickness of 30-50 mm from cement concrete class with compression not lower than B30. In the particular case of the claimed invention, the heat-reflecting layer is made with a thermal conductivity of not more than 0.25 W / m * K. In the particular case of the claimed invention, the heat-reflecting layer contains hollow aluminosilicate microspheres. In the particular case of the claimed invention, the carrier layer is made of a thickness of 80-160 mm from cement concrete class with compression not lower than B30. In the particular case of the claimed invention, the upper boundary of the non-tensile reinforcing cage is located at a distance of at least 10 mm from the through channels. In the particular case of the claimed invention, the upper boundary of the through channels is located at a distance of at least 7 mm from the front surface of the plate.
1 - лицевой слой; 2 - несущий слой; 3 - теплоотражающий слой; 4 - сквозные каналы; 5 - верхняя граница ненапрягаемой арматуры; 6 - напрягаемая арматура.1 - the front layer; 2 - a bearing layer; 3 - heat reflecting layer; 4 - through channels; 5 - upper limit of non-tensioning reinforcement; 6 - prestressing fittings.
Фигура.1Figure 1
Схематичный разрез плиты сбоку в продольном и поперечном направленияхSchematic cross-section of the slab in the longitudinal and transverse directions
Патентная литература 1: Patent Literature 1:
Непатентная литература 1:Non-Patent Literature 1:

Claims (6)

  1. Железобетонная плита с напрягаемым и ненапрягаемым арматурным каркасом, содержащая лицевой и несущий слои, отличающаяся тем, что между указанными слоями расположен теплоотражающий слой, содержащий полые алюмосиликатные микросферы и выполненный с коэффициентом теплопроводности не более 0,25 Вт/м*К, а по границе лицевого и теплоотражающего слоёв симметрично выполнены сквозные каналы круглого сечения для протягивания сквозь них гибких нагревательных элементов.Reinforced concrete slab with a tensile and non-tensile reinforcing cage, containing a front and a bearing layer, characterized in that between the said layers there is a heat-reflecting layer containing hollow aluminosilicate microspheres and made with a thermal conductivity of not more than 0.25 W / m * K, and along the front border and heat-reflecting layers symmetrically made through channels of circular cross section for drawing through them flexible heating elements.
  2. Плита по п.1, отличающаяся тем, что лицевой слой выполнен толщиной 10-20 мм из цементобетона класса при сжатии не ниже B30.The plate according to claim 1, characterized in that the front layer is made of a thickness of 10-20 mm from cement concrete class with compression not lower than B30.
  3. Плита по п.1, отличающаяся тем, что теплоотражающий слой выполнен толщиной 30-50 мм из цементобетона класса при сжатии не ниже B30.The slab according to claim 1, characterized in that the heat-reflecting layer is made of a thickness of 30-50 mm from cement concrete class with compression not lower than B30.
  4. Плита по п.1, отличающаяся тем, что несущий слой выполнен толщиной 80-160 мм из цементобетона класса при сжатии не ниже B30.The slab according to claim 1, characterized in that the carrier layer is made of a thickness of 80-160 mm from cement concrete class with compression not lower than B30.
  5. Плита по п.1, отличающаяся тем, что верхняя граница ненапрягаемого арматурного каркаса располагается на расстоянии не менее 10 мм от сквозных каналов.The plate according to claim 1, characterized in that the upper boundary of the non-tensile reinforcing cage is located at a distance of at least 10 mm from the through channels.
  6. Плита по п.1, отличающаяся тем, что верхняя граница сквозных каналов располагается на расстоянии не менее 7 мм от лицевой поверхности плиты.The plate according to claim 1, characterized in that the upper boundary of the through channels is located at a distance of at least 7 mm from the front surface of the plate.
PCT/RU2019/050213 2018-11-12 2019-11-13 Airfield (paving) slab with a snow melting system WO2020101544A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2018140040 2018-11-12
RU2018140040A RU2705116C1 (en) 2018-11-12 2018-11-12 Aerodrome (road) plate with snow melt system

Publications (1)

Publication Number Publication Date
WO2020101544A2 true WO2020101544A2 (en) 2020-05-22

Family

ID=68500643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2019/050213 WO2020101544A2 (en) 2018-11-12 2019-11-13 Airfield (paving) slab with a snow melting system

Country Status (2)

Country Link
RU (1) RU2705116C1 (en)
WO (1) WO2020101544A2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU80315A1 (en) * 1948-01-28 1948-11-30 К.И. Страхов Road surface for streets, squares, sidewalks, etc.
JP3654842B2 (en) * 2001-02-23 2005-06-02 株式会社ユタカ製作所 Braille block with heater
KR101037784B1 (en) * 2010-12-10 2011-05-27 이정욱 Assemble type sidewalk block with a heating wire
CN203462377U (en) * 2013-08-31 2014-03-05 长安大学 Snow-melting and deicing road surface
RU176727U1 (en) * 2017-11-20 2018-01-25 Общество с ограниченной ответственностью "Новопроект" PAVING COATING

Also Published As

Publication number Publication date
RU2705116C1 (en) 2019-11-05

Similar Documents

Publication Publication Date Title
CN102121289B (en) Ultrahigh-strength and ultrathin bottom board for laminated slab and production method thereof
Iqbal et al. Strengthening of RC beams using steel fiber reinforced high strength lightweight self-compacting concrete (SHLSCC) and their strength predictions
CN108004869B (en) Method for designing basalt fiber bar continuous reinforcement cement concrete pavement
CN105804769A (en) Method for reinforcing tunnel lining through corrugated steel plate
Hadi et al. Behaviour of fibre-reinforced RPC columns under different loading conditions
CN201972287U (en) Ultrathin bottom plate with superhigh strength for lamination board
CN103276651A (en) No-cutting-seam cement concrete pavement structure and construction method thereof
Cheah et al. The structural behaviour of HCWA ferrocement–reinforced concrete composite slabs
Ismail et al. Structural performance of large-scale concrete beams reinforced with cementitious composite containing different fibers
CN103696366B (en) Pavement structure and pavement method of combined steel bridge deck
JP2011214293A (en) Concrete structure and fire resistive covering method for concrete structure
WO2020101544A2 (en) Airfield (paving) slab with a snow melting system
Chen et al. Fiber reinforced polymer patching binder for concrete pavement rehabilitation and repair
CN114032724A (en) Assembled recycled concrete rural pavement
Haddad et al. Repair of heat-damaged reinforced concrete T-beams using FRC jackets
Swamy et al. SOME PRACTICAL APPLICATIONS OF STEEL FIBRE REINFORCED CONCRETE.
CN111877157A (en) Synergistic shearing-resistant high-durability section steel bridge deck pavement structure and construction method thereof
Schaumann Hybrid FRP-lightweight concrete sandwich system for engineering structures
CN209907671U (en) Prefabricated assembled CCA board grout wall body
CN108643433B (en) Geothermal heating structure and construction method thereof
Dahham et al. Static structural performance of continuous composite slab strengthened by CFRP laminate in the hogging moment region
CN213390761U (en) Heat-insulating sound-insulating floor
WO2012139587A1 (en) Concrete manufacturing process and panel manufactured by said process, where said panel has a decreasing density away from an exposed dense surface of con-crete or high performance concrete (hpc)
EP2744769A1 (en) Aggregate mixture for preparing an artificial conglomerate and artificial conglomerate prepared by such mixture
CN216516679U (en) Gypsum-based insulation slurry trenching floor heating system

Legal Events

Date Code Title Description
WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: DE