WO2020101029A1 - Resin composition, optical fiber and method for manufacturing optical fiber - Google Patents

Resin composition, optical fiber and method for manufacturing optical fiber Download PDF

Info

Publication number
WO2020101029A1
WO2020101029A1 PCT/JP2019/044950 JP2019044950W WO2020101029A1 WO 2020101029 A1 WO2020101029 A1 WO 2020101029A1 JP 2019044950 W JP2019044950 W JP 2019044950W WO 2020101029 A1 WO2020101029 A1 WO 2020101029A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
meth
acrylate
resin layer
group
Prior art date
Application number
PCT/JP2019/044950
Other languages
French (fr)
Japanese (ja)
Inventor
勝史 浜窪
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US17/040,100 priority Critical patent/US20210024772A1/en
Priority to CN201980069824.5A priority patent/CN113039226B/en
Priority to KR1020217017390A priority patent/KR20210093280A/en
Priority to EP19884739.4A priority patent/EP3882288A4/en
Priority to JP2020556198A priority patent/JP7367697B2/en
Publication of WO2020101029A1 publication Critical patent/WO2020101029A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/08Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/326Polyureas; Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/42Coatings containing inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/62Surface treatment of fibres or filaments made from glass, minerals or slags by application of electric or wave energy; by particle radiation or ion implantation
    • C03C25/6206Electromagnetic waves
    • C03C25/6226Ultraviolet
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/001Treatment with visible light, infrared or ultraviolet, X-rays
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/5403Silicon-containing compounds containing no other elements than carbon or hydrogen

Definitions

  • the present disclosure relates to a resin composition, an optical fiber, and a method for manufacturing an optical fiber.
  • This application claims priority based on Japanese application No. 2018-215714 filed on Nov. 16, 2018, and incorporates all the contents described in the Japanese application.
  • the optical fiber has a coating resin layer for protecting the glass fiber, which is an optical transmission body.
  • the optical fiber is required to have excellent lateral pressure characteristics in order to reduce an increase in transmission loss induced by minute bending that occurs when lateral pressure is applied to the optical fiber.
  • Patent Document 1 it is considered to improve the lateral pressure characteristic of an optical fiber by forming a resin layer using an ultraviolet curable resin composition containing a filler made of synthetic quartz as a raw material.
  • a resin composition according to an aspect of the present disclosure is a surface-modified inorganic oxide having a base resin containing a urethane (meth) acrylate oligomer, a monomer and a photopolymerization initiator, and an alkyl group having 1 to 8 carbon atoms or a phenyl group.
  • the content of the surface modified inorganic oxide particles is 1% by mass or more and 60% by mass or less based on the total amount of the resin composition, and the surface modification amount of the surface modified inorganic oxide particles is 0. It is 15 mg / m 2 or more.
  • FIG. 1 is a schematic sectional view showing an example of an optical fiber according to this embodiment.
  • the coating resin layer generally includes a primary resin layer and a secondary resin layer.
  • the resin composition forming the secondary resin layer is required to improve the lateral pressure characteristic of the optical fiber by increasing the Young's modulus. However, if the content of the filler is increased, the Young's modulus of the resin layer formed from the resin composition can be increased, but the coatability tends to be poor and the resin layer tends to become brittle.
  • the present disclosure has a resin composition that has a high Young's modulus required for a secondary resin layer, is excellent in coating properties, and can form a tough resin layer, and an optical fiber including a secondary resin layer formed from the resin composition.
  • the purpose is to provide.
  • a resin composition for coating an optical fiber which has a high Young's modulus required for a secondary resin layer, is excellent in coatability, and can form a tough resin layer, and is formed from the resin composition.
  • An optical fiber including a secondary resin layer can be provided.
  • a resin composition according to an aspect of the present disclosure is a surface-modified inorganic oxide having a base resin containing a urethane (meth) acrylate oligomer, a monomer and a photopolymerization initiator, and an alkyl group having 1 to 8 carbon atoms or a phenyl group.
  • the content of the surface modified inorganic oxide particles is 1% by mass or more and 60% by mass or less based on the total amount of the resin composition, and the surface modification amount of the surface modified inorganic oxide particles is 0. It is 15 mg / m 2 or more.
  • the surface-modified inorganic oxide particles Even if the amount of surface modification in the surface-modified inorganic oxide particles is 0.15 mg / m 2 or more and 2.5 mg / m 2 or less, the surface-modified inorganic oxide particles have excellent dispersibility in the resin composition and easily improve coatability. Good.
  • the alkyl group having 1 to 8 carbon atoms may be at least one group selected from the group consisting of methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group and octyl group. This facilitates formation of a resin layer having a high Young's modulus.
  • the average primary particle size of the surface-modified inorganic oxide particles may be 800 nm or less.
  • a secondary coating material for an optical fiber according to an aspect of the present disclosure includes the above resin composition.
  • the resin composition according to this embodiment for the secondary resin layer an optical fiber having excellent lateral pressure characteristics can be manufactured.
  • An optical fiber according to an aspect of the present disclosure includes a glass fiber including a core and a clad, a primary resin layer that is in contact with the glass fiber and covers the glass fiber, and a secondary resin layer that covers the primary resin layer.
  • the resin layer is made of a cured product of the above resin composition.
  • An optical fiber manufacturing method includes a coating step of coating the resin composition on the outer periphery of a glass fiber composed of a core and a clad, and a resin composition by irradiating ultraviolet rays after the coating step. And a curing step of curing the object. This makes it possible to manufacture an optical fiber having excellent lateral pressure characteristics.
  • the resin composition according to the present embodiment is a surface-modified inorganic oxide particle having a base resin containing a urethane (meth) acrylate oligomer, a monomer and a photopolymerization initiator, and an alkyl group or a phenyl group having 1 to 8 carbon atoms.
  • (meth) acrylate means acrylate or corresponding methacrylate.
  • (meth) acrylic acid means acrylate or corresponding methacrylate.
  • the surface-modified inorganic oxide particles according to the present embodiment have the surface of the inorganic oxide particles treated with a silane compound having an alkyl group or a phenyl group having 1 to 8 carbon atoms, and the surface of the inorganic oxide particles has 1 carbon atoms. At least 8 or less alkyl groups or phenyl groups are introduced. That is, the surface-modified inorganic oxide particles are composed of an inorganic component and an organic component.
  • the surface-modified inorganic oxide particles having an alkyl group or a phenyl group having 1 to 8 carbon atoms can improve the compatibility with the base resin and facilitate the formation of a resin layer having a high Young's modulus.
  • the surface-modified inorganic oxide particles having an alkyl group having 9 or more carbon atoms have high lipophilicity, and thus are difficult to disperse in the resin composition.
  • the alkyl group having 1 to 8 carbon atoms may be at least one group selected from the group consisting of methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group and octyl group.
  • silane compound having an alkyl group having 1 to 8 carbon atoms examples include methyltrimethoxysilane, dimethyldimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, pentyltrimethoxysilane, and hexyltrimethoxy.
  • Examples include silane, octyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, butyltriethoxysilane, pentyltriethoxysilane, hexyltriethoxysilane and octyltriethoxysilane.
  • silane compounds having a phenyl group examples include phenyltrimethoxysilane and phenyltriethoxysilane.
  • the surface-modified inorganic oxide particles according to this embodiment are dispersed in a dispersion medium.
  • the surface-modified inorganic oxide particles can be uniformly dispersed in the resin composition, and the storage stability of the resin composition can be improved.
  • the dispersion medium is not particularly limited as long as it does not inhibit the curing of the resin composition.
  • the dispersion medium may be reactive or non-reactive.
  • a monomer such as a (meth) acryloyl compound or an epoxy compound may be used.
  • the (meth) acryloyl compound include 1,6-hexanediol di (meth) acrylate, EO-modified bisphenol A di (meth) acrylate, polyethylene glycol di (meth) acrylate, PO-modified bisphenol A di (meth) acrylate, Polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, 2-hydroxy-3-phenoxypropyl acrylate, (meth) acrylic acid adduct of propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether ( Examples thereof include (meth) acrylic acid adducts and (meth) acrylic acid adducts of glycerin diglycidyl ether.
  • a (meth) acryloyl compound examples include 1,6-hexanedi
  • a ketone solvent such as methyl ethyl ketone (MEK), an alcohol solvent such as methanol (MeOH), propylene glycol monomethyl ether (PGME), or an ester solvent such as propylene glycol monomethyl ether acetate (PGMEA).
  • MEK methyl ethyl ketone
  • MeOH methanol
  • PGME propylene glycol monomethyl ether
  • PMEA propylene glycol monomethyl ether acetate
  • the resin composition may be prepared by mixing the base resin and the surface-modified inorganic oxide particles dispersed in the dispersion medium and then removing a part of the dispersion medium.
  • the surface-modified inorganic oxide particles have excellent dispersibility in a resin composition and can easily form a smooth resin layer
  • the surface-modified inorganic oxide particles are silicon dioxide (silica), zirconium dioxide (zirconia), aluminum oxide (alumina), and oxide. It is preferable that the particles are surface-treated with at least one selected from the group consisting of magnesium (magnesia), titanium oxide (titania), tin oxide and zinc oxide.
  • magnesium magnesium
  • titanium oxide titanium oxide
  • tin oxide titanium oxide
  • zinc oxide zinc oxide.
  • surface-modified silica particles are used as the surface-modified inorganic oxide particles according to the present embodiment. Is more preferably used.
  • the average primary particle diameter of the surface-modified inorganic oxide particles may be 800 nm or less, preferably 1 nm or more and 650 nm or less, more preferably 5 nm or more and 500 nm or less, and 10 nm or more and 200 nm. The following is more preferable, and 10 nm or more and 100 nm or less is particularly preferable.
  • the average primary particle size can be measured by, for example, image analysis of electron micrograph, light scattering method, BET method, or the like.
  • the dispersion medium in which the primary particles of the surface-modified inorganic oxide particles are dispersed looks visually transparent when the particle size of the primary particles is small. When the particle size of the primary particles is relatively large (40 nm or more), the dispersion medium in which the primary particles are dispersed appears cloudy, but no sediment is observed.
  • the content of the surface-modified inorganic oxide particles is 1% by mass or more and 60% by mass or less, and 3% by mass or more and 55% by mass, based on the total amount of the resin composition (the total amount of the base resin and the surface-modified inorganic oxide particles).
  • the following is preferable, 5 mass% or more and 50 mass% or less is more preferable, and 10 mass% or more and 40 mass% or less is further preferable.
  • the content of the surface-modified inorganic oxide particles is 1% by mass or more, it becomes easy to form a resin layer having excellent lateral pressure characteristics.
  • the content of the surface-modified inorganic oxide particles is 60% by mass or less, the coating property of the resin composition is easily improved, and a tough resin layer can be formed.
  • the total amount of the resin composition and the total amount of the cured product of the resin composition may be considered to be the same.
  • the content of the surface-modified inorganic oxide particles is 1% by mass or more and 60% by mass or less based on the total amount of the secondary resin layer (the total amount of the cured product of the resin composition forming the secondary resin layer), and 3% by mass or more. It is preferably 55% by mass or less, more preferably 5% by mass or more and 50% by mass or less, still more preferably 10% by mass or more and 40% by mass or less.
  • Surface modification amount of the surface-modified inorganic oxide particles is at 0.15 mg / m 2 or more, preferably 0.15 mg / m 2 or more 2.5 mg / m 2 or less, 0.20 mg / m 2 or more 2 more preferably .0mg / m 2 or less, further preferably 0.25 mg / m 2 or more 1.8 mg / m 2 or less, is 0.30 mg / m 2 or more 1.5 mg / m 2 or less Is particularly preferable.
  • the amount of surface modification is within the above range, the viscosity of the resin composition can be easily adjusted.
  • the “surface modification amount” in the present specification can be calculated from the specific surface area of the surface modified inorganic oxide particles and the ratio of the organic component.
  • the organic component is a component derived from the UV-curable functional group introduced into the inorganic oxide particles before surface modification.
  • the components other than SiO 2 are organic components.
  • the specific surface area can be measured by the nitrogen adsorption BET method, and the ratio of the organic component can be measured by suggestive thermogravimetric analysis (TG / DTA).
  • the amount of surface modification in the surface-modified inorganic oxide particles may be measured by isolating the particles from the dispersion medium before preparing the resin composition, or by measuring the particles from the resin composition after preparing the resin composition. You may measure it separately.
  • the base resin according to the present embodiment contains a urethane (meth) acrylate oligomer, a monomer and a photopolymerization initiator.
  • urethane (meth) acrylate oligomer an oligomer obtained by reacting a polyol compound, a polyisocyanate compound and a hydroxyl group-containing (meth) acrylate compound can be used.
  • polyol compound examples include polytetramethylene glycol, polypropylene glycol, and bisphenol A / ethylene oxide addition diol.
  • polyisocyanate compound examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, isophorone diisocyanate, and dicyclohexylmethane 4,4'-diisocyanate.
  • hydroxyl group-containing (meth) acrylate compound examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 1,6-hexanediol mono (meth) acrylate, pentaerythritol tri (meth) acrylate, 2-Hydroxypropyl (meth) acrylate and tripropylene glycol mono (meth) acrylate are mentioned.
  • the number average molecular weight of the polyol compound may be 300 or more and 3000 or less.
  • Organotin compounds are generally used as catalysts when synthesizing urethane (meth) acrylate oligomers.
  • organotin compound examples include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin malate, dibutyltin bis (2-ethylhexyl mercaptoacetate), dibutyltin bis (isooctyl mercaptoacetate) and dibutyltin oxide. From the viewpoint of easy availability and catalytic performance, it is preferable to use dibutyltin dilaurate or dibutyltin diacetate as a catalyst.
  • a lower alcohol having 5 or less carbon atoms may be used during the synthesis of the urethane (meth) acrylate oligomer.
  • the lower alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 3-pentanol, Mention may be made of 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-2-butanol and 2,2-dimethyl-1-propanol.
  • the resin composition according to this embodiment may further contain an epoxy (meth) acrylate oligomer.
  • an epoxy (meth) acrylate oligomer an oligomer obtained by reacting an epoxy resin having two or more glycidyl groups with a compound having a (meth) acryloyl group can be used.
  • a monofunctional monomer having one polymerizable group and a polyfunctional monomer having two or more polymerizable groups can be used.
  • the monomers may be used as a mixture of two or more kinds.
  • Examples of the monofunctional monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, s-butyl (meth) acrylate, tert-butyl (meth) acrylate, Isobutyl (meth) acrylate, n-pentyl (meth) acrylate, isopentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, isoamyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (Meth) acrylate, isooctyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, 2-phenoxyethyl (meth) acrylate,
  • polyfunctional monomer examples include ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, Di (meth) acrylate of alkylene oxide adduct of bisphenol A, tetraethylene glycol di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6 -Hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, 1,14-tetradecanediol di (meth) acrylate, 1,16-hexadecane
  • the photopolymerization initiator can be appropriately selected and used from known radical photopolymerization initiators.
  • the photopolymerization initiator include 1-hydroxycyclohexyl phenyl ketone (Omnirad 184, manufactured by IGM Resins), 2,2-dimethoxy-2-phenylacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2- Methylpropan-1-one, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propane-1 -One (Omnirad 907, manufactured by IGM Resins), 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Omnirad TPO, manufactured by IGM Resins) and bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (Omn
  • the resin composition may further contain a silane coupling agent, a leveling agent, a defoaming agent, an antioxidant and the like.
  • the silane coupling agent is not particularly limited as long as it does not hinder the curing of the resin composition.
  • Examples of the silane coupling agent include tetramethyl silicate, tetraethyl silicate, mercaptopropyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxy-ethoxy) silane, ⁇ - (3,4-epoxycyclohexyl).
  • -Ethyltrimethoxysilane dimethoxydimethylsilane, diethoxydimethylsilane, 3-acryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -methacryloxypropyl Trimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, bis- [3- (triethoxysilyl) prop
  • the viscosity of the resin composition according to the present embodiment at 45 ° C. is preferably 300 mPa ⁇ s or more and 5000 mPa ⁇ s or less, more preferably 400 mPa ⁇ s or more and 4500 mPa ⁇ s or less, and 500 mPa ⁇ s or more and 3500 mPa ⁇ s. s or less is more preferable, and 700 mPa ⁇ s or more and 3000 mPa ⁇ s or less is particularly preferable.
  • the viscosity of the resin composition is within the above range, the coatability of the resin composition can be improved.
  • the resin composition according to this embodiment can be suitably used as a secondary coating material for an optical fiber.
  • an optical fiber having a high Young's modulus and excellent lateral pressure characteristics can be manufactured.
  • FIG. 1 is a schematic sectional view showing an example of the optical fiber according to the present embodiment.
  • the optical fiber 10 includes a glass fiber 13 including a core 11 and a clad 12, and a coating resin layer 16 including a primary resin layer 14 and a secondary resin layer 15 provided on the outer periphery of the glass fiber 13.
  • the clad 12 surrounds the core 11.
  • the core 11 and the clad 12 mainly include glass such as quartz glass.
  • the core 11 may be made of germanium-added quartz glass
  • the clad 12 may be made of pure quartz glass or fluorine-added quartz. Glass can be used.
  • the outer diameter (D2) of the glass fiber 13 is about 125 ⁇ m, and the diameter (D1) of the core 11 constituting the glass fiber 13 is about 7 to 15 ⁇ m.
  • the thickness of the coating resin layer 16 is usually about 60 to 70 ⁇ m.
  • the thickness of each of the primary resin layer 14 and the secondary resin layer 15 may be about 10 to 50 ⁇ m.
  • the thickness of the primary resin layer 14 is 35 ⁇ m and the thickness of the secondary resin layer 15 is 25 ⁇ m. May be.
  • the outer diameter of the optical fiber 10 may be about 245 to 265 ⁇ m.
  • the thickness of the coating resin layer 16 may be about 27 to 48 ⁇ m.
  • the thickness of each of the primary resin layer 14 and the secondary resin layer 15 may be about 10 to 38 ⁇ m.
  • the thickness of the primary resin layer 14 is 25 ⁇ m and the thickness of the secondary resin layer 15 is 10 ⁇ m.
  • the outer diameter of the optical fiber 10 may be about 179 to 221 ⁇ m.
  • the outer diameter (D2) of the glass fiber 13 may be about 100 ⁇ m, and the thickness of the coating resin layer 16 may be about 22 to 37 ⁇ m.
  • the thickness of each of the primary resin layer 14 and the secondary resin layer 15 may be about 5 to 32 ⁇ m.
  • the thickness of the primary resin layer 14 is 25 ⁇ m and the thickness of the secondary resin layer 15 is 10 ⁇ m.
  • the outer diameter of the optical fiber 10 may be about 144 to 174 ⁇ m.
  • the resin composition according to the present embodiment can be applied to the secondary resin layer.
  • the secondary resin layer can be formed by curing the resin composition containing the base resin and the surface-modified inorganic oxide particles. Thereby, the lateral pressure characteristic of the optical fiber can be improved.
  • the manufacturing method of the optical fiber according to the present embodiment the outer periphery of the glass fiber composed of the core and the clad, a coating step of coating the resin composition, and the resin composition by irradiating ultraviolet rays after the coating step. And a curing step of curing.
  • the Young's modulus of the secondary resin layer at 23 ° C. is preferably 1300 MPa or more, more preferably 1300 MPa or more and 2600 MPa or less, still more preferably 1500 MPa or more and 2500 MPa or less.
  • the Young's modulus of the secondary resin layer is 1300 MPa or more, the lateral pressure characteristics are easily improved, and when it is 2600 MPa or less, the secondary resin layer can be provided with appropriate toughness, so that the secondary resin layer is less likely to be cracked.
  • the surface-modified inorganic oxide particles dispersed in the dispersion medium remain dispersed in the resin layer even after the resin layer is cured.
  • a reactive dispersion medium used, the surface-modified inorganic oxide particles are mixed with the resin composition together with the dispersion medium, and taken into the resin layer while maintaining the dispersed state.
  • a non-reactive dispersion medium used, at least a part of the dispersion medium volatilizes and disappears from the resin composition, but the surface-modified inorganic oxide particles remain in the resin composition in a dispersed state, and after curing. It also exists in a dispersed state in the resin layer.
  • the surface-modified inorganic oxide particles present in the resin layer are observed in a state where primary particles are dispersed, when observed by an electron microscope.
  • the primary resin layer 14 can be formed, for example, by curing a resin composition containing a urethane (meth) acrylate oligomer, a monomer, a photopolymerization initiator and a silane coupling agent.
  • a resin composition for the primary resin layer conventionally known techniques can be used.
  • the urethane (meth) acrylate oligomer, the monomer, the photopolymerization initiator and the silane coupling agent may be appropriately selected from the compounds exemplified as the above base resin.
  • the resin composition forming the primary resin layer has a composition different from that of the base resin forming the secondary resin layer.
  • the resin composition of the present disclosure can also be used as a resin for ribbon.
  • the lateral pressure characteristic of the optical fiber ribbon can be improved similarly to the optical fiber.
  • a urethane acrylate oligomer obtained by reacting polypropylene glycol having a molecular weight of 600, 2,4-tolylene diisocyanate and hydroxyethyl acrylate, and an epoxy acrylate oligomer were prepared.
  • Photopolymerization initiator 1-Hydroxycyclohexyl phenyl ketone and 2,4,6-trimethylbenzoyldiphenylphosphine oxide were prepared as photopolymerization initiators.
  • Base resin 45 parts by weight of urethane acrylate oligomer, 13.4 parts by weight of epoxy acrylate, 9 parts by weight of isobornyl acrylate, 22.5 parts by weight of tripropylene glycol diacrylate, 10 parts by weight of 2-phenoxyethyl acrylate, and 1-hydroxy.
  • a base resin was prepared by mixing 0.05 part by mass of cyclohexyl phenyl ketone and 0.05 part by mass of 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
  • silica sol MEK dispersion liquid containing silica particles surface-treated with the compounds shown in Table 1 (hereinafter simply referred to as “silica particles”) was prepared.
  • Chloroform was added to the resin composition and the mixture was centrifuged to collect the precipitate. Acetone was added to the precipitate and the mixture was centrifuged to remove the supernatant. Then, acetone was added to the precipitate again to perform centrifugation and removal of the supernatant, which was repeated four times to extract silica particles.
  • the silica particles ground in a mortar were vacuum dried at room temperature for 12 hours to remove volatile components. The centrifugation was performed at 30,000 rpm for 120 minutes. The dried silica particles were subjected to a reduced pressure treatment at 80 ° C.
  • a specific surface area (m 2 / m 2 ) of the silica particles was measured by a nitrogen adsorption BET method using a pore distribution measuring device (“ASAP-2020” manufactured by Micromeritics). g) was measured.
  • the ratio (mass%) of the organic components contained in the silica particles was measured using a differential thermogravimetric simultaneous analysis device (“TG / DTA6300” manufactured by Hitachi High-Tech Science Co., Ltd.). The measurement was performed by heating the weight-measured silica particles from room temperature to 850 ° C. under nitrogen (300 mL / min), then cooling from 850 ° C. to 200 ° C., and 200 ° C. to 1000 ° C. under air (100 mL / min). It was heated to and the weight change was measured. The ratio of the organic component was calculated from the weight change of silica particles.
  • TG / DTA6300 manufactured by Hitachi High-Tech Science Co., Ltd.
  • the surface modification amount of the silica particles was calculated from the specific surface area of the silica particles and the ratio of the organic component by the following formula.
  • Surface modification amount (mg / m 2 ) ratio of organic component / specific surface area
  • viscosity The viscosity of the resin composition at 45 ° C. was measured using a B-type viscometer (“Digital Viscometer DV-II” manufactured by Brookfield Co., spindle used: No. 18, rotation speed: 10 rpm).
  • the resin composition obtained in each of the examples or comparative examples was applied onto a polyethylene terephthalate (PET) film, and then an electrodeless UV lamp system (“VPS600 (D bulb)” manufactured by Heraeus) was used. And cured under the condition of 1000 ⁇ 100 mJ / cm 2 to form a resin layer having a thickness of 200 ⁇ 20 ⁇ m on the PET film. The resin layer was peeled off from the PET film to obtain a resin film.
  • PPS600 electrodeless UV lamp system manufactured by Heraeus
  • a resin film was punched out into a JIS K 7127 type 5 dumbbell shape and pulled under conditions of 23 ⁇ 2 ° C. and 50 ⁇ 10% RH using a tensile tester at a pulling speed of 1 mm / min and a distance between marked lines of 25 mm. , A stress-strain curve was obtained. The Young's modulus was calculated from the 2.5% secant.
  • urethane acrylate oligomer 75 parts by weight of urethane acrylate oligomer, 12 parts by weight of nonylphenol EO-modified acrylate, 6 parts by weight of N-vinylcaprolactam, 2 parts by weight of 1,6-hexanediol diacrylate, 1 part by weight of 2,4,6-trimethylbenzoyldiphenylphosphine oxide, And 1 part by mass of 3-mercaptopropyltrimethoxysilane were mixed to obtain a resin composition A1 for a primary resin layer.
  • the resin composition A1 is applied to the outer periphery of a glass fiber having a diameter of 125 ⁇ m composed of a core and a clad as the primary resin layer, and the resin composition of the example or the comparative example is applied as the secondary resin layer, and then irradiated with ultraviolet rays.
  • the resin composition was cured to form a primary resin layer having a thickness of 35 ⁇ m and a secondary resin layer on the outer periphery of the primary resin layer, to fabricate an optical fiber.
  • the linear velocity was 1500 m / min.
  • the applicability of the resin composition was evaluated by checking the presence or absence of disconnection and the presence or absence of cracks in the resin layer of the produced optical fiber. The case where there is no disconnection and the crack of the resin layer is "A”, the case where there is a break and the resin layer is "B”, and the case where there is a break and the resin layer is "C” .. If the viscosity of the resin composition is too high, the coating diameter at the time of forming the secondary resin layer will not be stable and the wire will be easily broken. On the other hand, when the viscosity of the resin composition is too low, the self-centering force is hard to work and uneven thickness is likely to occur.
  • the resin compositions of the examples have a high Young's modulus required for the secondary resin layer and also have excellent coatability and can form a tough resin layer.
  • Reference numeral 10 Optical fiber, 11 ... Core, 12 ... Clad, 13 ... Glass fiber, 14 ... Primary resin layer, 15 ... Secondary resin layer, 16 ... Coating resin layer.

Abstract

Provided is a resin composition that includes: a base resin containing a urethane (meth)acrylate oligomer, a monomer and a photoiniator; and surface-modified inorganic oxide particles having a C1-8 alkyl group or a phenyl group, wherein the content of the surface-modified inorganic oxide particles, based on the total amount of the resin composition, is 1wt% to 60wt%, and the surface-modified quantity of the surface-modified inorganic oxide particles is 0.15 mg/m2 or more.

Description

樹脂組成物、光ファイバ及び光ファイバの製造方法Resin composition, optical fiber, and method for producing optical fiber
 本開示は、樹脂組成物、光ファイバ及び光ファイバの製造方法に関する。
 本出願は、2018年11月16日出願の日本出願第2018-215714号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to a resin composition, an optical fiber, and a method for manufacturing an optical fiber.
This application claims priority based on Japanese application No. 2018-215714 filed on Nov. 16, 2018, and incorporates all the contents described in the Japanese application.
 一般に、光ファイバは、光伝送体であるガラスファイバを保護するための被覆樹脂層を有している。光ファイバは、光ファイバに側圧が付与された際に発生する微小な曲げにより誘起される伝送損失の増加を小さくするために、側圧特性に優れることが求められている。 Generally, the optical fiber has a coating resin layer for protecting the glass fiber, which is an optical transmission body. The optical fiber is required to have excellent lateral pressure characteristics in order to reduce an increase in transmission loss induced by minute bending that occurs when lateral pressure is applied to the optical fiber.
 例えば、特許文献1では、合成石英を原料とするフィラーを含有する紫外線硬化型樹脂組成物を用いて樹脂層を形成することで、光ファイバの側圧特性を改善することが検討されている。 For example, in Patent Document 1, it is considered to improve the lateral pressure characteristic of an optical fiber by forming a resin layer using an ultraviolet curable resin composition containing a filler made of synthetic quartz as a raw material.
特開2014-219550号公報JP, 2014-219550, A
 本開示の一態様に係る樹脂組成物は、ウレタン(メタ)アクリレートオリゴマー、モノマー及び光重合開始剤を含有するベース樹脂と、炭素数1以上8以下のアルキル基又はフェニル基を有する表面修飾無機酸化物粒子とを含み、表面修飾無機酸化物粒子の含有量が、樹脂組成物の総量を基準として1質量%以上60質量%以下であり、表面修飾無機酸化物粒子における表面修飾量が、0.15mg/m以上である。 A resin composition according to an aspect of the present disclosure is a surface-modified inorganic oxide having a base resin containing a urethane (meth) acrylate oligomer, a monomer and a photopolymerization initiator, and an alkyl group having 1 to 8 carbon atoms or a phenyl group. The content of the surface modified inorganic oxide particles is 1% by mass or more and 60% by mass or less based on the total amount of the resin composition, and the surface modification amount of the surface modified inorganic oxide particles is 0. It is 15 mg / m 2 or more.
図1は本実施形態に係る光ファイバの一例を示す概略断面図である。FIG. 1 is a schematic sectional view showing an example of an optical fiber according to this embodiment.
[本開示が解決しようとする課題]
 被覆樹脂層は、一般に、プライマリ樹脂層及びセカンダリ樹脂層を備えている。セカンダリ樹脂層を形成する樹脂組成物には、ヤング率を高めることで光ファイバの側圧特性を向上することが求められる。しかしながら、フィラーの含有量を増やすと、樹脂組成物から形成される樹脂層のヤング率を高くできるものの、塗布性が乏しくなり、樹脂層が脆くなる傾向にある。
[Problems to be solved by the present disclosure]
The coating resin layer generally includes a primary resin layer and a secondary resin layer. The resin composition forming the secondary resin layer is required to improve the lateral pressure characteristic of the optical fiber by increasing the Young's modulus. However, if the content of the filler is increased, the Young's modulus of the resin layer formed from the resin composition can be increased, but the coatability tends to be poor and the resin layer tends to become brittle.
 本開示は、セカンダリ樹脂層に求められる高いヤング率を有すると共に、塗布性に優れ、強靱な樹脂層を形成できる樹脂組成物、及び、当該樹脂組成物から形成されるセカンダリ樹脂層を備える光ファイバを提供することを目的とする。 The present disclosure has a resin composition that has a high Young's modulus required for a secondary resin layer, is excellent in coating properties, and can form a tough resin layer, and an optical fiber including a secondary resin layer formed from the resin composition. The purpose is to provide.
[本開示の効果]
 本開示によれば、セカンダリ樹脂層に求められる高いヤング率を有すると共に、塗布性に優れ、強靱な樹脂層を形成できる光ファイバ被覆用の樹脂組成物、及び、当該樹脂組成物から形成されるセカンダリ樹脂層を備える光ファイバを提供することができる。
[Effect of the present disclosure]
According to the present disclosure, a resin composition for coating an optical fiber, which has a high Young's modulus required for a secondary resin layer, is excellent in coatability, and can form a tough resin layer, and is formed from the resin composition. An optical fiber including a secondary resin layer can be provided.
[本開示の実施形態の説明]
 最初に、本開示の実施形態の内容を列記して説明する。本開示の一態様に係る樹脂組成物は、ウレタン(メタ)アクリレートオリゴマー、モノマー及び光重合開始剤を含有するベース樹脂と、炭素数1以上8以下のアルキル基又はフェニル基を有する表面修飾無機酸化物粒子とを含み、表面修飾無機酸化物粒子の含有量が、樹脂組成物の総量を基準として1質量%以上60質量%以下であり、表面修飾無機酸化物粒子における表面修飾量が、0.15mg/m以上である。
[Description of Embodiments of the Present Disclosure]
First, the contents of the embodiments of the present disclosure will be listed and described. A resin composition according to an aspect of the present disclosure is a surface-modified inorganic oxide having a base resin containing a urethane (meth) acrylate oligomer, a monomer and a photopolymerization initiator, and an alkyl group having 1 to 8 carbon atoms or a phenyl group. The content of the surface modified inorganic oxide particles is 1% by mass or more and 60% by mass or less based on the total amount of the resin composition, and the surface modification amount of the surface modified inorganic oxide particles is 0. It is 15 mg / m 2 or more.
 上記表面修飾無機酸化物粒子を特定の範囲で用いることで、高いヤング率を有すると共に、塗布性に優れ、強靱な樹脂層を形成することができる。 By using the above surface-modified inorganic oxide particles in a specific range, it is possible to form a tough resin layer having a high Young's modulus and excellent coatability.
 樹脂組成物中での分散性に優れ、塗布性を向上し易いことから、表面修飾無機酸化物粒子における表面修飾量は、0.15mg/m以上2.5mg/m以下であってもよい。 Even if the amount of surface modification in the surface-modified inorganic oxide particles is 0.15 mg / m 2 or more and 2.5 mg / m 2 or less, the surface-modified inorganic oxide particles have excellent dispersibility in the resin composition and easily improve coatability. Good.
 炭素数1以上8以下のアルキル基は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基及びオクチル基からなる群より選ばれる少なくとも1種の基であってもよい。これにより、ヤング率が高い樹脂層を形成し易くなる。 The alkyl group having 1 to 8 carbon atoms may be at least one group selected from the group consisting of methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group and octyl group. This facilitates formation of a resin layer having a high Young's modulus.
 ヤング率の高い樹脂層を形成する観点から、表面修飾無機酸化物粒子の平均一次粒径は、800nm以下であってもよい。 From the viewpoint of forming a resin layer having a high Young's modulus, the average primary particle size of the surface-modified inorganic oxide particles may be 800 nm or less.
 本開示の一態様に係る光ファイバのセカンダリ被覆材料は、上記樹脂組成物を含む。本実施形態に係る樹脂組成物をセカンダリ樹脂層に用いることで、側圧特性に優れる光ファイバを作製することができる。 A secondary coating material for an optical fiber according to an aspect of the present disclosure includes the above resin composition. By using the resin composition according to this embodiment for the secondary resin layer, an optical fiber having excellent lateral pressure characteristics can be manufactured.
 本開示の一態様に係る光ファイバは、コア及びクラッドを含むガラスファイバと、ガラスファイバに接して該ガラスファイバを被覆するプライマリ樹脂層と、プライマリ樹脂層を被覆するセカンダリ樹脂層とを備え、セカンダリ樹脂層が、上記樹脂組成物の硬化物からなる。本実施形態に係る樹脂組成物をセカンダリ樹脂層に適用することで、光ファイバの側圧特性を向上することができる。 An optical fiber according to an aspect of the present disclosure includes a glass fiber including a core and a clad, a primary resin layer that is in contact with the glass fiber and covers the glass fiber, and a secondary resin layer that covers the primary resin layer. The resin layer is made of a cured product of the above resin composition. By applying the resin composition according to this embodiment to the secondary resin layer, the lateral pressure characteristic of the optical fiber can be improved.
 本開示の一態様に係る光ファイバの製造方法は、コア及びクラッドから構成されるガラスファイバの外周に、上記樹脂組成物を塗布する塗布工程と、塗布工程の後に紫外線を照射することにより樹脂組成物を硬化させる硬化工程と、を含む。これにより、側圧特性に優れる光ファイバを作製することができる。 An optical fiber manufacturing method according to an aspect of the present disclosure includes a coating step of coating the resin composition on the outer periphery of a glass fiber composed of a core and a clad, and a resin composition by irradiating ultraviolet rays after the coating step. And a curing step of curing the object. This makes it possible to manufacture an optical fiber having excellent lateral pressure characteristics.
[本開示の実施形態の詳細]
 本開示の実施形態に係る樹脂組成物及び光ファイバの具体例を、必要により図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されず、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。以下の説明では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
[Details of the embodiment of the present disclosure]
Specific examples of the resin composition and the optical fiber according to the embodiment of the present disclosure will be described with reference to the drawings as necessary. The present invention is not limited to these exemplifications, and is shown by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope. In the following description, the same reference numerals are given to the same elements in the description of the drawings, and overlapping description will be omitted.
<樹脂組成物>
 本実施形態に係る樹脂組成物は、ウレタン(メタ)アクリレートオリゴマー、モノマー及び光重合開始剤を含有するベース樹脂と、炭素数1以上8以下のアルキル基又はフェニル基を有する表面修飾無機酸化物粒子とを含む。
<Resin composition>
The resin composition according to the present embodiment is a surface-modified inorganic oxide particle having a base resin containing a urethane (meth) acrylate oligomer, a monomer and a photopolymerization initiator, and an alkyl group or a phenyl group having 1 to 8 carbon atoms. Including and
 ここで、(メタ)アクリレートとは、アクリレート又はそれに対応するメタクリレートを意味する。(メタ)アクリル酸についても同様である。 Here, (meth) acrylate means acrylate or corresponding methacrylate. The same applies to (meth) acrylic acid.
(表面修飾無機酸化物粒子)
 本実施形態に係る表面修飾無機酸化物粒子は、無機酸化物粒子の表面が炭素数1以上8以下のアルキル基又はフェニル基を有するシラン化合物により処理され、無機酸化物粒子の表面に炭素数1以上8以下のアルキル基又はフェニル基が導入されている。すなわち、表面修飾無機酸化物粒子は、無機成分と有機成分とから構成されている。
(Surface modified inorganic oxide particles)
The surface-modified inorganic oxide particles according to the present embodiment have the surface of the inorganic oxide particles treated with a silane compound having an alkyl group or a phenyl group having 1 to 8 carbon atoms, and the surface of the inorganic oxide particles has 1 carbon atoms. At least 8 or less alkyl groups or phenyl groups are introduced. That is, the surface-modified inorganic oxide particles are composed of an inorganic component and an organic component.
 炭素数1以上8以下のアルキル基又はフェニル基を有する表面修飾無機酸化物粒子は、ベース樹脂との相溶性を高めることができ、ヤング率が高い樹脂層を形成し易くなる。一方、炭素数が9以上のアルキル基を有する表面修飾無機酸化物粒子は、親油性が大きいため、樹脂組成物中に分散し難くなる。炭素数1以上8以下のアルキル基は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基及びオクチル基からなる群より選ばれる少なくとも1種の基であってもよい。 The surface-modified inorganic oxide particles having an alkyl group or a phenyl group having 1 to 8 carbon atoms can improve the compatibility with the base resin and facilitate the formation of a resin layer having a high Young's modulus. On the other hand, the surface-modified inorganic oxide particles having an alkyl group having 9 or more carbon atoms have high lipophilicity, and thus are difficult to disperse in the resin composition. The alkyl group having 1 to 8 carbon atoms may be at least one group selected from the group consisting of methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group and octyl group.
 炭素数1以上8以下のアルキル基を有するシラン化合物としては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、ペンチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、ブチルトリエトキシシラン、ペンチルトリエトキシシラン、ヘキシルトリエトキシシラン及びオクチルトリエトキシシランが挙げられる。 Examples of the silane compound having an alkyl group having 1 to 8 carbon atoms include methyltrimethoxysilane, dimethyldimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, pentyltrimethoxysilane, and hexyltrimethoxy. Examples include silane, octyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, butyltriethoxysilane, pentyltriethoxysilane, hexyltriethoxysilane and octyltriethoxysilane.
 フェニル基を有するシラン化合物としては、例えば、フェニルトリメトキシシラン及びフェニルトリエトキシシランが挙げられる。 Examples of silane compounds having a phenyl group include phenyltrimethoxysilane and phenyltriethoxysilane.
 本実施形態に係る表面修飾無機酸化物粒子は、分散媒に分散されている。分散媒に分散された表面修飾無機酸化物を用いることで、樹脂組成物中に表面修飾無機酸化物粒子を均一に分散でき、樹脂組成物の保存安定性を向上することができる。分散媒としては、樹脂組成物の硬化を阻害しなければ、特に限定されない。分散媒は、反応性であっても、非反応性であってもよい。表面修飾無機酸化物粒子が含まれる分散媒をX線小角散乱法で測定して、凝集した粒子が測定されない場合に、表面修飾無機酸化物粒子が一次粒子で分散されているといえる。 The surface-modified inorganic oxide particles according to this embodiment are dispersed in a dispersion medium. By using the surface-modified inorganic oxide dispersed in the dispersion medium, the surface-modified inorganic oxide particles can be uniformly dispersed in the resin composition, and the storage stability of the resin composition can be improved. The dispersion medium is not particularly limited as long as it does not inhibit the curing of the resin composition. The dispersion medium may be reactive or non-reactive. When the dispersion medium containing the surface-modified inorganic oxide particles is measured by the X-ray small angle scattering method and the aggregated particles are not measured, it can be said that the surface-modified inorganic oxide particles are dispersed as primary particles.
 反応性の分散媒として、(メタ)アクリロイル化合物、エポキシ化合物等のモノマーを用いてもよい。(メタ)アクリロイル化合物としては、例えば、1,6-ヘキサンジオールジ(メタ)アクリレート、EO変性ビスフェノールAジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、PO変性ビスフェノールAジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、プロピレングリコールジグリシジルエーテルの(メタ)アクリル酸付加物、トリプロピレングリコールジグリシジルエーテルの(メタ)アクリル酸付加物、及びグリセリンジグリシジルエーテルの(メタ)アクリル酸付加物が挙げられる。分散媒として、後述するモノマーで例示する(メタ)アクリロイル化合物を用いてもよい。 As a reactive dispersion medium, a monomer such as a (meth) acryloyl compound or an epoxy compound may be used. Examples of the (meth) acryloyl compound include 1,6-hexanediol di (meth) acrylate, EO-modified bisphenol A di (meth) acrylate, polyethylene glycol di (meth) acrylate, PO-modified bisphenol A di (meth) acrylate, Polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, 2-hydroxy-3-phenoxypropyl acrylate, (meth) acrylic acid adduct of propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether ( Examples thereof include (meth) acrylic acid adducts and (meth) acrylic acid adducts of glycerin diglycidyl ether. As the dispersion medium, a (meth) acryloyl compound exemplified as a monomer described later may be used.
 非反応性の分散媒として、メチルエチルケトン(MEK)等のケトン系溶媒、メタノール(MeOH)、プロピレングリコールモノメチルエーテル(PGME)等のアルコール系溶媒、又は、プロピレングリコールモノメチルエーテルアセテート(PGMEA)等のエステル系溶媒を用いてもよい。非反応性の分散媒の場合、ベース樹脂と分散媒に分散された表面修飾無機酸化物粒子とを混合した後、分散媒の一部を除去して樹脂組成物を調製してもよい。 As the non-reactive dispersion medium, a ketone solvent such as methyl ethyl ketone (MEK), an alcohol solvent such as methanol (MeOH), propylene glycol monomethyl ether (PGME), or an ester solvent such as propylene glycol monomethyl ether acetate (PGMEA). A solvent may be used. In the case of a non-reactive dispersion medium, the resin composition may be prepared by mixing the base resin and the surface-modified inorganic oxide particles dispersed in the dispersion medium and then removing a part of the dispersion medium.
 樹脂組成物中での分散性に優れ、平滑な樹脂層を形成し易いことから、上記表面修飾無機酸化物粒子は、二酸化ケイ素(シリカ)、二酸化ジルコニウム(ジルコニア)、酸化アルミニウム(アルミナ)、酸化マグネシウム(マグネシア)、酸化チタン(チタニア)、酸化スズ及び酸化亜鉛からなる群より少なくとも1種を表面処理した粒子であることが好ましい。廉価性に優れる、表面処理がし易い、紫外線透過性を有する、樹脂層に適度な硬さを付与し易い等の観点から、本実施形態に係る表面修飾無機酸化物粒子として、表面修飾シリカ粒子を用いることがより好ましい。 Since the surface-modified inorganic oxide particles have excellent dispersibility in a resin composition and can easily form a smooth resin layer, the surface-modified inorganic oxide particles are silicon dioxide (silica), zirconium dioxide (zirconia), aluminum oxide (alumina), and oxide. It is preferable that the particles are surface-treated with at least one selected from the group consisting of magnesium (magnesia), titanium oxide (titania), tin oxide and zinc oxide. From the viewpoints of excellent cost-effectiveness, easy surface treatment, ultraviolet ray transparency, and easy provision of appropriate hardness to the resin layer, surface-modified silica particles are used as the surface-modified inorganic oxide particles according to the present embodiment. Is more preferably used.
 樹脂層のヤング率を高くする観点から、表面修飾無機酸化物粒子の平均一次粒径は、800nm以下であってもよく、1nm以上650nm以下が好ましく、5nm以上500nm以下がより好ましく、10nm以上200nm以下が更に好ましく、10nm以上100nm以下が特に好ましい。平均一次粒径は、例えば、電子顕微鏡写真の画像解析、光散乱法、BET法等によって測定することができる。表面修飾無機酸化物粒子の一次粒子が分散された分散媒は、一次粒子の粒径が小さい場合は目視で透明に見える。一次粒子の粒径が比較的大きい(40nm以上)場合は、一次粒子が分散された分散媒は白濁して見えるが沈降物は観察されない。 From the viewpoint of increasing the Young's modulus of the resin layer, the average primary particle diameter of the surface-modified inorganic oxide particles may be 800 nm or less, preferably 1 nm or more and 650 nm or less, more preferably 5 nm or more and 500 nm or less, and 10 nm or more and 200 nm. The following is more preferable, and 10 nm or more and 100 nm or less is particularly preferable. The average primary particle size can be measured by, for example, image analysis of electron micrograph, light scattering method, BET method, or the like. The dispersion medium in which the primary particles of the surface-modified inorganic oxide particles are dispersed looks visually transparent when the particle size of the primary particles is small. When the particle size of the primary particles is relatively large (40 nm or more), the dispersion medium in which the primary particles are dispersed appears cloudy, but no sediment is observed.
 表面修飾無機酸化物粒子の含有量は、樹脂組成物の総量(ベース樹脂及び表面修飾無機酸化物粒子の総量)を基準として1質量%以上60質量%以下であり、3質量%以上55質量%以下が好ましく、5質量%以上50質量%以下がより好ましく、10質量%以上40質量%以下が更に好ましい。表面修飾無機酸化物粒子の含有量が1質量%以上であると、側圧特性に優れる樹脂層を形成し易くなる。表面修飾無機酸化物粒子の含有量が60質量%以下であると、樹脂組成物の塗布性を向上し易くなり、強靱な樹脂層を形成することができる。なお、樹脂組成物の総量と樹脂組成物の硬化物の総量は同じと考えてよい。表面修飾無機酸化物粒子の含有量は、セカンダリ樹脂層の総量(セカンダリ樹脂層を構成する樹脂組成物の硬化物の総量)を基準として1質量%以上60質量%以下であり、3質量%以上55質量%以下が好ましく、5質量%以上50質量%以下がより好ましく、10質量%以上40質量%以下が更に好ましい。 The content of the surface-modified inorganic oxide particles is 1% by mass or more and 60% by mass or less, and 3% by mass or more and 55% by mass, based on the total amount of the resin composition (the total amount of the base resin and the surface-modified inorganic oxide particles). The following is preferable, 5 mass% or more and 50 mass% or less is more preferable, and 10 mass% or more and 40 mass% or less is further preferable. When the content of the surface-modified inorganic oxide particles is 1% by mass or more, it becomes easy to form a resin layer having excellent lateral pressure characteristics. When the content of the surface-modified inorganic oxide particles is 60% by mass or less, the coating property of the resin composition is easily improved, and a tough resin layer can be formed. The total amount of the resin composition and the total amount of the cured product of the resin composition may be considered to be the same. The content of the surface-modified inorganic oxide particles is 1% by mass or more and 60% by mass or less based on the total amount of the secondary resin layer (the total amount of the cured product of the resin composition forming the secondary resin layer), and 3% by mass or more. It is preferably 55% by mass or less, more preferably 5% by mass or more and 50% by mass or less, still more preferably 10% by mass or more and 40% by mass or less.
 表面修飾無機酸化物粒子における表面修飾量は、0.15mg/m以上であり、0.15mg/m以上2.5mg/m以下であることが好ましく、0.20mg/m以上2.0mg/m以下であることがより好ましく、0.25mg/m以上1.8mg/m以下であることが更に好ましく、0.30mg/m以上1.5mg/m以下であることが特に好ましい。表面修飾量が上記範囲にあることで、樹脂組成物の粘度を調整し易くなる。 Surface modification amount of the surface-modified inorganic oxide particles is at 0.15 mg / m 2 or more, preferably 0.15 mg / m 2 or more 2.5 mg / m 2 or less, 0.20 mg / m 2 or more 2 more preferably .0mg / m 2 or less, further preferably 0.25 mg / m 2 or more 1.8 mg / m 2 or less, is 0.30 mg / m 2 or more 1.5 mg / m 2 or less Is particularly preferable. When the amount of surface modification is within the above range, the viscosity of the resin composition can be easily adjusted.
 本明細書における「表面修飾量」は、表面修飾無機酸化物粒子の比表面積と、有機成分の割合から算出することができる。上記有機成分は、表面修飾前の無機酸化物粒子に導入された紫外線硬化性の官能基に由来する成分である。例えば、表面修飾無機酸化物粒子が、シリカ粒子から構成される場合、SiO以外の成分が有機成分となる。比表面積は、窒素吸着BET法により測定することができ、有機成分の割合は、示唆熱・熱重量分析(TG/DTA)により測定することができる。表面修飾無機酸化物粒子における表面修飾量は、樹脂組成物を調製する前に、分散媒から粒子を単離して測定してもよく、樹脂組成物を調製した後に、樹脂組成物から粒子を単離して測定してもよい。 The “surface modification amount” in the present specification can be calculated from the specific surface area of the surface modified inorganic oxide particles and the ratio of the organic component. The organic component is a component derived from the UV-curable functional group introduced into the inorganic oxide particles before surface modification. For example, when the surface-modified inorganic oxide particles are composed of silica particles, the components other than SiO 2 are organic components. The specific surface area can be measured by the nitrogen adsorption BET method, and the ratio of the organic component can be measured by suggestive thermogravimetric analysis (TG / DTA). The amount of surface modification in the surface-modified inorganic oxide particles may be measured by isolating the particles from the dispersion medium before preparing the resin composition, or by measuring the particles from the resin composition after preparing the resin composition. You may measure it separately.
(ベース樹脂)
 本実施形態に係るベース樹脂は、ウレタン(メタ)アクリレートオリゴマー、モノマー及び光重合開始剤を含有する。
(Base resin)
The base resin according to the present embodiment contains a urethane (meth) acrylate oligomer, a monomer and a photopolymerization initiator.
 ウレタン(メタ)アクリレートオリゴマーとしては、ポリオール化合物、ポリイソシアネート化合物及び水酸基含有(メタ)アクリレート化合物を反応させて得られるオリゴマーを用いることができる。 As the urethane (meth) acrylate oligomer, an oligomer obtained by reacting a polyol compound, a polyisocyanate compound and a hydroxyl group-containing (meth) acrylate compound can be used.
 ポリオール化合物としては、例えば、ポリテトラメチレングリコール、ポリプロピレングリコール及びビスフェノールA・エチレンオキサイド付加ジオールが挙げられる。ポリイソシアネート化合物としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、イソホロンジイソシアネート及びジシクロヘキシルメタン4,4’-ジイソシアナートが挙げられる。水酸基含有(メタ)アクリレート化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、1,6-ヘキサンジオールモノ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート及びトリプロピレングリコールモノ(メタ)アクリレートが挙げられる。 Examples of the polyol compound include polytetramethylene glycol, polypropylene glycol, and bisphenol A / ethylene oxide addition diol. Examples of the polyisocyanate compound include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, isophorone diisocyanate, and dicyclohexylmethane 4,4'-diisocyanate. Examples of the hydroxyl group-containing (meth) acrylate compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 1,6-hexanediol mono (meth) acrylate, pentaerythritol tri (meth) acrylate, 2-Hydroxypropyl (meth) acrylate and tripropylene glycol mono (meth) acrylate are mentioned.
 樹脂層のヤング率を調整する観点から、ポリオール化合物の数平均分子量は、300以上3000以下であってもよい。 From the viewpoint of adjusting the Young's modulus of the resin layer, the number average molecular weight of the polyol compound may be 300 or more and 3000 or less.
 ウレタン(メタ)アクリレートオリゴマーを合成する際の触媒として、一般に有機スズ化合物が使用される。有機スズ化合物としては、例えば、ジブチルスズジラウレート、ジブチルスズジアセテート、ジブチルスズマレート、ジブチルスズビス(メルカプト酢酸2-エチルヘキシル)、ジブチルスズビス(メルカプト酢酸イソオクチル)及びジブチルスズオキシドが挙げられる。易入手性又は触媒性能の点から、触媒としてジブチルスズジラウレート又はジブチルスズジアセテートを使用することが好ましい。 Organotin compounds are generally used as catalysts when synthesizing urethane (meth) acrylate oligomers. Examples of the organotin compound include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin malate, dibutyltin bis (2-ethylhexyl mercaptoacetate), dibutyltin bis (isooctyl mercaptoacetate) and dibutyltin oxide. From the viewpoint of easy availability and catalytic performance, it is preferable to use dibutyltin dilaurate or dibutyltin diacetate as a catalyst.
 ウレタン(メタ)アクリレートオリゴマー合成時に炭素数5以下の低級アルコールを使用してもよい。低級アルコールとしては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-2-プロパノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-2-ブタノール及び2,2-ジメチル-1-プロパノールが挙げられる。 A lower alcohol having 5 or less carbon atoms may be used during the synthesis of the urethane (meth) acrylate oligomer. Examples of the lower alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 3-pentanol, Mention may be made of 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-2-butanol and 2,2-dimethyl-1-propanol.
 本実施形態に係る樹脂組成物は、エポキシ(メタ)アクリレートオリゴマーを更に含有してもよい。エポキシ(メタ)アクリレートオリゴマーとしては、グリシジル基を2以上有するエポキシ樹脂に(メタ)アクリロイル基を有する化合物を反応させて得られるオリゴマーを用いることができる。 The resin composition according to this embodiment may further contain an epoxy (meth) acrylate oligomer. As the epoxy (meth) acrylate oligomer, an oligomer obtained by reacting an epoxy resin having two or more glycidyl groups with a compound having a (meth) acryloyl group can be used.
 モノマーとしては、重合性基を1つ有する単官能モノマー、重合性基を2つ以上有する多官能モノマーを用いることができる。モノマーは、2種以上を混合して用いてもよい。 As the monomer, a monofunctional monomer having one polymerizable group and a polyfunctional monomer having two or more polymerizable groups can be used. The monomers may be used as a mixture of two or more kinds.
 単官能モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、へキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、イソアミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、3-フェノキシベンジルアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、4-tert-ブチルシクロヘキサノールアクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ノニルフェノールポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、イソボルニル(メタ)アクリレート等の(メタ)アクリレート系モノマー;(メタ)アクリル酸、(メタ)アクリル酸ダイマー、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、ω-カルボキシ-ポリカプロラクトン(メタ)アクリレート等のカルボキシル基含有モノマー;N-アクリロイルモルホリン、N-ビニルピロリドン、N-ビニルカプロラクタム、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルピロリジン、3-(3-ピリジン)プロピル(メタ)アクリレート、環状トリメチロールプロパンホルマールアクリレート等の複素環含有(メタ)アクリレート;マレイミド、N-シクロへキシルマレイミド、N-フェニルマレイミド等のマレイミド系モノマー;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミド等のN-置換アミド系モノマー;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸アミノプロピル、(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸tert-ブチルアミノエチル等の(メタ)アクリル酸アミノアルキル系モノマー;N-(メタ)アクリロイルオキシメチレンスクシンイミド、N-(メタ)アクリロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシオクタメチレンスクシンイミド等のスクシンイミド系モノマーが挙げられる。 Examples of the monofunctional monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, s-butyl (meth) acrylate, tert-butyl (meth) acrylate, Isobutyl (meth) acrylate, n-pentyl (meth) acrylate, isopentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, isoamyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (Meth) acrylate, isooctyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, 3-phenoxybenzyl acrylate, phenoxydiethylene glycol acrylate, phenoxypolyethylene glycol acrylate, 4-tert -Butylcyclohexanol acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, nonylphenol polyethylene glycol (Meth) acrylate-based monomers such as (meth) acrylate, nonylphenoxy polyethylene glycol (meth) acrylate and isobornyl (meth) acrylate; (meth) acrylic acid, (meth) acrylic acid dimer, carboxyethyl (meth) acrylate, carboxypentyl Carboxyl group-containing monomers such as (meth) acrylate and ω-carboxy-polycaprolactone (meth) acrylate; N-acryloylmorpholine, N-vinylpyrrolidone, N-vinylcaprolactam, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloyl Heterocycle-containing (meth) acrylates such as pyrrolidine, 3- (3-pyridine) propyl (meth) acrylate, and cyclic trimethylolpropane formal acrylate; maleimide-based monomers such as maleimide, N-cyclohexylmaleimide, N-phenylmaleimide; (Meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-hexyl (meth) acrylamide, N-methyl (meth) acrylamide, N-butyl (meth) acrylamido N-substituted amide monomers such as N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylol propane (meth) acrylamide; aminoethyl (meth) acrylate, aminopropyl (meth) acrylate , (Meth) acrylic acid N, N-dimethylaminoethyl, (meth) acrylic acid tert-butylaminoethyl, and other (meth) acrylic acid aminoalkyl monomers; N- (meth) acryloyloxymethylenesuccinimide, N- (meth ) Succinimide-based monomers such as acryloyl-6-oxyhexamethylenesuccinimide and N- (meth) acryloyl-8-oxyoctamethylenesuccinimide.
 多官能モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ビスフェノールAのアルキレンオキシド付加物のジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、1,14-テトラデカンジオールジ(メタ)アクリレート、1,16-ヘキサデカンジオールジ(メタ)アクリレート、1,20-エイコサンジオールジ(メタ)アクリレート、イソペンチルジオールジ(メタ)アクリレート、3-エチル-1,8-オクタンジオールジ(メタ)アクリレート、ビスフェノールAのEO付加物ジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールオクタントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、トリメチロールプロパンポリプロポキシトリ(メタ)アクリレート、トリメチロールプロパンポリエトキシポリプロポキシトリ(メタ)アクリレート、トリス[(メタ)アクリロイルオキシエチル]イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールポリエトキシテトラ(メタ)アクリレート、ペンタエリスリトールポリプロポキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート及びカプロラクトン変性トリス[(メタ)アクリロイルオキシエチル]イソシアヌレートが挙げられる。 Examples of the polyfunctional monomer include ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, Di (meth) acrylate of alkylene oxide adduct of bisphenol A, tetraethylene glycol di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6 -Hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, 1,14-tetradecanediol di (meth) acrylate, 1,16-hexadecane EO addition of diol di (meth) acrylate, 1,20-eicosane diol di (meth) acrylate, isopentyl diol di (meth) acrylate, 3-ethyl-1,8-octane diol di (meth) acrylate, bisphenol A Di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethyloloctane tri (meth) acrylate, trimethylolpropane polyethoxytri (meth) acrylate, trimethylolpropane polypropoxytri (meth) acrylate, trimethylolpropane Polyethoxypolypropoxytri (meth) acrylate, tris [(meth) acryloyloxyethyl] isocyanurate, pentaerythritol tri (meth) acrylate, pentaerythritol polyethoxytetra (meth) acrylate, pentaerythritol polypropoxytetra (meth) acrylate, Pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate and caprolactone modified tris [(meth ) Acryloyloxyethyl] isocyanurate.
 光重合開始剤としては、公知のラジカル光重合開始剤の中から適宜選択して使用することができる。光重合開始剤として、例えば、1-ヒドロキシシクロヘキシルフェニルケトン(Omnirad 184、IGM Resins社製)、2,2-ジメトキシ-2-フェニルアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン(Omnirad 907、IGM Resins社製)、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド(Omnirad TPO、IGM Resins社製)及びビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(Omnirad 819、IGM Resins社製)が挙げられる。 The photopolymerization initiator can be appropriately selected and used from known radical photopolymerization initiators. Examples of the photopolymerization initiator include 1-hydroxycyclohexyl phenyl ketone (Omnirad 184, manufactured by IGM Resins), 2,2-dimethoxy-2-phenylacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2- Methylpropan-1-one, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propane-1 -One (Omnirad 907, manufactured by IGM Resins), 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Omnirad TPO, manufactured by IGM Resins) and bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (Omnirad 819) , IGM Resins).
 樹脂組成物は、シランカップリング剤、レベリング剤、消泡剤、酸化防止剤等を更に含有してもよい。 The resin composition may further contain a silane coupling agent, a leveling agent, a defoaming agent, an antioxidant and the like.
 シランカップリング剤としては、樹脂組成物の硬化の妨げにならなければ、特に限定されない。シランカップリング剤として、例えば、テトラメチルシリケート、テトラエチルシリケート、メルカプトプロピルトリメトキシシラン、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシ-エトキシ)シラン、β-(3,4-エポキシシクロヘキシル)-エチルトリメトキシシラン、ジメトキシジメチルシラン、ジエトキシジメチルシラン、3-アクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、ビス-[3-(トリエトキシシリル)プロピル]テトラスルフィド、ビス-[3-(トリエトキシシリル)プロピル]ジスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド及びγ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドが挙げられる。 The silane coupling agent is not particularly limited as long as it does not hinder the curing of the resin composition. Examples of the silane coupling agent include tetramethyl silicate, tetraethyl silicate, mercaptopropyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxy-ethoxy) silane, β- (3,4-epoxycyclohexyl). -Ethyltrimethoxysilane, dimethoxydimethylsilane, diethoxydimethylsilane, 3-acryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-methacryloxypropyl Trimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, bis- [3- (triethoxysilyl) propyl] tetrasulfide, bis- [3- (triethoxysilyl) propyl ] Disulfide, γ-trimethoxysilylpropyl dimethylthiocarbamyl tetrasulfide and γ-trimethoxysilylpropyl benzothiazyl tetrasulfide.
 本実施形態に係る樹脂組成物の粘度は、45℃で300mPa・s以上5000mPa・s以下であることが好ましく、400mPa・s以上4500mPa・s以下であることがより好ましく、500mPa・s以上3500mPa・s以下であることが更に好ましく、700mPa・s以上3000mPa・s以下であることが特に好ましい。樹脂組成物の粘度が上記範囲にあることで、樹脂組成物の塗布性を向上することができる。 The viscosity of the resin composition according to the present embodiment at 45 ° C. is preferably 300 mPa · s or more and 5000 mPa · s or less, more preferably 400 mPa · s or more and 4500 mPa · s or less, and 500 mPa · s or more and 3500 mPa · s. s or less is more preferable, and 700 mPa · s or more and 3000 mPa · s or less is particularly preferable. When the viscosity of the resin composition is within the above range, the coatability of the resin composition can be improved.
 本実施形態に係る樹脂組成物は、光ファイバのセカンダリ被覆材料として好適に用いることができる。本実施形態に係る樹脂組成物をセカンダリ樹脂層に用いることで、高いヤング率を有し、側圧特性に優れる光ファイバを作製することができる。 The resin composition according to this embodiment can be suitably used as a secondary coating material for an optical fiber. By using the resin composition according to this embodiment for the secondary resin layer, an optical fiber having a high Young's modulus and excellent lateral pressure characteristics can be manufactured.
<光ファイバ>
 図1は、本実施形態に係る光ファイバの一例を示す概略断面図である。光ファイバ10は、コア11及びクラッド12を含むガラスファイバ13と、ガラスファイバ13の外周に設けられたプライマリ樹脂層14及びセカンダリ樹脂層15を含む被覆樹脂層16とを備えている。
<Optical fiber>
FIG. 1 is a schematic sectional view showing an example of the optical fiber according to the present embodiment. The optical fiber 10 includes a glass fiber 13 including a core 11 and a clad 12, and a coating resin layer 16 including a primary resin layer 14 and a secondary resin layer 15 provided on the outer periphery of the glass fiber 13.
 クラッド12はコア11を取り囲んでいる。コア11及びクラッド12は石英ガラス等のガラスを主に含み、例えば、コア11にはゲルマニウムを添加した石英ガラスを用いることができ、クラッド12には純石英ガラス、又は、フッ素が添加された石英ガラスを用いることができる。 The clad 12 surrounds the core 11. The core 11 and the clad 12 mainly include glass such as quartz glass. For example, the core 11 may be made of germanium-added quartz glass, and the clad 12 may be made of pure quartz glass or fluorine-added quartz. Glass can be used.
 図1において、例えば、ガラスファイバ13の外径(D2)は125μm程度であり、ガラスファイバ13を構成するコア11の直径(D1)は、7~15μm程度である。 In FIG. 1, for example, the outer diameter (D2) of the glass fiber 13 is about 125 μm, and the diameter (D1) of the core 11 constituting the glass fiber 13 is about 7 to 15 μm.
 被覆樹脂層16の厚さは、通常、60~70μm程度である。プライマリ樹脂層14及びセカンダリ樹脂層15の各層の厚さは、10~50μm程度であってもよく、例えば、プライマリ樹脂層14の厚さが35μmで、セカンダリ樹脂層15の厚さが25μmであってもよい。光ファイバ10の外径は、245~265μm程度であってもよい。 The thickness of the coating resin layer 16 is usually about 60 to 70 μm. The thickness of each of the primary resin layer 14 and the secondary resin layer 15 may be about 10 to 50 μm. For example, the thickness of the primary resin layer 14 is 35 μm and the thickness of the secondary resin layer 15 is 25 μm. May be. The outer diameter of the optical fiber 10 may be about 245 to 265 μm.
 また、被覆樹脂層16の厚さは、27~48μm程度であってよい。プライマリ樹脂層14及びセカンダリ樹脂層15の各層の厚さは、10~38μm程度であってよく、例えば、プライマリ樹脂層14の厚さが25μmで、セカンダリ樹脂層15の厚さが10μmであってよい。光ファイバ10の外径は、179~221μm程度であってよい。 The thickness of the coating resin layer 16 may be about 27 to 48 μm. The thickness of each of the primary resin layer 14 and the secondary resin layer 15 may be about 10 to 38 μm. For example, the thickness of the primary resin layer 14 is 25 μm and the thickness of the secondary resin layer 15 is 10 μm. Good. The outer diameter of the optical fiber 10 may be about 179 to 221 μm.
 さらに、ガラスファイバ13の外径(D2)が100μm程度で、被覆樹脂層16の厚さが22~37μm程度であってもよい。プライマリ樹脂層14及びセカンダリ樹脂層15の各層の厚さは、5~32μm程度であってよく、例えば、プライマリ樹脂層14の厚さが25μmで、セカンダリ樹脂層15の厚さが10μmであってよい。光ファイバ10の外径は、144~174μm程度であってよい。 Further, the outer diameter (D2) of the glass fiber 13 may be about 100 μm, and the thickness of the coating resin layer 16 may be about 22 to 37 μm. The thickness of each of the primary resin layer 14 and the secondary resin layer 15 may be about 5 to 32 μm. For example, the thickness of the primary resin layer 14 is 25 μm and the thickness of the secondary resin layer 15 is 10 μm. Good. The outer diameter of the optical fiber 10 may be about 144 to 174 μm.
 本実施形態に係る樹脂組成物は、セカンダリ樹脂層に適用することができる。セカンダリ樹脂層は、上記ベース樹脂と表面修飾無機酸化物粒子を含む樹脂組成物を硬化させて形成することができる。これにより、光ファイバの側圧特性を向上することができる。 The resin composition according to the present embodiment can be applied to the secondary resin layer. The secondary resin layer can be formed by curing the resin composition containing the base resin and the surface-modified inorganic oxide particles. Thereby, the lateral pressure characteristic of the optical fiber can be improved.
 本実施形態に係る光ファイバの製造方法は、コア及びクラッドから構成されるガラスファイバの外周に、上記樹脂組成物を塗布する塗布工程と、塗布工程の後に紫外線を照射することにより樹脂組成物を硬化させる硬化工程と、を含む。 The manufacturing method of the optical fiber according to the present embodiment, the outer periphery of the glass fiber composed of the core and the clad, a coating step of coating the resin composition, and the resin composition by irradiating ultraviolet rays after the coating step. And a curing step of curing.
 セカンダリ樹脂層のヤング率は、23℃で1300MPa以上が好ましく、1300MPa以上2600MPa以下がより好ましく、1500MPa以上2500MPa以下が更に好ましい。セカンダリ樹脂層のヤング率が1300MPa以上であると、側圧特性を向上し易く、2600MPa以下であると、セカンダリ樹脂層に適度な靱性を付与できるため、セカンダリ樹脂層に割れ等が発生し難くなる。 The Young's modulus of the secondary resin layer at 23 ° C. is preferably 1300 MPa or more, more preferably 1300 MPa or more and 2600 MPa or less, still more preferably 1500 MPa or more and 2500 MPa or less. When the Young's modulus of the secondary resin layer is 1300 MPa or more, the lateral pressure characteristics are easily improved, and when it is 2600 MPa or less, the secondary resin layer can be provided with appropriate toughness, so that the secondary resin layer is less likely to be cracked.
 分散媒に分散された表面修飾無機酸化物粒子は、樹脂層の硬化後も樹脂層中に分散した状態で存在する。反応性の分散媒を使用した場合、表面修飾無機酸化物粒子は樹脂組成物に分散媒ごと混合され、分散状態が維持されたまま樹脂層中に取り込まれる。非反応性の分散媒を使用した場合、分散媒は少なくともその一部が樹脂組成物から揮発して無くなるが、表面修飾無機酸化物粒子は分散状態のまま樹脂組成物中に残り、硬化後の樹脂層にも分散した状態で存在する。樹脂層中に存在する表面修飾無機酸化物粒子は、電子顕微鏡で観察した場合に、一次粒子が分散した状態で観察される。 The surface-modified inorganic oxide particles dispersed in the dispersion medium remain dispersed in the resin layer even after the resin layer is cured. When a reactive dispersion medium is used, the surface-modified inorganic oxide particles are mixed with the resin composition together with the dispersion medium, and taken into the resin layer while maintaining the dispersed state. When a non-reactive dispersion medium is used, at least a part of the dispersion medium volatilizes and disappears from the resin composition, but the surface-modified inorganic oxide particles remain in the resin composition in a dispersed state, and after curing. It also exists in a dispersed state in the resin layer. The surface-modified inorganic oxide particles present in the resin layer are observed in a state where primary particles are dispersed, when observed by an electron microscope.
 プライマリ樹脂層14は、例えば、ウレタン(メタ)アクリレートオリゴマー、モノマー、光重合開始剤及びシランカップリング剤を含む樹脂組成物を硬化させて形成することができる。プライマリ樹脂層用の樹脂組成物は、従来公知の技術を用いることができる。ウレタン(メタ)アクリレートオリゴマー、モノマー、光重合開始剤及びシランカップリング剤としては、上記ベース樹脂で例示した化合物から適宜、選択してもよい。ただし、プライマリ樹脂層を形成する樹脂組成物は、セカンダリ樹脂層を形成するベース樹脂とは異なる組成を有している。 The primary resin layer 14 can be formed, for example, by curing a resin composition containing a urethane (meth) acrylate oligomer, a monomer, a photopolymerization initiator and a silane coupling agent. For the resin composition for the primary resin layer, conventionally known techniques can be used. The urethane (meth) acrylate oligomer, the monomer, the photopolymerization initiator and the silane coupling agent may be appropriately selected from the compounds exemplified as the above base resin. However, the resin composition forming the primary resin layer has a composition different from that of the base resin forming the secondary resin layer.
 なお、光ファイバを複数本並列し、リボン用樹脂で一体化して光ファイバリボンとする場合があるが、本開示の樹脂組成物はリボン用樹脂として使用することもできる。これにより、光ファイバと同様に光ファイバリボンの側圧特性を向上することができる。 Incidentally, although a plurality of optical fibers may be arranged in parallel and integrated with a resin for ribbon to form an optical fiber ribbon, the resin composition of the present disclosure can also be used as a resin for ribbon. As a result, the lateral pressure characteristic of the optical fiber ribbon can be improved similarly to the optical fiber.
 以下、本開示に係る実施例及び比較例を用いた評価試験の結果を示し、本開示を更に詳細に説明する。なお、本発明はこれら実施例に限定されない。 Hereinafter, the results of evaluation tests using the examples and comparative examples according to the present disclosure will be shown, and the present disclosure will be described in more detail. The present invention is not limited to these examples.
[樹脂組成物の作製]
(オリゴマー)
 オリゴマーとして、分子量600のポリプロピレングリコール、2,4-トリレンジイソシアネート及びヒドロキシエチルアクリレートを反応させることにより得られたウレタンアクリレートオリゴマーと、エポキシアクリレートオリゴマーとを準備した。
[Preparation of resin composition]
(Oligomer)
As the oligomer, a urethane acrylate oligomer obtained by reacting polypropylene glycol having a molecular weight of 600, 2,4-tolylene diisocyanate and hydroxyethyl acrylate, and an epoxy acrylate oligomer were prepared.
(モノマー)
 モノマーとして、イソボルニルアクリレート(大阪有機化学工業株式会社の商品名「IBXA」)、トリプロピレングリコールジアクリレート(ダイセル・オルネクス株式会社の商品名「TPGDA」)及び2-フェノキシエチルアクリレート(共栄化学株式会社の商品名「ライトアクリレートPO-A」)を準備した。
(monomer)
As monomers, isobornyl acrylate (trade name "IBXA" of Osaka Organic Chemical Industry Co., Ltd.), tripropylene glycol diacrylate (trade name "TPGDA" of Daicel Ornex Co., Ltd.) and 2-phenoxyethyl acrylate (Kyoei Chemical Co., Ltd.) The company's product name "light acrylate PO-A") was prepared.
(光重合開始剤)
 光重合開始剤として、1-ヒドロキシシクロヘキシルフェニルケトン及び2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシドを準備した。
(Photopolymerization initiator)
1-Hydroxycyclohexyl phenyl ketone and 2,4,6-trimethylbenzoyldiphenylphosphine oxide were prepared as photopolymerization initiators.
(ベース樹脂)
 ウレタンアクリレートオリゴマーを45質量部、エポキシアクリレートを13.4質量部、アクリル酸イソボルニルを9質量部、トリプロピレングリコールジアクリレートを22.5質量部、2-フェノキシエチルアクリレートを10質量部、1-ヒドロキシシクロヘキシルフェニルケトンを0.05質量部、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシドを0.05質量部混合して、ベース樹脂を調製した。
(Base resin)
45 parts by weight of urethane acrylate oligomer, 13.4 parts by weight of epoxy acrylate, 9 parts by weight of isobornyl acrylate, 22.5 parts by weight of tripropylene glycol diacrylate, 10 parts by weight of 2-phenoxyethyl acrylate, and 1-hydroxy. A base resin was prepared by mixing 0.05 part by mass of cyclohexyl phenyl ketone and 0.05 part by mass of 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
(表面修飾無機酸化物粒子)
 表面修飾無機酸化物粒子として、表1に示す化合物で表面処理されているシリカ粒子(以下、単に「シリカ粒子」という。)を含むシリカゾル(MEK分散液)を準備した。
(Surface modified inorganic oxide particles)
As the surface-modified inorganic oxide particles, a silica sol (MEK dispersion liquid) containing silica particles surface-treated with the compounds shown in Table 1 (hereinafter simply referred to as “silica particles”) was prepared.
(実施例1~3、比較例1)
 ベース樹脂と、シリカゾルとを混合した後、MEKの大部分を除去して、樹脂組成物中のシリカ粒子の含有量が表1に示す値となる樹脂組成物を調製した。
(Examples 1 to 3 and Comparative Example 1)
After mixing the base resin and the silica sol, most of the MEK was removed to prepare a resin composition in which the content of silica particles in the resin composition was the value shown in Table 1.
(表面修飾量の測定)
 樹脂組成物にクロロホルムを加えて遠心分離を行い、沈殿物を回収した。沈殿物にアセトンを加えて遠心分離を行い、上澄みを除去した後、沈殿物に再度アセトンを加えて遠心分離、上澄み除去を行う操作を4回行い、シリカ粒子を取り出した。乳鉢ですりつぶしたシリカ粒子を室温で12時間減圧乾燥して揮発分を除去した。遠心分離は、30000rpmで120分間の条件で行った。乾燥後のシリカ粒子を80℃で12時間減圧処理し、細孔分布測定装置(マイクロメリティクス製の「ASAP-2020」)を用いて、窒素吸着BET法によりシリカ粒子の比表面積(m/g)を測定した。
(Measurement of surface modification amount)
Chloroform was added to the resin composition and the mixture was centrifuged to collect the precipitate. Acetone was added to the precipitate and the mixture was centrifuged to remove the supernatant. Then, acetone was added to the precipitate again to perform centrifugation and removal of the supernatant, which was repeated four times to extract silica particles. The silica particles ground in a mortar were vacuum dried at room temperature for 12 hours to remove volatile components. The centrifugation was performed at 30,000 rpm for 120 minutes. The dried silica particles were subjected to a reduced pressure treatment at 80 ° C. for 12 hours, and a specific surface area (m 2 / m 2 ) of the silica particles was measured by a nitrogen adsorption BET method using a pore distribution measuring device (“ASAP-2020” manufactured by Micromeritics). g) was measured.
 シリカ粒子に含まれる有機成分の割合(質量%)を、示差熱熱重量同時分析装置(日立ハイテクサイエンス社製の「TG/DTA6300」)を用いて測定した。測定は、重量を測定したシリカ粒子を、窒素下(300mL/分)で室温から850℃まで加熱した後、850℃から200℃まで冷却し、空気下(100mL/分)で200℃から1000℃まで加熱して重量変化を測定した。有機成分の割合は、シリカ粒子の重量変化から算出した。 The ratio (mass%) of the organic components contained in the silica particles was measured using a differential thermogravimetric simultaneous analysis device (“TG / DTA6300” manufactured by Hitachi High-Tech Science Co., Ltd.). The measurement was performed by heating the weight-measured silica particles from room temperature to 850 ° C. under nitrogen (300 mL / min), then cooling from 850 ° C. to 200 ° C., and 200 ° C. to 1000 ° C. under air (100 mL / min). It was heated to and the weight change was measured. The ratio of the organic component was calculated from the weight change of silica particles.
 シリカ粒子の比表面積及び有機成分の割合から下記式により、シリカ粒子の表面修飾量を算出した。
 表面修飾量(mg/m)=有機成分の割合/比表面積
The surface modification amount of the silica particles was calculated from the specific surface area of the silica particles and the ratio of the organic component by the following formula.
Surface modification amount (mg / m 2 ) = ratio of organic component / specific surface area
(比較例2)
 ベース樹脂を樹脂組成物として用いた。
(Comparative example 2)
The base resin was used as the resin composition.
 実施例及び比較例で得られた樹脂組成物を用いて、以下の評価を行った。結果を表1に示す。比較例1の樹脂組成物は、シリカ粒子の分散性が悪いため評価することができなかった。 The following evaluations were performed using the resin compositions obtained in the examples and comparative examples. The results are shown in Table 1. The resin composition of Comparative Example 1 could not be evaluated because the dispersibility of silica particles was poor.
(粘度)
 樹脂組成物の45℃における粘度を、B型粘度計(ブルックフィ-ルド社製の「デジタル粘度計DV-II」、使用スピンドル:No.18、回転数:10rpm)を用いて測定した。
(viscosity)
The viscosity of the resin composition at 45 ° C. was measured using a B-type viscometer (“Digital Viscometer DV-II” manufactured by Brookfield Co., spindle used: No. 18, rotation speed: 10 rpm).
(ヤング率)
 スピンコータを用いて、実施例又は比較例で得られた樹脂組成物をポリエチレンテレフタレート(PET)フィルムの上に塗布した後、無電極UVランプシステム(ヘレウス製の「VPS600(Dバルブ)」)を用いて、1000±100mJ/cmの条件で硬化させ、PETフィルム上に厚み200±20μmの樹脂層を形成した。樹脂層をPETフィルムから剥がし、樹脂フィルムを得た。
(Young's modulus)
Using a spin coater, the resin composition obtained in each of the examples or comparative examples was applied onto a polyethylene terephthalate (PET) film, and then an electrodeless UV lamp system (“VPS600 (D bulb)” manufactured by Heraeus) was used. And cured under the condition of 1000 ± 100 mJ / cm 2 to form a resin layer having a thickness of 200 ± 20 μm on the PET film. The resin layer was peeled off from the PET film to obtain a resin film.
 樹脂フィルムをJIS K 7127 タイプ5のダンベル形状に打ち抜き、23±2℃、50±10%RHの条件下で、引張試験機を用いて1mm/分の引張速度、標線間25mmの条件で引張り、応力-歪み曲線を得た。2.5%割線によりヤング率を求めた。 A resin film was punched out into a JIS K 7127 type 5 dumbbell shape and pulled under conditions of 23 ± 2 ° C. and 50 ± 10% RH using a tensile tester at a pulling speed of 1 mm / min and a distance between marked lines of 25 mm. , A stress-strain curve was obtained. The Young's modulus was calculated from the 2.5% secant.
[光ファイバの作製]
 分子量4000のポリプロピレングリコール、イソホロンジイソシアネート、ヒドロキシエチルアクリレート及びメタノールを反応させることにより得られるウレタンアクリレートオリゴマーを準備した。ウレタンアクリレートオリゴマー75質量部、ノニルフェノールEO変性アクリレート12質量部、N-ビニルカプロラクタム6質量部、1,6-ヘキサンジオールジアクリレート2質量部、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド1質量部、及び3-メルカプトプロピルトリメトキシシラン1質量部を混合して、プライマリ樹脂層用の樹脂組成物A1を得た。
[Fabrication of optical fiber]
A urethane acrylate oligomer obtained by reacting polypropylene glycol having a molecular weight of 4000, isophorone diisocyanate, hydroxyethyl acrylate and methanol was prepared. 75 parts by weight of urethane acrylate oligomer, 12 parts by weight of nonylphenol EO-modified acrylate, 6 parts by weight of N-vinylcaprolactam, 2 parts by weight of 1,6-hexanediol diacrylate, 1 part by weight of 2,4,6-trimethylbenzoyldiphenylphosphine oxide, And 1 part by mass of 3-mercaptopropyltrimethoxysilane were mixed to obtain a resin composition A1 for a primary resin layer.
 コア及びクラッドから構成される直径125μmのガラスファイバの外周に、樹脂組成物A1をプライマリ樹脂層用として、実施例又は比較例の樹脂組成物をセカンダリ樹脂層用として塗布し、その後紫外線を照射させることで樹脂組成物を硬化させ、厚さ35μmのプライマリ樹脂層とその外周にセカンダリ樹脂層を形成して、光ファイバを作製した。線速は1500m/分とした。 The resin composition A1 is applied to the outer periphery of a glass fiber having a diameter of 125 μm composed of a core and a clad as the primary resin layer, and the resin composition of the example or the comparative example is applied as the secondary resin layer, and then irradiated with ultraviolet rays. Thus, the resin composition was cured to form a primary resin layer having a thickness of 35 μm and a secondary resin layer on the outer periphery of the primary resin layer, to fabricate an optical fiber. The linear velocity was 1500 m / min.
(塗布性)
 作製された光ファイバについて、断線の有無及び樹脂層の割れの有無を確認することで、樹脂組成物の塗布性を評価した。断線及び樹脂層の割れが無い場合を「A」とし、断線が有り、樹脂層に割れが無い場合を「B」とし、断線が有り、樹脂層に割れが生じた場合を「C」とした。樹脂組成物の粘度が高すぎると、セカンダリ樹脂層を形成する際の被覆径が安定せずに断線し易くなる。一方、樹脂組成物の粘度が低すぎると、自己調芯力が働きにくく、偏肉が発生し易くなる。
(Applicability)
The applicability of the resin composition was evaluated by checking the presence or absence of disconnection and the presence or absence of cracks in the resin layer of the produced optical fiber. The case where there is no disconnection and the crack of the resin layer is "A", the case where there is a break and the resin layer is "B", and the case where there is a break and the resin layer is "C" .. If the viscosity of the resin composition is too high, the coating diameter at the time of forming the secondary resin layer will not be stable and the wire will be easily broken. On the other hand, when the viscosity of the resin composition is too low, the self-centering force is hard to work and uneven thickness is likely to occur.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例の樹脂組成物は、セカンダリ樹脂層に求められる高いヤング率を有すると共に、塗布性に優れ、強靱な樹脂層を形成できることが確認できた。 It was confirmed that the resin compositions of the examples have a high Young's modulus required for the secondary resin layer and also have excellent coatability and can form a tough resin layer.
 10…光ファイバ、11…コア、12…クラッド、13…ガラスファイバ、14…プライマリ樹脂層、15…セカンダリ樹脂層、16…被覆樹脂層。 Reference numeral 10 ... Optical fiber, 11 ... Core, 12 ... Clad, 13 ... Glass fiber, 14 ... Primary resin layer, 15 ... Secondary resin layer, 16 ... Coating resin layer.

Claims (8)

  1.  ウレタン(メタ)アクリレートオリゴマー、モノマー及び光重合開始剤を含有するベース樹脂と、炭素数1以上8以下のアルキル基又はフェニル基を有する表面修飾無機酸化物粒子と、を含む樹脂組成物であり、
     前記表面修飾無機酸化物粒子の含有量が、前記樹脂組成物の総量を基準として1質量%以上60質量%以下であり、
     前記表面修飾無機酸化物粒子における表面修飾量が、0.15mg/m以上である、光ファイバ被覆用の樹脂組成物。
    A resin composition comprising a base resin containing a urethane (meth) acrylate oligomer, a monomer and a photopolymerization initiator, and surface-modified inorganic oxide particles having an alkyl group or a phenyl group having 1 to 8 carbon atoms,
    The content of the surface-modified inorganic oxide particles is 1% by mass or more and 60% by mass or less based on the total amount of the resin composition,
    A resin composition for coating an optical fiber, wherein the surface-modified inorganic oxide particles have a surface modification amount of 0.15 mg / m 2 or more.
  2.  前記表面修飾量が0.15mg/m以上2.5mg/m以下である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the amount of surface modification is 0.15 mg / m 2 or more and 2.5 mg / m 2 or less.
  3.  前記アルキル基が、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基及びオクチル基からなる群より選ばれる少なくとも1種の基である、請求項1又は請求項2に記載の樹脂組成物。 The resin according to claim 1 or 2, wherein the alkyl group is at least one group selected from the group consisting of a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and an octyl group. Composition.
  4.  前記表面修飾無機酸化物粒子の平均一次粒径が、800nm以下である、請求項1から請求項3のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the average primary particle size of the surface-modified inorganic oxide particles is 800 nm or less.
  5.  粘度が、45℃で300mPa・s以上5000mPa・s以下である、請求項1から請求項4のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, which has a viscosity of not less than 300 mPa · s and not more than 5000 mPa · s at 45 ° C.
  6.  請求項1から請求項5のいずれか一項に記載の樹脂組成物を含む、光ファイバのセカンダリ被覆材料。 A secondary coating material for an optical fiber, comprising the resin composition according to any one of claims 1 to 5.
  7.  コア及びクラッドを含むガラスファイバと、
     前記ガラスファイバに接して該ガラスファイバを被覆するプライマリ樹脂層と、
     前記プライマリ樹脂層を被覆するセカンダリ樹脂層と、を備え、
     前記セカンダリ樹脂層が、請求項1から請求項5のいずれか一項に記載の樹脂組成物の硬化物からなる、光ファイバ。
    A glass fiber including a core and a clad,
    A primary resin layer in contact with the glass fiber and covering the glass fiber;
    A secondary resin layer that covers the primary resin layer,
    An optical fiber in which the secondary resin layer is made of a cured product of the resin composition according to any one of claims 1 to 5.
  8.  コア及びクラッドを含むガラスファイバの外周に、請求項1から請求項5のいずれか一項に記載の樹脂組成物を塗布する塗布工程と、
     前記塗布工程の後に紫外線を照射することにより前記樹脂組成物を硬化させる硬化工程と、
    を含む、光ファイバの製造方法。
    A coating step of coating the resin composition according to any one of claims 1 to 5 on the outer periphery of the glass fiber including the core and the clad,
    A curing step of curing the resin composition by irradiating ultraviolet rays after the coating step,
    And a method for manufacturing an optical fiber.
PCT/JP2019/044950 2018-11-16 2019-11-15 Resin composition, optical fiber and method for manufacturing optical fiber WO2020101029A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/040,100 US20210024772A1 (en) 2018-11-16 2019-11-15 Resin composition, optical fiber and method for manufacturing optical fiber
CN201980069824.5A CN113039226B (en) 2018-11-16 2019-11-15 Resin composition, optical fiber, and method for producing optical fiber
KR1020217017390A KR20210093280A (en) 2018-11-16 2019-11-15 Resin composition, optical fiber, and manufacturing method of optical fiber
EP19884739.4A EP3882288A4 (en) 2018-11-16 2019-11-15 Resin composition, optical fiber and method for manufacturing optical fiber
JP2020556198A JP7367697B2 (en) 2018-11-16 2019-11-15 Resin composition, optical fiber, and method for producing optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-215714 2018-11-16
JP2018215714 2018-11-16

Publications (1)

Publication Number Publication Date
WO2020101029A1 true WO2020101029A1 (en) 2020-05-22

Family

ID=70731419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044950 WO2020101029A1 (en) 2018-11-16 2019-11-15 Resin composition, optical fiber and method for manufacturing optical fiber

Country Status (7)

Country Link
US (1) US20210024772A1 (en)
EP (1) EP3882288A4 (en)
JP (1) JP7367697B2 (en)
KR (1) KR20210093280A (en)
CN (1) CN113039226B (en)
TW (1) TWI820253B (en)
WO (1) WO2020101029A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3783409A4 (en) 2018-04-16 2022-01-12 Sumitomo Electric Industries, Ltd. Optical fiber
EP3882286A4 (en) * 2018-11-16 2022-03-02 Sumitomo Electric Industries, Ltd. Resin composition and optical fiber
CN112955480B (en) * 2018-11-16 2023-11-07 住友电气工业株式会社 Resin composition, optical fiber, and method for producing optical fiber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134156A (en) * 1994-11-02 1996-05-28 Sumitomo Chem Co Ltd Photo-setting resin composition
JP2006137795A (en) * 2004-11-10 2006-06-01 Mitsubishi Chemicals Corp Radiation-curable composition and its cured product, and its laminate
JP2007131698A (en) * 2005-10-11 2007-05-31 Mitsubishi Chemicals Corp Radiation-curable composition, cured material of the same and laminated material of the same
WO2009142237A1 (en) * 2008-05-23 2009-11-26 昭和電工株式会社 Curable composition containing a reactive (meth)acrylate polymer and a cured product thereof
JP2018015714A (en) 2016-07-28 2018-02-01 芝浦メカトロニクス株式会社 Substrate treatment apparatus and substrate treatment method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217836A (en) * 2003-01-16 2004-08-05 Mitsubishi Chemicals Corp Radiation curing composition, method for producing radiation curing composition, cured product and optical material
US7297731B2 (en) * 2003-03-11 2007-11-20 3M Innovative Properties Company Coating dispersions for optical fibers
JP4249634B2 (en) * 2004-01-30 2009-04-02 三菱化学株式会社 Radiation curable resin composition and method for producing radiation curable resin composition
EP1740663A1 (en) * 2004-04-22 2007-01-10 JSR Corporation Low refractive index coating composition
JP2006188659A (en) * 2004-12-07 2006-07-20 Mitsubishi Chemicals Corp Radiation-curable resin composition and cured product thereof
WO2009119436A1 (en) * 2008-03-27 2009-10-01 藤倉化成株式会社 Composition for coating a plastic substrate, coating film formed therefrom, and formed body
BR112012012500B1 (en) * 2009-11-26 2019-07-02 Prysmian S.P.A. OPTICAL FIBER
JP2014219550A (en) 2013-05-08 2014-11-20 住友電気工業株式会社 Coated optical fiber
US11345606B2 (en) * 2017-02-17 2022-05-31 David Brown Deposition particles and a method and apparatus for producing the same
CN107083159B (en) * 2017-05-16 2019-06-07 华中科技大学 A kind of optical fiber high thermal conductivity photocureable coating and its preparation and application
TWI706012B (en) * 2019-09-12 2020-10-01 明基材料股份有限公司 A high hardness flexible hard coating film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134156A (en) * 1994-11-02 1996-05-28 Sumitomo Chem Co Ltd Photo-setting resin composition
JP2006137795A (en) * 2004-11-10 2006-06-01 Mitsubishi Chemicals Corp Radiation-curable composition and its cured product, and its laminate
JP2007131698A (en) * 2005-10-11 2007-05-31 Mitsubishi Chemicals Corp Radiation-curable composition, cured material of the same and laminated material of the same
WO2009142237A1 (en) * 2008-05-23 2009-11-26 昭和電工株式会社 Curable composition containing a reactive (meth)acrylate polymer and a cured product thereof
JP2018015714A (en) 2016-07-28 2018-02-01 芝浦メカトロニクス株式会社 Substrate treatment apparatus and substrate treatment method

Also Published As

Publication number Publication date
US20210024772A1 (en) 2021-01-28
EP3882288A1 (en) 2021-09-22
JP7367697B2 (en) 2023-10-24
KR20210093280A (en) 2021-07-27
TW202030216A (en) 2020-08-16
EP3882288A4 (en) 2021-12-29
CN113039226B (en) 2023-07-25
CN113039226A (en) 2021-06-25
TWI820253B (en) 2023-11-01
JPWO2020101029A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP7255588B2 (en) Resin composition, secondary coating material for optical fiber, and optical fiber
JP7136124B2 (en) Resin composition and optical fiber
WO2020101030A1 (en) Resin composition and optical fiber
WO2020101029A1 (en) Resin composition, optical fiber and method for manufacturing optical fiber
WO2020040223A1 (en) Optical fiber
WO2020101028A1 (en) Resin composition, optical fiber and method for manufacturing optical fiber
WO2019203236A1 (en) Optical fiber
WO2020171083A1 (en) Resin composition for covering optical fiber
WO2021019908A1 (en) Optical fiber ribbon and optical fiber cable
WO2020250838A1 (en) Resin composition, optical fiber, and method for producing optical fiber
TW202111033A (en) Resin composition, secondary coating material for optical fiber, optical fiber, and method for producing optical fiber
US11947161B2 (en) Resin composition, optical fiber secondary coating material, optical fiber and manufacturing method of optical fiber
WO2020255734A1 (en) Resin composition, secondary coating material for optical fiber, optical fiber, and method for producing optical fiber
WO2020171082A1 (en) Optical fiber
RU2773017C1 (en) Resin composition, optical fiber and optical fiber manufacturing method
WO2022130808A1 (en) Resin composition, secondary coating material for optical fiber, optical fiber, and method for manufacturing optical fiber
RU2788910C2 (en) Resin composition, optical fiber and method for manufacture of optical fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884739

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556198

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217017390

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021113214

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2019884739

Country of ref document: EP

Effective date: 20210616