WO2020100905A1 - Cover for coupling - Google Patents

Cover for coupling Download PDF

Info

Publication number
WO2020100905A1
WO2020100905A1 PCT/JP2019/044368 JP2019044368W WO2020100905A1 WO 2020100905 A1 WO2020100905 A1 WO 2020100905A1 JP 2019044368 W JP2019044368 W JP 2019044368W WO 2020100905 A1 WO2020100905 A1 WO 2020100905A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
coupling
peripheral wall
cover body
peripheral surface
Prior art date
Application number
PCT/JP2019/044368
Other languages
French (fr)
Japanese (ja)
Inventor
古川 泰成
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to JP2020556120A priority Critical patent/JP7270639B2/en
Publication of WO2020100905A1 publication Critical patent/WO2020100905A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/78Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members shaped as an elastic disc or flat ring, arranged perpendicular to the axis of the coupling parts, different sets of spots of the disc or ring being attached to each coupling part, e.g. Hardy couplings
    • F16D3/79Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members shaped as an elastic disc or flat ring, arranged perpendicular to the axis of the coupling parts, different sets of spots of the disc or ring being attached to each coupling part, e.g. Hardy couplings the disc or ring being metallic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/72Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members with axially-spaced attachments to the coupling parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/84Shrouds, e.g. casings, covers; Sealing means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/02Overheat protection, i.e. means for protection against overheating
    • F16D2300/021Cooling features not provided for in group F16D13/72 or F16D25/123, e.g. heat transfer details

Definitions

  • the present invention relates to a cover for coupling.
  • the coupling cover 101 covers the coupling 401 that transmits the rotational torque from the drive shaft 201 to the driven shaft 301, and protects the coupling 401, prevents noise, and prevents oil from scattering. There is.
  • the coupling cover 101 in particular, the coupling cover 101 having a structure that covers the entire coupling 401 may prevent the heat generated by the stirring resistance of the coupling 401 from being removed, and the coupling 401 and the cover 101 themselves may become hot. ..
  • the temperature of the coupling 401 and the cover 101 becomes high, the physical properties of the material are deteriorated and the strength of the coupling 401 is deteriorated due to material fatigue.
  • One aspect of the coupling cover includes a cover body that rotatably accommodates a coupling that connects two shafts, and a heat dissipation fin provided on the cover body.
  • Another aspect of the coupling cover includes a cover body that rotatably accommodates a coupling that connects two shafts, and a radiator for radiating heat, which is provided on the cover body and has an uneven shape.
  • Yet another aspect of the coupling cover is a cover body that rotatably accommodates a coupling that connects two shafts, a fin for heat radiation provided on the cover body, and a surface of the fin. And a radiator for radiating heat having a concavo-convex shape.
  • the temperature of the coupling and the coupling cover can be lowered.
  • FIG. 3 is a view showing the coupling cover of the first embodiment, (A) is a cross-sectional view cut along a plane including the central axis, and (B) is a side view thereof.
  • FIG. 6 is a view showing a coupling cover of the second embodiment, (A) is a cross-sectional view cut along a plane including a central axis thereof, and (B) is a side view thereof.
  • 13A and 13B are views showing a coupling cover of the third embodiment, in which FIG. 13A is a sectional view cut along a plane including a central axis thereof, and FIG. FIG.
  • FIG. 6 is a view showing a coupling cover of Embodiment 4, (A) is a cross-sectional view cut along a plane including the central axis, and (B) is a side view thereof.
  • FIG. 16 is a view showing a coupling cover of the fifth embodiment, (A) is a cross-sectional view cut along a plane including the central axis, and (B) is a cross-sectional view taken along line EE in (A).
  • FIG. 16 is a cross-sectional view of a main part of the coupling cover according to the sixth embodiment, which is cut along a plane perpendicular to the axis including a center line of a ventilation hole.
  • FIG. 16 is a cross-sectional view of a main part of the coupling cover according to the seventh embodiment cut along a plane perpendicular to an axis including a center line of a ventilation hole.
  • A is the figure which looked at the ventilation hole of the coupling cover of Embodiment 5 from the inside of a cover main body, and is a F direction arrow line view in FIG. 5 (B)
  • B is the cup of Embodiment 8
  • (C) is the figure which looked at the ventilation hole of the coupling cover of the ninth embodiment from the inside of the cover body.
  • (A) is a sectional view of an essential part of the coupling cover of the tenth embodiment cut along a plane including the central axis thereof
  • (B) and (C) of the coupling cover of the eleventh embodiment include the central axis thereof.
  • (A) is a sectional view of a main part of the coupling cover of the twelfth embodiment cut along a plane perpendicular to the axis thereof
  • (B) is a sectional view of a main part of the coupling cover of the thirteenth embodiment cut along a plane perpendicular to the axis thereof.
  • FIG. 33 is a diagram showing a coupling cover of the fourteenth embodiment, in which (A) is a cross-sectional view cut along a plane including the central axis thereof, and (B) is a cross-sectional view taken along line GG in (A).
  • FIG. 32 is a diagram showing a coupling cover of the fifteenth embodiment, where (A) is a cross-sectional view cut along a plane including the central axis thereof, and (B) is a cross-sectional view taken along line HH in (A).
  • (A) is a plan view of a protrusion provided on the coupling cover of the sixteenth embodiment
  • (B), (C) and (D) are plan views of a protrusion provided on the coupling cover of the seventeenth embodiment.
  • (A) (B) (C) is a top view of the protrusion with which the cover for coupling of Embodiment 18 is equipped.
  • (A) (B) (C) is a top view of the protrusion with which the cover for coupling of Embodiment 19 is equipped.
  • (A), (B) and (C) are plan views of protrusions provided on the coupling cover of the twentieth embodiment
  • (D), (E) and (F) are protrusions provided on the coupling cover of the twenty-first embodiment. Plan view of.
  • (A), (B) and (C) are plan views of protrusions provided on the coupling cover of the twenty-second embodiment, and (D), (E) and (F) are protrusions provided on the coupling cover of the twenty-third embodiment.
  • Plan view of. (A), (B) and (C) are plan views of protrusions provided on the coupling cover of the twenty-fourth embodiment, and (D), (E) and (F) are protrusions provided on the coupling cover of the twenty-fifth embodiment.
  • (A), (B) and (C) are plan views of the projections provided on the coupling cover of the twenty-sixth embodiment, and (D) and (E) are plan views of the projections provided on the coupling cover of the twenty-seventh embodiment.
  • .. (A), (B) and (C) are plan views of protrusions provided on the coupling cover of the twenty-eighth embodiment, and (D), (E) and (F) are protrusions provided on the coupling cover of the twenty-ninth embodiment. Plan view of.
  • (A), (B) and (C) are plan views of protrusions provided on the coupling cover of the thirtieth embodiment, and (D), (E) and (F) are protrusions provided on the coupling cover of the thirty-first embodiment.
  • Plan view of. (A), (B) and (C) are plan views of the projections provided on the coupling cover of the thirty-second embodiment, and (D), (E) and (F) are projections provided on the coupling cover of the thirty-third embodiment.
  • Plan view of. (A), (B) and (C) are plan views of protrusions provided on the coupling cover of the thirty-fourth embodiment, and (D), (E) and (F) are protrusions provided on the coupling cover of the thirty-fifth embodiment.
  • the coupling cover 1 (hereinafter also referred to as “cover 1”) of the present embodiment is
  • the target of the cover is a coupling 401 that connects both shafts so as to transmit rotational torque from a drive shaft to a driven shaft (neither is shown).
  • the coupling cover 1 is installed for the purpose of protecting the coupling 401, soundproofing, and preventing oil and dust from scattering.
  • a diaphragm type coupling is used as the coupling 401.
  • the type and specifications of the coupling 401 are not particularly limited.
  • the coupling cover 1 is provided with flange-shaped end walls 31 at both axial ends of a cylindrical peripheral wall 21 (hereinafter also referred to as “cover peripheral wall 21”) arranged on the outer peripheral side of the coupling 401.
  • the cover body 11 having a curved shape is provided, and the coupling 401 is rotatably accommodated inside the cover body 11.
  • a vent hole (exhaust port) 22 that communicates the inside and the outside of the cover body 11 is provided at the axial center of the cylindrical peripheral wall 21 and at one location on the circumference.
  • a shaft hole 32 through which the drive shaft and the driven shaft are rotatably inserted is provided on each of the central axes of the flange-shaped end walls 31.
  • the coupling 401 and the coupling cover 1 may become hot as the coupling 401 rotates.
  • the cover 1 of the present embodiment has a heat dissipation function.
  • Various embodiments 1-35 of the coupling cover 1 having a heat radiation function will be introduced below.
  • Embodiment 1 As shown in FIGS. 1A and 1B, the cover body 11 is provided with a plurality of fins 41 for heat dissipation.
  • the fin 41 has an annular shape along the peripheral surface of the cover peripheral wall 21, and has a triangular cross section.
  • the fins 41 having such a shape are attached to the outer peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction. Therefore, a plurality of fins 41 are regularly arranged on the outer peripheral surface of the cover peripheral wall 21.
  • the fin 41 is attached to the cover peripheral wall 21 by welding, for example.
  • the fin 41 may be integrally provided on the cover body 11.
  • the fact that the fins 41 may be integrally provided on the cover body 11 is common to various embodiments described below.
  • the cover body 11 is provided with a plurality of fins 41 for heat dissipation.
  • the fin 41 has an annular shape along the peripheral surface of the cover peripheral wall 21 and has a rectangular cross section.
  • the fins 41 having such a shape are attached to the outer peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction. Therefore, a plurality of fins 41 are regularly arranged on the outer peripheral surface of the cover peripheral wall 21.
  • the cover body 11 is provided with a plurality of fins 41 for heat dissipation.
  • the fin 41 has an annular shape along the peripheral surface of the cover peripheral wall 21 and has a rectangular cross section.
  • the fins 41 having such a shape are attached to the outer peripheral surface and the inner peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction. Therefore, a plurality of fins 41 are regularly arranged on the outer peripheral surface and the inner peripheral surface of the cover peripheral wall 21.
  • the fin 41 may be attached only to the inner peripheral surface of the cover peripheral wall 21.
  • part of the heat is transferred from the peripheral wall 21 of the cover body 11 to the fins 41, and the heat dissipation area of the cover 1 as a whole increases. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be lowered. As a result, the temperature of the coupling 401 and the coupling cover 1 can be lowered.
  • the fin 41 may be formed by winding a band-shaped material into a coil.
  • the coupling cover 1 of the present embodiment has fins 41 provided on the inner peripheral surface of the cover peripheral wall 21.
  • the angle is inclined with respect to the angle orthogonal to the axial direction.
  • the angle at which the fin 41 is inclined is referred to as an inclination angle ⁇ 1 .
  • the tilt angle ⁇ 1 is explained as follows.
  • the air inside the cover body 11 gently flows in a certain direction as the coupling 401 rotates.
  • the inclination angle ⁇ 1 of the fin 41 is a plane perpendicular to the axis of the cover peripheral wall 21 including the central axis of the vent hole 22 so as to guide the air flow generated in the cover body 11 toward the vent hole 22. It is an angle set with respect to (hereinafter referred to as “axis orthogonal plane 21A”). More specifically, the inclination angle ⁇ 1 is the smallest at a position on the same circumference where the axial distance between the fin 41 and the axis-perpendicular plane 21A is the same as the ventilation hole 22 (L 1 ), and at the 180-degree symmetrical position. It is set to be the largest (L 2 ).
  • the inclination angle ⁇ 1 is set such that the axial distance between the fin 41 and the axis-perpendicular plane 21A becomes smaller as the inner circumferential surface of the cover peripheral wall 21 approaches the ventilation hole 22 on the circumference.
  • the air flow inside the cover body 11 is guided in the direction of the ventilation hole 22 by using the fins 41 as guides, so that the air having a relatively high heat relative to the outside air is easily released from the ventilation hole 22 to the outside of the cover 1. .. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be further reduced.
  • the coupling cover 1 of the present embodiment has the same structure as that of the inner peripheral surface of the cover peripheral wall 21.
  • a baffle plate 51 is provided on the downstream side of the ventilation hole 22 in the flow. As shown in FIG. 5B, since the air flows clockwise, that is, in the clockwise direction in the present embodiment, the baffle plate 51 is provided on the right side of the ventilation hole 22 in FIG. 5B.
  • the air flow guided by the fins 41 hits the baffle plate 51 and changes its direction toward the ventilation hole 22 (arrow C), so that the air is more easily discharged from the ventilation hole 22. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be further reduced.
  • the baffle plate 51 is arranged in a direction parallel to a plane parallel to an axis passing through the axis of the cover peripheral wall 21 including the central axis of the vent hole 22 (hereinafter, referred to as “axial plane 21B”).
  • axial plane 21B an axis passing through the axis of the cover peripheral wall 21 including the central axis of the vent hole 22
  • axial plane 21B One example has been shown.
  • the baffle plate 51 is arranged at an inclination angle ⁇ 2 with respect to the axial plane 21B.
  • the inclination angle ⁇ 2 is set to an angle inclined with respect to the axial plane 21 ⁇ / b > B in the air flow direction in the cover body 11 in FIG. 6.
  • the flow rate of air flowing toward the ventilation hole 22 is further increased due to the inclination angle ⁇ 2 of the baffle plate 51. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be further reduced.
  • Embodiment 7 The fifth embodiment has shown an example in which the baffle plate 51 is formed in a flat plate shape. As shown in FIG. 7, in the coupling cover 1 of the present embodiment, the baffle plate 51 is formed in a curved surface shape that curves in the height direction. The height direction of the baffle plate 51 is the radial direction of the cover peripheral wall 21, that is, the vertical direction in FIG. 7. As a result, the baffle plate 51 is provided with a concave air receiving surface 52 having a predetermined radius dimension R on the side receiving the air discharged from the ventilation hole 22.
  • the baffle plate 51 is formed of one flat plate.
  • the baffle plate 51 of the coupling cover 1 of the present embodiment is formed by arranging two flat plates in a V shape.
  • the two baffle plates 51 are arranged in the tangential direction of the ventilation holes 22 each having a circular plane shape.
  • the baffle plate 51 is provided with an air receiving surface 52 surrounded by a V shape on the side receiving the air exhausted from the ventilation holes 22.
  • the V-shape of the air receiving surface 52 changes the direction of the air flow toward the ventilation hole 22, so that the flow rate of the air flowing toward the ventilation hole 22 is further increased. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be further reduced.
  • the two baffle plates 51 may be one baffle plate 51 formed in a V shape.
  • the baffle plate 51 of the coupling cover 1 is formed in a curved shape that curves in the width direction.
  • the width direction of the baffle plate 51 is the circumferential direction of the cover peripheral wall 21, that is, the vertical direction in FIG. 8C.
  • the baffle plate 51 is provided with an air receiving surface 52 having a predetermined radius dimension on the side receiving the air exhausted from the ventilation holes 22.
  • the air receiving surface 52 is arranged along the opening peripheral edge of the ventilation hole 22 having a circular plane shape.
  • the cover body 11 is provided with the protrusion 61 having an uneven shape.
  • a plurality of protrusions 61 are provided as a radiator provided for heat dissipation, and are regularly arranged on the inner peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction and the circumferential direction.
  • the protrusion 61 may be provided on the outer peripheral surface of the cover peripheral wall 21, or may be provided on both the inner peripheral surface and the outer peripheral surface of the cover peripheral wall 21.
  • the protrusions 61 may be randomly arranged.
  • the protrusion 61 may be a recess instead of this, and in this case, the heat dissipation area of the cover 1 as a whole increases, so that the amount of heat dissipation increases and the temperature of the coupling 401 and the cover 1 itself is lowered. Is possible.
  • a plurality of protrusions 61 are arranged in a row to form a concave-convex shape row 62, A plurality of the uneven shape rows 62 are arranged side by side.
  • the uneven shape row 62 has a form in which the plurality of protrusions 61 are arranged in a line in the direction of arrow D.
  • the plurality of protrusions 61 are not limited to one row, and may be arranged in a plurality of rows to form the concavo-convex shape row 62.
  • the air inside the cover body 11 gently flows in a certain direction as the coupling 401 rotates.
  • the concavo-convex shape row 62 is inclined with respect to the axis-perpendicular plane 21A so as to guide the air flow inside the cover body 11 to the ventilation hole 22.
  • the inclination angle of such a concavo-convex shape row 62 is set similarly to the fin 41 in the fourth embodiment.
  • the air flow inside the cover body 11 is guided by the concave-convex row 62 and guided in the direction of the ventilation hole 22 (arrow D), so that the air is easily discharged from the ventilation hole 22. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be further reduced.
  • the cover body 11 is provided with fins 41 for heat dissipation.
  • the fin 41 is formed in an annular shape along the peripheral wall 21 of the cover body 11.
  • a plurality of such fins 41 are provided and are attached to the inner peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction (the direction orthogonal to the paper surface in FIG. 10A).
  • Protrusions 61 are provided on the surface of the fin 41 as a radiator for radiating heat having an uneven shape, and a plurality of protrusions 61 are arranged at a constant pitch in the radial direction and the circumferential direction.
  • part of the heat is transferred from the peripheral wall 21 of the cover body 11 to the fins 41, and part of the heat is transferred from the fins 41 to the protrusions 61.
  • the heat dissipation area of the cover 1 as a whole also increases. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be lowered. As a result, the temperature of the coupling 401 and the coupling cover 1 can be lowered.
  • the protrusions 61 may be randomly arranged.
  • the protrusion 61 may be a recess instead of this.
  • Embodiment 13 In the above-described twelfth embodiment, an example is shown in which the protrusions 61 are arranged in a line to form the concavo-convex shape row 62, and the concavo-convex shape row 62 is provided in the radial direction of the cover peripheral wall 21. As shown in FIG. 10B, in the present embodiment, the direction of the concave-convex shape row 62 is set to be spiral.
  • the air flow guided by the concave-convex row 62 impinges obliquely on the inner peripheral surface of the cover peripheral wall 21, so that the air easily flows in the circumferential direction inside the cover body 11. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be further reduced.
  • the cover body 11 is provided with a plurality of fins 41 for heat dissipation.
  • the fin 41 has an annular shape along the peripheral surface of the cover peripheral wall 21 and has a rectangular cross section.
  • the fins 41 having such a shape are attached to the outer peripheral surface and the inner peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction. Therefore, a plurality of fins 41 are regularly arranged on the outer peripheral surface of the cover peripheral wall 21.
  • the fin 41 is attached to the cover peripheral wall 21 by welding, for example.
  • the cover body 11 is also provided with a protrusion 61 having an uneven shape.
  • a plurality of protrusions 61 are provided as a radiator provided for heat dissipation, and are regularly arranged on the inner peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction and the circumferential direction.
  • a plurality of protrusions 61 are also provided on the surface of the fin 41.
  • the protrusion 61 provided on the fin 41 is also a radiator for radiating heat having an uneven shape.
  • part of the heat is transferred from the peripheral wall 21 of the cover body 11 to the fins 41, and part of the heat is transferred from the fins 41 to the protrusions 61. Part of the heat is also transferred from the peripheral wall 21 of the cover body 11 to the protrusions 61. Further, the heat dissipation area of the entire cover 1 increases. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be lowered. As a result, the temperature of the coupling 401 and the coupling cover 1 can be lowered.
  • the cover body 11 is provided with a plurality of fins 41 for heat dissipation.
  • the fin 41 has an annular shape along the peripheral surface of the cover peripheral wall 21 and has a rectangular cross section.
  • the fins 41 having such a shape are attached to the outer peripheral surface and the inner peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction. Therefore, a plurality of fins 41 are regularly arranged on the outer peripheral surface of the cover peripheral wall 21.
  • the fin 41 is attached to the cover peripheral wall 21 by welding, for example.
  • the cover body 11 is also provided with a protrusion 61 having an uneven shape.
  • a plurality of protrusions 61 are provided as a radiator provided for heat dissipation, and are regularly arranged on the inner peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction and the circumferential direction.
  • a plurality of protrusions 61 are also provided on the surface of the fin 41.
  • the protrusion 61 provided on the fin 41 is also a radiator for radiating heat having an uneven shape.
  • the angle of the concave-convex shape row 62 formed by the fins 41 and the plurality of protrusions 61 provided on the inner peripheral surface of the cover peripheral wall 21 is inclined with respect to the angle orthogonal to the axial direction. ing.
  • the inclination angles of the fins 41 and the concavo-convex shape row 62 are described as follows.
  • the air inside the cover body 11 gently flows in a certain direction as the coupling 401 rotates.
  • the inclination angles of the fins 41 and the row of concavo-convex shapes 62 are such that the air flow generated inside the cover body 11 is guided in the direction of the ventilation holes 22. Is the angle set for.
  • the inclination angle at this time is set similarly to the fin 41 in the fourth embodiment and the concave-convex shape row 62 in the eleventh embodiment.
  • the protrusion 61 provided on the surface of the fin 41 is formed in a spiral shape as in the thirteenth embodiment.
  • the concavo-convex shape of the radiator for heat dissipation described in each of these embodiments may be a recess instead of the protrusion 61.
  • the uneven shape of the heat radiator may be a combination of the protrusion 61 and the recess.
  • the sixteenth to thirty-fifth embodiments described below are various embodiments of the protrusion 61 provided as the uneven shape of the radiator for heat dissipation in the above-described respective embodiments. These protrusions 61 may also be recesses or a combination of protrusions 61 and recesses.
  • FIGS. 13 (A), (B), (C), (D) to FIGS. 23 (A), (B), (C), (D), (E), and (F) showing Embodiments 16 to 35 arrows indicate air flows. Shows the direction of.
  • the projection 61 has a circular planar shape.
  • the planar shape of the protrusion 61 is a semicircle obtained by cutting a circle with a diameter line 63.
  • the diameter line 63 is oriented parallel to or substantially parallel to the flow of air.
  • Embodiment 18 As shown in FIGS. 14 (A), (B), and (C), the planar shape of the protrusion 61 is a semicircle obtained by cutting a circle with a diameter line 63.
  • the diameter line 63 is arranged on the upstream side of the air flow, and is oriented at a right angle to the air flow, or at a substantially right angle.
  • the projection 61 has an elliptical planar shape.
  • the elliptical shape has its major axis 64 oriented parallel or substantially parallel to the air flow.
  • the planar shape of the protrusion 61 is an elliptical half shape obtained by cutting an elliptical shape with a long diameter line 64.
  • the long diameter line 64 is oriented parallel to the flow of air, or is oriented substantially parallel to it.
  • the planar shape of the protrusion 61 is an elliptical half shape obtained by cutting the elliptical shape with the minor axis line 65.
  • the short-diameter line 65 is arranged on the upstream side of the air flow, and is oriented at a right angle to the air flow, or at a substantially right angle.
  • the planar shape of the protrusion 61 is a combination of an elliptical half portion 66 obtained by cutting an elliptical shape with a short-diameter line and a triangular portion 67. It has a shape in which the radial line and the base of the triangle are overlapped.
  • the protrusion 61 directs the triangular portion 67 in the upstream direction of the air flow.
  • the planar shape of the protrusion 61 is a line-symmetrical shape, and its center line 68 is oriented parallel to or substantially parallel to the air flow.
  • the planar shape of the protrusion 61 is a combination of an ellipse half portion 66 obtained by cutting an ellipse with a short diameter line and a triangular portion 67. It has a shape in which the radial line and the base of the triangle are overlapped.
  • the protrusion 61 directs the triangular portion 67 in the downstream direction of the air flow.
  • the planar shape of the protrusion 61 is a line-symmetrical shape, and its center line 68 is oriented parallel to or substantially parallel to the air flow.
  • the projection 61 has a diamond-shaped planar shape.
  • the rhombus has its longer diagonal 69 oriented parallel or substantially parallel to the air flow.
  • the projection 61 has a planar shape that is a rhombus half triangular shape obtained by cutting the rhombus with the diagonal line 69 that is the longer side thereof.
  • the diagonal line 69 is oriented parallel to or substantially parallel to the flow of air.
  • the planar shape of the protrusion 61 is rectangular.
  • the rectangular shape has its long side 70 oriented parallel or substantially parallel to the air flow.
  • the projection 61 has a parallelogram planar shape.
  • the parallelogram has its short side 71 oriented perpendicular to the air flow.
  • Embodiment 28 As shown in FIGS. 20A, 20B and 20C, the projection 61 has a trapezoidal planar shape.
  • the trapezoid has its shorter base 72 oriented upstream of the air flow.
  • the base 72 is oriented at a right angle to the flow of air, or at a substantially right angle.
  • the projection 61 has a trapezoidal planar shape.
  • the trapezoid has its shorter base 72 directed downstream of the air flow.
  • the base 72 is oriented at a right angle to the flow of air, or at a substantially right angle.
  • the planar shape of the protrusion 61 is a trapezoidal shape obtained by cutting a triangle.
  • the trapezoid and the triangle are arranged such that the longer base of the trapezoid and the base of the triangle overlap each other.
  • the protrusion 61 has the shorter base of the trapezoid arranged on the upstream side of the air flow.
  • the planar shape of the protrusion 61 is a line-symmetrical shape, and its center line 73 is oriented parallel to or substantially parallel to the air flow.
  • the planar shape of the protrusion 61 is a trapezoidal shape obtained by cutting a triangle.
  • the trapezoid and the triangle are arranged such that the longer base of the trapezoid and the base of the triangle overlap each other.
  • the protrusion 61 has the shorter base of the trapezoid arranged downstream of the air flow.
  • the planar shape of the protrusion 61 is a line-symmetrical shape, and its center line 73 is oriented parallel to or substantially parallel to the air flow.
  • the planar shape of the protrusion 61 is a triangle and further isosceles triangle.
  • the triangle has its base 74 arranged on the downstream side of the air flow, and is oriented at a right angle to the air flow or at a substantially right angle.
  • Embodiment 33 As shown in FIGS. 22D, 22E, and 22F, the planar shape of the protrusion 61 is a triangle (isosceles triangle).
  • the base 74 of the triangle is located upstream of the air flow and is oriented at a right angle to the air flow or at a substantially right angle.
  • the planar shape of the protrusion 61 is a shape obtained by cutting a high-height triangle (isosceles triangle) to a low-height triangle (isosceles triangle). ing. Both triangles have their bases overlapping each other. The triangle has its apex 75 directed upstream of the air flow.
  • the planar shape of the protrusion 61 is a line-symmetrical shape, and its center line 76 is oriented parallel to or substantially parallel to the air flow.
  • the projection 61 has a planar shape in which a high-height triangle (isosceles triangle) is cut out from a low-height triangle (isosceles triangle). ing. Both triangles have their bases overlapping each other. The triangle has its apex 75 directed downstream of the air flow.
  • the planar shape of the protrusion 61 is a line-symmetrical shape, and its center line 76 is oriented parallel to or substantially parallel to the air flow.
  • the protrusion 61 may be a recess instead of this.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • General Details Of Gearings (AREA)

Abstract

A cover (1) for a coupling is provided with a cover body (11) that rotatably accommodates a coupling (401) for linking shafts, and fins (41) for heat dissipation are provided to the cover body (11). A plurality of the fins (41) are provided to the peripheral surface of a tubular peripheral wall (21) of the cover body (11). A vent hole (22) communicating the interior with the exterior of the cover body (11) is provided to the peripheral wall (21). The fins (41) provided to the inner peripheral surface of the peripheral wall (21) are inclined relative to a plane orthogonal to the axis of the peripheral wall (21), so that the flow of air generated inside the cover body (11) is guided in the direction of the vent hole (22).

Description

カップリング用カバーCoupling cover
 本発明は、カップリング用カバーに関する。 The present invention relates to a cover for coupling.
 図24に示すように、カップリング用カバー101は、駆動軸201から従動軸301へ回転トルクを伝達するカップリング401をカバーし、カップリング401の保護や防音、油の飛散防止などを図っている。 As shown in FIG. 24, the coupling cover 101 covers the coupling 401 that transmits the rotational torque from the drive shaft 201 to the driven shaft 301, and protects the coupling 401, prevents noise, and prevents oil from scattering. There is.
特開2009-108961号公報JP, 2009-108961, A 特開2012-087938号公報Japanese Patent Laid-Open No. 2012-087938
 カップリング用カバー101、特にカップリング401全体を覆う構造のカップリング用カバー101は、カップリング401の攪拌抵抗による発熱の除去を妨げ、カップリング401やカバー101自体を高温にしてしまうことがある。カップリング401やカバー101が高温になると、材料物性の低下や材料疲労によるカップリング401の強度の低下に繋がる。 The coupling cover 101, in particular, the coupling cover 101 having a structure that covers the entire coupling 401 may prevent the heat generated by the stirring resistance of the coupling 401 from being removed, and the coupling 401 and the cover 101 themselves may become hot. .. When the temperature of the coupling 401 and the cover 101 becomes high, the physical properties of the material are deteriorated and the strength of the coupling 401 is deteriorated due to material fatigue.
 カップリングおよびカップリングカバーの低温化が望まれる。 -Lower temperature of coupling and coupling cover is desired.
 カップリング用カバーの一態様は、二つの軸を連結するカップリングを回転可能に収容するカバー本体と、前記カバー本体に設けられた放熱用のフィンと、を備える。 One aspect of the coupling cover includes a cover body that rotatably accommodates a coupling that connects two shafts, and a heat dissipation fin provided on the cover body.
 カップリング用カバーの別の一態様は、二つの軸を連結するカップリングを回転可能に収容するカバー本体と、前記カバー本体に設けられた凹凸形状を有する放熱用の放熱体と、を備える。 Another aspect of the coupling cover includes a cover body that rotatably accommodates a coupling that connects two shafts, and a radiator for radiating heat, which is provided on the cover body and has an uneven shape.
 カップリング用カバーのさらに別の一態様は、二つの軸を連結するカップリングを回転可能に収容するカバー本体と、前記カバー本体に設けられた放熱用のフィンと、前記フィンの表面に設けられた凹凸形状を有する放熱用の放熱体と、を備える。 Yet another aspect of the coupling cover is a cover body that rotatably accommodates a coupling that connects two shafts, a fin for heat radiation provided on the cover body, and a surface of the fin. And a radiator for radiating heat having a concavo-convex shape.
 カップリングおよびカップリングカバーの低温化を実現することができる。 -The temperature of the coupling and the coupling cover can be lowered.
実施の形態1のカップリング用カバーを示す図で、(A)はその中心軸線を含む平面で裁断した断面図、(B)はその側面図。FIG. 3 is a view showing the coupling cover of the first embodiment, (A) is a cross-sectional view cut along a plane including the central axis, and (B) is a side view thereof. 実施の形態2のカップリング用カバーを示す図で、(A)はその中心軸線を含む平面で裁断した断面図、(B)はその側面図。FIG. 6 is a view showing a coupling cover of the second embodiment, (A) is a cross-sectional view cut along a plane including a central axis thereof, and (B) is a side view thereof. 実施の形態3のカップリング用カバーを示す図で、(A)はその中心軸線を含む平面で裁断した断面図、(B)はその側面図。13A and 13B are views showing a coupling cover of the third embodiment, in which FIG. 13A is a sectional view cut along a plane including a central axis thereof, and FIG. 実施の形態4のカップリング用カバーを示す図で、(A)はその中心軸線を含む平面で裁断した断面図、(B)はその側面図。FIG. 6 is a view showing a coupling cover of Embodiment 4, (A) is a cross-sectional view cut along a plane including the central axis, and (B) is a side view thereof. 実施の形態5のカップリング用カバーを示す図で、(A)はその中心軸線を含む平面で裁断した断面図、(B)は(A)におけるE-E線断面図。FIG. 16 is a view showing a coupling cover of the fifth embodiment, (A) is a cross-sectional view cut along a plane including the central axis, and (B) is a cross-sectional view taken along line EE in (A). 実施の形態6のカップリング用カバーを通気孔の中心線を含む軸直角平面で裁断した要部断面図。FIG. 16 is a cross-sectional view of a main part of the coupling cover according to the sixth embodiment, which is cut along a plane perpendicular to the axis including a center line of a ventilation hole. 実施の形態7のカップリング用カバーを通気孔の中心線を含む軸直角平面で裁断した要部断面図。FIG. 16 is a cross-sectional view of a main part of the coupling cover according to the seventh embodiment cut along a plane perpendicular to an axis including a center line of a ventilation hole. (A)は実施の形態5のカップリング用カバーの通気孔をカバー本体の内側から視た図であって図5(B)におけるF方向矢視図、(B)は実施の形態8のカップリング用カバーの通気孔をカバー本体の内側から視た図、(C)は実施の形態9のカップリング用カバーの通気孔をカバー本体の内側から視た図。(A) is the figure which looked at the ventilation hole of the coupling cover of Embodiment 5 from the inside of a cover main body, and is a F direction arrow line view in FIG. 5 (B), (B) is the cup of Embodiment 8 The figure which looked at the ventilation hole of the ring cover from the inside of the cover body, and (C) is the figure which looked at the ventilation hole of the coupling cover of the ninth embodiment from the inside of the cover body. (A)は実施の形態10のカップリング用カバーをその中心軸線を含む平面で裁断した要部断面図、(B)(C)は実施の形態11のカップリング用カバーをその中心軸線を含む平面で裁断した要部断面図。(A) is a sectional view of an essential part of the coupling cover of the tenth embodiment cut along a plane including the central axis thereof, and (B) and (C) of the coupling cover of the eleventh embodiment include the central axis thereof. Sectional drawing of the principal part cut by the plane. (A)は実施の形態12のカップリング用カバーをその軸直角平面で裁断した要部断面図、(B)は実施の形態13のカップリング用カバーをその軸直角平面で裁断した要部断面図。(A) is a sectional view of a main part of the coupling cover of the twelfth embodiment cut along a plane perpendicular to the axis thereof, and (B) is a sectional view of a main part of the coupling cover of the thirteenth embodiment cut along a plane perpendicular to the axis thereof. Fig. 実施の形態14のカップリング用カバーを示す図で、(A)はその中心軸線を含む平面で裁断した断面図、(B)は(A)におけるG-G線断面図。FIG. 33 is a diagram showing a coupling cover of the fourteenth embodiment, in which (A) is a cross-sectional view cut along a plane including the central axis thereof, and (B) is a cross-sectional view taken along line GG in (A). 実施の形態15のカップリング用カバーを示す図で、(A)はその中心軸線を含む平面で裁断した断面図、(B)は(A)におけるH-H線断面図。FIG. 32 is a diagram showing a coupling cover of the fifteenth embodiment, where (A) is a cross-sectional view cut along a plane including the central axis thereof, and (B) is a cross-sectional view taken along line HH in (A).
(A)は実施の形態16のカップリング用カバーに備えられる突起の平面図、(B)(C)(D)は実施の形態17のカップリング用カバーに備えられる突起の平面図。(A) is a plan view of a protrusion provided on the coupling cover of the sixteenth embodiment, and (B), (C) and (D) are plan views of a protrusion provided on the coupling cover of the seventeenth embodiment. (A)(B)(C)は実施の形態18のカップリング用カバーに備えられる突起の平面図。(A) (B) (C) is a top view of the protrusion with which the cover for coupling of Embodiment 18 is equipped. (A)(B)(C)は実施の形態19のカップリング用カバーに備えられる突起の平面図。(A) (B) (C) is a top view of the protrusion with which the cover for coupling of Embodiment 19 is equipped. (A)(B)(C)は実施の形態20のカップリング用カバーに備えられる突起の平面図、(D)(E)(F)は実施の形態21のカップリング用カバーに備えられる突起の平面図。(A), (B) and (C) are plan views of protrusions provided on the coupling cover of the twentieth embodiment, and (D), (E) and (F) are protrusions provided on the coupling cover of the twenty-first embodiment. Plan view of. (A)(B)(C)は実施の形態22のカップリング用カバーに備えられる突起の平面図、(D)(E)(F)は実施の形態23のカップリング用カバーに備えられる突起の平面図。(A), (B) and (C) are plan views of protrusions provided on the coupling cover of the twenty-second embodiment, and (D), (E) and (F) are protrusions provided on the coupling cover of the twenty-third embodiment. Plan view of. (A)(B)(C)は実施の形態24のカップリング用カバーに備えられる突起の平面図、(D)(E)(F)は実施の形態25のカップリング用カバーに備えられる突起の平面図。(A), (B) and (C) are plan views of protrusions provided on the coupling cover of the twenty-fourth embodiment, and (D), (E) and (F) are protrusions provided on the coupling cover of the twenty-fifth embodiment. Plan view of. (A)(B)(C)は実施の形態26のカップリング用カバーに備えられる突起の平面図、(D)(E)は実施の形態27のカップリング用カバーに備えられる突起の平面図。(A), (B) and (C) are plan views of the projections provided on the coupling cover of the twenty-sixth embodiment, and (D) and (E) are plan views of the projections provided on the coupling cover of the twenty-seventh embodiment. .. (A)(B)(C)は実施の形態28のカップリング用カバーに備えられる突起の平面図、(D)(E)(F)は実施の形態29のカップリング用カバーに備えられる突起の平面図。(A), (B) and (C) are plan views of protrusions provided on the coupling cover of the twenty-eighth embodiment, and (D), (E) and (F) are protrusions provided on the coupling cover of the twenty-ninth embodiment. Plan view of. (A)(B)(C)は実施の形態30のカップリング用カバーに備えられる突起の平面図、(D)(E)(F)は実施の形態31のカップリング用カバーに備えられる突起の平面図。(A), (B) and (C) are plan views of protrusions provided on the coupling cover of the thirtieth embodiment, and (D), (E) and (F) are protrusions provided on the coupling cover of the thirty-first embodiment. Plan view of. (A)(B)(C)は実施の形態32のカップリング用カバーに備えられる突起の平面図、(D)(E)(F)は実施の形態33のカップリング用カバーに備えられる突起の平面図。(A), (B) and (C) are plan views of the projections provided on the coupling cover of the thirty-second embodiment, and (D), (E) and (F) are projections provided on the coupling cover of the thirty-third embodiment. Plan view of. (A)(B)(C)は実施の形態34のカップリング用カバーに備えられる突起の平面図、(D)(E)(F)は実施の形態35のカップリング用カバーに備えられる突起の平面図。(A), (B) and (C) are plan views of protrusions provided on the coupling cover of the thirty-fourth embodiment, and (D), (E) and (F) are protrusions provided on the coupling cover of the thirty-fifth embodiment. Plan view of. 背景技術で説明したカップリング用カバーの断面図。Sectional drawing of the cover for coupling demonstrated by background art.
 図1(A)(B)~図23(A)(B)(C)に示すように、本実施の形態のカップリング用カバー1(以下「カバー1」と略称することもある)は、駆動軸から従動軸(何れも図示せず)へ回転トルクを伝達するよう両軸を連結するカップリング401をカバーの対象としている。カップリング用カバー1は、カップリング401の保護や防音、油やダストの飛散防止などを目的として設置される。本実施の形態では、カップリング401としてダイアフラム型カップリングの使用を想定している。実施に際しては、カップリング401の種類や仕様は特に限定されない。 As shown in FIGS. 1 (A) and (B) to FIGS. 23 (A), (B), and (C), the coupling cover 1 (hereinafter also referred to as “cover 1”) of the present embodiment is The target of the cover is a coupling 401 that connects both shafts so as to transmit rotational torque from a drive shaft to a driven shaft (neither is shown). The coupling cover 1 is installed for the purpose of protecting the coupling 401, soundproofing, and preventing oil and dust from scattering. In the present embodiment, it is assumed that a diaphragm type coupling is used as the coupling 401. At the time of implementation, the type and specifications of the coupling 401 are not particularly limited.
 カップリング用カバー1は、カップリング401の外周側に配置される筒状の周壁21(以下「カバー周壁21」と呼ぶこともある)の軸方向両端部にそれぞれフランジ状の端壁31を設けた形状のカバー本体11を備え、このカバー本体11の内部にカップリング401を回転可能に収容する。筒状の周壁21には、その軸方向中央であって円周上一箇所に、カバー本体11の内外を連通する通気孔(排出口)22が設けられている。フランジ状の端壁31のそれぞれその中心軸線上には、駆動軸及び従動軸を回転可能に挿通する軸孔32が設けられている。 The coupling cover 1 is provided with flange-shaped end walls 31 at both axial ends of a cylindrical peripheral wall 21 (hereinafter also referred to as “cover peripheral wall 21”) arranged on the outer peripheral side of the coupling 401. The cover body 11 having a curved shape is provided, and the coupling 401 is rotatably accommodated inside the cover body 11. A vent hole (exhaust port) 22 that communicates the inside and the outside of the cover body 11 is provided at the axial center of the cylindrical peripheral wall 21 and at one location on the circumference. A shaft hole 32 through which the drive shaft and the driven shaft are rotatably inserted is provided on each of the central axes of the flange-shaped end walls 31.
 カップリング401やカップリング用カバー1は、カップリング401の回転に伴って高温になることがある。本実施の形態のカバー1は、放熱機能を持っている。放熱機能を持たせたカップリング用カバー1の各種の実施の形態1-35を以下に紹介する。 The coupling 401 and the coupling cover 1 may become hot as the coupling 401 rotates. The cover 1 of the present embodiment has a heat dissipation function. Various embodiments 1-35 of the coupling cover 1 having a heat radiation function will be introduced below.
実施の形態1
 図1(A)(B)に示すように、カバー本体11に複数枚の放熱用のフィン41が設けられている。フィン41は、カバー周壁21の周面に沿った環状の形状を有し、断面三角形に形成されている。このような形状のフィン41は、軸方向に一定のピッチでカバー周壁21の外周面に取り付けられている。したがってカバー周壁21の外周面には、複数枚のフィン41が規則的に配列されている。カバー周壁21へのフィン41の取付けは、例えば溶接による。
Embodiment 1
As shown in FIGS. 1A and 1B, the cover body 11 is provided with a plurality of fins 41 for heat dissipation. The fin 41 has an annular shape along the peripheral surface of the cover peripheral wall 21, and has a triangular cross section. The fins 41 having such a shape are attached to the outer peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction. Therefore, a plurality of fins 41 are regularly arranged on the outer peripheral surface of the cover peripheral wall 21. The fin 41 is attached to the cover peripheral wall 21 by welding, for example.
 実施に際しては、フィン41はカバー本体11に一体に設けられていても良い。フィン41がカバー本体11に一体に設けられていても良いことは、以下に示す各種の実施の形態でも共通である。 In implementation, the fin 41 may be integrally provided on the cover body 11. The fact that the fins 41 may be integrally provided on the cover body 11 is common to various embodiments described below.
実施の形態2
 図2(A)(B)に示すように、カバー本体11に複数枚の放熱用のフィン41が設けられている。フィン41は、カバー周壁21の周面に沿った環状の形状を有し、断面長方形に形成されている。このような形状のフィン41は、軸方向に一定のピッチでカバー周壁21の外周面に取り付けられている。したがってカバー周壁21の外周面には、複数枚のフィン41が規則的に配列されている。
Embodiment 2
As shown in FIGS. 2A and 2B, the cover body 11 is provided with a plurality of fins 41 for heat dissipation. The fin 41 has an annular shape along the peripheral surface of the cover peripheral wall 21 and has a rectangular cross section. The fins 41 having such a shape are attached to the outer peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction. Therefore, a plurality of fins 41 are regularly arranged on the outer peripheral surface of the cover peripheral wall 21.
実施の形態3
 図3(A)(B)に示すように、カバー本体11に複数枚の放熱用のフィン41が設けられている。フィン41は、カバー周壁21の周面に沿った環状の形状を有し、断面長方形に形成されている。このような形状のフィン41は、軸方向に一定のピッチでカバー周壁21の外周面および内周面にそれぞれ取り付けられている。したがってカバー周壁21の外周面および内周面には、複数枚のフィン41が規則的に配列されている。
Embodiment 3
As shown in FIGS. 3A and 3B, the cover body 11 is provided with a plurality of fins 41 for heat dissipation. The fin 41 has an annular shape along the peripheral surface of the cover peripheral wall 21 and has a rectangular cross section. The fins 41 having such a shape are attached to the outer peripheral surface and the inner peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction. Therefore, a plurality of fins 41 are regularly arranged on the outer peripheral surface and the inner peripheral surface of the cover peripheral wall 21.
 実施に際しては、フィン41はカバー周壁21の内周面のみに取り付けられても良い。 In implementation, the fin 41 may be attached only to the inner peripheral surface of the cover peripheral wall 21.
 上記実施の形態1、2および3によれば、カバー本体11の周壁21からフィン41へ一部の熱が伝えられ、カバー1全体としての放熱面積も増大する。したがってカバー本体11の放熱量が増大し、カップリング401によるエアの撹拌抵抗がもたらすカップリング401およびカップリングカバー1の発熱温度を低下させることができる。その結果カップリング401およびカップリングカバー1の低温化が実現する。 According to the first, second and third embodiments, part of the heat is transferred from the peripheral wall 21 of the cover body 11 to the fins 41, and the heat dissipation area of the cover 1 as a whole increases. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be lowered. As a result, the temperature of the coupling 401 and the coupling cover 1 can be lowered.
 上記実施の形態1、2および3において、フィン41は帯状の素材をコイル状に巻回したものであっても良い。 In the first, second and third embodiments described above, the fin 41 may be formed by winding a band-shaped material into a coil.
実施の形態4
 図4(A)(B)に示すように、本実施の形態のカップリング用カバー1は、上記実施の形態3の構成に加えて、カバー周壁21の内周面に設けられたフィン41の角度を、軸方向と直交する角度に対して傾斜させている。説明の便宜上、フィン41が傾斜する角度を傾斜角度θとする。傾斜角度θは、次のように説明される。
Embodiment 4
As shown in FIGS. 4A and 4B, in addition to the configuration of the third embodiment, the coupling cover 1 of the present embodiment has fins 41 provided on the inner peripheral surface of the cover peripheral wall 21. The angle is inclined with respect to the angle orthogonal to the axial direction. For convenience of description, the angle at which the fin 41 is inclined is referred to as an inclination angle θ 1 . The tilt angle θ 1 is explained as follows.
 カバー本体11の内部のエアは、カップリング401の回転に伴って一定の方向に緩やかに流動する。フィン41の傾斜角度θは、カバー本体11の内部で生じたエアの流れを通気孔22の方向に導くように、通気孔22の中心軸線を含むカバー周壁21の軸に対して直角な平面(以下「軸直角平面21A」と呼ぶ)に対して設定された角度である。より詳しくは、傾斜角度θは、フィン41と上記軸直角平面21Aとの軸方向間隔が通気孔22と同じ円周上一箇所の位置で最も小さく(L)、その180度対称位置で最も大きく(L)なるように設定されている。換言すると、傾斜角度θは、カバー周壁21の内周面の円周上を通気孔22に近付くに従って、フィン41と軸直角平面21Aとの間の軸方向間隔が小さくなる向きに設定されている。 The air inside the cover body 11 gently flows in a certain direction as the coupling 401 rotates. The inclination angle θ 1 of the fin 41 is a plane perpendicular to the axis of the cover peripheral wall 21 including the central axis of the vent hole 22 so as to guide the air flow generated in the cover body 11 toward the vent hole 22. It is an angle set with respect to (hereinafter referred to as “axis orthogonal plane 21A”). More specifically, the inclination angle θ 1 is the smallest at a position on the same circumference where the axial distance between the fin 41 and the axis-perpendicular plane 21A is the same as the ventilation hole 22 (L 1 ), and at the 180-degree symmetrical position. It is set to be the largest (L 2 ). In other words, the inclination angle θ 1 is set such that the axial distance between the fin 41 and the axis-perpendicular plane 21A becomes smaller as the inner circumferential surface of the cover peripheral wall 21 approaches the ventilation hole 22 on the circumference. There is.
 この構成によれば、カバー本体11内部のエアの流れがフィン41を案内として通気孔22の方向に導かれるため、外気に対し比較的高熱のエアが通気孔22からカバー1外部へ放出されやすい。したがってカバー本体11の放熱量が増大し、カップリング401によるエアの撹拌抵抗がもたらすカップリング401およびカップリングカバー1の発熱温度をより一層低下させることができる。 According to this configuration, the air flow inside the cover body 11 is guided in the direction of the ventilation hole 22 by using the fins 41 as guides, so that the air having a relatively high heat relative to the outside air is easily released from the ventilation hole 22 to the outside of the cover 1. .. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be further reduced.
実施の形態5
 図5(A)(B)に示すように、本実施の形態のカップリング用カバー1は、上記実施の形態1~4の構成に加えて、カバー周壁21の内周面であってエアの流れにおける通気孔22の下流側にバッフルプレート51を設けている。図5(B)に示すように、本実施の形態ではエアが右回り、つまり時計方向に流れるので、図5(B)中、バッフルプレート51は通気孔22の右側に設けられている。
Embodiment 5
As shown in FIGS. 5 (A) and 5 (B), in addition to the configurations of the first to fourth embodiments, the coupling cover 1 of the present embodiment has the same structure as that of the inner peripheral surface of the cover peripheral wall 21. A baffle plate 51 is provided on the downstream side of the ventilation hole 22 in the flow. As shown in FIG. 5B, since the air flows clockwise, that is, in the clockwise direction in the present embodiment, the baffle plate 51 is provided on the right side of the ventilation hole 22 in FIG. 5B.
 この構成によれば、フィン41によって導かれるエアの流れがバッフルプレート51に当たって通気孔22へ向けて方向転換するため(矢印C)、エアが通気孔22から一層放出されやすくなる。したがってカバー本体11の放熱量が増大し、カップリング401によるエアの撹拌抵抗がもたらすカップリング401およびカップリングカバー1の発熱温度をより一層低下させることができる。 According to this configuration, the air flow guided by the fins 41 hits the baffle plate 51 and changes its direction toward the ventilation hole 22 (arrow C), so that the air is more easily discharged from the ventilation hole 22. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be further reduced.
 本実施の形態では上記実施の形態4にバッフルプレート51を加えた構成例を示したが、上記実施の形態1~3にバッフルプレート51を加えても良いことは言うまでもない。 In the present embodiment, the configuration example in which the baffle plate 51 is added to the above-mentioned Embodiment 4 has been shown, but it goes without saying that the baffle plate 51 may be added to the above-mentioned Embodiments 1 to 3.
実施の形態6
 上記実施の形態5では、バッフルプレート51が通気孔22の中心軸線を含むカバー周壁21の軸を通る軸と平行な方向の平面(以下「軸方向平面21B」と呼ぶ)と平行な向きに配置されている一例を示した。図6に示すように、本実施の形態のカップリング用カバー1は、バッフルプレート51を、軸方向平面21Bに対して傾斜角度θをもって配置している。傾斜角度θは、図6中、軸方向平面21Bに対してカバー本体11内でエアの流れる方向に傾く角度に設定されている。
Sixth Embodiment
In the fifth embodiment, the baffle plate 51 is arranged in a direction parallel to a plane parallel to an axis passing through the axis of the cover peripheral wall 21 including the central axis of the vent hole 22 (hereinafter, referred to as “axial plane 21B”). One example has been shown. As shown in FIG. 6, in the coupling cover 1 of the present embodiment, the baffle plate 51 is arranged at an inclination angle θ 2 with respect to the axial plane 21B. The inclination angle θ 2 is set to an angle inclined with respect to the axial plane 21 </ b > B in the air flow direction in the cover body 11 in FIG. 6.
 この構成によれば、バッフルプレート51の傾斜角度θによって、通気孔22へ向けて流れるエア流量がさらに増大する。したがってカバー本体11の放熱量が増大し、カップリング401によるエアの撹拌抵抗がもたらすカップリング401およびカップリングカバー1の発熱温度をより一層低下させることができる。 According to this configuration, the flow rate of air flowing toward the ventilation hole 22 is further increased due to the inclination angle θ 2 of the baffle plate 51. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be further reduced.
実施の形態7
 上記実施の形態5では、バッフルプレート51が平板状に形成されている一例を示した。図7に示すように、本実施の形態のカップリング用カバー1は、バッフルプレート51を、その高さ方向に湾曲する曲面状に形成している。バッフルプレート51の高さ方向は、カバー周壁21の径方向、図7中の上下方向である。その結果バッフルプレート51は、通気孔22から排気されるエアを受ける側に、所定のアール寸法Rを有する凹面形状のエア受け面52を備える。
Embodiment 7
The fifth embodiment has shown an example in which the baffle plate 51 is formed in a flat plate shape. As shown in FIG. 7, in the coupling cover 1 of the present embodiment, the baffle plate 51 is formed in a curved surface shape that curves in the height direction. The height direction of the baffle plate 51 is the radial direction of the cover peripheral wall 21, that is, the vertical direction in FIG. 7. As a result, the baffle plate 51 is provided with a concave air receiving surface 52 having a predetermined radius dimension R on the side receiving the air discharged from the ventilation hole 22.
 この構成によれば、エア受け面52の凹曲面状によってエアの流れが通気孔22へ向けて方向転換するため、通気孔22へ向けて流れるエア流量がさらに増大する。したがってカバー本体11の放熱量が増大し、カップリング401によるエアの撹拌抵抗がもたらすカップリング401およびカップリングカバー1の発熱温度をより一層低下させることができる。 According to this configuration, since the air flow direction is changed toward the ventilation hole 22 due to the concave curved surface shape of the air receiving surface 52, the air flow rate flowing toward the ventilation hole 22 is further increased. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be further reduced.
実施の形態8
 上記実施の形態5では、図8(A)に示すように、バッフルプレート51が平板1枚によって形成されている一例を示した。図8(B)に示すように、本実施の形態のカップリング用カバー1のバッフルプレート51は、平板2枚をV字状に配置して形成されている。2枚のバッフルプレート51は、それぞれ平面円形の通気孔22の接線方向に配置されている。その結果バッフルプレート51は、通気孔22から排気されるエアを受ける側に、V字状に囲まれたエア受け面52を備える。
Embodiment 8
In the fifth embodiment, as shown in FIG. 8A, the baffle plate 51 is formed of one flat plate. As shown in FIG. 8B, the baffle plate 51 of the coupling cover 1 of the present embodiment is formed by arranging two flat plates in a V shape. The two baffle plates 51 are arranged in the tangential direction of the ventilation holes 22 each having a circular plane shape. As a result, the baffle plate 51 is provided with an air receiving surface 52 surrounded by a V shape on the side receiving the air exhausted from the ventilation holes 22.
 この構成によれば、エア受け面52のV字形状によってエアの流れが通気孔22へ向けて方向転換するため、通気孔22へ向けて流れるエア流量がさらに増大する。したがってカバー本体11の放熱量が増大し、カップリング401によるエアの撹拌抵抗がもたらすカップリング401およびカップリングカバー1の発熱温度をより一層低下させることができる。 According to this configuration, the V-shape of the air receiving surface 52 changes the direction of the air flow toward the ventilation hole 22, so that the flow rate of the air flowing toward the ventilation hole 22 is further increased. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be further reduced.
 実施に際しては、2枚のバッフルプレート51は、V字状に形成された1枚のバッフルプレート51であっても良い。 In implementation, the two baffle plates 51 may be one baffle plate 51 formed in a V shape.
実施の形態9
 上記実施の形態5では、図8(A)に示すように、バッフルプレート51が平板状に形成されている一例を示した。図8(C)に示すように、本実施の形態のカップリング用カバー1のバッフルプレート51は、その幅方向に湾曲する曲面状に形成されている。バッフルプレート51の幅方向は、カバー周壁21の周方向、図8(C)中の上下方向である。その結果バッフルプレート51は、通気孔22から排気されるエアを受ける側に、所定のアール寸法を有するエア受け面52を備える。エア受け面52は、平面円形の通気孔22の開口周縁に沿って配置されている。
Ninth Embodiment
In the fifth embodiment, as shown in FIG. 8A, an example in which the baffle plate 51 is formed in a flat plate shape is shown. As shown in FIG. 8C, the baffle plate 51 of the coupling cover 1 according to the present embodiment is formed in a curved shape that curves in the width direction. The width direction of the baffle plate 51 is the circumferential direction of the cover peripheral wall 21, that is, the vertical direction in FIG. 8C. As a result, the baffle plate 51 is provided with an air receiving surface 52 having a predetermined radius dimension on the side receiving the air exhausted from the ventilation holes 22. The air receiving surface 52 is arranged along the opening peripheral edge of the ventilation hole 22 having a circular plane shape.
 この構成によれば、エア受け面52の曲面形状によってエアの流れが通気孔22へ向けて方向転換するため、通気孔22へ向けて流れるエア流量がさらに増大する。したがってカバー本体11の放熱量が増大し、カップリング401によるエアの撹拌抵抗がもたらすカップリング401およびカップリングカバー1の発熱温度をより一層低下させることができる。 According to this configuration, since the air flow changes its direction toward the ventilation hole 22 due to the curved shape of the air receiving surface 52, the flow rate of the air flowing toward the ventilation hole 22 further increases. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be further reduced.
実施の形態10
 図9(A)に示すように、本実施の形態では、カバー本体11に凹凸形状を有する突起61が設けられている。突起61は放熱用に設けられた放熱体として複数設けられており、軸方向および周方向に一定のピッチでカバー周壁21の内周面に規則的に配置されている。
Embodiment 10
As shown in FIG. 9A, in the present embodiment, the cover body 11 is provided with the protrusion 61 having an uneven shape. A plurality of protrusions 61 are provided as a radiator provided for heat dissipation, and are regularly arranged on the inner peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction and the circumferential direction.
 この構成によれば、カバー本体11の周壁21から突起61へ一部の熱が伝えられ、カバー1全体としての放熱面積も増大する。したがってカバー本体11の放熱量が増大し、カップリング401によるエアの撹拌抵抗がもたらすカップリング401およびカップリングカバー1の発熱温度を低下させることができる。その結果カップリング401およびカップリングカバー1の低温化が実現する。 According to this configuration, part of the heat is transferred from the peripheral wall 21 of the cover body 11 to the protrusions 61, and the heat dissipation area of the cover 1 as a whole is increased. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be lowered. As a result, the temperature of the coupling 401 and the coupling cover 1 can be lowered.
 実施に際しては、突起61はカバー周壁21の外周面に設けられても良く、カバー周壁21の内周面および外周面の双方に設けられても良い。突起61はランダムに配置されても良い。突起61はこれに代えて凹部であっても良く、この場合にはカバー1全体としての放熱面積が増大するため、放熱量が増大し、カップリング401やカバー1自体の低温化を実現することが可能である。 In implementation, the protrusion 61 may be provided on the outer peripheral surface of the cover peripheral wall 21, or may be provided on both the inner peripheral surface and the outer peripheral surface of the cover peripheral wall 21. The protrusions 61 may be randomly arranged. The protrusion 61 may be a recess instead of this, and in this case, the heat dissipation area of the cover 1 as a whole increases, so that the amount of heat dissipation increases and the temperature of the coupling 401 and the cover 1 itself is lowered. Is possible.
実施の形態11
 図9(B)または(C)に示すように、本実施の形態では、上記実施の形態10の構成に加えて、突起61が複数一列に並べられて凹凸形状列62を形成しており、この凹凸形状列62は複数並べられて配列されている。凹凸形状列62は、本実施の形態では、複数の突起61が矢印D方向に一列に並べられた形態を有している。実施に際しては、複数の突起61は一列に限らず、複数列に並べられて凹凸形状列62を形成する構成であってもよい。
Eleventh Embodiment
As shown in FIG. 9 (B) or (C), in the present embodiment, in addition to the configuration of the above-described tenth embodiment, a plurality of protrusions 61 are arranged in a row to form a concave-convex shape row 62, A plurality of the uneven shape rows 62 are arranged side by side. In the present embodiment, the uneven shape row 62 has a form in which the plurality of protrusions 61 are arranged in a line in the direction of arrow D. At the time of implementation, the plurality of protrusions 61 are not limited to one row, and may be arranged in a plurality of rows to form the concavo-convex shape row 62.
 カバー本体11の内部のエアは、カップリング401の回転に伴って一定の方向に緩やかに流動する。凹凸形状列62は、カバー本体11内部のエアの流れを通気孔22へ導くように、軸直角平面21Aに対して傾斜している。このような凹凸形状列62の傾斜角度は、上記実施の形態4におけるフィン41と同様に設定されている。 The air inside the cover body 11 gently flows in a certain direction as the coupling 401 rotates. The concavo-convex shape row 62 is inclined with respect to the axis-perpendicular plane 21A so as to guide the air flow inside the cover body 11 to the ventilation hole 22. The inclination angle of such a concavo-convex shape row 62 is set similarly to the fin 41 in the fourth embodiment.
 この構成によれば、カバー本体11内部のエアの流れが凹凸形状列62に案内され、通気孔22の方向に導かれるため(矢印D)、エアが通気孔22から放出されやすい。したがってカバー本体11の放熱量が増大し、カップリング401によるエアの撹拌抵抗がもたらすカップリング401およびカップリングカバー1の発熱温度をより一層低下させることができる。 According to this configuration, the air flow inside the cover body 11 is guided by the concave-convex row 62 and guided in the direction of the ventilation hole 22 (arrow D), so that the air is easily discharged from the ventilation hole 22. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be further reduced.
実施の形態12
 図10(A)に示すように、本実施の形態では、カバー本体11に放熱用のフィン41が設けられている。フィン41はカバー本体11の周壁21に沿って環状に形成されている。このようなフィン41は複数設けられ、軸方向(図10(A)中で紙面の直交方向)に一定のピッチでカバー周壁21の内周面に取り付けられている。フィン41の表面には、凹凸形状を有する放熱用の放熱体として突起61が設けられ、突起61は複数、径方向および周方向に一定のピッチで配列されている。
Twelfth Embodiment
As shown in FIG. 10A, in the present embodiment, the cover body 11 is provided with fins 41 for heat dissipation. The fin 41 is formed in an annular shape along the peripheral wall 21 of the cover body 11. A plurality of such fins 41 are provided and are attached to the inner peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction (the direction orthogonal to the paper surface in FIG. 10A). Protrusions 61 are provided on the surface of the fin 41 as a radiator for radiating heat having an uneven shape, and a plurality of protrusions 61 are arranged at a constant pitch in the radial direction and the circumferential direction.
 この構成によれば、カバー本体11の周壁21からフィン41へ一部の熱が伝えられ、フィン41から突起61へ一部の熱が伝えられる。カバー1全体としての放熱面積も増大する。したがってカバー本体11の放熱量が増大し、カップリング401によるエアの撹拌抵抗がもたらすカップリング401およびカップリングカバー1の発熱温度を低下させることができる。その結果カップリング401およびカップリングカバー1の低温化が実現する。 According to this configuration, part of the heat is transferred from the peripheral wall 21 of the cover body 11 to the fins 41, and part of the heat is transferred from the fins 41 to the protrusions 61. The heat dissipation area of the cover 1 as a whole also increases. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be lowered. As a result, the temperature of the coupling 401 and the coupling cover 1 can be lowered.
 実施に際しては、突起61はランダムに配置されても良い。突起61はこれに代えて凹部であっても良い。 In the implementation, the protrusions 61 may be randomly arranged. The protrusion 61 may be a recess instead of this.
実施の形態13
 上記実施の形態12では、突起61が複数一列に並べられて凹凸形状列62を形成し、この凹凸形状列62がカバー周壁21の径方向に向けて設けられている一例を示した。図10(B)に示すように、本実施の形態は、凹凸形状列62の向きをスパイラル状に設定している。
Embodiment 13
In the above-described twelfth embodiment, an example is shown in which the protrusions 61 are arranged in a line to form the concavo-convex shape row 62, and the concavo-convex shape row 62 is provided in the radial direction of the cover peripheral wall 21. As shown in FIG. 10B, in the present embodiment, the direction of the concave-convex shape row 62 is set to be spiral.
 この構成によれば、凹凸形状列62によって案内されるエアの流れがカバー周壁21の内周面に対して斜めに当たるため、カバー本体11の内部でエアが周方向に流動しやすくなる。したがってカバー本体11の放熱量が増大し、カップリング401によるエアの撹拌抵抗がもたらすカップリング401およびカップリングカバー1の発熱温度をより一層低下させることができる。 According to this configuration, the air flow guided by the concave-convex row 62 impinges obliquely on the inner peripheral surface of the cover peripheral wall 21, so that the air easily flows in the circumferential direction inside the cover body 11. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be further reduced.
実施の形態14
 図11(A)(B)に示すように、本実施の形態では、カバー本体11に複数枚の放熱用のフィン41が設けられている。フィン41は、カバー周壁21の周面に沿った環状の形状を有し、断面長方形に形成されている。このような形状のフィン41は、軸方向に一定のピッチでカバー周壁21の外周面および内周面に取り付けられている。したがってカバー周壁21の外周面には、複数枚のフィン41が規則的に配列されている。カバー周壁21へのフィン41の取付けは、例えば溶接による。
Embodiment 14
As shown in FIGS. 11A and 11B, in this embodiment, the cover body 11 is provided with a plurality of fins 41 for heat dissipation. The fin 41 has an annular shape along the peripheral surface of the cover peripheral wall 21 and has a rectangular cross section. The fins 41 having such a shape are attached to the outer peripheral surface and the inner peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction. Therefore, a plurality of fins 41 are regularly arranged on the outer peripheral surface of the cover peripheral wall 21. The fin 41 is attached to the cover peripheral wall 21 by welding, for example.
 カバー本体11には、凹凸形状を有する突起61も設けられている。突起61は放熱用に設けられた放熱体として複数設けられており、軸方向および周方向に一定のピッチでカバー周壁21の内周面に規則的に配置されている。 The cover body 11 is also provided with a protrusion 61 having an uneven shape. A plurality of protrusions 61 are provided as a radiator provided for heat dissipation, and are regularly arranged on the inner peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction and the circumferential direction.
 突起61は、フィン41の表面にも複数設けられている。フィン41に設けられた突起61も、凹凸形状を有する放熱用の放熱体である。 A plurality of protrusions 61 are also provided on the surface of the fin 41. The protrusion 61 provided on the fin 41 is also a radiator for radiating heat having an uneven shape.
 この構成によれば、カバー本体11の周壁21からフィン41へ一部の熱が伝えられ、フィン41から突起61へ一部の熱が伝えられる。またカバー本体11の周壁21から突起61へも一部の熱が伝えられる。さらにカバー1全体として放熱面積が増大する。したがってカバー本体11の放熱量が増大し、カップリング401によるエアの撹拌抵抗がもたらすカップリング401およびカップリングカバー1の発熱温度を低下させることができる。その結果カップリング401およびカップリングカバー1の低温化が実現する。 According to this configuration, part of the heat is transferred from the peripheral wall 21 of the cover body 11 to the fins 41, and part of the heat is transferred from the fins 41 to the protrusions 61. Part of the heat is also transferred from the peripheral wall 21 of the cover body 11 to the protrusions 61. Further, the heat dissipation area of the entire cover 1 increases. Therefore, the heat radiation amount of the cover body 11 is increased, and the heat generation temperature of the coupling 401 and the coupling cover 1 caused by the air agitation resistance of the coupling 401 can be lowered. As a result, the temperature of the coupling 401 and the coupling cover 1 can be lowered.
実施の形態15
 図12(A)(B)に示すように、本実施の形態では、カバー本体11に複数枚の放熱用のフィン41が設けられている。フィン41は、カバー周壁21の周面に沿った環状の形状を有し、断面長方形に形成されている。このような形状のフィン41は、軸方向に一定のピッチでカバー周壁21の外周面および内周面に取り付けられている。したがってカバー周壁21の外周面には、複数枚のフィン41が規則的に配列されている。カバー周壁21へのフィン41の取付けは、例えば溶接による。
Fifteenth Embodiment
As shown in FIGS. 12A and 12B, in the present embodiment, the cover body 11 is provided with a plurality of fins 41 for heat dissipation. The fin 41 has an annular shape along the peripheral surface of the cover peripheral wall 21 and has a rectangular cross section. The fins 41 having such a shape are attached to the outer peripheral surface and the inner peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction. Therefore, a plurality of fins 41 are regularly arranged on the outer peripheral surface of the cover peripheral wall 21. The fin 41 is attached to the cover peripheral wall 21 by welding, for example.
 カバー本体11には、凹凸形状を有する突起61も設けられている。突起61は放熱用に設けられた放熱体として複数設けられており、軸方向および周方向に一定のピッチでカバー周壁21の内周面に規則的に配置されている。 The cover body 11 is also provided with a protrusion 61 having an uneven shape. A plurality of protrusions 61 are provided as a radiator provided for heat dissipation, and are regularly arranged on the inner peripheral surface of the cover peripheral wall 21 at a constant pitch in the axial direction and the circumferential direction.
 突起61は、フィン41の表面にも複数設けられている。フィン41に設けられた突起61も、凹凸形状を有する放熱用の放熱体である。 A plurality of protrusions 61 are also provided on the surface of the fin 41. The protrusion 61 provided on the fin 41 is also a radiator for radiating heat having an uneven shape.
 本実施の形態のカップリング用カバー1は、カバー周壁21の内周面に設けられたフィン41および複数の突起61による凹凸形状列62の角度を、軸方向と直交する角度に対して傾斜させている。フィン41及び凹凸形状列62の傾斜角度は、次のように説明される。 In the coupling cover 1 of the present embodiment, the angle of the concave-convex shape row 62 formed by the fins 41 and the plurality of protrusions 61 provided on the inner peripheral surface of the cover peripheral wall 21 is inclined with respect to the angle orthogonal to the axial direction. ing. The inclination angles of the fins 41 and the concavo-convex shape row 62 are described as follows.
 カバー本体11の内部のエアは、カップリング401の回転に伴って一定の方向に緩やかに流動する。フィン41および凹凸形状列62の傾斜角度は、カバー本体11の内部で生じたエアの流れを通気孔22の方向へ導くように、通気孔22の中心軸線を含むカバー周壁21の軸直角平面21Aに対して設定された角度である。このときの傾斜角度は、上記実施の形態4におけるフィン41および上記実施の形態11における凹凸形状列62と同様に設定されている。フィン41の表面に設けられた突起61は、上記実施の形態13と同様に、スパイラル状に形成されている。 The air inside the cover body 11 gently flows in a certain direction as the coupling 401 rotates. The inclination angles of the fins 41 and the row of concavo-convex shapes 62 are such that the air flow generated inside the cover body 11 is guided in the direction of the ventilation holes 22. Is the angle set for. The inclination angle at this time is set similarly to the fin 41 in the fourth embodiment and the concave-convex shape row 62 in the eleventh embodiment. The protrusion 61 provided on the surface of the fin 41 is formed in a spiral shape as in the thirteenth embodiment.
 以上、実施の形態1~15について説明した。これらの各実施の形態で説明した放熱用の放熱体が有する凹凸形状は、突起61に代えて凹部であっても良い。また、放熱体の凹凸形状は、突起61および凹部の組み合わせであっても良い。 Above, the first to fifteenth embodiments have been described. The concavo-convex shape of the radiator for heat dissipation described in each of these embodiments may be a recess instead of the protrusion 61. Further, the uneven shape of the heat radiator may be a combination of the protrusion 61 and the recess.
 以下に説明する実施の形態16~35は、上記各実施の形態で放熱用の放熱体が有する凹凸形状として設けられた突起61の各種の実施の形態である。これらの突起61も、凹部または突起61及び凹部の組合せであっても良い。実施の形態16~35を示す図13(A)(B)(C)(D)~図23(A)(B)(C)(D)(E)(F)中、矢印はエアの流れの向きを示している。 The sixteenth to thirty-fifth embodiments described below are various embodiments of the protrusion 61 provided as the uneven shape of the radiator for heat dissipation in the above-described respective embodiments. These protrusions 61 may also be recesses or a combination of protrusions 61 and recesses. In FIGS. 13 (A), (B), (C), (D) to FIGS. 23 (A), (B), (C), (D), (E), and (F) showing Embodiments 16 to 35, arrows indicate air flows. Shows the direction of.
実施の形態16
 図13(A)に示すように、突起61の平面形状が円形とされている。
Sixteenth Embodiment
As shown in FIG. 13A, the projection 61 has a circular planar shape.
実施の形態17
 図13(B)(C)(D)に示すように、突起61の平面形状が、円形を直径線63で裁断した半円形とされている。直径線63はエアの流れに対し平行な向きとされ、或いはほぼ平行な向きとされている。
Seventeenth Embodiment
As shown in FIGS. 13B, 13 </ b> C, and 13 </ b> D, the planar shape of the protrusion 61 is a semicircle obtained by cutting a circle with a diameter line 63. The diameter line 63 is oriented parallel to or substantially parallel to the flow of air.
実施の形態18
 図14(A)(B)(C)に示すように、突起61の平面形状が、円形を直径線63で裁断した半円形とされている。直径線63はエアの流れの上流側に配置され、エアの流れに対し直角な向きとされ、或いはほぼ直角な向きとされている。
Embodiment 18
As shown in FIGS. 14 (A), (B), and (C), the planar shape of the protrusion 61 is a semicircle obtained by cutting a circle with a diameter line 63. The diameter line 63 is arranged on the upstream side of the air flow, and is oriented at a right angle to the air flow, or at a substantially right angle.
実施の形態19
 図15(A)(B)(C)に示すように、突起61の平面形状が楕円形とされている。楕円形はその長径線64をエアの流れに対し平行な向きとし、或いはほぼ平行な向きとしている。
Embodiment 19
As shown in FIGS. 15A, 15B, and 15C, the projection 61 has an elliptical planar shape. The elliptical shape has its major axis 64 oriented parallel or substantially parallel to the air flow.
実施の形態20
 図16(A)(B)(C)に示すように、突起61の平面形状が、楕円形を長径線64で裁断した楕円半分の形状とされている。長径線64はエアの流れに対し平行な向きとされ、或いはほぼ平行な向きとされている。
Embodiment 20
As shown in FIGS. 16 (A), (B), and (C), the planar shape of the protrusion 61 is an elliptical half shape obtained by cutting an elliptical shape with a long diameter line 64. The long diameter line 64 is oriented parallel to the flow of air, or is oriented substantially parallel to it.
実施の形態21
 図16(D)(E)(F)に示すように、突起61の平面形状が、楕円形を短径線65で裁断した楕円半分の形状とされている。短径線65はエアの流れの上流側に配置され、エアの流れに対し直角な向きとされ、或いはほぼ直角な向きとされている。
Twenty-first embodiment
As shown in FIGS. 16D, 16E, and 16F, the planar shape of the protrusion 61 is an elliptical half shape obtained by cutting the elliptical shape with the minor axis line 65. The short-diameter line 65 is arranged on the upstream side of the air flow, and is oriented at a right angle to the air flow, or at a substantially right angle.
実施の形態22
 図17(A)(B)(C)に示すように、突起61の平面形状が、楕円形を短径線で裁断した楕円半分の部分66と三角形の部分67とを組み合わせ、楕円形の短径線と三角形の底辺とを重ね合わせた形状とされている。突起61は三角形の部分67をエアの流れの上流の方向に向けている。突起61の平面形状は線対称形状とされ、その中心線68をエアの流れに対し平行な向きとし、或いはほぼ平行な向きとしている。
Twenty-second Embodiment
As shown in FIGS. 17 (A), (B), and (C), the planar shape of the protrusion 61 is a combination of an elliptical half portion 66 obtained by cutting an elliptical shape with a short-diameter line and a triangular portion 67. It has a shape in which the radial line and the base of the triangle are overlapped. The protrusion 61 directs the triangular portion 67 in the upstream direction of the air flow. The planar shape of the protrusion 61 is a line-symmetrical shape, and its center line 68 is oriented parallel to or substantially parallel to the air flow.
実施の形態23
 図17(D)(E)(F)に示すように、突起61の平面形状が、楕円形を短径線で裁断した楕円半分の部分66と三角形の部分67とを組み合わせ、楕円形の短径線と三角形の底辺とを重ね合わせた形状とされている。突起61は三角形の部分67をエアの流れの下流の方向に向けている。突起61の平面形状は線対称形状とされ、その中心線68をエアの流れに対し平行な向きとし、或いはほぼ平行な向きとしている。
Twenty-third Embodiment
As shown in FIGS. 17 (D), (E), and (F), the planar shape of the protrusion 61 is a combination of an ellipse half portion 66 obtained by cutting an ellipse with a short diameter line and a triangular portion 67. It has a shape in which the radial line and the base of the triangle are overlapped. The protrusion 61 directs the triangular portion 67 in the downstream direction of the air flow. The planar shape of the protrusion 61 is a line-symmetrical shape, and its center line 68 is oriented parallel to or substantially parallel to the air flow.
実施の形態24
 図18(A)(B)(C)に示すように、突起61の平面形状が菱形とされている。菱形はその長い方の対角線69をエアの流れに対し平行な向きとし、或いはほぼ平行な向きとしている。
Twenty-fourth Embodiment
As shown in FIGS. 18A, 18B, and 18C, the projection 61 has a diamond-shaped planar shape. The rhombus has its longer diagonal 69 oriented parallel or substantially parallel to the air flow.
実施の形態25
 図18(D)(E)(F)に示すように、突起61の平面形状が、菱形をその長い方の対角線69で裁断した菱形半分の三角形状とされている。対角線69はエアの流れに対し平行な向きとされ、或いはほぼ平行な向きとされている。
Twenty-fifth Embodiment
As shown in FIGS. 18D, 18E and 18F, the projection 61 has a planar shape that is a rhombus half triangular shape obtained by cutting the rhombus with the diagonal line 69 that is the longer side thereof. The diagonal line 69 is oriented parallel to or substantially parallel to the flow of air.
実施の形態26
 図19(A)(B)(C)に示すように、突起61の平面形状が長方形とされている。長方形はその長辺70をエアの流れに対し平行な向きとし、或いはほぼ平行な向きとしている。
Twenty-sixth Embodiment
As shown in FIGS. 19A, 19B, and 19C, the planar shape of the protrusion 61 is rectangular. The rectangular shape has its long side 70 oriented parallel or substantially parallel to the air flow.
実施の形態27
 図19(D)(E)に示すように、突起61の平面形状が平行四辺形とされている。平行四辺形はその短辺71をエアの流れに対し直角な向きとしている。
Twenty-seventh Embodiment
As shown in FIGS. 19D and 19E, the projection 61 has a parallelogram planar shape. The parallelogram has its short side 71 oriented perpendicular to the air flow.
実施の形態28
 図20(A)(B)(C)に示すように、突起61の平面形状が台形とされている。台形はその短い方の底辺72をエアの流れの上流の方向に向けている。底辺72はエアの流れに対し直角な向きとされ、或いはほぼ直角な向きとされている。
Embodiment 28
As shown in FIGS. 20A, 20B and 20C, the projection 61 has a trapezoidal planar shape. The trapezoid has its shorter base 72 oriented upstream of the air flow. The base 72 is oriented at a right angle to the flow of air, or at a substantially right angle.
実施の形態29
 図20(D)(E)(F)に示すように、突起61の平面形状が台形とされている。台形はその短い方の底辺72をエアの流れの下流の方向に向けている。底辺72はエアの流れに対し直角な向きとされ、或いはほぼ直角な向きとされている。
Twenty-ninth embodiment
As shown in FIGS. 20D, 20E, and 20F, the projection 61 has a trapezoidal planar shape. The trapezoid has its shorter base 72 directed downstream of the air flow. The base 72 is oriented at a right angle to the flow of air, or at a substantially right angle.
実施の形態30
 図21(A)(B)(C)に示すように、突起61の平面形状が、台形から三角形を切除した形状とされている。台形と三角形は、台形の長い方の底辺と三角形の底辺とが互いに重なり合うように配置されている。突起61は台形の短い方の底辺をエアの流れの上流側に配置している。突起61の平面形状は線対称形状とされ、その中心線73をエアの流れに対し平行な向きとし、或いはほぼ平行な向きとしている。
Embodiment 30
As shown in FIGS. 21 (A) (B) (C), the planar shape of the protrusion 61 is a trapezoidal shape obtained by cutting a triangle. The trapezoid and the triangle are arranged such that the longer base of the trapezoid and the base of the triangle overlap each other. The protrusion 61 has the shorter base of the trapezoid arranged on the upstream side of the air flow. The planar shape of the protrusion 61 is a line-symmetrical shape, and its center line 73 is oriented parallel to or substantially parallel to the air flow.
実施の形態31
 図21(D)(E)(F)に示すように、突起61の平面形状が、台形から三角形を切除した形状とされている。台形と三角形は、台形の長い方の底辺と三角形の底辺とが互いに重なり合うように配置されている。突起61は台形の短い方の底辺をエアの流れの下流側に配置している。突起61の平面形状は線対称形状とされ、その中心線73をエアの流れに対し平行な向きとし、或いはほぼ平行な向きとしている。
Embodiment 31
As shown in FIGS. 21D, 21E, and 21F, the planar shape of the protrusion 61 is a trapezoidal shape obtained by cutting a triangle. The trapezoid and the triangle are arranged such that the longer base of the trapezoid and the base of the triangle overlap each other. The protrusion 61 has the shorter base of the trapezoid arranged downstream of the air flow. The planar shape of the protrusion 61 is a line-symmetrical shape, and its center line 73 is oriented parallel to or substantially parallel to the air flow.
実施の形態32
 図22(A)(B)(C)に示すように、突起61の平面形状が三角形とされ、さらには二等辺三角形とされている。三角形はその底辺74をエアの流れの下流側に配置し、エアの流れに対し直角な向きとし、或いはほぼ直角な向きとしている。
Twenty-third Embodiment
As shown in FIGS. 22 (A), (B), and (C), the planar shape of the protrusion 61 is a triangle and further isosceles triangle. The triangle has its base 74 arranged on the downstream side of the air flow, and is oriented at a right angle to the air flow or at a substantially right angle.
実施の形態33
 図22(D)(E)(F)に示すように、突起61の平面形状が三角形(二等辺三角形)とされている。三角形はその底辺74をエアの流れの上流側に配置し、エアの流れに対し直角な向きとし、或いはほぼ直角な向きとしている。
Embodiment 33
As shown in FIGS. 22D, 22E, and 22F, the planar shape of the protrusion 61 is a triangle (isosceles triangle). The base 74 of the triangle is located upstream of the air flow and is oriented at a right angle to the air flow or at a substantially right angle.
実施の形態34
 図23(A)(B)(C)に示すように、突起61の平面形状が、高さの高い三角形(二等辺三角形)から高さの低い三角形(二等辺三角形)を切除した形状とされている。両三角形はそれぞれの底辺を互いに重なり合わせている。三角形はその頂点75をエアの流れの上流側へ向けている。突起61の平面形状は線対称形状とされ、その中心線76をエアの流れに対し平行な向きとし、或いはほぼ平行な向きとしている。
Embodiment 34
As shown in FIGS. 23 (A), (B), and (C), the planar shape of the protrusion 61 is a shape obtained by cutting a high-height triangle (isosceles triangle) to a low-height triangle (isosceles triangle). ing. Both triangles have their bases overlapping each other. The triangle has its apex 75 directed upstream of the air flow. The planar shape of the protrusion 61 is a line-symmetrical shape, and its center line 76 is oriented parallel to or substantially parallel to the air flow.
実施の形態35
 図23(D)(E)(F)に示すように、突起61の平面形状が、高さの高い三角形(二等辺三角形)から高さの低い三角形(二等辺三角形)を切除した形状とされている。両三角形はそれぞれの底辺を互いに重なり合わせている。三角形はその頂点75をエアの流れの下流側へ向けている。突起61の平面形状は線対称形状とされ、その中心線76をエアの流れに対し平行な向きとし、或いはほぼ平行な向きとしている。
Embodiment 35
As shown in FIGS. 23D, 23E, and 23F, the projection 61 has a planar shape in which a high-height triangle (isosceles triangle) is cut out from a low-height triangle (isosceles triangle). ing. Both triangles have their bases overlapping each other. The triangle has its apex 75 directed downstream of the air flow. The planar shape of the protrusion 61 is a line-symmetrical shape, and its center line 76 is oriented parallel to or substantially parallel to the air flow.
 上記実施の形態16~35において、突起61はこれに代えて凹部であっても良い。 In the above-described sixteenth to thirty-fifth embodiments, the protrusion 61 may be a recess instead of this.
 1 カップリング用カバー
 11 カバー本体
 21 周壁
 21A 軸直角平面
 22 通気孔
 31 端壁
 32 軸孔
 41 フィン
 51 バッフルプレート
 52 エア受け面
 61 突起(放熱体)
 62 凹凸形状列
 63 直径線
 64 長径線
 65 短径線
 66 部分
 67 部分
 68 中心線
 69 対角線
 70 長辺
 71 短辺
 72 底辺
 73 中心線
 74 底辺
 75 頂点
 76 中心線
 401 カップリング
 θ 傾斜角度
 θ 傾斜角度
1 Cover for Coupling 11 Cover Main Body 21 Peripheral Wall 21A Axis Right Angle Plane 22 Vent Hole 31 End Wall 32 Shaft Hole 41 Fin 51 Baffle Plate 52 Air Receiving Surface 61 Protrusion (Radiator)
62 Concavo-convex shape column 63 Diameter line 64 Long diameter line 65 Short diameter line 66 Part 67 Part 68 Center line 69 Diagonal line 70 Long side 71 Short side 72 Bottom side 73 Center line 74 Bottom side 75 Vertex 76 Center line 401 Coupling θ 1 Inclination angle θ 2 Inclination angle

Claims (16)

  1.  二つの軸を連結するカップリングを回転可能に収容するカバー本体と、
     前記カバー本体に設けられた放熱用のフィンと、
     を備えるカップリング用カバー。
    A cover body that rotatably houses a coupling that connects the two shafts,
    A fin for heat dissipation provided on the cover body,
    Coupling cover with.
  2.  前記カバー本体は、筒状の周壁を備え、
     前記フィンは、前記周壁の周面に沿った環状形状で複数設けられている、
     請求項1に記載のカップリング用カバー。
    The cover body includes a tubular peripheral wall,
    The fins are provided in plural in an annular shape along the peripheral surface of the peripheral wall,
    The cover for coupling according to claim 1.
  3.  前記フィンは、前記周壁の周面に規則的に配列されている、
     請求項2に記載のカップリング用カバー。
    The fins are regularly arranged on the peripheral surface of the peripheral wall,
    The cover for coupling according to claim 2.
  4.  前記周壁は、前記カバー本体の内外を連通する通気孔を備え、
     前記フィンは、前記周壁の内周面に設けられ、前記カバー本体内部に生ずるエアの流れを前記通気孔の方向に導くように、軸に直角な平面に対して傾斜している、
     請求項2に記載のカップリング用カバー。
    The peripheral wall includes a ventilation hole that communicates the inside and outside of the cover body,
    The fin is provided on an inner peripheral surface of the peripheral wall, and is inclined with respect to a plane perpendicular to the axis so as to guide the flow of air generated inside the cover main body in the direction of the vent hole.
    The cover for coupling according to claim 2.
  5.  前記周壁の内周面には、前記カバー本体内部に生ずるエアの流れを前記通気孔から前記カバー本体の外部に向けて方向転換するバッフルプレートが設けられている、
     請求項1に記載のカップリング用カバー。
    The inner peripheral surface of the peripheral wall is provided with a baffle plate that redirects the flow of air generated inside the cover body from the ventilation hole toward the outside of the cover body.
    The cover for coupling according to claim 1.
  6.  前記バッフルプレートは、前記通気孔における前記エアの流れの下流側で前記周壁の内周面から内方に突出している、
     請求項5に記載のカップリング用カバー。
    The baffle plate projects inward from an inner peripheral surface of the peripheral wall on the downstream side of the air flow in the ventilation hole.
    The cover for coupling according to claim 5.
  7.  前記周壁の内周面には、前記フィンが前記通気孔の方向に導く前記エアの流れを前記通気孔から前記カバー本体の外部に向けて方向転換するバッフルプレートが設けられている、
     請求項4に記載のカップリング用カバー。
    The inner peripheral surface of the peripheral wall is provided with a baffle plate that redirects the flow of the air guided by the fins toward the ventilation hole from the ventilation hole to the outside of the cover body.
    The coupling cover according to claim 4.
  8.  前記バッフルプレートは、前記通気孔における前記エアの流れの下流側で前記周壁の内周面から内方に突出している、
     請求項7に記載のカップリング用カバー。
    The baffle plate projects inward from an inner peripheral surface of the peripheral wall on the downstream side of the air flow in the ventilation hole.
    The coupling cover according to claim 7.
  9.  前記周壁の周面に複数設けられた放熱用の放熱体を備える、
     請求項2に記載のカップリング用カバー。
    A plurality of radiators for heat dissipation are provided on the peripheral surface of the peripheral wall,
    The cover for coupling according to claim 2.
  10.  二つの軸を連結するカップリングを回転可能に収容するカバー本体と、
     前記カバー本体に設けられた凹凸形状を有する放熱用の放熱体と、
     を備えるカップリング用カバー。
    A cover body that rotatably houses a coupling that connects the two shafts,
    A radiator for radiating heat having an uneven shape provided on the cover body;
    Coupling cover with.
  11.  前記カバー本体は、筒状の周壁を備え、
     前記放熱体は、前記周壁の周面に複数設けられている、
     請求項10に記載のカップリング用カバー。
    The cover body includes a tubular peripheral wall,
    A plurality of the radiators are provided on the peripheral surface of the peripheral wall,
    The cover for coupling according to claim 10.
  12.  前記放熱体は、前記周壁の周面に規則的に配列されている、
     請求項11に記載のカップリング用カバー。
    The heat radiator is regularly arranged on the peripheral surface of the peripheral wall,
    The coupling cover according to claim 11.
  13.  前記周壁は、前記カバー本体の内外を連通する通気孔を備え、
     複数の前記放熱体は、前記周壁の内周面に列状に並べられて複数の凹凸形状列を形成し、
     前記凹凸形状列は、前記カバー本体内部に生ずるエアの流れを前記通気孔の方向に導くように、軸に直角な平面に対して傾斜している、
     請求項11に記載のカップリング用カバー。
    The peripheral wall includes a ventilation hole that communicates the inside and outside of the cover body,
    The plurality of heat radiators are arranged in a row on the inner peripheral surface of the peripheral wall to form a plurality of concave-convex shape rows,
    The concavo-convex shape row is inclined with respect to a plane perpendicular to the axis so as to guide the flow of air generated inside the cover main body in the direction of the ventilation hole,
    The coupling cover according to claim 11.
  14.  二つの軸を連結するカップリングを回転可能に収容するカバー本体と、
     前記カバー本体に設けられた放熱用のフィンと、
     前記フィンの表面に設けられた凹凸形状を有する放熱用の放熱体と、
     を備えるカップリング用カバー。
    A cover body that rotatably houses a coupling that connects the two shafts,
    A fin for heat dissipation provided on the cover body,
    A radiator for radiating heat having an uneven shape provided on the surface of the fin,
    Coupling cover with.
  15.  前記カバー本体は、筒状の周壁を備え、
     前記フィンは、前記周壁の周面に沿った環状形状で複数設けられており、
     前記放熱体は、前記フィンの表面に複数設けられている、
     請求項14に記載のカップリング用カバー。
    The cover body includes a tubular peripheral wall,
    The fins are provided in a plurality of annular shapes along the peripheral surface of the peripheral wall,
    A plurality of the radiators are provided on the surface of the fin,
    The cover for coupling according to claim 14.
  16.  前記フィンは、前記周壁の内周面に設けられ、
     複数個の前記放熱体は、前記フィンの表面に列状に並べられて複数の凹凸形状列を形成し、
     前記凹凸形状列は、前記カバー本体内部に生ずるエアの流れを前記周壁の内周面の方向に導くように、軸と平行な方向の平面に対して傾斜している、
     請求項15に記載のカップリング用カバー。
    The fin is provided on the inner peripheral surface of the peripheral wall,
    The plurality of heat radiators are arranged in a row on the surface of the fin to form a plurality of rows and columns of uneven shapes,
    The concavo-convex shape row is inclined with respect to a plane parallel to the axis so as to guide the flow of air generated inside the cover main body in the direction of the inner peripheral surface of the peripheral wall.
    The coupling cover according to claim 15.
PCT/JP2019/044368 2018-11-14 2019-11-12 Cover for coupling WO2020100905A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020556120A JP7270639B2 (en) 2018-11-14 2019-11-12 Coupling cover

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018213674 2018-11-14
JP2018-213674 2018-11-14

Publications (1)

Publication Number Publication Date
WO2020100905A1 true WO2020100905A1 (en) 2020-05-22

Family

ID=70731101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044368 WO2020100905A1 (en) 2018-11-14 2019-11-12 Cover for coupling

Country Status (2)

Country Link
JP (1) JP7270639B2 (en)
WO (1) WO2020100905A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735153A (en) * 1993-07-21 1995-02-03 Hitachi Ltd Coupling cover
US6474934B1 (en) * 2000-10-18 2002-11-05 Dresser-Rand Company Directed air flow coupling guard
JP2007247860A (en) * 2006-03-17 2007-09-27 Ntn Corp Boot adaptor for constant velocity joint for propeller shaft

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735153A (en) * 1993-07-21 1995-02-03 Hitachi Ltd Coupling cover
US6474934B1 (en) * 2000-10-18 2002-11-05 Dresser-Rand Company Directed air flow coupling guard
JP2007247860A (en) * 2006-03-17 2007-09-27 Ntn Corp Boot adaptor for constant velocity joint for propeller shaft

Also Published As

Publication number Publication date
JPWO2020100905A1 (en) 2021-09-30
JP7270639B2 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
JP5479590B2 (en) Brake band and disc brake disc
JP6768074B2 (en) Engine cooling fan enclosure shroud with unobstructed exhaust
KR100937929B1 (en) Stator of Axial flow fan shroud
JP6630467B2 (en) Fan module for heat exchanger
KR101808583B1 (en) Fan arrangement having a flow straightener
ES2944571T3 (en) Fan with tandem guide vanes
US20170261000A1 (en) Blower
JPWO2017138199A1 (en) Centrifugal compressor
US11732730B2 (en) Blower assembly
WO2015125485A1 (en) Air-blowing device
US11506220B2 (en) Fan wheel with three dimensionally curved impeller blades
JP6070752B2 (en) Centrifugal blower
WO2020100905A1 (en) Cover for coupling
JP6552712B2 (en) Air blower
WO2014006251A1 (en) Brake disc
JP6997615B2 (en) Blower
KR970009838B1 (en) Fan shroud for radiator
JP7187996B2 (en) series axial fan
JP6673385B2 (en) Turbo fan and air conditioner indoor unit
JP6927079B2 (en) Vehicle wheel structure
JP2004156883A (en) Fan guard for blower unit
KR101973567B1 (en) Fan and Shroud Assemble
JP6456179B2 (en) Blower
EP2386764A2 (en) Fan assembly for vehicles
JP2020133457A (en) Air blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556120

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884911

Country of ref document: EP

Kind code of ref document: A1