WO2020100588A1 - Radiation imaging device, method for manufacturing same, and radiation imaging system - Google Patents

Radiation imaging device, method for manufacturing same, and radiation imaging system Download PDF

Info

Publication number
WO2020100588A1
WO2020100588A1 PCT/JP2019/042531 JP2019042531W WO2020100588A1 WO 2020100588 A1 WO2020100588 A1 WO 2020100588A1 JP 2019042531 W JP2019042531 W JP 2019042531W WO 2020100588 A1 WO2020100588 A1 WO 2020100588A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
radiation imaging
scintillator
imaging apparatus
light
Prior art date
Application number
PCT/JP2019/042531
Other languages
French (fr)
Japanese (ja)
Inventor
知昭 市村
尚志郎 猿田
竹中 克郎
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2020100588A1 publication Critical patent/WO2020100588A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors

Definitions

  • the present invention relates to a radiation imaging apparatus, a method for manufacturing the same, and a radiation imaging system.
  • Radiation imaging devices that use flat panel detectors (FPDs) as radiation imaging panels are widely used in medical image diagnosis and non-destructive inspection.
  • This radiation imaging apparatus is mainly classified into a direct conversion type that directly converts incident radiation into an electric signal and an indirect conversion type that converts the incident radiation into light with a scintillator and then converts this light into an electrical signal. can do.
  • a radiation imaging apparatus of indirect conversion type it is advantageous to use a thallium-activated cesium iodide phosphor that forms needle crystals as a scintillator in order to obtain high spatial resolution.
  • the method for forming the thallium-activated cesium iodide phosphor is an indirect-type formation method in which a moisture-proof protective treatment is formed on another support in advance, and an indirect type formation method is used in which it is directly deposited on the sensor substrate.
  • a direct mold forming method is known. The direct mold forming method is advantageous in obtaining high spatial resolution.
  • Patent Document 1 a photoelectric conversion element is formed on the incident side of radiation, a recess is formed on the surface of the substrate opposite to the incident side to reduce the thickness of the substrate, and a scintillator is formed in this recess.
  • Patent Document 1 a scintillator is arranged in a recess formed on the surface of the housing substrate on the side opposite to the side on which radiation enters, and the scintillator is provided in the thick plate portion of the housing substrate to close the opening of the recess.
  • a radiation image detecting device in which a supporting substrate or the like is adhered via an adhesive portion.
  • the mechanical strength of the device relating to this adhesion is insufficient, there is a risk of mechanical breakage when external stress is applied.
  • the present invention has been made in view of such problems, and an object thereof is to provide a mechanism for improving mechanical strength in a radiation imaging apparatus in which a scintillator is arranged in a recess formed in a substrate. To do.
  • a plurality of pixels for converting light into an electric signal are provided on the first surface located on the side where the radiation enters, and the first surface located on the side opposite to the first surface is provided.
  • a sensor substrate having a concave portion on the second surface, a scintillator provided on the concave portion for converting the radiation into the light, and the second surface and the scintillator are bonded to each other via an adhesive layer. And a substrate.
  • the present invention also includes a method of manufacturing the above-described radiation imaging apparatus.
  • ⁇ -rays, ⁇ -rays, ⁇ -rays, etc. which are beams produced by particles (including photons) emitted by radiation decay, a beam having the same or higher energy, for example, X-rays. It may include rays, particle rays, cosmic rays, and the like.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a radiation imaging system 10 including a radiation imaging apparatus 100 according to the first embodiment of the present invention.
  • the radiation imaging system 10 is configured to electrically capture an optical image of the inspection target T formed by the radiation 401 and obtain an electrical radiation image (that is, radiation image data).
  • the radiation imaging system 10 includes a radiation imaging apparatus 100, a computer 200, an exposure control apparatus 300, and a radiation source 400, as shown in FIG.
  • the radiation source 400 starts irradiation of the radiation 401 according to the exposure command from the exposure control device 300. Radiation 401 emitted from the radiation source 400 passes through the inspection target T and enters the radiation imaging apparatus 100. Further, the radiation source 400 stops the irradiation of the radiation 401 according to the stop command from the exposure control device 300.
  • the radiation imaging apparatus 100 is an apparatus that captures a radiation image of the inspection target T using the radiation 401.
  • the radiation imaging apparatus 100 includes a radiation imaging panel 110, a control unit 120 for controlling the radiation imaging panel 110, and signal processing for processing a signal output from the radiation imaging panel 110. It is configured to have a portion 121.
  • the example shown in FIG. 1 illustrates the case where the signal processing unit 121 is provided inside the control unit 120, but the present embodiment is not limited to this mode.
  • a mode in which the signal processing unit 121 is provided outside the control unit 120 as a separate configuration is also applicable to this embodiment.
  • the radiation imaging panel 110 generates an image signal according to the incident radiation 401 (including the radiation 401 transmitted through the inspection target T). Based on this image signal, the radiation image described above is acquired.
  • the control unit 120 controls the operation of the radiation imaging apparatus 100 and performs various types of processing.
  • the control unit 120 includes, for example, a PLD (Programmable Logic Device) such as an FPGA (Field Programmable Gate Array), an ASIC (Application Specific Integrated), or a general-purpose computer in which all or a part of these programs are incorporated. It can be configured by a combination.
  • a PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated
  • a general-purpose computer in which all or a part of these programs are incorporated. It can be configured by a combination.
  • the signal processing unit 121 can, for example, perform A / D conversion on the image signal output from the radiation imaging panel 110, and output this to the computer 200 as radiation image data. Further, the signal processing unit 121 may generate a stop signal for stopping the irradiation of the radiation 401 from the radiation source 400, for example, based on the image signal output from the radiation imaging panel 110. In this case, the stop signal is supplied to the exposure control device 300 via the computer 200, and the exposure control device 300 sends a stop command to the radiation source 400 in response to the stop signal.
  • the computer 200 comprehensively controls the operation of the radiation imaging system 10 and performs various types of processing.
  • the computer 200 can perform, for example, control of the radiation imaging apparatus 100 and the exposure control apparatus 300, and processing for receiving radiation image data from the radiation imaging apparatus 100 and displaying it as a radiation image.
  • the computer 200 also has a function as an input unit for the user to input the imaging conditions of the radiographic image, for example.
  • the exposure control device 300 is configured to have an exposure switch. When the user turns on the exposure switch, the exposure control device 300 transmits an exposure command to the radiation source 400 and also transmits a start notification indicating the start of emission of the radiation 401 to the computer 200.
  • the computer 200 that receives this start notification notifies the control unit 120 of the radiation imaging apparatus 100 of the start of irradiation of the radiation 401 in response to the start notification.
  • the control unit 120 of the radiation imaging apparatus 100 causes the radiation imaging panel 110 to generate an image signal according to the incident radiation 401.
  • FIG. 2 is a diagram showing an example of a schematic configuration of the radiation imaging panel 110 of the radiation imaging apparatus 100 according to the first embodiment of the present invention. Specifically, FIG. 2 shows a cross-sectional view of the radiation imaging panel 110 in the incident direction of the radiation 401 shown in FIG. In the following description, the radiation imaging panel 110 according to the first embodiment shown in FIG. 2 will be described as a “radiation imaging panel 110-1”. Further, in FIG. 2, for example, X-rays can be applied as the radiation 401 shown in FIG.
  • the radiation imaging panel 110-1 is configured to include a sensor substrate 101, a scintillator 111, an adhesive layer 112, a reinforcing substrate 113, and a connection terminal portion 114. Further, in FIG. 2, in the sensor substrate 101, the first surface 102 located on the side where the radiation 401 enters and the second surface 103 located on the side opposite to the side where the radiation 401 enters are illustrated. ..
  • the effective pixel region 105 and the dummy pixel region 106 are provided on the first surface 102, and the concave portion 104 is provided on the second surface 103 located on the side opposite to the first surface 102. It is the first substrate.
  • the effective pixel region 105 a plurality of pixels each including a photoelectric conversion element that generates an electric signal according to the light converted from the radiation 401 by the scintillator 111 are arranged in a two-dimensional array (for example, a matrix). There is.
  • 3300 pixels ⁇ 2800 pixels are provided as the effective pixel region 105 and the dummy pixel region 106 on the sensor substrate 101 having a size of about 550 mm ⁇ 445 mm.
  • the area of 10 pixels arranged on the outer periphery is defined as the dummy pixel area 106, and the area of 3280 pixels ⁇ 2780 pixels arranged inside thereof is the effective pixel. It can be configured as the region 105.
  • the number of pixels provided on the sensor substrate 101 and the number of pixels provided on the effective pixel region 105 can be appropriately set according to the size of the sensor substrate 101, the inspection target T, and the like.
  • connection terminal portion 114 is provided on the first surface 102 of the sensor substrate 101 in order to connect the column signal line and the row signal line to the read circuit substrate and the drive circuit substrate.
  • the electrical signal generated in each pixel of the effective pixel area 105 is output from the radiation imaging panel 110 as an image signal via the connection terminal portion 114.
  • the readout circuit board and the drive circuit board are arranged outside the radiation imaging panel 110.
  • the readout circuit board and the drive circuit board are arranged as one configuration of the radiation imaging panel 110. It may be.
  • the sensor substrate 101 is provided with the connection terminal portion 114, and the electric signal generated in each pixel of the effective pixel region 105 is transmitted from the radiation imaging panel 110 via the connection terminal portion 114. Can be output.
  • the operation of the plurality of pixels including the effective pixel area 105 and the dummy pixel area 106 is performed by the control unit 120 illustrated in FIG.
  • the electric signals output from the plurality of pixels including the effective pixel region 105 and the dummy pixel region 106 are processed by the signal processing unit 121 illustrated in FIG.
  • the recess 104 is formed on the second surface 103 of the sensor substrate 101.
  • a top 1041 of the recess, a side 1042 of the recess, and a bottom 1043 of the recess are illustrated.
  • the top 1041 of the recess may be defined as “the top of the second surface 103 of the sensor substrate 101 excluding the recess 104”.
  • the radiation imaging panel 110-1 has the scintillator 111 formed on the bottom 1043 of the recess and the side 1042 of the recess so as to fill the recess 104 along the shape of the recess 104.
  • the scintillator 111 is a phosphor that is provided in the recess 104 formed on the second surface 103 of the sensor substrate 101 as described above and that converts the incident radiation 401 into light.
  • the reinforcing substrate 113 is a second substrate adhered to the second surface 103 (specifically, at least a part of the top 1041 of the recess) of the sensor substrate 101 and the scintillator 111 via the adhesive layer 112. is there.
  • the reinforcing substrate 113 is a substrate for supporting and reinforcing the radiation imaging panel 110-1 including the sensor substrate 101 having the scintillator 111 provided in the recess 104.
  • the reinforcing substrate 113 is adhered to the scintillator 111 as well as the second surface 103 of the sensor substrate 101 via the adhesive layer 112.
  • a non-alkali glass substrate having a size of about 550 mm ⁇ 445 mm and a thickness of about 500 ⁇ m is prepared as a base material of the sensor substrate 101.
  • a film conversion process, a photolithography process, and an etching process are repeatedly performed on one surface of the glass substrate to convert a visible light into an electric charge (electrical signal) and a switching device that outputs the electric signal.
  • a plurality of connection terminal portions 114 for outputting the electric signal generated by the pixel to the outside are formed.
  • the peripheral portion of the sensor substrate 101 is masked with a masking film for the purpose of protecting the connection terminal portion 114.
  • a slightly adhesive resin film is transferred onto the first surface 102 of the sensor substrate 101 for the purpose of protecting the effective pixel area 105 from hydrofluoric acid etching.
  • a mask pattern for forming the bottom 1043 of the recess is formed on the second surface 103 of the sensor substrate 101.
  • the second surface 103 of the sensor substrate 101 is set on the spin coater, and the photoresist is applied.
  • the sensor substrate 101 covered with the photoresist is placed on a UV exposure table and exposed using a predetermined photomask.
  • the photomask a region wider than the effective pixel region 105 of the sensor substrate 101 is opened in the orthogonal projection on the second surface 103 of the sensor substrate 101.
  • the photoresist is developed by immersing the sensor substrate 101 in a sodium carbonate aqueous solution, and then rinsed with pure water and dried.
  • the mask pattern formation is not limited to this mode.
  • it may be formed by a method of performing photolithography using a resist film, or may be formed by a method of transferring a protective film and cutting and peeling a desired region because the pattern is simple.
  • the photoresist process is not required, and thus the cost can be significantly reduced.
  • the sensor substrate 101 on which the mask pattern is formed is immersed in a 10% hydrofluoric acid solution.
  • the immersion time at this time is determined by a previously calculated etching rate, and etching is performed to a desired thickness.
  • the thickness of the first surface 102 of the sensor substrate 101 and the bottom portion 1043 of the recess is about 100 ⁇ m.
  • the sensor substrate 101 is sufficiently rinsed with pure water and further immersed in a resist stripping solution to strip the mask pattern.
  • the resin film attached to the first surface 102 of the sensor substrate 101 is peeled off to form the sensor substrate 101 having the recess 104. In this way, the sensor substrate 101 is prepared.
  • the scintillator 111 is formed on the bottom 1043 of the recess and the side 1042 of the recess so as to fill the recess 104 along the shape of the recess 104.
  • the vapor deposition mask that covers the peripheral portion is set on the sensor substrate 101, and then the sensor substrate 101 is placed on the vapor deposition device so that the recess 104 becomes the vapor deposition surface.
  • CsI cesium iodide
  • TlI thallium iodide
  • the scintillator 111 having a film thickness of about 350 ⁇ m is formed.
  • the particles of the raw material adhere to the object while diffusing, so that the phosphor material also adheres to the outside of the vapor deposition mask, and as a result, not only the bottom 1043 of the recess but also the side 1042 of the recess.
  • the scintillator 111 is formed. Further, in the present embodiment, the outer edge of the scintillator 111 is located outside the outer edge of the effective pixel region 105.
  • the reinforcement substrate 113 is arranged to reinforce the radiation imaging panel 110-1.
  • a non-alkali glass substrate having the same material as the sensor substrate 101 and a thickness of 0.5 mm is prepared.
  • the non-alkali glass substrate prepared as the reinforcing substrate 113 is placed on the thermal transfer device, and a layer of hot-melt resin having a thickness of about 30 ⁇ m, for example, as the adhesive layer 112 is thermally transferred onto the reinforcing substrate 113 to form the adhesive layer 112.
  • the attached reinforcing substrate 113 is prepared.
  • the present embodiment is not limited to this, and for example, the scintillator 111 and the top portion 1041 of the concave portion can be formed. Multiple adhesive layers suitable for each may be used.
  • the adhesive layer 112 may be colored. In the present embodiment, for example, it is preferable that the adhesive layer 112 is colored as a white layer.
  • the adhesive layer 112 is colored white with titanium oxide, alumina, or the like, of the light generated by the scintillator 111, light that travels in a direction different from the direction toward the effective pixel region 105 is reflected, so that the scintillator 111 can reflect the light.
  • the generated light can be used efficiently.
  • the reinforcing substrate 113 also has a function as a moisture-proof protective layer that protects the phosphor of the scintillator 111 from moisture.
  • the thickness of the adhesive layer 112 is preferably 100 ⁇ m or less.
  • the sensor substrate 101 having the scintillator 111 formed in the recess 104 is placed on the thermal transfer device.
  • the reinforcing substrate 113 is bonded and bonded to the sensor substrate 101 and the scintillator 111 by thermal transfer so that the adhesive layer 112 contacts the top 1041 of the concave portion and the scintillator 111 in the second surface 103 of the sensor substrate 101. ..
  • the recess 104 of the sensor substrate 101 can be reinforced.
  • the adhesive layer 112 is adhered not only to the top 1041 of the recess of the sensor substrate 101 and the scintillator 111 shown in FIG. 2 but also to a part of the side 1042 of the recess of the sensor substrate 101. It may have been done.
  • the radiation imaging panel 110-1 in the present embodiment is formed by connecting the wiring material and the drive substrate to the connection terminal portion 114 via the anisotropic conductive film.
  • the reinforcing substrate 113 is bonded to the second surface 103 of the sensor substrate 101 and the scintillator 111 via the adhesive layer 112.
  • the mechanical strength of the radiation imaging panel 110 is improved as compared with the case where the reinforcing substrate 113 is bonded only to the second surface 103 of the sensor substrate 101 via the adhesive layer 112. can do. As a result, it is possible to realize a sufficiently reliable and high-performance radiation imaging panel 110.
  • the schematic configuration of the radiation imaging system according to the second embodiment is similar to the schematic configuration of the radiation imaging system 10 according to the first embodiment shown in FIG. 1 described above. Therefore, the schematic configuration of the radiation imaging apparatus according to the second embodiment is similar to the schematic configuration of the radiation imaging apparatus 100 according to the first embodiment shown in FIG. 1 described above.
  • FIG. 3 is a diagram showing an example of a schematic configuration of the radiation imaging panel 110 of the radiation imaging apparatus 100 according to the second embodiment of the present invention. Similar to FIG. 2, FIG. 3 shows a cross-sectional view of the radiation imaging panel 110 in the incident direction of the radiation 401 shown in FIG. In the following description, the radiation imaging panel 110 according to the second embodiment shown in FIG. 3 will be described as a “radiation imaging panel 110-2”. Further, in FIG. 3, for example, X-rays can be applied as the radiation 401 shown in FIG.
  • the radiation imaging panel 110-2 includes a sensor substrate 101, a scintillator 111, an adhesive layer 112, a reinforcing substrate 113, a connection terminal portion 114, a scintillator 115, and a reflective layer 116.
  • the sensor substrate 101 in the sensor substrate 101, the first surface 102 located on the side where the radiation 401 enters, the second surface 103 located on the side opposite to the side where the radiation 401 enters, and the second surface 103.
  • the recess 104 formed in the surface 103 is illustrated. Further, in FIG.
  • FIG. 3 as specific portions forming the recess 104, the top 1041 of the recess, the side 1042 of the recess, and the bottom 1043 of the recess are illustrated.
  • the same components as those in FIG. 2 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the radiation imaging panel 110-2 has a configuration similar to that of the radiation imaging panel 110-1 according to the first embodiment shown in FIG.
  • the scintillator 115 and the reflective layer 116 are sequentially formed on the surface 102 (more specifically, on the effective pixel region 105 and the dummy pixel region 106).
  • the scintillator 115 is a scintillator different from the scintillator 111. Further, in the following description, the scintillator 111 will be described as a “first scintillator 111” and the scintillator 115 will be described as a “second scintillator 115”.
  • Each pixel of the effective pixel region 105 of the sensor substrate 101 in the present embodiment has an electric signal corresponding to the light converted from the radiation 401 by the first scintillator 111 and the light converted from the radiation 401 by the second scintillator 115. Is generated.
  • the second scintillator 115 is a phosphor that converts the radiation 401 incident through the reflective layer 116 into light.
  • the reflection layer 116 is provided so as to cover the second scintillator 115, and reflects, of the light generated by the second scintillator 115, light that travels in a direction different from the direction toward the effective pixel region 105 (the light is effective). It is a layer that reflects to lead to the pixel region 105.
  • the reflective layer 116 makes it possible to efficiently use the light generated by the second scintillator 115 and improve the sensitivity of the radiation imaging panel 110-2. Further, it is more preferable that the reflective layer 116 has a function as a moisture-proof protective layer.
  • the other sensor substrate 101, the first scintillator 111, the adhesive layer 112, the reinforcing substrate 113, and the connection terminal portion 114 are the same as the respective components of the first embodiment shown in FIG. Omit it.
  • the sensor substrate 101 is placed so that the first surface 102 faces upward, and the second scintillator 115 is not formed in a portion other than the recess 104. Masking on.
  • the sensor substrate 101 is placed on the vapor deposition device so that the first surface 102 of the sensor substrate 101 faces downward.
  • cesium iodide (CsI) and thallium iodide (TlI) are co-evaporated so that the Tl concentration is about 1 mol% with respect to CsI, and the second scintillator 115 with a film thickness of about 350 ⁇ m is formed.
  • the second scintillator 115 mounts the sensor substrate 101 formed on the first surface 102 on the thermal transfer device, and similarly to the first embodiment described above, the second surface 103 of the sensor substrate 101.
  • the first scintillator 111 is formed in the concave portion 104.
  • the reinforcing substrate 113 is bonded and bonded to the sensor substrate 101 and the scintillator 111 via the adhesive layer 112.
  • the adhesive layer 112 a hot melt resin containing titanium oxide is used in order to have a function as a reflection layer.
  • the reflective layer 116 is formed so as to cover the second scintillator 115.
  • the sensor substrate 101 is placed on the thermal transfer device with the first surface 102 of the sensor substrate 101 facing upward.
  • the reflection layer 116 is formed by thermally transferring an aluminum thin film having a thickness of about 20 ⁇ m coated with a hot melt resin having a thickness of about 30 ⁇ m so as to completely cover the second scintillator 115.
  • the radiation imaging panel 110-2 in the present embodiment is formed by connecting the drive substrates to the connection terminal portion 114 via the anisotropic conductive film.
  • the reinforcing substrate 113 and the reflective layer 116 also have a function as a moisture-proof protective layer.
  • FIG. 4 is a diagram of measurement results showing changes in DQE according to spatial frequency in the radiation imaging panel 110-2 according to the second embodiment of the present invention.
  • the measurement result 210 is the measurement result indicating the change in DQE of the radiation imaging panel 110-1 according to the first embodiment
  • the measurement result 220 is the radiation imaging panel 110 according to the second embodiment.
  • 2 is a measurement result showing a change in DQE of ⁇ 2.
  • the DQE of the radiation imaging panel 110-2 according to the second embodiment is 3 lp / mm or less as compared with the DQE of the radiation imaging panel 110-1 according to the first embodiment. It can be seen that the value is high in the low frequency range. For this reason, the radiation imaging panel 110-2 according to the present embodiment can realize a highly reliable radiation imaging panel that can sufficiently withstand practical use.
  • the reinforcing substrate 113 is provided on the second surface 103 of the sensor substrate 101 and the scintillator 111 via the adhesive layer 112, as in the first embodiment. I try to adhere to it.
  • the mechanical strength of the radiation imaging panel 110 is improved as compared with the case where the reinforcing substrate 113 is bonded only to the second surface 103 of the sensor substrate 101 via the adhesive layer 112. can do. Also from this viewpoint, according to the second embodiment, it is possible to realize a sufficiently reliable and high-performance radiation imaging panel 110.
  • the schematic configuration of the radiation imaging system according to the third embodiment is similar to the schematic configuration of the radiation imaging system 10 according to the first embodiment shown in FIG. 1 described above. Therefore, the schematic configuration of the radiation imaging apparatus according to the third embodiment is similar to the schematic configuration of the radiation imaging apparatus 100 according to the first embodiment shown in FIG. 1 described above.
  • the radiation imaging panel 110 according to the third embodiment has basically the same structure as the radiation imaging panel 110-2 according to the second embodiment, but the effective pixel region 105 (and the dummy pixel region 106 as well). Two types of pixels are formed as pixels to be formed (may be the same).
  • FIG. 5 is a diagram showing an example of a schematic configuration of the radiation imaging panel 110 of the radiation imaging apparatus 100 according to the third embodiment of the present invention.
  • the radiation imaging panel 110 according to the third embodiment shown in FIG. 5 will be described as a “radiation imaging panel 110-3”.
  • FIG. 5 is a diagram showing, for example, only a region corresponding to the effective pixel region 105 shown in FIG. 3 in the configuration of the radiation imaging panel 110-3 according to the third embodiment when viewed from the incident direction of the radiation 401.
  • FIG. 5 for example, X-rays can be applied as the radiation 401 shown in FIG.
  • the normal pixel (first pixel) 301 and the pixel (second pixel) provided in the effective pixel region 105 (second pixel). Pixel) 302 are provided.
  • the normal pixel 301 Similar to each pixel of the effective pixel area 105 in the second embodiment, the normal pixel 301 includes light converted from the radiation 401 by the first scintillator 111 and converted from the radiation 401 by the second scintillator 115. Both light and light are incident. Then, the normal pixel 301 generates an electric signal corresponding to these lights.
  • the pixel 302 provided with the light shielding layer is located at a position between the second scintillator 115 and the effective pixel region 105, and the light converted from the radiation 401 by the second scintillator 115 is concerned.
  • a light-blocking layer that suppresses incidence on the photoelectric conversion element of the pixel 302 is provided. Therefore, the light generated by the second scintillator 115 does not enter the pixel 302 provided with the light shielding layer, but only a part of the light generated by the first scintillator 111 enters. Then, the pixel 302 provided with the light shielding layer generates an electric signal according to the light generated and incident on the first scintillator 111.
  • the pixel 302 provided with the light shielding layer is beamed in the second scintillator 115 according to the third embodiment.
  • Light based on the hardened high-energy component radiation (X-ray) 401 is captured.
  • the normal pixel 301 includes light based on radiation (X-ray) 401 containing a low energy component which is not beam hardened and radiation (X-ray) 401 having a high energy component which is beam hardened by the second scintillator 115. It will capture both the light based on.
  • the signal processing unit 121 can perform energy subtraction processing using the high energy image and the low energy image obtained here.
  • the energy subtraction acquires a radiation image (may be referred to as a high energy image and a low energy image) using radiation having different energies of high energy and low energy, and the energy is calculated from the difference between these. It is a method of separating substances with different absorption rates and displaying them. For example, it is possible to separate bones from tissues other than bones, and it is expected that the diagnostic ability will be significantly improved.
  • high and low energy images can be easily acquired by exposing the radiation 401 twice.
  • the energy subtraction image can be acquired by irradiating the radiation 401 once. That is, in the present embodiment, the exposure dose of the radiation 401 can be suppressed.
  • the arrangement pattern of the pixels 302 provided with the light shielding layer is not limited to the mode shown in FIG. 5 and can be changed as appropriate.
  • the ratio of the pixels 302 provided with the light shielding layer in the effective pixel region 105 is increased, the pixel pitch of the normal pixels 301 is widened, which may lead to deterioration in image quality of the obtained radiation image.
  • the normal pixel 301 can be compensated by the image compensation technique similarly to the defective pixel which outputs an electric signal which is significantly different from the peripheral pixels, but when the ratio of the pixels 302 provided with the light shielding layer becomes high, the compensation is performed. Later image quality may be significantly degraded.
  • the number of pixels 302 provided with the light shielding layer is 1/2 of the total number of pixels in the effective pixel region 105 (the total number of ordinary pixels 301 and the number of pixels 302 provided with the light shielding layer).
  • the normal pixel 301 and the pixel 302 provided with the light shielding layer may be adjusted as described below. Note that the present embodiment is not limited to this mode, and for example, the number of pixels 302 provided with the light shielding layer is 1/3 or less, or 1/4 or less of the total number of pixels in the effective pixel area 105. , Or 1/5 or less.
  • the radiation imaging panel 110-3 Next, a method of manufacturing the radiation imaging panel 110-3 according to the third embodiment will be described. Specifically, of the methods for manufacturing the radiation imaging panel 110-3, only the method for manufacturing the effective pixel region 105 (more specifically, the pixel 302 provided with the light shielding layer) will be described below, and other configurations will be described. The manufacturing method of is similar to that of the second embodiment described above, and thus the description thereof is omitted.
  • a mask pattern having an opening on a normal pixel 301 is formed by applying a photoresist in advance to the base material of the sensor substrate 101 and patterning it.
  • a low-reflectance chromium dispersion liquid is applied by spin coating and developed to form a pixel 302 provided with a light shielding layer.
  • the pixel 302 provided with the light shielding layer has, for example, a film thickness of about 1.2 ⁇ m and a visible light transmittance of about 1.0%, and can sufficiently shield light.
  • the formation of the light-shielding layer in addition to the above-described method, for example, there is a method using carbon black, a method of adjusting the opening of the back electrode, and the like. Applicable.
  • the high and low energy images obtained by the above-described processing of this embodiment were subjected to image separation by the thickness t of each of the two substances by the method described below.
  • the signal value output from each pixel when the radiation 401 passes through a substance containing a plurality of components is expressed by the following equation (1).
  • E represents the energy of the radiation 401
  • ⁇ i represents the linear attenuation constant of the component i
  • t i represents the thickness of the component i
  • N (E) represents the energy distribution of the irradiated radiation 401.
  • the thickness t i of each component can be calculated by solving the integral equation using the observed signal values of the high and low energy images in the equation (1).
  • the high energy signal value and the low energy signal value are respectively obtained as follows.
  • FIG. 6 is a diagram showing an example of a bone separation image obtained by the radiation imaging apparatus 100 according to the third embodiment of the present invention.
  • the radiation source 400 having a tube voltage of 80 kV performs radiography of a hand phantom applied as the inspection target T, and the transmission image obtained by the radiography is used to perform the above-described (1).
  • 7 illustrates a bone separation image acquired by processing of a formula. From FIG. 6, it is understood that the radiation imaging apparatus 100 according to the present embodiment can obtain a sufficiently high quality bone separation image.
  • a drive system was set in the radiation imaging panel 110-3 in the present embodiment, and MTF and DQE were measured under the radiation quality condition of RQA5 by making X-rays as radiation 401 incident in the direction of the arrow in FIG.
  • the behavior of MTF and DQE at 2 lp / mm was similar to that of the second embodiment described above. That is, also in the present embodiment, similar to the second embodiment, a high MTF and a high DQE can be obtained in a low frequency range of 3 lp / mm or less.
  • the radiation exposure panel 110-3 of the present embodiment in addition to the effects of the radiation image pickup panel 110 of the first and second embodiments, the radiation exposure panel 110-3 that is sufficiently practical can be used. It is possible to realize a reliable and high-performance radiation imaging panel 110 capable of energy subtraction.
  • the pixel 302 provided with the light shielding layer has the light shielding layer provided at a position between the second scintillator 115 and the effective pixel region 105.
  • the light shielding layer is provided at a position between the first scintillator 111 and the effective pixel region 105, light generated by the first scintillator 111 does not enter, and
  • the mode in which the light generated by the second scintillator 115 is incident is also applicable to the present invention.

Abstract

Provided is a configuration for enhancing the mechanical strength of a radiation imaging device in which a scintillator is disposed in a recess formed in a substrate. This invention comprises: a sensor substrate 101 having a plurality of pixels for converting light into electrical signals provided on a first surface 102 positioned on a side upon which radiation 401 is incident, and a recess 104 provided on a second surface 103 positioned on the reverse side from the first surface 102; a scintillator 111 that is provided in the recess 104 and converts the radiation 401 into light; and a substrate 113 that is adhered to the second surface 103 of the sensor substrate 101 and the scintillator 111 via an adhesive layer 112.

Description

放射線撮像装置及びその製造方法、並びに、放射線撮像システムRadiation imaging apparatus and manufacturing method thereof, and radiation imaging system
 本発明は、放射線撮像装置及びその製造方法、並びに、放射線撮像システムに関するものである。 The present invention relates to a radiation imaging apparatus, a method for manufacturing the same, and a radiation imaging system.
 医療画像診断や非破壊検査において、放射線撮像パネルとしてフラットパネルディテクタ(FPD)を用いた放射線撮像装置が広く使用されている。この放射線撮像装置は、主に、入射した放射線を直接電気信号に変換する直接変換型と、入射した放射線をシンチレータで光に変換した後にこの光を電気信号に変換する間接変換型と、に分類することができる。間接変換型の放射線撮像装置では、シンチレータとして針状結晶を形成するタリウム賦活ヨウ化セシウム蛍光体を用いることが、高い空間分解能を得る上で有利である。なお、タリウム賦活ヨウ化セシウム蛍光体を形成する方法としては、予め別の支持体上に形成し防湿保護処理されたものをセンサ基板に貼りつける間接型形成方法と、センサ基板上に直接蒸着形成する直接型形成方法が知られている。高い空間分解能を得る上では、直接型形成方法が有利である。 Radiation imaging devices that use flat panel detectors (FPDs) as radiation imaging panels are widely used in medical image diagnosis and non-destructive inspection. This radiation imaging apparatus is mainly classified into a direct conversion type that directly converts incident radiation into an electric signal and an indirect conversion type that converts the incident radiation into light with a scintillator and then converts this light into an electrical signal. can do. In a radiation imaging apparatus of indirect conversion type, it is advantageous to use a thallium-activated cesium iodide phosphor that forms needle crystals as a scintillator in order to obtain high spatial resolution. The method for forming the thallium-activated cesium iodide phosphor is an indirect-type formation method in which a moisture-proof protective treatment is formed on another support in advance, and an indirect type formation method is used in which it is directly deposited on the sensor substrate. A direct mold forming method is known. The direct mold forming method is advantageous in obtaining high spatial resolution.
 例えば、特許文献1では、放射線の入射側に光電変換素子が形成され、基板の入射側とは反対側の面に凹部を形成して基板の厚みを薄くし、この凹部にシンチレータを形成することにより、基板による放射線の吸収を抑えて感度を向上させる技術が提案されている。 For example, in Patent Document 1, a photoelectric conversion element is formed on the incident side of radiation, a recess is formed on the surface of the substrate opposite to the incident side to reduce the thickness of the substrate, and a scintillator is formed in this recess. Has proposed a technique for suppressing the absorption of radiation by the substrate to improve the sensitivity.
特許第5604323号公報Japanese Patent No. 5604323
 具体的に、特許文献1には、収容基板において放射線が入射する側とは反対側の面に形成された凹部にシンチレータを配置し、当該凹部の開口を閉塞すべく収容基板の厚板部に対して接着部を介して支持基板等を接着させた放射線画像検出装置が提案されている。しかしながら、特許文献1に記載の放射線画像検出装置では、この接着に関する装置の機械的強度が不十分であるため、例えば外部応力が加わった際に機械的な破壊を招く恐れがあった。 Specifically, in Patent Document 1, a scintillator is arranged in a recess formed on the surface of the housing substrate on the side opposite to the side on which radiation enters, and the scintillator is provided in the thick plate portion of the housing substrate to close the opening of the recess. On the other hand, there has been proposed a radiation image detecting device in which a supporting substrate or the like is adhered via an adhesive portion. However, in the radiation image detecting device described in Patent Document 1, since the mechanical strength of the device relating to this adhesion is insufficient, there is a risk of mechanical breakage when external stress is applied.
 本発明は、このような問題点に鑑みてなされたものであり、基板に形成された凹部にシンチレータを配置する放射線撮像装置において、機械的強度の向上を実現する仕組みを提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide a mechanism for improving mechanical strength in a radiation imaging apparatus in which a scintillator is arranged in a recess formed in a substrate. To do.
 本発明の放射線撮像装置は、放射線が入射する側に位置する第1の面に、光を電気信号に変換する画素が複数設けられており、前記第1の面とは反対側に位置する第2の面に凹部が設けられたセンサ基板と、前記凹部に設けられ、前記放射線を前記光に変換するシンチレータと、前記第2の面および前記シンチレータに対して、接着層を介して接着された基板と、を有する。 In the radiation imaging apparatus of the present invention, a plurality of pixels for converting light into an electric signal are provided on the first surface located on the side where the radiation enters, and the first surface located on the side opposite to the first surface is provided. A sensor substrate having a concave portion on the second surface, a scintillator provided on the concave portion for converting the radiation into the light, and the second surface and the scintillator are bonded to each other via an adhesive layer. And a substrate.
 また、本発明は、上述した放射線撮像装置の製造方法を含む。 The present invention also includes a method of manufacturing the above-described radiation imaging apparatus.
本発明の第1の実施形態に係る放射線撮像装置を含む放射線撮像システムの概略構成の一例を示す図である。It is a figure which shows an example of schematic structure of the radiation imaging system containing the radiation imaging device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る放射線撮像装置の放射線撮像パネルにおける概略構成の一例を示す図である。It is a figure which shows an example of schematic structure in the radiation imaging panel of the radiation imaging device which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る放射線撮像装置の放射線撮像パネルにおける概略構成の一例を示す図である。It is a figure which shows an example of schematic structure in the radiation imaging panel of the radiation imaging device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る放射線撮像パネルにおいて、空間周波数によるDQEの変化を示す測定結果の図である。It is a figure of the measurement result which shows the change of DQE by spatial frequency in the radiation imaging panel which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る放射線撮像装置の放射線撮像パネルにおける概略構成の一例を示す図である。It is a figure which shows an example of a schematic structure in the radiation imaging panel of the radiation imaging device which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る放射線撮像装置で得られる骨分離画像の一例を示す図である。It is a figure which shows an example of the bone separation image obtained with the radiation imaging device which concerns on the 3rd Embodiment of this invention.
 以下に、図面を参照しながら、本発明を実施するための形態(実施形態)について説明する。この際、以下の説明及び図面においては、複数の図面に渡って共通する構成については共通の符号を付している。そのため、複数の図面を相互に参照して共通する構成を説明し、共通の符号を付した構成については適宜説明を省略する。また、本発明における放射線には、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギーを有するビーム、例えばX線や粒子線、宇宙線なども含みうる。 A mode (embodiment) for carrying out the present invention will be described below with reference to the drawings. At this time, in the following description and the drawings, common reference numerals are given to common configurations across a plurality of drawings. Therefore, common configurations will be described with reference to a plurality of drawings, and description of configurations with common reference numerals will be appropriately omitted. In addition, in the radiation in the present invention, in addition to α-rays, β-rays, γ-rays, etc., which are beams produced by particles (including photons) emitted by radiation decay, a beam having the same or higher energy, for example, X-rays. It may include rays, particle rays, cosmic rays, and the like.
 (第1の実施形態)
 まず、本発明の第1の実施形態について説明する。
(First embodiment)
First, a first embodiment of the present invention will be described.
 図1は、本発明の第1の実施形態に係る放射線撮像装置100を含む放射線撮像システム10の概略構成の一例を示す図である。この放射線撮像システム10は、放射線401で形成される検査対象Tの光学像を電気的に撮像し、電気的な放射線画像(即ち、放射線画像データ)を得るように構成されている。具体的に、放射線撮像システム10は、図1に示すように、放射線撮像装置100、コンピュータ200、曝射制御装置300、及び、放射線源400を有して構成されている。 FIG. 1 is a diagram showing an example of a schematic configuration of a radiation imaging system 10 including a radiation imaging apparatus 100 according to the first embodiment of the present invention. The radiation imaging system 10 is configured to electrically capture an optical image of the inspection target T formed by the radiation 401 and obtain an electrical radiation image (that is, radiation image data). Specifically, the radiation imaging system 10 includes a radiation imaging apparatus 100, a computer 200, an exposure control apparatus 300, and a radiation source 400, as shown in FIG.
 放射線源400は、曝射制御装置300からの曝射指令に従って、放射線401の照射を開始する。放射線源400から放射された放射線401は、検査対象Tを透過して放射線撮像装置100に入射する。また、放射線源400は、曝射制御装置300からの停止指令に従って、放射線401の照射を停止する。 The radiation source 400 starts irradiation of the radiation 401 according to the exposure command from the exposure control device 300. Radiation 401 emitted from the radiation source 400 passes through the inspection target T and enters the radiation imaging apparatus 100. Further, the radiation source 400 stops the irradiation of the radiation 401 according to the stop command from the exposure control device 300.
 放射線撮像装置100は、放射線401を用いて検査対象Tの放射線画像を撮像する装置である。この放射線撮像装置100は、図1に示すように、放射線撮像パネル110、放射線撮像パネル110を制御するための制御部120、及び、放射線撮像パネル110から出力される信号を処理するための信号処理部121を有して構成されている。この際、図1に示す例では、信号処理部121が制御部120の内部に設けられている場合を例示しているが、本実施形態においてはこの態様に限定されるものではない。例えば、信号処理部121が制御部120の外部に別構成として設けられている態様も、本実施形態に適用可能である。 The radiation imaging apparatus 100 is an apparatus that captures a radiation image of the inspection target T using the radiation 401. As shown in FIG. 1, the radiation imaging apparatus 100 includes a radiation imaging panel 110, a control unit 120 for controlling the radiation imaging panel 110, and signal processing for processing a signal output from the radiation imaging panel 110. It is configured to have a portion 121. At this time, the example shown in FIG. 1 illustrates the case where the signal processing unit 121 is provided inside the control unit 120, but the present embodiment is not limited to this mode. For example, a mode in which the signal processing unit 121 is provided outside the control unit 120 as a separate configuration is also applicable to this embodiment.
 放射線撮像パネル110は、入射した放射線401(検査対象Tを透過した放射線401を含む)に応じた画像信号を生成する。この画像信号に基づき、上述した放射線画像が取得される。 The radiation imaging panel 110 generates an image signal according to the incident radiation 401 (including the radiation 401 transmitted through the inspection target T). Based on this image signal, the radiation image described above is acquired.
 制御部120は、放射線撮像装置100の動作を制御するとともに、各種の処理を行う。この制御部120は、例えば、FPGA(Field Programmable Gate Array)などのPLD(Programmable Logic Device)や、ASIC(Application Specific Integrated Circuit)、プログラムが組み込まれた汎用コンピュータ、または、これらの全部または一部の組み合わせによって構成されうる。 The control unit 120 controls the operation of the radiation imaging apparatus 100 and performs various types of processing. The control unit 120 includes, for example, a PLD (Programmable Logic Device) such as an FPGA (Field Programmable Gate Array), an ASIC (Application Specific Integrated), or a general-purpose computer in which all or a part of these programs are incorporated. It can be configured by a combination.
 信号処理部121は、例えば、放射線撮像パネル110から出力された画像信号をA/D変換し、これをコンピュータ200に放射線画像データとして出力しうる。また、信号処理部121は、例えば、放射線撮像パネル110から出力された画像信号に基づいて、放射線源400からの放射線401の照射停止を行うための停止信号を生成してもよい。この場合、停止信号は、コンピュータ200を介して曝射制御装置300に供給され、曝射制御装置300は、この停止信号に応答して放射線源400に対して停止指令を送る。 The signal processing unit 121 can, for example, perform A / D conversion on the image signal output from the radiation imaging panel 110, and output this to the computer 200 as radiation image data. Further, the signal processing unit 121 may generate a stop signal for stopping the irradiation of the radiation 401 from the radiation source 400, for example, based on the image signal output from the radiation imaging panel 110. In this case, the stop signal is supplied to the exposure control device 300 via the computer 200, and the exposure control device 300 sends a stop command to the radiation source 400 in response to the stop signal.
 コンピュータ200は、放射線撮像システム10の動作を統括的に制御するとともに、各種の処理を行う。コンピュータ200は、例えば、放射線撮像装置100及び曝射制御装置300の制御や、放射線撮像装置100から放射線画像データを受信し、放射線画像として表示するための処理を行いうる。また、コンピュータ200は、例えば、ユーザが放射線画像の撮像条件を入力するための入力部としての機能も備える。 The computer 200 comprehensively controls the operation of the radiation imaging system 10 and performs various types of processing. The computer 200 can perform, for example, control of the radiation imaging apparatus 100 and the exposure control apparatus 300, and processing for receiving radiation image data from the radiation imaging apparatus 100 and displaying it as a radiation image. The computer 200 also has a function as an input unit for the user to input the imaging conditions of the radiographic image, for example.
 曝射制御装置300は、曝射スイッチを有して構成されている。曝射制御装置300は、ユーザがこの曝射スイッチをオンにすると、曝射指令を放射線源400に送信するとともに、放射線401の放射開始を示す開始通知をコンピュータ200に送信する。この開始通知を受信したコンピュータ200は、開始通知に応答して、放射線401の照射開始を放射線撮像装置100の制御部120に通知する。放射線撮像装置100の制御部120は、この通知に応じて、放射線撮像パネル110に対して入射する放射線401に応じた画像信号の生成を行わせる。 The exposure control device 300 is configured to have an exposure switch. When the user turns on the exposure switch, the exposure control device 300 transmits an exposure command to the radiation source 400 and also transmits a start notification indicating the start of emission of the radiation 401 to the computer 200. The computer 200 that receives this start notification notifies the control unit 120 of the radiation imaging apparatus 100 of the start of irradiation of the radiation 401 in response to the start notification. In response to this notification, the control unit 120 of the radiation imaging apparatus 100 causes the radiation imaging panel 110 to generate an image signal according to the incident radiation 401.
 図2は、本発明の第1の実施形態に係る放射線撮像装置100の放射線撮像パネル110における概略構成の一例を示す図である。具体的に、図2では、図1に示す放射線401の入射方向における放射線撮像パネル110の断面図を示している。以降の説明においては、この図2に示す第1の実施形態に係る放射線撮像パネル110を「放射線撮像パネル110-1」として説明する。また、図2では、図1に示す放射線401として、例えばX線を適用しうる。 FIG. 2 is a diagram showing an example of a schematic configuration of the radiation imaging panel 110 of the radiation imaging apparatus 100 according to the first embodiment of the present invention. Specifically, FIG. 2 shows a cross-sectional view of the radiation imaging panel 110 in the incident direction of the radiation 401 shown in FIG. In the following description, the radiation imaging panel 110 according to the first embodiment shown in FIG. 2 will be described as a “radiation imaging panel 110-1”. Further, in FIG. 2, for example, X-rays can be applied as the radiation 401 shown in FIG.
 放射線撮像パネル110-1は、図2に示すように、センサ基板101、シンチレータ111、接着層112、補強基板113、及び、接続端子部114を有して構成されている。また、図2では、センサ基板101において、放射線401が入射する側に位置する第1の面102と、放射線401が入射する側とは反対側に位置する第2の面103を図示している。 As shown in FIG. 2, the radiation imaging panel 110-1 is configured to include a sensor substrate 101, a scintillator 111, an adhesive layer 112, a reinforcing substrate 113, and a connection terminal portion 114. Further, in FIG. 2, in the sensor substrate 101, the first surface 102 located on the side where the radiation 401 enters and the second surface 103 located on the side opposite to the side where the radiation 401 enters are illustrated. ..
 センサ基板101は、第1の面102に、有効画素領域105及びダミー画素領域106が設けられており、第1の面102とは反対側に位置する第2の面103に凹部104が設けられている第1の基板である。有効画素領域105には、シンチレータ111で放射線401から変換された光に応じた電気信号を生成する光電変換素子をそれぞれ含む複数の画素が、2次元アレイ状(例えば、行列状)に配置されている。本実施形態では、例えば、大きさが550mm×445mm程度のセンサ基板101に対して、有効画素領域105及びダミー画素領域106として3300画素×2800画素の画素が設けられている。具体的に、本実施形態では、この3300画素×2800画素のうち、外周に配置された10画素の領域をダミー画素領域106とし、その内側に配置された3280画素×2780画素の領域を有効画素領域105として構成しうる。なお、本実施形態においては、センサ基板101に設ける画素の数や有効画素領域105に設ける画素の数は、センサ基板101の大きさや検査対象Tなどに応じて、適宜設定しうる。 In the sensor substrate 101, the effective pixel region 105 and the dummy pixel region 106 are provided on the first surface 102, and the concave portion 104 is provided on the second surface 103 located on the side opposite to the first surface 102. It is the first substrate. In the effective pixel region 105, a plurality of pixels each including a photoelectric conversion element that generates an electric signal according to the light converted from the radiation 401 by the scintillator 111 are arranged in a two-dimensional array (for example, a matrix). There is. In this embodiment, for example, 3300 pixels × 2800 pixels are provided as the effective pixel region 105 and the dummy pixel region 106 on the sensor substrate 101 having a size of about 550 mm × 445 mm. Specifically, in the present embodiment, of the 3300 pixels × 2800 pixels, the area of 10 pixels arranged on the outer periphery is defined as the dummy pixel area 106, and the area of 3280 pixels × 2780 pixels arranged inside thereof is the effective pixel. It can be configured as the region 105. In the present embodiment, the number of pixels provided on the sensor substrate 101 and the number of pixels provided on the effective pixel region 105 can be appropriately set according to the size of the sensor substrate 101, the inspection target T, and the like.
 また、有効画素領域105には、さらにそれぞれの画素で生成される電気信号を取り出すための列信号線や、有効画素領域105のそれぞれの画素に含まれる各素子を駆動するための行信号線などが設けられている。また、これらの列信号線や行信号線は、それぞれ、読出回路基板や駆動回路基板とフレキシブル配線基板などを介して、電気的に接続されうる。また、本実施形態では、列信号線及び行信号線と、読出回路基板及び駆動回路基板との接続を行うために、センサ基板101の第1の面102上には、接続端子部114が設けられている。本実施形態では、この接続端子部114を介して、有効画素領域105のそれぞれの画素で生成された電気信号が、画像信号として放射線撮像パネル110から出力される。 Further, in the effective pixel region 105, column signal lines for further extracting electric signals generated in the respective pixels, row signal lines for driving respective elements included in the respective pixels in the effective pixel region 105, etc. Is provided. Further, these column signal lines and row signal lines can be electrically connected to the read circuit board and the drive circuit board via a flexible wiring board, respectively. Further, in the present embodiment, the connection terminal portion 114 is provided on the first surface 102 of the sensor substrate 101 in order to connect the column signal line and the row signal line to the read circuit substrate and the drive circuit substrate. Has been. In the present embodiment, the electrical signal generated in each pixel of the effective pixel area 105 is output from the radiation imaging panel 110 as an image signal via the connection terminal portion 114.
 上述した例では、読出回路基板及び駆動回路基板が放射線撮像パネル110の外部に配置される例を説明したが、読出回路基板及び駆動回路基板が放射線撮像パネル110の一構成として配置される形態であってもよい。この形態の場合であっても、センサ基板101には接続端子部114が設けられ、有効画素領域105のそれぞれの画素で生成された電気信号は、接続端子部114を介して放射線撮像パネル110から出力されうる。例えば、本実施形態では、有効画素領域105及びダミー画素領域106を含む複数の画素の動作は、図1に示す制御部120によって行われる。また、例えば、本実施形態では、有効画素領域105及びダミー画素領域106を含む複数の画素から出力される電気信号は、図1に示す信号処理部121によって処理される。 In the above-described example, an example in which the readout circuit board and the drive circuit board are arranged outside the radiation imaging panel 110 has been described. However, the readout circuit board and the drive circuit board are arranged as one configuration of the radiation imaging panel 110. It may be. Even in the case of this form, the sensor substrate 101 is provided with the connection terminal portion 114, and the electric signal generated in each pixel of the effective pixel region 105 is transmitted from the radiation imaging panel 110 via the connection terminal portion 114. Can be output. For example, in the present embodiment, the operation of the plurality of pixels including the effective pixel area 105 and the dummy pixel area 106 is performed by the control unit 120 illustrated in FIG. Further, for example, in the present embodiment, the electric signals output from the plurality of pixels including the effective pixel region 105 and the dummy pixel region 106 are processed by the signal processing unit 121 illustrated in FIG.
 放射線撮像パネル110-1では、上述したように、センサ基板101の第2の面103に、凹部104が形成されている。図2では、この凹部104を構成する具体的な部分として、凹部の頂部1041、凹部の側部1042及び凹部の底部1043を図示している。この際、凹部の頂部1041は、「センサ基板101の第2の面103における凹部104を除く頂部」と定義することもできる。そして、図2に示す例では、放射線撮像パネル110-1は、凹部104の形状に沿って凹部104を埋め込むように、凹部の底部1043及び凹部の側部1042にシンチレータ111が形成されている。 In the radiation imaging panel 110-1, as described above, the recess 104 is formed on the second surface 103 of the sensor substrate 101. In FIG. 2, as a specific portion forming the recess 104, a top 1041 of the recess, a side 1042 of the recess, and a bottom 1043 of the recess are illustrated. At this time, the top 1041 of the recess may be defined as “the top of the second surface 103 of the sensor substrate 101 excluding the recess 104”. In the example shown in FIG. 2, the radiation imaging panel 110-1 has the scintillator 111 formed on the bottom 1043 of the recess and the side 1042 of the recess so as to fill the recess 104 along the shape of the recess 104.
 シンチレータ111は、上述したようにセンサ基板101の第2の面103に形成された凹部104に設けられ、入射した放射線401を光に変換する蛍光体である。 The scintillator 111 is a phosphor that is provided in the recess 104 formed on the second surface 103 of the sensor substrate 101 as described above and that converts the incident radiation 401 into light.
 補強基板113は、センサ基板101の第2の面103(具体的には、凹部の頂部1041の少なくとも一部)及びシンチレータ111に対して、接着層112を介して接着された第2の基板である。この補強基板113は、凹部104にシンチレータ111を設けたセンサ基板101を含む放射線撮像パネル110-1を支持し補強するための基板である。本実施形態においては、センサ基板101の第2の面103のみならずシンチレータ111に対しても、接着層112を介して補強基板113を接着させる形態を採る。この形態を採ることにより、例えばセンサ基板101の第2の面103のみに対して接着層112を介して補強基板113を接着させる場合と比較して、放射線撮像パネル110-1の機械的強度の向上を実現することができる。 The reinforcing substrate 113 is a second substrate adhered to the second surface 103 (specifically, at least a part of the top 1041 of the recess) of the sensor substrate 101 and the scintillator 111 via the adhesive layer 112. is there. The reinforcing substrate 113 is a substrate for supporting and reinforcing the radiation imaging panel 110-1 including the sensor substrate 101 having the scintillator 111 provided in the recess 104. In this embodiment, the reinforcing substrate 113 is adhered to the scintillator 111 as well as the second surface 103 of the sensor substrate 101 via the adhesive layer 112. By adopting this form, the mechanical strength of the radiation imaging panel 110-1 can be improved as compared with the case where the reinforcing substrate 113 is bonded only to the second surface 103 of the sensor substrate 101 via the adhesive layer 112. Improvement can be realized.
 次に、第1の実施形態に係る放射線撮像パネル110-1の製造方法について説明する。 Next, a method of manufacturing the radiation imaging panel 110-1 according to the first embodiment will be described.
 まず、放射線撮像パネル110-1の製造では、例えば、センサ基板101の母材として、大きさが550mm×445mm程度で厚みが500μm程度の無アルカリガラス基板を用意する。次いで、このガラス基板の一方の面に、成膜工程、フォトリソグラフィ工程及びエッチング工程を繰り返し行うことにより、可視光を電荷(電気信号)に変換する光変換素子と、当該電気信号を出力するスイッチング素子と、を含む画素が行列状に複数設けられた画素領域(有効画素領域105及びダミー画素領域106)を形成してセンサ基板101を形成するとともに、センサ基板101の第1の面102にそれぞれの画素で生成された電気信号を外部に出力するための複数の接続端子部114を形成する。 First, in the manufacture of the radiation imaging panel 110-1, for example, a non-alkali glass substrate having a size of about 550 mm × 445 mm and a thickness of about 500 μm is prepared as a base material of the sensor substrate 101. Next, a film conversion process, a photolithography process, and an etching process are repeatedly performed on one surface of the glass substrate to convert a visible light into an electric charge (electrical signal) and a switching device that outputs the electric signal. A pixel region (effective pixel region 105 and dummy pixel region 106) in which a plurality of pixels including the elements are provided in a matrix to form the sensor substrate 101, and the sensor substrate 101 is formed on the first surface 102, respectively. A plurality of connection terminal portions 114 for outputting the electric signal generated by the pixel to the outside are formed.
 このようにして、センサ基板101及び接続端子部114を形成した後、有効画素領域105に形成された画素の動作をチェックするためのアレイ検査を実施する。 After thus forming the sensor substrate 101 and the connection terminal portion 114, an array inspection for checking the operation of the pixels formed in the effective pixel region 105 is performed.
 このアレイ検査において、画素の動作が良好であって欠損した画素が無いことが確認されると、まず、接続端子部114を保護する目的でセンサ基板101の周辺部分をマスキングフィルムでマスキングする。次いで、センサ基板101の第1の面102に、有効画素領域105のフッ酸エッチングからの保護を目的として、微粘着の樹脂フィルムを転写する。 In this array inspection, if it is confirmed that the pixel operation is good and there is no defective pixel, first, the peripheral portion of the sensor substrate 101 is masked with a masking film for the purpose of protecting the connection terminal portion 114. Next, a slightly adhesive resin film is transferred onto the first surface 102 of the sensor substrate 101 for the purpose of protecting the effective pixel area 105 from hydrofluoric acid etching.
 続いて、センサ基板101の第2の面103に、凹部の底部1043を形成するためのマスクパターンを形成する。具体的に、本実施形態では、まず、センサ基板101の第2の面103を上側にしてスピンコータにセットし、フォトレジストを塗布する。次いで、フォトレジストによって覆われたセンサ基板101をUV露光台に載置し、所定のフォトマスクを用いて露光する。ここで、フォトマスクは、センサ基板101の第2の面103に対する正射影において、センサ基板101の有効画素領域105よりも広い領域が開口されたものである。これによって、後工程において凹部の底部1043を含む領域に形成されるシンチレータ111が、確実に有効画素領域105を覆うように形成することが可能となる。露光後、炭酸ナトリウム水溶液にセンサ基板101を浸漬することによってフォトレジストの現像を行い、次いで、純水リンス洗浄後に乾燥を行う。なお、本実施形態において、マスクパターンの形成はこの態様に限定されるものではない。例えば、レジストフィルムを用いてフォトリソグラフィを行う方法で形成する態様でもよく、また、パターンが単純であるため、保護フィルムを転写して所望の領域を切断剥離する方法で形成する態様でもよい。この態様の場合、フォトレジスト工程は不要となるため、大幅にコストを下げることが可能である。 Subsequently, a mask pattern for forming the bottom 1043 of the recess is formed on the second surface 103 of the sensor substrate 101. Specifically, in the present embodiment, first, the second surface 103 of the sensor substrate 101 is set on the spin coater, and the photoresist is applied. Then, the sensor substrate 101 covered with the photoresist is placed on a UV exposure table and exposed using a predetermined photomask. Here, in the photomask, a region wider than the effective pixel region 105 of the sensor substrate 101 is opened in the orthogonal projection on the second surface 103 of the sensor substrate 101. This makes it possible to surely form the scintillator 111 formed in a region including the bottom 1043 of the recess in a subsequent step so as to cover the effective pixel region 105. After the exposure, the photoresist is developed by immersing the sensor substrate 101 in a sodium carbonate aqueous solution, and then rinsed with pure water and dried. In the present embodiment, the mask pattern formation is not limited to this mode. For example, it may be formed by a method of performing photolithography using a resist film, or may be formed by a method of transferring a protective film and cutting and peeling a desired region because the pattern is simple. In the case of this aspect, the photoresist process is not required, and thus the cost can be significantly reduced.
 続いて、マスクパターンが形成されたセンサ基板101を10%のフッ酸溶液に浸漬する。例えば、この際の浸漬時間は予め算出したエッチングレートよって決定し、所望の厚さまでエッチングを行う。例えば、本実施形態では400μmのエッチングを行うため、センサ基板101の第1の面102と凹部の底部1043との厚みは100μm程度である。次いで、エッチング後、純水を用いてセンサ基板101を十分にリンスし、更にレジスト剥離液に浸漬させてマスクパターンを剥離する。 Subsequently, the sensor substrate 101 on which the mask pattern is formed is immersed in a 10% hydrofluoric acid solution. For example, the immersion time at this time is determined by a previously calculated etching rate, and etching is performed to a desired thickness. For example, in this embodiment, since the etching is performed to 400 μm, the thickness of the first surface 102 of the sensor substrate 101 and the bottom portion 1043 of the recess is about 100 μm. Then, after etching, the sensor substrate 101 is sufficiently rinsed with pure water and further immersed in a resist stripping solution to strip the mask pattern.
 続いて、センサ基板101の第1の面102に貼り付けた樹脂フィルム剥離し、凹部104を有するセンサ基板101を形成する。このようにして、センサ基板101を準備する。 Subsequently, the resin film attached to the first surface 102 of the sensor substrate 101 is peeled off to form the sensor substrate 101 having the recess 104. In this way, the sensor substrate 101 is prepared.
 続いて、凹部104の形状に沿って凹部104を埋め込むように、凹部の底部1043及び凹部の側部1042にシンチレータ111を形成する。具体的に、本実施形態では、まず、センサ基板101に周辺部分を覆う蒸着マスクをセットした後、凹部104が蒸着面となるようにセンサ基板101を蒸着装置に載置する。次いで、Tl濃度がCsIに対して1mol%程度となるようにヨウ化セシウム(CsI)とヨウ化タリウム(TlI)を共蒸着し、膜厚350μm程度のシンチレータ111を形成する。この際、蒸着の性質上、原材料の粒子は拡散しながら対象物に付着するため、蒸着マスクの外部にも蛍光体材料が付着し、その結果、凹部の底部1043のみならず凹部の側部1042にもシンチレータ111が形成される。また、本実施形態においては、シンチレータ111の外縁は、有効画素領域105の外縁よりも外側に位置する。 Subsequently, the scintillator 111 is formed on the bottom 1043 of the recess and the side 1042 of the recess so as to fill the recess 104 along the shape of the recess 104. Specifically, in the present embodiment, first, the vapor deposition mask that covers the peripheral portion is set on the sensor substrate 101, and then the sensor substrate 101 is placed on the vapor deposition device so that the recess 104 becomes the vapor deposition surface. Next, cesium iodide (CsI) and thallium iodide (TlI) are co-evaporated so that the Tl concentration is about 1 mol% with respect to CsI, and the scintillator 111 having a film thickness of about 350 μm is formed. At this time, due to the nature of vapor deposition, the particles of the raw material adhere to the object while diffusing, so that the phosphor material also adheres to the outside of the vapor deposition mask, and as a result, not only the bottom 1043 of the recess but also the side 1042 of the recess. Also, the scintillator 111 is formed. Further, in the present embodiment, the outer edge of the scintillator 111 is located outside the outer edge of the effective pixel region 105.
 このままの状態では、センサ基板101の凹部の底部1043にシンチレータ111の全重量がかかり破損する恐れがあるため、放射線撮像パネル110-1の補強のために、補強基板113を配置する。具体的に、本実施形態では、まず、補強基板113として、センサ基板101と同じ材質で厚みが0.5mmの無アルカリガラス基板を用意する。次いで、補強基板113として用意した無アルカリガラス基板を熱転写装置に載置し、この補強基板113上に、例えば接着層112として厚みが30μm程度のホットメルト樹脂の層を熱転写し、接着層112が付着した補強基板113を用意する。 In this state, the bottom 1043 of the concave portion of the sensor substrate 101 may be damaged by the total weight of the scintillator 111. Therefore, the reinforcement substrate 113 is arranged to reinforce the radiation imaging panel 110-1. Specifically, in this embodiment, first, as the reinforcing substrate 113, a non-alkali glass substrate having the same material as the sensor substrate 101 and a thickness of 0.5 mm is prepared. Next, the non-alkali glass substrate prepared as the reinforcing substrate 113 is placed on the thermal transfer device, and a layer of hot-melt resin having a thickness of about 30 μm, for example, as the adhesive layer 112 is thermally transferred onto the reinforcing substrate 113 to form the adhesive layer 112. The attached reinforcing substrate 113 is prepared.
 ここでは、接着層112として一種類の接着層(ホットメルト樹脂の層)を用いる例を説明したが、本実施形態においてはこれに限定されるものではなく、例えばシンチレータ111と凹部の頂部1041の各々に適した複数の接着層を用いてもよい。また、本実施形態においては、接着層112を着色する形態も採りうる。本実施形態においては、例えば接着層112を白色の層として着色する形態を採ることが好適である。例えば、接着層112を酸化チタンやアルミナ等により白色に着色した場合、シンチレータ111で生じた光のうち、有効画素領域105に向かう方向とは異なる方向に進む光を反射することにより、シンチレータ111で生じた光を効率的に利用することができる。これにより、放射線撮像パネル110-1の感度を向上させることができる。また、本実施形態においては、補強基板113は、シンチレータ111の蛍光体を水分から保護する防湿保護層としての機能も兼ね備えているものとする。この場合、接着層112の厚みは、100μm以下であることが好ましい。 Here, an example in which one kind of adhesive layer (a layer of hot melt resin) is used as the adhesive layer 112 has been described, but the present embodiment is not limited to this, and for example, the scintillator 111 and the top portion 1041 of the concave portion can be formed. Multiple adhesive layers suitable for each may be used. In the present embodiment, the adhesive layer 112 may be colored. In the present embodiment, for example, it is preferable that the adhesive layer 112 is colored as a white layer. For example, when the adhesive layer 112 is colored white with titanium oxide, alumina, or the like, of the light generated by the scintillator 111, light that travels in a direction different from the direction toward the effective pixel region 105 is reflected, so that the scintillator 111 can reflect the light. The generated light can be used efficiently. Thereby, the sensitivity of the radiation imaging panel 110-1 can be improved. Further, in the present embodiment, the reinforcing substrate 113 also has a function as a moisture-proof protective layer that protects the phosphor of the scintillator 111 from moisture. In this case, the thickness of the adhesive layer 112 is preferably 100 μm or less.
 続いて、シンチレータ111が凹部104に形成されたセンサ基板101を熱転写装置に載置する。次いで、接着層112がセンサ基板101の第2の面103における凹部の頂部1041及びシンチレータ111と接するように熱転写することにより、センサ基板101及びシンチレータ111に対して補強基板113を貼り合わせて接着する。これにより、センサ基板101の凹部104における補強を行うことができる。この際、本実施形態においては、接着層112は、図2に示すセンサ基板101の凹部の頂部1041及びシンチレータ111のみならず、センサ基板101の凹部の側部1042における一部の領域にも接着されていてもよい。 Subsequently, the sensor substrate 101 having the scintillator 111 formed in the recess 104 is placed on the thermal transfer device. Next, the reinforcing substrate 113 is bonded and bonded to the sensor substrate 101 and the scintillator 111 by thermal transfer so that the adhesive layer 112 contacts the top 1041 of the concave portion and the scintillator 111 in the second surface 103 of the sensor substrate 101. .. Thereby, the recess 104 of the sensor substrate 101 can be reinforced. At this time, in the present embodiment, the adhesive layer 112 is adhered not only to the top 1041 of the recess of the sensor substrate 101 and the scintillator 111 shown in FIG. 2 but also to a part of the side 1042 of the recess of the sensor substrate 101. It may have been done.
 その後、接続端子部114に異方性導電フィルムを介して配線材や駆動基板類を接続することによって、本実施形態における放射線撮像パネル110-1を形成する。 After that, the radiation imaging panel 110-1 in the present embodiment is formed by connecting the wiring material and the drive substrate to the connection terminal portion 114 via the anisotropic conductive film.
 そして、本実施形態における放射線撮像パネル110-1に駆動系をセットし、RQA5の線質条件でMTFとDQEの測定を行ったところ、2lp/mmでのMTFは0.35、DQEは0.42であった。このことから、本実施形態における放射線撮像パネル110-1では、高いMTF及びDQEが得られる結果、十分に信頼性の高い高性能な放射線撮像パネルを実現することが可能である。 Then, a drive system was set on the radiation imaging panel 110-1 in this embodiment, and MTF and DQE were measured under the radiation quality condition of RQA5. As a result, the MTF at 2 lp / mm was 0.35 and the DQE was 0. It was 42. From this, in the radiation imaging panel 110-1 in the present embodiment, as a result of obtaining high MTF and DQE, it is possible to realize a sufficiently reliable high-performance radiation imaging panel.
 上述したように、本実施形態における放射線撮像パネル110-1では、接着層112を介して補強基板113を、センサ基板101の第2の面103及びシンチレータ111に対して接着するようにしている。 As described above, in the radiation imaging panel 110-1 according to this embodiment, the reinforcing substrate 113 is bonded to the second surface 103 of the sensor substrate 101 and the scintillator 111 via the adhesive layer 112.
 かかる構成によれば、例えばセンサ基板101の第2の面103のみに対して接着層112を介して補強基板113を接着させる場合と比較して、放射線撮像パネル110の機械的強度の向上を実現することができる。これにより、十分に信頼性の高い高性能な放射線撮像パネル110を実現することが可能である。 With this configuration, for example, the mechanical strength of the radiation imaging panel 110 is improved as compared with the case where the reinforcing substrate 113 is bonded only to the second surface 103 of the sensor substrate 101 via the adhesive layer 112. can do. As a result, it is possible to realize a sufficiently reliable and high-performance radiation imaging panel 110.
 (第2の実施形態)
 次に、本発明の第2の実施形態について説明する。なお、以下に記載する第2の実施形態の説明では、上述した第1の実施形態と共通する事項については説明を省略し、上述した第1の実施形態と異なる事項について説明を行う。
(Second embodiment)
Next, a second embodiment of the present invention will be described. In the description of the second embodiment described below, description of items common to the above-described first embodiment will be omitted, and items different from the above-described first embodiment will be described.
 第2の実施形態に係る放射線撮像システムの概略構成は、上述した図1に示す第1の実施形態に係る放射線撮像システム10の概略構成と同様である。このため、第2の実施形態に係る放射線撮像装置の概略構成は、上述した図1に示す第1の実施形態に係る放射線撮像装置100の概略構成と同様となる。 The schematic configuration of the radiation imaging system according to the second embodiment is similar to the schematic configuration of the radiation imaging system 10 according to the first embodiment shown in FIG. 1 described above. Therefore, the schematic configuration of the radiation imaging apparatus according to the second embodiment is similar to the schematic configuration of the radiation imaging apparatus 100 according to the first embodiment shown in FIG. 1 described above.
 図3は、本発明の第2の実施形態に係る放射線撮像装置100の放射線撮像パネル110における概略構成の一例を示す図である。この図3では、図2と同様に、図1に示す放射線401の入射方向における放射線撮像パネル110の断面図を示している。以降の説明においては、この図3に示す第2の実施形態に係る放射線撮像パネル110を「放射線撮像パネル110-2」として説明する。また、図3では、図1に示す放射線401として、例えばX線を適用しうる。 FIG. 3 is a diagram showing an example of a schematic configuration of the radiation imaging panel 110 of the radiation imaging apparatus 100 according to the second embodiment of the present invention. Similar to FIG. 2, FIG. 3 shows a cross-sectional view of the radiation imaging panel 110 in the incident direction of the radiation 401 shown in FIG. In the following description, the radiation imaging panel 110 according to the second embodiment shown in FIG. 3 will be described as a “radiation imaging panel 110-2”. Further, in FIG. 3, for example, X-rays can be applied as the radiation 401 shown in FIG.
 放射線撮像パネル110-2は、図3に示すように、センサ基板101、シンチレータ111、接着層112、補強基板113、接続端子部114、シンチレータ115、及び、反射層116を有して構成されている。また、図3では、センサ基板101において、放射線401が入射する側に位置する第1の面102と、放射線401が入射する側とは反対側に位置する第2の面103と、第2の面103に形成された凹部104を図示している。さらに、図3では、凹部104を構成する具体的な部分として、凹部の頂部1041、凹部の側部1042及び凹部の底部1043を図示している。この図3において、図2と同様の構成については同じ符号を付しているため、その詳細な説明は省略する。 As shown in FIG. 3, the radiation imaging panel 110-2 includes a sensor substrate 101, a scintillator 111, an adhesive layer 112, a reinforcing substrate 113, a connection terminal portion 114, a scintillator 115, and a reflective layer 116. There is. Further, in FIG. 3, in the sensor substrate 101, the first surface 102 located on the side where the radiation 401 enters, the second surface 103 located on the side opposite to the side where the radiation 401 enters, and the second surface 103. The recess 104 formed in the surface 103 is illustrated. Further, in FIG. 3, as specific portions forming the recess 104, the top 1041 of the recess, the side 1042 of the recess, and the bottom 1043 of the recess are illustrated. In FIG. 3, the same components as those in FIG. 2 are designated by the same reference numerals, and detailed description thereof will be omitted.
 この図3に示すように、第2の実施形態における放射線撮像パネル110-2は、図2に示す第1の実施形態における放射線撮像パネル110-1の構成に加えて、センサ基板101の第1の面102の上(より詳細には、有効画素領域105及びダミー画素領域106の上)に、シンチレータ115及び反射層116を順次形成した構造となっている。シンチレータ115は、シンチレータ111とは別のシンチレータである。また、以降の説明においては、シンチレータ111を「第1のシンチレータ111」として説明し、シンチレータ115を「第2のシンチレータ115」として説明する。 As shown in FIG. 3, the radiation imaging panel 110-2 according to the second embodiment has a configuration similar to that of the radiation imaging panel 110-1 according to the first embodiment shown in FIG. The scintillator 115 and the reflective layer 116 are sequentially formed on the surface 102 (more specifically, on the effective pixel region 105 and the dummy pixel region 106). The scintillator 115 is a scintillator different from the scintillator 111. Further, in the following description, the scintillator 111 will be described as a “first scintillator 111” and the scintillator 115 will be described as a “second scintillator 115”.
 本実施形態におけるセンサ基板101の有効画素領域105の各画素は、第1のシンチレータ111で放射線401から変換された光と第2のシンチレータ115で放射線401から変換された光とに応じた電気信号を生成する形態を採る。 Each pixel of the effective pixel region 105 of the sensor substrate 101 in the present embodiment has an electric signal corresponding to the light converted from the radiation 401 by the first scintillator 111 and the light converted from the radiation 401 by the second scintillator 115. Is generated.
 第2のシンチレータ115は、反射層116を介して入射した放射線401を光に変換する蛍光体である。 The second scintillator 115 is a phosphor that converts the radiation 401 incident through the reflective layer 116 into light.
 反射層116は、第2のシンチレータ115を覆うように設けられ、第2のシンチレータ115で発生した光のうち、有効画素領域105に向かう方向とは異なる方向に進む光を反射(当該光を有効画素領域105に導くべく反射)する層である。この反射層116によって、第2のシンチレータ115で発生した光を効率的に利用することが可能となり、放射線撮像パネル110-2の感度を向上させることができる。また、この反射層116は、防湿保護層としての機能を具備させることがより好適である。 The reflection layer 116 is provided so as to cover the second scintillator 115, and reflects, of the light generated by the second scintillator 115, light that travels in a direction different from the direction toward the effective pixel region 105 (the light is effective). It is a layer that reflects to lead to the pixel region 105. The reflective layer 116 makes it possible to efficiently use the light generated by the second scintillator 115 and improve the sensitivity of the radiation imaging panel 110-2. Further, it is more preferable that the reflective layer 116 has a function as a moisture-proof protective layer.
 その他のセンサ基板101、第1のシンチレータ111、接着層112、及び、補強基板113、接続端子部114については、図2に示す第1の実施形態の各構成と同様であるため、その説明は省略する。 The other sensor substrate 101, the first scintillator 111, the adhesive layer 112, the reinforcing substrate 113, and the connection terminal portion 114 are the same as the respective components of the first embodiment shown in FIG. Omit it.
 次に、第2の実施形態に係る放射線撮像パネル110-2の製造方法について説明する。 Next, a method of manufacturing the radiation imaging panel 110-2 according to the second embodiment will be described.
 まず、放射線撮像パネル110-2の製造では、センサ基板101の第1の面102が上になるように載置し、凹部104以外の部分に第2のシンチレータ115が形成されることのないようにマスキングを行う。次いで、センサ基板101の第1の面102が下側になるようにセンサ基板101を蒸着装置に載置する。次いで、Tl濃度がCsIに対して1mol%程度となるようにヨウ化セシウム(CsI)とヨウ化タリウム(TlI)を共蒸着し、膜厚350μm程度の第2のシンチレータ115を形成する。 First, in the manufacture of the radiation imaging panel 110-2, the sensor substrate 101 is placed so that the first surface 102 faces upward, and the second scintillator 115 is not formed in a portion other than the recess 104. Masking on. Next, the sensor substrate 101 is placed on the vapor deposition device so that the first surface 102 of the sensor substrate 101 faces downward. Then, cesium iodide (CsI) and thallium iodide (TlI) are co-evaporated so that the Tl concentration is about 1 mol% with respect to CsI, and the second scintillator 115 with a film thickness of about 350 μm is formed.
 続いて、第2のシンチレータ115が第1の面102に形成されたセンサ基板101を熱転写装置に載置し、上述した第1の実施形態と同様にして、センサ基板101の第2の面103における凹部104に第1のシンチレータ111を形成する。次いで、上述した第1の実施形態と同様にして、センサ基板101及びシンチレータ111に対して接着層112を介して補強基板113を貼り合わせて接着する。この際、本実施形態では、接着層112としては、反射層としての機能を持たせるために、酸化チタンを含有させたホットメルト樹脂を用いる。 Subsequently, the second scintillator 115 mounts the sensor substrate 101 formed on the first surface 102 on the thermal transfer device, and similarly to the first embodiment described above, the second surface 103 of the sensor substrate 101. The first scintillator 111 is formed in the concave portion 104. Then, similarly to the above-described first embodiment, the reinforcing substrate 113 is bonded and bonded to the sensor substrate 101 and the scintillator 111 via the adhesive layer 112. At this time, in the present embodiment, as the adhesive layer 112, a hot melt resin containing titanium oxide is used in order to have a function as a reflection layer.
 続いて、第2のシンチレータ115を覆うように、反射層116を形成する。具体的に、本実施形態では、まず、センサ基板101の第1の面102が上になるようにしてセンサ基板101を熱転写装置に載置する。次いで、約30μm厚のホットメルト樹脂がコーティングされている約20μm厚のアルミニウム薄膜を、第2のシンチレータ115を完全に被覆するように熱転写することによって、反射層116を形成する。 Subsequently, the reflective layer 116 is formed so as to cover the second scintillator 115. Specifically, in the present embodiment, first, the sensor substrate 101 is placed on the thermal transfer device with the first surface 102 of the sensor substrate 101 facing upward. Then, the reflection layer 116 is formed by thermally transferring an aluminum thin film having a thickness of about 20 μm coated with a hot melt resin having a thickness of about 30 μm so as to completely cover the second scintillator 115.
 その後、接続端子部114に異方性導電フィルムを介して駆動基板類を接続することによって、本実施形態における放射線撮像パネル110-2を形成する。なお、本実施形態においては、補強基板113及び反射層116は、防湿保護層としての機能も兼ね備えているものとする。 After that, the radiation imaging panel 110-2 in the present embodiment is formed by connecting the drive substrates to the connection terminal portion 114 via the anisotropic conductive film. In this embodiment, the reinforcing substrate 113 and the reflective layer 116 also have a function as a moisture-proof protective layer.
 本実施形態における放射線撮像パネル110-2に駆動系をセットし、RQA5の線質条件で、放射線401としてX線を図3の矢印の方向に入射させてMTFとDQEの測定を行ったところ、2lp/mmでのMTFについては0.35であった。また、DQEについては、図4を用いて以下に説明する。 When a drive system is set in the radiation imaging panel 110-2 in the present embodiment and X-rays are made to enter as radiation 401 in the direction of the arrow in FIG. 3 under the quality condition of RQA5, MTF and DQE are measured, The MTF at 2 lp / mm was 0.35. The DQE will be described below with reference to FIG.
 図4は、本発明の第2の実施形態に係る放射線撮像パネル110-2において、空間周波数によるDQEの変化を示す測定結果の図である。この図4では、比較として測定結果210が第1の実施形態に係る放射線撮像パネル110-1のDQEの変化を示す測定結果であり、測定結果220が第2の実施形態に係る放射線撮像パネル110-2のDQEの変化を示す測定結果である。 FIG. 4 is a diagram of measurement results showing changes in DQE according to spatial frequency in the radiation imaging panel 110-2 according to the second embodiment of the present invention. In FIG. 4, for comparison, the measurement result 210 is the measurement result indicating the change in DQE of the radiation imaging panel 110-1 according to the first embodiment, and the measurement result 220 is the radiation imaging panel 110 according to the second embodiment. 2 is a measurement result showing a change in DQE of −2.
 この図4に示す測定結果から、第2の実施形態に係る放射線撮像パネル110-2のDQEは、第1の実施形態に係る放射線撮像パネル110-1のDQEと比べて、3lp/mm以下の低周波数域で高い値を示していることがわかる。このことから、本実施形態における放射線撮像パネル110-2では、十分に実用に耐えうる信頼性のより高い高性能な放射線撮像パネルを実現することが可能である。 From the measurement results shown in FIG. 4, the DQE of the radiation imaging panel 110-2 according to the second embodiment is 3 lp / mm or less as compared with the DQE of the radiation imaging panel 110-1 according to the first embodiment. It can be seen that the value is high in the low frequency range. For this reason, the radiation imaging panel 110-2 according to the present embodiment can realize a highly reliable radiation imaging panel that can sufficiently withstand practical use.
 上述したように、本実施形態における放射線撮像パネル110-2では、第1の実施形態と同様に、接着層112を介して補強基板113を、センサ基板101の第2の面103及びシンチレータ111に対して接着するようにしている。 As described above, in the radiation imaging panel 110-2 according to the present embodiment, the reinforcing substrate 113 is provided on the second surface 103 of the sensor substrate 101 and the scintillator 111 via the adhesive layer 112, as in the first embodiment. I try to adhere to it.
 かかる構成によれば、例えばセンサ基板101の第2の面103のみに対して接着層112を介して補強基板113を接着させる場合と比較して、放射線撮像パネル110の機械的強度の向上を実現することができる。この観点からも、第2の実施形態によれば、十分に信頼性の高い高性能な放射線撮像パネル110を実現することが可能である。 With this configuration, for example, the mechanical strength of the radiation imaging panel 110 is improved as compared with the case where the reinforcing substrate 113 is bonded only to the second surface 103 of the sensor substrate 101 via the adhesive layer 112. can do. Also from this viewpoint, according to the second embodiment, it is possible to realize a sufficiently reliable and high-performance radiation imaging panel 110.
 (第3の実施形態)
 次に、本発明の第3の実施形態について説明する。なお、以下に記載する第3の実施形態の説明では、上述した第1及び第2の実施形態と共通する事項については説明を省略し、上述した第1及び第2の実施形態と異なる事項について説明を行う。
(Third Embodiment)
Next, a third embodiment of the present invention will be described. In the description of the third embodiment described below, description of items common to the above-described first and second embodiments will be omitted, and items different from the above-described first and second embodiments will be described. I will explain.
 第3の実施形態に係る放射線撮像システムの概略構成は、上述した図1に示す第1の実施形態に係る放射線撮像システム10の概略構成と同様である。このため、第3の実施形態に係る放射線撮像装置の概略構成は、上述した図1に示す第1の実施形態に係る放射線撮像装置100の概略構成と同様となる。 The schematic configuration of the radiation imaging system according to the third embodiment is similar to the schematic configuration of the radiation imaging system 10 according to the first embodiment shown in FIG. 1 described above. Therefore, the schematic configuration of the radiation imaging apparatus according to the third embodiment is similar to the schematic configuration of the radiation imaging apparatus 100 according to the first embodiment shown in FIG. 1 described above.
 第3の実施形態に係る放射線撮像パネル110は、第2の実施形態に係る放射線撮像パネル110-2と基本的には同様の構造であるが、有効画素領域105(更にはダミー画素領域106も同様としてもよい)に形成する画素として2種類の画素を形成する。 The radiation imaging panel 110 according to the third embodiment has basically the same structure as the radiation imaging panel 110-2 according to the second embodiment, but the effective pixel region 105 (and the dummy pixel region 106 as well). Two types of pixels are formed as pixels to be formed (may be the same).
 図5は、本発明の第3の実施形態に係る放射線撮像装置100の放射線撮像パネル110における概略構成の一例を示す図である。以降の説明においては、この図5に示す第3の実施形態に係る放射線撮像パネル110を「放射線撮像パネル110-3」として説明する。また、この図5では、第3の実施形態に係る放射線撮像パネル110-3の構成のうち、例えば図3に示す有効画素領域105に相当する領域のみを放射線401の入射方向から見た図を示しているが、他の構成については図3に示す各構成を備えているものとする。また、図5では、図1に示す放射線401として、例えばX線を適用しうる。 FIG. 5 is a diagram showing an example of a schematic configuration of the radiation imaging panel 110 of the radiation imaging apparatus 100 according to the third embodiment of the present invention. In the following description, the radiation imaging panel 110 according to the third embodiment shown in FIG. 5 will be described as a “radiation imaging panel 110-3”. In addition, FIG. 5 is a diagram showing, for example, only a region corresponding to the effective pixel region 105 shown in FIG. 3 in the configuration of the radiation imaging panel 110-3 according to the third embodiment when viewed from the incident direction of the radiation 401. Although shown, other configurations are assumed to have the configurations shown in FIG. Further, in FIG. 5, for example, X-rays can be applied as the radiation 401 shown in FIG.
 この図5に示すように、第3の実施形態に係る放射線撮像パネル110-3では、有効画素領域105に、通常の画素(第1の画素)301及び遮光層が設けられた画素(第2の画素)302の2種類の画素が設けられている。 As shown in FIG. 5, in the radiation imaging panel 110-3 according to the third embodiment, the normal pixel (first pixel) 301 and the pixel (second pixel) provided in the effective pixel region 105 (second pixel). Pixel) 302 are provided.
 通常の画素301には、第2の実施形態における有効画素領域105の各画素と同様に、第1のシンチレータ111で放射線401から変換された光と第2のシンチレータ115で放射線401から変換された光との両方の光が入射する。そして、通常の画素301は、これらの光に応じた電気信号を生成する。 Similar to each pixel of the effective pixel area 105 in the second embodiment, the normal pixel 301 includes light converted from the radiation 401 by the first scintillator 111 and converted from the radiation 401 by the second scintillator 115. Both light and light are incident. Then, the normal pixel 301 generates an electric signal corresponding to these lights.
 遮光層が設けられた画素302は、具体的に本実施形態では、第2のシンチレータ115と有効画素領域105との間の位置に、第2のシンチレータ115で放射線401から変換された光が当該画素302の光電変換素子に入射することを抑制する遮光層が設けられている。このため、遮光層が設けられた画素302には、第2のシンチレータ115で発生した光は入射せずに、第1のシンチレータ111で発生した光の一部のみが入射することになる。そして、遮光層が設けられた画素302は、第1のシンチレータ111で発生し入射した光に応じた電気信号を生成する。 Specifically, in the present embodiment, the pixel 302 provided with the light shielding layer is located at a position between the second scintillator 115 and the effective pixel region 105, and the light converted from the radiation 401 by the second scintillator 115 is concerned. A light-blocking layer that suppresses incidence on the photoelectric conversion element of the pixel 302 is provided. Therefore, the light generated by the second scintillator 115 does not enter the pixel 302 provided with the light shielding layer, but only a part of the light generated by the first scintillator 111 enters. Then, the pixel 302 provided with the light shielding layer generates an electric signal according to the light generated and incident on the first scintillator 111.
 第3の実施形態に係る放射線撮像パネル110-3では、放射線(X線)401が入射した場合、遮光層が設けられた画素302は、第3の実施形態に係る第2のシンチレータ115においてビームハードニングされた高エネルギー成分の放射線(X線)401に基づく光を捉えることになる。また、通常の画素301は、ビームハードニングされていない低エネルギー成分を含む放射線(X線)401に基づく光と第2のシンチレータ115においてビームハードニングされた高エネルギー成分の放射線(X線)401に基づく光との両方を捉えることになる。 In the radiation imaging panel 110-3 according to the third embodiment, when the radiation (X-ray) 401 is incident, the pixel 302 provided with the light shielding layer is beamed in the second scintillator 115 according to the third embodiment. Light based on the hardened high-energy component radiation (X-ray) 401 is captured. In addition, the normal pixel 301 includes light based on radiation (X-ray) 401 containing a low energy component which is not beam hardened and radiation (X-ray) 401 having a high energy component which is beam hardened by the second scintillator 115. It will capture both the light based on.
 ここで、通常の画素301で生成される電気信号の信号値をAとし、遮光層が設けられた画素302で生成される電気信号の信号値をBとすると、
A-B=低エネルギー画像
B  =高エネルギー画像
となる。即ち、例えば信号処理部121で適当な補間処理を行うことにより、高低2つのエネルギーに係る放射線画像を取得することが可能となる。そして、例えば、信号処理部121は、ここで得られた高エネルギー画像と低エネルギー画像とを用いてエネルギーサブトラクション処理を行うことができる。ここで、エネルギーサブトラクションとは、高エネルギーと低エネルギーとの異なるエネルギーの放射線を用いた放射線画像(高エネルギー画像及び低エネルギー画像と呼ぶ場合がある。)を取得し、これらの差分などから、エネルギー吸収率の異なる物質を分離し、表示等する方法である。例えば、骨と骨以外の組織との分離などを行うことが可能であり、診断能の著しい向上が期待できる。
Here, when the signal value of the electric signal generated by the normal pixel 301 is A and the signal value of the electric signal generated by the pixel 302 provided with the light shielding layer is B,
AB = low energy image B = high energy image. That is, for example, by performing an appropriate interpolation process in the signal processing unit 121, it is possible to obtain a radiation image related to high and low energy. Then, for example, the signal processing unit 121 can perform energy subtraction processing using the high energy image and the low energy image obtained here. Here, the energy subtraction acquires a radiation image (may be referred to as a high energy image and a low energy image) using radiation having different energies of high energy and low energy, and the energy is calculated from the difference between these. It is a method of separating substances with different absorption rates and displaying them. For example, it is possible to separate bones from tissues other than bones, and it is expected that the diagnostic ability will be significantly improved.
 通常、高低のエネルギー画像は、2回の放射線401の曝射により容易に取得することが可能である。しかしながら、本実施形態では、1回の放射線401の照射によってエネルギーサブトラクション画像の取得が可能である。即ち、本実施形態では、放射線401の被曝線量を抑制することが可能である。 Normally, high and low energy images can be easily acquired by exposing the radiation 401 twice. However, in the present embodiment, the energy subtraction image can be acquired by irradiating the radiation 401 once. That is, in the present embodiment, the exposure dose of the radiation 401 can be suppressed.
 本実施形態においては、遮光層が設けられた画素302の配置パターンは、図5に示した態様に限定されるものではなく、適宜変更可能である。この際、有効画素領域105において遮光層が設けられた画素302の比率が高くなると、通常の画素301の画素ピッチが広がってしまい、得られる放射線画像の画質低下を招いてしまう可能性がある。通常の画素301は、周辺の画素と著しく異なる電気信号を出力する欠陥画素と同様に、画像補てん技術によって補うことができるが、遮光層が設けられた画素302の比率が高くなった場合、補てん後の画質低下が大きくなりうる。 In the present embodiment, the arrangement pattern of the pixels 302 provided with the light shielding layer is not limited to the mode shown in FIG. 5 and can be changed as appropriate. At this time, if the ratio of the pixels 302 provided with the light shielding layer in the effective pixel region 105 is increased, the pixel pitch of the normal pixels 301 is widened, which may lead to deterioration in image quality of the obtained radiation image. The normal pixel 301 can be compensated by the image compensation technique similarly to the defective pixel which outputs an electric signal which is significantly different from the peripheral pixels, but when the ratio of the pixels 302 provided with the light shielding layer becomes high, the compensation is performed. Later image quality may be significantly degraded.
 そこで、例えば、遮光層が設けられた画素302の数が、有効画素領域105の全画素数(通常の画素301の数と遮光層が設けられた画素302の数との合計)の1/2以下となるように、通常の画素301と遮光層が設けられた画素302を調整してもよい。なお、本実施形態においては、この態様に限定されるものではなく、例えば、遮光層が設けられた画素302の数が、有効画素領域105の全画素数の1/3以下,1/4以下,または、1/5以下になるようにしてもよい。 Therefore, for example, the number of pixels 302 provided with the light shielding layer is 1/2 of the total number of pixels in the effective pixel region 105 (the total number of ordinary pixels 301 and the number of pixels 302 provided with the light shielding layer). The normal pixel 301 and the pixel 302 provided with the light shielding layer may be adjusted as described below. Note that the present embodiment is not limited to this mode, and for example, the number of pixels 302 provided with the light shielding layer is 1/3 or less, or 1/4 or less of the total number of pixels in the effective pixel area 105. , Or 1/5 or less.
 次に、第3の実施形態に係る放射線撮像パネル110-3の製造方法について説明する。具体的に、以下には、放射線撮像パネル110-3の製造方法のうち、有効画素領域105(より詳細には、遮光層が設けられた画素302)の製造方法のみを説明し、他の構成の製造方法は上述した第2の実施形態と同様であるため説明を省略する。 Next, a method of manufacturing the radiation imaging panel 110-3 according to the third embodiment will be described. Specifically, of the methods for manufacturing the radiation imaging panel 110-3, only the method for manufacturing the effective pixel region 105 (more specifically, the pixel 302 provided with the light shielding layer) will be described below, and other configurations will be described. The manufacturing method of is similar to that of the second embodiment described above, and thus the description thereof is omitted.
 本実施形態では、センサ基板101の母材に予めフォトレジストを塗布し、パターニングすることによって、通常の画素301上に開口を有するマスクパターンを形成する。 In the present embodiment, a mask pattern having an opening on a normal pixel 301 is formed by applying a photoresist in advance to the base material of the sensor substrate 101 and patterning it.
 続いて、スピンコートによって低反射率クロム分散液を塗布し、現像することによって、遮光層が設けられた画素302を形成する。本実施形態では、遮光層が設けられた画素302は、例えば、その膜厚が約1.2μmであり、可視光透過率が約1.0%であって十分に遮光が可能である。なお、遮光層の形成に関しては、上述した方法以外にも、例えば、カーボンブラックによる方法や背面電極の開口を調整する方法などもあり、本実施形態においては十分な遮光が得られれば如何なる方法も適用可能である。 Next, a low-reflectance chromium dispersion liquid is applied by spin coating and developed to form a pixel 302 provided with a light shielding layer. In the present embodiment, the pixel 302 provided with the light shielding layer has, for example, a film thickness of about 1.2 μm and a visible light transmittance of about 1.0%, and can sufficiently shield light. Regarding the formation of the light-shielding layer, in addition to the above-described method, for example, there is a method using carbon black, a method of adjusting the opening of the back electrode, and the like. Applicable.
 また、本実施形態の上述した処理で得られた高低のエネルギー画像は、以下に示す方法によって、2物質のそれぞれの厚みtにより画像分離を行った。ここで、複数の成分を含む物質を放射線401が透過した際に、それぞれの画素から出力される信号値は、以下の(1)式で表される。 Further, the high and low energy images obtained by the above-described processing of this embodiment were subjected to image separation by the thickness t of each of the two substances by the method described below. Here, the signal value output from each pixel when the radiation 401 passes through a substance containing a plurality of components is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 この(1)式において、Eは放射線401のエネルギーを示し、μは成分iの線減弱定数を示し、tは成分iの厚みを示し、N(E)は照射した放射線401のエネルギー分布を示す。この(1)式に、高低のエネルギー画像のそれぞれ観測された信号値を用いて、積分方程式を解くことによって各成分の厚みtを計算することができる。この際、本実施形態では、高エネルギーの信号値及び低エネルギーの信号値は、それぞれ、以下のようにして求めた。
・高エネルギーの信号値=画素302で観測された信号値
・低エネルギーの信号値=(画素302を取り囲む周辺8つの画素301の信号値のメジアン平均値)-(画素302で観測された信号値)
In this equation (1), E represents the energy of the radiation 401, μ i represents the linear attenuation constant of the component i, t i represents the thickness of the component i, and N (E) represents the energy distribution of the irradiated radiation 401. Indicates. The thickness t i of each component can be calculated by solving the integral equation using the observed signal values of the high and low energy images in the equation (1). At this time, in the present embodiment, the high energy signal value and the low energy signal value are respectively obtained as follows.
-High energy signal value = signal value observed in pixel 302-Low energy signal value = (median average value of signal values of eight peripheral pixels 301 surrounding pixel 302)-(signal value observed in pixel 302 )
 図6は、本発明の第3の実施形態に係る放射線撮像装置100で得られる骨分離画像の一例を示す図である。具体的に、図6は、管電圧を80kVとした放射線源400によって、検査対象Tとして適用した手ファントムの放射線撮影を行い、当該撮影によって得られた透過画像を用いて、上述した(1)式の処理によって取得した骨分離画像を示している。この図6から、本実施形態に係る放射線撮像装置100では、十分に高品位な骨分離画像が得られることがわかる。 FIG. 6 is a diagram showing an example of a bone separation image obtained by the radiation imaging apparatus 100 according to the third embodiment of the present invention. Specifically, in FIG. 6, the radiation source 400 having a tube voltage of 80 kV performs radiography of a hand phantom applied as the inspection target T, and the transmission image obtained by the radiography is used to perform the above-described (1). 7 illustrates a bone separation image acquired by processing of a formula. From FIG. 6, it is understood that the radiation imaging apparatus 100 according to the present embodiment can obtain a sufficiently high quality bone separation image.
 また、本実施形態における放射線撮像パネル110-3に駆動系をセットし、RQA5の線質条件で、放射線401としてX線を図1の矢印の方向に入射させてMTFとDQEの測定を行ったところ、2lp/mmでのMTF及びDQEの挙動は、上述した第2の実施形態と同様であった。即ち、本実施形態も、第2の実施形態と同様に、高いMTFと、3lp/mm以下の低周波数域で高いDQEが得られる。 Further, a drive system was set in the radiation imaging panel 110-3 in the present embodiment, and MTF and DQE were measured under the radiation quality condition of RQA5 by making X-rays as radiation 401 incident in the direction of the arrow in FIG. However, the behavior of MTF and DQE at 2 lp / mm was similar to that of the second embodiment described above. That is, also in the present embodiment, similar to the second embodiment, a high MTF and a high DQE can be obtained in a low frequency range of 3 lp / mm or less.
 以上のことから、本実施形態における放射線撮像パネル110-3によれば、第1及び第2の実施形態における放射線撮像パネル110の効果に加えて、十分に実用に耐えうる1回曝射でのエネルギーサブトラクションが可能で、且つ信頼性を有した高性能な放射線撮像パネル110を実現することが可能である。 From the above, according to the radiation image pickup panel 110-3 of the present embodiment, in addition to the effects of the radiation image pickup panel 110 of the first and second embodiments, the radiation exposure panel 110-3 that is sufficiently practical can be used. It is possible to realize a reliable and high-performance radiation imaging panel 110 capable of energy subtraction.
 なお、本実施形態では、遮光層が設けられた画素302は、第2のシンチレータ115と有効画素領域105との間の位置に遮光層が設けられている形態を示したが、本発明のおいてはこの形態に限定されるものではない。例えば、遮光層が設けられた画素302は、第1のシンチレータ111と有効画素領域105との間の位置に遮光層が設けられ、第1のシンチレータ111で発生した光は入射せずに、第2のシンチレータ115で発生した光が入射する形態も、本発明に適用可能である。 In the present embodiment, the pixel 302 provided with the light shielding layer has the light shielding layer provided at a position between the second scintillator 115 and the effective pixel region 105. However, it is not limited to this form. For example, in the pixel 302 provided with the light shielding layer, the light shielding layer is provided at a position between the first scintillator 111 and the effective pixel region 105, light generated by the first scintillator 111 does not enter, and The mode in which the light generated by the second scintillator 115 is incident is also applicable to the present invention.
 なお、上述した本発明の実施形態は、いずれも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。即ち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。 It should be noted that the above-described embodiments of the present invention are merely examples of embodying the present invention, and the technical scope of the present invention should not be limitedly interpreted by these. Is. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiments, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the following claims are attached to open the scope of the present invention.
 本願は、2018年11月14日提出の日本国特許出願特願2018-213680を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 The present application claims priority on the basis of Japanese Patent Application No. 2018-2113680 filed on November 14, 2018, and the entire contents of the description are incorporated herein.

Claims (10)

  1.  放射線が入射する側に位置する第1の面に、光を電気信号に変換する画素が複数設けられており、前記第1の面とは反対側に位置する第2の面に凹部が設けられたセンサ基板と、
     前記凹部に設けられ、前記放射線を前記光に変換するシンチレータと、
     前記第2の面および前記シンチレータに対して、接着層を介して接着された基板と、
     を有することを特徴とする放射線撮像装置。
    A plurality of pixels for converting light into an electric signal are provided on the first surface located on the side where the radiation enters, and a recess is provided on the second surface located on the side opposite to the first surface. Sensor board,
    A scintillator provided in the recess and converting the radiation into the light,
    A substrate bonded to the second surface and the scintillator via an adhesive layer,
    A radiation imaging apparatus comprising:
  2.  前記シンチレータは、前記凹部の底部および側部に設けられており、
     前記基板は、前記接着層を介して、前記第2の面における前記凹部を除く頂部の少なくとも一部および前記シンチレータに接着されていることを特徴とする請求項1に記載の放射線撮像装置。
    The scintillator is provided on the bottom and side of the recess,
    The radiation imaging apparatus according to claim 1, wherein the substrate is bonded to at least a part of a top portion of the second surface excluding the concave portion and the scintillator via the adhesive layer.
  3.  前記センサ基板において前記第1の面の側に設けられ、前記放射線を前記光に変換する前記シンチレータとは別のシンチレータを更に有することを特徴とする請求項1または2に記載の放射線撮像装置。 The radiation imaging apparatus according to claim 1 or 2, further comprising a scintillator that is provided on the side of the first surface of the sensor substrate and that is different from the scintillator that converts the radiation into the light.
  4.  複数の前記画素は、
     前記シンチレータで変換された光および前記別のシンチレータで変換された光を前記電気信号に変換する第1の画素と、
     前記シンチレータで変換された光を前記電気信号に変換する第2の画素と、
     を含むことを特徴とする請求項3に記載の放射線撮像装置。
    A plurality of said pixels,
    A first pixel for converting the light converted by the scintillator and the light converted by the other scintillator into the electric signal;
    A second pixel for converting the light converted by the scintillator into the electric signal;
    The radiation imaging apparatus according to claim 3, further comprising:
  5.  前記第2の画素は、前記別のシンチレータとの間に、当該別のシンチレータで変換された光を遮光する遮光層を備えることを特徴とする請求項4に記載の放射線撮像装置。 The radiation imaging apparatus according to claim 4, wherein the second pixel is provided with a light blocking layer that blocks the light converted by the other scintillator between the second pixel and the other scintillator.
  6.  前記接着層は、ホットメルト樹脂の層であることを特徴とする請求項1乃至5のいずれか1項に記載の放射線撮像装置。 The radiation imaging apparatus according to any one of claims 1 to 5, wherein the adhesive layer is a layer of hot melt resin.
  7.  前記接着層は、白色の層であることを特徴とする請求項1乃至6のいずれか1項に記載の放射線撮像装置。 The radiation imaging apparatus according to any one of claims 1 to 6, wherein the adhesive layer is a white layer.
  8.  複数の前記画素の動作を制御する制御部と、
     複数の前記画素から出力される前記電気信号を処理する信号処理部と、
     を更に有することを特徴とする請求項1乃至7のいずれか1項に記載の放射線撮像装置。
    A control unit for controlling the operation of the plurality of pixels,
    A signal processing unit that processes the electrical signals output from the plurality of pixels;
    The radiation imaging apparatus according to any one of claims 1 to 7, further comprising:
  9.  請求項1乃至8のいずれか1項に記載の放射線撮像装置と、
     前記放射線を照射する放射線源と、
     を有することを特徴とする放射線撮像システム。
    A radiation imaging apparatus according to claim 1;
    A radiation source for emitting the radiation;
    A radiation imaging system comprising:
  10.  入射した放射線を電気信号として取得する放射線撮像装置の製造方法であって、
     前記放射線が入射する側に位置する第1の面に、光を前記電気信号に変換する画素が複数設けられており、前記第1の面とは反対側に位置する第2の面に凹部が設けられたセンサ基板を準備する工程と、
     前記凹部に、前記放射線を前記光に変換するシンチレータを形成する工程と、
     前記第2の面および前記シンチレータに対して、接着層を介して基板を接着する工程と、
     を有することを特徴とする放射線撮像装置の製造方法。
    A method of manufacturing a radiation imaging apparatus, which acquires incident radiation as an electric signal,
    A plurality of pixels for converting light into the electric signals are provided on the first surface located on the side where the radiation is incident, and a recess is formed on the second surface located on the side opposite to the first surface. A step of preparing the provided sensor substrate,
    Forming a scintillator for converting the radiation into the light in the recess;
    Bonding a substrate to the second surface and the scintillator via an adhesive layer,
    A method of manufacturing a radiation imaging apparatus, comprising:
PCT/JP2019/042531 2018-11-14 2019-10-30 Radiation imaging device, method for manufacturing same, and radiation imaging system WO2020100588A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-213680 2018-11-14
JP2018213680A JP2020079767A (en) 2018-11-14 2018-11-14 Radiation imaging apparatus, method for manufacturing the same, and radiation imaging system

Publications (1)

Publication Number Publication Date
WO2020100588A1 true WO2020100588A1 (en) 2020-05-22

Family

ID=70730462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042531 WO2020100588A1 (en) 2018-11-14 2019-10-30 Radiation imaging device, method for manufacturing same, and radiation imaging system

Country Status (2)

Country Link
JP (1) JP2020079767A (en)
WO (1) WO2020100588A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223837A (en) * 2009-03-24 2010-10-07 Toshiba Corp Radiation detector, x-ray ct apparatus, and method for manufacturing the radiation detector
JP2012159395A (en) * 2011-01-31 2012-08-23 Fujifilm Corp Radiation image detector
JP2012251978A (en) * 2011-06-07 2012-12-20 Fujifilm Corp Radiation detection device
JP2017200522A (en) * 2016-05-02 2017-11-09 キヤノン株式会社 Radiation imaging device and radiation imaging system
JP2017227520A (en) * 2016-06-22 2017-12-28 コニカミノルタ株式会社 Lamination-type scintillator panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223837A (en) * 2009-03-24 2010-10-07 Toshiba Corp Radiation detector, x-ray ct apparatus, and method for manufacturing the radiation detector
JP2012159395A (en) * 2011-01-31 2012-08-23 Fujifilm Corp Radiation image detector
JP2012251978A (en) * 2011-06-07 2012-12-20 Fujifilm Corp Radiation detection device
JP2017200522A (en) * 2016-05-02 2017-11-09 キヤノン株式会社 Radiation imaging device and radiation imaging system
JP2017227520A (en) * 2016-06-22 2017-12-28 コニカミノルタ株式会社 Lamination-type scintillator panel

Also Published As

Publication number Publication date
JP2020079767A (en) 2020-05-28

Similar Documents

Publication Publication Date Title
US7456410B2 (en) Radiation detecting apparatus and method for manufacturing the same
JP5693173B2 (en) Radiation detection apparatus and radiation detection system
JP6000680B2 (en) Radiation detection apparatus, manufacturing method thereof, and imaging system
US9006665B2 (en) Radiation detection apparatus and radiographic system
JP5247988B2 (en) Detector assembly and manufacturing method thereof
JP2001074847A (en) Radiation image pickup device and radiation image pickup system
US20170254908A1 (en) Radiation detector and method for manufacturing same
JP2017200522A (en) Radiation imaging device and radiation imaging system
CN107238853B (en) Radiation detection apparatus and radiation imaging system
JP2004317300A (en) Plane radiation detector and its manufacturing method
WO2020100588A1 (en) Radiation imaging device, method for manufacturing same, and radiation imaging system
JP6576064B2 (en) Radiation detection apparatus, radiation imaging system, and method of manufacturing radiation detection apparatus
WO2019167424A1 (en) Radiation imaging panel, radiation imaging device, and radiation imaging system
WO2020250978A1 (en) Radiation detection device and radiation imaging system
WO2020075495A1 (en) Radiation imaging apparatus, manufacturing method therefor, and radiation imaging system
JP2004061116A (en) Radiation detector and system
JP2020061480A (en) Radiation imaging apparatus, manufacturing method thereof, and radiation imaging system
JP2020061484A (en) Radiation imaging apparatus, manufacturing method thereof, and radiation imaging system
WO2020166224A1 (en) Method for producing scintillator plate, scintillator plate, radiation detection device and radiation detection system
JP6759056B2 (en) Radiation detector and radiation imaging system
JP2008089459A (en) X-ray detector, scintillator panel, method for manufacturing x-ray detector, and method for manufacturing scintillator panel
TWI780420B (en) Radiation detection module, radiation detector, and manufacturing method of radiation detection module
EP3940429B1 (en) Radiation imaging panel, radiation imaging apparatus, radiation imaging system, and scintillator plate
JP2019049437A (en) Radiation detection device, and radiation detection system
US20230378097A1 (en) Radiation detector manufacturing method, radiation detector, radiation imaging apparatus, and radiation imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883671

Country of ref document: EP

Kind code of ref document: A1