WO2020100365A1 - アンテナ装置およびレーダシステム - Google Patents

アンテナ装置およびレーダシステム Download PDF

Info

Publication number
WO2020100365A1
WO2020100365A1 PCT/JP2019/032245 JP2019032245W WO2020100365A1 WO 2020100365 A1 WO2020100365 A1 WO 2020100365A1 JP 2019032245 W JP2019032245 W JP 2019032245W WO 2020100365 A1 WO2020100365 A1 WO 2020100365A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
power
antenna elements
lines
antenna device
Prior art date
Application number
PCT/JP2019/032245
Other languages
English (en)
French (fr)
Inventor
崇宏 武田
研一 川崎
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to DE112019005668.9T priority Critical patent/DE112019005668T5/de
Priority to US17/290,872 priority patent/US20210391654A1/en
Priority to CN201980072671.XA priority patent/CN112997361A/zh
Publication of WO2020100365A1 publication Critical patent/WO2020100365A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • the present technology relates to an antenna device. More specifically, the present invention relates to an antenna device having a plurality of antenna elements, and a radar system using the antenna device.
  • a device in which a plurality of antenna elements are arranged is known.
  • a two-dimensional array of receiving antennas in which a plurality of antenna element groups fed in series to antenna elements arranged in the vertical direction are arranged in the horizontal direction, and a transmitting antenna in which two antenna element groups are arranged in the vertical direction and are switchable are provided.
  • a device used has been proposed (for example, refer to Patent Document 1).
  • the main beam is two-dimensionally scanned (sweep) by independently adjusting the phases of the two-dimensionally arrayed antenna elements.
  • the vertical resolution and the beam sweep range are smaller than the horizontal direction, and in order to improve the vertical characteristics, it is necessary to increase the number of vertical antennas, which leads to an increase in the size of the device. May invite.
  • the present technology was created in view of such a situation, and its purpose is to improve the two-dimensional resolution and beam sweep characteristics of an antenna having directivity.
  • the present technology has been made to solve the above-described problems, and the first side surface thereof is different from the plurality of antenna elements arranged in a two-dimensional plane and the plurality of antenna elements. It is an antenna device provided with the 1st and 2nd feeder lines for feeding from the 1st and 2nd directions. As a result, the plurality of antenna elements are fed with power from the different first and second directions, thereby improving the resolution in both directions.
  • the plurality of antenna elements may be connected to the first and second feed lines by electromagnetic field coupling. This brings about the effect of connecting the plurality of antenna elements to the first and second feed lines as necessary.
  • the first aspect may further include a switching unit that switches a signal to at least one of the first and second power feeding lines. This brings about the effect that power is supplied to the first and second power supply lines while switching between them.
  • the first and second feeding lines may each include a plurality of feeding lines. This brings about the effect that power is simultaneously supplied to a plurality of antenna elements.
  • a phase shifter for controlling the phases of the signals of the plurality of power supply lines may be further provided.
  • the phase shifter may control the signals of the plurality of power feed lines to have the same phase, or may control the signals to have different phases. In the latter case, the beam scanning is performed without moving the antenna itself.
  • the first and second power supply lines may be orthogonal to each other or may not be orthogonal to each other.
  • first and second power supply lines are orthogonal to each other, simultaneous vertical and horizontal power supply is possible without interference.
  • first and second feed lines are not orthogonal to each other, the effect of improving the degree of freedom in two-dimensional mapping is brought about.
  • each of the plurality of antenna elements may be a polygon having a side orthogonal to the first and second feed lines, and may be circular or cross-shaped. It may be.
  • the plurality of antenna elements include a plurality of antenna element groups arranged in the feeding direction, and the plurality of antenna element groups are arranged closer to the center side than both ends in the feeding direction.
  • the width of the antenna element may be wider. This brings about an effect of reducing side lobes.
  • the plurality of antenna elements include a plurality of antenna element groups arranged in the feeding direction, and adjacent antenna element groups among the plurality of antenna element groups are located at different positions in the feeding direction. It may be arranged. This brings about an effect of performing beam scanning without moving the antenna itself.
  • the second side surface of the present technology is to feed power to a plurality of antenna elements arranged in a two-dimensional plane and to the plurality of antenna elements from first and second directions different from each other.
  • a plurality of phase shifters for controlling the phase of signals of a plurality of power supply lines, and transmission through one of the plurality of phase shifters and reception through another one of the plurality of phase shifters.
  • a radar system including: a communication unit configured to perform and obtain information about an object. Accordingly, the plurality of antenna elements are fed with power from the first and second directions different from each other, the resolution in both directions is improved, and the information regarding the object is obtained.
  • a plurality of switching units that switch between the phase shifter and at least one of the first and second feed lines for each of the plurality of antenna devices are further provided.
  • the plurality of switching units may perform the same switching in synchronization with each other. This brings about an effect that communication is synchronized in transmission and reception.
  • a signal processing unit that combines the acquired information and generates the position of the object may be further provided. This brings about the effect of combining the information obtained by beam scanning of the antenna and the information obtained by the radar to obtain more accurate information.
  • First embodiment (example of supplying power from different directions) 2.
  • Second embodiment (example in which power is supplied with a phase shift) 3.
  • Third embodiment (example combining radar information) 4.
  • Fourth embodiment (example of simultaneous power feeding) 5.
  • Fifth Embodiment (Modification of the shape of the antenna element) 6.
  • Sixth embodiment (example in which the arrangement of antennas is shifted)
  • FIG. 1 is a diagram showing an example of the overall configuration of a radar system according to the first embodiment of the present technology.
  • This radar system includes an antenna 100, a phase shifter 200, a switching unit 250, and a communication device 300.
  • the antenna 100 includes a plurality of antenna elements 110 and a plurality of feeding lines 150.
  • the plurality of antenna elements 110 are arranged two-dimensionally. In this example, a total of 16 antenna elements 110, four in the horizontal direction (row direction) and four in the vertical direction (column direction), are arrayed to form a two-dimensional antenna array.
  • the plurality of antenna elements 110 are configured so that power can be fed from different directions by the plurality of feed lines 150.
  • a power supply line that supplies power from the lower side in the vertical direction and a power supply line that supplies power from the right side in the horizontal direction are provided. That is, the plurality of power supply lines 150 are orthogonal to each other.
  • the plurality of power feeding lines 150 are examples of the first and second power feeding lines described in the claims.
  • the shape of the antenna element 110 is assumed to be a square, but it may be another shape such as a polygon or a circle, as will be described later.
  • Each of the plurality of power feeding lines 150 includes a plurality of power feeding lines according to the number of the plurality of antenna elements 110.
  • four power supply lines that supply power from the lower side in the vertical direction and four power supply lines that supply power from the right side in the horizontal direction are provided.
  • the phase shifter 200 is a phase switching device that controls the phase when power is supplied to the antenna element 110.
  • the phase shifter 200 is provided corresponding to each power feeding line in the power feeding line 150.
  • four phase shifters 200 are provided corresponding to the four power supply lines. Further, in the first embodiment, it is assumed that the four phase shifters 200 perform power feeding in the same phase.
  • the switching unit 250 switches the connection between the phase shifter 200 and the plurality of power supply lines 150.
  • a high frequency (RF: Radio Frequency) switch such as a MEMS (Micro Electro Mechanical Systems) is assumed.
  • the switching unit 250 is configured to connect to one phase shifter 200 to either a vertical power feeding line or a horizontal power feeding line.
  • the communication device 300 is a device that is connected to the antenna 100 via the phase shifter 200 to perform transmission / reception.
  • the communication device 300 is assumed to be a radar device that transmits a radio wave such as a millimeter wave to an object, receives the reflected wave, and measures the distance to the object by a time difference. In this case, it is general to provide a transmitting antenna and a receiving antenna separately. Therefore, the antenna 100 is provided with two types of antennas for transmission and reception. In that case, the switching units 250 of the transmitting antenna and the receiving antenna perform the same switching in synchronization with each other.
  • FIG. 2 is a diagram showing an example of a configuration of the communication device 300 according to the first embodiment of the present technology.
  • the communication device 300 includes a modulation signal generator 310, a voltage controlled oscillator 320, a power amplifier 330, a transmission antenna 341, a reception antenna 342, a low noise amplifier 350, a frequency mixer 360, and an intermediate frequency amplifier 370. , An analog-digital converter 380 and an FFT processing unit 390.
  • the transmitting antenna 341 and the receiving antenna 342 correspond to the antenna 100 of this embodiment.
  • the modulation signal generator 310 is for generating a modulation signal by modulating a carrier wave to be transmitted.
  • a voltage controlled oscillator (VCO: Voltage Controlled Oscillator) 320 is an oscillator that controls an oscillation frequency used for transmission and reception by a control voltage.
  • the power amplifier (PA) 330 amplifies the power of the transmission signal by the oscillation frequency of the voltage controlled oscillator 320 and transmits the power via the transmission antenna 341.
  • a low noise amplifier (LNA: Low Noise Amplifier) 350 is an amplifier that amplifies a signal in a high frequency region received by the receiving antenna 342.
  • the frequency mixer (Mixer) 360 is a mixer that mixes the oscillation frequencies of the voltage controlled oscillator 320 to convert the carrier frequency of the output signal of the low noise amplifier 350 to a lower intermediate frequency.
  • An intermediate frequency (IF: Intermediate Frequency) amplifier 370 is an amplifier that amplifies the signal converted into the intermediate frequency by the frequency mixer 360.
  • An analog-to-digital converter (ADC) 380 converts the output of the intermediate frequency amplifier 370 from an analog signal to a digital signal.
  • the FFT (Fast Fourier Transform) processing unit 390 performs a fast Fourier transform (FFT) process on the output of the analog-digital converter 380 to extract a necessary signal.
  • FFT Fast Fourier transform
  • FIG. 3 is a diagram showing an example of a structure of the antenna 100 according to the first embodiment of the present technology.
  • the antenna 100 is formed of a multilayer board.
  • a represents the uppermost layer of the antenna 100.
  • b represents the second layer and below.
  • the antenna element 110 is two-dimensionally arranged on the uppermost layer.
  • Each of the antenna elements 110 is realized by, for example, a patch antenna.
  • each of the antenna elements 110 is insulated from each other by a resin which is a material of the multilayer substrate. Therefore, each antenna element 110 is in a floating state when power is not supplied.
  • the vertical feed line 150 is formed on the second layer, and the horizontal feed line 150 is formed on the third layer.
  • These power supply lines 150 are formed by, for example, a microstrip line (MSL).
  • MSL microstrip line
  • These power supply lines 150 are also insulated from each other in each layer by the resin which is the material of the multilayer substrate. Further, in each layer, one end of the power feeding line 150 is an open end.
  • a ground is formed on the entire surface of the fourth layer, which is the lowermost layer, and functions as a ground plate for the power supply lines 150 of the second and third layers.
  • the antenna element 110 and the feed line 150 are connected by electromagnetic field coupling. That is, when power is supplied to the power supply line 150, connection is made with the antenna element 110 arranged in an upper layer thereof via the electromagnetic field.
  • FIG. 4 is a diagram showing an example of the feeding direction of the antenna 100 according to the first embodiment of the present technology.
  • the antenna 100 is provided with the power feed lines 150 in two directions, and power can be fed from each.
  • the terms “longitudinal power feeding” and “horizontal power feeding” will be used in describing the characteristics, as shown in FIG.
  • this antenna 100 has the characteristics of a three-dimensional radiation pattern as shown below with respect to either vertical feeding or horizontal feeding.
  • the four phase shifters 200 perform power feeding in the same phase.
  • FIG. 5 is a figure which shows an example of the characteristic by the vertical direction electric power feeding of the antenna 100 in 1st Embodiment of this technique. The characteristics shown below were obtained by numerical simulation.
  • a in the figure is a graph showing the directivity in the lateral direction, that is, the direction of azimuth (Azimuth). Specifically, it is a diagram in which the radiation pattern is captured at a center position of the two-dimensional antenna array by a cross section taken along a plane perpendicular to the vertical direction which is the power feeding direction.
  • the horizontal axis represents the beam sweep angle (degrees) and the vertical axis represents the antenna gain (dBi). According to this, it can be seen that there is a gain peak at zero angle and side lobes appear around it.
  • B in the figure is a graph showing the directivity in the vertical direction, that is, in the direction of elevation (Elevation). Specifically, it is a diagram obtained by capturing a radiation pattern at a center position of a two-dimensional antenna array by a cross section cut along a plane parallel to a vertical direction which is a power feeding direction. According to this, it can be seen that there is a gain peak at zero angle and more side lobes appear around it than in the lateral direction.
  • FIG. 6 is a diagram showing an example of characteristics of the antenna 100 according to the first embodiment of the present technology when laterally fed.
  • a in the figure is a graph showing lateral directivity. Specifically, it is a diagram obtained by capturing a radiation pattern at a center position of a two-dimensional antenna array by a cross section cut along a plane parallel to a lateral direction which is a power feeding direction.
  • B in the figure is a graph showing the directivity in the vertical direction. Specifically, it is a diagram in which the radiation pattern is captured at a center position of the two-dimensional antenna array by a cross section taken along a plane perpendicular to the lateral direction which is the power feeding direction.
  • the feed lines 150 in different directions and connecting to the antenna element 110 by electromagnetic field coupling, switching between the vertical direction and the horizontal direction is performed. Can be done to improve the resolution in both directions.
  • Second Embodiment> In the above-described first embodiment, it is assumed that the four phase shifters 200 perform power feeding in the same phase. On the other hand, in the second embodiment, the beam sweep angle is changed by shifting the phases from each other. Since the device configuration is the same as that of the above-described first embodiment, detailed description will be omitted.
  • FIG. 7 is a figure which shows the example of the phase of each port of the electric power feeding line 150 in 2nd Embodiment of this technique.
  • each of the power feeding lines 150 includes four power feeding lines, and four independent phase shifters 200 are connected via the switching unit 250.
  • the phase is adjusted by the four phase shifters 200, and the four power feed lines are fed with different phases.
  • the open ends of the four power supply lines of the power supply line 150 are referred to as ports # 1 to # 4 in order.
  • the following characteristics can be obtained by performing such phase-shifted power supply in both vertical power supply and horizontal power supply.
  • FIG. 8 is a figure which shows an example of the characteristic by the vertical feeding of the antenna 100 in 2nd Embodiment of this technique.
  • the figure is a graph showing the directivity in the lateral direction, that is, the azimuth direction.
  • a has a phase of "-90 degrees”
  • b has a phase of "-45 degrees”
  • c has a phase of "0 degrees”
  • d has a phase of "45 degrees”
  • e has a phase of "90 degrees”.
  • 3 is a graph showing directivity in each of the above. According to this, it is understood that by shifting the phase of the power feeding in the vertical direction, the beam scanning can be performed by changing the directivity in the horizontal direction which is a surface perpendicular to the power feeding direction.
  • FIG. 9 is a figure which shows an example of the characteristic by the lateral electric power feeding of the antenna 100 in 2nd Embodiment of this technique.
  • the same figure is a graph showing the directivity in the vertical direction, that is, the elevation direction.
  • a has a phase of "-90 degrees”
  • b has a phase of "-45 degrees”
  • c has a phase of "0 degrees”
  • d has a phase of "45 degrees”
  • e has a phase of "90 degrees”.
  • 3 is a graph showing directivity in each of the above. According to this, it is understood that the beam scanning can be performed by shifting the phase of the lateral power feeding, by changing the directivity in the vertical direction, which is a plane perpendicular to the power feeding direction.
  • the antenna 100 itself is not moved, and the power is fed perpendicularly to the power feed direction.
  • Beam scanning can be performed by changing the directivity in the direction of the surface.
  • the beam scanning can be performed in the one-dimensional direction in each of the elevation angle and the azimuth angle, but the beam scanning cannot be performed in the arbitrary two-dimensional directions. Therefore, when a plurality of objects are detected by each of the elevation angle and the azimuth angle, the position of each object may not be grasped only by the information. Therefore, in the third embodiment, the position of the plane is determined by further combining the distance information and the velocity information from the radar.
  • FIG. 10 is a figure which shows an example of the whole structure of the radar system in 3rd Embodiment of this technique.
  • this radar system includes an antenna 100, a phase shifter 200, a switching unit 250, and a communication device 300, and further includes a signal processing unit 400.
  • the signal processing unit 400 combines the information obtained as a radar system to determine the position of the object. That is, the signal processing unit 400 outputs the position information of the elevation angle and the azimuth angle obtained by shifting the phase of the power feeding and beam scanning according to the second embodiment, and the distance information and the velocity information by the radar. In combination, the position of the plane of each object is determined.
  • FIG. 11 is a diagram showing a specific example of the position determination of the object according to the third embodiment of the present technology.
  • a in the figure shows an example in which three objects are detected by beam scanning in the vertical direction by horizontal power supply. At this time, as the distance information acquired by the radar, the values “150 m”, “50 m”, and “100 m” from the upper object are shown.
  • b shows an example in which three objects are detected by performing beam scanning in the horizontal direction by vertical power feeding. At this time, values of “100 m”, “150 m”, and “50 m” from the right object are shown as the distance information acquired by the radar.
  • the position of the plane of each object can be specified as shown in c in the figure. If only the position obtained by beam scanning is used, the correspondence between the object detected by beam scanning in the vertical direction and the object detected by beam scanning in the horizontal direction becomes unknown, and each object It becomes impossible to specify the position of the plane.
  • the position of the plane of each object is determined by combining the position information of the elevation angle and the azimuth angle obtained by beam scanning with the distance information of the radar. You can judge.
  • FIG. 12 is a figure which shows an example of the whole structure of the radar system in 4th Embodiment of this technique.
  • This radar system includes an antenna 100, phase shifters 201 and 202, and communication devices 301 and 302. That is, the phase shifter 201 for feeding power in the vertical direction and the phase shifter 202 for feeding power in the horizontal direction are independently provided to enable simultaneous feeding. Thereby, in this example, a vertical beam and a horizontal beam can be simultaneously emitted.
  • the vertical beam and the horizontal beam have polarizations orthogonal to each other, and the isolation of the power feeding line 150 is ensured, so that they interfere with each other even when simultaneous vertical and horizontal power feeding is performed.
  • the shape of the antenna element 110 of the antenna 100 is assumed to be a quadrangle, but other shapes may be adopted.
  • FIG. 13 is a diagram showing a first shape example of the antenna 100 according to the fifth embodiment of the present technology.
  • a cross shape is adopted in consideration of power supply from two orthogonal directions. That is, of the antenna elements 110 arranged in the feeding direction, the width of the antenna elements on both ends is thin, and the width of the antenna element arranged on the center side is wider.
  • the power supplied to one antenna element 110 can be adjusted, and the side lobes of the radiated beam can be reduced.
  • the side lobe is the beam other than the main lobe, which has the highest radiation level. If the side lobe level is high, it becomes difficult to separate it from the main lobe, and the SN ratio (Signal Noise Ratio) deteriorates, which may lead to erroneous detection of an object.
  • the width of the antenna element narrower toward both ends, side lobes can be reduced and erroneous detection of an object can be avoided.
  • FIG. 14 is a diagram showing a second shape example of the antenna 100 according to the fifth embodiment of the present technology.
  • the angle formed by the feed line 150 is assumed to be 60 degrees, and a hexagon is adopted as the shape of the antenna element 110. That is, it is a polygon having a side orthogonal to the feed line 150.
  • the isolation between the feed lines 150 is disadvantageous as compared with the case of two orthogonal directions, but there are advantages that the resolution is improved and two-dimensional mapping is facilitated.
  • FIG. 15 is a diagram showing a third shape example of the antenna 100 according to the fifth embodiment of the present technology.
  • the antenna element 110 has a circular shape.
  • the feed lines 150 may be orthogonal to each other, or may not be orthogonal to each other. That is, there is an advantage that the degree of freedom of the two-dimensional mapping is improved.
  • the shape of the antenna element 110 various shapes can be adopted in consideration of the angle formed by the feed line 150.
  • FIG. 16 is a figure which shows the example of arrangement
  • This example is similar to the above-described first to fourth embodiments in that power is supplied from the vertical and horizontal directions.
  • the antenna element groups which are a set of antenna elements 110 arranged in the feeding direction, are arranged so as to be displaced in the feeding direction. That is, the adjacent antenna element groups are arranged at different positions in the feeding direction.
  • the antenna elements 110 by arranging the antenna elements 110 in one direction, the resolution is increased and the directivity is strengthened. Then, by arranging the antenna element groups so as to be displaced, the same effect as that of displacing the center position of the power feeding and oscillating the beam in the same direction is obtained. In this example, since the antenna elements 110 are arranged so as to be displaced in the vertical direction and the horizontal direction, the beam can be swung in both directions.
  • FIG. 17 is a diagram showing an example of object detection in the sixth embodiment of the present technology.
  • the antenna elements 110 are arranged in the vertical and horizontal directions so that the beam can be swung in both directions.
  • the resolution in the horizontal direction is high, but the resolution in the vertical direction is low.
  • the resolution in the vertical direction is high, but the resolution in the horizontal direction is low. Therefore, as shown in the figure, in the vertical power feeding, it may be difficult to separately detect the independent objects existing in the vertical direction. Further, in the lateral power feeding, it may be difficult to detect the independent objects existing in the lateral direction separately.
  • the signal processing unit 400 is assumed, and the detection result of the vertical power supply and the detection result of the horizontal power supply are combined by signal processing. This makes it possible to separate and detect an object that could not be separated by power feeding in only one direction.
  • the directivity is swung in each direction without moving the antenna 100 itself.
  • Beam scanning can be performed. Further, by combining the results in both directions by signal processing, it is possible to separate and detect an object that could not be separated by feeding in only one direction.
  • the present technology may have the following configurations.
  • a plurality of antenna elements arranged in a two-dimensional plane An antenna device comprising: first and second feed lines for feeding power to the plurality of antenna elements from different first and second directions.
  • the antenna device according to (1) wherein the plurality of antenna elements and the first and second feed lines are connected by electromagnetic field coupling.
  • the antenna device according to (1) or (2) further including a switching unit that switches a signal to at least one of the first and second feeding lines.
  • each of the plurality of antenna elements has a circular shape.
  • the plurality of antenna elements include a plurality of antenna element groups arranged in the feeding direction, In the plurality of antenna element groups, the antenna device according to any one of (1) to (11), in which the width of the antenna element arranged on the center side is wider than that on both ends in the feeding direction.
  • each of the plurality of antenna elements has a cross shape.
  • the plurality of antenna elements include a plurality of antenna element groups arranged in the feeding direction, The antenna device according to any one of (1) to (13), wherein adjacent antenna element groups of the plurality of antenna element groups are arranged at different positions in the feeding direction.
  • a plurality of antenna elements arranged in a two-dimensional plane, and a plurality of antenna elements for feeding power from different first and second directions, each of which includes a plurality of feeding lines A plurality of antenna devices each including a first and a second feed line; A plurality of phase shifters that are connected to at least one of the first and second power feed lines for each of the plurality of antenna devices and control the phase of signals of the plurality of power feed lines;
  • a radar system comprising: a communication unit that transmits information via one of the plurality of phase shifters and receives information via another one of the plurality of phase shifters to acquire information about an object.
  • a plurality of switching units that switch between the phase shifter and at least one of the first and second feed lines for each of the plurality of antenna devices are further provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

指向性を備えるアンテナにおける2次元方向の分解能やビームスイープの特性を向上させる。 複数のアンテナ素子は、2次元平面状に配置される。第1および第2の給電線路は、複数のアンテナ素子に対して、互いに異なる第1および第2の方向から給電するための線路である。給電方向を切り替えることにより、指向性が変化する。また、第1および第2の給電線路は、それぞれ複数の給電ラインを備えてもよい。複数の給電ラインに互いに異なる位相で給電することにより、指向性が変化する。

Description

アンテナ装置およびレーダシステム
 本技術は、アンテナ装置に関する。詳しくは、複数のアンテナ素子を有するアンテナ装置、および、そのアンテナ装置を利用したレーダシステムに関する。
 従来、複数のアンテナ素子を配置した装置が知られている。例えば、縦方向に並べたアンテナ素子に直列に給電したアンテナ素子群を水平方向に複数並べた2次元配列の受信アンテナと、そのアンテナ素子群を2つ縦に並べて切替可能にした送信アンテナとを用いた装置が提案されている(例えば、特許文献1参照。)。
特開2017-215328号公報
 上述の従来技術では、2次元に配列されたアンテナ素子の位相をそれぞれ独立に調整することにより、主ビームを2次元に走査(スイープ)している。しかしながら、この従来技術では、縦方向の分解能やビームスイープ範囲が水平方向に対して小さく、縦方向の特性を向上させるためには縦方向のアンテナの数を増やす必要が生じ、装置の大型化を招くおそれがある。
 本技術はこのような状況に鑑みて生み出されたものであり、指向性を備えるアンテナにおける2次元方向の分解能やビームスイープの特性を向上させることを目的とする。
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、2次元平面状に配置された複数のアンテナ素子と、上記複数のアンテナ素子に対して互いに異なる第1および第2の方向から給電するための第1および第2の給電線路とを具備するアンテナ装置である。これにより、複数のアンテナ素子に対して互いに異なる第1および第2の方向から給電して、両方向に対する解像度を向上させるという作用をもたらす。
 また、この第1の側面において、上記複数のアンテナ素子と上記第1および第2の給電線路との間は電磁界結合により接続されるようにしてもよい。これにより、複数のアンテナ素子と第1および第2の給電線路との間を必要に応じて接続するという作用をもたらす。
 また、この第1の側面において、上記第1および第2の給電線路の少なくとも一方に信号を切り替える切替部をさらに具備してもよい。これにより、第1および第2の給電線路に対して両者を切り替えながら給電を行うという作用をもたらす。
 また、この第1の側面において、上記第1および第2の給電線路は、それぞれ複数の給電ラインを備えてもよい。これにより、複数のアンテナ素子に対して同時に給電を行うという作用をもたらす。
 また、この第1の側面において、上記複数の給電ラインの信号の位相を制御する移相器をさらに具備してもよい。この場合において、上記移相器は、上記複数の給電ラインの信号が全て同一の位相になるように制御してもよく、また、互いに異なる位相になるように制御してもよい。後者の場合には、アンテナ自体を動かすことなく、ビーム走査を行うという作用をもたらす。
 また、この第1の側面において、上記第1および第2の給電線路は、互いに直交してもよく、また、互いに直交しなくてもよい。第1および第2の給電線路が直交する場合には、干渉することなく縦方向および横方向の同時給電を可能にする。一方、第1および第2の給電線路が直交しない場合には、2次元マッピングの自由度を向上させるという作用をもたらす。
 また、この第1の側面において、上記複数のアンテナ素子の各々の形状は、上記第1および第2の給電線路に直交する辺を備える多角形であってもよく、また、円形または十字形状であってもよい。
 また、この第1の側面において、上記複数のアンテナ素子は、給電方向に並ぶ複数のアンテナ素子群を含み、上記複数のアンテナ素子群においては、給電方向の両端側よりも中央側に配置されるアンテナ素子の幅がより太いものとしてもよい。これにより、サイドローブを低減させるという作用をもたらす。
 また、この第1の側面において、上記複数のアンテナ素子は、給電方向に並ぶ複数のアンテナ素子群を含み、上記複数のアンテナ素子群のうち隣接するアンテナ素子群は、互いに給電方向において異なる位置に配置されるようにしてもよい。これにより、アンテナ自体を動かすことなく、ビーム走査を行うという作用をもたらす。
 また、本技術の第2の側面は、2次元平面状に配置された複数のアンテナ素子と、上記複数のアンテナ素子に対して互いに異なる第1および第2の方向から給電するものであってそれぞれが複数の給電ラインを備える第1および第2の給電線路とをそれぞれ備える複数のアンテナ装置と、上記複数のアンテナ装置の各々について上記第1および第2の給電線路の少なくとも一方に接続して上記複数の給電ラインの信号の位相を制御する複数の移相器と、上記複数の移相器の一つを介して送信を行うとともに上記複数の移相器の他の一つを介して受信を行って物体に関する情報を取得する通信部とを具備するレーダシステムである。これにより、複数のアンテナ素子に対して互いに異なる第1および第2の方向から給電して、両方向に対する解像度を向上させて、物体に関する情報を取得するという作用をもたらす。
 また、この第2の側面において、上記複数のアンテナ装置の各々について上記移相器と上記第1および第2の給電線路の少なくとも一方との間の切り替えを行う複数の切替部をさらに具備し、上記複数の切替部は、互いに同期して同じ切り替えを行うようにしてもよい。これにより、送受信において同期した通信を行うという作用をもたらす。
 また、この第2の側面において、上記取得された情報を組み合わせて上記物体の位置を生成する信号処理部をさらに具備してもよい。これにより、アンテナのビーム走査による情報とレーダによる情報とを組み合わせてより精度の高い情報を取得するという作用をもたらす。
本技術の第1の実施の形態におけるレーダシステムの全体構成の一例を示す図である。 本技術の第1の実施の形態における通信機300の構成の一例を示す図である。 本技術の第1の実施の形態におけるアンテナ100の構造の一例を示す図である。 本技術の第1の実施の形態におけるアンテナ100の給電方向の一例を示す図である。 本技術の第1の実施の形態におけるアンテナ100の縦方向給電による特性の一例を示す図である。 本技術の第1の実施の形態におけるアンテナ100の横方向給電による特性の一例を示す図である。 本技術の第2の実施の形態における給電線路150の各ポートの位相の例を示す図である。 本技術の第2の実施の形態におけるアンテナ100の縦方向給電による特性の一例を示す図である。 本技術の第2の実施の形態におけるアンテナ100の横方向給電による特性の一例を示す図である。 本技術の第3の実施の形態におけるレーダシステムの全体構成の一例を示す図である。 本技術の第3の実施の形態における物体の位置判断の具体例を示す図である。 本技術の第4の実施の形態におけるレーダシステムの全体構成の一例を示す図である。 本技術の第5の実施の形態におけるアンテナ100の第1の形状例を示す図である。 本技術の第5の実施の形態におけるアンテナ100の第2の形状例を示す図である。 本技術の第5の実施の形態におけるアンテナ100の第3の形状例を示す図である。 本技術の第6の実施の形態におけるアンテナ100のアンテナ素子110の配置例を示す図である。 本技術の第6の実施の形態における物体検知の例を示す図である。
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(異なる方向から給電する例)
 2.第2の実施の形態(位相をずらして給電する例)
 3.第3の実施の形態(レーダの情報を組合せた例)
 4.第4の実施の形態(同時給電の例)
 5.第5の実施の形態(アンテナ素子の形状の変形例)
 6.第6の実施の形態(アンテナの配置をずらした例)
 <1.第1の実施の形態>
 [構成]
 図1は、本技術の第1の実施の形態におけるレーダシステムの全体構成の一例を示す図である。
 このレーダシステムは、アンテナ100と、移相器200と、切替部250と、通信機300とを備える。
 アンテナ100は、複数のアンテナ素子110と、複数の給電線路150とを備える。複数のアンテナ素子110は、2次元に配置される。この例では、横方向(行方向)に4つ、縦方向(列方向)に4つの、計16個のアンテナ素子110がアレイ状に配列されて、2次元アンテナアレイを構成している。
 これら複数のアンテナ素子110は、複数の給電線路150によって異なる方向から給電を行うことが可能な構成となっている。この例では、下側から縦方向に給電する給電線路と、右側から横方向に給電する給電線路とを備えている。すなわち、複数の給電線路150は互いに直交している。なお、複数の給電線路150は、特許請求の範囲に記載の第1および第2の給電線路の一例である。
 なお、この例では、アンテナ素子110の形状として、正方形を想定しているが、後述するように、多角形や円形などの他の形状であってもよい。
 複数の給電線路150の各々は、複数のアンテナ素子110の数に応じて、複数の給電ラインを備える。この例では、下側から縦方向に給電する4本の給電ラインと、右側から横方向に給電する4本の給電ラインとを備えている。
 移相器200は、アンテナ素子110に給電する際の位相を制御する位相切換器である。移相器200は、給電線路150における給電ラインの各々に対応して設けられる。この例では、4本の給電ラインに対応して4つの移相器200が設けられる。また、この第1の実施の形態においては、4つの移相器200は同じ位相により給電を行うことを想定している。
 切替部250は、移相器200と複数の給電線路150との間の接続を切り替えるものである。ここでは、切替部250として、例えば、MEMS(Micro Electro Mechanical Systems)などの高周波(RF:Radio Frequency)スイッチを想定している。この切替部250は、1つの移相器200に対して、縦方向の給電ラインまたは横方向の給電ラインの何れかに接続するようになっている。
 通信機300は、移相器200を介してアンテナ100に接続し、送受信を行う装置である。この通信機300としては、ミリ波などの電波を物体に向けて送信し、その反射波を受信して、時間差によって物体との距離を測定するレーダ装置を想定する。この場合、送信アンテナと受信アンテナを別々に設けることが一般的である。したがって、アンテナ100は、送信用アンテナと受信用アンテナの2種類を設けることになる。また、その場合、送信用アンテナと受信用アンテナのそれぞれの切替部250は、互いに同期して同じ切り替えを行う。
 図2は、本技術の第1の実施の形態における通信機300の構成の一例を示す図である。
 通信機300は、変調信号発生器310と、電圧制御発振器320と、電力増幅器330と、送信アンテナ341と、受信アンテナ342と、低雑音アンプ350と、周波数混合器360と、中間周波数アンプ370と、アナログデジタル変換器380と、FFT処理部390とを備える。送信アンテナ341および受信アンテナ342は、この実施の形態のアンテナ100に相当する。
 変調信号発生器310は、送信対象となる搬送波を変調した変調信号を生成するものである。電圧制御発振器(VCO:Voltage Controlled Oscillator)320は、送受信に使用される発振周波数を制御電圧によって制御する発振器である。電力増幅器(PA:Power Amplifier)330は、電圧制御発振器320の発振周波数により送信信号の電力を増幅して、送信アンテナ341を介して送信するものである。
 低雑音アンプ(LNA:Low Noise Amplifier)350は、受信アンテナ342によって受信した高周波領域の信号を増幅する増幅器である。周波数混合器(Mixer)360は、電圧制御発振器320の発振周波数を混合することにより、低雑音アンプ350の出力信号の搬送周波数をより低い中間周波数に変換する混合器である。中間周波数(IF:Intermediate Frequency)アンプ370は、周波数混合器360により中間周波数に変換された信号を増幅する増幅器である。アナログデジタル変換器(ADC:Analog to Digital Converter)380は、中間周波数アンプ370の出力をアナログ信号からデジタル信号に変換するものである。FFT(Fast Fourier Transform)処理部390は、アナログデジタル変換器380の出力について高速フーリエ変換(FFT)処理を施して、必要な信号を抽出するものである。
 [アンテナ]
 図3は、本技術の第1の実施の形態におけるアンテナ100の構造の一例を示す図である。
 アンテナ100は、多層基板により形成される。同図におけるaはアンテナ100の最上層を表す。同図におけるbは第2層以下を表す。最上層には、アンテナ素子110が2次元に配置される。アンテナ素子110の各々は、例えば、パッチアンテナにより実現される。最上層において、アンテナ素子110の各々は、多層基板の材料である樹脂によって互いに絶縁されている。したがって、給電が行われていないときには、アンテナ素子110の各々はフローティング状態となっている。
 そして、第2層に縦方向の給電線路150が形成され、第3層に横方向の給電線路150が形成される。これら給電線路150は、例えば、マイクロストリップライン(MSL:microstrip line)により形成される。これら給電線路150についても、各層において、多層基板の材料である樹脂によって互いに絶縁されている。また、各層において、給電線路150の一方の端はオープン端となっている。
 最下層である第4層には、全面にグランド(GND:ground)が形成され、第2層および第3層の給電線路150の接地板として機能する。
 このような構造において、アンテナ素子110と給電線路150との間は、電磁界結合により接続される。すなわち、給電線路150に給電が行われた際に、その上層に配置されるアンテナ素子110と、電磁界を介して接続が行われる。
 [特性]
 図4は、本技術の第1の実施の形態におけるアンテナ100の給電方向の一例を示す図である。
 上述のように、このアンテナ100は、2方向に給電線路150を備えており、それぞれから給電を行えるようになっている。以下では、その特性を説明する際に、同図に示すように「縦方向給電」および「横方向給電」という用語を使用する。
 このアンテナ100は、2次元アンテナアレイを採用することにより、縦方向給電および横方向給電の何れか一方に対して、以下に示すような3次元放射パターンの特性を有する。なお、上述のように、この第1の実施の形態においては、4つの移相器200は同じ位相により給電を行うことを想定している。
 図5は、本技術の第1の実施の形態におけるアンテナ100の縦方向給電による特性の一例を示す図である。なお、以下に示す特性は、数値シミュレーションにより得られたものである。
 同図におけるaは、横方向、すなわち方位角(Azimuth)の方向の指向性を示すグラフである。具体的には、放射パターンを、2次元アンテナアレイの中心位置において、給電方向である縦方向とは垂直な面で切った断面により捉えた図である。以下のグラフにおいては、横軸にビームスイープの角度(度)を、縦軸にアンテナ利得であるゲイン(dBi)をそれぞれ表している。これによれば、角度ゼロにおいてゲインのピークを有しており、その周囲にサイドローブが表れているのがわかる。
 同図におけるbは、縦方向、すなわち仰角(Elevation)の方向の指向性を示すグラフである。具体的には、放射パターンを、2次元アンテナアレイの中心位置において、給電方向である縦方向と平行な面で切った断面により捉えた図である。これによれば、角度ゼロにおいてゲインのピークを有しており、その周囲に横方向の場合よりも多めのサイドローブが表れているのがわかる。
 図6は、本技術の第1の実施の形態におけるアンテナ100の横方向給電による特性の一例を示す図である。
 同図におけるaは、横方向の指向性を示すグラフである。具体的には、放射パターンを、2次元アンテナアレイの中心位置において、給電方向である横方向と平行な面で切った断面により捉えた図である。
 同図におけるbは、縦方向の指向性を示すグラフである。具体的には、放射パターンを、2次元アンテナアレイの中心位置において、給電方向である横方向とは垂直な面で切った断面により捉えた図である。
 これら横方向給電においても、角度ゼロにおいてゲインのピークを有し、また、その周囲にサイドローブが表れているのがわかる。
 このように、本技術の第1の実施の形態によれば、異なる方向の給電線路150を設けて、アンテナ素子110と電磁界結合により接続することにより、縦方向および横方向を切り替えて給電を行って、両方向に対する解像度を向上させることができる。
 <2.第2の実施の形態>
 上述の第1の実施の形態では、4つの移相器200は同じ位相により給電を行うことを想定していた。これに対し、この第2の実施の形態では、位相を互いにずらすことにより、ビームスイープの角度を変化させる。なお、装置構成については、上述の第1の実施の形態と同様であるため、詳細な説明は省略する。
 [位相]
 図7は、本技術の第2の実施の形態における給電線路150の各ポートの位相の例を示す図である。
 上述のように、給電線路150の各々は4本の給電ラインを備えており、切替部250を介してそれぞれ独立した4つの移相器200が接続される。この第2の実施の形態においては、4つの移相器200によって位相を調整して、4本の給電ラインに対して異なる位相により給電を行う。なお、同図においては、給電線路150の4本の給電ラインのオープン端について、順にポート#1乃至#4と呼称している。
 同図に示すように、ポート#1には、通信機300からの給電と同じ位相で給電が行われる。そして、このポート#1の位相を基準として、ポート#2乃至#4においては位相をずらして給電が行われる。したがって、ポート#1乃至#4における給電は互いにずれた位相となっている。
 縦方向給電および横方向給電のそれぞれにおいて、このような位相をずらした給電を行うことにより、以下のような特性が得られる。
 [特性]
 図8は、本技術の第2の実施の形態におけるアンテナ100の縦方向給電による特性の一例を示す図である。
 同図は、横方向、すなわち方位角の方向の指向性を示すグラフである。同図において、aは位相が「-90度」、bは位相が「-45度」、cは位相が「0度」、dは位相が「45度」、eは位相が「90度」のそれぞれにおける指向性を示すグラフである。これによれば、縦方向給電の位相をずらすことによって、給電方向とは垂直な面である横方向に指向性を振って、ビーム走査できることがわかる。
 図9は、本技術の第2の実施の形態におけるアンテナ100の横方向給電による特性の一例を示す図である。
 同図は、縦方向、すなわち仰角の方向の指向性を示すグラフである。同図において、aは位相が「-90度」、bは位相が「-45度」、cは位相が「0度」、dは位相が「45度」、eは位相が「90度」のそれぞれにおける指向性を示すグラフである。これによれば、横方向給電の位相をずらすことによって、給電方向とは垂直な面である縦方向に指向性を振って、ビーム走査できることがわかる。
 このように、本技術の第2の実施の形態によれば、同じ給電方向の給電線路における異なる給電ラインの位相をずらして給電することにより、アンテナ100自体を動かすことなく、給電方向と垂直な面の方向に指向性を振って、ビーム走査を行うことができる。
 <3.第3の実施の形態>
 上述の第2の実施の形態では、仰角および方位角のそれぞれに1次元方向にビーム走査することができるが、2次元の任意の方向にビーム走査できるわけではない。したがって、仰角および方位角のそれぞれにより複数の物体を検出した場合、その情報だけでは個々の物体の位置を把握できないことが起こり得る。そこで、この第3の実施の形態では、レーダによる距離情報や速度情報をさらに組み合わせることにより、平面の位置を判断する。
 [構成]
 図10は、本技術の第3の実施の形態におけるレーダシステムの全体構成の一例を示す図である。
 このレーダシステムは、上述の第1の実施の形態と同様に、アンテナ100と、移相器200と、切替部250と、通信機300とを備えるとともに、信号処理部400をさらに備える。
 信号処理部400は、レーダシステムとして得られた情報を組み合わせて物体の位置を判断するものである。すなわち、この信号処理部400は、上述の第2の実施の形態により給電の位相をずらしてビーム走査することにより得られた仰角および方位角の位置情報と、レーダによる距離情報や速度情報とを組み合わせて、各物体の平面の位置を判断する。
 [位置判断]
 図11は、本技術の第3の実施の形態における物体の位置判断の具体例を示す図である。
 同図におけるaは、横方向給電により縦方向にビーム走査を行って3つの物体を検出した例を示している。このとき、レーダにより取得された距離情報として、上の物体から「150m」、「50m」、「100m」の値が示されている。
 同図におけるbは、縦方向給電により横方向にビーム走査を行って3つの物体を検出した例を示している。このとき、レーダにより取得された距離情報として、右の物体から「100m」、「150m」、「50m」の値が示されている。
 ビーム走査により得られた縦方向および横方向の位置と、レーダにより取得された距離情報とを組み合わせると、同図におけるcに示すように、各物体の平面の位置を特定することができる。仮に、ビーム走査により得られた位置のみしか利用しないものとすると、縦方向のビーム走査により検出された物体と、横方向のビーム走査により検出された物体との対応付けが不明になり、各物体の平面の位置を特定することができなくなる。
 このように、本技術の第3の実施の形態によれば、ビーム走査により得られた仰角および方位角の位置情報と、レーダによる距離情報などとを組み合わせることにより、各物体の平面の位置を判断することができる。
 <4.第4の実施の形態>
 上述の実施の形態においては、切替部250によって縦方向または横方向の何れかに切り替えて給電を行うことを想定していたが、この第4の実施の形態では、縦方向および横方向から同時に給電を行う。
 [構成]
 図12は、本技術の第4の実施の形態におけるレーダシステムの全体構成の一例を示す図である。
 このレーダシステムは、アンテナ100と、移相器201および202と、通信機301および302とを備える。すなわち、縦方向に給電を行うための位相器201と横方向に給電を行うための位相器202とを独立に設けることにより、同時給電を可能にしたものである。これにより、この例では、縦のビームと横のビームを同時に放射することができる。
 この場合、縦のビームと横のビームは、偏波が直交しており、また、給電線路150のアイソレーションが確保されているため、縦方向および横方向の同時給電を行っても互いに干渉することがない。
 このように、本技術の第4の実施の形態によれば、縦方向および横方向に同時給電を行うことにより、縦のビームと横のビームを同時に放射することができる。
 <5.第5の実施の形態>
 上述の実施の形態においては、アンテナ100のアンテナ素子110の形状として四角形を想定したが、他の形状を採用してもよい。
 図13は、本技術の第5の実施の形態におけるアンテナ100の第1の形状例を示す図である。
 この例では、直交する2方向からの給電を考慮して、十字状の形状を採用したものである。すなわち、給電方向に並ぶアンテナ素子110のうち、両端側のアンテナ素子の幅が細く、中央側に配置されるアンテナ素子の幅がより太くなっている。
 これにより、1つのアンテナ素子110に給電するパワーを調整することができ、放射されるビームのサイドローブを低減することができる。サイドローブとは、最も放射レベルの高いメインローブ以外のビームである。サイドローブのレベルが高いと、メインローブと切り分けることが困難になり、SN比(Signal Noise ratio)が悪化し、物体の誤検出につながるおそれがある。この点、両端側になるほどアンテナ素子の幅がより細くなるようにすることにより、サイドローブを低減して、物体の誤検出を回避することができる。
 図14は、本技術の第5の実施の形態におけるアンテナ100の第2の形状例を示す図である。
 この例は、3方向から給電を行うために、給電線路150のなす角を60度と想定し、アンテナ素子110の形状として六角形を採用したものである。すなわち、給電線路150に直交する辺を備える多角形となっている。
 この場合、直交する2方向の場合と比べて、給電線路150の間のアイソレーションは不利になるが、解像度が向上するとともに、2次元マッピングが容易になるという利点がある。
 図15は、本技術の第5の実施の形態におけるアンテナ100の第3の形状例を示す図である。
 この例では、アンテナ素子110の形状として円形を採用している。この場合、給電線路150は互いに直交していてもよく、また、互いに直交していなくてもよい。すなわち、2次元マッピングの自由度が向上するという利点がある。
 このように、本技術の第5の実施の形態において示したように、アンテナ素子110の形状としては、給電線路150のなす角を考慮して、種々の形状を採用することができる。
 <6.第6の実施の形態>
 上述の第1乃至第4の実施の形態においては、16個のアンテナ素子110をアレイ状に配列したものを想定した。これに対し、この第6の実施の形態では、アンテナ素子110をずらした配置構造を有する。
 図16は、本技術の第6の実施の形態におけるアンテナ100のアンテナ素子110の配置例を示す図である。
 この例は、縦方向および横方向から給電を行う点においては、上述の第1乃至第4の実施の形態と同様である。ただし、給電方向に並ぶアンテナ素子110の集合であるアンテナ素子群同士が、給電方向にずれて配置されている。すなわち、隣接するアンテナ素子群は、互いに給電方向において異なる位置に配置される。
 一つのアンテナ素子群においては、一方向にアンテナ素子110を並べることにより、解像度が上がり指向性は強くなる。そして、このアンテナ素子群をずらして配置することにより、給電の中心位置をずらして、ビームを同方向に振ったのと同様の効果が得られる。この例では、縦方向および横方向にアンテナ素子110をずらして配置しているため、ビームを両方向に振ることが可能になる。
 図17は、本技術の第6の実施の形態における物体検知の例を示す図である。
 この第6の実施の形態においては、上述のように、縦方向および横方向にアンテナ素子110をずらして配置しているため、ビームを両方向に振ることが可能になる。このとき、縦方向給電に対しては、横方向の解像度は高いが、縦方向の解像度は低くなる。一方、横方向給電に対しては、縦方向の解像度は高いが、横方向の解像度は低くなる。そのため、同図に示すように、縦方向給電においては、縦方向に存在する独立した物体について、それぞれを分離して検出することが困難になる場合が生じ得る。また、横方向給電においては、横方向に存在する独立した物体について、それぞれを分離して検出することが困難になる場合が生じ得る。
 そこで、上述の第3の実施の形態と同様に、信号処理部400を想定し、縦方向給電による検出結果と横方向給電による検出結果とを信号処理により組み合わせる。これにより、一方向のみの給電では分離できなかった物体を、分離して検出することが可能になる。
 このように、本技術の第6の実施の形態によれば、縦方向および横方向にアンテナ素子110をずらして配置することにより、アンテナ100自体を動かすことなく、各方向に指向性を振って、ビーム走査を行うことができる。また、信号処理により両方向の結果を組み合わせることにより、一方向のみの給電では分離できなかった物体を、分離して検出することができる。
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
 なお、本技術は以下のような構成もとることができる。
(1)2次元平面状に配置された複数のアンテナ素子と、
 前記複数のアンテナ素子に対して互いに異なる第1および第2の方向から給電するための第1および第2の給電線路と
を具備するアンテナ装置。
(2)前記複数のアンテナ素子と前記第1および第2の給電線路との間は電磁界結合により接続される
前記(1)に記載のアンテナ装置。
(3)前記第1および第2の給電線路の少なくとも一方に信号を切り替える切替部をさらに具備する
前記(1)または(2)に記載のアンテナ装置。
(4)前記第1および第2の給電線路は、それぞれ複数の給電ラインを備える
前記(1)から(3)のいずれかに記載のアンテナ装置。
(5)前記複数の給電ラインの信号の位相を制御する移相器をさらに具備する
前記(4)に記載のアンテナ装置。
(6)前記移相器は、前記複数の給電ラインの信号が全て同一の位相になるように制御する
前記(5)に記載のアンテナ装置。
(7)前記移相器は、前記複数の給電ラインの信号が互いに異なる位相になるように制御する
前記(5)に記載のアンテナ装置。
(8)前記第1および第2の給電線路は、互いに直交する
前記(1)から(7)のいずれかに記載のアンテナ装置。
(9)前記第1および第2の給電線路は、互いに直交しない
前記(1)から(7)のいずれかに記載のアンテナ装置。
(10)前記複数のアンテナ素子の各々の形状は、前記第1および第2の給電線路に直交する辺を備える多角形である
前記(1)から(9)のいずれかに記載のアンテナ装置。
(11)前記複数のアンテナ素子の各々の形状は、円形である
前記(1)から(9)のいずれかに記載のアンテナ装置。
(12)前記複数のアンテナ素子は、給電方向に並ぶ複数のアンテナ素子群を含み、
 前記複数のアンテナ素子群においては、給電方向の両端側よりも中央側に配置されるアンテナ素子の幅がより太い
前記(1)から(11)のいずれかに記載のアンテナ装置。
(13)前記複数のアンテナ素子の各々の形状は、十字形状である
前記(1)から(12)のいずれかに記載のアンテナ装置。
(14)前記複数のアンテナ素子は、給電方向に並ぶ複数のアンテナ素子群を含み、
 前記複数のアンテナ素子群のうち隣接するアンテナ素子群は、互いに給電方向において異なる位置に配置される
前記(1)から(13)のいずれかに記載のアンテナ装置。
(15)2次元平面状に配置された複数のアンテナ素子と、前記複数のアンテナ素子に対して互いに異なる第1および第2の方向から給電するものであってそれぞれが複数の給電ラインを備える第1および第2の給電線路とをそれぞれ備える複数のアンテナ装置と、
 前記複数のアンテナ装置の各々について前記第1および第2の給電線路の少なくとも一方に接続して前記複数の給電ラインの信号の位相を制御する複数の移相器と、
 前記複数の移相器の一つを介して送信を行うとともに前記複数の移相器の他の一つを介して受信を行って物体に関する情報を取得する通信部と
を具備するレーダシステム。
(16)前記複数のアンテナ装置の各々について前記移相器と前記第1および第2の給電線路の少なくとも一方との間の切り替えを行う複数の切替部をさらに具備し、
 前記複数の切替部は、互いに同期して同じ切り替えを行う
前記(15)に記載のレーダシステム。
(17)前記取得された情報を組み合わせて前記物体の位置を生成する信号処理部をさらに具備する前記(15)に記載のレーダシステム。
 100 アンテナ
 110 アンテナ素子
 150 給電線路
 200~202 移相器
 250 切替部
 300~302 通信機
 310 変調信号発生器
 320 電圧制御発振器
 330 電力増幅器
 341 送信アンテナ
 342 受信アンテナ
 350 低雑音アンプ
 360 周波数混合器
 370 中間周波数アンプ
 380 アナログデジタル変換器
 390 FFT処理部
 400 信号処理部

Claims (17)

  1.  2次元平面状に配置された複数のアンテナ素子と、
     前記複数のアンテナ素子に対して互いに異なる第1および第2の方向から給電するための第1および第2の給電線路と
    を具備するアンテナ装置。
  2.  前記複数のアンテナ素子と前記第1および第2の給電線路との間は電磁界結合により接続される
    請求項1記載のアンテナ装置。
  3.  前記第1および第2の給電線路の少なくとも一方に信号を切り替える切替部をさらに具備する
    請求項1記載のアンテナ装置。
  4.  前記第1および第2の給電線路は、それぞれ複数の給電ラインを備える
    請求項1記載のアンテナ装置。
  5.  前記複数の給電ラインの信号の位相を制御する移相器をさらに具備する
    請求項4記載のアンテナ装置。
  6.  前記移相器は、前記複数の給電ラインの信号が全て同一の位相になるように制御する
    請求項5記載のアンテナ装置。
  7.  前記移相器は、前記複数の給電ラインの信号が互いに異なる位相になるように制御する
    請求項5記載のアンテナ装置。
  8.  前記第1および第2の給電線路は、互いに直交する
    請求項1記載のアンテナ装置。
  9.  前記第1および第2の給電線路は、互いに直交しない
    請求項1記載のアンテナ装置。
  10.  前記複数のアンテナ素子の各々の形状は、前記第1および第2の給電線路に直交する辺を備える多角形である
    請求項1記載のアンテナ装置。
  11.  前記複数のアンテナ素子の各々の形状は、円形である
    請求項1記載のアンテナ装置。
  12.  前記複数のアンテナ素子は、給電方向に並ぶ複数のアンテナ素子群を含み、
     前記複数のアンテナ素子群においては、給電方向の両端側よりも中央側に配置されるアンテナ素子の幅がより太い
    請求項1記載のアンテナ装置。
  13.  前記複数のアンテナ素子の各々の形状は、十字形状である
    請求項12記載のアンテナ装置。
  14.  前記複数のアンテナ素子は、給電方向に並ぶ複数のアンテナ素子群を含み、
     前記複数のアンテナ素子群のうち隣接するアンテナ素子群は、互いに給電方向において異なる位置に配置される
    請求項1記載のアンテナ装置。
  15.  2次元平面状に配置された複数のアンテナ素子と、前記複数のアンテナ素子に対して互いに異なる第1および第2の方向から給電するものであってそれぞれが複数の給電ラインを備える第1および第2の給電線路とをそれぞれ備える複数のアンテナ装置と、
     前記複数のアンテナ装置の各々について前記第1および第2の給電線路の少なくとも一方に接続して前記複数の給電ラインの信号の位相を制御する複数の移相器と、
     前記複数の移相器の一つを介して送信を行うとともに前記複数の移相器の他の一つを介して受信を行って物体に関する情報を取得する通信部と
    を具備するレーダシステム。
  16.  前記複数のアンテナ装置の各々について前記移相器と前記第1および第2の給電線路の少なくとも一方との間の切り替えを行う複数の切替部をさらに具備し、
     前記複数の切替部は、互いに同期して同じ切り替えを行う
    請求項15記載のレーダシステム。
  17.  前記取得された情報を組み合わせて前記物体の位置を生成する信号処理部をさらに具備する請求項15記載のレーダシステム。
PCT/JP2019/032245 2018-11-13 2019-08-19 アンテナ装置およびレーダシステム WO2020100365A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019005668.9T DE112019005668T5 (de) 2018-11-13 2019-08-19 Antennenvorrichtung und radarsystem
US17/290,872 US20210391654A1 (en) 2018-11-13 2019-08-19 Antenna device and radar system
CN201980072671.XA CN112997361A (zh) 2018-11-13 2019-08-19 天线装置和雷达系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018212646A JP2020080464A (ja) 2018-11-13 2018-11-13 アンテナ装置およびレーダシステム
JP2018-212646 2018-11-13

Publications (1)

Publication Number Publication Date
WO2020100365A1 true WO2020100365A1 (ja) 2020-05-22

Family

ID=70731084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032245 WO2020100365A1 (ja) 2018-11-13 2019-08-19 アンテナ装置およびレーダシステム

Country Status (5)

Country Link
US (1) US20210391654A1 (ja)
JP (1) JP2020080464A (ja)
CN (1) CN112997361A (ja)
DE (1) DE112019005668T5 (ja)
WO (1) WO2020100365A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11489255B2 (en) 2019-06-26 2022-11-01 Analog Devices International Unlimited Company Phase shifters using switch-based feed line splitters
CN114355345A (zh) * 2021-12-28 2022-04-15 深圳航天科技创新研究院 基于lsar和csar应用快速数据收集的新型多天线阵列系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541608A (ja) * 1991-05-30 1993-02-19 Toshiba Corp マイクロストリツプアンテナ
JPH06326510A (ja) * 1992-11-18 1994-11-25 Toshiba Corp ビーム走査アンテナ及びアレーアンテナ
US6288677B1 (en) * 1999-11-23 2001-09-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Microstrip patch antenna and method
JP2007288537A (ja) * 2006-04-17 2007-11-01 Matsushita Electric Ind Co Ltd アンテナ装置、監視装置、および車両
US20150091701A1 (en) * 2009-03-30 2015-04-02 Peter J. Goidas Radio frequency identification tag identification system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937585A (en) * 1987-09-09 1990-06-26 Phasar Corporation Microwave circuit module, such as an antenna, and method of making same
US7436370B2 (en) * 2005-10-14 2008-10-14 L-3 Communications Titan Corporation Device and method for polarization control for a phased array antenna
JP4924586B2 (ja) * 2008-10-08 2012-04-25 株式会社デンソー アンテナ装置
DE102010041438A1 (de) * 2010-09-27 2012-03-29 Robert Bosch Gmbh Antennensystem für Radarsensoren
JPWO2014083948A1 (ja) * 2012-11-27 2017-01-05 国立大学法人佐賀大学 アンテナ装置
US9755306B1 (en) * 2013-01-07 2017-09-05 Lockheed Martin Corporation Wideband antenna design for wide-scan low-profile phased arrays
KR102354167B1 (ko) * 2015-11-13 2022-01-21 현대모비스 주식회사 패치 어레이 안테나 및 이를 구비하는 레이더 신호 송수신 장치
US10320087B2 (en) * 2016-01-15 2019-06-11 Huawei Technologies Co., Ltd. Overlapping linear sub-array for phased array antennas
DE102016203998A1 (de) * 2016-03-11 2017-09-14 Robert Bosch Gmbh Antennenvorrichtung für einen Radarsensor
US10892550B2 (en) * 2016-06-16 2021-01-12 Sony Corporation Cross-shaped antenna array
US10116051B2 (en) * 2017-03-17 2018-10-30 Isotropic Systems Ltd. Lens antenna system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541608A (ja) * 1991-05-30 1993-02-19 Toshiba Corp マイクロストリツプアンテナ
JPH06326510A (ja) * 1992-11-18 1994-11-25 Toshiba Corp ビーム走査アンテナ及びアレーアンテナ
US6288677B1 (en) * 1999-11-23 2001-09-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Microstrip patch antenna and method
JP2007288537A (ja) * 2006-04-17 2007-11-01 Matsushita Electric Ind Co Ltd アンテナ装置、監視装置、および車両
US20150091701A1 (en) * 2009-03-30 2015-04-02 Peter J. Goidas Radio frequency identification tag identification system

Also Published As

Publication number Publication date
JP2020080464A (ja) 2020-05-28
CN112997361A (zh) 2021-06-18
DE112019005668T5 (de) 2021-08-05
US20210391654A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
US20200333431A1 (en) Hybrid analog and digital beamforming
CN111900554B (zh) 利用俯仰检测的mimo天线
US20220026524A1 (en) Antenna device and radar apparatus
US10170833B1 (en) Electronically controlled polarization and beam steering
KR20060041826A (ko) 원형 분극 배열 안테나
US11063372B2 (en) Elementary antenna comprising a planar radiating device
CN101841083A (zh) 阵列天线及其雷达设备
US7250908B2 (en) Beam steering array antenna method and apparatus
WO2020100365A1 (ja) アンテナ装置およびレーダシステム
US9780448B1 (en) True path beam steering
JP2024113099A (ja) 独立した回転放射要素を有するアンテナアレイ
CN111883938B (zh) 一种单馈点阵列组合相控阵天线
CN207852911U (zh) 一种基于连续波相控阵的带状线天线阵
EP1523785B1 (en) Common aperture antenna
JPWO2017145968A1 (ja) ハイブリッド回路、給電回路、アンテナ装置、及び給電方法
EP3780274A1 (en) An array antenna arrangement
CN218975790U (zh) 一种定位天线及定位系统
US20230251368A1 (en) Fmcw radar with elevation scanning
WO2024135327A1 (ja) 電子機器及び送受信システム
US11784403B2 (en) Antenna array and a phased array system with such antenna array
JP2013205043A (ja) レ−ダ装置
JP4591425B2 (ja) アンテナ装置
US12140692B2 (en) Antenna device and radar apparatus
Wei et al. Experimental Realization of Wideband and Compact Analyzed Beam Forming Network
Yi et al. A scalable wireless power transmission system and its target tracking beaming using a direction of arrival estimator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884245

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19884245

Country of ref document: EP

Kind code of ref document: A1