WO2020099790A1 - Système de détection pour direction d'un véhicule permettant la mesure du couple et de l'angle volant absolu multi tours - Google Patents

Système de détection pour direction d'un véhicule permettant la mesure du couple et de l'angle volant absolu multi tours Download PDF

Info

Publication number
WO2020099790A1
WO2020099790A1 PCT/FR2019/052703 FR2019052703W WO2020099790A1 WO 2020099790 A1 WO2020099790 A1 WO 2020099790A1 FR 2019052703 W FR2019052703 W FR 2019052703W WO 2020099790 A1 WO2020099790 A1 WO 2020099790A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
angular position
position sensor
torsion bar
calculated
Prior art date
Application number
PCT/FR2019/052703
Other languages
English (en)
Inventor
Mathieu LE NY
Original Assignee
Electricfil Automotive
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricfil Automotive filed Critical Electricfil Automotive
Priority to CN201980075777.5A priority Critical patent/CN113167597A/zh
Priority to DE112019005731.6T priority patent/DE112019005731T5/de
Publication of WO2020099790A1 publication Critical patent/WO2020099790A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0215Determination of steering angle by measuring on the steering column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0235Determination of steering angle by measuring or deriving directly at the electric power steering motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2053Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable non-ferromagnetic conductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24476Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • G01D5/2452Incremental encoders incorporating two or more tracks having an (n, n+1, ...) relationship
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/104Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/20Detecting rotary movement
    • G01D2205/26Details of encoders or position sensors specially adapted to detect rotation beyond a full turn of 360°, e.g. multi-rotation

Definitions

  • the present invention relates to the technical field of detection systems for measuring the torque and the absolute steering wheel angle multiple turns of a direction of a vehicle in the general sense.
  • a preferred application of the invention relates to detection systems for measuring the torque and the absolute steering wheel angle multiple turns of an electric power steering of a vehicle.
  • Another application of the invention relates to detection systems for measuring the torque and the absolute steering wheel angle multi-turns of a direction of a vehicle for which the steering wheel is mechanically disconnected from the wheels.
  • an electric power steering comprises an electric motor provided with a reduction gear applying an assistance torque to the steering of the vehicle, namely the steering column or the steering rack.
  • the operation of an electric power steering requires knowledge of the intensity of the torque applied to the steering and the steering wheel or steering angle.
  • the steering wheel of a vehicle is designed to turn from a neutral point to the left and right, about one and a half turns.
  • the steering wheel can rotate about three turns from a left end to a right end. Therefore, electric power steering must be equipped with a steering angle sensor capable of detecting an angle range greater than or equal to three turns (360 degrees x 3) in order to appropriately detect this steering angle.
  • the steering wheel angle information is also required for the operation of other vehicle functions such as the electronic trajectory corrector, or for the new driving assistance functions.
  • Patent FR 2 964 190 from the company MMT proposes a magnetic detection device for an absolute multi-turn absolute steering wheel angle works in particular magnets and sensitive magneto probes. This detection device also requires motion transformation systems (gears), which leads to an expensive detection device.
  • Patent application EP 3 090 921 from the company NSK describes a device for detecting the steering angle of a vehicle comprising a Vernier calculation section which performs a Vernier calculation on the basis of an angle of the steering shaft and a corner of the electric assist motor shaft.
  • This device also implements a section for determining a neutral period comprising a neutral point based on a reference angle calculated by the Vernier calculation and a section for specifying a neutral point which specifies said neutral point from said neutral period. and a stored neutral point value.
  • This device makes it possible to determine the multi-turn steering angle only after a learning step so that this device does not make it possible to know the turning angle as soon as it is started.
  • Patent FR 2 872 896 from the company MMT describes a torque sensor using the angular deformation of a torsion bar of known rigidity.
  • This differential angular deformation sensor includes several magnetic concentrators, a magnetized target and a Hall effect detection probe. This sensor has a complex design and only measures the angle between the input shaft and the output shaft. It does not give any information on the angle of the input and output shafts relative to the vehicle chassis.
  • Patent application DE 102009039764 from the company BMW describes a detection system for measuring the torque and the absolute steering wheel angle multiple turns of a direction of a vehicle for which the steering wheel is mechanically disconnected from the wheels.
  • a direction known under the name “steer by wire” comprises an electrical or hydraulic connection between the steering wheel and the wheels.
  • An electric motor fitted with a reduction gear provides a torque resistant to the steering.
  • This document proposes to measure the steering wheel angle from the angular position sensor measuring the engine angle electric but also of an additional Hall effect probe detecting the magnetic leakage flux from the magnetized target of the torque sensor (type MMT) and located on the reduction side of the torsion bar.
  • the use of a conventional torque sensor leads to an expensive detection system and the robustness of a position sensor measuring a magnetic leakage flux remains to be demonstrated.
  • the present invention seeks to remedy the drawbacks of the prior art by proposing a new detection system for steering a vehicle, allowing the measurement of the torque but also of the absolute steering angle over more than one mechanical turn, without the need to add additional gears and without the need to implement a learning phase, this detection system comprising position sensors simpler and less expensive than the prior art.
  • the object of the invention relates to a new detection system for a direction of a vehicle allowing the measurement of the torque and of the absolute steering angle over more than one mechanical turn, this direction comprising a torsion bar and being provided with an electric motor provided with a reduction gear.
  • this detection system comprises:
  • a first angular position sensor having NI pairs of poles where NI is an integer greater than or equal to 1, this first angular position sensor measuring the angle of the electric motor and delivering a first signal;
  • this second angular position sensor having N2 pairs of poles where N2 is an integer greater than or equal to 1, this second angular position sensor measuring the angle of the direction situated between the reduction gear and a first side of the torsion bar , this second angular position sensor delivering a second signal;
  • a third angular position sensor having N3 pairs of poles where N3 is an integer greater than or equal to 1, this third angular position sensor measuring the angle of the direction located by a second side of the torsion bar, located opposite the first side, and delivering a third signal;
  • a processing unit performing on the one hand, a Vernier calculation based on at least the first signal and the second signal to produce a first calculated signal proportional to the absolute flying angle over more than one mechanical turn and on the other hand, an angular weighted sum of the third signal and one of the signals taken from the first signal, the second signal and the first calculated signal, to produce a second calculated signal proportional to the torque.
  • the apparatus according to the invention also comprises in combination one and / or the other of the following additional characteristics;
  • the processing unit considers that the first calculated signal corresponds to the absolute steering angle over more than one mechanical revolution and that the second calculated signal corresponds to the applied torque;
  • the processing unit performs the Vernier calculation to produce the first calculated signal which is te! than :
  • the processing unit performs the Vernier calculation to produce the first calculated signal (0 2 ) which is such that:
  • the second calculated signal is such that:
  • the second calculated signal is such that:
  • the second calculated signal is such that:
  • the processing unit verifies that all of the measured and calculated signals belong to a set of admissible values, the processing unit delivering an alert signal when the set of values does not belong to the set of admissible values;
  • the first angular position sensor, the second angular position sensor and / or the third angular position sensor are sensors or combinations of Hall effect position sensors, magnetoresistance, flux gates, inductive, eddy current or with variable reluctance;
  • the second angular position sensor and the third angular position sensor are eddy current position sensors comprising a common detection probe comprising a common support plate for the windings of the second angular position sensor and of the third angular position sensor.
  • Another object of the invention relates to a steering equipped with the detection system according to the invention, which executes a steering command as a function of the absolute steering angle over more than one mechanical revolution and of the applied torque.
  • Figure 1 is the diagram illustrating the detection system according to the invention for measuring the torque and the absolute steering angle over more than one mechanical turn for a direction of a vehicle.
  • Figures 2 to 4 are block diagrams illustrating three alternative embodiments for calculating the applied torque.
  • FIG. 5 illustrates the shape of the signals delivered by the three angular position sensors implemented by the detection system according to the invention, as a function of the steering wheel angle in degrees and for a maximum torque applied.
  • Figure 6 illustrates the first calculated signal q 2 proportional to the absolute flywheel angle over more than one mechanical revolution, for different torque values.
  • Figure 7 illustrates the second calculated signal T proportional to the torque, for different values of the steering angle.
  • Figures 8 and 9 are diagrams illustrating two alternative embodiments of the second sensor and the third sensor in the form of eddy current position sensors.
  • the subject of the invention relates to a detection system 1 allowing the measurement of the torque T and of the absolute steering angle q 2 over more than one mechanical turn, of a direction 2 of a vehicle in the general sense .
  • the system of detection 1 makes it possible to measure the torque and the absolute steering wheel angle multiple turns of an electric power steering of a vehicle.
  • the detection system 1 is also suitable for measuring the torque and the absolute steering wheel angle multiple turns of a direction of a vehicle for which the steering wheel is mechanically disconnected from the wheels.
  • This direction 2 comprises an electric motor 3 provided with a reduction gear 4 of all known types having a reduction ratio R red , applying a torque to the steering of the vehicle, namely the steering column 5 in the illustrated example, which is provided with a flywheel 6.
  • the flywheel 6 can rotate about three turns from a left end to a right end.
  • the electric motor 3 applies to the steering of the vehicle, an assistance torque in the case of an electric power steering, and a resisting torque in the case of a direction where the steering wheel is mechanically disconnected from the wheels.
  • the reduction gear 4 can apply the assistance torque to the steering rack, not shown, which is used to rotate the wheels of the vehicle.
  • This direction 2 also includes a torsion bar 7 mounted in the example illustrated, on the steering column 5, between the reduction gear 4 and the flywheel 6.
  • This torsion bar 7 is made in any suitable manner to allow measurement by deformation angular, of the torque applied to the steering.
  • the torque T applied to the torsion bar 7 is the first quantity to be measured.
  • the detection system 1 comprises a first angular position sensor 11 having NI pairs of poles where NI is an integer greater than or equal to 1.
  • This first angular position sensor 11 measures the angle q c of the rotor of the electric motor 3 and delivers a first signal ai. It should be noted that this first angular position sensor 11 is generally available in a power steering since it allows the control of the electric motor 3 of the power steering.
  • the detection system 1 comprises a second angular position sensor 12 having N2 pairs of poles where N2 is an integer greater than or equal to 1.
  • This second angular position sensor 12 measures the angle q 2 of the direction between the reducer 4 and a first side of the torsion bar 7, namely the side opposite the flywheel 6.
  • This angle q 2 of the steering is located between the reduction gear 4 and the torsion bar 7, that is to say located at upstream of the torsion bar.
  • This second angular position sensor 12 delivers a second signal a 2 . It should be noted that the second angular position sensor 12 measures the angle q 2 of the direction relative to the chassis of the vehicle.
  • the detection system 1 aims to determine the reference flywheel angle corresponding, by convention, to the absolute flywheel angle over more than one mechanical revolution q 2 .
  • This absolute multi-turn steering angle q 2 is the second quantity to be measured.
  • the detection system 1 comprises a third angular position sensor 13 having N3 pairs of poles where N3 is an integer greater than or equal to 1.
  • This third angular position sensor 13 measures the angle q 3 of the direction located by a second side of the torsion bar 7, located opposite the first side of the torsion bar 7.
  • This third angular position sensor 13 which is mounted on the part of the steering column directly in relation to the steering wheel 6, measure the angle of the steering wheel in a non-absolute manner downstream of the torsion bar 7.
  • This third angular position sensor 13 delivers a third signal a 3 . It should be noted that the third angular position sensor 13 measures the angle 0 3 of the steering relative to the chassis of the vehicle.
  • the mathematical function f s is defined which is a sawtooth mathematical function with a slope equal to 1 and whose value is zero when the input data is zero.
  • This function mathematical f s transforms any angle defined in degrees into an angle between -180 ° and 180 ° (not included):
  • the function f s is a sawtooth function with a slope equal to 1, between -180 ° and 180 ° (not included) and passing through zero when x is equal to zero.
  • this document uses angles defined in degrees but it is also quite possible to define the same function with other angle units.
  • the function f £ which transforms any angle defined in radian into an angle between -p and p (not included) is defined by:
  • the function f s can also be alternately defined in a completely equivalent way by:
  • La relation between the angular deformation e shift and the couple T is such that:
  • the angle $ 2 represents the reference flying angle.
  • the mathematical relationships between the independent mechanical angles q 2 , 9 shi f t and the dependent mechanical angles e t , q 3 can be modeled as follows:
  • the reference flywheel angle q 2 to be measured has a peak-peak variation denoted Dq 2 ⁇
  • the torque to be measured has a peak-peak variation denoted DT. This implies that the angular deformation of the torsion bar 7 to be measured has a peak-peak variation denoted by the shift which is equal to DT / G.
  • each of the signals is in the range [-180 °; 180 ° [, which is generally not the case for mechanical angles
  • the angular position sensors 11, 12, 13 transmit the information in coded form in order to
  • a signal a can be encoded as two signals defined by :
  • the processing unit 15 must then decode the signals to recover the signal a.
  • the decoding is carried out as follows:
  • the detection system 1 also comprises a processing unit 15 receiving the first signal at lt the second signal at 2 and the third signal at 3 and configured to perform calculations to produce a first signal! calculated q 2 proportional to the absolute steering angle over more than one mechanical turn ⁇ 3 ⁇ 4 and a second calculated signal f proportional to the applied torque T.
  • This processing unit 15 is produced by all computer systems programmed and configured to carry out the operations of processing and calculation according to the invention.
  • This processing unit 15 performs on the one hand, a Vernier calculation on the basis of at least the first signal a x and the second signal a 2 to produce a first calculated signal d z proportional to the absolute steering angle over more on the other hand, an angular weighted sum of the third signal a 3 and one of the signals taken from the first signal a lr the second signal a 2 and the first calculated signal q 2 , to produce a second calculated signal f proportional to the torque T.
  • the processing unit 15 performs a Vernier calculation to produce the first calculated signal ⁇ 2 which is such that:
  • the optimal choice of the coefficients q 2 and q 2 depends on the precision of the two angular position sensors 11, 12 used for the Vernier effect, x the signal generated by the first angular position sensor 11, signal generated by the second angular position sensor 12;
  • N turns parameter has a physical meaning. It corresponds to the number of mechanical flying turns on which the first calculated signal q 2 will be bijective. It is for this reason that the constraint N turns > D0 2 / 36O is present, which means that the linear peak-peak variation of the first calculated signal q 2 must be at least greater than the peak-peak variation of the defined measurand by the application specifications. By the way, does not have to be an integer.
  • the object of the invention uses the technique of the Vernier effect to construct the first calculated signal q 2 of the flying angle.
  • the optimal values of the weighting coefficients q t and q 2 are the following;
  • s 1 is the typical magnitude of the error of the first angular position sensor and where s 2 is the typical magnitude of the error of the second angular position sensor.
  • the first sign is calculated from the signals as follows. First of all
  • pgcd is the "greatest common divisor" operator.
  • the parameters c 2 and c 3 are numerical coefficients chosen by the designer and having to respect the following conditions;
  • this intermediate signal a 2 has the same absolute measurement error (in mechanical degree) as the signal a 2 but that it has a lower periodicity (equal to N 23 ) than the periodicity of the signal a 2 (equal to W 2 ).
  • the use of the signal a 3 made it possible to reduce the relative measurement error (in electrical degree) by a 2 thanks to the reduction in its periodicity. Thanks to this improvement, it is in practice simpler in a second time to combine a t with a 2 rather than with a 2 in order to obtain ⁇ 2 . This calculation is defined as follows:
  • the first calculated signal q 2 is equal to the absolute flying angle over more than one mechanical revolution q 2 , that is:
  • the processing unit 15 performs an angular weighted sum of the different signals available to produce the second calculated signal T proportional to the torque T.
  • An angular weighted sum of signals is a linear combination of signals or the final result is brought back in the interval [ -180; 180 ° [(or in the interval [- JT; p [depending on the choice of angular unit).
  • the processing unit 15 performs an angular weighted sum of the third signal a 3 and of one of the signals taken from the first signal a u the second signal a z and the first calculated signal q 2 .
  • the second calculated signal T is calculated from the third signal a 3 and the first signal a x .
  • the second calculated signal T is such that:
  • the second calculated signal î is calculated from the third signal a 3 and the second signal a 2 .
  • the second calculated signal T is such that:
  • the second calculated signal T is calculated from the third signal a 3 and the first calculated signal 0 2 .
  • the second calculated signal T is such that:
  • the reference flywheel torque and angle are determined without a "physical" torque and flywheel angle sensor. Indeed, the absolute flywheel angle over more than one mechanical revolution q 2 , is determined from the first signal generated by the first angular position sensor 11 and the second signal a 2 generated by the second angular position sensor 12 while the applied torque T is determined from the third signal a 3 generated by the third angular position sensor 13 and by one of the signals taken from, the first signal a lf the second signal a 2 and the first calculated signal q 2 .
  • the first angular position sensor 11, the second angular position sensor 12 and the third angular position sensor 13 are angular position sensors with Ni pole pairs (with Ni an integer greater than or equal to 1) of all known types in itself.
  • the first angular position sensor 11, the second angular position sensor 12 and / or the third angular position sensor 13 are sensors or combinations of Hall effect position sensors, magnetoresistors, flux gates , inductive, eddy current or variable reluctance.
  • the complex and expensive sensors of the prior art are replaced by much simpler angular position sensors and by specific signal processing.
  • This replacement was made possible thanks to the clever reuse of the first signa! the first angular position sensor 11 already available on most electric power steering systems and which controls the electric motor 3 of the power steering system and also thanks to the clever reuse of the reducer of the electric motor already available on all electric power steering systems.
  • the detection system 1 according to the invention does not require any initialization at startup and does not require any continuous monitoring system.
  • the first calculated signal and the second calculated signal are available when the angular position sensors are switched on. No prior movement by the management is necessary to have these two calculated signals available.
  • Fig. 5 shows the shape of the first, second and third signals a lf a 2f a 3 generated respectively by the three angular position sensors 11, 12, 13, as a function of the reference steering wheel angle in an ideal case where there is no has no noise and no measurement error.
  • Fig. 6 illustrates the first calculated signal proportional to the angle
  • the first calculated signal q 2 depends linearly on the absolute steering angle over more than one mechanical revolution q 2i while being completely insensitive to the torque.
  • Fig. 7 illustrates the second calculated signal T proportional to the torque, for different values of the steering angle.
  • the second calculated signal T depends linearly on the applied torque T, being totally insensitive to the flying angle.
  • the figures illustrate simulations carried out without noise. Other simulations in the presence of noise have been carried out. These simulations have shown that the present invention is robust with respect to these noises, including at the mechanical angles where the first, second and third signals a lf a 2 , a 3 sawtooth have discontinuities. That is to say that the noises present at the input are transmitted at the output without being appreciably amplified.
  • the coefficients of weightings qi and q2 are judiciously chosen, the use of the Vernier effect even makes it possible to greatly improve the signal to noise ratio at output.
  • the detection system according to the invention is designed on the basis of input data which come from the specifications of each application envisaged.
  • the peak-peak variations D0 2 and AT of the steering wheel angle and of the torque correspond to the extent of the measurement system requested by the specifications.
  • These input data can of course have different values depending on the intended applications.
  • the processing unit 15 verifies that the set of measured and calculated signals belong to a set of admissible values. If this is not the case, then the processing unit 15 delivers an alert signal when the set of measured and calculated signals does not belong to the set of admissible values.
  • the processing unit can calculate the following signal D:
  • l is a fixed coefficient between 0 and 1, which is chosen by the designer and which allows the severity of the diagnostic system to be adjusted.
  • the processing unit 15 delivers an alert signal.
  • the second angular position sensor 12 and the third angular position sensor 13 are eddy current position sensors.
  • Fig. 8 illustrates as for example the second angular position sensor 12 and the third angular position sensor 13 arranged on either side of the torsion bar 7.
  • Each angular position sensor 12, 13 comprises on the one hand, a target respectively 12i , 13i mounted integral on each side of the torsion bar 7 and on the other hand, a detection probe respectively 12 2 , 13 2 placed in relation to the corresponding target, outside with respect to the torsion bar 7.
  • the second angular position sensor 12 with eddy current and the third angular position sensor 13 with eddy current have a common detection probe 23 placed between the targets 12i, 13i of the two sensors, that is to say at the torsion bar 7, this common detection probe 23 comprises a common support plate for the windings of the second angular position sensor 12 and of the third angular position sensor 13.
  • This making of the windings of the two angular position sensors 12, 13 reduces the manufacturing cost by using a single circuit support.
  • the crosstalk between these two angular position sensors can be canceled by using a number of pairs of poles N 2 different from N 3 , or by inserting between the coils a conductive and / or magnetic material allowing the decoupling of the magnetic field of these two sensors.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

L'invention concerne un système de détection pour direction comportant : - un premier capteur de position angulaire (11) mesurant l'angle du moteur électrique (3) et délivrant un premier signal; - un deuxième capteur de position angulaire (12) mesurant l'angle de la direction située entre le réducteur (4) et un premier côté de la barre de torsion (7), et délivrant un deuxième signal; - un troisième capteur de position angulaire (13) mesurant l'angle de la direction situé d'un deuxième côté de la barre de torsion (7) et délivrant un troisième signal; - et une unité de traitement (15) effectuant d'une part, un calcul de Vernier sur la base du premier et du deuxième signal pour produire un premier signal calculé (voir "signal 1") proportionnel à l'angle volant absolu sur plus d'un tour mécanique (θ2 ) et d'autre part, une somme pondérée angulaire du troisième signal et de l'un des signaux pris parmi, le premier signal, le deuxième signal et le premier signal calculé (voir "signal 1"), pour produire un deuxième signal calculé (voir "signal 2") proportionnel au couple (T).

Description

SYSTÈME DE DÉTECTION POUR DIRECTION D'UN VÉHICULE PERMETTANT LA MESURE DU COUPLE ET DE L'ANGLE VOLANT
ABSOLU MULTI TOURS
La présente invention concerne le domaine technique des systèmes de détection pour mesurer le couple et l'angle volant absolu multi tours d'une direction d'un véhicule au sens général.
Une application préférée de l'invention vise les systèmes de détection pour mesurer le couple et l'angle volant absolu multi tours d'une direction assistée électrique d'un véhicule.
Une autre application de l'invention vise les systèmes de détection pour mesurer le couple et l'angle volant absolu multi tours d'une direction d'un véhicule pour laquelle le volant est déconnecté mécaniquement des roues.
Classiquement, une direction assistée électrique comporte un moteur électrique muni d'un réducteur appliquant un couple d'assistance à la direction du véhicule, à savoir la colonne de direction ou la crémaillère de direction. Le fonctionnement d'une direction assistée électrique nécessite la connaissance de l'intensité du couple appliqué à la direction et l'angle volant ou de braquage.
En général, le volant d’un véhicule est conçu pour tourner d'un point neutre à gauche et à droite, d'environ un tour et demi. En d'autres termes, le volant peut effectuer une rotation d'environ trois tours d’une extrémité gauche à une extrémité droite. Par conséquent, une direction assistée électrique doit être équipée d'un capteur d'angle de braquage capable de détecter une plage d'angle supérieure ou égale à trois tours (360 degrés x 3) afin de détecter de manière appropriée cet angle de braquage. Par ailleurs, l'information angle volant est aussi requise pour le fonctionnement d'autres fonctions du véhicule comme par exemple le correcteur électronique de trajectoire, ou bien pour les nouvelles fonctions d'aide à la conduite automobile.
Le brevet FR 2 964 190 de la société MMT propose un dispositif de détection magnétique d'angle volant absolu absolue multi-tours mettant en œuvre notamment des aimants et des sondes magnéto sensibles. Ce dispositif de détection requiert également des systèmes de transformation de mouvements (engrenages), ce qui conduit à un dispositif de détection coûteux.
La demande brevet EP 3 090 921 de la société NSK décrit un appareil de détection de l'angle de braquage d'un véhicule comprenant une section de de calcul de Vernier qui effectue un calcul de Vernier sur la base d'un angle de l'arbre de direction et d'un angle de l'arbre du moteur électrique d'assistance. Cet appareil met en œuvre également une section de détermination d'une période neutre comprenant un point neutre basé sur un angle de référence calculé par le calcul de Vernier et une section de spécification de point neutre qui spécifie ledit point neutre à partir de ladite période neutre et une valeur de point neutre stockée. Cet appareil permet la détermination de l'angle de braquage multi tours uniquement après une étape d'apprentissage de sorte que cet appareil ne permet pas de connaître l'angle de braquage dès son démarrage.
Le brevet FR 2 872 896 de la société MMT décrit un capteur de couple utilisant la déformation angulaire d'une barre de torsion de rigidité connue. Ce capteur de déformation angulaire différentiel comporte plusieurs concentrateurs magnétiques, une cible aimantée et une sonde de détection à effet Hall. Ce capteur présente une conception complexe et mesure uniquement l'angle entre l'arbre d'entrée et l'arbre de sortie. Il ne donne aucune information sur l'angle des arbres d'entrée et de sortie par rapport au châssis du véhicule.
La demande de brevet DE 102009039764 de la société BMW décrit un système de détection pour mesurer le couple et l'angle volant absolu multi tours d'une direction d'un véhicule pour laquelle le volant est déconnecté mécaniquement des roues. Une telle direction connue sous la dénomination « steer by wire » comporte une connexion électrique ou hydraulique entre le volant et les roues. Un moteur électrique muni d'un réducteur fourni un couple résistant à la direction. Ce document propose de mesurer l'angle volant à partir du capteur de position angulaire mesurant l'angle du moteur électrique mais également d'une sonde à effet Hall additionnelle détectant le flux magnétique de fuite de la cible aimantée du capteur de couple (de type MMT) et située du côté réducteur de la barre de torsion. Le recours à un capteur de couple classique conduit à un système de détection coûteux et la robustesse d'un capteur de position mesurant un flux magnétique de fuite reste à démontrer.
La présente invention vise à remédier aux inconvénients de l'art antérieur en proposant un nouveau système de détection pour direction d'un véhicule, permettant la mesure du couple mais également de l'angle volant absolu sur plus d'un tour mécanique, sans la nécessité d'ajouter des engrenages supplémentaires et sans la nécessité de mettre en œuvre une phase d'apprentissage, ce système de détection comportant des capteurs de position plus simples et moins onéreux que l'art antérieur.
Pour atteindre un te! objectif, l'objet de l'invention concerne un nouveau système de détection pour une direction d'un véhicule permettant la mesure du couple et de l'angle volant absolu sur plus d'un tour mécanique, cette direction comportant une barre de torsion et étant munie d'un moteur électrique pourvu d'un réducteur. Conformément à l'invention, ce système de détection comporte :
- un premier capteur de position angulaire possédant NI paires de pôles où NI est un nombre entier supérieur ou égal à 1, ce premier capteur de position angulaire mesurant l'angle du moteur électrique et délivrant un premier signal ;
- un deuxième capteur de position angulaire possédant N2 paires de pôles où N2 est un nombre entier supérieur ou égal à 1, ce deuxième capteur de position angulaire mesurant l'angle de la direction située entre le réducteur et un premier côté de la barre de torsion, ce deuxième capteur de position angulaire délivrant un deuxième signal ;
- un troisième capteur de position angulaire possédant N3 paires de pôles où N3 est un nombre entier supérieur ou égal à 1, ce troisième capteur de position angulaire mesurant l'angle de la direction situé d'un deuxième côté de la barre de torsion, situé à l'opposé du premier côté, et délivrant un troisième signal ;
- et une unité de traitement effectuant d'une part, un calcul de Vernier sur la base d'au moins du premier signal et du deuxième signai pour produire un premier signal calculé proportionnel à l'angle volant absolu sur plus d'un tour mécanique et d'autre part, une somme pondérée angulaire du troisième signal et de l'un des signaux pris parmi le premier signal, le deuxième signal et le premier signal calculé, pour produire un deuxième signal calculé proportionnel au couple.
L'appareil selon l'invention comporte également en combinaison l'une et/ou l'autre des caractéristiques additionnelles suivantes ;
- l'unité de traitement considère que le premier signal calculé correspond à l'angle volant absolu sur plus d'un tour mécanique et que le deuxième signal calculé correspond au couple appliqué ;
- l'unité de traitement effectue le calcul de Vernier pour produire le premier signai calculé qui est te! que :
Figure imgf000006_0002
et fs la fonction mathématique en dents de scie et de pente égale à 1, avec qt et q2 des coefficients de pondérations fixes choisis, et
Figure imgf000006_0001
le signal généré par le premier capteur de position angulaire, a2 le signal généré par le deuxième capteur de position angulaire ;
Et avec étant des coefficients numériques choisis et devant
Figure imgf000006_0003
respecter les conditions suivantes :
Figure imgf000006_0004
Avec Dq2, la variation pic à pic de l'angle volant absolu sur plus d'un tour mécanique et Rred le rapport de réduction du réducteur ; - les coefficients de pondérations euvent être avantageusement choisis égaux à :
Figure imgf000007_0004
Figure imgf000007_0003
Où s± est l'amplitude typique de l'erreur du premier capteur de position angulaire et où s2 est l'amplitude typique de l'erreur du deuxième capteur de position angulaire.
- Selon une autre variante de réalisation, l'unité de traitement effectue le calcul de Vernier pour produire le premier signal calculé (02) qui est tel que :
Figure imgf000007_0002
Avec :
Figure imgf000007_0001
et fs la fonction mathématique en dents de scie et de pente égaie à 1, où pgcd est l'opérateur « plus grand commun diviseur », avec q{ et q2 des coefficients de pondérations fixes choisis, et at le signal généré par le premier capteur de position angulaire a2 le signai généré par le deuxième capteur de position angulaire a3 ie signal généré par le troisième capteur de position angulaire. étant des coefficients numériques
Figure imgf000008_0006
choisis et devant respecter les conditions suivantes :
Figure imgf000008_0002
et avec DQ2, la variation pic à pic de l'angle volant absolu sur plus d'un tour mécanique et Rred le rapport de réduction du réducteur ;
~ selon une première variante de réalisation, le deuxième signal calculé est tel que :
Figure imgf000008_0003
avec fs la fonction mathématique en dents de scie et de pente égale à , a2 le signal généré par le deuxième capteur de position angulaire, a3 le signal généré par le troisième capteur de position angulaire, et G la rigidité de la barre de torsion, et avec
Figure imgf000008_0001
h étant des coefficients numériques choisis et devant respecter les conditions suivantes :
Figure imgf000008_0004
Avec A0sfllft la variation pic à pic de déformation angulaire de la barre de torsion ;
- selon une deuxième variante de réalisation le deuxième signal calculé est tel que :
Figure imgf000008_0005
Avec fs la fonction mathématique en dents de scie et de pente égale à 1, a3 le signai généré par le premier capteur de position angulaire, a3 le signal généré par le troisième capteur de position angulaire, et G la rigidité de la barre de torsion étant des coefficients numériques choisis et
Figure imgf000009_0006
devant respecter les conditions suivantes :
Figure imgf000009_0001
Avec la variation pic à pic de déformation angulaire de la barre de torsio
Figure imgf000009_0004
;
- selon une troisième variante de réalisation, le deuxième signal calculé est tel que :
Figure imgf000009_0002
Avec fs la fonction mathématique en dents de scie et de pente égale à 1, §z le premier signal calculé, a3 le signal généré par le troisième capteur de position angulaire, et G la rigidité de la barre de torsion, et avec k3 étant un coefficient numérique choisi et devant respecter les conditions suivantes :
Figure imgf000009_0003
Avec la variation pic à pic de déformation angulaire de la barre de
Figure imgf000009_0005
torsion ;
- l'unité de traitement vérifie que l'ensemble des signaux mesurés et calculés appartiennent à un ensemble de valeurs admissibles, l'unité de traitement délivrant un signal d'alerte lorsque l'ensemble de valeurs n'appartient pas à l'ensemble des valeurs admissibles ;
- le premier capteur de position angulaire, le deuxième capteur de position angulaire et/ou le troisième capteur de position angulaire sont des capteurs ou des combinaisons de capteurs de position à effet Hall, magnétorésistance, portes de flux, inductif, à courant de Foucault ou à réluctance variable ;
- le deuxième capteur de position angulaire et le troisième capteur de position angulaire sont des capteurs de position à courant de Foucault comportant une sonde de détection commune comprenant une plaque commune de support pour les bobinages du deuxième capteur de position angulaire et du troisième capteur de position angulaire.
Un autre objet de l'invention concerne une direction équipée du système de détection conforme à l'invention, qui exécute une commande de direction en fonction de l'angle volant absolu sur plus d'un tour mécanique et du couple appliqué.
Diverses autres caractéristiques ressortent de la description faite ci-dessous en référence aux dessins annexés qui montrent, à titre d’exemples non limitatifs, des formes de réalisation de l'objet de l’invention.
La Figure 1 est le schéma illustrant le système de détection conforme à l'invention permettant la mesure du couple et de l'angle volant absolu sur plus d'un tour mécanique pour une direction d'un véhicule.
Les Figures 2 à 4 sont des schémas synoptiques illustrant trois variantes de réalisation pour le calcul du couple appliqué.
La Figure 5 illustre la forme des signaux délivrés par les trois capteurs de position angulaire mis en oeuvre par le système de détection conforme à l'invention, en fonction de l'angle volant en degrés et pour un couple maximum appliqué.
La Figure 6 illustre le premier signal calculé q2 proportionnel à l'angle volant absolu sur plus d'un tour mécanique, pour différentes valeurs de couple.
La Figure 7 illustre le deuxième signal calculé T proportionnel au couple, pour différentes valeurs de l'angle volant.
Les Figures 8 et 9 sont des schémas illustrant deux variantes de réalisation du deuxième capteur et du troisième capteur sous la forme de capteurs de position à courant de Foucault.
Tel que cela ressort plus précisément de la Fig. 1, l'objet de l'invention concerne un système de détection 1 permettant la mesure du couple T et de l'angle volant absolu q2 sur plus d'un tour mécanique, d'une direction 2 d'un véhicule au sens général. Selon un exemple d'application préféré qui sera décrit dans la suite de la description, le système de détection 1 permet de mesurer le couple et l'angle volant absolu multi tours d'une direction assistée électrique d'un véhicule. Bien entendu, le système de détection 1 est aussi adapté pour mesurer le couple et l'angle volant absolu multi tours d'une direction d'un véhicule pour laquelle le volant est déconnecté mécaniquement des roues.
Cette direction 2 comporte un moteur électrique 3 pourvu d'un réducteur 4 de tous types connus ayant un rapport de réduction Rred, appliquant un couple à la direction du véhicule, à savoir la colonne de direction 5 dans l'exemple illustré, qui est muni d'un volant 6. Classiquement, le volant 6 peut tourner d'environ trois tours d’une extrémité gauche à une extrémité droite. Le moteur électrique 3 applique à la direction du véhicule, un couple d'assistance dans le cas d'une direction assistée électrique, et un couple résistant dans le cas d'une direction où le volant est déconnecté mécaniquement des roues.
Bien entendu, le réducteur 4 peut appliquer le couple d'assistance à la crémaillère de direction non représentée et qui sert à faire tourner les roues du véhicule.
Cette direction 2 comporte également une barre de torsion 7 montée dans l'exemple illustré, sur la colonne de direction 5, entre le réducteur 4 et le volant 6. Cette barre de torsion 7 est réalisée de toute manière appropriée pour permettre la mesure par déformation angulaire, du couple appliqué à la direction. Le couple T appliqué à la barre de torsion 7 est la première grandeur à mesurer.
Conformément à l'invention, le système de détection 1 comporte un premier capteur de position angulaire 11 possédant NI paires de pôles où NI est un nombre entier supérieur ou égal à 1. Ce premier capteur de position angulaire 11 mesure l'angle qc du rotor du moteur électrique 3 et délivre un premier signal ai. Il est à noter que ce premier capteur de position angulaire 11 est généralement disponible dans une direction assistée puisqu'il permet le pilotage du moteur électrique 3 de la direction assistée. Le système de détection 1 comporte un deuxième capteur de position angulaire 12 possédant N2 paires de pôles où N2 est un nombre entier supérieur ou égal à 1. Ce deuxième capteur de position angulaire 12 mesure l'angle q2 de la direction située entre le réducteur 4 et un premier côté de la barre de torsion 7 à savoir le côté situé à l'opposé du volant 6. Cet angle q2 de la direction est situé entre le réducteur 4 et la barre de torsion 7 c'est à dire situé en amont de la barre de torsion. Ce deuxième capteur de position angulaire 12 délivre un deuxième signal a2. Il est à noter que le deuxième capteur de position angulaire 12 mesure l'angle q2 de la direction par rapport au châssis du véhicule.
Le fait de choisir un nombre de paires de pôles N2 entier supérieur ou égal à 1 permet à ce deuxième capteur d'être de conception simple et peu onéreuse. La conséquence de cela est que le deuxième signal a2 n'est pas absolu sur plus d'un tour mécanique.
Comme cela sera expliqué dans la suite de la description, le système de détection 1 vise à déterminer l'angle volant de référence correspondant, par convention, à l'angle volant absolu sur plus d'un tour mécanique q2 . Cet angle volant absolu multi tours q2 est la deuxième grandeur à mesurer.
Le système de détection 1 comporte un troisième capteur de position angulaire 13 possédant N3 paires de pôles où N3 est un nombre entier supérieur ou égal à 1. Ce troisième capteur de position angulaire 13 mesure l'angle q3 de la direction située d'un deuxième côté de la barre de torsion 7, située à l'opposé du premier côté de la barre de torsion 7. Ce troisième capteur de position angulaire 13 qui est monté sur la partie de la colonne de direction directement en relation du volant 6, mesure l'angle du volant de manière non absolue en aval de la barre de torsion 7. Ce troisième capteur de position angulaire 13 délivre un troisième signal a3. Il est à noter que le troisième capteur de position angulaire 13 mesure l'angle 03 de la direction par rapport au châssis du véhicule.
Conformément à l'invention, il est défini la fonction mathématique fs qui est une fonction mathématique en dents de scie de pente égale à 1 et dont la valeur est nulle lorsque la donnée d'entrée est nulle. Cette fonction mathématique fs permet de transformer n'importe quel angle défini en degré en un angle compris entre -180° et 180° (non indus) :
Figure imgf000013_0005
Où mod est l'opérateur modulo qui rend le reste d'une division. La fonction fs est une fonction en dent de scie de pente égale à 1, comprise entre -180° et 180° (non indus) et passant par zéro lorsque x est égal à zéro. Par convention, ce document utilise des angles définis en degrés mais il est aussi tout à fait possible de définir la même fonction avec d'autres unités d'angle. Par exemple, la fonction f£ qui transforme n'importe quel angle défini en radian en un angle compris entre -p et p (non inclus) est définie par:
Figure imgf000013_0003
Lorsque la fonction fs est définie avec des angles en radian, la fonction fs peut aussi être alternativement définie de manière totalement équivalente par :
Figure imgf000013_0004
Où sin et cos sont les fonctions trigonométriques classiques et où atan2 est la fonction donnant la coordonnée angulaire (définie entre -p et p non inclus) d'un point dans le plan euclidien.
Bien entendu, il est possible d'utiliser d'autres unités comme par exemple le nombre de bit.
La déformation angulaire de la barre de torsion 7 est notée La
Figure imgf000013_0006
relation entre la déformation angulaire eshift et le couple T est tel que :
Figure imgf000013_0001
avec G étant la rigidité de la barre de torsion 7.
Par convention, il est considéré que l'angle $2 représente l'angle volant de référence. D'après ce qui précède, les relations mathématiques entre les angles mécaniques indépendants q2, 9shift et les angles mécaniques dépendants et, q3 peuvent être modélisées de la façon suivante :
Figure imgf000013_0002
L'angle volant de référence q2 à mesurer a une variation pic-pic notée Dq2· Le couple à mesurer a une variation pic-pic notée DT. Cela implique que la déformation angulaire de la barre de torsion 7 à mesurer a une variation pic-pic notée àeshift qui est égale à DT/G.
Les premier, deuxième et troisième signaux générés
Figure imgf000014_0005
respectivement par le premier, le deuxième et le troisième capteur de position angulaire 11, 12, 13 sont égaux à :
Figure imgf000014_0001
Il suit de ce qui précède que chacun des signaux
Figure imgf000014_0004
est compris dans l'intervalle [-180° ; 180°[, ce qui n'est en général pas le cas pour les angles mécaniques
Figure imgf000014_0007
Il est aussi important de noter que la présente invention ne se limite pas à des capteurs de position angulaire 11, 12, 13 transmettant explicitement les signaux vers l'unité de traitement 15. Souvent,
Figure imgf000014_0006
dans le cadre d'une réalisation physique, les capteurs de position angulaire 11, 12, 13 transmettent l'information sous une forme codée afin
Figure imgf000014_0008
de faciliter la transmission et d'optimiser ta robustesse de ces signaux vis-à- vis du bruit et de toute source de perturbation. Par exemple, un signal a peut être encodé sous la forme de deux signaux
Figure imgf000014_0010
défini par :
Figure imgf000014_0002
Avec A l'amplitude des signaux. Bien entendu, l'unité de traitement 15 doit ensuite décoder les signaux de retrouver le signal a.
Figure imgf000014_0009
Dans l'exemple qui précède, le décodage s'effectue de la manière suivante :
360
Figure imgf000014_0003
Où atan2 est la fonction donnant la coordonnée angulaire (définie entre -p et p non inclus) d'un point dans le plan euclidien. Conformément à l'invention, le système de détection 1 comporte également une unité de traitement 15 recevant le premier signal alt le deuxième signal a2 et le troisième signal a3 et configurée pour effectuer des calculs pour produire un premier signa! calculé q2 proportionnel à l'angle volant absolu sur plus d'un tour mécanique <¾ et un deuxième signal calculé f proportionnel au couple appliqué T. Cette unité de traitement 15 est réalisée par tous systèmes informatiques programmés et configurés pour réaliser les opérations de traitement et de calcul conformes à l'invention.
Cette unité de traitement 15 effectue d'une part, un calcul de Vernier sur la base d'au moins du premier signal ax et du deuxième signai a2 pour produire un premier signal calculé dz proportionnel à l'angle volant absolu sur plus d'un tour mécanique et d'autre part, une somme pondérée angulaire du troisième signal a3 et de l'un des signaux pris parmi le premier signal alr le deuxième signal a2 et le premier signal calculé q2, pour produire un deuxième signal calculé f proportionnel au couple T.
Selon une première variante de réalisation, l'unité de traitement 15 effectue un calcul de Vernier pour produire le premier signal calculé §2 qui est tel que :
Figure imgf000015_0001
- fs la fonction mathématique précédemment définie,
- qt et q2 des coefficients de pondérations fixes que le concepteur peut choisir de sorte à minimiser l'erreur du capteur. Le choix le plus simple (qt = 0, q2— 0) définit un signal q2 fonctionnel mais qui n'est pas toujours optimal en termes de réjection du bruit et des erreurs de mesures. Il existe de nombreux autres choix possibles tel que (¾ = 0, q2 = l /(N2Nturns) ) ou bien (qx = l/(NtRredNturns) , q2 = 0) par exemple. De manière générale, le choix optimal des coefficients q2 et q2 dépend de la précision des deux capteurs de position angulaire 11, 12 utilisés pour l'effet Vernier,
Figure imgf000016_0007
x le signal généré par le premier capteur de position angulaire 11, signai généré par le deuxième capteur de position angulaire 12;
Figure imgf000016_0006
Les paramètres et sont des coefficients numériques choisis par
Figure imgf000016_0008
le concepteur et devant respecter les conditions suivantes :
Figure imgf000016_0005
Avec Dq2, la variation pic à pic de l'angle volant absolu sur plus d'un tour mécanique et Rred le rapport de réduction du réducteur 4.
Il est à noter que le paramètre Nturns a une signification physique. Il correspond au nombre de tours volants mécaniques sur lequel le premier signal calculé q2 sera bijectif. C'est pour cette raison que la contrainte Nturns > D02/36O est présente, ce qui signifie que la variation pic-pic linéaire du premier signal calculé q2 doit être au moins supérieure à la variation pic- pic de la mesurande définie par le cahier des charges de l'application. Par ailleurs, n'a pas besoin d'être un nombre entier.
Figure imgf000016_0004
Il est à considérer que l'objet de l'invention utilise la technique de l'effet Vernier pour construire le premier signal calculé q2 de l'angle volant.
Un autre point important à noter est que pour avoir un capteur d'angle volant absolu sur plusieurs tours mécaniques 1), il est indispensable
Figure imgf000016_0002
d'avoir un rapport de réduction non entier. Cela se comprend à l'aide de
Figure imgf000016_0001
la contrainte déjà définie plus haut :
Lorsque
Figure imgf000016_0003
1, on voit bien que la seule façon de respecter cette contrainte est d'avoir un rapport de réduction Rred non entier. Cela est généralement le cas dans les directions assistées électriques. Pour être absolu sur plusieurs tours de volant (dès mise sous tension du système), les capteurs d'angle volant actuels utilisent des engrenages pour être capable de distinguer les tours mécaniques. Ces engrenages additionnels sont coûteux. Grâce à l'invention proposée, il est possible de réaliser un capteur multi-tours sans ajouter d'engrenage, car l'objet de l'invention réutilise l'engrenage du réducteur 4 du moteur électrique 3 qui est déjà disponible.
Selon une variante avantageuse, les valeurs optimales des coefficients de pondérations qt et q2 sont les suivantes ;
Figure imgf000017_0001
Figure imgf000017_0002
Où s1 est l'amplitude typique de l'erreur du premier capteur de position angulaire et où s2 est l'amplitude typique de l'erreur du deuxième capteur de position angulaire.
Selon une deuxième variante de réalisation, le premier signa est
Figure imgf000017_0004
calculé à partir des signaux la façon suivante. Tout d'abord
Figure imgf000017_0003
on calcule un signal intermédiaire a2 comme suit :
Figure imgf000017_0005
Où pgcd est l'opérateur « plus grand commun diviseur ». Les paramètres c2 et c3 sont des coefficients numériques choisis par le concepteur et devant respecter les conditions suivantes ;
Figure imgf000018_0001
Il est possible de démontrer que ce signal intermédiaire a2 possède la même erreur de mesure absolue (en degré mécanique) que le signal a2 mais qu'il possède une périodicité plus faible (égale à N23) que la périodicité du signal a2 (égale à W2). Dit autrement, l'utilisation du signal a3 a permis de diminuer l'erreur de mesure relative (en degré électrique) de a2 grâce à la diminution de sa périodicité. Grâce à cette amélioration, il est en pratique plus simple dans un second temps de combiner at avec a2 plutôt qu'avec a2 afin d'obtenir §2. Ce calcul est défini comme suit :
Figure imgf000018_0002
Avec :
Figure imgf000018_0003
Où sont des coefficients de pondérations fixes que le concepteur
Figure imgf000018_0006
peut choisir de sorte à minimiser l'erreur du capteur. Le choix le plus simple définit un signal q2 fonctionnel mais qui n'est pas toujours
Figure imgf000018_0005
optimal en termes de réjection du bruit et des erreurs de mesures. Les paramètres p{, p2 et /Vt * urns sont des coefficients numériques choisis par le concepteur et devant respecter les conditions suivantes :
Figure imgf000018_0004
Avec Dq2, la variation pic à pic de l'angle volant absolu sur plus d'un tour mécanique et Rred le rapport de réduction du réducteur 4.
Lorsque toutes les conditions décrites ci-dessus sont respectées pour un mode de réalisation donné, il est possible de démontrer aux erreurs de mesure près et au signe de pente près, que le premier signal calculé q2 est égal à l'angle volant absolu sur plus d'un tour mécanique q2, soit :
Figure imgf000019_0003
L'unité de traitement 15 effectue une somme pondérée angulaire des différents signaux disponibles pour produire le deuxième signal calculé T proportionnel au couple T. Une somme pondérée angulaire de signaux est une combinaison linéaire de signaux ou le résultat final est ramené dans l'intervalle [-180 ; 180°[ (ou bien dans l'intervalle [— JT; p[ selon le choix de l'unité angulaire).
L'unité de traitement 15 effectue une somme pondérée angulaire du troisième signal a3 et de l'un des signaux pris parmi le premier signal au le deuxième signal az et le premier signal calculé q2.
Selon une première variante de réalisation illustré à la Fig. 2, le deuxième signal calculé T est calculé à partir du troisième signal a3 et du premier signal ax. Le deuxième signal calculé T est tel que :
Figure imgf000019_0001
Avec fs la fonction mathématique définit précédemment, en dents de scie et de pente égale à 1, ax le signal généré par le premier capteur de position angulaire 11, a3 le signal généré par le troisième capteur de position angulaire 13, et G la rigidité de la barre de torsion 7, et avec klf k3 étant des coefficients numériques choisis par le concepteur et devant respecter les conditions suivantes :
Figure imgf000019_0002
Avec &eshift la variation pic à pic de déformation angulaire de la barre de torsion 7.
Selon une deuxième variante de réalisation illustré à la Fig. 3, le deuxième signal calculé î est calculé à partir du troisième signal a3 et du deuxième signal a2. Le deuxième signal calculé T est tel que :
Figure imgf000020_0004
Avec fs la fonction mathématique définît précédemment, en dents de scie et de pente égale à 1, a2 le signal généré par le deuxième capteur de position angulaire 12, cr3 le signal généré par le troisième capteur de position angulaire 13, et G la rigidité de la barre de torsion 7, et avec k2, k3 étant des coefficients numériques choisis par le concepteur et devant respecter les conditions suivantes :
Figure imgf000020_0001
Avec à0shlft la variation pic à pic de déformation angulaire de la barre de torsion 7.
Selon une troisième variante de réalisation illustré à la Fig, 4, le deuxième signal calculé T est calculé à partir du troisième signal a3 et du premier signal calculé 02. Le deuxième signal calculé T est tel que :
Figure imgf000020_0002
Avec la fs fonction mathématique définit précédemment, en dents de scie et de pente égale à 1, q2 le premier signal calculé, a3 le signal généré par le troisième capteur de position angulaire 13, et G la rigidité de ia barre de torsion 7, et avec k3 étant un coefficient numérique choisi et devant respecter les conditions suivantes :
Figure imgf000020_0003
Avec â0shift la variation pic à pic de déformation angulaire de la barre de torsion 7.
Lorsque toutes les conditions décrites ci-dessus sont respectées (pour une variante de réalisation donnée), il est possible de démontrer aux erreurs de mesure près et au signe de pente près, que ie deuxième signai calculé T est égal au couple appliqué, soit :
Figure imgf000021_0002
Il ressort de la description qui précède que le couple et l'angle volant de référence sont déterminés sans capteur « physique » de couple et d'angle volant En effet, l'angle volant absolu sur plus d'un tour mécanique q2, est déterminé à partir du premier signal
Figure imgf000021_0001
généré par le premier capteur de position angulaire 11 et du deuxième signal a2 généré par le deuxième capteur de position angulaire 12 tandis que le couple appliqué T est déterminé à partir du troisième signal a3 généré par le troisième capteur de position angulaire 13 et par l'un des signaux pris parmi, le premier signal alf le deuxième signal a2 et le premier signal calculé q2.
Le premier capteur de position angulaire 11, le deuxième capteur de position angulaire 12 et le troisième capteur de position angulaire 13 sont des capteurs de position angulaires à Ni paires de pôles (avec Ni un nombre entier supérieur ou égal à 1) de tous types connus en soi. Par exemple, le premier capteur de position angulaire 11, le deuxième capteur de position angulaire 12 et/ou le troisième capteur de position angulaire 13 sont des capteurs ou des combinaisons de capteurs de position à effet Hall, magnétorésistances, portes de flux (fluxgate), inductif, à courant de Foucault ou à réluctance variable.
Les capteurs complexes et coûteux de l'art antérieur sont remplacés par des capteurs de position angulaires beaucoup plus simples et par un traitement de signal spécifique. Ce remplacement a été rendu possible grâce à la réutilisation astucieuse du premier signa! du premier capteur de position angulaire 11 déjà disponible sur la plupart des directions assistées électriques et qui assure le pilotage du moteur électrique 3 de la direction assistée et aussi grâce à la réutilisation astucieuse du réducteur du moteur électrique déjà disponible sur toutes les directions assistées électriques. Par ailleurs, le système de détection 1 conforme à l'invention ne nécessite aucune initialisation au démarrage et ne nécessite aucun système de contrôle continu. Le premier signal calculé et le deuxième signal calculé sont disponibles dès la mise sous tension des capteurs de position angulaire. Aucun mouvement préalable de la direction n'est nécessaire pour disposer de ces deux signaux calculés.
Les Fig. 5 à 7 illustrent l'objet de l'invention en réalisant un calcul numérique selon les principes décrits ci-dessus, avec le dimensionnement suivant : Dq2=1000° mec, DG=21 N.m, G=3 N.m/°, Kred=61/3, JV^l,
Figure imgf000022_0001
deuxième variante de réalisation a été utilisée pour le calcul du couple.
La Fig. 5 montre la forme des premier, deuxième et troisième signaux alf a2f a3 générés respectivement par les trois capteurs de position angulaires 11, 12, 13, en fonction de l'angle volant de référence dans un cas idéal où il n'y a aucun bruit et aucune erreur de mesure.
La Fig. 6 illustre le premier signal calculé proportionnel à l'angle
Figure imgf000022_0002
volant absolu sur plus d'un tour mécanique, pour différentes valeurs de couple. Le premier signal calculé q2 dépend linéairement de l'angle volant absolu sur plus d'un tour mécanique q2i en étant totalement insensible au couple.
La Fig. 7 illustre le deuxième signal calculé T proportionnel au couple, pour différentes valeurs de l'angle volant. Le deuxième signal calculé T dépend linéairement du couple appliqué T, en étant totalement insensible à l'angle volant.
Cette modélisation numérique permet de démontrer que le premier signal calculé et le deuxième signal calculé correspondent respectivement à l'angle volant absolu sur plus d'un tour mécanique q2 et au couple appliqué T.
Il est à noter que les figures illustrent des simulations réalisées sans bruit. D'autres simulations en présence de bruit ont été réalisées. Ces simulations ont montrées que la présente invention est robuste vis-à-vis de ces bruits, y compris au niveau des angles mécaniques où les premier, deuxième et troisième signaux al f a2, a3 en dents de scies possèdent des discontinuités. C'est-à-dire que les bruits présents en entrée sont transmis en sortie sans être sensiblement amplifiés. Dans le cas où les coefficients de pondérations qi et q2 sont judicieusement choisis, l'utilisation de l'effet Vernier permet même d'améliorer grandement le ratio signal sur bruit en sortie.
Il est à considérer que le système de détection conforme à l'invention est conçu à partir de données d'entrée qui sont issues du cahier des charges de chaque application envisagée. Ainsi, les variations pic-pic D02 et AT de l'angle volant et du couple correspondent à l'étendue du système de mesure demandé par le cahier des charges. Ces données d'entrée peuvent bien entendu présenter des valeurs différentes en fonction des applications visées.
Selon un mode de réalisation particulièrement avantageux, l'unité de traitement 15 vérifie que l'ensemble des signaux mesurés et calculés appartiennent à un ensemble de valeurs admissibles. Si cela n'est pas le cas, alors l'unité de traitement 15 délivre un signal d'alerte lorsque l'ensemble des signaux mesurés et calculés n'appartient pas à l'ensemble des valeurs admissibles. Cette approche permet de détecter certaines catégories d'erreurs de mesures anormalement grandes. Par exemple, l'unité de traitement peut calculer le signal D suivant :
Figure imgf000023_0003
A partir des paramètres de conceptions, il est possible de définir la valeur seuil Diim suivante :
Figure imgf000023_0001
Où l est un coefficient fixe compris entre 0 et 1, qui est choisi par le concepteur et qui permet de régler la sévérité du système de diagnostic. Ainsi, si à n'importe quel instant, l'unité de traitement détecte l'évènement
Figure imgf000023_0002
Alors l'unité de traitement 15 délivre un signal d'alerte.
Selon une variante de réalisation, le deuxième capteur de position angulaire 12 et le troisième capteur de position angulaire 13 sont des capteurs de position à courant de Foucault. La Fig. 8 illustre à titre d'exemple le deuxième capteur de position angulaire 12 et le troisième capteur de position angulaire 13 disposés de part et d'autre de la barre de torsion 7. Chaque capteur de position angulaire 12, 13 comporte d'une part, une cible respectivement 12i, 13i montée solidaire de chaque côté de la barre de torsion 7 et d'autre part, une sonde de détection respectivement 122, 132 placée en relation de la cible correspondante, à l'extérieur par rapport à la barre de torsion 7.
Selon une variante avantageuse de réalisation illustrée à la Fîg. 9, le deuxième capteur de position angulaire 12 à courant de Foucault et le troisième capteur de position angulaire 13 à courant de Foucault possèdent une sonde de détection commune 23 placée entre les cibles 12i, 13i des deux capteurs, c'est-à-dire au niveau de la barre de torsion 7, Cette sonde de détection commune 23 comporte une plaque commune de support pour les bobinages du deuxième capteur de position angulaire 12 et du troisième capteur de position angulaire 13. La réalisation des bobinages des deux capteurs de position angulaire 12, 13 permet de réduire le coût de fabrication en ayant recours à un unique support de circuit. La diaphonie entre ces deux capteurs de position angulaire peut être annulée en utilisant un nombre de paires de pôles N2 différent de N3, ou bien en insérant entre les bobines un matériau conducteur et/ou magnétique permettant le découplage du champ magnétique de ces deux capteurs.
L'invention n'est pas limitée aux exemples décrits et représentés car diverses modifications peuvent y être apportées sans sortir de son cadre.

Claims

REVENDICATIONS
1 - Système de détection pour une direction (2) d'un véhicule permettant la mesure du couple (T) et de l'angle volant absolu sur plus d'un tour mécanique (02), cette direction comportant une barre de torsion (7) et étant munie d'un moteur électrique (3) pourvu d'un réducteur (4), ce système de détection comportant :
- un premier capteur de position angulaire (11) possédant NI paires de pôles où NI est un nombre entier supérieur ou égal à 1, ce premier capteur de position angulaire (11) mesurant l'angle du moteur électrique (3) et délivrant un premier signal (aq ;
- un deuxième capteur de position angulaire (12) possédant N2 paires de pôles où N2 est un nombre entier supérieur ou égal à 1, ce deuxième capteur de position angulaire (12) mesurant l'angle de la direction située entre le réducteur (4) et un premier côté de la barre de torsion (7), ce deuxième capteur de position angulaire délivrant un deuxième signal (a2) ;
- un troisième capteur de position angulaire (13) possédant N3 paires de pôles où N3 est un nombre entier supérieur ou égal à 1, ce troisième capteur de position angulaire (13) mesurant l'angle de la direction situé d'un deuxième côté de la barre de torsion (7), situé à l'opposé du premier côté, et délivrant un troisième signal (a3) ;
- et une unité de traitement (15) effectuant d'une part, un calcul de Vernier sur la base d'au moins du premier signal (ot!) et du deuxième signal (a2) pour produire un premier signai calculé ( 02 ) proportionnel à l'angle volant absolu sur plus d'un tour mécanique ( 02 ) et d'autre part, une somme pondérée angulaire du troisième signal (a3) et de l'un des signaux pris parmi le premier signai (ai), le deuxième signal ( a2 ) et le premier signal calculé ( @2 ), pour produire un deuxième signal calculé (T) proportionnel au couple (T).
2 - Système selon la revendication précédente, selon lequel l'unité de traitement (15) considère que le premier signal calculé ( 02 ) correspond à l'angle volant absolu sur plus d'un tour mécanique et que le deuxième
Figure imgf000026_0003
signal calcuîé (T) correspond au couple appliqué (T).
3 - Système selon l'une des revendications précédentes, selon lequel l'unité de traitement (15) effectue le calcul de Vernier pour produire le premier signal calculé (ê2) qui est tel que ;
Figure imgf000026_0002
et fs la fonction mathématique en dents de scie et de pente égale à 1, avec qt et q2 des coefficients de pondérations fixes choisis, et ax le signal généré par le premier capteur de position angulaire le signal généré par le
Figure imgf000026_0004
deuxième capteur de position angulaire (12) ;
Et avec p1, p2, et Ntums étant des coefficients numériques choisis et devant respecter les conditions suivantes :
Figure imgf000026_0001
Avec Dq2, la variation pic à pic de l'angle volant absolu sur plus d'un tour mécanique et Rred le rapport de réduction du réducteur (4).
4 - Système selon la revendication 3, selon lequel les coefficients de pondérations qt et q2 sont les suivants :
Figure imgf000026_0005
Où s1 est l'amplitude typique de l'erreur du premier capteur de position angulaire et où s2 est l'amplitude typique de l'erreur du deuxième capteur de position angulaire. 5 - Système selon l'une des revendications 1 ou 2, selon lequel l'unité de traitement (15) effectue le calcul de Vernier pour produire le premier signal calculé ( q2 ) qui est tel que :
Figure imgf000027_0004
Avec :
Figure imgf000027_0003
et fs la fonction mathématique en dents de scie et de pente égale à 1, où pgcd est l'opérateur « plus grand commun diviseur », avec q * et q\ des coefficients de pondérations fixes choisis, et at le signal généré par le premier capteur de position angulaire (11), a2 le signal généré par le deuxième capteur de position angulaire (12), a3 le signal généré par le troisième capteur de position angulaire (13);
Et avec c2, c3, p{, pl et Nlurns étant des coefficients numériques choisis et devant respecter les conditions suivantes :
Figure imgf000027_0001
Avec DQ2, la variation pic à pic de l'angle volant absolu sur plus d'un tour mécanique et Rred le rapport de réduction du réducteur (4).
6 - Système selon l'une des revendications précédentes, selon lequel le deuxième signal calculé (î) est tel que :
Figure imgf000027_0002
Avec fs la fonction mathématique en dents de scie et de pente égale à 1, a2 le signal généré par le deuxième capteur de position angulaire (12), a3 le signal généré par le troisième capteur de position angulaire (13), et G la rigidité de la barre de torsion (7), et avec k2, k3 étant des coefficients numériques choisis et devant respecter les conditions suivantes :
Figure imgf000028_0001
Avec à6shift la variation pic à pic de déformation angulaire de la barre de torsion.
7 - Système selon l'une des revendications 1 à 5, selon lequel le deuxième signal calculé (T) est tel que :
Figure imgf000028_0004
Avec fs la fonction mathématique en dents de scie et de pente égale à 1, at le signal généré par le premier capteur de position angulaire (11), a3 le signal généré par le troisième capteur de position angulaire (13), et G la rigidité de la barre de torsion (7), et avec klt k3 étant des coefficients numériques choisis et devant respecter les conditions suivantes :
Figure imgf000028_0002
Avec A0shift la variation pic à pic de déformation angulaire de la barre de torsion.
8 Système selon l'une des revendications 1 à 5, selon lequel le deuxième signal calculé (T) est tel que :
Figure imgf000028_0003
Avec fs la fonction mathématique en dents de scie et de pente égale à 1, §2 le premier signal calculé, a3 le signal généré par le troisième capteur de
Figure imgf000028_0005
position angulaire (13), et G la rigidité de la barre de torsion (7), et avec étant un coefficient numérique choisi et devant respecter les conditions suivantes :
Figure imgf000029_0001
Avec kOshift la variation pic à pic de déformation angulaire de la barre de torsion (7).
9 - Système selon l'une des revendications précédentes, selon lequel l'unité de traitement (15) vérifie que l'ensemble des signaux mesurés et calculés appartiennent à un ensemble de valeurs admissibles, l'unité de traitement (15) délivrant un signal d'alerte lorsque l'ensemble de valeurs n'appartient pas à l'ensemble des valeurs admissibles.
10 - Système selon l'une des revendications précédentes, caractérisé en ce que le premier capteur de position angulaire (11), le deuxième capteur de position angulaire (12) et/ou le troisième capteur de position angulaire (13) sont des capteurs de position à effet Hall, magnétorésistance, portes de flux, inductif, à courant de Foucault ou à réluctance variable.
11 - Système selon l'une des revendications précédentes, caractérisé en ce que le deuxième capteur de position angulaire (12) et le troisième capteur de position angulaire (13) sont des capteurs ou des combinaisons de capteurs de position à courant de Foucault comportant une sonde de détection commune (23) comprenant une plaque commune de support pour les bobinages du deuxième capteur de position angulaire (12) et du troisième capteur de position angulaire (13).
12 - Direction équipée du système de détection (1) conforme à l'une des revendications 1 à 11, qui exécute une commande de direction en fonction de l'angle volant absolu sur plus d'un tour mécanique ( q2 ) et du couple (T).
PCT/FR2019/052703 2018-11-15 2019-11-14 Système de détection pour direction d'un véhicule permettant la mesure du couple et de l'angle volant absolu multi tours WO2020099790A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980075777.5A CN113167597A (zh) 2018-11-15 2019-11-14 用于车辆转向的能够测量扭矩和多圈绝对转向盘角度的检测系统
DE112019005731.6T DE112019005731T5 (de) 2018-11-15 2019-11-14 Erfassungssystem für eine Fahrzeuglenkung, das die Messung des Drehmoments und des absoluten Lenkradwinkels bei mehreren Umdrehungen ermöglicht

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1860526 2018-11-15
FR1860526A FR3088717B1 (fr) 2018-11-15 2018-11-15 Systeme de detection pour direction d'un vehicule permettant la mesure du couple et de l'angle volant absolu multi tours

Publications (1)

Publication Number Publication Date
WO2020099790A1 true WO2020099790A1 (fr) 2020-05-22

Family

ID=65861415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/052703 WO2020099790A1 (fr) 2018-11-15 2019-11-14 Système de détection pour direction d'un véhicule permettant la mesure du couple et de l'angle volant absolu multi tours

Country Status (4)

Country Link
CN (1) CN113167597A (fr)
DE (1) DE112019005731T5 (fr)
FR (1) FR3088717B1 (fr)
WO (1) WO2020099790A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2613340A (en) * 2021-11-26 2023-06-07 Paragraf Ltd Graphene based rotational transducer and torque sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022102110A1 (de) 2022-01-31 2023-08-03 Schaeffler Technologies AG & Co. KG Lenkereinheit für ein Steer-by-wire-Lenksystem und Verfahren zur Lenkwinkelerfassung
DE102022208801A1 (de) * 2022-08-25 2024-03-07 Robert Bosch Gesellschaft mit beschränkter Haftung Sensoranordnung und Verfahren zur Erfassung einer Drehbewegung eines um eine Drehachse drehbaren Körpers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6354396B1 (en) * 1999-02-05 2002-03-12 Trw Lucasvarity Electric Steering Ltd. Electric power assisted steering systems
FR2872896A1 (fr) 2004-07-09 2006-01-13 Moving Magnet Tech Capteur de position, notamment destine a la mesure de la torsion d'une colonne de direction
DE102009039764A1 (de) 2009-09-02 2011-03-03 Bayerische Motoren Werke Aktiengesellschaft System zur Ermittlung eines vorgegebenen Lenkwinkels
FR2964190A1 (fr) 2010-08-24 2012-03-02 Moving Magnet Tech Dispositif de detection magnetique de position absolue multitour
EP3090921A1 (fr) 2015-02-19 2016-11-09 NSK Ltd. Appareil de détection d'angle de direction de véhicule, et appareil de direction à assistance électrique équipé de celui-ci
WO2018108783A2 (fr) * 2016-12-12 2018-06-21 Idt Europe Gmbh Capteur combiné de couple et d'angle inductif ultra-mince en vue d'une détection de position de roue directrice

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267234A (ja) * 2002-03-19 2003-09-25 Koyo Seiko Co Ltd 電動パワーステアリング装置
DE102005059883A1 (de) * 2005-12-15 2007-06-21 Zf Lenksysteme Gmbh Lenksystem für ein Fahrzeug
DE102007011675A1 (de) * 2006-12-22 2008-06-26 Zf Lenksysteme Gmbh Lenkwinkel- und Drehmomentsensor in einer Hilfskraftlenkung eines Kraftfahrzeugs
JP4425297B2 (ja) * 2007-07-25 2010-03-03 株式会社デンソー 操舵補助装置
CN102264593B (zh) * 2008-12-26 2015-01-07 丰田自动车株式会社 车辆的行驶辅助设备
DE112010005485B4 (de) * 2010-04-14 2017-02-02 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für ein Fahrzeug
DE102010053596B4 (de) * 2010-12-07 2023-10-05 Kostal Automobil Elektrik Gmbh & Co. Kg Drehwinkelmessvorrichtung
CN103764484A (zh) * 2011-08-24 2014-04-30 大陆-特韦斯贸易合伙股份公司及两合公司 组合的转向力矩-转向角传感器
KR101484271B1 (ko) * 2011-12-22 2015-01-19 주식회사 만도 전동식 파워 스티어링 시스템 및 그의 조향각 검증 방법
FR3018113B1 (fr) * 2014-02-28 2017-09-01 Electricfil Automotive Capteur magnetique pour determiner la position relative entre une cible aimantee et un systeme de mesure
CN106170430B (zh) * 2014-03-25 2017-12-19 日本精工株式会社 电动助力转向装置
GB201411297D0 (en) * 2014-06-25 2014-08-06 Trw Ltd An electric power assisted steering system
GB201411298D0 (en) * 2014-06-25 2014-08-06 Trw Ltd An electric power assisted steering system
JP5822008B1 (ja) * 2014-08-08 2015-11-24 日本精工株式会社 角度検出装置、この角度検出装置を備えるモータ、トルクセンサ、電動パワーステアリング装置及び自動車
CN105593105B (zh) * 2014-09-02 2017-06-30 日本精工株式会社 电动助力转向装置
FR3039269B1 (fr) * 2015-07-21 2017-08-11 Electricfil Automotive Capteur de mesure de la position absolue d'un mobile
JP6156458B2 (ja) * 2015-08-12 2017-07-05 日本精工株式会社 モータ制御装置、電動パワーステアリング装置及び車両
CN106679560B (zh) * 2016-12-02 2020-03-17 安徽沃巴弗电子科技有限公司 一种电磁感应式扭矩角度传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6354396B1 (en) * 1999-02-05 2002-03-12 Trw Lucasvarity Electric Steering Ltd. Electric power assisted steering systems
FR2872896A1 (fr) 2004-07-09 2006-01-13 Moving Magnet Tech Capteur de position, notamment destine a la mesure de la torsion d'une colonne de direction
DE102009039764A1 (de) 2009-09-02 2011-03-03 Bayerische Motoren Werke Aktiengesellschaft System zur Ermittlung eines vorgegebenen Lenkwinkels
FR2964190A1 (fr) 2010-08-24 2012-03-02 Moving Magnet Tech Dispositif de detection magnetique de position absolue multitour
EP3090921A1 (fr) 2015-02-19 2016-11-09 NSK Ltd. Appareil de détection d'angle de direction de véhicule, et appareil de direction à assistance électrique équipé de celui-ci
WO2018108783A2 (fr) * 2016-12-12 2018-06-21 Idt Europe Gmbh Capteur combiné de couple et d'angle inductif ultra-mince en vue d'une détection de position de roue directrice

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2613340A (en) * 2021-11-26 2023-06-07 Paragraf Ltd Graphene based rotational transducer and torque sensor

Also Published As

Publication number Publication date
CN113167597A (zh) 2021-07-23
FR3088717A1 (fr) 2020-05-22
FR3088717B1 (fr) 2021-09-17
DE112019005731T5 (de) 2021-09-09

Similar Documents

Publication Publication Date Title
EP2171403B1 (fr) Capteur magnétique sans contact de position absolue multitour à arbre traversant
WO2020099790A1 (fr) Système de détection pour direction d&#39;un véhicule permettant la mesure du couple et de l&#39;angle volant absolu multi tours
EP2452160B1 (fr) Capteur de position absolue et multi-périodique
EP2496914B1 (fr) Capteur de position magnetique bidirectionnel à rotation de champ
WO1999040403A1 (fr) Capteur de couple pour arbre tournant
FR2972251B1 (fr) Dispositif de capteur et son procede de mise en oeuvre pour detecter un angle de rotation
EP2084496A2 (fr) Capteur de position lineaire ou rotatif a profil d&#39;aimant variable
FR3048079A1 (fr) Capteur d&#39;angle de rotation
EP1053456B1 (fr) Capteur de couple et colonne de direction pourvue d&#39;un tel capteur
EP0681690B1 (fr) Dispositif de mesure differentielle de couple
EP1403622B1 (fr) Capteur d&#39;angle absolu
FR2955388A1 (fr) Appareil de detection d&#39;angle de rotation, equipement de machine electrique rotative, et equipement de direction assistee electrique
FR2987116A1 (fr) Dispositif de capteur pour detecter les angles de rotation d&#39;un composant rotatif d&#39;un vehicule
FR2984497A1 (fr) Procede et dispositif de determination du couple d&#39;un moteur electrique et ensemble de moteur avec un moteur electrique
WO1999039965A1 (fr) Colonne de direction a couplemetre
JP2009192248A (ja) トルク検出装置
FR3036479A1 (fr) Dispositif de capteurs pour saisir les angles de rotation d&#39;un organe rotatif d&#39;un vehicule
EP3325922B1 (fr) Capteur de mesure de la position absolue d&#39;un mobile
WO2021089931A1 (fr) Système de mesure du couple et de l&#39;angle volant absolu multi tours pour direction de véhicule a l&#39;aide de deux capteurs de position angulaire
WO2016169645A1 (fr) Capteur de mesure du couple d&#39;un arbre d&#39;entrainement
US20040041677A1 (en) Dual resolver device
EP3708963B1 (fr) Système de détermination d&#39;au moins un paramètre de rotation d&#39;un organe tournant
EP2446228B1 (fr) Capteur de position angulaire
JP2003315178A (ja) トルク検出装置
EP3708964A1 (fr) Système de détermination d&#39;au moins un paramètre de rotation d&#39;un organe tournant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19832166

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19832166

Country of ref document: EP

Kind code of ref document: A1