WO2020099492A1 - Procede de gestion d'embrayage hybride - Google Patents

Procede de gestion d'embrayage hybride Download PDF

Info

Publication number
WO2020099492A1
WO2020099492A1 PCT/EP2019/081187 EP2019081187W WO2020099492A1 WO 2020099492 A1 WO2020099492 A1 WO 2020099492A1 EP 2019081187 W EP2019081187 W EP 2019081187W WO 2020099492 A1 WO2020099492 A1 WO 2020099492A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
heat engine
electric motor
speed
setpoint
Prior art date
Application number
PCT/EP2019/081187
Other languages
English (en)
Inventor
Pascal Maurel
Original Assignee
Valeo Embrayages
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Embrayages filed Critical Valeo Embrayages
Priority to CN201980086013.6A priority Critical patent/CN113226820A/zh
Priority to JP2021526320A priority patent/JP2022508113A/ja
Priority to EP19806136.8A priority patent/EP3880502A1/fr
Priority to US17/293,685 priority patent/US20210402865A1/en
Publication of WO2020099492A1 publication Critical patent/WO2020099492A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • B60W2030/206Reducing vibrations in the driveline related or induced by the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • B60W2050/001Proportional integral [PI] controller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0012Feedforward or open loop systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0241Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0266Moment of inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0275Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • B60W2510/0652Speed change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0695Inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • B60W2710/0661Speed change rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to the field of hybrid vehicles.
  • a preferred architecture is the architecture where an electric motor is inserted between a heat engine and a gearbox.
  • a connection clutch interposed between the motor the electric motor is kept open to interrupt the mechanical connection between the electric motor and the stationary thermal motor.
  • the vehicle takes off using the electric motor and then switches to operation using the heat engine when the supervisor of the transmission chain decides it according to the state of charge of the battery.
  • electric motor or depending on the power requested from the wheel by the driver.
  • the engine is then started via the electric motor and the connection clutch.
  • the main clutch is kept sliding while the heat engine starts to filter the torque surges linked to the first combustions, which generates losses in the main clutch which must be compensated for by fuel consumption.
  • a better approach is to keep the main clutch engaged to avoid this unnecessary dissipation and compensate for the torque losses associated with the first combustion of the heat engine with the electric motor and the control of the connection clutch and the heat engine.
  • the invention proposes to describe the different stages and processes for controlling the electric motor, the connection clutch and the combustion engine in order to start the latter.
  • An idea underlying the invention is to provide a method of controlling a transmission chain which is simple, efficient, reliable.
  • an idea underlying the invention is to avoid losses at the main clutch.
  • An idea underlying the invention is to compensate for the losses of torque linked to the first combustions by controlling the electric motor, the connection clutch and the heat engine.
  • the invention provides a method for managing the start of a heat engine of a motor vehicle transmission chain, the transmission chain comprising:
  • connection clutch arranged between the heat engine and the electric motor to transmit a torque between the heat engine and the electric motor
  • the torsion damper arranged between the combustion engine and the connection clutch, the torsion damper having an operating range defined between a direct threshold torque and a retro threshold torque
  • the main clutch in which, from an initial state in which the electric motor generates a driving torque and the heat engine is stopped, the main clutch is maintained in an engaged state so as to transmit the torque generated by the electric motor to the gearbox and the connection clutch is controlled so as to transmit a driving torque from the electric motor to the internal combustion engine in order to start the internal combustion engine and exercise a torque limiting function between the internal combustion engine and the electric motor in order to limit the torque passing through the torsion damper in the operating range of said torsion damper.
  • connection clutch makes it possible to control the drive of the internal combustion engine by the electric motor without the need to compensate for the losses linked to acyclic starts of the internal combustion engine by the electric motor.
  • control of the connection clutch makes it possible to limit the torque passing through the torsion damper in order to avoid saturation of said torsion damper.
  • connection clutch is in a licking point position when the speed of the heat engine becomes higher than the speed of the electric motor.
  • the licking point position of the connection clutch corresponds to a position of said connection clutch from which the clutch is capable of transmitting non-zero torque.
  • the method further comprises:
  • connection clutch a first step of engaging the connection clutch to a position in which a drive torque is transmitted from the electric motor to the heat engine in order to rotate said heat engine and start it
  • connection clutch A step of moving the connection clutch to an open position of said connection clutch before the engine speed becomes higher than the electric engine speed
  • connection clutch a second step of engaging the connection clutch, after the engine speed has become higher than the speed of the electric motor, in which the connection clutch is engaged so as to transmit a torque allowing the speed to be synchronized of the engine and the speed of the electric motor.
  • the engine and the connection clutch are controlled so as to avoid shocks in the transmission chain when the engine speed exceeds the electric engine speed.
  • this opening of the connection clutch prevents the driver from feeling the reversal of the direction of rotation of the torsion damper when the engine speed exceeds the electric engine speed.
  • these characteristics allow simple and reliable synchronization of the engine speed and the electric engine speed.
  • the first step of engaging the connection clutch comprises a phase of pre-positioning of the connection clutch in which the connection clutch is moved to a licking point position and the speed of the electric motor is increased, and a phase of engagement of the connection clutch so as to increase the torque transmissible by said connection clutch until transmitting a driving torque from the electric motor to the heat engine.
  • the method further comprises a step of calculating a preset torque setpoint as a function of the retro threshold torque of the torsion damper, and in which the injection into the heat engine is started and the heat engine is controlled as a function of said preset torque setting before the speed of the heat engine becomes higher than the speed of the electric motor.
  • the pre-positioning torque setpoint is determined so that the torque passing through the torsion damper remains within the operating range of said torsion damper when the heat engine starts.
  • the injection into the heat engine is started when the engine speed reaches a threshold speed.
  • the threshold speed is below a synchronization speed between the heat engine speed and the electric engine speed and the connection clutch is in a sliding engagement position when starting the engine. injection into the engine.
  • the threshold speed is greater than a synchronization speed between the speed of the heat engine and the speed of the electric motor and the connection clutch is in an open position when starting injection into the heat engine. .
  • the method further comprises a step of calculating a preset torque setting as a function of the direct threshold torque of the torsion damper, and in which the heat engine is controlled as a function of said preset torque setting after the engine speed becomes higher than the electric engine speed.
  • the pre-positioning torque setpoint is determined so that the torque passing through the torsion damper remains in the operating range of said torsion damper during the synchronization of the engine speeds of the heat engine and of the engine. electric.
  • it is possible to limit the wear and deterioration of the torsion damper and increase its service life.
  • the step of calculating a preset positioning torque comprises the steps of:
  • the step of calculating a pre-positioning torque setpoint further comprises a step of calculating a modulated control setpoint of the heat engine as a function of the maximum acceleration calculated, the setpoint of the pre-positioning torque being calculated as a function of said modulated command setpoint.
  • the pre-positioning torque setpoint is for example modulated as a function of a target acceleration by means of a P + l type corrector with closed loop on acceleration.
  • the representative variable of the acceleration of the heat engine can take different forms. According to one embodiment, the variable representative of the acceleration of the heat engine is the measured acceleration of the heat engine.
  • the threshold torque is the direct threshold torque when the movement of the torsion damper corresponds to a movement in the direct direction, that is to say a movement of the torsion damper linked to a torque passing from the heat engine to the electric motor.
  • the threshold torque is the retro threshold torque when the deflection of the torsion damper corresponds to a deflection in the retro direction, that is to say a deflection linked to a torque passing from the electric motor to the heat engine.
  • the threshold torque is the retro threshold torque when the speed of the heat engine is lower than the speed of the electric motor and the threshold torque is the direct threshold torque when the speed of the heat engine is higher than the speed of the electric motor.
  • the method further comprises a step of calculating a connection clutch setpoint as a function of the pre-positioning torque setpoint and the threshold torque of the torsional damper, the position of the connection clutch being controlled as a function of said connection clutch instruction before the engine speed becomes higher than the electric engine speed.
  • the method further comprises a step of calculating a connection clutch setpoint as a function of the pre-positioning torque setpoint and the retro threshold torque of the torsion damper, the position of the connection clutch being controlled as a function of said clutch instruction connection after the engine speed becomes higher than the electric engine speed.
  • the step of calculating the connection clutch setpoint comprises the steps of:
  • connection clutch setpoint based on the pre-positioning torque setpoint and the corrected torque setpoint.
  • the step of calculating the connection clutch setpoint further comprises a step of comparing the acceleration of the thermal engine measured and the modulated acceleration setpoint.
  • the calculation of the torque setpoint correction is carried out as a function of the difference between the acceleration of the heat engine measured and the modulated acceleration setpoint.
  • the step of calculating the connection clutch setpoint comprises the steps of:
  • the connection clutch setpoint according to the pre-positioning torque setpoint and the corrected torque setpoint.
  • the calculation of the torque setpoint correction is modulated as a function of the connection clutch setpoint. Thanks to these characteristics, the torque setpoint correction is perfectly controlled.
  • Figure 1 is a schematic representation of a hybrid motor vehicle transmission chain
  • Figure 2 is a graph illustrating the torque transmissible by the connection clutch, the speed of the electric motor and the speed of the heat engine in the transmission chain of Figure 1 during a sequence for starting the heat engine;
  • FIG.3 is a diagram illustrating the method of controlling the electric motor and the heat engine of Figure 1 during a start of drive phase of the heat engine;
  • Figure 4 is a diagram illustrating a variant of the method of controlling the heat engine and the electric motor of Figure 3;
  • Figure 5 is a diagram illustrating an example of an embodiment of the modulation of the torque setpoint of the engine.
  • Figure 1 schematically shows a transmission chain 1 of a hybrid vehicle.
  • This transmission chain 1 successively comprises, in the example considered, along a torque transmission path, a heat engine 2, a torsional damper 3, such as a double damping flywheel, a first clutch called ci- after connection clutch 4, an electric motor 5, a second clutch hereinafter called main clutch 6 and a gearbox 7.
  • This transmission chain 1, and more particularly the gearbox 7, is connected to the wheels 8 of the vehicle .
  • the electric motor 5 is arranged, along the torque transmission path, between the heat engine 2 and the gearbox 7.
  • the motor electric 5 can be in a position aligned with the transmission chain or misaligned with the transmission chain.
  • an axis of the electric motor 5 is connected to the transmission chain by a belt, a chain, a cascade of sprockets or any other suitable connection means.
  • the main clutch 6 can be a double clutch, the lockup of a torque converter or the like.
  • the electric motor 5 In an electric transmission mode, the electric motor 5 generates only the torque for driving the wheels 8 and the heat engine 2 is stopped. In order to avoid losses in the heat engine 2, the connection clutch 4 is held in an open position to interrupt the mechanical connection between the electric motor 5 and the heat engine 2.
  • the vehicle takes off by means of the electric motor 5 and the heat engine 2 is put into operation when the transmission chain supervisor 1 decides, for example according to the state of charge of the battery. associated with the electric motor 5 or as a function of the power required by the driver.
  • the heat engine 2 is then started via the electric motor 5 and the connection clutch 4.
  • Figure 2 includes a first graph illustrating a maximum torque 9 transmissible by the connection clutch 4 during the start of the heat engine 2 and a second graph illustrating the speed 10 of the electric motor 5 and the speed 11 of the heat engine 2 during this starting of the heat engine 2.
  • the curve 9 illustrating the maximum torque transmissible by the connection clutch corresponds to a position of said connection clutch 4. Typically, from a licking point position corresponding to a state of engagement of the connection clutch 4 from which a torque can be transmitted by the connection clutch 4, the more the connection clutch moves to a maximum state of engagement the greater the maximum transmissible torque 9.
  • the curve 9 is negative between an open position maximum of said connection clutch 4 and the licking point position.
  • the curve 9 is negative although the torque transmissible by said connection clutch is zero.
  • the curve 9 remains negative but increases towards the abscissa axis well that during this movement the maximum transmissible torque by the connection clutch 4 remains zero.
  • the electric motor 5 has a positive speed 10.
  • connection clutch 4 and the electric motor 5 are pre-positioned to allow the start of the heat engine 2.
  • connection clutch 4 is positioned at the licking point of said connection clutch 4. This positioning of the connection clutch 4 at the licking point makes it possible to prepare the starting phase of the heat engine 2.
  • the electric motor 5 and the main clutch 6 are controlled so that the electric motor 5 transmit a torque to the wheels capable of maintaining the speed or acceleration of the vehicle corresponding to the driver's request.
  • connection clutch 4 is moved towards a fully engaged position in order to allow an increase in the maximum torque 9 transmissible by the connection clutch 4.
  • This pre-positioning is carried out in an open loop so as to obtain a torque transmitted by the connection clutch 4 which is calculated as a function of a maximum torque setpoint transmissible by the connection clutch 4 so limit the travel of the torsion damper 3.
  • the electric motor 5 and the main clutch 6 are always controlled so that the electric motor 5 transmits a torque to the wheels capable of maintaining speed or acceleration d u vehicle corresponding to the driver's request. Due to the engagement of the connection clutch 4, the electric motor 5 sees its speed 10 decrease due to the resistant torque generated by the heat engine 2 which is still stopped.
  • connection clutch 4 allows an increase in the maximum torque 9 transmissible by the connection clutch 4 to a value sufficient to allow the drive of the heat engine 2 by the electric motor 5. Otherwise said, in a second step 16, the connection clutch 4 being engaged, the torque generated by the electric motor 5 is transmitted to the heat engine 2 via the connection clutch 4. Thus, the torque 9 passing through the connection clutch 4 drives the heat engine 2 in rotation. This drive results in an increase in the speed 11 of the heat engine 2 as illustrated in FIG. 2.
  • the rotation drive of the heat engine 2 is broken down into two phases, a first phase 17 during which the heat engine 2 is rotated by the single electric motor 5 and a second phase 18 during which the heat engine 2 generates himself a couple.
  • the first phase 17 corresponds to a drive of the heat engine 2 by the electric motor 5 in order to start the injection into the heat engine 2.
  • the electric motor 5 and the main clutch 6 are controlled so that the electric motor 5 transmit a torque to the wheels capable of maintaining the speed or acceleration of the vehicle corresponding to the driver's request.
  • connection clutch 4 a torque setpoint resulting from regulation by the '' connection clutch 4 of the acceleration of the speed 1 1 of the heat engine 2 deducted from the maximum torque transmissible by the connection clutch 4 limited according to the maximum deflection of the torsion damper 3 and the value of the inertia upstream of the connection clutch 4, defined by the engine inertia of the heat engine 2, the inertia of the torsion damper 3 and the connection clutch plate 4.
  • the second phase 18 corresponds to a phase during which the engine speed of the heat engine 2 is sufficient to start injection into the heat engine 2 and drive said heat engine 2 in rotation.
  • the junction between the two phases is illustrated schematically in Figure 2 by the mark 19 which therefore corresponds to the time of starting the heat engine 2 during which the speed 1 1 of said heat engine is sufficient to start the injection necessary to operate said engine thermal 2.
  • the connection clutch 4 is moved to the position of point of licking.
  • the connection clutch 4 is disengaged in open loop.
  • connection clutch 4 decreases progressively between the instant 19 corresponding to the start of the heat engine 2 and the instant when the speed 11 of the heat engine 2 reaches the speed 10 of the electric motor 5.
  • the displacement of the connection clutch 4 towards its open position makes it possible to limit the transmission of torque between the heat engine 2 and the electric motor 5 during the second phase 18 of starting the heat engine 2.
  • This disconnection between the electric motor 5 and the heat engine 2 makes it possible not to transmit to the electric motor 5, and therefore to the gearbox 7, the acyclisms generated by the heat engine 2 during this second phase 18 of starting the heat engine 2.
  • the acyclisms generated by the heat engine 2 are particularly significant and are therefore detrimental to the chain d e transmission 1 and the driver feeling.
  • connection clutch 4 is controlled to reach an open position close to the licking point when the speed 11 of the heat engine 2 reaches the speed 1 1 of the electric motor 5. In this opening of the connection clutch 4 makes it possible to avoid shocks when the speed 1 1 of the heat engine 2 reaches and exceeds the speed 10 of the electric motor 5.
  • connection clutch 4 is moved in the direction of the fully engaged position in order to allow the transmission of torque between the heat engine 2 and the electric motor 5.
  • This engagement of the clutch of connection 4 makes it possible to synchronize the speed 10 of the electric motor 5 and the speed 1 1 of the heat engine 2.
  • This engagement of the connection clutch 4 results in an increase in the maximum torque 9 transmissible by said connection clutch 4, as illustrated in figure 2.
  • the engine speed 1 1 of the heat engine 2 is regulated and the connection clutch 4 is moved to its engaged position with a corresponding torque pre-positioning to the engine torque corrected with a slip regulation of the connection clutch speed 4 to avoid torque oscillations and to ensure that the acceleration of the heat engine 2 and the electric motor 5 are very close to the synchronization of the speeds.
  • connection clutch is worn in open loop at its maximum torque capacity. Indeed, as soon as the heat engine 2 and the electric motor 5 are synchronized, then said motors 2, 5 can be jointly controlled to generate the torque desired by the driver of the vehicle and the connection clutch 4 can be moved towards its engaged position, as illustrated by the increase in the maximum torque 9 transmissible by the connection clutch 4 and the increases in speed 11, 12 corresponding and synchronized.
  • the starting of the injection into the heat engine 2 can be triggered as soon as an engine speed 1 1 of the heat engine 2 is sufficient, for example at an engine speed 1 1 of the order from 600 to 700 rpm.
  • the injection into the heat engine 2 can be triggered when the speed 1 1 of the heat engine 2 reaches a speed greater than the engine speed 10 of the electric motor 5 and that the connection clutch 4 is in an open position or near the point of licking.
  • the acyclisms generated by the heat engine 2 are at least partially damped by the torsion damper 3 interposed between the heat engine 2 and the connection clutch 4.
  • the deformations of the torsion damper 3 are also linked to the torque generated by the electric motor 5 and passing through the connection clutch 4
  • the torsion damper 3 can undergo significant deformations which can bring it into saturation, which would no longer allow filtering of acyclisms and would not allow effective protection of the various elements of the transmission chain 1.
  • the starting process plans to modulate the torque generated by the engine 2 and the maximum torque 9 transmissible by the connection clutch 4.
  • FIG. 3 illustrates a diagram representing the different steps implemented by this method of modulating phase 17.
  • a method is for example implemented works at the level of a control member for the various elements of the transmission chain 1 and uses ad hoc sensors intended to measure the parameters useful for said process, such as accelerometers, speed sensors, force sensors or others.
  • use is more particularly of the engine speed sensor or the engine speed information transmitted via the network by the heat engine computer.
  • an estimate of the deformation of the torsion damper 3 is calculated.
  • This deformation of the torsion damper 3 is calculated as a function of the speed 11 of the heat engine 2, of the speed 10 of the electric motor 5, of the torque 22 generated by the heat engine 2 and of the torque 23 generated by the electric motor 5.
  • a second step 24 consists in calculating a maximum acceleration beyond which the torsional damper 3 would be in saturation, that is to say in a position of maximum deflection beyond which the organs of damping of said torsion damper 3 are no longer able to dampen the acyclisms of the heat engine 2.
  • This maximum acceleration is determined as a function of the current travel 25 of the torsion damper 3 calculated during step 21, of the maximum travel 26 of the torsion damper 3 and the acceleration setpoint 27 of the heat engine 2.
  • the maximum deflection 26 of a torsion damper 3 is specific to each torsion damper 3, in other words this maximum deflection 26 is a predefined datum for example given by the manufacturer of said torsion damper 3. It generally corresponds to the deflection angular from which the coils of the springs come into abutment against each other or the springs are short-circuited in order to protect them. This maximum clearance is defined for a rotation of the elements of the torsion damper in the two possible directions of rotation.
  • the torsional damper 3 therefore has a direct threshold torque beyond which the torsional damper is in saturation when the torque generated by the heat engine 2 is greater than the torque generated by the electric motor 5 and the difference between the torque of the heat engine 2 and the torque of the electric motor 5 is greater than said direct threshold torque.
  • the torsional damper has a retro threshold torque above which the torsional damper is in saturation when the torque generated by the electric motor 5 is greater than the torque generated by the heat engine 2 and the difference between the torque of the electric motor 5 and the torque of the heat engine 2 is greater than said retro threshold torque.
  • the term “torsion damper” means any type of damper that can enter saturation, such as for example a double damping flywheel or a pendulum whose oscillating masses could be brought into abutment.
  • the acceleration setpoint 27 of the heat engine 2 is obtained by any means.
  • a limited acceleration setpoint 28 of the heat engine 2 is then calculated from this maximum acceleration obtained during the second step 24, for example by calculating a torque as a function of the maximum clearance and the stiffness of the shock absorber torsion then by calculating the acceleration from the calculated torque and the engine inertia or, in the case of a pendulum, using a speed / deflection table giving the torque.
  • a comparison is then made between this limited acceleration setpoint 28 and the measured acceleration 29 of the heat engine 2 (step 30). This comparison 30 makes it possible to calculate an engine acceleration difference 31 between the limited acceleration setpoint 28 and the measured acceleration 29.
  • This engine acceleration difference 31 is transmitted to an anti-saturation corrector 32 which generates a setpoint correction of torque 33 as a function of said engine acceleration difference 31 in order to avoid saturation of the torsion damper 3.
  • FIG. 5 illustrates an example of implementation of the calculation of such a correction.
  • a torque setpoint 34 for prepositioning the clutch is calculated (step 35) from the limited acceleration setpoint 28.
  • This torque setpoint 34 is transmitted together with the torque setpoint correction 33 to an adder 36 and are used by said adder 36 to generate a corrected clutch torque setpoint 37.
  • the torque setpoint 34 and the setpoint corrected clutch torque 37 are transmitted to a torque limiter 38 which generates a control signal 39 for the torque control system of the connection clutch 4 as a function of the difference between the torque setpoint 34 and the setpoint corrected clutch torque 37 (step 40).
  • this torque limiter transmits data representative of this difference to the anti-saturation corrector which adapts the torque correction instruction 33 as a function of said difference between the torque instruction 34 and the corrected clutch torque instruction 37.
  • connection clutch 4 and the heat engine 2 result in curves 41, 42 of maximum torque transmissible by connection clutch 4 modulated during the second phase 18 of the method described above with reference to FIG. 2.
  • the heat engine 2 and the connection clutch 4 are controlled so that the torque 9 transmissible the connection clutch 4 is increased as illustrated by the curve portion 41 when the torsion damper 3 is not in saturation and is decreased as illustrated by the curve portion 42 when the torque passing through the clutch connection 4 is likely to put the torsional damper 3 in saturation.
  • connection clutch 4 can also be implemented in the starting process during the synchronization phase between the heat engine 2 and the electric motor 5.
  • the clutch of connection 4 can be controlled during the synchronization step 20 to allow a greater torque transmission as illustrated by the curve portion 43 in FIG. 2 or on the contrary a limited torque transmission as illustrated by the curve portion 44 in depending on the state of saturation of the torsional damper 3.
  • connection clutch 4 in order to avoid saturation of the torsion damper 3 is described above using values of acceleration of the heat engine 2. However, this control of the connection clutch 4 could also be produced as a function of the speed values 11 of the heat engine. 2.
  • step 24 of calculating the maximum acceleration without saturation of the torsional damper 3 is calculated from the current travel 25 of the torsional damper 3 calculated during the step 21, of the maximum clearance 26 of the torsion damper 3 and of the measured acceleration 45 of the heat engine 2.
  • This calculation of the maximum acceleration 24 makes it possible to generate, in addition to the limited torque setpoint 28 intended for the calculation of the torque setpoint of the heat engine (step 35), a speed setpoint 46 which is transmitted to the comparator.
  • the comparison step 30 in order to determine the engine acceleration 31 is carried out as a function of the speed setpoint 46 and of the measured speed 47 and not as a function of the acceleration setpoint 28 and of the measured acceleration 29.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

L'invention concerne un procédé de démarrage d'un moteur thermique d'une chaîne de transmission de véhicule automobile hybride, dans laquelle un embrayage de connexion (4) intercalé entre le moteur thermique (2) et le moteur électrique (5) pour transmettre un couple entre le moteur thermique (2) et le moteur électrique (5) et un embrayage principal (6) intercalé entre la boîte de vitesse (7) et le moteur électrique (5), dans lequel, depuis un état initial (12) dans lequel le moteur électrique (5) génère un couple d'entraînement et le moteur thermique (2) est à l'arrêt, l'embrayage principal (6) est maintenu dans un état fermé de manière à transmettre le couple généré par le moteur électrique (5) à la boîte de vitesses (7) et l'embrayage de connexion (4) est commandé de manière à transmettre un couple d'entraînement entre le moteur électrique (5) et le moteur thermique (2) et exercer une fonction de limiteur de couple entre le moteur thermique (2) et le moteur électrique (5) afin de limiter la transmission d'acyclismes entre le moteur thermique (2) et le moteur électrique (5).

Description

Description
[Titre de l'invention : Procédé de gestion d’embrayage
hybride
Domaine technique
[0001] L’invention se rapporte au domaine des véhicules hybrides.
Arrière-plan technologique
[0002] L’objectif de réduction des émissions conduit à utiliser de plus en plus un moteur électrique et un moteur thermique en combinaison sur les véhicules. Une architecture de prédilection est l’architecture où un moteur électrique est inséré entre un moteur thermique et une boîte de vitesses. Afin d’éviter les pertes dans le moteur thermique lorsque seul le moteur électrique génère un couple à destination des roues du véhicule, en particulier afin d’éviter la compensation des pertes par pompage par le moteur électrique, un embrayage de connexion intercalé entre le moteur thermique et le moteur électrique est maintenu ouvert pour interrompre la liaison mécanique entre le moteur électrique et le moteur thermique à l’arrêt.
[0003] D’une manière générale le véhicule décolle à l’aide du moteur électrique et bascule ensuite en fonctionnement à l’aide du moteur thermique quand le superviseur de la chaîne de transmission le décide en fonction de l’état de charge batterie du moteur électrique ou en fonction de la puissance demandée à la roue par le conducteur. Le moteur thermique est alors démarré par l’intermédiaire du moteur électrique et de l’embrayage de connexion.
[0004] Dans l’art antérieur, l’embrayage principal est maintenu en glissement pendant que le moteur thermique démarre pour filtrer les à-coups de couple liés aux premières combustions ce qui génère des pertes dans l’embrayage principal qui doivent être compensées par une consommation de carburant.
Résumé
[0005] Une meilleure approche consiste à garder l’embrayage principal engagé pour éviter cette dissipation inutile et compenser les pertes de couple liées aux premières combustions du moteur thermique avec le moteur électrique et le pilotage de l’embrayage de connexion et du moteur thermique. L’invention se propose de décrire les différentes étapes et processus de contrôle du moteur électrique, de l’embrayage de connexion et du moteur thermique afin de réaliser le démarrage de ce dernier.
[0006] Une idée à la base de l’invention est de proposer un procédé de contrôle d’une chaîne de transmission qui soit simple, efficace, fiable. En particulier, une idée à la base de l’invention est d’éviter les pertes au niveau de l’embrayage principal. Une idée à la base de l’invention est de compenser les pertes de couple liées aux premières combustions en pilotant le moteur électrique, l’embrayage de connexion et le moteur thermique.
[0007] Selon un mode de réalisation, l’invention fournit un procédé de gestion du démarrage d’un moteur thermique d’une chaîne de transmission de véhicule automobile, la chaîne de transmission comportant :
- un moteur thermique,
- un moteur électrique,
- une boîte de vitesses,
- un embrayage de connexion disposé entre le moteur thermique et le moteur électrique pour transmettre un couple entre le moteur thermique et le moteur électrique,
- un embrayage principal disposé entre la boîte de vitesse et le moteur électrique pour transmettre un couple entre le moteur électrique et la boîte de vitesses,
- un amortisseur de torsion disposé entre le moteur thermique et l’embrayage de connexion, l’amortisseur de torsion présentant une plage de fonctionnement définie entre un couple seuil direct et un couple seuil rétro,
dans lequel, depuis un état initial dans lequel le moteur électrique génère un couple d’entraînement et le moteur thermique est à l’arrêt, l’embrayage principal est maintenu dans un état engagé de manière à transmettre le couple généré par le moteur électrique à la boîte de vitesses et l’embrayage de connexion est commandé de manière à transmettre un couple d’entraînement du moteur électrique vers le moteur thermique afin de démarrer le moteur thermique et exercer une fonction de limiteur de couple entre le moteur thermique et le moteur électrique afin de limiter le couple transitant par l’amortisseur de torsion dans la plage de fonctionnement dudit amortisseur de torsion.
[0008] Grâce à ces caractéristiques, il est possible de démarrer le moteur thermique sans pertes au niveau de l’embrayage principal. En particulier, il est possible de démarrer le moteur thermique sans glissement au niveau de l’embrayage principal en utilisant l’embrayage de connexion comme un limiteur de couple permettant de limiter la transmission d’acyclismes dans la chaîne de transmission. Par ailleurs, la commande de l’embrayage de connexion permet de maîtriser l’entraînement du moteur thermique par le moteur électrique sans nécessiter de compenser les pertes liées aux acyclismes de démarrage du moteur thermique par le moteur électrique. En outre, la commande de l’embrayage de connexion permet de limiter le couple transitant par l’amortisseur de torsion afin d’éviter la mise en saturation dudit amortisseur de torsion.
[0009] Selon d’autres modes de réalisation avantageux, un tel procédé peut présenter une ou plusieurs des caractéristiques suivantes : [0010] Selon un mode de réalisation, l’embrayage de connexion est dans une position de point de léchage lorsque le régime du moteur thermique devient supérieur au régime du moteur électrique. La position de point de léchage de l'embrayage de connexion correspond à une position dudit embrayage de connexion à partir de laquelle l’embrayage est susceptible de transmettre un couple non nul.
[0011] Selon un mode de réalisation, le procédé comporte en outre :
- une première étape d’engagement de l’embrayage de connexion jusqu’à une position dans laquelle un couple d’entraînement est transmis du moteur électrique vers le moteur thermique afin d’entraîner en rotation ledit moteur thermique et le démarrer,
- une étape d’augmentation du régime du moteur thermique après son démarrage ;
- une étape de déplacement de l’embrayage de connexion vers une position ouverte dudit embrayage de connexion avant que le régime du moteur thermique ne devienne supérieur au régime du moteur électrique ; et
- une deuxième étape d’engagement de l’embrayage de connexion, après que le régime du moteur thermique soit devenu supérieur au régime du moteur électrique, dans laquelle l’embrayage de connexion est engagé de manière à transmettre un couple permettant de synchroniser le régime du moteur thermique et le régime du moteur électrique.
[0012] Grâce à ces caractéristiques, le moteur thermique et l’embrayage de connexion sont commandés de manière à éviter les chocs dans la chaîne de transmission lorsque le régime du moteur thermique dépasse le régime du moteur électrique. En particulier, cette ouverture de l’embrayage de connexion évite de ressentir par le conducteur l’inversion de sens de rotation de l’amortisseur de torsion lorsque le régime du moteur thermique dépasse le régime du moteur électrique. En outre, ces caractéristiques permettent une synchronisation simple et fiable du régime du moteur thermique et du régime du moteur électrique.
[0013] Selon un mode de réalisation, la première étape d’engagement de l’embrayage de connexion comporte une phase de pré-positionnement de l’embrayage de connexion dans laquelle l’embrayage de connexion est déplacé vers une position de point de léchage et le régime du moteur électrique est augmenté, et une phase d’engagement de l’embrayage de connexion de manière à augmenter le couple transmissible par ledit embrayage de connexion jusqu’à transmettre un couple d’entraînement du moteur électrique vers le moteur thermique. Cette augmentation du régime du moteur électrique et le pré positionnement de l’embrayage de connexion permet d’anticiper le couple résistant du moteur thermique. [0014] Selon un mode de réalisation, le procédé comporte en outre une étape de calcul d’une consigne de couple de prépositionnement en fonction du couple seuil rétro de l’amortisseur de torsion, et dans lequel l’injection dans le moteur thermique est démarrée et le moteur thermique est commandé en fonction de ladite consigne de couple de prépositionnement avant que le régime du moteur thermique ne devienne supérieur au régime du moteur électrique. Ainsi, la consigne de couple de prépositionnement est déterminée de manière à ce que le couple transitant par l’amortisseur de torsion demeure dans la plage de fonctionnement dudit amortisseur de torsion lors du démarrage du moteur thermique. Ainsi, il est possible de limiter l’usure et la dégradation de l’amortisseur de torsion et d’augmenter sa durée de vie. Ces caractéristiques permettent ainsi d’éviter les sur-couples susceptibles d’endommager des composants de la chaîne de transmission.
[0015] Selon un mode de réalisation, l’injection dans le moteur thermique est démarrée lorsque le régime du moteur thermique atteint un régime seuil. Selon un mode de réalisation, le régime seuil est en dessous d’un régime de synchronisation entre le régime du moteur thermique et le régime du moteur électrique et l’embrayage de connexion est dans une position d’engagement glissante lors du démarrage de l’injection dans le moteur thermique. Selon un mode de réalisation, le régime seuil est supérieur à un régime de synchronisation entre le régime du moteur thermique et le régime du moteur électrique et l’embrayage de connexion est dans une position ouverte lors du démarrage de l’injection dans le moteur thermique.
[0016] Selon un mode de réalisation, le procédé comporte en outre une étape de calcul d’une consigne de couple de prépositionnement en fonction du couple seuil direct de l’amortisseur de torsion, et dans lequel le moteur thermique est commandé en fonction de ladite consigne de couple de prépositionnement après que le régime du moteur thermique ne devienne supérieur au régime du moteur électrique.
[0017] Ainsi, la consigne de couple de prépositionnement est déterminée de manière à ce que le couple transitant par l’amortisseur de torsion demeure dans la plage de fonctionnement dudit amortisseur de torsion lors de la synchronisation des régimes moteurs du moteur thermique et du moteur électrique. Ainsi, il est possible de limiter l’usure et la dégradation de l’amortisseur de torsion et d’augmenter sa durée de vie.
[0018] Selon un mode de réalisation, l’étape de calcul d’une consigne de couple de prépositionnement comporte les étapes de :
- calculer un débattement de l’amortisseur de torsion,
- calculer une accélération maximale du moteur thermique pour atteindre un couple seuil de l’amortisseur de torsion en fonction du débattement de l’amortisseur de torsion, dudit couple seuil, et d’une variable représentative de l’accélération du moteur thermique, ledit couple seuil étant fonction du débattement de l’amortisseur de torsion,
- calculer la consigne de couple de prépositionnement en fonction de l’accélération maximale du moteur thermique.
[0019] Selon un mode de réalisation, l’étape de calcul d’une consigne de couple de prépositionnement comporte en outre une étape de calcul d’une consigne de commande modulée du moteur thermique en fonction de l’accélération maximale calculée, la consigne de couple de prépositionnement étant calculée en fonction de ladite consigne de commande modulée. La consigne de couple de prépositionnement est par exemple modulée en fonction d’une accélération cible au moyen d’un correcteur de type P+l avec boucle fermée sur l’accélération.
[0020] La variable représentative de l’accélération du moteur thermique peut prendre différentes formes. Selon un mode de réalisation, la variable représentative de l’accélération du moteur thermique est l’accélération mesurée du moteur thermique.
[0021 ] Selon un mode de réalisation, le couple seuil est le couple seuil direct lorsque le débattement de l’amortisseur de torsion correspond à un débattement selon le sens direct, c’est-à-dire un débattement de l’amortisseur de torsion lié à un couple transitant du moteur thermique vers le moteur électrique. Selon un mode de réalisation, le couple seuil est le couple seuil rétro lorsque le débattement de l’amortisseur de torsion correspond à un débattement selon le sens rétro, c’est-à-dire un débattement lié à un couple transitant du moteur électrique vers le moteur thermique. Autrement dit, le couple seuil est le couple seuil rétro lorsque le régime du moteur thermique est inférieur au régime du moteur électrique et le couple seuil est le couple seuil direct lorsque le régime du moteur thermique est supérieur au régime du moteur électrique.
[0022] Selon un mode de réalisation, le procédé comporte en outre une étape de calcul d’une consigne d’embrayage de connexion en fonction de la consigne de couple de prépositionnement et du couple seuil de l’amortisseur de torsion, la position de l’embrayage de connexion étant commandé en fonction de ladite consigne d’embrayage de connexion avant que le régime du moteur thermique ne devienne supérieur au régime du moteur électrique.
[0023] Selon un mode de réalisation, le procédé comporte en outre une étape de calcul d’une consigne d’embrayage de connexion en fonction de la consigne de couple de prépositionnement et du couple seuil rétro de l’amortisseur de torsion, la position de l’embrayage de connexion étant commandée en fonction de ladite consigne d’embrayage de connexion après que le régime du moteur thermique ne devienne supérieur au régime du moteur électrique.
[0024] Grâce à ces caractéristiques, il est possible de contrôler le couple transitant par l’embrayage de connexion de manière à éviter la mise en saturation de l’amortisseur de torsion. Ainsi, il est possible de limiter l’usure et la dégradation de l’amortisseur de torsion et d’augmenter sa durée de vie. Ces caractéristiques permettent ainsi d’éviter les sur couples susceptibles d’endommager des composants de la chaîne de transmission.
[0025] Selon un mode de réalisation, l’étape de calcul de la consigne d’embrayage de connexion comporte les étapes de :
- mesurer une accélération du moteur thermique,
- calculer une correction de consigne de couple en fonction de l’accélération du moteur thermique mesurée et de l’accélération maximale du moteur thermique,
- calculer une consigne de couple corrigée en fonction de la correction de consigne de couple et de la consigne de couple de prépositionnement,
- calculer la consigne d’embrayage de connexion en fonction de la consigne de couple de prépositionnement et de la consigne de couple corrigée.
[0026] Selon un mode de réalisation, l’étape de calcul de la consigne d’embrayage de connexion comporte en outre une étape de comparaison de l’accélération du moteur thermique mesurée et de la consigne d’accélération modulée.
[0027] Selon un mode de réalisation, le calcul de la correction de consigne de couple est effectué en fonction de l’écart entre l’accélération du moteur thermique mesurée et de la consigne d’accélération modulée.
[0028] Selon un mode de réalisation, l’étape de calcul de la consigne d’embrayage de connexion comporte les étapes de :
- calculer une consigne de régime du moteur thermique en fonction de l’accélération maximale calculée,
- mesurer un régime du moteur thermique,
- comparer le régime mesuré et la consigne de régime du moteur thermique,
- calculer une correction de consigne de couple en fonction de l’écart entre le régime mesuré et la consigne de régime du moteur thermique,
- calculer une consigne de couple corrigée en fonction de la correction de consigne de couple et de la consigne de couple de prépositionnement,
- calculer la consigne d’embrayage de connexion en fonction de la consigne de couple de prépositionnement et de la consigne de couple corrigée. [0029] Selon un mode de réalisation, le calcul de la correction de consigne de couple est modulé en fonction de la consigne d’embrayage de connexion. Grâce à ces caractéristiques, la correction de consigne de couple est parfaitement maîtrisée.
Brève description des figures
[0030] L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
[0031] [fig.1 ] La figure 1 est une représentation schématique d’une chaîne de transmission hybride de véhicule automobile ;
[0032] [fi g.2] La figure 2 est un graphique illustrant le couple transmissible par l’embrayage de connexion, le régime du moteur électrique et le régime du moteur thermique dans la chaîne de transmission de la figure 1 au cours d’une séquence de démarrage du moteur thermique ;
[0033] [fig.3] La figure 3 est un diagramme illustrant le procédé de commande du moteur électrique et du moteur thermique de la figure 1 lors d’une phase de début d’entraînement du moteur thermique ;
[0034] [fig.4] La figure 4 est un diagramme illustrant une variante du procédé de commande du moteur thermique et du moteur électrique de la figure 3 ;
[0035] [fi g .5] La figure 5 est un diagramme illustrant un exemple de mode de réalisation de la modulation de la consigne de couple du moteur thermique.
Description des modes de réalisation
[0036] La figure 1 représente de façon schématique une chaîne de transmission 1 d’un véhicule hybride.
[0037] Cette chaîne de transmission 1 comprend successivement, dans l'exemple considéré, suivant un chemin de transmission du couple, un moteur thermique 2, un amortisseur de torsion 3, tel qu’un double volant amortisseur, un premier embrayage appelé ci-après embrayage de connexion 4, un moteur électrique 5, un deuxième embrayage appelé ci- après embrayage principal 6 et une boîte de vitesses 7. Cette chaîne de transmission 1 , et plus particulièrement la boîte de vitesses 7, est connectée aux roues 8 du véhicule. Dans cette chaîne de transmission 1 , le moteur électrique 5 est disposé, suivant le chemin de transmission du couple, entre le moteur thermique 2 et la boîte de vitesses 7. Le moteur électrique 5 peut être dans une position alignée avec la chaîne de transmission ou désalignée avec la chaîne de transmission. Dans le cas d’un moteur électrique 5 désaligné, un axe du moteur électrique 5 est relié à la chaîne de transmission par une courroie, une chaîne, une cascade de pignons ou tout autre moyen de liaison adapté. Par ailleurs, l’embrayage principal 6 peut être un double embrayage, le lockup d’un convertisseur de couple ou autre.
[0038] Dans un mode de transmission électrique, le moteur électrique 5 génère seul le couple permettant d’entraîner les roues 8 et le moteur thermique 2 est à l’arrêt. Afin d’éviter les pertes dans le moteur thermique 2, l’embrayage de connexion 4 est maintenu dans une position ouverte pour interrompre la liaison mécanique entre le moteur électrique 5 et le moteur thermique 2.
[0039] D’une manière générale le véhicule décolle au moyen du moteur électrique 5 et le moteur thermique 2 est mis en fonctionnement quand le superviseur de chaîne de transmission 1 le décide, par exemple en fonction de l’état de charge de la batterie associée au moteur électrique 5 ou en fonction de la puissance requise par le conducteur. Le moteur thermique 2 est alors démarré par l’intermédiaire du moteur électrique 5 et de l’embrayage de connexion 4.
[0040] La figure 2 comporte un premier graphique illustrant un couple 9 maximum transmissible par l’embrayage de connexion 4 au cours du démarrage du moteur thermique 2 et un deuxième graphique illustrant le régime 10 du moteur électrique 5 et le régime 11 du moteur thermique 2 lors de ce démarrage du moteur thermique 2. La courbe 9 illustrant le couple maximum transmissible par l’embrayage de connexion correspond à une position dudit embrayage de connexion 4. Typiquement, depuis une position de point de léchage correspondant à un état d’engagement de l’embrayage de connexion 4 à partir duquel un couple peut être transmis par l’embrayage de connexion 4, plus l’embrayage de connexion se déplace vers un état d’engagement maximal plus le couple 9 transmissible maximal est important.
[0041] Dans un état initial 12, comme indiqué ci-dessus, le moteur thermique 2 est à l’arrêt et seul le moteur électrique 5 produit un couple transmis à la boîte de vitesse 7 par l’intermédiaire de l’embrayage principal 6 qui est alors dans une position engagée. L’embrayage de connexion 4 est lui dans une position ouverte et ne permet pas de transmettre de couple entre le moteur thermique 2 et le moteur électrique 5. Ainsi, aucun couple 9 ne transite entre le moteur électrique 5 et le moteur thermique 2.
[0042] Pour une question de lisibilité, afin de différencier les différentes positions d’ouverture de l’embrayage de connexion 4, la courbe 9 est négative entre une position d’ouverture maximale dudit embrayage de connexion 4 et la position de point de léchage. Ainsi, dans l’état d’ouverture maximal de l’embrayage de connexion 4, la courbe 9 est négative bien que le couple transmissible par ledit embrayage de connexion soit nul. En outre, lorsque l’embrayage de connexion 4 se déplace depuis la position d’ouverture maximale dudit embrayage de connexion 4 en direction de la position de point de léchage, la courbe 9 reste négative mais augmente en direction de l’axe des abscisses bien qu’au cours de ce déplacement le couple transmissible maximal par l’embrayage de connexion 4 demeure nul.
[0043] Dans cet état initial 12, le moteur électrique 5 présente un régime 10 positif.
Inversement, le moteur thermique 2 étant à l’arrêt dans cet état initial 12 présente un régime 11 nul.
[0044] Lors d’une première étape 13 du démarrage du moteur thermique 2, l’embrayage de connexion 4 et le moteur électrique 5 sont pré-positionnés pour permettre le démarrage du moteur thermique 2. Pour cela, lors d’une première phase 14, l’embrayage de connexion 4 est positionné au point de léchage dudit embrayage de connexion 4. Ce positionnement de l’embrayage de connexion 4 au point de léchage permet de préparer la phase de démarrage du moteur thermique 2.
[0045] Durant cette première phase 14, le moteur électrique 5 et l’embrayage principal 6 sont contrôlés pour que le moteur électrique 5 transmettre un couple aux roues apte à maintenir la vitesse ou l’accélération du véhicule correspondant à la demande du conducteur.
[0046] Par ailleurs, dans le même temps, le régime 10 du moteur électrique 5 est augmenté afin d’anticiper l’engagement de l’embrayage de connexion 4. Puis, lors d’une deuxième phase 15 de cette première étape 13 de pré-positionnement, c’est-à-dire lorsque le régime 10 du moteur électrique 5 est suffisant, l’embrayage de connexion 4 est déplacé en direction d’une position totalement position engagée afin de permettre une augmentation du couple 9 maximal transmissible par l'embrayage de connexion 4. Ce pré positionnement est réalisé en boucle ouverte de manière à obtenir un couple transmis par l’embrayage de connexion 4 qui est calculé en fonction d’une consigne de couple maximal transmissible par l’embrayage de connexion 4 afin de limiter le débattement de l’amortisseur de torsion 3. Dans le même temps, le moteur électrique 5 et l’embrayage principal 6 sont toujours contrôlés pour que le moteur électrique 5 transmettre un couple aux roues apte à maintenir la vitesse ou l’accélération du véhicule correspondant à la demande du conducteur. [0047] Du fait de l’engagement de l’embrayage de connexion 4, le moteur électrique 5 voit son régime 10 diminuer du fait du couple résistant généré par le moteur thermique 2 qui est encore à l’arrêt.
[0048] L’engagement de l’embrayage de connexion 4 permet une augmentation du couple 9 maximal transmissible par l’embrayage de connexion 4 jusqu’à une valeur suffisante pour permettre l’entraînement du moteur thermique 2 par le moteur électrique 5. Autrement dit, lors d’une deuxième étape 16, l’embrayage de connexion 4 étant engagé, le couple généré par le moteur électrique 5 est transmis au moteur thermique 2 via l’embrayage de connexion 4. Ainsi, le couple 9 transitant par l’embrayage de connexion 4 entraîne le moteur thermique 2 en rotation. Cet entraînement se traduit par une augmentation du régime 1 1 du moteur thermique 2 comme illustré sur la figure 2.
[0049] L’entraînement en rotation du moteur thermique 2 se décompose en deux phases, une première phase 17 durant laquelle le moteur thermique 2 est entraîné en rotation par le seul moteur électrique 5 et une deuxième phase 18 durant laquelle le moteur thermique 2 génère lui-même un couple.
[0050] La première phase 17 correspond à un entraînement du moteur thermique 2 par le moteur électrique 5 afin de démarrer l’injection dans le moteur thermique 2. Durant cette première phase 17, le moteur électrique 5 et l’embrayage principal 6 sont contrôlés pour que le moteur électrique 5 transmettre un couple aux roues apte à maintenir la vitesse ou l’accélération du véhicule correspondant à la demande du conducteur.
[0051 ] Dès lors que la mesure de l’accélération du moteur thermique 2 est possible, on ajoute à la consigne de couple en pré-positionnement en boucle ouverte de l’embrayage de connexion 4 une consigne de couple issue de la régulation par l’embrayage de connexion 4 de l’accélération du régime 1 1 du moteur thermique 2 déduite du couple maximal transmissible par l’embrayage de connexion 4 limité en fonction du débattement maximal de l’amortisseur de torsion 3 et de la valeur de l’inertie en amont de l’embrayage de connexion 4, définie par l’inertie moteur du moteur thermique 2, l’inertie de l’amortisseur de torsion 3 et le plateau d’embrayage de connexion 4.
[0052] La deuxième phase 18 correspond à une phase durant laquelle le régime moteur du moteur thermique 2 est suffisant pour démarrer l’injection dans le moteur thermique 2 et entraîner ledit moteur thermique 2 en rotation. La jonction entre les deux phases est illustrée schématiquement sur la figure 2 par la marque 19 qui correspond donc au moment du démarrage du moteur thermique 2 durant lequel le régime 1 1 dudit moteur thermique est suffisant pour démarrer l’injection nécessaire à faire fonctionner ledit moteur thermique 2. [0053] Lorsque l’injection dans le moteur thermique 2 est suffisante pour entraîner en rotation le moteur thermique 2, c’est-à-dire au cours de la deuxième phase 18, l’embrayage de connexion 4 est déplacé vers la position de point de léchage. Autrement dit, en fin de cette deuxième phase 18, quand le régime 11 du moteur thermique 2 s’approche du croisement avec le régime 10 du moteur électrique 5, on désengage l’embrayage de connexion 4 en boucle ouverte. Ainsi, comme illustré sur la figure 2, le couple 9 maximal transmissible par l’embrayage de connexion 4 diminue progressivement entre l’instant 19 correspondant au démarrage du moteur thermique 2 et l’instant ou le régime 11 du moteur thermique 2 atteint le régime 10 du moteur électrique 5. Le déplacement de l’embrayage de connexion 4 vers sa position ouverte permet de limiter la transmission de couple entre le moteur thermique 2 et le moteur électrique 5 durant la deuxième phase 18 de démarrage du moteur thermique 2. Cette déconnexion entre le moteur électrique 5 et le moteur thermique 2 permet de ne pas transmettre au moteur électrique 5, et donc à la boîte de vitesses 7, les acyclismes générés par le moteur thermique 2 lors de cette deuxième phase 18 du démarrage du moteur thermique 2. En effet, durant cette deuxième phase 18 du démarrage du moteur thermique 2, les acyclismes générés par le moteur thermique 2 sont particulièrement importants et sont donc préjudiciables à la chaîne de transmission 1 et au ressenti conducteur.
[0054] Par ailleurs, comme illustré sur la figure 2, l’embrayage de connexion 4 est commandé pour atteindre une position ouverte proche du point de léchage lorsque le régime 11 du moteur thermique 2 atteint le régime 1 1 du moteur électrique 5. En effet, cette ouverture de l’embrayage de connexion 4 permet d’éviter les chocs lorsque le régime 1 1 du moteur thermique 2 atteint et dépasse le régime 10 du moteur électrique 5.
[0055] Lorsque le régime 11 du moteur thermique 2 atteint le régime 10 du moteur électrique 5, le moteur thermique 2 et le moteur électrique 5 peuvent être associés pour générer conjointement le couple moteur permettant le déplacement du véhicule. Ainsi, lors d’une troisième étape 20, l’embrayage de connexion 4 est déplacé en direction de la position totalement engagée afin de permettre la transmission de couple entre le moteur thermique 2 et le moteur électrique 5. Cet engagement de l’embrayage de connexion 4 permet de synchroniser le régime 10 du moteur électrique 5 et le régime 1 1 du moteur thermique 2. Cet engagement de l’embrayage de connexion 4 se traduit par une augmentation du couple 9 maximal transmissible par ledit embrayage de connexion 4, comme illustré sur la figure 2.
[0056] Durant la phase de synchronisation correspondant à cette troisième étape, 20 le régime moteur 1 1 du moteur thermique 2 est régulé et l’embrayage de connexion 4 est déplacé vers sa position engagée avec un pré-positionnement en couple correspondant au couple moteur corrigé avec une régulation en glissement de la vitesse d’embrayage de connexion 4 pour éviter les oscillations de couple et s’assurer que l’accélération du moteur thermique 2 et du moteur électrique 5 soient très proches à la synchronisation des régimes.
[0057] Une fois synchronisé l’embrayage de connexion est porté en boucle ouverte à sa capacité de couple maximale. En effet, dès lors que le moteur thermique 2 et le moteur électrique 5 sont synchronisés, alors lesdits moteurs 2, 5 peuvent être commandés conjointement pour générer le couple souhaité par le conducteur du véhicule et l’embrayage de connexion 4 peut être déplacé vers sa position engagée, comme cela est illustré par l’augmentation du couple 9 maximal transmissible par l’embrayage de connexion 4 et les augmentations de régime 11 , 12 correspondantes et synchronisées.
[0058] Comme expliqué ci-dessus, le démarrage de l’injection dans le moteur thermique 2 peut être déclenchée dès qu’un régime moteur 1 1 du moteur thermique 2 est suffisant, par exemple à un régime moteur 1 1 de l’ordre de 600 à 700 tours minutes. Cependant, dans un mode de réalisation non illustré, l’injection dans le moteur thermique 2 peut être déclenchée lorsque le régime 1 1 du moteur thermique 2 atteint une vitesse supérieure au régime moteur 10 du moteur électrique 5 et que l’embrayage de connexion 4 est dans une position ouverte ou proche du point de léchage. Dès lors, lorsque le moteur thermique 2 est démarré, c’est-à-dire que l’injection dans ledit moteur thermique 2 est opérationnelle, ledit moteur thermique 2 est piloté en régime de manière à amener son régime moteur 1 1 proche du régime moteur 10 du moteur électrique 5 par excès, la synchronisation étant réalisée à partir d’un régime 1 1 du moteur thermique 2 supérieur au régime 10 du moteur électrique 5.
[0059] Lors du démarrage du moteur thermique 2, les acyclismes générés par le moteur thermique 2 sont au moins partiellement amortis par l’amortisseur de torsion 3 intercalé entre le moteur thermique 2 et l’embrayage de connexion 4. Toutefois, un couple transitant par l’embrayage de connexion 4 durant les deux phases 17, 18 de démarrage du moteur thermique 2, les déformations de l’amortisseur de torsion 3 sont également liées au couple généré par le moteur électrique 5 et transitant par l’embrayage de connexion 4. Ainsi, l’amortisseur de torsion 3 peut subir des déformations importantes pouvant l’amener en saturation, ce qui ne permettrait plus d’assurer un filtrage des acyclismes et ne permettrait pas une protection efficace des différents éléments de la chaîne de transmission 1.
[0060] Pour éviter cela, le procédé de démarrage prévoit de moduler le couple généré par le moteur thermique 2 et le couple 9 maximal transmissible par l’embrayage de connexion 4.
[0061] La figure 3 illustre un diagramme représentant les différentes étapes mises en oeuvre par ce procédé de modulation de la phase 17. Un tel procédé est par exemple mis en œuvre au niveau d’un organe de commande des différents éléments de la chaîne de transmission 1 et utilise des capteurs ad hoc destinés à mesurer les paramètres utiles audit procédé, tels que des accéléromètres, des capteurs de vitesse, capteurs de force ou autres. Dans un mode de réalisation préférentiel, on utilise plus particulièrement le capteur de régime moteur ou l’information de régime moteur transmise via le réseau par le calculateur moteur thermique.
[0062] Lors d’une première étape 21 , une estimation de la déformation de l’amortisseur de torsion 3 est calculée. Cette déformation de l’amortisseur de torsion 3 est calculée en fonction du régime 11 du moteur thermique 2, du régime 10 du moteur électrique 5, du couple 22 généré par le moteur thermique 2 et du couple 23 généré par le moteur électrique 5.
[0063] Une deuxième étape 24 consiste à calculer une accélération maximale au-delà de laquelle l’amortisseur de torsion 3 serait en saturation, c’est-à-dire dans une position de débattement maximale au-delà de laquelle les organes d’amortissement dudit amortisseur de torsion 3 ne sont plus en mesure d’amortir les acyclismes du moteur thermique 2. Cette accélération maximale est déterminée en fonction du débattement actuel 25 de l’amortisseur de torsion 3 calculé lors de l’étape 21 , du débattement maximal 26 de l’amortisseur de torsion 3 et de la consigne d’accélération 27 du moteur thermique 2.
[0064] Le débattement maximal 26 d’un amortisseur de torsion 3 est propre à chaque amortisseur de torsion 3, autrement dit ce débattement maximal 26 est une donnée prédéfinie par exemple donnée par le constructeur dudit amortisseur de torsion 3. Il correspond généralement au débattement angulaire à partir duquel les spires des ressorts viennent en butée les unes contre les autres ou les ressorts sont court-circuités afin de les protéger. Ce débattement maximal est défini pour une rotation des éléments de l’amortisseur de torsion selon les deux sens de rotation possibles. L’amortisseur de torsion 3 présente donc un couple seuil direct au-delà duquel l’amortisseur de torsion est en saturation lorsque le couple généré par le moteur thermique 2 est supérieur au couple généré par le moteur électrique 5 et que la différence entre le couple du moteur thermique 2 et le couple du moteur électrique 5 est supérieure audit couple seuil direct. De même, l’amortisseur de torsion présente un couple seuil rétro au-delà duquel l’amortisseur de torsion est en saturation lorsque le couple généré par le moteur électrique 5 est supérieur au couple généré par le moteur thermique 2 et que la différence entre le couple du moteur électrique 5 et le couple du moteur thermique 2 est supérieure audit couple seuil rétro. [0065] Par ailleurs, on entend par amortisseur de torsion tout type d’amortisseur pouvant entrer en saturation, comme par exemple un double volant amortisseur ou encore un pendule dont les masses en oscillation pourraient être amenées en butée.
[0066] La consigne d’accélération 27 du moteur thermique 2 est obtenue par tout moyen.
[0067] Une consigne d’accélération limitée 28 du moteur thermique 2 est alors calculée à partir de cette accélération maximale obtenue lors de la deuxième étape 24, par exemple en calculant un couple en fonction du débattement maximal et de la raideur de l’amortisseur de torsion puis en calculant l’accélération à partie du couple calculé et de l’inertie moteur ou encore, dans le cas d’un pendule, en utilisant une table régime/déflexion donnant le couple. Une comparaison est alors effectuée entre cette consigne d’accélération limitée 28 et l’accélération mesurée 29 du moteur thermique 2 (étape 30). Cette comparaison 30 permet de calculer un écart d’accélération moteur 31 entre la consigne d’accélération limitée 28 et l’accélération mesurée 29. Cet écart d’accélération moteur 31 est transmis à un correcteur anti-saturation 32 qui génère une correction de consigne de couple 33 en fonction dudit écart d’accélération moteur 31 afin d’éviter la mise en saturation de l’amortisseur de torsion 3. La figure 5 illustre un exemple de mise en oeuvre du calcul d’une telle correction.
[0068] Comme illustré sur la figure 5, en parallèle de ce calcul de la correction de consigne de couple 33, une consigne de couple 34 de prépositionnement de l’embrayage est calculée (étape 35) à partir de la consigne d’accélération limitée 28. Cette consigne de couple 34 est transmise conjointement à la correction de consigne de couple 33 à un sommateur 36 et sont utilisées par ledit sommateur 36 pour générer une consigne de couple d’embrayage corrigée 37. La consigne de couple 34 et la consigne de couple d’embrayage corrigée 37 sont transmises à un limiteur de couple 38 qui génère un signal de commande 39 du système de pilotage en couple de l’embrayage de connexion 4 en fonction de l’écart entre la consigne de couple 34 et la consigne de couple d’embrayage corrigée 37 (étape 40). Par ailleurs, ce limiteur de couple transmet une donnée représentative de cet écart au correcteur anti-saturation qui adapte la consigne de correction de couple 33 en fonction dudit écart entre la consigne de couple 34 et la consigne de couple d’embrayage corrigée 37.
[0069] Sur la figure 2, la commande de l’embrayage de connexion 4 et du moteur thermique 2 selon le procédé décrit ci-dessus en regard de la figure 3 se traduisent par des courbes 41 , 42 de couple maximal transmissible par l’embrayage de connexion 4 modulées durant la deuxième phase 18 du procédé décrit ci-dessus en regard de la figure 2. Typiquement, le moteur thermique 2 et l’embrayage de connexion 4 sont pilotés de sorte que le couple 9 transmissible l’embrayage de connexion 4 soit augmenté comme illustré par la portion de courbe 41 lorsque l’amortisseur de torsion 3 n’est pas en saturation et est diminué comme illustré par la portion de courbe 42 lorsque le couple transitant par l’embrayage de connexion 4 est susceptible de mettre l’amortisseur de torsion 3 en saturation.
[0070] Cette modulation du couple maximal transmissible par l’embrayage de connexion 4 peut également être mise en oeuvre dans le procédé de démarrage lors de la phase de synchronisation entre le moteur thermique 2 et le moteur électrique 5. Ainsi, l’embrayage de connexion 4 peut être commandé lors de l’étape de synchronisation 20 pour permettre une transmission de couple plus importante comme illustré par la portion de courbe 43 sur la figure 2 ou au contraire une transmission de couple limitée comme illustré par la portion de courbe 44 en fonction de l’état de saturation de l’amortisseur de torsion 3.
[0071] La commande de l’embrayage de connexion 4 afin d’éviter la mise en saturation de l’amortisseur de torsion 3 est décrite ci-dessus en utilisant des valeurs d’accélération du moteur thermique 2. Cependant, cette commande de l’embrayage de connexion 4 pourrait également être réalisée en fonction des valeurs de régime 11 du moteur thermique. 2.
[0072] Ainsi, sur la figure 4, l’étape 24 de calcul de l’accélération maximale sans saturation de l’amortisseur de torsion 3 est calculée à partir du débattement actuel 25 de l’amortisseur de torsion 3 calculé lors de l’étape 21 , du débattement maximal 26 de l’amortisseur de torsion 3 et de l’accélération mesurée 45 du moteur thermique 2. Ce calcul de l’accélération maximale 24 permet de générer, en plus de la consigne de couple limitée 28 destinée au calcul de la consigne de couple du moteur thermique (étape 35), une consigne de régime 46 qui est transmise au comparateur. Autrement dit, l’étape 30 de comparaison afin de déterminer l’accélération moteur 31 est réalisée en fonction de la consigne de régime 46 et du régime mesuré 47 et non pas en fonction de la consigne d’accélération 28 et de l’accélération mesurée 29. Une fois l’accélération moteur 31 déterminée, le reste du procédé de commande est analogue à celui décrit ci-dessus en regard de la figure 3.
[0073] Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
[0074] L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication. L’usage de l’article indéfini « un » ou « une » pour un élément ou une étape n’exclut pas, sauf mention contraire, la présence d’une pluralité de tels éléments ou étapes.
[0075] Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

Revendications
[Revendication 1] [Procédé de gestion du démarrage d’un moteur thermique (2) d’une chaîne de transmission (1 ) de véhicule automobile, la chaîne de transmission (1 ) comportant :
- un moteur thermique (2),
- un moteur électrique (5),
- une boîte de vitesses (7),
- un embrayage de connexion (4) disposé entre le moteur thermique (2) et le moteur électrique (5) pour transmettre un couple entre le moteur thermique (2) et le moteur électrique (5),
- un embrayage principal (6) disposé entre la boîte de vitesse (7) et le moteur électrique (5) pour transmettre un couple entre le moteur électrique (5) et la boîte de vitesses (7),
- un amortisseur de torsion (3) disposé entre le moteur thermique (2) et l’embrayage de connexion (4), l’amortisseur de torsion (3) présentant une plage de fonctionnement définie entre un couple seuil direct et un couple seuil rétro, dans lequel, depuis un état initial (12) dans lequel le moteur électrique (5) génère un couple d’entraînement et le moteur thermique (2) est à l’arrêt, l’embrayage principal (6) est maintenu dans un état engagé de manière à transmettre le couple généré par le moteur électrique (5) à la boîte de vitesses (7) et l’embrayage de connexion (4) est commandé de manière à transmettre un couple d’entraînement du moteur électrique (5) vers le moteur thermique (2) afin de démarrer le moteur thermique (2) et exercer une fonction de limiteur de couple entre le moteur thermique (2) et le moteur électrique (5) afin de limiter le couple transitant par l’amortisseur de torsion (3) dans la plage de fonctionnement dudit amortisseur de torsion (3).
[Revendication 2] Procédé selon la revendication 1 , comportant
- une première étape d’engagement (13) de l’embrayage de connexion (4) jusqu’à une position dans laquelle un couple d’entraînement (9) est transmis du moteur électrique (5) vers le moteur thermique (2) afin d’entraîner en rotation ledit moteur thermique (2) et le démarrer,
- une étape d’augmentation du régime (1 1 ) du moteur thermique (2) après son démarrage ;
- une étape de déplacement de l’embrayage de connexion (4) vers une position ouverte dudit embrayage de connexion (4) avant que le régime (11 ) du moteur thermique (2) ne devienne supérieur au régime (10) du moteur électrique (5) ; et
- une deuxième étape d’engagement de l’embrayage de connexion (4), après que le régime (11 ) du moteur thermique (2) soit devenu supérieur au régime (10) du moteur électrique (5), dans laquelle l’embrayage de connexion (4) est engagé de manière à transmettre un couple permettant de synchroniser le régime (1 1 ) du moteur thermique (2) et le régime (10) du moteur électrique (5).
[Revendication 3] Procédé selon l’une des revendications 1 à 2, dans laquelle la première étape d’engagement (13) de l’embrayage de connexion (4) comporte une phase de pré-positionnement (14) de l’embrayage de connexion (4) dans laquelle l’embrayage de connexion (4) est déplacé vers une position de point de léchage et le régime (10) du moteur électrique (5) est augmenté, et une phase d’engagement (15) de l’embrayage de connexion (4) de manière à augmenter le couple transmissible par ledit embrayage de connexion (4) jusqu’à transmettre un couple d’entraînement du moteur électrique (5) vers le moteur thermique (2).
[Revendication 4] Procédé selon l’une des revendications 1 à 3, comportant une étape de calcul d’une consigne de couple (35) de prépositionnement en fonction du couple seuil rétro (26) de l’amortisseur de torsion (3), et dans lequel l’injection dans le moteur thermique (2) est démarrée et le moteur thermique (2) est commandé en fonction de ladite consigne de couple de prépositionnement avant que le régime (11 ) du moteur thermique (2) ne devienne supérieur au régime (10) du moteur électrique (5).
[Revendication 5] Procédé selon la revendication 4, dans lequel l’injection dans le moteur thermique (2) est démarrée lorsque le régime (11 ) du moteur thermique (2) atteint un régime seuil.
[Revendication 6] Procédé selon la revendication 4 ou 5, dans lequel l’étape de calcul d’une consigne de couple (35) de prépositionnement comporte les étapes de
- calculer (21 ) un débattement (25) de l’amortisseur de torsion (3),
- calculer (24) une accélération maximale du moteur thermique (2) pour atteindre un couple seuil de l’amortisseur de torsion (3) en fonction du débattement (25) de l’amortisseur de torsion (3), dudit couple seuil, et d’une variable représentative de l’accélération (27) du moteur thermique (2), ledit couple seuil étant fonction du débattement (25) de l’amortisseur de torsion (3),
- calculer (35) la consigne de couple (34) de prépositionnement en fonction de l’accélération maximale du moteur thermique (2).
[Revendication 7] Procédé selon l’une des revendications 4 à 6, comportant une étape de calcul d’une consigne d’embrayage de connexion (39) en fonction de la consigne de couple (34) de prépositionnement et du couple seuil de l’amortisseur de torsion (3), la position de l’embrayage de connexion étant commandé en fonction de ladite consigne d’embrayage de connexion avant que le régime du moteur thermique ne devienne supérieur au régime du moteur électrique.
[Revendication 8] Procédé selon la revendication 7, dans lequel l’étape de calcul de la consigne d’embrayage de connexion (39) comporte les étapes de :
- mesurer une accélération (29) du moteur thermique (2),
- calculer (32) une correction de consigne de couple (33) en fonction de l’accélération du moteur thermique mesurée (29) et de l’accélération maximale du moteur thermique (2),
- calculer (36) une consigne de couple corrigée (37) en fonction de la correction de consigne de couple (33) et de la consigne de couple (34) de prépositionnement,
- calculer la consigne d’embrayage de connexion (39) en fonction de la consigne de couple (34) de prépositionnement et de la consigne de couple corrigée (37).
[Revendication 9] Procédé selon la revendication 7, dans lequel l’étape de calcul de la consigne d’embrayage de connexion (39) comporte les étapes de :
- calculer une consigne de régime (46) du moteur thermique (2) en fonction de l’accélération maximale calculée (24)
- mesurer (46) un régime du moteur thermique (2),
- comparer (30) le régime mesuré (47) et la consigne de régime (46) du moteur thermique (2),
- calculer (32) une correction de consigne de couple (33) en fonction de l’écart entre le régime mesuré (47) et la consigne de régime (46) du moteur thermique (2),
- calculer (36) une consigne de couple corrigée (37) en fonction de la correction de consigne de couple (33) et de la consigne de couple (34) de prépositionnement,
- calculer la consigne d’embrayage de connexion (39) en fonction de la consigne de couple (34) de prépositionnement et de la consigne de couple corrigée (37).
[Revendication 10] Procédé selon la revendication 8 ou 9, dans laquelle le calcul (32) de la correction de consigne de couple (33) est modulée en fonction de la consigne d’embrayage de connexion (39). ]
PCT/EP2019/081187 2018-11-14 2019-11-13 Procede de gestion d'embrayage hybride WO2020099492A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980086013.6A CN113226820A (zh) 2018-11-14 2019-11-13 混合动力离合器管理方法
JP2021526320A JP2022508113A (ja) 2018-11-14 2019-11-13 ハイブリッドクラッチの管理方法
EP19806136.8A EP3880502A1 (fr) 2018-11-14 2019-11-13 Procede de gestion d'embrayage hybride
US17/293,685 US20210402865A1 (en) 2018-11-14 2019-11-13 Hybrid clutch management method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1860482 2018-11-14
FR1860482A FR3088278B1 (fr) 2018-11-14 2018-11-14 Procede de gestion d'embrayage hybride

Publications (1)

Publication Number Publication Date
WO2020099492A1 true WO2020099492A1 (fr) 2020-05-22

Family

ID=65685740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/081187 WO2020099492A1 (fr) 2018-11-14 2019-11-13 Procede de gestion d'embrayage hybride

Country Status (6)

Country Link
US (1) US20210402865A1 (fr)
EP (1) EP3880502A1 (fr)
JP (1) JP2022508113A (fr)
CN (1) CN113226820A (fr)
FR (1) FR3088278B1 (fr)
WO (1) WO2020099492A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022150548A (ja) * 2021-03-26 2022-10-07 マツダ株式会社 ハイブリッド車両の制御方法及び制御システム
JP2022150545A (ja) * 2021-03-26 2022-10-07 マツダ株式会社 ハイブリッド車両の制御方法及び制御システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012224211A1 (de) * 2012-12-21 2014-06-26 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Hybridfahrzeugs und Steuerungseinrichtung
WO2014158888A1 (fr) * 2013-03-13 2014-10-02 Allison Transmission, Inc. Système et procédé permettant de détecter le point de contact d'embrayage de véhicule
US20140352492A1 (en) * 2013-05-29 2014-12-04 Ford Global Technologies, Llc Hybrid Electric Vehicle Engine Starting with a Preloaded Damper Spring
DE102015113125A1 (de) * 2014-08-18 2016-02-18 Ford Global Technologies, Llc Verfahren und Systeme zum Starten einer Kraftmaschine
FR3031332A1 (fr) * 2015-01-07 2016-07-08 Valeo Embrayages Procede de commande d'un moteur thermique de vehicule
DE112016003048T5 (de) * 2015-09-30 2018-03-15 Aisin Aw Co., Ltd. Steuervorrichtung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU87644A1 (fr) * 1989-12-19 1991-10-08 Elpalux Sa Groupe propulseur mixte thermique-electrique pour vehicule
JP2000219062A (ja) * 1999-01-28 2000-08-08 Mitsubishi Motors Corp ハイブリッド型車両
US6364807B1 (en) * 2000-06-30 2002-04-02 Ford Global Technologies, Inc. Control strategy for a hybrid powertrain for an automotive vehicle
CN102459957B (zh) * 2009-06-24 2015-05-06 菲斯科汽车科技集团有限公司 用于高混合动力串联/并联高速电机驱动系统的驱动配置
CN102101431A (zh) * 2011-01-21 2011-06-22 潍柴动力股份有限公司 一种混合动力驱动系统及混合动力汽车
JP2013086516A (ja) * 2011-10-13 2013-05-13 Toyota Motor Corp 車両
CN104066635B (zh) * 2013-01-21 2017-11-03 丰田自动车株式会社 车辆的控制装置
US9656666B2 (en) * 2014-08-28 2017-05-23 Ford Global Technologies, Llc Methods and systems for starting an engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012224211A1 (de) * 2012-12-21 2014-06-26 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Hybridfahrzeugs und Steuerungseinrichtung
WO2014158888A1 (fr) * 2013-03-13 2014-10-02 Allison Transmission, Inc. Système et procédé permettant de détecter le point de contact d'embrayage de véhicule
US20140352492A1 (en) * 2013-05-29 2014-12-04 Ford Global Technologies, Llc Hybrid Electric Vehicle Engine Starting with a Preloaded Damper Spring
DE102015113125A1 (de) * 2014-08-18 2016-02-18 Ford Global Technologies, Llc Verfahren und Systeme zum Starten einer Kraftmaschine
FR3031332A1 (fr) * 2015-01-07 2016-07-08 Valeo Embrayages Procede de commande d'un moteur thermique de vehicule
DE112016003048T5 (de) * 2015-09-30 2018-03-15 Aisin Aw Co., Ltd. Steuervorrichtung

Also Published As

Publication number Publication date
EP3880502A1 (fr) 2021-09-22
JP2022508113A (ja) 2022-01-19
CN113226820A (zh) 2021-08-06
FR3088278B1 (fr) 2022-09-23
US20210402865A1 (en) 2021-12-30
FR3088278A1 (fr) 2020-05-15

Similar Documents

Publication Publication Date Title
FR2764664A1 (fr) Procede pour commander un systeme de transmission de couple et dispositifs pour sa mise en oeuvre
FR2807483A1 (fr) Unite d'embrayage
WO2020099492A1 (fr) Procede de gestion d'embrayage hybride
FR2765160A1 (fr) Commande pour la ligne motrice d'un vehicule automobile
EP2806143A1 (fr) Procédé d'arrêt d'un moteur thermique de véhicule automobile
FR2999140A1 (fr) Procede de commande de couplage/decouplage d'une machine de traction d'un vehicule automobile
FR3000854A1 (fr) Systeme et procede correspondant de commande de la vitesse de rotation d'un moteur electrique d'un vehicule automobile
FR2890414A1 (fr) Installation de regulation de la vitesse de rotation d'un moteur a combustion interne en cas de reduction brusque des gaz
EP2400188B1 (fr) Système de pilotage d'une boîte de vitesse automatique à embrayages à passage de rapports sans rupture à la roue
EP3292032B1 (fr) Procede de gestion des pentes de l'agrement preventif en deceleration
WO2018109361A1 (fr) Procédé de gestion d'une phase transitoire du démarrage d'un moteur thermique par une machine électrique
EP3593005B1 (fr) Procédé de pilotage d'un embrayage relie a une machine électrique lors d'un démarrage d'un moteur thermique
FR2879664A1 (fr) Procede et dispositif de commande d'une unite d'entrainement
EP4021749B1 (fr) Procédé de protection d'un embrayage d'un véhicule hybride contre une surchauffe par arrêt de charge
EP4069540B1 (fr) Procede de compensation d'erreurs de realisation de couple d'un moteur thermique dans une chaine de traction hybride
EP2917544B1 (fr) Procédé de filtrage d'un couple de consigne moteur lors d'un passage des jeux moteur
EP4330565A1 (fr) Pilotage des embrayages d'une transmission dct en phase de rampage
WO2020083922A1 (fr) Procédé et système de contrôle d'un régime moteur de véhicule
FR3110527A1 (fr) Procédé de commande d’un groupe motopropulseur pour véhicule automobile à transmission électrique hybride
FR3102441A1 (fr) Procede de pilotage d'un alterno-demarreur a rotor bobine dans une architecture de traction hybride
WO2021094260A1 (fr) Procédé d'optimisation du gradient temporel de montée en pression dans un système d'injection d'un véhicule automobile hybride
FR2982910A1 (fr) Procede de commande de chaine de traction pour un vehicule, comprenant un processus de recalage d'injecteur
FR3106320A1 (fr) Procédé de commande d’un véhicule automobile pour éviter les à coups à l’embrayage
FR3102214A1 (fr) Groupe motopropulseur comprenant un dispositif de contrôle déterminant un couple de perte d’un moteur à combustion.
FR3100589A1 (fr) Procédé et dispositif de détermination du couple transmis par un embrayage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526320

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019806136

Country of ref document: EP

Effective date: 20210614