WO2020098799A1 - 继电器保持电路和电池管理系统 - Google Patents

继电器保持电路和电池管理系统 Download PDF

Info

Publication number
WO2020098799A1
WO2020098799A1 PCT/CN2019/118892 CN2019118892W WO2020098799A1 WO 2020098799 A1 WO2020098799 A1 WO 2020098799A1 CN 2019118892 W CN2019118892 W CN 2019118892W WO 2020098799 A1 WO2020098799 A1 WO 2020098799A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
switching device
unit
resistor
microprocessor
Prior art date
Application number
PCT/CN2019/118892
Other languages
English (en)
French (fr)
Inventor
但志敏
史德龙
侯贻真
张伟
王连松
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to US16/981,260 priority Critical patent/US11120958B2/en
Priority to EP19885616.3A priority patent/EP3703092B1/en
Publication of WO2020098799A1 publication Critical patent/WO2020098799A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/18Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for introducing delay in the operation of the relay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a relay holding circuit and a battery management system.
  • the source of power for electric vehicles comes entirely from the power battery, which is connected to the motor of the electric vehicle through a relay.
  • the relay is composed of a coil and a contact group.
  • the contact group is connected to the motor.
  • the contact group turns on the power battery to supply power to the motor.
  • the energization of the coil is controlled by the battery management system, which is powered by the lead-acid battery.
  • the reason for the sudden disconnection of the relay is mainly the abnormal power supply of the lead-acid battery, and the abnormal power supply of the lead-acid battery includes a failure of the lead-acid battery, a broken power supply harness, or poor contact. Therefore, how to maintain the normal power supply of the battery management system when the power supply of the lead-acid battery is abnormal has become an urgent problem to be solved at present.
  • the embodiments of the present application provide a relay holding circuit and a battery management system, which can maintain the normal power supply of the battery management system when the power supply of the lead-acid battery is abnormal.
  • an embodiment of the present application provides a relay holding circuit, including: a high-voltage isolated power supply, a power supply driving module, and a microprocessor of a battery management system; wherein, the high-voltage isolated power supply is respectively connected to the two poles of the battery pack and the output of the power supply driving module End, the microprocessor is connected to the first end of the first switching device; the input end of the power drive module is connected to the microprocessor, the control end of the first switching device is connected to the microprocessor, and the second end of the first switching device is connected to The coil of the relay is connected, and the contact of the relay is set on the line between the battery pack and the motor; the microprocessor is also connected to the primary battery.
  • the microprocessor When the primary battery power supply is abnormal, the microprocessor outputs a low-level signal to the power supply driving module.
  • the driving module converts the high-voltage power output by the battery pack into low-voltage power according to the low level, and supplies power to the microprocessor and the second end of the first switching device, so that the coil of the relay maintains a conductive state during the abnormal power supply of the primary battery.
  • the power supply driving module includes: a first switching unit, a second switching unit, and a delay unit; wherein, the microprocessor is respectively connected to the first end and the second end of the first switching unit The first end of the switch unit is connected, the input end of the delay unit is connected to the second end of the first switch unit, and the output end of the delay unit is connected to the high-voltage isolated power supply and the second end of the second switch unit respectively; the microprocessor When the primary battery power supply is abnormal, output low-level signals to the first switch unit and the second switch unit respectively, the first switch unit and the second switch unit are both disconnected according to the low-level signal, and the delay unit is turned off at the first switch unit Within a predetermined period of time after the switch-on, a high-level signal is output with a delay to enable the high-voltage isolated power supply.
  • the first switching unit includes a first optical coupler, a second switching device, and a first resistor; wherein, the first end of the light emitting end of the first optical coupler and the first Pull-up power connection, the second end is connected to the first end of the second switching device, the second end of the second switching device is grounded, the control end of the second switching device is connected to the microprocessor; the light receiving of the first optocoupler The first end of the terminal is connected to the second pull-up power supply, the second end is respectively connected to the input end of the delay unit and the first end of the first resistor, and the second end of the first resistor is connected.
  • the second switching unit includes a second optical coupler, a third switching device, and a second resistor; wherein, the first end of the light emitting end of the second optical coupler and the third Pull-up power connection, the second end is connected to the first end of the third switching device, the second end of the third switching device is grounded, the control end of the third switching device is connected to the microprocessor; the light receiving of the second optical coupler The first end of the terminal is respectively connected to the output end of the delay unit and the first end of the second resistor, the second end of the second resistor is connected to the fourth pull-up power supply, and the second end of the light receiving end of the second photocoupler is grounded .
  • the delay unit includes a first delay chip
  • the power supply driving module further includes a voltage stabilizing source for supplying power to the first delay chip
  • the voltage stabilizing source includes the first voltage regulator A diode and a third resistor
  • the anode of the first voltage stabilizing diode is grounded, the cathode is respectively connected to the first end of the third resistor and the power supply end of the first delay chip, and the second end of the third resistor is connected to the anode of the battery pack.
  • the relay holding circuit further includes an energy storage module and a delay drive module; wherein the first end of the energy storage module is separated from the primary battery, the high-voltage isolated power supply, and the first switching device The second end is connected, the second end of the energy storage module is connected to the microprocessor; the input end of the delay drive module is connected to the microprocessor, and the output end of the delay drive chip is connected to the control end of the first switching device; microprocessing When the primary battery power supply is abnormal, the device outputs low-level signals to the energy storage module and the delay drive module respectively.
  • the energy storage module supplies power to the second end of the first switching device according to the low-level signal.
  • the flat signal delays to output a high level to the control terminal of the first switching device, so that the coil of the relay remains in a conducting state during the abnormal power supply of the primary battery and the high-voltage isolation power supply is not started.
  • the energy storage module includes: a unidirectional conduction unit, a third switching unit, and an energy storage unit; wherein the input terminal of the unidirectional conduction unit is connected to the primary battery, and the unidirectional conduction unit Is connected to the first end of the energy storage unit; the second end of the energy storage unit is connected to the first end of the third switching unit, and the second end of the third switching unit is connected to the second end of the first switching device,
  • the control terminals of the third switch unit are respectively connected to the primary battery and the microprocessor.
  • the third switching unit includes a fourth resistor, a fifth resistor, a second Zener diode, a comparator, a fourth switching device, and a fifth switching device; wherein, the fourth switch The device is connected in parallel to both ends of the unidirectional conduction unit, the control end of the fourth switching device is connected to the output end of the comparator; the non-inverting input end of the comparator is connected to the first end of the fourth resistor and the first end of the fifth resistor, respectively , The second end of the fourth resistor is connected to the primary battery, and the second end of the fifth resistor is grounded; the inverting input of the comparator is connected to the cathode of the second zener diode and the first end of the fifth switching device, respectively.
  • the anode of the two voltage stabilizing diodes is grounded, the second terminal of the fifth switching device is grounded, and the control terminal of the fifth switching device is connected to the microprocessor.
  • the third switching unit further includes a sixth resistor and a unidirectional conduction device; the first terminal of the sixth resistor is connected to the non-inverting input terminal of the comparator, and the second terminal of the sixth resistor The terminal is connected to the anode of the unidirectional conduction device, and the cathode of the unidirectional conduction device is connected to the output terminal of the comparator.
  • the energy storage module further includes a voltage stabilizing unit, and the voltage stabilizing unit includes a third voltage stabilizing diode and a seventh resistor; the cathode of the third voltage stabilizing diode and the first of the energy storage unit Is connected to the terminal, the anode of the third Zener diode is connected to the first terminal of the seventh resistor, and the second terminal of the seventh resistor is grounded.
  • the delay drive module includes a second delay chip, an input terminal of the second delay chip is connected to the microprocessor, and an output terminal of the second delay chip is connected to the first switch The control terminal of the device is connected.
  • an embodiment of the present application provides a battery management system including the relay holding circuit as described above.
  • the relay holding circuit of the embodiment of the present application adds a high-voltage isolated power supply and a power drive module.
  • the power drive module can enable the high-voltage isolated power supply according to the signal output from the microprocessor MCU of the battery management system, convert the high-voltage electricity output from the battery pack into low-voltage electricity to supply power to the MCU and the second end of the first switching device, thereby
  • the power supply of the acid battery is abnormal, the normal power supply of the battery management system is maintained to avoid the safety accident caused by the sudden stop of the car during driving.
  • FIG. 1 is a schematic structural diagram of a relay holding circuit provided by the first embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a relay holding circuit provided by a second embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a relay holding circuit provided by a third embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a relay holding circuit provided by a fourth embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a relay holding circuit provided by a fifth embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a relay holding circuit provided by a sixth embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a relay holding circuit provided by a seventh embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a relay holding circuit provided by an eighth embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a relay holding circuit provided by a ninth embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a relay holding circuit provided by a tenth embodiment of the present application.
  • the electric vehicle's power comes from the power battery (ie battery pack).
  • the electric vehicle's motor is connected to the battery pack by an electric drive switch (such as a relay).
  • an electric drive switch such as a relay.
  • the power supply system of the battery management system (BMS) power supply system is one of the main reasons for the failure of the electric drive switch to turn off. Therefore, maintaining the normal power supply of the BMS system in the case of the BMS system power failure is very important. Significant practical significance.
  • the embodiments of the present application provide a relay holding circuit and a battery management system, which are used in the field of battery technology and can combine the isolated power supply technology and the delay technology to start the high voltage immediately in the event of a failure of the lead-acid battery.
  • the isolated power module converts the high-voltage power of the battery pack into a low-voltage power supply that can be applied by the microprocessor MCU in the BMS system, thereby maintaining the normal power supply of the MCU, while using the energy stored in the large capacitor to maintain the short-time closed state of the relay. So as to ensure the safe driving of power cars.
  • FIG. 1 is a schematic structural diagram of a relay holding circuit provided by the first embodiment of the present application. As shown in Figure 1.
  • the relay holding circuit includes a high-voltage isolated power supply 101 and a power drive module 102 and an MCU.
  • FIG. 1 also shows the primary battery 103, the electric motor M, the relay 104, and the battery pack of the electric vehicle.
  • the primary battery 103 refers to the power supply of the MCU under normal circumstances, and the primary battery used in the field of electric vehicles usually refers to a lead-acid battery.
  • the positive pole of the battery pack is represented as Pack +, the negative pole of the battery pack is represented as Pack-, and the motor M is connected to the battery pack through the relay 104.
  • One end of the coil of the relay 104 is grounded, the other end is connected to the first end of the first switching device Q1, the second end of the first switching device Q1 is connected to the primary battery 103, and the control end of the first switching device Q1 is connected to the MCU .
  • the MCU outputs a high-level signal to the control terminal of the first switching device Q1, and the first switching device Q1 is turned on, so that the battery pack supplies power to the motor M.
  • the high-voltage isolated power supply 101 is respectively connected to the two poles of the battery pack, the output end of the power supply driving module 102, the MCU and the first end of the first switching device Q1.
  • the input end of the power supply driving module 102 is connected to the MCU.
  • the control terminal of a switching device Q1 is connected to the MCU, and the second terminal of the first switching device Q1 is connected to the coil of the relay 104.
  • the high-voltage isolated power supply 101 is connected to the two poles of the battery pack, which is used to convert the high-voltage electricity output by the battery pack into low-voltage electricity, and to supply power to the second end of the MCU and the switching device Q1 to make the coil of the relay 104 During the abnormal power supply of the primary battery, it remains on.
  • the high-voltage isolated power supply 101 in this application has an enabling function.
  • the MCU When the power supply of the primary battery 103 is normal, the MCU outputs a high-level signal to the power driving module 102, and the power driving module 102 locks the high-voltage isolated power supply 101 according to the high-level signal, so that the high-voltage isolated power supply 101 does not work.
  • the MCU When the power supply of the primary battery 103 is abnormal, the MCU outputs a low-level signal to the power drive module 102.
  • the power drive module 102 will enable the high-voltage isolation power supply 101 according to the low-level signal, so that the high-voltage isolation power supply works and output the battery pack.
  • the high voltage is converted into low voltage electricity to supply power to the MCU and the second end of the first switching device Q1, so that the coil of the relay 104 can maintain a conductive state during the abnormal power supply of the primary battery 103.
  • the relay holding circuit of the embodiment of the present application adds the high-voltage isolated power supply 101 and the power drive module 102.
  • the coil of the relay 104 can be used during the abnormal period of the primary battery 103.
  • the power supply driving module 102 can enable the high-voltage isolated power supply 101 according to the signal output by the MCU, and convert the high-voltage electricity output from the battery pack into low-voltage electricity to supply power to the second end of the MCU and the first switching device Q1, so that When the power supply of the lead-acid battery is abnormal, the normal power supply of the battery management system is maintained to avoid the safety accident caused by the sudden stop of the car during the driving process.
  • FIG. 2 is a schematic structural diagram of a relay holding circuit provided by a second embodiment of the present application, and is used to show the specific components of the power supply driving module 102 described above.
  • the power supply driving module 102 includes a first switching unit 1021, a second switching unit 1022, and a delay unit 1023.
  • the MCU is connected to the first end of the first switching unit 1021 and the first end of the second switching unit 1022 respectively, and the input end of the delay unit 1023 is connected to the second end of the first switching unit 1021 to extend
  • the output terminals of the time unit 1023 are respectively connected to the high-voltage isolated power supply 101 and the second terminals of the second switching unit 1022, and the first switching unit 1021 and the second switching unit 1022 are both grounded.
  • the working principle of the power supply driving module 102 shown in FIG. 2 is:
  • the MCU When the power supply of the primary battery 103 is normal, the MCU outputs a high-level signal to the first switching unit 1021 and the second switching unit 1022 respectively.
  • the first switching unit 1021 and the second switching unit 1022 are both turned on according to the high-level signal, with a delay
  • the unit 1023 also outputs a high-level signal after the first switch unit 1021 is turned on.
  • the second switch unit 1022 since the second switch unit 1022 is turned on and grounded, the high-level signal output by the delay unit 1023 will be output by the second switch unit 1022 Pull down to put the high-voltage isolation power supply 101 in a locked state, that is, in an inoperative state.
  • the MCU When the power supply of the primary battery 103 is abnormal, the MCU outputs low-level signals to the first switch unit 1021 and the second switch unit 1022 respectively, and the first switch unit 1021 and the second switch unit 1022 are both disconnected according to the low-level signal.
  • the delay unit 1023 can delay the output of the high-level signal within a predetermined period of time after the first switch unit 1022 is turned off, and because the second switch unit 1022 is turned off, the delayed high-level signal will not be pulled down , So that the high-voltage isolated power supply 101 is in an enabled state.
  • a person skilled in the art can set the duration of the predetermined time period that functions as a delay according to the actual situation. In general, the duration of the predetermined time period should be greater than the duration of the instantaneous power failure of the MCU.
  • FIG. 3 is a schematic structural diagram of a relay holding circuit provided in a third embodiment of the present application, and is used to show the specific components of the first switch unit 1021, the second switch unit 1022, and the delay unit 1023.
  • the first switching unit 1021 includes an optical coupler OC1, a second switching device Q2, and a resistor R1.
  • the second switching unit 1022 includes an optical coupler OC2, a third switching device Q3, and a resistor R2, and the delay unit 1023 includes a delay chip Y1.
  • the first end of the light emitting end of the photocoupler OC1 is connected to the pull-up power supply V1
  • the second end is connected to the first end of the second switching device Q2
  • the second end of the second switching device Q2 is grounded
  • the second switching device Q2 The control terminal of the MCU is connected to the MCU; the first end of the photoreceiver OC1 light receiving end is connected to the pull-up power supply V2, the second end is connected to the input end of the delay chip Y1 and the first end of the resistor R1, The terminal is grounded.
  • the first end of the light emitting end of the optocoupler OC2 is connected to the pull-up power supply V3, the second end is connected to the first end of the third switching device Q3, the second end of the third switching device Q3 is grounded, and the control of the third switching device Q3 Is connected to the MCU; the first end of the light receiving end of the photocoupler OC2 is connected to the output end of the delay chip Y1 and the first end of the second resistor R2, and the second end of the second resistor R2 is connected to the pull-up power supply V4, The second end of the light receiving end of the optical coupler OC2 is grounded.
  • the MCU When the power supply of the primary battery 103 is normal, the MCU outputs high-level signals to the control terminal of the second switching device Q2 and the control terminal of the third switching device Q3, respectively. In response to the high level signal, the first and second terminals of the second switching device Q2 are turned on, the first and second terminals of the third switching device Q3 are turned on, and the light emitting end and light receiving of the optical coupler OC1 The terminal is turned on, and the light emitting end and the light receiving end of the optical coupler OC2 are turned on.
  • the optocoupler OC1 will input a high level signal to the delay chip Y1 after it is turned on, and the delay chip Y1 outputs a high level signal after receiving the high level signal, and at the same time, the optocoupler OC2 will delay When the chip Y1 outputs a high-level signal and pulls it low, the high-voltage isolation power supply 101 is locked, and the high-voltage isolation power supply 101 does not work.
  • the MCU When the power supply of the primary battery 103 is abnormal, the MCU outputs low-level signals to the control terminal of the second switching device Q2 and the control terminal of the third switching device Q3, respectively. In response to the low-level signal, the first terminal and the second terminal of the second switching device Q2 are disconnected, the first terminal and the second terminal of the third switching device Q3 are disconnected, and the light emitting terminal and the light receiving terminal of the optical coupler OC1 The terminal is disconnected, and the optical transmitting end and the optical receiving end of the optical coupler OC2 are disconnected.
  • the delay chip Y1 delays to output a high-level signal within a predetermined period of time, but because the optical coupler OC2 is disconnected, the delay chip Y1 will not pull down to output a high-level signal. , Thereby enabling the high-voltage isolated power supply 101 to wake up the high-voltage isolated power supply 101 to work.
  • the isolation optocoupler OC1, the isolation optocoupler OC2, the second switching device Q2, and the third switching device Q3 are used together to achieve the function of locking and waking up the high-voltage isolation power supply 101.
  • the isolation optocoupler can also prevent the working signal from being affected by the high voltage signal of the battery pack during the locking and wake-up process, thereby improving the control accuracy of the relay protection circuit.
  • the power supply driving module 102 further includes a voltage stabilizing source S1 that supplies power to the delay chip Y1, and is used to provide working power for the delay chip Y1.
  • the voltage stabilizing source S1 includes a voltage stabilizing diode DZ1 and a resistor R3.
  • the anode of the voltage stabilizing diode DZ1 is grounded, and the cathode is respectively connected to the first end of the resistor R3 and the power supply terminal (Vin) of the delay chip Y1.
  • the second end of the resistor R3 is connected to the positive terminal (Pack +) of the battery pack.
  • the resistor R3 may be a resistor set or a resistor network.
  • the Zener diode DZ1 and the delay chip Y1 can be connected to the reference potential of the high side, such as the negative pole of the battery pack, the second switching device Q2 and the third switching device Q3 can Connect the reference potential on the low voltage side, such as the negative electrode of the primary battery.
  • FIG. 4 is a schematic structural diagram of a relay holding circuit provided by a fourth embodiment of the present application. The difference between FIG. 4 and FIG. 3 is that in FIG. 4, an upper side is added between the light-emitting end of the pull-up power supply V1 and the photocoupler OC1.
  • the pull-up resistor applies a suitable working voltage to the light emitting end of the optocoupler OC1 by dividing the pull-up power supply V1.
  • a pull-up resistor can also be added between the pull-up power supply V3 and the light-emitting end of the photocoupler OC2, and a suitable voltage can be applied to the light-emitting end of the photocoupler OC2 by dividing the pull-up power supply V3. Operating Voltage.
  • the startup of the high-voltage isolated power supply 101 may take a long time.
  • a capacitor can be added in the relay holding circuit
  • the memory uses the energy in the capacitor memory to maintain the abnormal power supply of the lead-acid battery and the high-voltage isolated power supply is not fully started, the normal power supply of the battery management system, thereby ensuring the safe driving strategy of the power car.
  • FIG. 5 is a schematic structural diagram of a relay holding circuit provided by a fifth embodiment of the present application. 5 is different from FIG. 1 in that the relay holding circuit in FIG. 5 further includes: an energy storage module 105 and a delay drive module 106, which are used to maintain the short-time closed state of the relay using the energy stored in the large capacitor.
  • the first end of the energy storage module 105 is connected to the primary battery 103, the high-voltage isolated power supply, and the second end of the first switching device Q1, respectively, and the second end of the energy storage module 105 is connected to the MCU.
  • the input terminal MCU of the delay drive module 106 is connected, and the output terminal of the delay drive module 106 is connected to the control terminal of the first switching device Q1.
  • the working principles of the energy storage module 105 and the delay drive module 106 shown in FIG. 5 are:
  • the primary battery 103 supplies power to the MCU, the energy storage module 105, and the second end of the first switching device Q1, respectively.
  • the MCU outputs a high-level signal to the energy storage module 105 and the delay drive module 106.
  • the energy storage module 105 is in a charged state, and the delay drive module 106 outputs a high level to the control terminal of the first switching device Q1
  • the first and second terminals of the first switching device Q1 are turned on, and the coil of the relay 104 is energized.
  • the primary battery 103 stops supplying power to the MCU.
  • the energy storage module 105 is switched from the charging state to the discharging state, and the MCU outputs a low-level signal to the delay driving module 106.
  • the delay driving module 106 can output a high delay to the control terminal of the first switching device Q1 within a predetermined period of time
  • the energy storage module 105 supplies power to the coil of the relay 104, and maintains the coil of the relay to remain in a conducting state during abnormal battery power supply and the high-voltage isolation power supply is not activated, thereby improving driving safety and reliability of the power vehicle.
  • the energy storage module 105 includes a unidirectional conduction unit 1051, a third switching unit 1052, and an energy storage unit 1053.
  • the input terminal of the unidirectional conduction unit 1051 is connected to the primary battery 103, and the output terminal of the unidirectional conduction unit 1051 is connected to the first end of the energy storage unit 1053.
  • the second end of the energy storage unit 1053 is connected to the first end of the third switch unit 1052, the second end of the third switch unit 1052 is connected to the second end of the first switching device Q1, and the control ends of the third switch unit 1052 are Connected to primary battery 103 and MCU.
  • the working principle of the energy storage module 105 shown in FIG. 6 is:
  • the primary battery 103 supplies power normally, the primary battery 103 supplies power to the MCU and the second end of the first switching device Q1, and charges the energy storage unit 1053 through the unidirectional conduction unit 1051, the third switching unit 1052 is disconnected, and the energy storage unit The power in 1053 cannot be transferred outward.
  • the primary battery 103 stops supplying power to the BMS, the third switching unit 1052 is turned on, and the energy storage unit 1053 switches from the charging state to the discharging state, and supplies power to the second end of the first switching device Q1 until high voltage
  • the MCU outputs a high-level signal to the third switching unit 1052 to turn off the third switching unit 1052.
  • the energy storage unit 1053 switches from the discharged state to the charged state.
  • the primary battery 103 can be charged by the energy storage unit 1053 when the primary battery power supply is abnormal, which can solve the problem of abnormal power supply caused by insufficient primary battery power, and maintain the relay coil in the primary battery power supply abnormal and high voltage isolation The power supply remains in the on state while it is not activated.
  • FIG. 7 is a schematic structural diagram of a relay holding circuit provided by a seventh embodiment of the present application, and is used to show the specific components of the above unidirectional conduction unit 1051, third switch unit 1052, and energy storage unit 1053.
  • the unidirectional conducting unit 1051 can be implemented by a diode D1
  • the energy storage unit 1053 can be implemented by a large capacitor C1
  • the third switching unit 1052 specifically includes a resistor R4, a resistor R5, a second Zener diode DZ2, a comparator Cp, the fourth switching device Q4 and the fifth switching device Q5.
  • the fourth switching device Q4 is connected in parallel to both ends of the diode D1, and the control terminal of the fourth switching device Q4 is connected to the output terminal of the comparator Cp.
  • the non-inverting input terminal “+” of the comparator Cp is connected to the first terminal of the resistor R4 and the first terminal of the resistor R5 (also can be understood as the voltage dividing point of R4 and R5), and the second terminal of the resistor R4 is connected to the primary battery 103 Connect, the second end of resistor R5 is grounded.
  • the inverting input terminal "-" of the comparator Cp is respectively connected to the cathode of the second zener diode DZ2 and the first end of the fifth switching device Q5, the anode of the second zener diode DZ2 is grounded, and the first of the fifth switching device Q5 The two terminals are grounded, and the control terminal of the fifth switching device Q5 is connected to the MCU.
  • the resistor R3 may be a resistor set or a resistor network.
  • a diode D2 may be added on the line between the resistor R4 and the diode D1, to further ensure that when the primary battery is normally supplied to the battery, the power in the energy storage unit 1053 will not be discharged.
  • the working principles of the unidirectional conducting unit 1051, the third switching unit 1052, and the energy storage unit 1053 shown in FIG. 7 are:
  • the primary battery 103 supplies power normally, the primary battery 103 supplies power to the MCU and the second end of the switching device Q1, the MCU outputs a high level to the switching device Q5, the fifth switching device Q5 is turned on, and the fourth switching device Q4 is turned off.
  • the battery 103 charges the large capacitor C1 through the diode D1, and the power in the large capacitor C1 cannot be transferred outward.
  • the primary battery 103 stops supplying power to the MCU, the MCU outputs a low-level signal to the fifth switching device Q5, the fifth switching device Q5 is turned off, and the voltage division value between the resistor R4 and the resistor R5 decreases
  • the “+” voltage of the in-phase input and output terminal of the comparator Cp is lower than the “-” voltage of the inverting input terminal, the output terminal of the comparator Cp is grounded, and the fourth switching device Q4 is turned on.
  • the large capacitor C1 is switched from the charging state to the discharging state to supply power to the second end of the switching device Q1.
  • the MCU After the high-voltage isolated power supply 101 is started, the MCU outputs a high-level signal to the fifth switching device Q5, the fifth switching device Q5 is turned on, and the "+" voltage at the non-inverting input and output terminals of the comparator Cp is higher than the "-" voltage at the inverting input terminal Then, the fourth switching device Q4 is turned on, and the large capacitor C1 is switched back from the discharging state to the charging state again.
  • FIG. 8 is a schematic structural diagram of a relay holding circuit provided by an eighth embodiment of the present application.
  • the circuit structure in FIG. 7 is optimized.
  • the third switching unit 1052 in FIG. 8 further includes a resistor R6 and a unidirectional conduction device D3.
  • the unidirectional conduction device shown in FIG. 8 is a diode D3.
  • the first end of the resistor R6 is connected to the non-inverting input terminal “+” of the comparator Cp, the second end of the resistor R6 is connected to the anode of the diode D3, and the output terminal of the diode D3 is connected to the cathode of the comparator Cp .
  • the resistor R6, the diode D3 and the resistor R5 can be connected in parallel, so that the voltage division value of the "+" output terminal of the non-inverting phase connected to the comparator Cp is further reduced, thereby improving the control accuracy of the comparator Cp
  • the fourth switching device Q4 is activated in time to switch the large capacitor C1 from the charging state to the discharging state, and to supply power to the second terminal of the first switching device Q1.
  • the energy storage module 105 further includes a voltage stabilizing unit 1054 for maintaining the voltage stability of the large capacitor C1.
  • the voltage stabilizing unit 1054 includes a voltage stabilizing diode DZ3 and a resistor R7.
  • the cathode of the Zener diode DZ3 is connected to the first end of the large capacitor C1
  • the anode of the Zener diode DZ3 is connected to the first end of the resistor R7
  • the second end of the resistor R7 is grounded.
  • FIG. 8 also shows some electronic components provided in the circuit of the third switching unit 1052 for further improving the circuit function of the third switching unit 1052.
  • the third switching unit 1052 further includes a pull-up resistor between the control terminal of the fourth switching device Q4 and the output terminal of the comparator Cp, for pulling up the control signal input to the fourth switching device Q4.
  • the third switching unit 1052 further includes a resistance element between the second terminal of the fourth switching device Q4 and the inverting input terminal "-" of the comparator Cp, and the second terminal of the fourth switching device Q4 and the comparator Cp The resistive element between the output ends of is used to reduce the influence of the voltage signal of the large capacitor C1 on the input and output signals of the comparator Cp.
  • FIG. 9 is a schematic structural diagram of a relay holding circuit provided by a ninth embodiment of the present application, and is used to show the specific components of the delay drive module 106.
  • the delay driving module 106 includes a delay chip Y2 and a protection resistor between the output terminal of the delay chip Y2 and the control terminal of the first switching device Q1.
  • the input end of the delay chip Y2 is connected to the MCU, the output end of the delay chip Y2 is connected to the control end of the first switching device Q1, the main function of the delay chip Y2 is to delay the output high level, how long the specific delay Can be set by hardware.
  • FIG. 10 is a schematic structural diagram of a relay holding circuit provided by a tenth embodiment of the present application. As a preferred example of the relay holding circuit, the components of the relay holding circuit are fully displayed. The four IO ports (IO1, IO2, IO4, and IO5) of the MCU are shown in FIG.
  • the electric vehicle relay 104 (including the main positive relay and the main negative relay) is closed, and the electric vehicle runs normally.
  • the low-voltage isolated power supply (not shown in the figure) is in a working state and is used to provide a pull-up power supply (V1-V4).
  • the port IO1 is in a high-level output state
  • the port IO2 is in a high-level output state
  • the high-voltage isolated power supply 101 is locked (not enabled when EN is low), and is in an inoperative state
  • the port IO4 output state is high
  • the drive relay 104 is closed, the port IO5 is high, the fourth switching device Q4 is not conducting, and the third switching device Q3 is not conducting. Due to the presence of the diodes D1 and D2, the lead-acid battery can The large capacitor C1 charges, but the large capacitor C1 cannot discharge to the MCU.
  • the control outputs of ports IO1, IO2, IO4, and IO5 are all low, and OC1 and OC2 are not turned on. Due to the effect of the delay chip Y1, the output of the delay chip Y1 has to pass the set time In order to be pulled low, the enable of the high-voltage isolation power supply 101 is at a high level at this time, and the high-voltage isolation power supply 101 is woken up to start working.
  • the voltage stabilizing unit of DZ3 and R7 constitutes the protection circuit of the large capacitor C1. By providing a discharge circuit, the large capacitor C1 is prevented from being damaged due to overshoot.
  • the calculation formula of the capacitance of the large capacitor C1 is:
  • I is the holding current 104 required by the relay 104
  • T is the starting time T of the high-voltage isolated power supply 101
  • U Bat_min is the minimum voltage during normal operation of the lead-acid battery
  • U Rea_min is the minimum voltage required by the relay 104 to maintain.
  • the fourth switching device Q4 is turned on and quickly turned off. During the fourth switching device Q4 is turned on, the inverting input terminal "-" of the comparator Cp is grounded, and the output terminal of the comparator Cp is changed from grounded In the high-impedance state, the third switching device Q3 is turned off, the MCU enables the ports IO1, IO4, and outputs the high level again.
  • the MCU After detecting that the power supply system returns to normal, the MCU enables IO2 and turns off the high-voltage isolation power supply 101. At this time, the power supply of the MCU is still provided by the lead-acid battery.
  • the relay still maintains the state before the power loss. This strategy ensures the safety of the car during driving.
  • an embodiment of the present application further provides a battery management system including the relay holding circuit as described above.
  • the battery management system may be a separately sold device, and the above relay holding circuit is integrated in the device.

Abstract

一种继电器保持电路和电池管理系统。该继电器保持电路包括高压隔离电源(101)、电源驱动模块(102)和电池管理系统的微处理器;其中,高压隔离电源(101)分别与电池包的两极、电源驱动模块(102)的输出端、微处理器和第一开关器件(Q1)的第一端连接;电源驱动模块(102)的输入端与微处理器连接;微处理器还与原电池(103)连接,微处理器在原电池(103)供电异常时,向电源驱动模块(102)输出低电平信号,电源驱动模块(102)根据低电平,将电池包输出的高压电转换为低压电,为微处理器以及第一开关器件(Q1)的第二端供电,使继电器的线圈在原电池(103)供电异常期间保持导通状态。采用上述技术方案,能够在铅酸蓄电池供电异常的情况下维持电池管理系统的正常供电。

Description

继电器保持电路和电池管理系统
相关申请的交叉引用
本申请要求享有于2018年11月16日提交的名称为“继电器保持电路和电池管理系统”的中国专利申请201811365833.2的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种继电器保持电路和电池管理系统。
背景技术
电动汽车的动力来源完全来自动力电池,动力电池通过继电器与电动汽车的电动机连接。继电器由线圈和触点组两部分组成,实际使用时,触点组与电动机连接,线圈在通电情况下触点组导通动力电池向电动机供电。其中,线圈的通电与否由电池管理系统控制,电池管理系统由铅酸蓄电池供电。
现阶段,电动汽车在行驶过程中,一旦继电器突然断开,电动机将失去动力,电动汽车将突然停止。如果该事件发生在高速公路或者车流密集区域,将会造成严重的安全事故。
由于造成继电器突然断开的原因主要为铅酸蓄电池供电异常,而造成铅酸蓄电池供电异常包括铅酸蓄电池故障、供电线束断裂或者接触不良等。由此,如何在铅酸蓄电池供电异常的情况下维持电池管理系统的正常供电,成为目前急需解决的问题。
发明内容
本申请实施例提供了一种继电器保持电路和电池管理系统,能够在铅 酸蓄电池供电异常的情况下维持电池管理系统的正常供电。
第一方面,本申请实施例提供一种继电器保持电路,包括:高压隔离电源、电源驱动模块和电池管理系统的微处理器;其中,高压隔离电源分别与电池包的两极、电源驱动模块的输出端、微处理器和第一开关器件的第一端连接;电源驱动模块的输入端与微处理器连接,第一开关器件的控制端与微处理器连接,第一开关器件的第二端与继电器的线圈连接,继电器的触点设置于电池包和电动机之间的线路上;微处理器还与原电池连接,微处理器在原电池供电异常时,向电源驱动模块输出低电平信号,电源驱动模块根据低电平,将电池包输出的高压电转换为低压电,为微处理器以及第一开关器件的第二端供电,使继电器的线圈在原电池供电异常期间保持导通状态。
在第一方面的一种可能的实施方式中,电源驱动模块包括:第一开关单元、第二开关单元和延时单元;其中,微处理器分别与第一开关单元的第一端和第二开关单元的第一端连接,延时单元的输入端与第一开关单元的第二端连接,延时单元的输出端分别与高压隔离电源和第二开关单元的第二端连接;微处理器在原电池供电异常时,分别向第一开关单元和第二开关单元输出低电平信号,第一开关单元和第二开关单元根据低电平信号均断开,延时单元在第一开关单元断开后的预定时间段内,延时输出高电平信号,使能高压隔离电源。
在第一方面的一种可能的实施方式中,第一开关单元包括第一光耦合器、第二开关器件和第一电阻;其中,第一光耦合器的光发射端的第一端与第一上拉电源连接,第二端与第二开关器件的第一端连接,第二开关器件的第二端接地,第二开关器件的控制端和微处理器连接;第一光耦合器的光接收端的第一端与第二上拉电源连接,第二端分别与延时单元的输入端和第一电阻的第一端连接,第一电阻的第二端接。
在第一方面的一种可能的实施方式中,第二开关单元包括第二光耦合器、第三开关器件和第二电阻;其中,第二光耦合器的光发射端的第一端与第三上拉电源连接,第二端与第三开关器件的第一端连接,第三开关器件的第二端接地,第三开关器件的控制端和微处理器连接;第二光耦合器 的光接收端的第一端分别与延时单元的输出端和第二电阻的第一端连接,第二电阻的第二端与第四上拉电源连接,第二光耦合器的光接收端的第二端接地。
在第一方面的一种可能的实施方式中,延时单元包括第一延时芯片,电源驱动模块还包括用于为第一延时芯片供电的稳压源;稳压源包括第一稳压二极管和第三电阻;第一稳压二极管的阳极接地,阴极分别与第三电阻的第一端和第一延时芯片的供电端连接,第三电阻的第二端与电池包的正极连接。
在第一方面的一种可能的实施方式中,继电器保持电路还包括储能模块和延时驱动模块;其中,储能模块的第一端分别与原电池、高压隔离电源和第一开关器件的第二端连接,储能模块的第二端与微处理器连接;延时驱动模块的输入端与微处理器连接,延时驱动芯片的输出端与第一开关器件的控制端连接;微处理器在原电池供电异常时,分别向储能模块和延时驱动模块输出低电平信号,储能模块根据低电平信号,向第一开关器件的第二端供电,延时驱动模块根据低电平信号,向第一开关器件的控制端延时输出高电平,使继电器的线圈在原电池供电异常且高压隔离电源未启动期间保持在导通状态。
在第一方面的一种可能的实施方式中,储能模块包括:单向导通单元、第三开关单元和储能单元;其中,单向导通单元的输入端与原电池连接,单向导通单元的输出端与储能单元的第一端连接;储能单元的第二端与第三开关单元的第一端连接,第三开关单元的第二端与第一开关器件的第二端连接,第三开关单元的控制端分别原电池和微处理器连接。
在第一方面的一种可能的实施方式中,第三开关单元包括第四电阻、第五电阻、第二稳压二极管、比较器、第四开关器件和第五开关器件;其中,第四开关器件并联于单向导通单元的两端,第四开关器件的控制端与比较器的输出端连接;比较器的同相输入端分别与第四电阻的第一端和第五电阻的第一端连接,第四电阻的第二端与原电池连接,第五电阻的第二端接地;比较器的反相输入端分别与第二稳压二极管的阴极和第五开关器件的第一端连接,第二稳压二极管的阳极接地,第五开关器件的第二端接 地,第五开关器件的控制端与微处理器连接。
在第一方面的一种可能的实施方式中,第三开关单元还包括第六电阻和单向导通器件;第六电阻的第一端与比较器的同相输入端连接,第六电阻的第二端与单向导通器件的阳极连接,单向导通器件的阴极与比较器的输出端连接。
在第一方面的一种可能的实施方式中,储能模块还包括稳压单元,稳压单元包括第三稳压二极管和第七电阻;第三稳压二极管的阴极与储能单元的第一端连接,第三稳压二极管的阳极与第七电阻的第一端连接,第七电阻的第二端接地。
在第一方面的一种可能的实施方式中,延时驱动模块包括第二延时芯片,第二延时芯片的输入端与微处理器连接,第二延时芯片的输出端与第一开关器件的控制端连接。
第二方面,本申请实施例提供一种电池管理系统,该电池管理系统包括如上所述的继电器保持电路。
如上所述,本申请实施例的继电器保持电路增设了高压隔离电源和电源驱动模块,当原电池供电异常(比如掉电)时,为使继电器的线圈在原电池供电异常期间能够保持导通状态,电源驱动模块能够根据电池管理系统的微处理器MCU输出的信号使能高压隔离电源,将电池包输出的高压电转换为低压电为MCU以及第一开关器件的第二端供电,从而在铅酸蓄电池供电异常的情况下维持电池管理系统的正常供电,避免汽车在行驶过程中因突然停车而造成安全事故。
附图说明
下面将通过参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1为本申请第一实施例提供的继电器保持电路的结构示意图;
图2为本申请第二实施例提供的继电器保持电路的结构示意图;
图3为本申请第三实施例提供的继电器保持电路的结构示意图;
图4为本申请第四实施例提供的继电器保持电路的结构示意图;
图5为本申请第五实施例提供的继电器保持电路的结构示意图;
图6为本申请第六实施例提供的继电器保持电路的结构示意图;
图7为本申请第七实施例提供的继电器保持电路的结构示意图;
图8为本申请第八实施例提供的继电器保持电路的结构示意图;
图9为本申请第九实施例提供的继电器保持电路的结构示意图;
图10为本申请第十实施例提供的继电器保持电路的结构示意图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
电动汽车的动力来自动力电池(即电池包),电动汽车的电动机由电驱动开关(比如继电器)与电池包连接,电动汽车行驶过程中,若电驱动开关突然断开,电动汽车会失去动力突然停止,非常危险。
本申请的申请人发现,电池管理系统(Battery Management System,BMS)的供电系统掉电是造成电驱动开关断开失效的主要原因之一,所以BMS系统掉电情况下维持BMS系统正常供电具有非常重大的现实意义。
基于此,本申请实施例提供一种继电器保持电路和电池管理系统,用于电池技术领域,能够将隔离电源技术与延时技术相结合,在铅酸蓄电池掉电的故障情况下,立即启动高压隔离电源模块,将电池包的高压电转化为可被BMS系统中微处理器MCU应用的低压电源,从而维持MCU的正常供电,同时能够利用大电容存储的能量维持继电器的短时间闭合状态,从而保证动力汽车的安全行驶。
图1为本申请第一实施例提供的继电器保持电路的结构示意图。如图1所示。该继电器保持电路包括高压隔离电源101和电源驱动模块102和MCU。
图1中还示出了电动汽车的原电池103、电动机M、继电器104和电池包。其中,原电池103指的是正常情况下MCU的供电电源,用于电动汽车领域的原电池通常是指铅酸蓄电池。电池包的正极表示为Pack+,电池包 的负极表示为Pack-,电动机M通过继电器104与电池包连接。
其中,继电器104的线圈的一端接地,另一端与第一开关器件Q1的第一端连接,第一开关器件Q1的第二端与原电池103连接,第一开关器件Q1的控制端与MCU连接。电动汽车正常行驶过程中,MCU会向第一开关器件Q1的控制端输出高电平信号,第一开关器件Q1导通,使电池包向电动机M供电。
如图1所示,高压隔离电源101分别与电池包的两极、电源驱动模块102的输出端、MCU和第一开关器件Q1的第一端连接,电源驱动模块102的输入端与MCU连接,第一开关器件Q1的控制端与MCU连接,第一开关器件Q1的第二端与继电器104的线圈连接。
如图1所示,高压隔离电源101与电池包的两极连接,用于将电池包输出的高压电转换为低压电,并为MCU以及开关器件Q1的第二端供电,使继电器104的线圈在原电池供电异常期间保持导通状态。本申请中的高压隔离电源101具有使能功能。
图1中的继电器保持电路的工作原理为:
当原电池103供电正常时,MCU向电源驱动模块102输出高电平信号,电源驱动模块102根据高电平信号,锁定高压隔离电源101,使得高压隔离电源101不工作。
而当原电池103供电异常时,MCU向电源驱动模块102输出低电平信号,电源驱动模块102会根据低电平信号,使能高压隔离电源101,使得高压隔离电源工作,将电池包输出的高压电转换为低压电,为MCU以及第一开关器件Q1的第二端供电,使继电器104的线圈在原电池103供电异常期间能够保持导通状态。
如上所述,本申请实施例的继电器保持电路增设了高压隔离电源101和电源驱动模块102,当原电池103供电异常(比如掉电)时,为使继电器104的线圈在原电池103供电异常期间能够保持导通状态,电源驱动模块102能够根据MCU输出的信号使能高压隔离电源101,将电池包输出的高压电转换为低压电为MCU以及第一开关器件Q1的第二端供电,从而在铅酸蓄电池供电异常的情况下维持电池管理系统的正常供电,避免汽车在行 驶过程中因突然停车而造成安全事故。
下面对本申请实施例中的继电器保持电路的具体结构进行详细说明。
图2为本申请第二实施例提供的继电器保持电路的结构示意图,用于展示上述电源驱动模块102的具体元器件组成。如图2所示,电源驱动模块102包括第一开关单元1021、第二开关单元1022和延时单元1023。
如图2所示,MCU分别与第一开关单元1021的第一端和第二开关单元1022的第一端连接,延时单元1023的输入端与第一开关单元1021的第二端连接,延时单元1023的输出端分别与高压隔离电源101和第二开关单元1022的第二端连接,第一开关单元1021和第二开关单元1022均接地。
图2中示出的电源驱动模块102的工作原理为:
当原电池103供电正常时,MCU分别向第一开关单元1021和第二开关单元1022输出高电平信号,第一开关单元1021和第二开关单元1022根据高电平信号均导通,延时单元1023在第一开关单元1021导通后也输出高电平信号,此处,由于第二开关单元1022导通后接地,因此延时单元1023输出的高电平信号将被第二开关单元1022拉低,使高压隔离电源101处于锁定状态,即不工作状态。
当原电池103供电异常时,MCU分别向第一开关单元1021和第二开关单元1022输出低电平信号,第一开关单元1021和第二开关单元1022均根据低电平信号断开,此时,延时单元1023能够在第一开关单元1022断开后的预定时间段内延时输出高电平信号,且因第二开关单元1022断开,不会拉低延时输出的高电平信号,从而使高压隔离电源101处于使能状态。本领域技术人员可以根据实际情况对起延时作用的预定时间段进行时长设定,一般情况下,预定时间段的时长应大于MCU处于瞬时掉电情况的持续时长。
图3为本申请第三实施例提供的继电器保持电路的结构示意图,用于展示上述第一开关单元1021、第二开关单元1022和延时单元1023的具体元器件组成。
如图3所示,第一开关单元1021包括光耦合器OC1、第二开关器件Q2和电阻R1。第二开关单元1022包括光耦合器OC2、第三开关器件Q3和电 阻R2,延时单元1023包括延时芯片Y1。
其中,光耦合器OC1光发射端的第一端与上拉电源V1连接,第二端与第二开关器件Q2的第一端连接,第二开关器件Q2的第二端接地,第二开关器件Q2的控制端和MCU连接;光耦合器OC1光接收端的第一端与上拉电源V2连接,第二端分别与延时芯片Y1的输入端和电阻R1的第一端连接,电阻R2的第二端接地。
光耦合器OC2光发射端的第一端与上拉电源V3连接,第二端与第三开关器件Q3的第一端连接,第三开关器件Q3的第二端接地,第三开关器件Q3的控制端和MCU连接;光耦合器OC2光接收端的第一端分别与延时芯片Y1的输出端和第二电阻R2的第一端连接,第二电阻R2的第二端与上拉电源V4连接,光耦合器OC2光接收端的第二端接地。
图3中示出的电源驱动模块102中各元器件的工作原理为:
当原电池103供电正常时,MCU分别向第二开关器件Q2的控制端和第三开关器件Q3的控制端输出高电平信号。响应于该高电平信号,第二开关器件Q2的第一端和第二端导通,第三开关器件Q3的第一端和第二端导通,光耦合器OC1的光发射端和光接收端导通,光耦合器OC2的光发射端和光接收端导通。
其中,光耦合器OC1导通后会向延时芯片Y1输入高电平信号,延时芯片Y1接收到高电平信号后输出高电平信号,同时,光耦合器OC2导通后会将延时芯片Y1输出高电平信号拉低,锁定高压隔离电源101,高压隔离电源101不工作。
当原电池103供电异常时,MCU分别向第二开关器件Q2的控制端和第三开关器件Q3的控制端输出低电平信号。响应于该低电平信号,第二开关器件Q2的第一端和第二端断开,第三开关器件Q3的第一端和第二端断开,光耦合器OC1的光发射端和光接收端断开,光耦合器OC2的光发射端和光接收端断开。
其中,光耦合器OC1断开后,延时芯片Y1在预定时间段内延时输出高电平信号,但由于光耦合器OC2断开,不会拉低延时芯片Y1输出高电平信号拉,从而使能高压隔离电源101,唤醒高压隔离电源101工作。
如上所述,本申请实施例通过隔离光耦OC1、隔离光耦OC2、第二开关器件Q2和第三开关器件Q3配合使用,实现了锁定和唤醒高压隔离电源101的作用。另外,隔离光耦还能够避免锁定和唤醒过程中工作信号受到电池包高压信号的影响,从而提高继电器保护电路的控制精度。
在一些可选实施例中,电源驱动模块102还包括为延时芯片Y1供电的稳压源S1,用于为延时芯片Y1提供工作电源。
如图3所示,该稳压源S1包括稳压二极管DZ1和电阻R3,稳压二极管DZ1的阳极接地,阴极分别与电阻R3的第一端和延时芯片Y1的供电端(Vin)连接,电阻R3的第二端与电池包的正极(Pack+)连接。其中,电阻R3可以是电阻集合或者电阻网络。
需要说明的是,为避免高压侧对低压侧的信号干扰,稳压二极管DZ1以及延时芯片Y1可以接高压侧参考电位,比如电池包的负极,第二开关器件Q2和第三开关器件Q3可以接低压侧参考电位,比如原电池的负极。
图4为本申请第四实施例提供的继电器保持电路的结构示意图,图4与图3的不同之处在于,图4中在上拉电源V1和光耦合器OC1的光发射端之间增设了上拉电阻,通过对上拉电源V1进行分压来对光耦合器OC1的光发射端施加合适的工作电压。
如图4所示,还可以在上拉电源V3和光耦合器OC2的光发射端之间增设上拉电阻,通过对上拉电源V3进行分压来对光耦合器OC2的光发射端施加合适的工作电压。
实际工作过程中,高压隔离电源101的启动需要的时间可能较长,为了维持电池管理系统在铅酸蓄电池供电异常且高压隔离电源未完全启动情况下的正常供电,可以在继电器保持电路中增设电容存储器,利用电容存储器中的能量维持铅酸蓄电池供电异常且高压隔离电源未完全启动情况下,电池管理系统的正常供电,从而保证动力汽车的安全行驶的策略。
图5为本申请第五实施例提供的继电器保持电路的结构示意图。图5与图1的不同之处在于,图5中的继电器保持电路还包括;储能模块105和延时驱动模块106,用于利用大电容存储的能量维持继电器的短时间闭合状态。
如图5所示,储能模块105的第一端分别与原电池103、高压隔离电源和第一开关器件Q1的第二端连接,储能模块105的第二端与MCU连接。延时驱动模块106的输入端MCU连接,延时驱动模块106的输出端和第一开关器件Q1的控制端连接。
图5中示出的储能模块105和延时驱动模块106的工作原理为:
当原电池103供电正常时,原电池103分别向MCU、储能模块105和第一开关器件Q1的第二端供电。MCU向储能模块105和延时驱动模块106输出高电平信号,响应于该高电平信号,储能模块105处于充电状态,延时驱动模块106向第一开关器件Q1的控制端输出高电平信号,第一开关器件Q1的第一端和第二端导通,继电器104的线圈通电。
当原电池103供电异常时,原电池103停止向MCU供电。储能模块105从充电状态切换为放电状态,MCU向延时驱动模块106输出低电平信号,延时驱动模块106可以在预定时间段内,向第一开关器件Q1的控制端延时输出高电平,由储能模块105为继电器104的线圈供电,维持继电器的线圈在原电池供电异常且高压隔离电源未启动期间保持在导通状态,从而提高动力汽车行车安全性和可靠性。
图6为本申请第六实施例提供的继电器保持电路的结构示意图,用于展示上述储能模块105的具体元器件组成。如图6所示,储能模块105包括:单向导通单元1051、第三开关单元1052和储能单元1053。
其中,单向导通单元1051的输入端与原电池103连接,单向导通单元1051的输出端与储能单元1053的第一端连接。
储能单元1053的第二端与第三开关单元1052的第一端连接,第三开关单元1052的第二端和第一开关器件Q1的第二端连接,第三开关单元1052的控制端分别与原电池103和MCU连接。
图6中示出的储能模块105的工作原理为:
当原电池103供电正常时,原电池103向MCU和第一开关器件Q1的第二端供电,并通过单向导通单元1051向储能单元1053充电,第三开关单元1052断开,储能单元1053中的电量无法向外转移。
当原电池103供电异常时,原电池103停止向BMS供电,第三开关单 元1052接通,储能单元1053从充电状态切换为放电状态,向第一开关器件Q1的第二端供电,直到高压隔离电源101启动后,MCU向第三开关单元1052输出高电平信号,使第三开关单元1052断开。储能单元1053从放电状态切换回充电状态。
在一些可选实施例中,可以在原电池供电异常时,由储能单元1053向原电池103充电,这样可以解决因原电池电量不足而引起的供电异常问题,维持继电器的线圈在原电池供电异常且高压隔离电源未启动期间保持在导通状态。
图7为本申请第七实施例提供的继电器保持电路的结构示意图,用于展示上述单向导通单元1051、第三开关单元1052和储能单元1053的具体元器件组成。
如图7所示,单向导通单元1051可以由二极管D1实现,储能单元1053可以由大电容C1实现,第三开关单元1052具体包括电阻R4、电阻R5、第二稳压二极管DZ2、比较器Cp、第四开关器件Q4和第五开关器件Q5。
其中,第四开关器件Q4并联于二极管D1的两端,第四开关器件Q4的控制端与比较器Cp的输出端连接。
比较器Cp的同相输入端“+”分别与电阻R4的第一端和电阻R5的第一端连接(也可以理解为R4与R5的分压点),电阻R4的第二端与原电池103连接,电阻R5的第二端接地。
比较器Cp的反相输入端“-”分别与第二稳压二极管DZ2的阴极和第五开关器件Q5的第一端连接,第二稳压二极管DZ2的阳极接地,第五开关器件Q5的第二端接地,第五开关器件Q5的控制端与MCU连接。
其中,电阻R3可以是电阻集合或者电阻网络。
在一些实施例中,可以在电阻R4和二极管D1之间的线路上增设二极管D2,进一步确保原电池正常供电池时,储能单元1053中电量不会被释放掉。
图7中示出的单向导通单元1051、第三开关单元1052和储能单元1053的工作原理为:
当原电池103供电正常时,原电池103向MCU和开关器件Q1的第二端供电,MCU向开关器件Q5输出高电平,第五开关器件Q5导通,第四开关器件Q4断开,原电池103通过二极管D1向大电容C1充电,大电容C1中的电量无法向外转移。
当原电池103供电异常时,原电池103停止向MCU供电,MCU向第五开关器件Q5输出低电平信号,第五开关器件Q5断开,同时电阻R4与电阻R5之间的分压值下降,比较器Cp的同相出入端“+”电压低于反相输入端“-”电压,比较器Cp输出端接地,第四开关器件Q4导通。大电容C1从充电状态切换为放电状态,向开关器件Q1的第二端供电。
直到高压隔离电源101启动后,MCU向第五开关器件Q5输出高电平信号,第五开关器件Q5导通,比较器Cp的同相出入端“+”电压高于反相输入端“-”电压,第四开关器件Q4导通,大电容C1重新从放电状态切换回充电状态。
图8为本申请第八实施例提供的继电器保持电路的结构示意图,用优化图7中的电路结构,图8中的第三开关单元1052还包括电阻R6和单向导通器件D3。
图8中示出的单向导通器件为二极管D3。
如图8所示,电阻R6的第一端与比较器Cp的同相输入端“+”连接,电阻R6的第二端与二极管D3的阳极连接,二极管D3的输出端与比较器Cp的阴极连接。
当比较器Cp输出接地后,电阻R6、二极管D3与电阻R5可以并联,使接入比较器Cp的同相输出端“+”的分压值进一步减小,提高对比较器Cp的控制精度,从而及时启动第四开关器件Q4,使大电容C1从充电状态切换为放电状态,并向第一开关器件Q1的第二端供电。
在一些可选实施例中,储能模块105还包括稳压单元1054,用于维持大电容C1的电压稳定。
稳压单元1054包括稳压二极管DZ3和电阻R7。其中,稳压二极管DZ3的阴极与大电容C1的第一端连接,稳压二极管DZ3的阳极与电阻R7的第一端连接,电阻R7的第二端接地。
图8中还示出了设置于第三开关单元1052电路中的一些电子元件,用于进一步改善第三开关单元1052的电路功能。
比如,第三开关单元1052还包括位于第四开关器件Q4的控制端和比较器Cp的输出端之间的上拉电阻,用于拉高输入至第四开关器件Q4的控制信号。第三开关单元1052还包括位于第四开关器件Q4的第二端和比较器Cp的反相输入端“-”之间的电阻元件,以及位于第四开关器件Q4的第二端和比较器Cp的输出端之间的电阻元件,用于减少大电容C1的电压信号对比较器Cp的输入和输出信号的影响。
图9为本申请第九实施例提供的继电器保持电路的结构示意图,用于展示延时驱动模块106的具体元器件组成。
如图9所示,延时驱动模块106包括延时芯片Y2和位于延时芯片Y2的输出端和第一开关器件Q1的控制端之间的保护电阻。
其中,延时芯片Y2的输入端与MCU连接,延时芯片Y2的输出端与第一开关器件Q1的控制端连接,延时芯片Y2的主要功能是延时输出高电平,具体延时多久可以通过硬件设置。
图10为本申请第十实施例提供的继电器保持电路的结构示意图,作为继电器保持电路的一种优选示例,全面展示了继电器保持电路的元器件组成。图10中示出了MCU的4个IO端口(IO1、IO2、IO4和IO5)。
下面结合图10,对本申请实施例中的继电器保持电路的工作过程进行详细说明:
S1、当MCU正常工作时,电动汽车继电器104(包括主正继电器和主负继电器)闭合,电动车正常行驶。低压隔离电源(图中未示出)处于工作状态,用于提供上拉电源(V1-V4)。
此时,端口IO1为高电平输出状态,端口IO2为高电平输出状态,高压隔离电源101被锁定(EN为低电平时不使能),处于不工作状态,端口IO4输出状态为高电平,驱动继电器104处于闭合状态,端口IO5为高电平,第四开关器件Q4不导通,第三开关器件Q3不导通,由于二极管D1和D2的存在,此时,铅酸蓄电池可向大电容C1充电,但大电容C1无法向MCU放电。
S2、当铅酸蓄电池供电出现故障,或者连接到MCU系统的线束出现故障时,铅酸蓄电池正电压Battery+迅速下降,当Battery+下降到MCU的最低工作电压时,MCU停止工作,当比较器Cp同相输出端电压“+”大于反相输出端“-”电压时,比较器Cp的输出端接地,此时,第三开关器件Q3接地导通,在MCU停止工作且高压隔离电源101未启动期间,继电器104的导通能量由大电容C1提供。如图10所示,可以通过电阻R4和R5设置MCU的最低工作电压,即大电容C1的放电电压阈值。
MCU供电异常后,端口IO1、IO2、IO4和IO5控制输出均为低电平,OC1、OC2均不导通,由于延时芯片Y1的作用,延时芯片Y1的输出要经过设定的时间后才能被拉低,所以此时高压隔离电源101的使能为高电平,高压隔离电源101被唤醒开始工作。
S3、高压隔离电源101工作后,代替铅酸蓄电池为MCU供电,MCU重新启动开始工作,当高压隔离电源101的输出电压高于大电容C1的电压时,大电容C1停止向系统输出能量并进行充电。
DZ3和R7的稳压单元构成了大电容C1的保护电路,通过提供放电回路,防止大电容C1过冲造成损坏。
在一个优选实施例中,大电容C1的容值的计算公式为:
Figure PCTCN2019118892-appb-000001
其中,I为继电器104需要的保持电流104,T为高压隔离电源101的启动时间T,U Bat_min为铅酸蓄电池正常工作时的最低电压,U Rea_min为继电器104保持需要的最低电压。
S4、MCU正常工作后,第四开关器件Q4导通并迅速关断,第四开关器件Q4导通期间,比较器Cp的反相输入端“-”接地,比较器Cp的输出端由接地转变为高阻态,第三开关器件Q3被关断,MCU使能端口IO1、IO4,重新输出高电平。
S5、MCU检测到供电系统恢复正常后,使能IO2,关闭高压隔离电源101,此时MCU的供电仍然由铅酸蓄电池提供。
基于上述步骤,在MCU输入电源丢失期间,继电器仍然保持电源丢失前的状态,该策略保证了汽车在行驶过程中的安全。
此外,本申请实施例还提供一种电池管理系统,该电池管理系统包括如上所述的继电器保持电路。
需要说明的是,该电池管理系统可以是一个单独售卖的设备,设备中集成有上述继电器保持电路。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (12)

  1. 一种继电器保持电路,其中,包括:高压隔离电源、电源驱动模块和电池管理系统的微处理器;其中,
    所述高压隔离电源分别与电池包的两极、电源驱动模块的输出端、所述微处理器和第一开关器件的第一端连接;
    所述电源驱动模块的输入端与所述微处理器连接,所述第一开关器件的控制端与所述微处理器连接,所述第一开关器件的第二端与继电器的线圈连接,所述继电器的触点设置于所述电池包和电动机之间的线路上;
    所述微处理器还与原电池连接,所述微处理器在所述原电池供电异常时,向所述电源驱动模块输出低电平信号,所述电源驱动模块根据所述低电平,将所述电池包输出的高压电转换为低压电,为所述微处理器以及所述第一开关器件的第二端供电,使所述继电器的线圈在所述原电池供电异常期间保持导通状态。
  2. 根据权利要求1所述的继电器保持电路,其中,所述电源驱动模块包括:第一开关单元、第二开关单元和延时单元;其中,
    所述微处理器分别与所述第一开关单元的第一端和所述第二开关单元的第一端连接,所述延时单元的输入端与所述第一开关单元的第二端连接,所述延时单元的输出端分别与所述高压隔离电源和所述第二开关单元的第二端连接;
    所述微处理器在所述原电池供电异常时,分别向所述第一开关单元和所述第二开关单元输出低电平信号,所述第一开关单元和所述第二开关单元根据所述低电平信号均断开,所述延时单元在所述第一开关单元断开后的预定时间段内,延时输出高电平信号,使能所述高压隔离电源。
  3. 根据权利要求2所述的继电器保持电路,其中,所述第一开关单元包括第一光耦合器、第二开关器件和第一电阻;其中,
    所述第一光耦合器的光发射端的第一端与第一上拉电源连接,第二端与所述第二开关器件的第一端连接,所述第二开关器件的第二端接地,所述第二开关器件的控制端和所述微处理器连接;
    所述第一光耦合器的光接收端的第一端与第二上拉电源连接,第二端分别与所述延时单元的输入端和所述第一电阻的第一端连接,所述第一电阻的第二端接地。
  4. 根据权利要求2所述的继电器保持电路,其中,所述第二开关单元包括第二光耦合器、第三开关器件和第二电阻;其中,
    所述第二光耦合器的光发射端的第一端与第三上拉电源连接,第二端与所述第三开关器件的第一端连接,所述第三开关器件的第二端接地,所述第三开关器件的控制端和所述微处理器连接;
    所述第二光耦合器的光接收端的第一端分别与所述延时单元的输出端和所述第二电阻的第一端连接,所述第二电阻的第二端与第四上拉电源连接,所述第二光耦合器的光接收端的第二端接地。
  5. 根据权利要求2所述的继电器保持电路,其中,所述延时单元包括第一延时芯片,所述电源驱动模块还包括用于为所述第一延时芯片供电的稳压源;
    所述稳压源包括第一稳压二极管和第三电阻;所述第一稳压二极管的阳极接地,阴极分别与所述第三电阻的第一端和所述第一延时芯片的供电端连接,所述第三电阻的第二端与所述电池包的正极连接。
  6. 根据权利要求1所述的继电器保持电路,其中,所述继电器保持电路还包括储能模块和延时驱动模块;其中,
    所述储能模块的第一端分别与所述原电池、所述高压隔离电源和所述第一开关器件的第二端连接,所述储能模块的第二端与所述微处理器连接;
    所述延时驱动模块的输入端与所述微处理器连接,所述延时驱动芯片的输出端与所述第一开关器件的控制端连接;
    所述微处理器在所述原电池供电异常时,分别向所述储能模块和所述延时驱动模块输出低电平信号,所述储能模块根据所述低电平信号,向所述第一开关器件的第二端供电,所述延时驱动模块根据所述低电平信号,向所述第一开关器件的控制端延时输出高电平,使所述继电器的线圈在所述原电池供电异常且所述高压隔离电源未启动期间保持在导通状态。
  7. 根据权利要求6所述的继电器保持电路,其中,所述储能模块包括: 单向导通单元、第三开关单元和储能单元;其中,
    所述单向导通单元的输入端与所述原电池连接,所述单向导通单元的输出端与所述储能单元的第一端连接;
    所述储能单元的第二端与所述第三开关单元的第一端连接,所述第三开关单元的第二端与所述第一开关器件的第二端连接,所述第三开关单元的控制端分别所述原电池和所述微处理器连接。
  8. 根据权利要求7所述的继电器保持电路,其中,所述第三开关单元包括第四电阻、第五电阻、第二稳压二极管、比较器、第四开关器件和第五开关器件;其中,
    所述第四开关器件并联于所述单向导通单元的两端,所述第四开关器件的控制端与所述比较器的输出端连接;
    所述比较器的同相输入端分别与所述第四电阻的第一端和所述第五电阻的第一端连接,所述第四电阻的第二端与所述原电池连接,所述第五电阻的第二端接地;
    所述比较器的反相输入端分别与所述第二稳压二极管的阴极和所述第五开关器件的第一端连接,所述第二稳压二极管的阳极接地,所述第五开关器件的第二端接地,所述第五开关器件的控制端与所述微处理器连接。
  9. 根据权利要求8所述的继电器保持电路,其中,所述第三开关单元还包括第六电阻和单向导通器件;
    所述第六电阻的第一端与所述比较器的同相输入端连接,所述第六电阻的第二端与所述单向导通器件的阳极连接,所述单向导通器件的阴极与所述比较器的输出端连接。
  10. 根据权利要求7所述的继电器保持电路,其中,所述储能模块还包括稳压单元,所述稳压单元包括第三稳压二极管和第七电阻;
    所述第三稳压二极管的阴极与所述储能单元的第一端连接,所述第三稳压二极管的阳极与所述第七电阻的第一端连接,所述第七电阻的第二端接地。
  11. 根据权利要求6所述的继电器保持电路,其中,所述延时驱动模块包括第二延时芯片,所述第二延时芯片的输入端与所述微处理器连接, 所述第二延时芯片的输出端与所述第一开关器件的控制端连接。
  12. 一种电池管理系统,其中,包括如权利要求1-11任意一项所述的继电器保持电路。
PCT/CN2019/118892 2018-11-16 2019-11-15 继电器保持电路和电池管理系统 WO2020098799A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/981,260 US11120958B2 (en) 2018-11-16 2019-11-15 Relay holding circuit and battery management system
EP19885616.3A EP3703092B1 (en) 2018-11-16 2019-11-15 Relay holding circuit and battery management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811365833.2A CN111211007B (zh) 2018-11-16 2018-11-16 继电器保持电路和电池管理系统
CN201811365833.2 2018-11-16

Publications (1)

Publication Number Publication Date
WO2020098799A1 true WO2020098799A1 (zh) 2020-05-22

Family

ID=70730988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118892 WO2020098799A1 (zh) 2018-11-16 2019-11-15 继电器保持电路和电池管理系统

Country Status (5)

Country Link
US (1) US11120958B2 (zh)
EP (1) EP3703092B1 (zh)
CN (1) CN111211007B (zh)
HU (1) HUE063302T2 (zh)
WO (1) WO2020098799A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668902A (zh) * 2020-06-19 2020-09-15 东莞新能安科技有限公司 电池装置控制电路
CN117175531A (zh) * 2023-11-03 2023-12-05 宁德时代新能源科技股份有限公司 电池管理系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018206096A1 (de) * 2018-04-20 2019-10-24 Audi Ag Batteriesystem und Verfahren zum Betreiben eines Batteriesystems
CN112086313A (zh) * 2020-09-14 2020-12-15 东软睿驰汽车技术(沈阳)有限公司 电池包继电器保护电路和保护方法
CN112514199B (zh) * 2020-10-14 2022-01-14 华为技术有限公司 一种低压冗余供电系统
KR20220053762A (ko) * 2020-10-22 2022-05-02 현대자동차주식회사 운전자의 안전 지원 장치 및 그 방법
CN114211963B (zh) * 2021-12-14 2023-10-17 华人运通(江苏)技术有限公司 一种继电器控制装置、电池管理系统及电动汽车
CN114188188A (zh) * 2021-12-20 2022-03-15 联合汽车电子有限公司 继电器的驱动电路
CN114866081B (zh) * 2022-05-26 2024-04-05 惠州市盛微电子有限公司 一种用于驱动连接电池组正极的nmos管的驱动电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134707A (ja) * 1998-10-26 2000-05-12 Toyota Motor Corp 電源制御装置
CN105857052A (zh) * 2015-02-10 2016-08-17 丰田自动车株式会社 混合动力汽车
CN205791766U (zh) * 2016-05-25 2016-12-07 惠州市蓝微新源技术有限公司 电动汽车的bms供电装置
CN106783392A (zh) * 2015-11-24 2017-05-31 通用汽车环球科技运作有限责任公司 操作交通工具的高压电路中的接触器的方法
CN207490551U (zh) * 2017-11-02 2018-06-12 深圳市科列技术股份有限公司 一种电动汽车功率回路和电池管理系统及其供电电路
CN108215915A (zh) * 2018-01-25 2018-06-29 宁德时代新能源科技股份有限公司 一种电能传输电路及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10033317B4 (de) * 2000-06-29 2011-08-11 Volkswagen AG, 38440 Kraftfahrzeugbordnetz mit sicherheitsrelevanten Verbrauchern
DE102004044761A1 (de) * 2004-09-16 2006-04-06 Conti Temic Microelectronic Gmbh Schaltungsanordnung zur kurzzeitigen Aufrechterhaltung einer Versorgungsspannung
CN103097177B (zh) * 2010-07-09 2015-09-02 Lg电子株式会社 电动汽车及其控制方法
DE102011013182A1 (de) * 2011-03-05 2012-09-06 Walter Schopf Sicherheits-Traktionsbatterie für Elektrofahrzeuge
CN104827921B (zh) * 2014-12-04 2018-01-19 北汽福田汽车股份有限公司 电动汽车的启动控制方法、系统及具有其的电动汽车
CN105553246B (zh) * 2015-12-17 2018-06-05 华为技术有限公司 上下电驱动电路及其控制方法
KR101866063B1 (ko) * 2016-10-07 2018-06-08 현대자동차주식회사 보조배터리의 릴레이 제어 시스템 및 그 방법
CN107994631A (zh) * 2017-11-30 2018-05-04 北京新能源汽车股份有限公司 一种应急上电电路、方法和汽车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134707A (ja) * 1998-10-26 2000-05-12 Toyota Motor Corp 電源制御装置
CN105857052A (zh) * 2015-02-10 2016-08-17 丰田自动车株式会社 混合动力汽车
CN106783392A (zh) * 2015-11-24 2017-05-31 通用汽车环球科技运作有限责任公司 操作交通工具的高压电路中的接触器的方法
CN205791766U (zh) * 2016-05-25 2016-12-07 惠州市蓝微新源技术有限公司 电动汽车的bms供电装置
CN207490551U (zh) * 2017-11-02 2018-06-12 深圳市科列技术股份有限公司 一种电动汽车功率回路和电池管理系统及其供电电路
CN108215915A (zh) * 2018-01-25 2018-06-29 宁德时代新能源科技股份有限公司 一种电能传输电路及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3703092A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668902A (zh) * 2020-06-19 2020-09-15 东莞新能安科技有限公司 电池装置控制电路
CN117175531A (zh) * 2023-11-03 2023-12-05 宁德时代新能源科技股份有限公司 电池管理系统

Also Published As

Publication number Publication date
CN111211007B (zh) 2021-06-08
US20210027961A1 (en) 2021-01-28
HUE063302T2 (hu) 2024-01-28
EP3703092A1 (en) 2020-09-02
US11120958B2 (en) 2021-09-14
CN111211007A (zh) 2020-05-29
EP3703092B1 (en) 2023-06-21
EP3703092A4 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
WO2020098799A1 (zh) 继电器保持电路和电池管理系统
CN109075400B (zh) 电池组、管理电池组的方法以及包括电池组的车辆
US10263438B2 (en) Battery management system for vehicle
EP4207536A1 (en) Low-voltage battery charging system and method
WO2022063275A1 (zh) 控制系统、应急启动电源和智能电瓶夹
KR102617933B1 (ko) 지능형 제어 시스템, 비상 시동 전원 및 지능형 배터리 클램프
TWI661642B (zh) 不斷電運行裝置
CN108215915B (zh) 一种电能传输电路及装置
CN107399287A (zh) 用于助推启动的车辆电力系统
US20220131317A1 (en) Unlocking circuit for charging station when powered off
CN110103850A (zh) 一种防车载低压电源亏电的电池系统
WO2021036946A1 (zh) 一种电池充电控制电路及电子设备
CN114336924A (zh) 控制系统、应急启动电源和智能电瓶夹
CN111095722B (zh) 电池单元及电池单元的控制方法
US20180037132A1 (en) Secondary lithium battery for vehicle use
WO2023040368A1 (zh) 一种驻车控制器的备用电源系统
EP4084311A1 (en) Wake-up circuit for charge controller, on-board charger, and new energy vehicle
CN214543777U (zh) 控制系统、应急启动电源和智能电瓶夹
CN214227919U (zh) 车载备用供电电路和车载设备
JP2022041967A (ja) バッテリ保護回路およびこれを含むバッテリ装置
CN217689992U (zh) 开机唤醒电路和电子设备
CN214900648U (zh) 一种电源管理芯片及开关电源管理系统
CN217087569U (zh) 一种基于电动疫苗接种车的电源切换电路
CN218335382U (zh) 一种开关电路、bms系统及电子设备
CN216056797U (zh) 输出电路、启动电源设备和电瓶夹设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019885616

Country of ref document: EP

Effective date: 20200525

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE