WO2020098642A1 - 超声图像的成像方法、装置及医疗设备 - Google Patents

超声图像的成像方法、装置及医疗设备 Download PDF

Info

Publication number
WO2020098642A1
WO2020098642A1 PCT/CN2019/117507 CN2019117507W WO2020098642A1 WO 2020098642 A1 WO2020098642 A1 WO 2020098642A1 CN 2019117507 W CN2019117507 W CN 2019117507W WO 2020098642 A1 WO2020098642 A1 WO 2020098642A1
Authority
WO
WIPO (PCT)
Prior art keywords
boundary
line
scan line
aperture
scan
Prior art date
Application number
PCT/CN2019/117507
Other languages
English (en)
French (fr)
Inventor
陈惠人
Original Assignee
飞依诺科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 飞依诺科技(苏州)有限公司 filed Critical 飞依诺科技(苏州)有限公司
Publication of WO2020098642A1 publication Critical patent/WO2020098642A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography

Definitions

  • the present application relates to the technical field of medical imaging, for example, to an ultrasound image imaging method, device, and medical equipment.
  • the ultrasound imaging system uses a smaller number of array elements to obtain a large array aperture through a sparse array.
  • the sparse array has a larger number than the uniform array with the same number of elements
  • the aperture which results in a narrower scanning beam, improves the spatial resolution of the ultrasound imaging system.
  • the increased array element spacing of the sparse array can reduce the mutual coupling effect between the array elements.
  • the sparse array has larger grating lobe artifacts than the uniform array.
  • the present application provides an ultrasound image imaging method, device, and medical equipment to solve the technical problem of large grating lobe artifacts in sparse array imaging in the related art.
  • the present application provides an imaging method for an ultrasound image.
  • the ultrasound image includes a scan line.
  • the method includes:
  • an ultrasound image of the region of interest is formed.
  • the ultrasound image has a first boundary and a second boundary, the first boundary and the second boundary are located on both sides of the center line of the ultrasound image;
  • the position of the line to determine the aperture of the sparse array corresponding to each scan line includes:
  • the aperture of the sparse array corresponding to each scan line between the first boundary and the center line gradually becomes larger; In the direction of the center line, the aperture of the sparse array corresponding to each scan line between the second boundary and the center line gradually becomes larger.
  • the method before the forming the ultrasound image of the region of interest based on the echo signal, the method further includes: determining each of the scans according to the position of each of the scan lines
  • the first parameter corresponding to the line, and the first parameter is any one or more of a transmission frequency, a reception frequency, and a compensation gain.
  • the determining the first parameter corresponding to each scan line according to the position of each scan line includes:
  • the first line is directed in the direction of the center line, and the first parameter corresponding to each scan line between the first boundary and the center line gradually becomes larger;
  • the direction of the center line, the first parameter corresponding to each scan line between the second boundary and the center line gradually becomes larger;
  • the first line is directed in the direction of the center line, and the first parameter corresponding to each scan line between the first boundary and the center line gradually becomes smaller; In the direction of the center line, the first parameter corresponding to each scan line between the second boundary and the center line gradually becomes smaller.
  • the ultrasound image includes M + 1 scan lines, and the method further includes:
  • F (i) is the second parameter corresponding to the i-th scan line
  • F (Mi) is the second parameter corresponding to the Mi-th scan line
  • the second parameter is the Any one of the sparse array's aperture, transmit frequency, receive frequency, and compensation gain.
  • the present application also provides an ultrasound image imaging device.
  • the ultrasound image includes a scan line.
  • the device includes:
  • a construction module configured to construct a sparse array corresponding to each of the scan lines, wherein at least one of the sparse arrays corresponding to the scan lines has an aperture that is not equal to the remaining sparse arrays of the scan lines;
  • a transmitting module configured to transmit ultrasonic waves to the region of interest through the constructed sparse array corresponding to each of the scan lines;
  • An acquisition module configured to acquire the echo signal of the region of interest
  • the imaging module is configured to form an ultrasound image of the region of interest based on the echo signal.
  • each of the scan lines has a corresponding position in the ultrasound image, and the ultrasound image corresponds to a phased array;
  • the construction module includes:
  • An aperture determination module configured to determine the aperture of the sparse array corresponding to each scan line according to the position of each scan line
  • the array element selection module is configured to select the required array element of each scanning line from the phased array according to the aperture of the sparse array corresponding to each scanning line;
  • the sparse array construction module is configured to construct the sparse array corresponding to each scan line by using the selected required array element of each scan line.
  • An ultrasound imaging medical device including:
  • the controller is configured to construct a sparse array corresponding to each scan line, wherein at least one of the sparse arrays corresponding to the scan lines has an aperture not equal to the remaining sparse arrays corresponding to the scan lines;
  • An ultrasound probe electrically connected to the controller, is configured to transmit ultrasonic waves to the region of interest through the constructed sparse array corresponding to each of the scan lines; and obtain echo signals of the region of interest;
  • An image processing unit connected to the ultrasound probe, is configured to form an ultrasound image of the region of interest based on the echo signal.
  • the present application also provides an ultrasound imaging medical device, including an ultrasound probe and a controller; the controller includes a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program is When the processor executes, it implements the steps of the method in any of the above embodiments.
  • the ultrasound image includes scan lines, by constructing a sparse array corresponding to each scan line, wherein the aperture of the sparse array corresponding to at least one scan line is not equal to the remaining scan lines
  • the aperture of the corresponding sparse array; the sparse array corresponding to each scan line is constructed to transmit ultrasonic waves to the region of interest; the echo signal of the region of interest is acquired; and the ultrasound image of the region of interest is formed according to the echo signal.
  • Figure 1a is a schematic diagram of an ultrasound image in an embodiment
  • FIG. 1b is a schematic flowchart of an ultrasound image imaging method in an embodiment
  • step S110 is a schematic flowchart of step S110 in an embodiment
  • FIG. 3 is a schematic diagram of constructing a sparse array in an embodiment
  • FIG. 4 is a structural block diagram of an ultrasound image imaging device in an embodiment
  • FIG. 5 is a structural block diagram of an ultrasound image imaging device in an embodiment
  • FIG. 6 is a structural block diagram of an ultrasound imaging medical device in an embodiment
  • FIG. 7 is a structural block diagram of an ultrasound imaging medical device in an embodiment
  • FIG. 8 is an internal structure diagram of a computer device in an embodiment.
  • sparse arrays are an effective way to obtain a large array aperture using a smaller number of array elements.
  • the sparse array has a larger aperture than the uniform array, which results in a narrower scanning beam, thereby improving the spatial resolution of the ultrasound imaging system.
  • the increased array element spacing of the sparse array can reduce the mutual coupling effect between the array elements.
  • the sparse array has larger grating lobe artifacts, which seriously affects the imaging effect and contrast resolution. Therefore, sparse arrays need to be applied reasonably to balance spatial resolution and grating lobe artifacts.
  • the present application provides an imaging method for an ultrasound image.
  • the ultrasound image includes scan lines.
  • the imaging method includes: constructing a sparse array corresponding to each scan line, wherein at least one scan line corresponds to a sparse array whose aperture is not equal to The aperture of the sparse array corresponding to the remaining scan lines; the sparse array corresponding to each scan line is constructed to transmit ultrasonic waves to the region of interest; the echo signal of the region of interest is acquired; based on the echo signal, the ultrasound of the region of interest is formed image.
  • the ultrasound image 110 includes a scan line 120.
  • the present application provides an imaging method for ultrasound images.
  • the imaging method includes the following steps:
  • the ultrasonic imaging system uses the propagation of ultrasonic waves in the human body to obtain ultrasonic characteristic information of human tissues and organ structures.
  • the high-voltage pulse wave is loaded on each array element of the probe, and the array element is excited to generate high-frequency ultrasonic waves to form a transmission beam and enter the human body.
  • Each array element of the probe receives the scattered or reflected echo from the human tissue structure to form a receiving beam.
  • the signal processing channel of the ultrasound imaging system extracts the information in the ultrasound echo to form various imaging scan line data to generate scan lines, then each scan line corresponds to a transmitting array and a receiving array. The larger the aperture of the array, the higher the spatial resolution of the corresponding imaging.
  • the aperture of the array can be achieved by increasing the number of array elements and increasing the distance between array elements, but increasing the number of array elements will increase the cost of the ultrasound probe, and it will also be limited by the process.
  • the ultrasound probe can be reduced Transmit array element or receive array element.
  • the original design of sparse array technology is to increase the aperture of the array and improve the imaging resolution without reducing or even improving the imaging quality. Excessively increasing the aperture of the sparse array will produce larger grating lobes, which will affect the imaging quality. Therefore, a sparse array corresponding to each scan line in the ultrasound image can be constructed according to the actual situation, such as the spatial resolution or contrast requirements of the ultrasound image.
  • the position of the array element determines the aperture of the sparse array.
  • the sparse array corresponding to each scan line is not completely the same, and the aperture of the sparse array corresponding to at least one scan line is not equal to the aperture of the sparse array corresponding to the remaining scan lines.
  • the region of interest refers to a certain part of the patient and emits ultrasound waves to the region of interest to achieve the purpose of ultrasound imaging.
  • patients refer to animals, including mammals, especially humans.
  • a sparse array corresponding to each scan line in the ultrasound image may be constructed according to actual conditions, and then an ultrasonic wave is transmitted to the region of interest through the constructed sparse array corresponding to each scan line.
  • Ultrasonic waves are emitted to a certain part of the patient. Taking humans as an example, the ultrasonic waves propagate in the human body. During the propagation process, the ultrasonic waves are reflected, refracted, and scattered, mainly reflected. The reflected waves carrying the anatomical features of human tissues are echoes and propagate back to the ultrasound probe. The ultrasound probe converts the echoes of the received ultrasonic waves into electrical signals, that is, echo signals.
  • S140 Form an ultrasound image of the region of interest according to the echo signal.
  • the ultrasound echo can be received by the ultrasound probe, and the ultrasound echo can be processed to obtain tissue signals and contrast signals of the region of interest.
  • tissue signals and contrast signals are processed differently to obtain image data corresponding to different needs, and then subjected to processing methods such as data compression, dynamic range adjustment, digital scan transformation, etc. to perform ultrasound imaging on the region of interest, thereby Get the ultrasound image at the current moment.
  • the aperture of the sparse array corresponding to at least one scan line is not equal to the rest
  • the aperture of the sparse array corresponding to the scan line realizes the reasonable setting of the sparse array corresponding to each scan line according to the actual situation to balance the spatial resolution and grating lobe artifacts.
  • the same Improve the quality and contrast resolution of ultrasound images.
  • each scan line 120 has a corresponding position in the ultrasound image.
  • the ultrasound image corresponds to a phased array.
  • Figure 2 to construct a sparse array corresponding to each scan line, including the following steps:
  • the phased array corresponding to the ultrasound image is an array composed of multiple independent array elements, and each array element is excited according to a certain rule and timing to control the position and direction of the focus.
  • each scan line has a corresponding position in the ultrasound image, and different positions in the ultrasound image have different requirements on the quality of the ultrasound image such as spatial resolution, contrast resolution, etc., according to each scan line in the ultrasound
  • the position in the image determines the aperture of the sparse array corresponding to each scan line.
  • the aperture of the sparse array is related to the number of array elements and the spacing between array elements, and different ultrasound images require different preset numbers of effective array elements.
  • the ultrasound image corresponds to a phased array.
  • the aperture of the sparse array corresponding to each scan line in the phased array corresponding to the ultrasound image, select the effective array element of each scan line, that is, select the required element for each scan line.
  • Array element select the effective array element of each scan line. Then, using the selected required array elements of each scan line, a sparse array corresponding to each scan line is constructed.
  • the aperture of the sparse array corresponding to each scan line is determined according to the position of each scan line, so that each scan line is selected from the phased array according to the aperture of the sparse array corresponding to each scan line.
  • the required array elements of each scan line and then use the selected array elements of each scan line to construct a sparse array corresponding to each scan line, and realize the construction of a sparse array that meets the needs according to the actual situation, thereby balancing the spatial resolution and grid Flap artifacts, while ensuring the resolution of ultrasound images, also improve the quality and contrast resolution of ultrasound images.
  • the ultrasound image has a first boundary 130 and a second boundary 140, and the first boundary 130 and the second boundary 140 are located on both sides of the center line 150 of the ultrasound image, respectively.
  • determine the aperture of the sparse array corresponding to each scan line including:
  • the aperture of the sparse array corresponding to each scan line between the first boundary and the center line gradually becomes smaller, for example, the sparse array corresponding to each scan line between the first boundary and the center line
  • the aperture of can be monotonically decreasing; along the second boundary points in the direction of the center line, the aperture of the sparse array corresponding to each scan line between the second boundary and the center line gradually becomes smaller, for example, each The aperture of the sparse array corresponding to the scan line can decrease monotonically.
  • the aperture of the sparse array corresponding to each scan line between the first boundary and the center line gradually becomes larger, for example, the corresponding relationship between each scan line between the first boundary and the center line
  • the aperture of the sparse array can increase monotonically; along the second boundary, the aperture of the sparse array corresponding to each scan line between the second boundary and the center line gradually increases, for example, between the second boundary and the center line
  • the aperture of the sparse array corresponding to each scan line can increase monotonically.
  • the aperture of the sparse array corresponding to each scan line between the first boundary and the center line gradually becomes smaller or larger, and points in the direction of the center line along the second boundary
  • the aperture of the sparse array corresponding to each scan line between the second boundary and the center line gradually becomes smaller or larger, and the aperture of the sparse array corresponding to each scan line can be flexibly set to meet the spatial resolution requirements of the ultrasound image, and Grating lobe artifacts do not affect image quality.
  • the method before forming an ultrasound image of the region of interest based on the echo signal, the method further includes: determining the first parameter corresponding to each scan line according to the position of each scan line, the first parameter being Any one or more of the transmission frequency of the sparse array corresponding to the root scanning line, the reception frequency of the sparse array corresponding to each scanning line, and the compensation gain corresponding to each scanning line.
  • determining the first parameter corresponding to each scan line according to the position of each scan line includes:
  • the first parameter corresponding to each scan line between the first boundary and the center line gradually becomes larger; the first parameter corresponding to each scan line between the first boundary and the center line gradually increases; The first parameter corresponding to the root scan line gradually becomes larger; or
  • the first parameter corresponding to each scan line between the first boundary and the center line gradually becomes smaller; the first parameter corresponding to each scan line between the first boundary and the center line gradually decreases; The first parameter corresponding to the root scan line gradually becomes smaller.
  • the transmission frequency of the sparse array corresponding to each scan line is determined according to the position of each scan line.
  • the sparse array corresponding to each scan line between the first boundary and the center line gradually increases along the direction of the first boundary toward the center line, for example, each line between the first boundary and the center line
  • the emission frequency of the sparse array corresponding to the scan line can increase monotonously; along the second boundary, the emission frequency of the sparse array corresponding to each scan line between the second boundary and the center line gradually increases, for example, the second
  • the transmission frequency of the sparse array corresponding to each scan line between the boundary and the center line can be monotonically increasing.
  • the emission frequency of the sparse array corresponding to each scan line between the first boundary and the center line gradually becomes smaller, for example, each scan line between the first boundary and the center line corresponds to
  • the emission frequency of the sparse array can be monotonically decreasing; along the second boundary pointing to the direction of the center line, the emission frequency of the sparse array corresponding to each scan line between the second boundary and the center line gradually decreases, for example, the second boundary
  • the transmission frequency of the sparse array corresponding to each scan line can be monotonically decreasing;
  • the reception frequency of the sparse array corresponding to each scan line is determined according to the position of each scan line.
  • the reception frequency of each scan line between the first boundary and the center line corresponding to the sparse array gradually increases, for example, each scan between the first boundary and the center line
  • the receiving frequency of the line corresponding to the sparse array increases monotonically
  • the receiving frequency of the sparse array corresponding to each scan line between the second boundary and the center line gradually increases, for example, the second boundary and the center line
  • the receiving frequency of the sparse array corresponding to each scan line increases monotonically.
  • each scan line between the first boundary and the center line corresponds to The receiving frequency of the array decreases monotonically; along the second boundary, it points in the direction of the center line.
  • the receiving frequency of the sparse array corresponding to each scan line between the second boundary and the center line gradually decreases. For example, the The receiving frequency of the sparse array corresponding to each scan line decreases monotonically.
  • the compensation gain corresponding to each scan line may be determined according to the position of each scan line.
  • the compensation gain corresponding to each scan line between the first boundary and the center line gradually increases along the direction of the first boundary toward the center line, for example, each scan line between the first boundary and the center line corresponds to The compensation gain increases monotonically; along the second boundary points in the direction of the center line, the compensation gain corresponding to each scan line between the second boundary and the center line gradually becomes larger, for example, each scan line between the second boundary and the center line The corresponding compensation gain increases monotonically.
  • the compensation gain corresponding to each scanning line between the first boundary and the center line gradually becomes smaller, for example, the compensation gain corresponding to each scanning line between the first boundary and the center line Monotonically decreasing; along the direction of the second boundary pointing to the center line, the compensation gain of each scan line between the second boundary and the center line gradually becomes smaller, for example, the compensation gain of each scan line between the second boundary and the center line is monotonous Diminishing.
  • the transmission frequency and the reception frequency of the sparse array corresponding to each scan line can also be adjusted according to the position of each scan line; or the sparse array corresponding to each scan line can be adjusted simultaneously The transmit frequency and receive frequency and the compensation gain corresponding to each scan line.
  • the receiving frequency of the sparse array and the compensation gain corresponding to each scan line will not be repeated here.
  • the spatial resolution and raster of the ultrasound image are fully balanced Flap artifacts improve the quality of ultrasound images, and also combine the compensation gain corresponding to each scan line to improve the uniformity of brightness in ultrasound images.
  • the ultrasound image includes M + 1 scan lines 120
  • the imaging method further includes: from the first boundary of the ultrasound image to the second boundary of the ultrasound image, for each scan line Numbering.
  • the scanning line located at the line position of the ultrasound image is numbered M / 2
  • the aperture of the sparse array corresponding to each scanning line is symmetrical with respect to the scanning line numbered M / 2.
  • the emission frequency of the sparse array corresponding to each scan line is symmetrical about the scan line numbered M / 2.
  • the receiving frequency of the sparse array corresponding to each scanning line is symmetrical about the scanning line numbered M / 2.
  • the compensation gain corresponding to each scanning line is symmetrical about the scanning line numbered M / 2.
  • the two scan lines located on both sides of the line in the ultrasound image are numbered (M-1) / 2 and (M + 1) / 2, respectively.
  • the aperture of the sparse array corresponding to each scan line is numbered as
  • the two scan lines of (M-1) / 2 and (M + 1) / 2 are symmetrical.
  • the emission frequency of the sparse array corresponding to each scan line is symmetrical about the two scan lines numbered (M-1) / 2 and (M + 1) / 2.
  • the reception frequency of the sparse array corresponding to each scan line is symmetrical about the two scan lines numbered (M-1) / 2 and (M + 1) / 2.
  • the compensation gain corresponding to each scan line is symmetrical about the two scan lines numbered (M-1) / 2 and (M + 1) / 2.
  • the phased array has 64 array elements, and the effective array element number is 32.
  • the ultrasound image has N + 1 scan lines, denoted as Sln0, Sln1, ..., Sln (N / 2), ..., Sln (N-1), SlnN, respectively.
  • the aperture size of SA (i) is symmetric with respect to the scanning line Sln (N / 2).
  • the scanning line Sln0 selects 32 effective array elements from the first to the 64th array element to construct a sparse array, and the aperture of the sparse array SA (0) corresponding to the scanning line Sln0 is 64 array elements .
  • the scanning line Sln1 selects 32 effective array elements from the second array element to the 63rd array element to construct a sparse array, and the aperture of the sparse array SA (1) corresponding to the scanning line Sln1 is 62 array elements.
  • the scanning line Sln (N / 2-1) selects 32 effective array elements from the 16th to the 49th array element to construct a sparse array, and the scanning line Sln (N / 2-1) corresponds to the sparse
  • the array SA (N / 2-1) has an aperture of 34 array elements.
  • the scanning line Sln (N / 2) selects 32 effective array elements from the 17th to the 48th array element to construct a sparse array
  • the sparse array SA (N corresponding to the scanning line Sln (N / 2) / 2) Aperture 32 array elements.
  • the scan line Sln (N / 2 + 1) selects 32 effective elements from the 16th to the 49th element to construct a sparse array, and the scan line Sln (N / 2 + 1) corresponds to the sparse
  • the array SA (N / 2-1) has an aperture of 34 array elements.
  • the scanning line Sln1 and the scanning line Sln (N-1) select 32 effective array elements from the second array element to the 63rd array element to construct a sparse array, and the sparse array SA (1) corresponding to the scanning line Sln1
  • the aperture of the corresponding sparse array SA (N-1) corresponding to the scan line Sln (N-1) is 62 array elements.
  • the scanning line Sln0 and the scanning line SlnN select 32 effective array elements from the first array element to the 64th array element to construct a sparse array, and the aperture and scanning line of the sparse array SA (0) corresponding to the scanning line Sln0
  • the aperture of the sparse array SA (N) corresponding to SlnN is 64 array elements.
  • the aperture of the sparse array SA (0) is equal to the aperture of the sparse array SA (N)
  • the aperture of the sparse array SA (1) is equal to the aperture of the sparse array SA (N-1)
  • the aperture of the sparse array SA (2) It is equal to the aperture of the sparse array SA (N-2), that is, the aperture of SA (i) is symmetric with respect to the scan line Sln (N / 2).
  • the aperture of the sparse array SA (0) is 64 elements
  • the aperture of the sparse array SA (1) is 62 elements
  • the aperture of the sparse array SA (N / 2-1) is 34 elements
  • the aperture of the sparse array SA (N / 2) is 32 array elements
  • the aperture of the sparse array SA (N / 2-1) is 34 array elements
  • the aperture of the sparse array SA (N-1) is 62 array elements
  • the aperture of the sparse array SA (N) is 64 array elements, that is, the aperture corresponding to the middle scanning line from both boundaries is getting smaller and smaller.
  • the array gradually changes to a uniform array.
  • the transmission frequency of the sparse array corresponding to the ith scan line is denoted as TF (i), and the transmission frequency TF (i) may also be symmetric with respect to the scan line Sln (N / 2).
  • the receiving frequency of the sparse array corresponding to the i-th scanning line is denoted as RF (i), and the receiving frequency RF (i) may also be symmetric with respect to the scanning line Sln (N / 2).
  • the compensation gain corresponding to the i-th scanning line is denoted as SG (i), and the compensation gain SG (i) may also be symmetric with respect to the scanning line Sln (N / 2). I will not repeat them here.
  • steps in the flowcharts of FIG. 1b and FIG. 2 are displayed in order according to the arrows, these steps are not necessarily executed in the order indicated by the arrows. Unless clearly stated in this article, the execution of these steps is not strictly limited in order, and these steps can be executed in other orders. Moreover, at least some of the steps in FIG. 1b and FIG. 2 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but may be executed at different times. These sub-steps or The execution order of the stages is not necessarily sequential, but may be executed in turn or alternately with other steps or sub-steps of the other steps or at least a part of the stages.
  • an imaging device 400 for ultrasound images the ultrasound images including scan lines.
  • the imaging device 400 includes a construction module 410, a transmission module 420, an acquisition module 430, and an imaging module 440, where:
  • the construction module 410 is configured to construct a sparse array corresponding to each scan line, wherein the aperture of the sparse array corresponding to at least one scan line is not equal to the aperture of the sparse array corresponding to the remaining scan lines.
  • the transmitting module 420 is configured to transmit ultrasonic waves to the region of interest through the constructed sparse array corresponding to each scan line.
  • the acquisition module 430 is configured to acquire the echo signal of the region of interest.
  • the imaging module 440 is configured to form an ultrasound image of the region of interest according to the echo signal.
  • each scan line has a corresponding position in the ultrasound image, and the ultrasound image corresponds to a phased array.
  • the building block includes:
  • the aperture determination module 510 is configured to determine the aperture of the sparse array corresponding to each scan line according to the position of each scan line;
  • the array element selection module 520 is configured to select the required array element of each scanning line from the phased array according to the aperture of the sparse array corresponding to each scanning line;
  • the sparse array construction module 530 is configured to construct the sparse array corresponding to each scan line using the selected required array elements of each scan line.
  • Each module in the above-mentioned ultrasound image imaging device may be implemented in whole or in part by software, hardware, and a combination thereof.
  • the above modules may be embedded in the hardware or independent of the processor in the computer device, or may be stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • the present application provides an ultrasound imaging medical device, the medical device includes a controller 610, an ultrasound probe 620, and an image processing unit 630, wherein:
  • the controller 610 is configured to construct a sparse array corresponding to each scan line, where the aperture of the sparse array corresponding to at least one scan line is not equal to the aperture of the sparse array corresponding to the remaining scan lines.
  • the ultrasound probe 620 connected to the controller circuit 610, is set to transmit ultrasound waves to the region of interest through the constructed sparse array corresponding to each scan line; and acquire the echo signal of the region of interest.
  • the image processing unit 630 connected to the ultrasound probe 620, is configured to form an ultrasound image of the region of interest according to the echo signal.
  • the present application provides an ultrasound imaging medical device, the medical device includes an ultrasound probe 710 and a controller 720; the controller 720 includes a memory, a processor, and a storage device that is stored in the memory and can run on the processor A computer program, which when executed by a processor, implements the steps of the method in any of the above embodiments.
  • a computer device is provided.
  • the computer device may be a terminal, and its internal structure may be as shown in FIG. 8.
  • the computer equipment includes a processor, a memory, a network interface, a display screen, and an input device connected through a system bus.
  • the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and computer programs.
  • the internal memory provides an environment for the operating system and computer programs in the non-volatile storage medium.
  • the network interface of the computer device is used to communicate with external terminals through a network connection. When the computer program is executed by the processor, a method for acquiring Mura compensation data is realized.
  • the display screen of the computer device may be a liquid crystal display screen or an electronic ink display screen
  • the input device of the computer device may be a touch layer covered on the display screen, or may be a button, a trackball or a touchpad provided on the computer device housing , Can also be an external keyboard, touchpad or mouse.
  • FIG. 8 is only a block diagram of a part of the structure related to the solution of the present application.
  • the computer device may include more or less components than those shown in the figure, or combine some components. , Or have a different arrangement of components.
  • a computer device which includes a memory and a processor.
  • a computer program is stored in the memory.
  • the processor executes the computer program, the method steps in the foregoing embodiments are implemented.
  • a computer-readable storage medium is provided on which a computer program is stored, and when the computer program is executed by a processor, the method steps in the above embodiments are implemented.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous link (Synchlink) DRAM ( SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous link (Synchlink) DRAM
  • SLDRAM synchronous link (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声图像(110)的成像方法、装置及医疗设备,该超声图像(110)包括扫描线(120),该成像方法包括:构建每根扫描线(120)对应的稀疏阵列(S110),其中,至少存在一根扫描线(120)对应的稀疏阵列的孔径不等于其余的扫描线(120)对应的稀疏阵列的孔径;通过构建的每根扫描线(120)对应的稀疏阵列,向感兴趣区域发射超声波(S120);获取感兴趣区域的回波信号(S130);根据回波信号,形成感兴趣区域的超声图像(S140)。

Description

超声图像的成像方法、装置及医疗设备
本公开要求在2018年11月13日提交中国专利局、申请号为201811345839.3的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请涉及医学成像技术领域,例如涉及一种超声图像的成像方法、装置及医疗设备。
背景技术
医学超声成像技术经过半个多世纪的发展,由于其实时性强、对软组织鉴别力高、易于使用和经济性好等优点,已经成为医学临床中应用最广泛的影像技术和临床多种疾病诊断的首选方法。
为了降低产品的制造成本及系统复杂度,超声成像系统通过稀疏阵列利用较少阵元数目以获得大阵列孔径,当阵元数目相同时,稀疏阵列比具有相同阵元数目的均匀阵列拥有更大的孔径,从而得到更窄的扫描波束,提高了超声成像系统的空间分辨率。此外,稀疏阵列的阵元间距增大,可以降低阵元之间的互耦效应。
但是,在相关技术中,稀疏阵列相比于均匀阵列,其栅瓣伪像较大。
发明内容
本申请提供了一种超声图像的成像方法、装置及医疗设备,以解决相关技术中利用稀疏阵列成像存在栅瓣伪像较大的技术问题。
本申请提供了一种超声图像的成像方法,所述超声图像包括扫描线,所述方法包括:
构建每根所述扫描线对应的稀疏阵列,其中,至少存在一根所述扫描线对应的稀疏阵列的孔径不等于其余的所述扫描线对应的稀疏阵列的孔径;
通过所述构建的每根所述扫描线对应的稀疏阵列,向感兴趣区域发射超声波;
获取所述感兴趣区域的回波信号;
根据所述回波信号,形成所述感兴趣区域的超声图像。
在其中一个实施例中,每根所述扫描线在所述超声图像中具有对应的位置, 所述超声图像对应有相控阵列;所述构建每根所述扫描线对应的稀疏阵列,包括:
根据每根所述扫描线的位置,确定每根所述扫描线对应的稀疏阵列的孔径;
根据每根所述扫描线对应的稀疏阵列的孔径,从所述相控阵列中,选择每根所述扫描线的所需阵元;
利用所述选择的每根所述扫描线的所需阵元,构建每根所述扫描线对应的稀疏阵列。
在其中一个实施例中,所述超声图像具有第一边界和第二边界,所述第一边界及所述第二边界分别位于所述超声图像中线的两侧;所述根据每根所述扫描线的位置,确定每根所述扫描线对应的稀疏阵列的孔径,包括:
沿着所述第一边界指向所述中线的方向,所述第一边界与所述中线之间的每根所述扫描线对应的稀疏阵列的孔径逐渐变小;沿着所述第二边界指向所述中线的方向,所述第二边界与所述中线之间的每根所述扫描线对应的稀疏阵列的孔径逐渐变小;或
沿着所述第一边界指向所述中线的方向,所述第一边界与所述中线之间的每根所述扫描线对应的稀疏阵列的孔径逐渐变大;沿着所述第二边界指向所述中线的方向,所述第二边界与所述中线之间的每根所述扫描线对应的稀疏阵列的孔径逐渐变大。
在其中一个实施例中,在所述根据所述回波信号,形成所述感兴趣区域的超声图像之前,所述方法还包括:根据每根所述扫描线的位置,确定每根所述扫描线对应的第一参数,所述第一参数为发射频率、接收频率、补偿增益中的任一个或多个。
在其中一个实施例中,所述根据每根所述扫描线的位置,确定每根所述扫描线对应的第一参数,包括:
沿着所述第一边界指向所述中线的方向,所述第一边界与所述中线之间的每根所述扫描线对应的第一参数逐渐变大;沿着所述第二边界指向所述中线的方向,所述第二边界与所述中线之间的每根所述扫描线对应的第一参数逐渐变大;或
沿着所述第一边界指向所述中线的方向,所述第一边界与所述中线之间的每根所述扫描线对应的第一参数逐渐变小;沿着所述第二边界指向所述中线的方向,所述第二边界与所述中线之间的每根所述扫描线对应的第一参数逐渐变 小。
在其中一个实施例中,所述超声图像包括M+1根扫描线,所述方法还包括:
从所述超声图像的第一边界至所述超声图像的第二边界,对每根所述扫描线进行编号,每根所述扫描线具有对应的第二参数表示为F,F(i)=F(M-i);
其中,i为整数,F(i)为第i根所述扫描线对应的第二参数,F(M-i)为第M-i根所述扫描线对应的第二参数;所述第二参数为所述稀疏阵列的孔径、发射频率、接收频率、补偿增益中的任一个。
本申请还提供了一种超声图像的成像装置,所述超声图像包括扫描线,所述装置包括:
构建模块,被设置为构建每根所述扫描线对应的稀疏阵列,其中,至少存在一根所述扫描线对应的稀疏阵列的孔径不等于其余的所述扫描线对应的稀疏阵列的孔径;
发射模块,被设置为通过所述构建的每根所述扫描线对应的稀疏阵列,向感兴趣区域发射超声波;
获取模块,被设置为获取所述感兴趣区域的回波信号;
成像模块,被设置为根据所述回波信号,形成所述感兴趣区域的超声图像。
在其中一个实施例中,每根所述扫描线在所述超声图像中具有对应的位置,所述超声图像对应有相控阵列;所述构建模块包括:
孔径确定模块,被设置为根据每根所述扫描线的位置,确定每根所述扫描线对应的稀疏阵列的孔径;
阵元选择模块,被设置为根据每根所述扫描线对应的稀疏阵列的孔径,从所述相控阵列中,选择每根所述扫描线的所需阵元;
稀疏阵列构建模块,被设置为利用所述选择的每根所述扫描线的所需阵元,构建每根所述扫描线对应的稀疏阵列。
一种超声成像的医疗设备,包括:
控制器,被设置为构建每根扫描线对应的稀疏阵列,其中,至少存在一根所述扫描线对应的稀疏阵列的孔径不等于其余的所述扫描线对应的稀疏阵列的孔径;
超声探头,与所述控制器电连接,被设置为通过所述构建的每根所述扫描线对应的稀疏阵列,向感兴趣区域发射超声波;并获取所述感兴趣区域的回波信号;
图像处理单元,与所述超声探头连接,被设置为根据所述回波信号,形成所述感兴趣区域的超声图像。
本申请还提供了一种超声成像的医疗设备,包括超声探头和控制器;所述控制器包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被处理器执行时实现上述任一实施例中的方法的步骤。
上述超声图像的成像方法、装置及医疗设备,该超声图像包括扫描线,通过构建每根扫描线对应的稀疏阵列,其中,至少存在一根扫描线对应的稀疏阵列的孔径不等于其余的扫描线对应的稀疏阵列的孔径;通过构建的每根扫描线对应的稀疏阵列,向感兴趣区域发射超声波;获取感兴趣区域的回波信号;根据回波信号,形成感兴趣区域的超声图像。通过合理的构建每根扫描线对应的稀疏阵列,以平衡空间分辨率和栅瓣伪像,从而提高超声图像的质量和对比分辨率。
附图说明
图1a为一个实施例中超声图像的示意图;
图1b为一个实施例中超声图像的成像方法的流程示意图;
图2为一个实施例中S110步骤的流程示意图;
图3为一个实施例中构建稀疏阵列的示意图;
图4为一个实施例中超声图像的成像装置的结构框图;
图5为一个实施例中超声图像的成像装置的结构框图;
图6为一个实施例中超声成像的医疗设备的结构框图;
图7为一个实施例中超声成像的医疗设备的结构框图;
图8为一个实施例中计算机设备的内部结构图。
具体实施方式
正如背景技术所述,在超声检测(通常是相控阵超声检测)中,稀疏阵列是利用较少数量的阵元以获得大阵列孔径的有效办法。当阵元数目相同时,稀疏阵列比均匀阵列拥有更大的孔径,从而得到更窄的扫描波束,进而提高超声成像系统的空间分辨率。另外,稀疏阵列的阵元间距增大,可以降低阵元之间的互耦效应。但是,稀疏阵列相比于均匀阵列,其栅瓣伪像较大,严重影响了成像效果和对比分辨率。因此,需要合理地应用稀疏阵列以平衡空间分辨率和 栅瓣伪像。
本申请提供了一种超声图像的成像方法,该超声图像包括扫描线,该成像方法包括:构建每根扫描线对应的稀疏阵列,其中,至少存在一根扫描线对应的稀疏阵列的孔径不等于其余的扫描线对应的稀疏阵列的孔径;通过构建的每根扫描线对应的稀疏阵列,向感兴趣区域发射超声波;获取感兴趣区域的回波信号;根据回波信号,形成感兴趣区域的超声图像。
下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。
在一个实施例中,请参见图1a,超声图像110包括扫描线120。请参见图1b,本申请提供了一种超声图像的成像方法。该成像方法包括以下步骤:
S110、构建每根扫描线对应的稀疏阵列。
以人类为例进行说明,超声成像系统利用超声波在人体中的传播,来取得人体组织和器官结构的超声波特征信息。高压脉冲波加载在探头的各阵元上,激励阵元产生高频超声波进而形成发射波束进入人体。探头的各阵元接收来自人体组织结构散射或反射的回波,形成接收波束。超声成像系统的信号处理通道提取超声回波中的信息,形成各种成像的扫描线数据,以生成扫描线,则每根扫描线对应有发射阵列和接收阵列。阵列的孔径越大,相应成像的空间分辨率也随之提高。阵列的孔径可以通过增多阵元个数和加大阵元间距来实现,但增加阵元个数会增加超声探头的成本,同时也会受到工艺上的限制,通过采用稀疏阵列能够减少超声探头的发射阵元或者接收阵元。
稀疏阵列技术的设计初衷就是在不降低甚至提高成像质量的前提下,利用稀疏阵列增大阵列的孔径,提高成像分辨率。由于过度增大稀疏阵列的孔径,会产生较大的栅瓣,进而影响成像质量。所以,可以根据实际情况,比如超声图像的空间分辨率或者对比度的需求,构建超声图像中的每根扫描线对应的稀疏阵列。在每根扫描线对应的稀疏阵列中,阵元布置的位置决定该稀疏阵列的孔径。本实施例中,每根扫描线对应的稀疏阵列并不是完全相同的,至少存在一根扫描线对应的稀疏阵列的孔径不等于其余的扫描线对应的稀疏阵列的孔径。
S120、通过构建的每根扫描线对应的稀疏阵列,向感兴趣区域发射超声波。
需要说明的是,感兴趣区域指的是对患者的某个部位,并对该感兴趣区域发射超声波,以实现超声成像的目的。其中,患者指的是动物,包括哺乳动物特别是人类。在一些实施例中,可以根据实际情况,构建超声图像中的每根扫 描线对应的稀疏阵列,然后通过构建的每根扫描线对应的稀疏阵列,向感兴趣区域发射超声波。
S130、获取感兴趣区域的回波信号。
向患者的某个部位发射超声波,以人类为例进行说明,超声波在人体内传播,在传播过程中,超声波经过反射、折射和散射,主要是反射。携带有人体组织解剖特征的反射波即回波又传播回超声探头,超声探头把接收到的超声波的回波转换为电信号,即回波信号。
S140、根据回波信号,形成感兴趣区域的超声图像。
通过超声探头可以接收到超声波的回波,对超声波的回波进行处理,获取感兴趣区域的组织信号和造影信号。根据实际的成像需求,对组织信号和造影信号进行不同的处理,获得不同需求对应的图像数据,然后经过数据压缩、动态范围调整、数字扫描变换等处理方式以对感兴趣区域进行超声成像,从而得到当前时刻的超声图像。
本实施例中,通过构建超声图像中的每根扫描线对应的稀疏阵列,且每根扫描线对应的稀疏阵列并不是相同的,至少存在一根扫描线对应的稀疏阵列的孔径不等于其余的扫描线对应的稀疏阵列的孔径,实现了根据实际情况,合理的设置每根扫描线对应的稀疏阵列,以平衡空间分辨率和栅瓣伪像,在保证超声图像分辨率的前提下,同样地提高了超声图像的质量和对比分辨率。
在一个实施例中,请继续参见图1a,每根扫描线120在超声图像中具有对应的位置。超声图像对应有相控阵列。请参见图2,构建每根扫描线对应的稀疏阵列,包括以下步骤:
S210、根据每根扫描线的位置,确定每根扫描线对应的稀疏阵列的孔径。
S220、根据每根扫描线对应的稀疏阵列的孔径,从相控阵列中,选择每根扫描线的所需阵元。
S230、利用选择的每根扫描线的所需阵元,构建每根扫描线对应的稀疏阵列。
需要说明的是,超声相控阵技术的基本思想来自于雷达电磁波相控阵技术。超声图像对应的相控阵列是由多个独立的阵元组成的阵列,按一定的规则和时序激发各个阵元以控制焦点的位置和聚焦的方向。在一些实施例中,每根扫描线在超声图像中具有对应的位置,超声图像中不同位置对于超声图像的质量比如空间分辨率、对比分辨率等具有不同要求,可以根据每根扫描线在超声图像 中的位置,确定每根扫描线对应的稀疏阵列的孔径。稀疏阵列的孔径与阵元数目、阵元间距有关,且不同的超声图像需要不同预设数量的有效阵元。超声图像对应有相控阵列,可以根据每根扫描线对应的稀疏阵列的孔径,在超声图像对应的相控阵列中,选择每根扫描线的有效阵元,即选择每根扫描线所需的阵元。然后,利用选择的每根扫描线的所需阵元,构建每根扫描线对应的稀疏阵列。
在本实施例中,根据每根扫描线的位置,确定每根扫描线对应的稀疏阵列的孔径,从而根据每根扫描线对应的稀疏阵列的孔径,从相控阵列中,选择每根扫描线的所需阵元,进而利用选择的每根扫描线的所需阵元,构建每根扫描线对应的稀疏阵列,实现了根据实际情况构建符合需求的稀疏阵列,从而平衡了空间分辨率和栅瓣伪像,在保证超声图像分辨率的前提下,同样地提高了超声图像的质量和对比分辨率。
在一个实施例中,请继续参见图1a,超声图像具有第一边界130和第二边界140,第一边界130及第二边界140分别位于超声图像中线150的两侧。根据每根扫描线的位置,确定每根扫描线对应的稀疏阵列的孔径,包括:
沿着第一边界指向中线的方向,第一边界与中线之间的每根扫描线对应的稀疏阵列的孔径逐渐变小,比如,第一边界与中线之间的每根扫描线对应的稀疏阵列的孔径可以单调递减;沿着第二边界指向中线的方向,第二边界与中线之间的每根扫描线对应的稀疏阵列的孔径逐渐变小,比如,第二边界与中线之间的每根扫描线对应的稀疏阵列的孔径可以单调递减。
或者,沿着第一边界指向中线的方向,第一边界与中线之间的每根扫描线对应的稀疏阵列的孔径逐渐变大,比如,第一边界与中线之间的每根扫描线对应的稀疏阵列的孔径可以单调递增;沿着第二边界指向中线的方向,第二边界与中线之间的每根扫描线对应的稀疏阵列的孔径逐渐变大,比如,第二边界与中线之间的每根扫描线对应的稀疏阵列的孔径可以单调递增。
本实施例中,沿着第一边界指向中线的方向,第一边界与中线之间的每根扫描线对应的稀疏阵列的孔径逐渐变小或变大,沿着第二边界指向中线的方向,第二边界与中线之间的每根扫描线对应的稀疏阵列的孔径逐渐变小或变大,灵活设置每根扫描线对应的稀疏阵列的孔径,可以满足超声图像对空间分辨率的要求,并且栅瓣伪像不影响图像质量。
在一个实施例中,在根据回波信号,形成感兴趣区域的超声图像之前,该 方法还包括:根据每根扫描线的位置,确定每根扫描线对应的第一参数,第一参数为每根扫描线对应的稀疏阵列的发射频率、每根扫描线对应的稀疏阵列的接收频率、每根扫描线对应的补偿增益中的任一个或多个。
在一个实施例中,根据每根所述扫描线的位置,确定每根所述扫描线对应的第一参数,包括:
沿着第一边界指向中线的方向,第一边界与中线之间的每根扫描线对应的第一参数逐渐变大;沿着第二边界指向中线的方向,第二边界与中线之间的每根扫描线对应的第一参数逐渐变大;或
沿着第一边界指向中线的方向,第一边界与中线之间的每根扫描线对应的第一参数逐渐变小;沿着第二边界指向中线的方向,第二边界与中线之间的每根扫描线对应的第一参数逐渐变小。
示例性地,为了抑制栅瓣对超声图像的影响,在向感兴趣区域发射超声波之前,根据每根扫描线的位置,确定每根扫描线对应的稀疏阵列的发射频率。
需要说明的是,沿着第一边界指向中线的方向,第一边界与中线之间的每根扫描线对应的稀疏阵列的发射频率逐渐变大,比如,第一边界与中线之间的每根扫描线对应的稀疏阵列的发射频率可以单调递增;沿着第二边界指向中线的方向,第二边界与中线之间的每根扫描线对应的稀疏阵列的发射频率逐渐变大,比如,第二边界与中线之间的每根扫描线对应的稀疏阵列的发射频率可以单调递增。
或者,沿着第一边界指向中线的方向,第一边界与中线之间的每根扫描线对应的稀疏阵列的发射频率逐渐变小,比如,第一边界与中线之间的每根扫描线对应的稀疏阵列的发射频率可以单调递减;沿着第二边界指向中线的方向,第二边界与中线之间的每根扫描线对应的稀疏阵列的发射频率逐渐变小,比如,第二边界与中线之间的每根扫描线对应的稀疏阵列的发射频率可以单调递减;
示例性地,为了抑制栅瓣对超声图像的影响,在获取感兴趣区域的回波信号之前,根据每根扫描线的位置,确定每根扫描线对应的稀疏阵列的接收频率。
需要说明的是,沿着第一边界指向中线的方向,第一边界与中线之间的每根扫描线对应稀疏阵列的接收频率逐渐变大,比如,第一边界与中线之间的每根扫描线对应稀疏阵列的接收频率单调递增;沿着第二边界指向中线的方向,第二边界与中线之间的每根扫描线对应的稀疏阵列的接收频率逐渐变大,比如,第二边界与中线之间的每根扫描线对应的稀疏阵列的接收频率单调递增。
或者,沿着第一边界指向中线的方向,第一边界与中线之间的每根扫描线对应稀疏阵列的接收频率逐渐变小,比如,第一边界与中线之间的每根扫描线对应稀疏阵列的接收频率单调递减;沿着第二边界指向中线的方向,第二边界与中线之间的每根扫描线对应的稀疏阵列的接收频率逐渐变小,比如,第二边界与中线之间的每根扫描线对应的稀疏阵列的接收频率单调递减。
示例性地,为了提高超声图像的亮度均一性,在根据回波信号,形成感兴趣区域的超声图像之前,可以根据每根扫描线的位置,确定每根扫描线对应的补偿增益。
需要说明的是,沿着第一边界指向中线的方向,第一边界与中线之间的每根扫描线对应的补偿增益逐渐变大,比如,第一边界与中线之间的每根扫描线对应的补偿增益单调递增;沿着第二边界指向中线的方向,第二边界与中线之间的每根扫描线对应的补偿增益逐渐变大,比如,第二边界与中线之间的每根扫描线对应的补偿增益单调递增。
或者,沿着第一边界指向中线的方向,第一边界与中线之间的每根扫描线对应的补偿增益逐渐变小,比如,第一边界与中线之间的每根扫描线对应的补偿增益单调递减;沿着第二边界指向中线的方向,第二边界与中线之间的每根扫描线的补偿增益逐渐变小,比如,第二边界与中线之间的每根扫描线的补偿增益单调递减。
可以理解的是,为了提高超声图像的质量,也可以根据每根扫描线的位置,同时调节每根扫描线对应的稀疏阵列的发射频率及接收频率;或者同时调节每根扫描线对应的稀疏阵列的发射频率及接收频率和每根扫描线对应的补偿增益。还可以根据每根扫描线的位置,同时调节每根扫描线对应的稀疏阵列的发射频率和每根扫描线对应的补偿增益;或者根据每根扫描线的位置,同时调节每根扫描线对应的稀疏阵列的接收频率和每根扫描线对应的补偿增益,在此不再赘述。
本实施例中,考虑到影响超声图像质量的因素,结合每根扫描线对应的稀疏阵列的发射频率、每根扫描线对应的稀疏阵列的接收频率,全面地平衡超声图像的空间分辨率和栅瓣伪像,改善超声图像的质量,还结合每根扫描线对应的补偿增益,提高超声图像的亮度均一性。
在一个实施例中,请继续参见图1a,超声图像包括M+1根扫描线120,该成像方法还包括:从超声图像的第一边界至超声图像的第二边界,对每根扫描 线进行编号。每根扫描线具有对应的第二参数表示为F,F(i)=F(M-i);其中,i为整数,F(i)为第i根扫描线对应的第二参数,F(M-i)为第M-i根扫描线对应的第二参数;第二参数为稀疏阵列的孔径、发射频率、接收频率、补偿增益中的任一个。
假设M为偶数,则位于超声图像中线位置的扫描线的编号为M/2,每根扫描线对应的稀疏阵列的孔径关于编号为M/2的扫描线对称。每根扫描线对应的稀疏阵列的发射频率关于编号为M/2的扫描线对称。每根扫描线对应的稀疏阵列的接收频率关于编号为M/2的扫描线对称。每根扫描线对应的补偿增益关于编号为M/2的扫描线对称。
假设M为奇数,则位于超声图像中线两侧的两根扫描线的编号分别为(M-1)/2和(M+1)/2,每根扫描线对应的稀疏阵列的孔径关于编号为(M-1)/2和(M+1)/2的两根扫描线对称。每根扫描线对应的稀疏阵列的发射频率关于编号为(M-1)/2和(M+1)/2的两根扫描线对称。每根扫描线对应的稀疏阵列的接收频率关于编号为(M-1)/2和(M+1)/2的两根扫描线对称。每根扫描线对应的补偿增益关于编号为(M-1)/2和(M+1)/2的两根扫描线对称。
示例性地,以64选32典型的稀疏阵列为例说明如何构建每根扫描线对应稀疏阵列。相控阵列具有64个阵元,有效阵元数为32。超声图像具有N+1根扫描线,分别记为Sln0,Sln1,…,Sln(N/2),…,Sln(N-1),SlnN。其中,第i根扫描线对应的稀疏阵列记为SA(i),i=0,1,2,…,N-1,N。为了平衡超声图像的空间分辨率和栅瓣伪像,SA(i)的孔径大小相对于扫描线Sln(N/2)对称。
请参见图3,扫描线Sln0从第1个阵元至第64个阵元中选择32个有效阵元构建稀疏阵列,且扫描线Sln0对应的稀疏阵列SA(0)的孔径为64个阵元。
扫描线Sln1从第2个阵元至第63个阵元中选择32个有效阵元构建稀疏阵列,且扫描线Sln1对应的稀疏阵列SA(1)的孔径为62个阵元。
依次类推,扫描线Sln(N/2-1)从第16个阵元至第49个阵元中选择32个有效阵元构建稀疏阵列,且扫描线Sln(N/2-1)对应的稀疏阵列SA(N/2-1)的孔径34个阵元。
依次类推,扫描线Sln(N/2)从第17个阵元至第48个阵元中选择32个有效阵元构建稀疏阵列,且扫描线Sln(N/2)对应的稀疏阵列SA(N/2)的孔径32个阵元。
依次类推,扫描线Sln(N/2+1)从第16个阵元至第49个阵元中选择32个有 效阵元构建稀疏阵列,且扫描线Sln(N/2+1)对应的稀疏阵列SA(N/2-1)的孔径34个阵元。
依次类推,扫描线Sln1和扫描线Sln(N-1)从第2个阵元至第63个阵元中选择32个有效阵元构建稀疏阵列,且扫描线Sln1对应的稀疏阵列SA(1)的孔径和扫描线Sln(N-1)对应的稀疏阵列SA(N-1)的孔径为62个阵元。
依次类推,扫描线Sln0和扫描线SlnN从第1个阵元至第64个阵元中选择32个有效阵元构建稀疏阵列,且扫描线Sln0对应的稀疏阵列SA(0)的孔径和扫描线SlnN对应的稀疏阵列SA(N)的孔径为64个阵元。
由上可知,稀疏阵列SA(0)的孔径等于稀疏阵列SA(N)的孔径,稀疏阵列SA(1)的孔径等于稀疏阵列SA(N-1)的孔径,稀疏阵列SA(2)的孔径等于稀疏阵列SA(N-2)的孔径,即SA(i)的孔径大小相对于扫描线Sln(N/2)对称。
另外,稀疏阵列SA(0)的孔径为64个阵元,稀疏阵列SA(1)的孔径为62个阵元,……,稀疏阵列SA(N/2-1)的孔径34个阵元,稀疏阵列SA(N/2)的孔径32个阵元,稀疏阵列SA(N/2-1)的孔径34个阵元,……,稀疏阵列SA(N-1)的孔径为62个阵元,稀疏阵列SA(N)的孔径为64个阵元,即从两个边界向中间扫描线对应的孔径均越来越小,也可以说是扫面线对应的稀疏阵列也是从间距大的稀疏阵列向均匀阵列逐步转变。
可以理解的是,第i根扫描线对应的稀疏阵列的发射频率记为TF(i),发射频率TF(i)也可以相对于扫描线Sln(N/2)对称。第i根扫描线对应的稀疏阵列的接收频率记为RF(i),接收频率RF(i)也可以相对于扫描线Sln(N/2)对称。第i根扫描线对应补偿增益记为SG(i),补偿增益SG(i)也可以相对于扫描线Sln(N/2)对称。在此不再赘述。
应该理解的是,虽然图1b和图2的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1b和图2中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图4所示,提供了一种超声图像的成像装置400,超声 图像包括扫描线。该成像装置400包括:构建模块410、发射模块420、获取模块430和成像模块440,其中:
构建模块410,被设置为构建每根扫描线对应的稀疏阵列,其中,至少存在一根扫描线对应的稀疏阵列的孔径不等于其余的扫描线对应的稀疏阵列的孔径。
发射模块420,被设置为通过构建的每根扫描线对应的稀疏阵列,向感兴趣区域发射超声波。
获取模块430,被设置为获取感兴趣区域的回波信号。
成像模块440,被设置为根据回波信号,形成感兴趣区域的超声图像。
在一个实施例中,每根扫描线在超声图像中具有对应的位置,超声图像对应有相控阵列。如图5所示,该构建模块包括:
孔径确定模块510,被设置为根据每根扫描线的位置,确定每根扫描线对应的稀疏阵列的孔径;
阵元选择模块520,被设置为根据每根扫描线对应的稀疏阵列的孔径,从相控阵列中,选择每根扫描线的所需阵元;
稀疏阵列构建模块530,被设置为利用选择的每根扫描线的所需阵元,构建每根扫描线对应的稀疏阵列。
关于超声图像的成像装置的限定可以参见上文中对超声图像的成像方法的限定,在此不再赘述。上述超声图像的成像装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,本申请提供一种超声成像的医疗设备,该医疗设备包括控制器610、超声探头620和图像处理单元630,其中:
控制器610,被设置为构建每根扫描线对应的稀疏阵列,其中,至少存在一根扫描线对应的稀疏阵列的孔径不等于其余的扫描线对应的稀疏阵列的孔径。
超声探头620,与控制器电610连接,被设置为通过构建的每根扫描线对应的稀疏阵列,向感兴趣区域发射超声波;并获取感兴趣区域的回波信号。
图像处理单元630,与超声探头620连接,被设置为根据回波信号,形成感兴趣区域的超声图像。
在一个实施例中,本申请提供一种超声成像的医疗设备,该医疗设备包括超声探头710和控制器720;控制器720包括存储器、处理器以及存储在存储器 上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现上述任一实施例中的方法的步骤。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图8所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种获取Mura补偿数据的方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图8中示出的结构,仅仅是与本申请方案相关的部分结构的框图,计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述实施例中的方法步骤。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述实施例中的方法步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路 (Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

Claims (10)

  1. 一种超声图像的成像方法,所述超声图像包括扫描线,所述方法包括:
    构建每根所述扫描线对应的稀疏阵列,其中,至少存在一根所述扫描线对应的稀疏阵列的孔径不等于其余的所述扫描线对应的稀疏阵列的孔径;
    通过所述构建的每根所述扫描线对应的稀疏阵列,向感兴趣区域发射超声波;
    获取所述感兴趣区域的回波信号;
    根据所述回波信号,形成所述感兴趣区域的超声图像。
  2. 根据权利要求1所述的方法,其中,每根所述扫描线在所述超声图像中具有对应的位置,所述超声图像对应有相控阵列;所述构建每根所述扫描线对应的稀疏阵列,包括:
    根据每根所述扫描线的位置,确定每根所述扫描线对应的稀疏阵列的孔径;
    根据每根所述扫描线对应的稀疏阵列的孔径,从所述相控阵列中,选择每根所述扫描线的所需阵元;
    利用所述选择的每根所述扫描线的所需阵元,构建每根所述扫描线对应的稀疏阵列。
  3. 根据权利要求2所述的方法,其中,所述超声图像具有第一边界和第二边界,所述第一边界及所述第二边界分别位于所述超声图像中线的两侧;所述根据每根所述扫描线的位置,确定每根所述扫描线对应的稀疏阵列的孔径,包括:
    沿着所述第一边界指向所述中线的方向,所述第一边界与所述中线之间的每根所述扫描线对应的稀疏阵列的孔径逐渐变小;沿着所述第二边界指向所述中线的方向,所述第二边界与所述中线之间的每根所述扫描线对应的稀疏阵列的孔径逐渐变小;或
    沿着所述第一边界指向所述中线的方向,所述第一边界与所述中线之间的每根所述扫描线对应的稀疏阵列的孔径逐渐变大;沿着所述第二边界指向所述中线的方向,所述第二边界与所述中线之间的每根所述扫描线对应的稀疏阵列的孔径逐渐变大。
  4. 根据权利要求3所述的方法,在所述根据所述回波信号,形成所述感兴趣区域的超声图像之前,所述方法还包括:
    根据每根所述扫描线的位置,确定每根所述扫描线对应的第一参数,所述第一参数为发射频率、接收频率、补偿增益中的任一个或多个。
  5. 根据权利要求4所述的方法,其中,所述根据每根所述扫描线的位置,确定每根所述扫描线对应的第一参数,包括:
    沿着所述第一边界指向所述中线的方向,所述第一边界与所述中线之间的每根所述扫描线对应的第一参数逐渐变大;沿着所述第二边界指向所述中线的方向,所述第二边界与所述中线之间的每根所述扫描线对应的第一参数逐渐变大;或
    沿着所述第一边界指向所述中线的方向,所述第一边界与所述中线之间的每根所述扫描线对应的第一参数逐渐变小;沿着所述第二边界指向所述中线的方向,所述第二边界与所述中线之间的每根所述扫描线对应的第一参数逐渐变小。
  6. 根据权利要求1至5任一项所述的方法,所述超声图像包括M+1根扫描线,所述方法还包括:
    从所述超声图像的第一边界至所述超声图像的第二边界,对每根所述扫描线进行编号,每根所述扫描线具有对应的第二参数表示为F,F(i)=F(M-i);
    其中,i为整数,F(i)为第i根所述扫描线对应的第二参数,F(M-i)为第M-i根所述扫描线对应的第二参数;所述第二参数为所述稀疏阵列的孔径、发射频率、接收频率、补偿增益中的任一个。
  7. 一种超声图像的成像装置,所述超声图像包括扫描线,其特征在于,所述装置包括:
    构建模块,被设置为构建每根所述扫描线对应的稀疏阵列,其中,至少存在一根所述扫描线对应的稀疏阵列的孔径不等于其余的所述扫描线对应的稀疏阵列的孔径;
    发射模块,被设置为通过所述构建的每根所述扫描线对应的稀疏阵列,向感兴趣区域发射超声波;
    获取模块,被设置为获取所述感兴趣区域的回波信号;
    成像模块,被设置为根据所述回波信号,形成所述感兴趣区域的超声图像。
  8. 根据权利要求7所述的装置,每根所述扫描线在所述超声图像中具有对应的位置,所述超声图像对应有相控阵列;所述构建模块包括:
    孔径确定模块,被设置为根据每根所述扫描线的位置,确定每根所述扫描线对应的稀疏阵列的孔径;
    阵元选择模块,被设置为根据每根所述扫描线对应的稀疏阵列的孔径,从 所述相控阵列中,选择每根所述扫描线的所需阵元;
    稀疏阵列构建模块,被设置为利用所述选择的每根所述扫描线的所需阵元,构建每根所述扫描线对应的稀疏阵列。
  9. 一种超声成像的医疗设备,包括:
    控制器,被设置为构建每根扫描线对应的稀疏阵列,其中,至少存在一根所述扫描线对应的稀疏阵列的孔径不等于其余的所述扫描线对应的稀疏阵列的孔径;
    超声探头,与所述控制器电连接,被设置为通过所述构建的每根所述扫描线对应的稀疏阵列,向感兴趣区域发射超声波;并获取所述感兴趣区域的回波信号;
    图像处理单元,与所述超声探头连接,被设置为根据所述回波信号,形成所述感兴趣区域的超声图像。
  10. 一种超声成像的医疗设备,包括超声探头和控制器;所述控制器包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被处理器执行时实现权利要求1至6中任一项所述方法中的步骤。
PCT/CN2019/117507 2018-11-13 2019-11-12 超声图像的成像方法、装置及医疗设备 WO2020098642A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811345839.3A CN109350112B (zh) 2018-11-13 2018-11-13 超声图像的成像方法、装置及医疗设备
CN201811345839.3 2018-11-13

Publications (1)

Publication Number Publication Date
WO2020098642A1 true WO2020098642A1 (zh) 2020-05-22

Family

ID=65344894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117507 WO2020098642A1 (zh) 2018-11-13 2019-11-12 超声图像的成像方法、装置及医疗设备

Country Status (2)

Country Link
CN (1) CN109350112B (zh)
WO (1) WO2020098642A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109350112B (zh) * 2018-11-13 2020-06-12 飞依诺科技(苏州)有限公司 超声图像的成像方法、装置及医疗设备
CN110013270A (zh) * 2019-04-24 2019-07-16 飞依诺科技(苏州)有限公司 超声成像宽频带信号发射和处理及其对应的系统
CN116058869A (zh) * 2023-01-09 2023-05-05 飞依诺科技股份有限公司 超声设备的合成孔径方法及装置
CN115919362B (zh) * 2023-03-15 2023-05-30 深圳英美达医疗技术有限公司 超声成像系统的伪像去除方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911692A (en) * 1998-01-20 1999-06-15 General Electric Company Sparse two-dimensional wideband ultrasound transducer arrays
US20050033165A1 (en) * 2003-07-25 2005-02-10 Siemens Medical Solutions Usa , Inc. Adaptive grating lobe suppression in ultrasound imaging
CN101094612A (zh) * 2004-10-29 2007-12-26 通用电气公司 可重新配置的传感器元件阵列的最优开关配置
CN104688271A (zh) * 2015-03-27 2015-06-10 清华大学 合成聚焦超声成像方法和装置
US20170209121A1 (en) * 2016-01-27 2017-07-27 Henry A. DAVIS, SR. Ultrasound imaging with sparse array probes
CN109350112A (zh) * 2018-11-13 2019-02-19 飞依诺科技(苏州)有限公司 超声图像的成像方法、装置及医疗设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014897A (en) * 1998-09-02 2000-01-18 Mo; Larry Y. L. Method and apparatus for improving sidelobe performance of sparse array using harmonic imaging
EP1194920B1 (en) * 1999-05-10 2003-07-16 B-K Medical A/S Recursive ultrasound imaging
KR100945466B1 (ko) * 2008-05-07 2010-03-08 서강대학교산학협력단 초음파 영상 시스템의 비균일 가중 주기 희박 어레이의최적 설계 방법
CN102920478B (zh) * 2012-11-22 2014-04-16 山东大学 一种合成聚焦的便携式b型超声成像方法
JP6072723B2 (ja) * 2014-04-21 2017-02-01 株式会社日立製作所 磁気共鳴イメージング装置、及び画像撮像方法
CN105595964B (zh) * 2016-01-21 2018-08-14 曲阜师范大学 双聚焦超声探头和稀疏阵列光声断层成像系统
CN110141270B (zh) * 2019-06-21 2022-01-28 青岛海信医疗设备股份有限公司 波束合成方法及设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911692A (en) * 1998-01-20 1999-06-15 General Electric Company Sparse two-dimensional wideband ultrasound transducer arrays
US20050033165A1 (en) * 2003-07-25 2005-02-10 Siemens Medical Solutions Usa , Inc. Adaptive grating lobe suppression in ultrasound imaging
CN101094612A (zh) * 2004-10-29 2007-12-26 通用电气公司 可重新配置的传感器元件阵列的最优开关配置
CN104688271A (zh) * 2015-03-27 2015-06-10 清华大学 合成聚焦超声成像方法和装置
US20170209121A1 (en) * 2016-01-27 2017-07-27 Henry A. DAVIS, SR. Ultrasound imaging with sparse array probes
CN108778530A (zh) * 2016-01-27 2018-11-09 毛伊图像公司 具有稀疏阵列探测器的超声成像
CN109350112A (zh) * 2018-11-13 2019-02-19 飞依诺科技(苏州)有限公司 超声图像的成像方法、装置及医疗设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUI ZHENG: "Research on optimized design of ultrasonic phased array based on one-dimensional sparse array", MASTER THESIS, 15 August 2016 (2016-08-15), pages 1 - 95, XP009521231, ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN109350112B (zh) 2020-06-12
CN109350112A (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
WO2020098642A1 (zh) 超声图像的成像方法、装置及医疗设备
US10813595B2 (en) Fully automated image optimization based on automated organ recognition
EP3581961A1 (en) Method and apparatus for ultrasound imaging with improved beamforming
US9451932B2 (en) Clutter suppression in ultrasonic imaging systems
US8905931B2 (en) Subject information processing apparatus
US20170238908A1 (en) Ultrasound diagnostic device
US20160157830A1 (en) Ultrasonic diagnostic device and ultrasonic image generation method
EP3278734B1 (en) Beamforming device, ultrasonic imaging device, and beamforming method allowing simple spatial smoothing operation
JP5984260B2 (ja) 画像処理装置及び医用画像診断装置
US20200367862A1 (en) Ultrasound diagnostic device and ultrasound diagnostic device control method
US20110046487A1 (en) Ultrasound system and method for providing information indicative of a change of elasticity information
Matrone et al. Ultrasound synthetic aperture focusing with the delay multiply and sum beamforming algorithm
WO2021258645A1 (zh) 治疗用超声波的调整方法、装置、计算机设备和存储介质
US11744555B2 (en) Ultrasound signal processing device, ultrasound diagnostic device, and ultrasound signal processing method
JP2002017720A (ja) 信号処理方法および装置並びに画像撮影装置
US20190046162A1 (en) Ultrasonic signal processor, ultrasonic diagnostic device, and ultrasonic signal processing method
US11484295B2 (en) Ultrasound diagnostic technique for setting virtual origins of acoustic lines for trapezoidal scanning
WO2018195873A1 (zh) 一种超声连续波多普勒成像方法及装置、存储介质
Sciallero et al. Wideband 2-D sparse array optimization combined with multiline reception for real-time 3-D medical ultrasound
US20230384445A1 (en) Ultrasonic imaging system and method
US20200022679A1 (en) Ultrasound diagnostic apparatus and non-transitory storage medium
CN112401934A (zh) 超声成像方法和系统
Ibrahim et al. Apodization scheme for hardware-efficient beamformer
US20240138816A1 (en) Ultrasound imaging method and ultrasound imaging system
US11974884B2 (en) Method and system for dynamically adjusting imaging parameters during an ultrasound scan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885772

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19885772

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/12/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19885772

Country of ref document: EP

Kind code of ref document: A1