WO2020098613A1 - 控制方法、受电设备和系统 - Google Patents

控制方法、受电设备和系统 Download PDF

Info

Publication number
WO2020098613A1
WO2020098613A1 PCT/CN2019/117269 CN2019117269W WO2020098613A1 WO 2020098613 A1 WO2020098613 A1 WO 2020098613A1 CN 2019117269 W CN2019117269 W CN 2019117269W WO 2020098613 A1 WO2020098613 A1 WO 2020098613A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving device
power receiving
state
duration
power supply
Prior art date
Application number
PCT/CN2019/117269
Other languages
English (en)
French (fr)
Inventor
王海飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to FIEP19884531.5T priority Critical patent/FI3783834T3/fi
Priority to EP19884531.5A priority patent/EP3783834B1/en
Publication of WO2020098613A1 publication Critical patent/WO2020098613A1/zh
Priority to US17/138,219 priority patent/US11528154B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements

Definitions

  • Embodiments of the present invention relate to the field of power over Ethernet, and in particular, to a control method, powered device, and system.
  • the power supply equipment (power sourcing equipment, PSE) provides data signals and power signals for the powered device (PD) through a pair of twisted pairs, see the power level shown in Figure 1B
  • the detection process of power supply equipment uses a serial data power classification protocol (serial communication classification) protocol (SCCP) to detect the power level of the power receiving device, and then the power supply device is based on the detected power level for the power receiving device Provide the corresponding working voltage.
  • SCCP serial communication classification protocol
  • the process of detecting the power level of the user equipment through SCCP is: the power transceiver and the data transceiver of the power receiving device exchange messages to learn the power level, and modulation and demodulation are required during the message transmission process.
  • This interaction process requires multiple clock cycles to complete.
  • the time for the power receiving device to detect the power level of the power supply device is on the order of one hundred milliseconds, which cannot meet the requirement of rapid startup.
  • the technical problem to be solved by the present application is to provide a control method, a powered device and a system, which implements a hardware method to detect the power level of the powered device, which greatly reduces the time consumed for detecting the power level.
  • the present application provides a control method, including: a power receiving device enters a first state, and the power receiving device controls at least one of the one or more first loads of the power receiving device to be in a conductive state, The second load in the power receiving device is in an off state.
  • the power receiving device may be a power receiving device.
  • the power receiving device includes one or more first loads and second loads.
  • the first load and the second load are devices that consume power in the circuit.
  • the first load and the second load may be inductive Loads, capacitive loads or resistive loads, and combinations of the above three load types are not limited in this application.
  • the connection relationship of the one or more first loads may be series, parallel or mixed connection, which is not limited in this application.
  • the first load is used to detect the power level of the powered device, and the second load is the working load of the powered device.
  • the on state represents a state where the load is connected to the circuit to consume power of the power supply device, and the off state represents a state where the load is not connected to the circuit and consumes power of the power supply device.
  • the power supply device may be a power supply device.
  • the power supply device loads the output voltage to the at least one first load to form a current, and the power supply device detects the magnitude of the current to determine the power level of the power receiving device, thereby implementing the hardware method to detect the power level of the power receiving device without passing a message
  • the power level of the powered device is learned in an interactive manner to avoid the time spent for modulation and demodulation during the message transmission process, which greatly reduces the time to determine the power level of the powered device.
  • part of the time when the at least one first load is in the on state, the second load of the powered device is in the off state, and the length of the part of the time can be pre-configured as needed, and this application does not make limit. For example, if the total duration of the first load in the on state is 5 ms, then the first load is in 4.5 ms in the on state, and the second load is in the off state. In the remaining 0.5ms, the first load is in a conducting state, and the second load is also in a conducting state.
  • the one or more first loads are all graded loads.
  • the graded load includes one or more of resistance, capacitance, inductance, field effect transistor and transistor.
  • the first state is a power level detection state, and the power level detection state is used to detect the power level of the powered device.
  • the first state corresponds to a time interval, and the reference time in the time interval may be the time when the power receiving device is electrically connected to the power supply device, and this time is regarded as the zero time.
  • the power level is also known as power classification (classification), classification signature (classification signature), power value, power range, power consumption value, power consumption range, energy consumption value, energy consumption range, power meter and energy consumption table Of any kind.
  • the number of the at least one first load is smaller than the number of the one or more first loads.
  • the method before the power receiving device enters the first state, the method further includes: when the power receiving device detects that the first condition is satisfied, determining that the current state is the first state according to the detection result.
  • the first condition is to satisfy the condition for entering the first state.
  • the first condition includes at least one of the following:
  • the voltage output from the power supply device to the powered device is greater than or equal to the first voltage threshold
  • the voltage output from the power supply device to the power receiving device is greater than or equal to the second voltage threshold and the duration is greater than or equal to the first duration;
  • the voltage output from the power supply device to the powered device is in the first voltage range
  • the duration of the voltage output from the power supply device to the power receiving device within the second range is greater than or equal to the second duration
  • the current output by the power supply device to the power receiving device is greater than or equal to the first current threshold
  • the output current of the power supply device to the power receiving device is greater than or equal to the second current threshold and the duration is greater than or equal to the third duration;
  • the current output by the power supply device to the power receiving device is in the first current range
  • the duration of the current output by the power supply device to the power receiving device in the second current range is greater than or equal to the fourth duration
  • the duration that the powered device is in the first state is greater than or equal to the fifth duration
  • the method further includes:
  • the power receiving device enters a second state; wherein, during the second state, the second load is in a conducting state.
  • the method further includes:
  • the power receiving device controls one or more first loads in the power receiving device to be in an off state.
  • the method before the powered device enters the second state, the method further includes:
  • the power receiving device detects that the second condition is satisfied, and determines that the current state is the second state according to the detection result.
  • the second condition includes at least one of the following:
  • the voltage output from the power supply equipment to the power receiving equipment is greater than or equal to the third voltage threshold
  • the duration that the voltage output from the power supply device to the power receiving device is greater than or equal to the fourth voltage threshold is greater than or equal to the sixth duration
  • the voltage output from the power supply equipment to the power receiving equipment is within the third voltage range
  • the duration of the voltage output from the power supply equipment to the power receiving equipment in the fourth voltage range is greater than or equal to the seventh duration
  • the current output from the power supply device to the powered device is greater than or equal to the third current threshold
  • the current output from the power supply equipment to the power receiving equipment is greater than or equal to the fourth current threshold and the duration is greater than or equal to the eighth duration;
  • the current output from the power supply equipment to the power receiving equipment is in the third current range
  • the duration of the current output by the power supply device to the power receiving device in the fourth current range is greater than or equal to the ninth time duration
  • the duration when the powered device is in the first state is greater than or equal to the tenth duration
  • the present application provides a controller, including one or more first loads and a second load.
  • the controller is used to control the apparatus to enter the first state, and the controller is also used to control the power receiving equipment. At least one of the one or more first loads is in an on state, and the second load in the power receiving device is in an off state.
  • the second load in the powered device is in the off state.
  • the one or more first loads are graded loads.
  • the first state is a power level detection state.
  • the number of the first load in the conductive state is less than or equal to the number of the first load.
  • the controller is also used to detect that the powered device meets the first condition, and determine that the current state is the first state according to the detection result.
  • the first condition includes at least one of the following:
  • the voltage output from the power supply device to the powered device is greater than or equal to the first voltage threshold
  • the voltage output from the power supply device to the power receiving device is greater than or equal to the second voltage threshold and the duration is greater than or equal to the first duration;
  • the voltage output from the power supply device to the power receiving device is within the first voltage range
  • the duration of the voltage output from the power supply device to the power receiving device within the second voltage range is greater than or equal to the second duration
  • the current output by the power supply device to the power receiving device is in the first current range
  • the time slot time of the current output by the power supply device to the power receiving device in the second current range is greater than or equal to the fourth duration
  • the duration that the powered device is in the first state is greater than or equal to the fifth duration
  • the controller is also used to control the powered device to enter the second state; wherein, in the second state device, the second load is in a conducting state.
  • the controller is also used to control one or more first loads in the powered device to be in an off state.
  • the controller is also used to detect that the second condition is satisfied, and determine that the current state is the second state according to the detection result.
  • the second condition includes at least one of the following:
  • the voltage output from the power supply equipment to the power receiving equipment is greater than or equal to the fourth voltage threshold
  • the duration that the voltage output from the power supply device to the power receiving device is greater than or equal to the fourth voltage threshold is greater than or equal to the sixth duration
  • the voltage output from the power supply equipment to the power receiving equipment is in the third voltage range
  • the duration of the fourth voltage range output from the power supply device to the powered device is greater than or equal to the seventh duration
  • the current output from the power supply device to the powered device is greater than or equal to the third current threshold
  • the current output from the power supply device to the power receiving device is greater than or equal to the fourth current threshold and the duration is greater than or equal to the eighth duration;
  • the duration of the current output by the power supply device to the power receiving device in the fourth current range is greater than or equal to the ninth time duration
  • the duration that the powered device is in the first state is greater than or equal to the tenth duration
  • the present application also provides a power-over-Ethernet system.
  • the power-over-Ethernet system includes the power receiving device and the power supply device in any one of the possible implementation manners of the second aspect above.
  • the device is a power supply device; the power supply device outputs voltage or current to the power receiving device through the network cable, and the power receiving device detects the voltage or current output by the power supply device through the network cable. At least one of the one or more first loads is in an on state, and the second load in the power receiving device is in an off state.
  • FIG. 1A is a schematic structural diagram of a pair of line power supply systems provided by an embodiment of the present invention
  • FIG. 1B is a schematic flowchart of a power level detection method according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a power supply device and a power receiving device in a pair of line Ethernet power supply system provided by an embodiment of the present invention
  • FIG. 3A is another schematic structural diagram of a pair of line power over Ethernet systems provided by an embodiment of the present invention.
  • 3B is a schematic flowchart of a control method provided by an embodiment of the present invention.
  • 3C is a schematic structural diagram of a powered device provided by an embodiment of the present invention.
  • FIG. 4 is another schematic structural diagram of a powered device provided by an embodiment of the present invention.
  • FIG. 5 is another schematic structural diagram of a power receiving device provided by an embodiment of the present invention.
  • the present application provides a power level control method and related equipment.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the method and the device can refer to each other, and the repetition will not be repeated.
  • the Ethernet power supply system includes a power receiving device and a power supply device.
  • the Ethernet power supply system 100 It includes a power supply device 110 and a power receiving device 120, and the power supply device 110 and the power receiving device 120 are connected by an Ethernet cable (for example, a twisted pair).
  • the power supply device 110 superimposes the power on the Ethernet cable and supplies it to the power receiving device 120, and is also responsible for monitoring and managing the working state of the connected power receiving device 120.
  • One power supply device 110 can be connected One or more of the power receiving devices 120; the power receiving device 120 is a device that receives power over Ethernet, obtains the power and data transmitted by the power supply device 110 through the Ethernet cable, and sends the power to the device through the Ethernet cable The power supply device 110 sends data.
  • the power supply device 110 may be a switch, a hub, or a router, etc.
  • the power receiving device 120 may be a wireless access point (access point (AP), camera, IP phone, smart speaker, smart lamp, robot, and smart Chargers, etc.
  • AP access point
  • IP phone smart speaker
  • smart lamp smart lamp
  • robot smart Chargers
  • the power over Ethernet process includes five working states: detection, classification, power-up, operation, and disconnection, where classification is a
  • the optional process is shown in Figure 1B.
  • the detection is a recognition process of the power receiving device 110 to the connected power receiving device 120, and the validity of the power receiving device 120 is detected to determine whether or not the power receiving device 120 is supplied with power.
  • the power supply device 110 determines that the power receiving device 120 is valid, it may continue to detect the power level of the power receiving device 120, and power the power receiving device 120 according to the power level of the power receiving device 120.
  • the power receiving device 120 enters the power-on process and can work normally, or when the power supply device 110 determines that the power receiving device 110 is valid, it can also directly power the power receiving device 120 according to the default power.
  • the electric device 120 enters the power-on phase and can work normally.
  • the power supply device 110 will quickly stop supplying power to the power receiving device 120 and repeat the detection process.
  • the hierarchical state among the above five working states is also called a power level detection state, and the present invention is not limited.
  • the power level detection process of the one-line Ethernet power supply system is mainly improved.
  • the power receiving device 120 provided in the embodiments of the present application may be a complete power receiving device, and also has the structure of a known power receiving device. Here, only power level detection is involved in the power receiving device 120. The components will be described, and the other components will not be repeated.
  • the power receiving device 120 provided in the embodiment of the present application may be a part of the power receiving device, particularly a component related to power level detection.
  • the power receiving device 120 provided in the embodiment of the present application may be a component associated with the power receiving device, particularly a component related to power level detection. The invention is not limited.
  • FIG. 2 for a schematic diagram of the structure of an existing pair of Ethernet power supply systems.
  • the power supply equipment supplies power to the power receiving equipment through a pair of wires, for example, a twisted pair (TP) is used between the power receiving equipment and the power supply equipment.
  • TP twisted pair
  • the type of twisted pair is not limited in this embodiment of the present invention, the power receiving device supplies power to the power receiving device through the two wires in the twisted pair, where TP can be a type 1, a type 2, a type 3, Any one of Category 4 line, Category 5 line, Category 6 line, Super Category 6 line and Category 7 line.
  • the power supply device includes a first data transceiver U1, a first capacitor C1, a second capacitor C2, a DC voltage source, and a first Ethernet interface E1.
  • the first Ethernet interface E1 includes a first positive polarity pin D1 + and a first Negative polarity pin D1-, the first data transceiver U1 is mainly used to send the modulated data signal to the power receiving device and demodulate the data signal from the power receiving device, and the DC voltage source Vpse is used to provide the DC voltage.
  • a data transceiver U1 may be a physical layer chip.
  • the positive pole of the DC voltage source Vpse is connected to the first positive polarity pin D1 + of the first Ethernet interface E1 and the first data transceiver U1 through the first capacitor C1; the negative pole of the DC voltage source Vpse is connected to the first Ethernet interface E1 The first negative polarity pin D1- is connected to the first data transceiver U1 through the second capacitor C2.
  • the power supply device further includes a first magnetic bead T1, and two wires drawn through the positive electrode and the negative electrode of the DC voltage source Vpse pass through the first magnetic bead T1, and the first magnetic bead T1 is used to suppress the AC generated by the DC voltage source Voltage, reduce the interference of AC voltage.
  • the power supply device isolates the data signal from the power signal by the DC blocking effect of the first capacitor C1 and the second capacitor C2 to achieve In order to simultaneously transmit data signals and power signals on a pair of lines.
  • the power receiving device includes a data transceiver U2, a third capacitor C3, a fourth capacitor C4, a second load Rload and a second Ethernet interface E2, the main user of the second data transceiver U2 sends the modulated data signal to the power supply
  • the device, and receiving data signals from the power supply device, the second data transceiver U2 may be a physical layer chip.
  • the second load is a working load of the power receiving device.
  • the second load may be one or more of a capacitive load, an inductive load, and a resistive load.
  • the second load Rload is used to consume power of the power supply device.
  • the second Ethernet interface E2 includes a second positive polarity pin D2 + and a second negative polarity pin D2-.
  • the first Ethernet interface E1 and the second Ethernet interface E2 cooperate with each other, for example: the first Ethernet interface E1 is an RJ45 plug, the second Ethernet interface E2 is an RJ45 socket; or the first Ethernet interface E1 bit RJ45 socket, the first The second Ethernet interface E2 is an RJ45 socket.
  • the first positive polarity pin D1 + of the first Ethernet interface E1 and the second positive polarity lead of the second Ethernet interface E2 Pin D2 + is connected
  • the first negative polarity pin D1- of the first Ethernet interface E1 is connected to the second negative polarity pin D2- of the second Ethernet interface E2, so that the power supply device supplies power to the powered device through a pair of wires .
  • the connection relationship between the various components inside the power receiving device includes: the second load Rload is connected to the second positive polarity pin D2 + of the second Ethernet interface E2 at one end, and connected to the second data transceiver U2 through the third capacitor C3; The other end of the second load Rload is connected to the second negative polarity pin D2- of the second Ethernet interface E2, and is connected to the second data transceiver U2 through a fourth capacitor. Further, the power receiving device further includes a second magnetic bead T2, two wires drawn from both ends of the second load Rload pass through the second magnetic bead T2, and the second magnetic bead T1 is used to suppress the load on the second load Rload AC voltage to reduce the interference of the AC voltage on the second load Rlaod.
  • the power receiving device uses the third capacitor C3 and the fourth capacitor C4 to isolate the data signal and the power signal Isolate to realize the function of simultaneously transmitting data signals and power signals on a pair of lines.
  • the power receiving device is a device that supports power over Ethernet.
  • the power receiving device may be an Internet phone, a wireless base station, a hub, a network camera, or a computer.
  • the power level of the powered device may be detected to determine the power required by the powered device. Based on the structure of the one-line Ethernet power supply system in FIG.
  • the method for the power supply device to detect the power level of the power receiving device using SCCP includes: detecting that the power receiving device is connected to the first Ethernet through the second Ethernet interface E2 At interface E1, the power supply device loads the detection voltage on the first positive polarity pin D1 + and the first negative polarity pin D1- of the first Ethernet interface E1, the detection voltage is less than the voltage during normal power supply, for example: the detection voltage is 4V , Whether the detection current between the first positive polarity pin D1 + and the first negative polarity pin D1- of the power supply device is within a preset range, and if so, determine that the connected powered device is a device that supports power over Ethernet.
  • the first data transceiver U1 of the power supply device sends a request message for querying the power level to the second data transceiver U2 through a pair of lines (first positive polarity pin D1 + and first negative polarity pin D1-),
  • the second data transceiver U2 obtains the power level information pre-stored in the memory, and sends a response message carrying the power level information to the first data transceiver U1, whereby the power supply device learns the power receiving device according to the response message Power level.
  • the power supply device learns the power level of the powered device by sending a request message and receiving a response message, the modulation and demodulation time of the request message and response message, and The transmission time of the message in the twisted pair, the transmission time of the message requires multiple clock cycles, so it will greatly increase the time for the power supply equipment to detect the power level.
  • the time for detecting the power level is generally on the order of one hundred milliseconds, which cannot meet the fast power supply. demand.
  • the embodiment of the present invention provides a pair of line Ethernet power supply systems shown in FIGS. 3A to 5.
  • FIG. 3A it is another schematic structural diagram of a pair of line power supply systems provided by an embodiment of the present invention.
  • the power supply device further includes a controller, for example, as shown in FIG. 3A, the first controller includes a control unit K1, and the first port of the control unit K1 is connected DC voltage source Vpse, the second port of the first controller K1 is connected to the first positive polarity pin D1 + of the first Ethernet interface E1, and the third port of the first controller is connected to the first negative polarity of the first Ethernet interface E1 Pin D1-.
  • the first controller includes a control unit K1
  • the first port of the control unit K1 is connected DC voltage source Vpse
  • the second port of the first controller K1 is connected to the first positive polarity pin D1 + of the first Ethernet interface E1
  • the third port of the first controller is connected to the first negative polarity of the first Ethernet interface E1 Pin D1-.
  • the power receiving device further includes a second controller and one or more first loads.
  • the second controller includes a control unit K2, a first controlled switch S1 and a second controlled switch S2, the number of the first load is one, and the first load is the load Rs1 in FIG. .
  • the first load Rs1 is connected in series with the first controlled switch S1 across the second positive polarity pin D2 + and the second negative polarity pin D2- of the second Ethernet interface E2.
  • the second load Rload and the second load The two controlled switches S2 are connected in series and connected across the second positive polarity pin D2 + and the second negative polarity pin D2- of the second Ethernet interface E2.
  • the second positive polarity pin D2 + is connected to the second port of the second data transceiver U2 through the third capacitor C3, and the second negative polarity pin D2- is connected to the second port of the second data transceiver U2 through the fourth capacitor C4 .
  • the first load and the second load in the embodiment of the present invention may be inductive loads, capacitive loads, or resistive loads, and combinations of the above three types of loads, which are not limited in this application.
  • the first load includes one or more of resistance, capacitance, inductance, field effect transistor, and transistor.
  • the controlled switch in this embodiment of the present invention is used to control the branch where the controlled switch is in an on state or an off state.
  • the controlled switches include but are not limited to relays , Triode, field effect tube or other forms of switches.
  • the first controller and the second controller may be PD chips and other components or chips that control the on and off states of the first load and the second load, or may be composed of multiple components Circuit device.
  • the second controller includes a control unit and a controlled switch.
  • the control unit is a chip that controls an open state or a closed state of the controlled switch.
  • the structure of the second controller of the power receiving device is not limited to the above-mentioned chip or chip + controlled switch form, and may also be other structures, which are not limited by the embodiments of the present invention.
  • FIG. 3B it is a schematic flowchart of a power level control method according to an embodiment of the present invention.
  • the control method is based on the system architecture of FIG. 3A.
  • the method includes:
  • the powered device enters the first state.
  • the first controller controls the power receiving device to enter a first state.
  • the first state indicates a state of detecting the power level of the power receiving device.
  • the first state is a power level detection state.
  • the state corresponds to a time interval, and the reference time of the time interval may be the time when the power receiving device is electrically connected to the power supply device, and this time is regarded as the zero time.
  • the method before the powered device enters the first state, the method further includes:
  • the power receiving device When the power receiving device detects that the first condition is satisfied, it determines that the current state is the first state according to the detection result, and the first condition is that the condition for entering the first state is satisfied.
  • This condition can be formed by one or more sub-connections using different logical relationships.
  • the first condition can be any of the following:
  • the voltage output from the power supply device to the power receiving device is greater than or equal to the first voltage threshold.
  • the first voltage threshold is a voltage threshold pre-stored or pre-configured by the powered device, and the first voltage threshold can be set as needed.
  • the first voltage threshold is 15V
  • the voltage from the power supply device to the power receiving device is output to the power receiving device through the network cable
  • the control unit K2 of the power receiving device detects the second positive polarity pin D2 + and the second
  • the voltage between the negative polarity pin D2- is 16V, which determines that the current state of the powered device is the first state.
  • the duration that the voltage output from the power supply device to the power receiving device is greater than or equal to the second voltage threshold is greater than or equal to the first duration.
  • the second voltage threshold is a pre-stored or pre-configured voltage threshold of the powered device, and the second voltage threshold can be set as needed;
  • the first duration is a pre-stored or pre-configured threshold of the powered device, and the first duration can be based on Need to be set.
  • the second voltage threshold is 20V
  • the first duration is 1ms
  • the control unit K2 of the powered device detects that the voltage between the second positive polarity pin D2 + and the second negative polarity pin D2- is
  • the duration of 25V is 1.5ms, and it is determined that the powered device enters the first state.
  • the voltage output from the power supply device to the power receiving device is within the first voltage range.
  • the first voltage range is a voltage interval
  • the first voltage range may be a voltage interval pre-stored or pre-configured by the power receiving device
  • the first voltage range may be formed by the reference voltage as a reference floating up and down.
  • the reference voltage is 15V
  • the first voltage range is formed by floating up and down 10% on the basis of 15V.
  • the control unit K2 of the powered device detects the second positive polarity pin D2 + and the second negative polarity pin
  • the voltage between D2- is 15.1V, which is within the first voltage range, and it is determined that the powered device enters the first state.
  • the duration of the voltage output by the power supply device to the power receiving device within the second voltage range is greater than or equal to the second duration.
  • the second voltage range is a voltage interval
  • the second voltage range may be a voltage interval pre-stored or pre-configured by the power receiving device
  • the second voltage range may be formed by the reference voltage as a reference floating up and down.
  • the second duration is the length of time pre-stored or pre-configured by the powered device. For example: as shown in FIG.
  • the second voltage range is formed by 20% up and down floating by 20% as the reference voltage, that is, the second voltage range is [16V, 24V], the second duration is 2ms, and the control unit K2 of the powered device It is detected that the voltage between the second positive polarity pin D2 + and the second negative polarity pin D2- is 19V for a duration of 3ms, and it is determined that the powered device enters the first state.
  • the current output by the power supply device to the power receiving device is greater than or equal to the first current threshold.
  • the first current threshold may be a pre-stored or pre-configured current threshold of the powered device.
  • the first current threshold may be set according to needs, for example: as shown in FIG. 3A, the first current threshold is 5mA, and the control unit of the power supply device K2 detects that the current between the second positive polarity pin D2 + and the second negative polarity pin D2- is 6 mA, and determines that the powered device enters the first state.
  • the duration that the current output from the power supply device to the power receiving device is greater than or equal to the second current threshold is greater than or equal to the third duration.
  • the second current threshold is a pre-stored or pre-configured current threshold of the powered device
  • the second current threshold can be set as needed
  • the third duration is a pre-stored or pre-configured duration threshold of the powered device
  • the third duration can be based on Need to be set.
  • the second current threshold is 15mA
  • the third duration is 2ms
  • the control unit K2 of the powered device detects that the current between the second positive polarity pin D2 + and the second negative polarity pin D2- is
  • the duration of 20mA is 5ms, and it is determined that the powered device enters the first state.
  • the current output by the power supply device to the power receiving device is within the first current range.
  • the first current range may be a current interval.
  • the first current range may be a current interval pre-stored or pre-configured by the power receiving device.
  • the first current range may be formed by floating up and down based on the reference current. For example, as shown in FIG. 3A, the reference current is 20 mA, and the first current range is formed by floating 10% on the basis of 20 mA, that is, the first current range is [18 mA, 22 mA], and the control unit K2 of the powered device detects the second
  • the current between the positive polarity pin D2 + and the second negative polarity pin D2- is 19 mA, and the current is within the first current range, and it is determined that the powered device enters the first state.
  • the duration of the current output by the power supply device to the power receiving device within the second current range is greater than or equal to the fourth duration.
  • the second current range may be a current interval.
  • the second current range may be a current interval pre-stored or pre-configured by the power receiving device.
  • the second current range may be formed by floating up and down based on the reference current.
  • the fourth duration is the length of time pre-stored or pre-configured by the powered device. For example, as shown in FIG.
  • the second current range is formed by 20% up and down floating by 20% as the reference voltage, that is, the second voltage range is [16mA, 24mA], the fourth duration is 3ms, and the control unit K2 of the powered device It is detected that the voltage between the second positive polarity pin D2 + and the second negative polarity pin D2- is 19 mA, the duration is 4 ms, and it is determined that the powered device enters the first state.
  • the duration that the powered device is in the first state is greater than or equal to the fifth duration.
  • the fifth duration is a pre-stored or pre-configured duration of the power receiving device.
  • the reference time point of the power receiving device may be the time when the power receiving device is electrically connected to the power supply device, and the time starts when the time is zero.
  • the power receiving device receives the instruction signal sent by the power supply device, and the instruction signal is used to instruct the power receiving device to enter the first state.
  • the indication signal is a signal with a specific signal characteristic, and the signal characteristic includes one or more of amplitude, phase, and period.
  • the indication signal may be a square wave, a sine wave, or a triangle wave.
  • the indication signal is a square wave signal with an amplitude of 5V and a period of 1S, or the power receiving device receives the indication signal sent by other devices, and is not limited to receiving the indication signal from the power supply device, and the present invention does not limit it.
  • the power receiving device controls at least one of the one or more first loads in the power receiving device to be in an on state, and the second load in the power receiving device to be in an off state.
  • the first load and the second load are loads that consume electrical energy in the circuit, and the first load and the second load may be one or more of an inductive load, a capacitive load, and a resistive load.
  • the first load is used to detect the power level of the powered device, and the second load is the working load of the powered device.
  • the first load is a characteristic resistance.
  • the on state represents a state where the load is connected to the circuit to consume power of the power supply device
  • the off state represents that the load is not connected to the circuit and thus does not consume power of the power supply device A state; for example: referring to FIG.
  • the power receiving device includes a first load Rs1 and a second load Rload
  • the control unit K2 detects that the power receiving device enters the first state, it indicates that the first controlled switch S1 is closed In the state, the first load Rs1 is in the on state, indicating that the second controlled switch S2 is in the on state, and the second load Rload is in the off state.
  • the voltage output by the power supply device will be recorded to form a current on the at least one load.
  • the power supply device detects the magnitude of the current to determine the power level of the power receiving device, so as to implement hardware detection of the power receiving device Power level, there is no need to know the power level of the powered device through message interaction, to avoid the time spent for modulation and demodulation during the message transmission process, greatly reducing the time to determine the power level of the powered device.
  • the power receiving device includes two first loads Rs1 and Rs2 connected in parallel to each other.
  • the first load Rs1 is controlled to be in a conductive state
  • the first One load Rs2 is in an off state
  • the second load Rload is controlled in an off state.
  • the first load Rs1 is controlled to be in an on state
  • the first load Rs2 is controlled to be in an on state
  • the second load Rload is controlled to be in an off state.
  • the power receiving device may control at least one first load to be in an on state or an off state multiple times during the first state.
  • the power receiving device includes a first load Rs1, a first load Rs2, a first load Rs3, and a first load Rs4.
  • the power receiving device first controls the first load Rs1 to be in an on state, and the second load Rload In the off state; then control the first load Rs2 to be in the on state, at this time the first load Rs1 remains in the on state, the second load Rload is still in the off state; finally control the first load Rs3 and Rs4 to be in the on state ,
  • the first load Rs1 is controlled to be in an off state, at this time, the first load Rs2 remains in an on state, and the second load Rload is still in an off state.
  • the sequence and number of times that the power receiving device controls the first load to be in the on state or the off state can be set as needed. The above is only an example and does not limit the embodiment of the present invention. By controlling the first load to be in the on state multiple times, the number of power levels of the powered device can be increased, and a finer-grained voltage can be output.
  • At least one first load is in an on-state for the entire time
  • the second load is in an off-state
  • the entire time represents a time interval in which the first load is in an on-state.
  • the time interval of at least one first load in the on state is [t0, t0 + 5ms]
  • the second load is also off during the time interval [t0, t0 + 5ms].
  • part of the time when the at least one first load is in the on state, the second load is in the off state, and the total time that the first at least one first load is in the on state is a time interval
  • Part of the time is a continuous period of time in the total time, and the length and position of the part of the time can be set according to needs, and this embodiment of the present invention is not limited.
  • the at least one first load is in the on-time interval [t0, t0 + 5ms]
  • the second load is in the on-time interval [t0, t0 + 0.5ms]
  • the second load is in the time interval It is also in the off state within (t0 + 0.5ms, t0 + 5ms).
  • the power supply equipment is pre-stored or pre-configured as the mapping relationship between the current range and the power level, and the mapping relationship is shown in Table 1:
  • the power supply device detects that the current between the first positive polarity pin D1 + and the first negative polarity pin D1- of the first Ethernet interface E1 is 10 mA, and the current falls into 8-13mA voltage range, the power level corresponding to the voltage range is 1, the output power corresponding to the power level is Wie4.0W, the control unit K1 of the power supply equipment instructs the DC voltage source Vpse to adjust the output voltage, so that the power supply equipment passes The D1 + and D1- pins of the Ethernet interface E1 provide the required 4.0W voltage or current for the powered device.
  • the method further includes: the powered device enters a second state, and during the second state, the second load is in a conducting state, and the second state may be a normal power supply state or a detection state, the first The duration of the two states can be set as needed, and the embodiment of the present invention is not limited.
  • the control unit K2 instructs the second controlled switch to be in the closed state, thereby controlling the second load Rload to be in the on state. Same status.
  • the power receiving device enters the second state.
  • the power receiving device controls the second load to be in an on state, and controls one or more first loads to be in an off state.
  • the one or more first loads are all the first loads in the powered device, for example: as shown in FIG. 3A, when the second controller determines that the powered device enters the second state, it indicates that the first controlled switch S1 is in the on state And indicating that the second controlled switch is in a closed state.
  • the second condition includes at least one of the following:
  • the voltage output from the power supply device to the power receiving device is greater than or equal to the third voltage threshold.
  • the third voltage threshold is different from the first voltage threshold.
  • the third voltage threshold is a voltage threshold pre-stored or pre-configured by the powered device, and the third voltage threshold can be set as needed.
  • the third voltage threshold is 40V
  • the voltage from the power supply device to the power receiving device is output to the power receiving device through the network cable
  • the control unit K2 of the power receiving device detects the second positive polarity pin D2 + and the second
  • the voltage between the negative polarity pin D2- is 50V, and it is determined that the current state of the powered device is the second state.
  • the duration that the voltage output from the power supply device to the power receiving device is greater than or equal to the fourth voltage threshold is greater than or equal to the sixth duration.
  • the fourth voltage threshold is different from the second voltage threshold.
  • the fourth voltage threshold is a pre-stored or pre-configured voltage threshold of the powered device.
  • the fourth voltage threshold can be set as needed; the sixth duration is the pre-stored or The pre-configured duration threshold, the sixth duration can be set as needed.
  • the fourth voltage threshold is 5V
  • the sixth duration is 1ms
  • the control unit K2 of the powered device detects that the voltage between the second positive polarity pin D2 + and the second negative polarity pin D2- is The duration of 6V is 1.5ms, and it is determined that the powered device enters the second state.
  • the voltage output from the power supply device to the power receiving device is within the third voltage range.
  • the third voltage range is different from the first voltage range, and the third voltage range does not coincide with the first voltage range.
  • the third voltage range is a voltage interval.
  • the third voltage range may be pre-stored or pre-configured by the powered device In the voltage interval, the third voltage range may be formed by floating up and down based on the reference voltage. For example, as shown in FIG. 3A, the reference voltage is 5V, and the third voltage range is formed by floating up and down by 10% on the basis of 5V.
  • the control unit K2 of the powered device detects the second positive polarity pin D2 + and the second negative polarity pin The voltage between D2- is 5.1V, which is within the third voltage range, and it is determined that the powered device enters the second state.
  • the duration of the voltage output by the power supply device to the power receiving device within the fourth voltage range is greater than or equal to the seventh duration.
  • the fourth voltage range is different from the second voltage range, and the fourth voltage range does not coincide with the second voltage range.
  • the fourth voltage range is a voltage interval, and the fourth voltage range may be pre-stored or pre-configured by the powered device In the voltage interval, the fourth voltage range may be formed by floating up and down based on the reference voltage.
  • the seventh duration is the length of time pre-stored or pre-configured by the powered device. For example: referring to FIG.
  • the fourth voltage range is formed by floating 20% up and down at a reference voltage of 10V, that is, the second voltage range is [8V, 12V], the second duration is 2ms, and the control unit K2 of the powered device It is detected that the voltage between the second positive polarity pin D2 + and the second negative polarity pin D2- is 11V for a duration of 3 ms, and it is determined that the powered device enters the second state.
  • the current output by the power supply device to the power receiving device is greater than or equal to the third current threshold.
  • the third current threshold is different from the first current threshold.
  • the third current threshold may be a current threshold pre-stored or pre-configured by the powered device.
  • the third current threshold may be set according to needs. For example, see FIG. 3A.
  • a current threshold is 10 mA, and the control unit K2 of the power supply device detects that the current between the second positive polarity pin D2 + and the second negative polarity pin D2- is 12 mA, and determines that the powered device enters the second state.
  • the duration that the current output by the power supply device to the power receiving device is greater than or equal to the fourth current threshold is greater than or equal to the eighth duration.
  • the fourth current threshold is different from the second circuit threshold.
  • the fourth current threshold is a current threshold pre-stored or pre-configured by the powered device.
  • the fourth current threshold can be set as needed.
  • the eighth duration is pre-stored or The pre-configured duration threshold, the eighth duration can be set as needed.
  • the fourth current threshold is 50 mA
  • the third duration is 2 ms.
  • the control unit K2 of the powered device detects that the current between the second positive polarity pin D2 + and the second negative polarity pin D2- is The duration of 60mA is 5ms, and it is determined that the powered device enters the second state.
  • the current output by the G power supply device to the power receiving device is in the third current range.
  • the third current range is different from the first current range, and the third current range does not coincide with the first current range.
  • the third current range is a current range, and the third current range may be pre-stored or pre-configured by the powered device In the current interval, the third current range may be formed by floating up and down based on the reference current. For example: as shown in Fig.
  • the reference current is 2mA
  • the first current range is formed by floating 10% on the basis of 2mA, that is, the third current range is [1.8mA, 2.2mA]
  • the control unit K2 of the powered device detects
  • the current between the second positive polarity pin D2 + and the second negative polarity pin D2- is 1.9 mA, and the current is within the third current range, and it is determined that the powered device enters the second state.
  • the duration of the current output by the power supply device to the power receiving device in the fourth current range is greater than or equal to the ninth duration.
  • the fourth current range is different from the second current range, and the fourth current range does not coincide with the second current range, the fourth current range is a current interval, the fourth current range can be pre-stored or pre-configured by the powered device In the current interval, the fourth current range may be formed by floating up and down based on the reference current.
  • the ninth duration is the length of time pre-stored or pre-configured by the powered device.
  • the fourth current range is formed by floating up and down 20% of the reference voltage of 2mA, that is, the second voltage range is [1.6mA, 2.4mA], the ninth duration is 3ms, and is controlled by the powered device
  • the unit K2 detects that the voltage between the second positive polarity pin D2 + and the second negative polarity pin D2- is 1.9 mA and the duration is 4 ms, and determines that the powered device enters the second state.
  • the duration that the power receiving device is in the second state is greater than or equal to the tenth duration.
  • the tenth duration is a pre-stored or pre-configured duration of the power receiving device.
  • the reference time point of the power receiving device may be the time when the power receiving device is electrically connected to the power supply device, and the time starts when the time is zero.
  • J. Receive an instruction signal sent by the power supply device, where the instruction signal is used to instruct the power receiving device to enter the second state.
  • the power receiving device receives the instruction signal sent by other devices, and is not limited to receiving the instruction signal from the power supply device, and the invention is not limited.
  • the indication signal is a signal with a specific signal characteristic, and the signal characteristic includes one or more of amplitude, phase, and period.
  • the indication signal is a square wave signal with an amplitude of 5V and a period of 1S.
  • the second condition includes at least one of the following:
  • the voltage output by the power supply device to the powered device is less than the first voltage threshold
  • the voltage output from the power supply device to the power receiving device does not meet: the duration greater than or equal to the second voltage threshold is greater than or equal to the first duration;
  • the voltage output by the power supply device to the power receiving device is not within the first voltage range
  • the voltage output from the power supply device to the power receiving device does not meet: the duration within the second voltage range is greater than or equal to the second duration;
  • the current output by the power supply device to the powered device is less than the first current threshold
  • the current output by the power supply device to the power receiving device does not meet: the duration greater than or equal to the second current threshold is greater than or equal to the third duration;
  • the current output by the power supply device to the power receiving device is not in the first current range
  • the current output by the power supply device to the power receiving device does not meet: the duration in the second current range is greater than or equal to the fourth duration;
  • the duration that the power receiving device is in the first state is less than a fifth duration.
  • the second condition is the negation of the first condition.
  • the specific implementation process please refer to the description in the first condition, which will not be repeated here.
  • the controlled switches in the second controller are transistors, and when the number of controlled switches in the second controller is multiple, the types of the multiple controlled switches may be the same or may not the same.
  • the second controller includes a first controlled switch S1, a second controlled switch S2, and a control unit K2.
  • the first controlled switch S1 and the second controlled switch S2 are both triodes, which use transistors The on and off functions of the control the on and off states of the first load Rs1 and the second load Rload.
  • the controlled switch in the second controller is a metal-oxide-semiconductor field-effect transistor (MOSFET), and the controlled switch in the second controller
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • the second controller includes a first controlled switch S1, a second controlled switch S2, and a control unit K2.
  • the first controlled switch S1 and the second controlled switch S2 are both MOSFETs.
  • the on and off functions control the on and off states of the first load Rs1 and the second load Rload.
  • the embodiment of the present invention uses a hardware method to detect the power level of the powered device. Compared with the method of detecting the power level of the request message and the response message, the modulation and demodulation of the message and the transmission process of the message are unnecessary , Greatly reducing the time to detect the power level of powered devices.
  • These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processing machine, or other programmable data processing device to produce a machine that enables the generation of instructions executed by the processor of the computer or other programmable data processing device
  • These computer program instructions may also be stored in a computer-readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including an instruction device, the instructions The device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Sources (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

本申请提供一种控制方法、受电设备和系统,实现了通过硬件方式的检测受电设备的功率等级,不需要通过消息交互的方式获知受电设备的功率等级,避免消息传输过程中进行调制和解调所耗费的时间,大大减少了供电设备检测受电设备的功率等级的时间。

Description

控制方法、受电设备和系统 技术领域
本发明实施例涉及以太网供电领域,尤其涉及一种控制方法、受电设备和系统。
背景技术
在一对线以太网供电系统中,供电设备(power sourcing equipment,PSE)通过一对双绞线为受电设备(powered device,PD)提供数据信号和电源信号,参见图1B所示的功率等级的检测流程,供电设备(power sourcing equipment,PSE)采用串行数据功率分级协议(serial communication classification protocol,SCCP)检测受电设备的功率等级,然后供电设备再根据检测到的功率等级为受电设备提供相应的工作电压。
但是申请人发现,通过SCCP检测用户设备的功率等级的过程是:供电设备和受电设备的数据收发器之间交互消息来获知功率等级的,在消息传输的过程中需要进行调制和解调,该交互过程需要多个时钟周期才能完成,受电设备检测供电设备的功率等级的时间都是百毫秒数量级的,无法满足快速启动的需求。
发明内容
本申请所要解决的技术问题在于,提供一种控制方法、受电设备和系统,实现了采用硬件方式检测受电设备的功率等级,大大减少了检测功率等级所消耗的时间。
第一方面,本申请提供了一种控制方法,包括:受电设备进入第一状态,受电设备控制受电设备的一个或多个第一负载中的至少一个第一负载处于导通状态,所述受电设备中的第二负载处于断开状态。受电设备可以为受电设备,受电设备包括一个或多个第一负载和第二负载,第一负载和第二负载为电路中消耗电能的器件,第一负载和第二负载可以是感性负载、容性负载或阻性负载,以及上述三种负载类型的组合,本申请不作限制。一个或多个第一负载的连接关系可以是串联、并联或混联接,本申请不作限制。第一负载用于检测受电设备的功率等级,第二负载为受电设备的工作负载。导通状态表示负载连接到电路以消耗供电设备的电能的状态,断开状态表示负载未接入到电路中从而消耗供电设备的电能的状态,供电设备可以为供电设备。供电设备将输出电压加载到该至少一个第一负载上形成电流,供电设备检测该电流的大小即可确定受电设备的功率等级,从而实现硬件方式检测受电设备的功率等级,不需要通过消息交互的方式获知受电设备的功率等级,避免消息传输过程中进行调制和解调所耗费的时间,大大减少了确定受电设备的功率等级的时间。
在一种可能的设计中,所述至少一个第一负载处于导通状态的部分时间内,受电设备的第二负载处于断开状态,部分时间的长度可根据需要进行预配置,本申请不作限制。例如:第一负载处于导通状态的总时长为5ms,那么第一负载处于导通状态的4.5ms内,第二负载处于断开状态。在剩余的0.5ms内,第一负载处于导通状态,第二负载也处于导通状态。
在一种可能的设计中,一个或多个第一负载均为分级负载。其中,分级负载包括电阻、 电容、电感、场效应管和晶体管中的一种或多种。
在一种可能的设计中,第一状态为功率等级检测状态,功率等级检测状态用于检测受电设备的功率等级。第一状态对应一个时间区间,该时间区间的参考时刻可以是受电设备与供电设备电连接的时刻,将该时刻作为零时刻。其中,功率等级又称为功率分级(power class)、分级签名(classification signature)、功率值、功率范围、功耗值、功耗范围、能耗值、能耗范围、功率表和能耗表中的任意一种。
在一种可能的设计中,在受电设备处于第一状态期间的任意时刻,所述至少一个第一负载的数量小于所述一个或多个第一负载的数量。
在一种可能的设计中,受电设备进入第一状态之前,所述方法还包括:受电设备检测满足第一条件时,根据检测结果确定当前状态为所述第一状态。第一条件为满足进入第一状态的条件。
在一种可能的设计中,第一条件包括如下至少一项:
供电设备输出到受电设备的电压大于或等于第一电压门限;
供电设备输出到受电设备的电压大于或等于第二电压门限的持续时间大于或等于第一时长;
供电设备输出到受电设备的电压在第一电压范围;
供电设备输出到受电设备的电压在第二范围内的持续时间大于或等于第二时长;
供电设备输出到受电设备的电流大于或等于第一电流门限;
供电设备输出到受电设备的电流大于或等于第二电流门限的持续时间大于或等于第三时长;
供电设备输出到受电设备的电流在第一电流范围;
供电设备输出到受电设备的电流在第二电流范围的持续时间大于或等于第四时长;
受电设备处于第一状态的持续时间大于或等于第五时长;
接收供电设备发送的指示信号,指示信号用于指示受电设备进入第一状态。
在一种可能的设计中,所述方法还包括:
受电设备进入第二状态;其中,在所述第二状态期间,第二负载处于导通状态。
在一种可能的设计中,所述方法还包括:
所述受电设备控制所述受电设备中的一个或多个第一负载处于断开状态。
在一种可能的设计中,受电设备进入第二状态之前,所述方法还包括:
受电设备检测满足第二条件,根据检测结果确定当前状态为第二状态。
在一种可能的设计中,第二条件包括如下至少一项:
供电设备输出到受电设备的电压大于或等于第三电压门限;
供电设备输出到受电设备的电压大于或等于第四电压门限的持续时间大于或等于第六时长;
供电设备输出到受电设备的电压在第三电压范围内;
供电设备输出到受电设备的电压在第四电压范围的持续时间大于或等于第七时长;
供电设备输出到受电设备的电流大于或等于第三电流门限;
供电设备输出到受电设备的电流大于会等于第四电流门限的持续时间大于或等于第 八时长;
供电设备输出到受电设备的电流在第三电流范围;
供电设备输出到受电设备的电流在第四电流范围的持续时间大于或等于第九时长;
受电设备处于第一状态的时长时间大于或等于第十时长;
接收供电设备发送的指示信号,指示信号用于指示受电设备进入第二状态。
第二方面,本申请提供了一种,包括控制器、一个或多个第一负载和第二负载,控制器用于控制所述装置进入第一状态,控制器还用于控制受电设备中的一个或多个第一负载中的至少一个负载处于导通状态,以及受电设备中的第二负载处于断开状态。
在一种可能的设计中,至少一个第一负载处于导通状态的全部时间或部分时间内,受电设备中的第二负载处于断开状态。
在一种可能的设计中,一个或多个第一负载为分级负载。
在一种可能的设计中,第一状态为功率等级检测状态。
在一种可能的设计中,在受电设备处于第一状态器件的任意时刻,处于导通状态的第一负载的数量小于或等于第一负载的数量。
在一种可能的设计中,控制器还用于受电设备检测满足第一条件,根据检测结果确定当前状态为第一状态。
在一种可能的设计中,第一条件包括如下至少一项:
供电设备输出到受电设备的电压大于或等于第一电压门限;
供电设备输出到受电设备的电压大于或等于第二电压门限的持续时间大于或等于第一时长;
供电设备输出到受电设备的电压在第一电压范围内;
供电设备输出到受电设备的电压在第二电压范围内的持续时间大于或等于第二时长;
供电设备输出到受电设备的电流在第一电流范围;
供电设备输出到受电设备的电流在第二电流范围的时隙时间大于或等于第四时长;
受电设备处于第一状态的持续时间大于或等于第五时长;
接收供电设备发送的指示信号,指示信号用于指示受电设备进入第一状态。
在一种可能的设计中,控制器还用于控制受电设备进入第二状态;其中,在第二状态器件,第二负载处于导通状态。
在一种可能的设计中,控制器还用于控制受电设备中的一个或多个第一负载处于断开状态。
在一种可能的设计中,控制器还用于检测满足第二条件,根据检测结果确定当前状态为第二状态。
在一种可能的设计中,第二条件包括如下至少一项:
供电设备输出到受电设备的电压大于或等于第四电压门限;
供电设备输出到受电设备的电压大于或等于第四电压门限的持续时间大于或等于第六时长;
供电设备输出到受电设备的电压在第三电压范围;
供电设备输出到受电设备的第四电压范围的持续时间大于或等于第七时长;
供电设备输出到受电设备的电流大于或等于第三电流门限;
供电设备输出到受电设备的电流大于或等于第四电流门限的持续时间大于或等于第八时长;
供电设备输出到受电设备的电流在第四电流范围的持续时间大于或等于第九时长;
受电设备处于第一状态的持续时间大于或等于第十时长;
接收供电设备发送的指示信号,指示信号用于指示受电设备进入第二状态。
第三方面,本申请还提供了一种以太网供电系统,以太网供电系统包括上述第二方面任意一种可能的实施方式中的受电设备以及供电设备,受电设备为受电设备,供电设备为供电设备;供电设备通过网线向受电设备输出电压或电流,受电设备通过网线检测供电设备输出的电压或电流,在受电设备进入第一状态时,受电设备控制受电设备中的一个或多个第一负载中的至少一个第一负载处于导通状态,以及受电设备中的第二负载处于断开状态。
附图说明
图1A是本发明实施例提供的一对线以太网供电系统的结构示意图;
图1B是本发明实施例提供的一种功率等级检测方法的流程示意图;
图2是本发明实施例提供的一对线以太网供电系统中供电设备和受电设备的结构示意图;
图3A是本发明实施例提供的一对线以太网供电系统的另一结构示意图;
图3B是本发明实施例提供的一种控制方法的流程示意图;
图3C是本发明实施例提供的受电设备的结构示意图
图4是本发明实施例提供的受电设备的另一结构示意图;
图5是本发明实施例提供的受电设备的另一结构示意图。
具体实施方式
为了减少一对线以太网供电系统中供电设备检测受电设备的功率等级所消耗的时间,本申请提供了一种功率等级的控制方法和相关设备。其中,方法和设备是基于同一发明构思的,由于方法及设备解决问题的原理相似,因此方法与设备的实施可以相互参见,重复之处不再赘述。
本申请提供的一种功率等级的控制方法和通信设备,应用于一对线以太网供电系统,以太网供电系统包括受电设备和供电设备,例如:如图1A所示,以太网供电系统100包括供电设备110和受电设备120,所述供电设备110与所述受电设备120通过以太网线缆(例如:双绞线)连接。其中,所述供电设备110将电能叠加到以太网线缆上,供给所述受电设备120使用,同时还负责监控和管理连接的受电设备120的工作状态,一个所述供电设备110可以连接一个或多个所述受电设备120;所述受电设备120是接受以太网供电的设备,获取所述供电设备110通过以太网线缆传输的电能以及数据,以及通过以太网线缆向所述供电设备110发送数据。
具体地,所述供电设备110可以是交换机、集线器或路由器等,所述受电设备120 可以是无线接入点(access point,AP)、摄像头、IP电话、智能音箱、智能灯、机械手以及智能充电器等。
参见图1B所示,以太网供电过程包括5个工作状态:检测(detection)、分级(classification)、上电(power-up)、工作(operation)以及断开(disconnection),其中,分级是一个可选的过程,如图1B所示。检测是所述供电设备110对连接的受电设备120的一个识别过程,检测所述受电设备120的有效性,以判断是否为多所述受电设备120供电。当所述供电设备110确定所述受电设备120有效时,可以继续检测所述受电设备120的功率等级,根据所述受电设备120的功率等级为所述受电设备120供电,所述受电设备120进入上电过程,可以正常工作,或者,当所述供电设备110确定所述受电设备110有效时,也可以直接按照默认的功率为所述受电设备120供电,所述受电设备120进入上电阶段,可以正常工作。当所述受电设备120从网络上断开时,所述供电设备110会快速停止为所述受电设备120供电,并重复检测过程。本申请各实施例中,上述5个工作状态中的分级状态,也称为功率等级检测状态,本发明不作限制。
本申请实施例中,主要针对一对线以太网供电系统的功率等级检测过程进行改进。但是应当理解的是,本申请实施例提供的受电设备120可以为一个完整的受电设备,也具备已知的受电设备具有的结构,在此仅对受电设备120中涉及功率等级检测的部件进行说明,对于其他部件不予赘述。或者,本申请实施例提供的受电设备120可以是受电设备中的一部分部件,特别是涉及功率等级检测的部件。或者,本申请实施例提供的受电设备120可以是与受电设备关联的部件,特别是涉及功率等级检测的部件。本发明不作限制。
另外,需要理解的是,在本申请的描述中,多个,是指两个或两个以上;“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
参见图2,为现有的一对线以太网供电系统的结构示意图,供电设备通过一对线为受电设备供电,例如:受电设备和供电设备之间通过双绞线(twisted pair,TP)连接,双绞线的类型本发明实施例不作限制,受电设备通过双绞线中的两条导线为受电设备供电,其中,TP可以是一类线、二类线、三类线、四类线、五类线、六类线、超六类线和七类线中的任意一种。
其中,供电设备包括第一数据收发器U1、第一电容C1、第二电容C2、直流电压源和第一以太网接口E1,第一以太网接口E1包括第一正极性引脚D1+和第一负极性引脚D1-,第一数据收发器U1主要用于将调制后的数据信号发送给受电设备,以及解调来自受电设备的数据信号,直流电压源Vpse用于提供直流电压,第一数据收发器U1可以是物理层芯片。直流电压源Vpse的正极连接第一以太网接口E1的第一正极性引脚D1+,以及通过第一电容C1连接第一数据收发器U1;直流电压源Vpse的负极连接第一以太网接口E1的第一负极性引脚D1-,以及通过第二电容C2连接第一数据收发器U1。进一步的,供电设备还包括第一磁珠T1,通过直流电压源Vpse的正极和负极引出的两条导线穿过该第一磁珠T1,第一磁珠T1用于抑制直流电压源产生的交流电压,降低交流电压的干扰。
从供电设备的结构可以看出,由于数据信号为交流信号,电源信号为直流信号,供电设备通过第一电容C1和第二电容C2的隔直流的作用,将数据信号和电源信号进行隔离,实现了在一对线上同时传输数据信号和电源信号的作用。
其中,受电设备包括数据收发器U2、第三电容C3、第四电容C4、第二负载Rload和第二以太网接口E2,第二数据收发器U2主要用户将调制后的数据信号发送给供电设备,以及接收来自供电设备的数据信号,第二数据收发器U2可以是物理层芯片。第二负载为受电设备的工作负载,第二负载可以是容性负载、感性负载和阻性负载中的一种或多种,第二负载Rload用于消耗供电设备的电能。第二以太网接口E2包括第二正极性引脚D2+和第二负极性引脚D2-。第一以太网接口E1和第二以太网接口E2相互配合,例如:第一以太网接口E1为RJ45插头,第二以太网接口E2为RJ45插座;或第一以太网接口E1位RJ45插座,第二以太网接口E2为RJ45插座。在第一以太网接口E1和第二以太网接口E2之间通过双绞线连接时,第一以太网接口E1的第一正极性引脚D1+与第二以太网接口E2的第二正极性引脚D2+连接,第一以太网接口E1的第一负极性引脚D1-与第二以太网接口E2的第二负极性引脚D2-连接,从而实现供电设备通过一对线为受电设备供电。
受电设备内部的各个部件之间的连接关系包括:第二负载Rload一端连接第二以太网接口E2的第二正极性引脚D2+,以及通过第三电容C3连接第二数据收发器U2;第二负载Rload的另一端连接第二以太网接口E2的第二负极性引脚D2-,以及通过第四电容连接第二数据收发器U2。进一步的,受电设备还包括第二磁珠T2,从第二负载Rload的两端引出的两条导线穿过第二磁珠T2,第二磁珠T1用于抑制加载到第二负载Rload的交流电压,降低交流电压对第二负载Rlaod干扰。
从上述的受电设备的结构可以看出,由于数据信号为交流信号,电源信号为直流信号,受电设备通过第三电容C3和第四电容C4的隔直流的作用,将数据信号和电源信号进行隔离,实现在一对线上同时传输数据信号和电源信号的作用。
其中,受电设备为支持以太网供电的设备,例如:受电设备可以是网络电话、无线基站、集线器、网络摄像头、电脑等。
不同的受电设备在工作时可能需要使用不同的功率,因此在供电设备为受电设备提供工作电压之前,可能会对受电设备的功率等级进行检测,以便确定受电设备所需的功率。基于图2中的一对线以太网供电系统的结构,供电设备检测采用SCCP检测受电设备的功率等级的方法包括:在检测到受电设备通过第二以太网接口E2对接的第一以太网接口E1时,供电设备在第一以太网接口E1的第一正极性引脚D1+和第一负极性引脚D1-上加载探测电压,探测电压小于正常供电时的电压,例如:探测电压为4V,供电设备第一正极性引脚D1+和第一负极性引脚D1-之间的探测电流是否在预设范围内,若为是,确定接入的受电设备为支持以太网供电的设备。然后,供电设备的第一数据收发器U1通过一对线(第一正极性引脚D1+和第一负极性引脚D1-)向第二数据收发器U2发送用于查询功率等级的请求消息,第二数据收发器U2接收到该请求消息后获取存储器中预先存储的功率等级信息,向第一数据收发器U1发送携带功率等级信息的响应消息,由此供电设备根据响应消息得知受电设备的功率等级。
从上面的检测受电设备的功率等级的方法可以看出,供电设备通过发送请求消息和接收响应消息的方式获知受电设备的功率等级,请求消息和响应消息的调制和解调的时间,以及消息在双绞线中的传输时间,消息的传输时间需要多个时钟周期,因此会大大增加供电设备检测功率等级的时间,检测功率等级的时间一般都是百毫秒的数量级,无法满足快速供电的需求。
为了解决目前检测受电设备功率等级耗时过长的问题,本发明实施例提出图3A至图5的一对线以太网功供电系统。
参见图3A,为本发明实施例提供的一对线以太网供电系统的又一结构示意图。本发明实施例中供电设备和图2中的供电的设备的区别在于,供电设备还包括一控制器,例如图3A所示,第一控制器包括控制单元K1,控制单元K1的第一端口连接直流电压源Vpse,第一控制器K1的第二端口连接第一以太网接口E1的第一正极性引脚D1+,第一控制器的第三端口连接第一以太网接口E1的第一负极性引脚D1-。
本实施例中的受电设备和图2中的受电设备区别在于,受电设备还包括第二控制器,以及一个或多个第一负载。例如:如图2所示,第二控制器包括控制单元K2、第一受控开元S1和第二受控开关S2,第一负载的数量为1个,第一负载为图2中的负载Rs1。
其中,第一负载Rs1与第一受控开关S1串联后跨接在第二以太网接口E2的第二正极性引脚D2+和第二负极性引脚D2-之间,第二负载Rload与第二受控开关S2串联后跨接在第二以太网接口E2的第二正极性引脚D2+和第二负极性引脚D2-之间。第二正极性引脚D2+通过第三电容C3与第二数据收发器U2的第二端口连接,第二负极性引脚D2-通过第四电容C4与第二数据收发器U2的第二端口连接。
其中,本发明实施例的第一负载和第二负载可以是是感性负载、容性负载或阻性负载,以及上述三种负载类型的组合,本申请不作限制。例如:第一负载包括电阻、电容、电感、场效应管和晶体管中的一种或多种。
其中,本发明实施例的受控开关用于控制受控开关所在的支路处于导通状态或断开状态,受控开关(第一受控开关和第二受控开关)包括但不限于继电器、三极管、场效应管或其他形式的开关。
其中,第一控制器和第二控制器可以为PD芯片等等对第一负载和第二负载的导通状态和断开状态进行控制的组件或芯片,也可以是有多个元器件组成的电路装置。在一种可能的实施方式中,第二控制器包括控制单元和受控开关,控制单元为控制受控开关开启状态或闭合状态的芯片。受电设备的第二控制器的结构并不限于上述的芯片或芯片+受控开关的形式,也可以是其他结构,本发明实施例不作限制。
参见图3B所示,为本发明实施例所示的功率等级的控制方法的流程示意图,该控制方法基于图3A的系统架构,所述方法包括:
S301、受电设备进入第一状态。
具体的,第一控制器控制受电设备进入第一状态,第一状态表示检测受电设备的功率等级的状态,在一种可能的实施方式中,第一状态为功率等级检测状态,第一状态对应一个时间区间,该时间区间的参考时刻可以是受电设备与供电设备电连接的时刻,该时刻作为零时刻。
在一种可能的实施方式中,受电设备进入第一状态之前,还包括:
受电设备检测满足第一条件时,根据检测结果确定当前状态为第一状态,第一条件为满足进入第一状态的条件,该条件可由一个或多个子连接采用不同的逻辑关系组合而成。
第一条件具体可以是如下的任意一种:
a、供电设备输出到受电设备的电压大于或等于第一电压门限。
其中,第一电压门限受电设备预存储或预配置的电压门限,第一电压门限可根据需要进行设置。例如参见图3A所示,第一电压门限为15V,供电设备的到受电设备的电压通过网线输出给受电设备,受电设备的控制单元K2检测到第二正极性引脚D2+和第二负极性引脚D2-之间的电压为16V,确定受电设备的当前状态为第一状态。
b、供电设备输出到受电设备的电压大于或等于第二电压门限的持续时间大于或等于第一时长。
其中,第二电压门限为受电设备预存储或预配置的电压门限,第二电压门限可根据需要进行设置;第一时长为受电设备预存储或预配置的时长门限,第一时长可以根据需要进行设置。例如参见图3A所示,第二电压门限为20V,第一时长为1ms,受电设备的控制单元K2检测到第二正极性引脚D2+和第二负极性引脚D2-之间的电压为25V的持续时间1.5ms,确定受电设备进入第一状态。
c、供电设备输出到受电设备的电压在第一电压范围内。
其中,第一电压范围为一个电压区间,第一电压范围可为受电设备预存储或预配置的电压区间,第一电压范围可以是基准电压为基准上下浮动形成的。例如:参见图3A所示,基准电压为15V,以15V为基础上下浮动10%形成第一电压范围,受电设备的控制单元K2检测到第二正极性引脚D2+和第二负极性引脚D2-之间的电压为15.1V,该电压在第一电压范围内,确定受电设备进入第一状态。
d、供电设备输出到受电设备的电压在第二电压范围内的持续时间大于或等于第二时长。
其中,第二电压范围为一个电压区间,第二电压范围可为受电设备预存储或预配置的电压区间,第二电压范围可以是基准电压为基准上下浮动形成的。第二时长为受电设备预存储或预配置的时间长度。例如:参见图3A所示,第二电压范围是以20V为基准电压上下浮动20%形成的,即第二电压范围为[16V,24V],第二时长为2ms,受电设备的控制单元K2检测到第二正极性引脚D2+和第二负极性引脚D2-之间的电压为19V的时长为3ms,确定受电设备进入第一状态。
e、供电设备输出到受电设备的电流大于或等于第一电流门限。
其中,第一电流门限可以为受电设备预存储或预配置的电流门限,第一电流门限可根据需要进行设置,例如:参见图3A所示,第一电流门限为5mA,供电设备的控制单元K2检测到第二正极性引脚D2+和第二负极性引脚D2-之间的电流为6mA,确定受电设备进入第一状态。
f、供电设备输出到受电设备的电流大于或等于第二电流门限的持续时间大于或等于第三时长。
其中,第二电流门限为受电设备预存储或预配置的电流门限,第二电流门限可根据需 要进行设置,第三时长为受电设备预存储或预配置的时长门限,第三时长可以根据需要进行设置。例如参见图3A所示,第二电流门限为15mA,第三时长为2ms,受电设备的控制单元K2检测到第二正极性引脚D2+和第二负极性引脚D2-之间的电流为20mA的持续时间5ms,确定受电设备进入第一状态。
g、供电设备输出到受电设备的电流在第一电流范围内。
其中,第一电流范围为一个电流区间,第一电流范围可为受电设备预存储或预配置的电流区间,第一电流范围可以是基准电流为基准上下浮动形成的。例如:参见图3A所示,基准电流为20mA,以20mA为基础上下浮动10%形成第一电流范围,即第一电流范围为[18mA,22mA],受电设备的控制单元K2检测到第二正极性引脚D2+和第二负极性引脚D2-之间的电流为19mA,该电流在第一电流范围内,确定受电设备进入第一状态。
h、供电设备输出到受电设备的电流在第二电流范围内的持续时间大于或等于第四时长。
其中,第二电流范围为一个电流区间,第二电流范围可为受电设备预存储或预配置的电流区间,第二电流范围可以是基准电流为基准上下浮动形成的。第四时长为受电设备预存储或预配置的时间长度。例如:参见图3A所示,第二电流范围是以20mA为基准电压上下浮动20%形成的,即第二电压范围为[16mA,24mA],第四时长为3ms,受电设备的控制单元K2检测到第二正极性引脚D2+和第二负极性引脚D2-之间的电压为19mA的时长为4ms,确定受电设备进入第一状态。
i、受电设备处于第一状态的持续时间大于或等于第五时长。
其中,第五时长为受电设备预存储或预配置的时长,受电设备的参考时间点可以是受电设备与供电设备电连接的时刻,以该时刻为零时刻开始计时。
k、受电设备接收供电设备发送的指示信号,指示信号用于指示受电设备进入第一状态。
其中,指示信号为特定信号特征的信号,信号特征包括幅度、相位、周期中的一种或多种,指示信号可以是方波、正弦波或三角波。例如:指示信号为幅度为5V,周期为1S的方波信号,或者受电设备接收其它设备发送的指示信号,而不限于从供电设备接收指示信号,本发明不作限制。
S302、受电设备控制受电设备中的一个或多个第一负载中的至少一个第一负载处于导通状态,以及受电设备中的第二负载处于断开状态。
具体的,第一负载和第二负载为电路中消耗电能的负载,第一负载和第二负载可以是感性负载、容性负载和阻性负载中的一种或多种。第一负载用于检测受电设备的功率等级,第二负载为受电设备的工作负载。在一种可能的实施方式中,第一负载为特征电阻。其中,本发明实施例中所述的,导通状态表示负载接入到电路中以消耗供电设备的电能的一种状态,断开状态表示负载未接入到电路中从而未消耗供电设备的电能的一种状态;例如:参见图3A所示,受电设备包括第一负载Rs1和第二负载Rload,控制单元K2检测到受电设备进入第一状态时,指示第一受控开关S1处于闭合状态,第一负载Rs1处于导通状态,指示第二受控开关S2处于开启状态,第二负载Rload处于断开状态。至少一个负载为导通状态时,供电设备输出的电压会记载到该至少一个负载上形成电流,供电设备检测该电 流的大小即可确定受电设备的功率等级,从而实现硬件方式检测受电设备的功率等级,不需要通过消息交互的方式获知受电设备的功率等级,避免消息传输过程中进行调制和解调所耗费的时间,大大减少了确定受电设备的功率等级的时间。
其中,一个或多个第一负载中的至少一个第一负载处于导通状态,表示受电设备中处于导通状态的第一负载的数量小于或等于第一负载的总数量,该一个或多个第一负载之间的连接关系本发明实施例不作限制,可以是串联、并联或混联。例如:参见图3C所示,受电设备中包括2个相互并联的第一负载Rs1和第一负载Rs2,在受电设备进入第一状态时,控制第一负载Rs1处于导通状态,控制第一负载Rs2处于断开状态,以及控制第二负载Rload处于断开状态。又例如:在受电设备进入第一状态时,控制第一负载Rs1处于导通状态,控制第一负载Rs2处于导通状态,以及控制第二负载Rload处于断开状态。
在一种可能的实施方式中,受电设备可以在第一状态期间分多次控制至少一个第一负载处于导通状态或断开状态。例如:受电设备包括第一负载Rs1、第一负载Rs2、第一负载Rs3和第一负载Rs4,在第一状态期间,受电设备首先控制第一负载Rs1处于导通状态,第二负载Rload处于断开状态;然后控制第一负载Rs2处于导通状态,此时第一负载Rs1仍保持导通状态,第二负载Rload仍处于断开状态;最后控制第一负载Rs3和Rs4处于导通状态,控制第一负载Rs1处于断开状态,此时第一负载Rs2仍保持导通状态,以及第二负载Rload仍处于断开状态。其中,受电设备多次控制第一负载处于导通状态或断开状态的顺序和数量可根据需要进行设置,上述仅为举例说明,并非对本发明实施例构成限定。通过多次控制第一负载处于导通状态的方式能增加受电设备的功率等级的数量,实现输出更细粒度的电压。
在一种可能的实施方式中,至少一个第一负载处于导通状态的全部时间内,第二负载处于断开状态,该全部时间表示第一负载处于导通状态的时间区间。例如:至少一个第一负载的处于导通状态的时间区间为[t0,t0+5ms],第二负载在时间区间[t0,t0+5ms]内也为断开状态。
在另一种可能的实施方式中,至少一个第一负载处于导通状态的部分时间内,第二负载处于断开状态,第一至少一个第一负载处于导通状态的全部时间为一个时间区间,部分时间为该全部时间中的一段连续的时间区间,该部分时间的长度和位置可以根据需要而设置,本发明实施例不作限制。例如:至少一个第一负载的处于导通状态的时间区间为[t0,t0+5ms],第二负载在时间区间[t0,t0+0.5ms]内为导通状态,第二负载在时间区间也为(t0+0.5ms,t0+5ms]内为断开状态。
其中,供电设备预存储或预配置为电流范围和功率等级之间的映射关系,映射关系为表1所示:
级别 特征电流 输出功率
0 0-5mA 15.4W
1 8-13mA 4.0W
2 16-21mA 7.0W
3 25-31mA 15.4W
表1
以图3A中的供电设备为例,假设供电设备检测到第一以太网接口E1的第一正极性引脚D1+和第一负极性引脚D1-之间的电流为10mA,该电流落入到8-13mA的电压范围,该电压范围对应的功率等级为1,该功率等级对应的输出功率Wie4.0W,供电设备的控制单元K1指示直流电压源Vpse调整输出电压,以使供电设备通过第一以太网接口E1的D1+引脚和D1-引脚为受电设备提供所需的4.0W的电压或电流。
在一种可能的实施方式中,所述方法还包括:受电设备进入第二状态,在第二状态期间,第二负载处于导通状态,第二状态可以是正常供电状态或探测状态,第二状态的持续时间可根据需要进行设置,本发明实施例不作限制。例如:参见图3A所述,第二控制器确定受电设备进入到第二状态时,在第二状态期间,控制单元K2指示第二受控开关处于闭合状态,从而控制第二负载Rload处于导通状态。
进一步的,受电设备进入第二状态,在第二状态期间,受电设备控制第二负载处于导通状态,且控制一个或多个第一负载处于断开状态。一个或多个第一负载为受电设备中所有的第一负载,例如:参见图3A所示,第二控制器确定受电设备进入第二状态时,指示第一受控开关S1处于开启状态,以及指示第二受控开关处于闭合状态。
进一步的,第二条件包括如下至少一项:
A、供电设备输出到所述受电设备的电压大于或等于第三电压门限。
其中,第三电压门限不同于第一电压门限,第三电压门限是受电设备预存储或预配置的电压门限,第三电压门限可根据需要进行设置。例如参见图3A所示,第三电压门限为40V,供电设备的到受电设备的电压通过网线输出给受电设备,受电设备的控制单元K2检测到第二正极性引脚D2+和第二负极性引脚D2-之间的电压为50V,确定受电设备的当前状态为第二状态。
B、供电设备输出到所述受电设备的电压大于或等于第四电压门限的持续时间大于或等于第六时长。
其中,第四电压门限不同于第二电压门限,第四电压门限为受电设备预存储或预配置的电压门限,第四电压门限可根据需要进行设置;第六时长为受电设备预存储或预配置的时长门限,第六时长可以根据需要进行设置。例如参见图3A所示,第四电压门限为5V,第六时长为1ms,受电设备的控制单元K2检测到第二正极性引脚D2+和第二负极性引脚D2-之间的电压为6V的持续时间1.5ms,确定受电设备进入第二状态。
C、供电设备输出到所述受电设备的电压在第三电压范围内。
其中,第三电压范围不同于第一电压范围,且第三电压范围不重合与第一电压范围,第三电压范围为一个电压区间,第三电压范围可为受电设备预存储或预配置的电压区间,第三电压范围可以是基准电压为基准上下浮动形成的。例如:参见图3A所示,基准电压为5V,以5V为基础上下浮动10%形成第三电压范围,受电设备的控制单元K2检测到第二正极性引脚D2+和第二负极性引脚D2-之间的电压为5.1V,该电压在第三电压范围内,确定受电设备进入第二状态。
D、供电设备输出到所述受电设备的电压在第四电压范围内的持续时间大于或等于第七时长。
其中,第四电压范围不同于第二电压范围,且第四电压范围不重合与第二电压范围, 第四电压范围为一个电压区间,第四电压范围可为受电设备预存储或预配置的电压区间,第四电压范围可以是基准电压为基准上下浮动形成的。第七时长为受电设备预存储或预配置的时间长度。例如:参见图3A所示,第四电压范围是以10V为基准电压上下浮动20%形成的,即第二电压范围为[8V,12V],第二时长为2ms,受电设备的控制单元K2检测到第二正极性引脚D2+和第二负极性引脚D2-之间的电压为11V的时长为3ms,确定受电设备进入第二状态。
E、供电设备输出到所述受电设备的电流大于或等于第三电流门限。
其中,第三电流门限不同于第一电流门限,第三电流门限可以为受电设备预存储或预配置的电流门限,第三电流门限可根据需要进行设置,例如:参见图3A所示,第一电流门限为10mA,供电设备的控制单元K2检测到第二正极性引脚D2+和第二负极性引脚D2-之间的电流为12mA,确定受电设备进入第二状态。
F、供电设备输出到所述受电设备的电流大于或等于第四电流门限的持续时间大于或等于第八时长。
其中,第四电流门限不同于第二电路门限,第四电流门限为受电设备预存储或预配置的电流门限,第四电流门限可根据需要进行设置,第八时长为受电设备预存储或预配置的时长门限,第八时长可以根据需要进行设置。例如参见图3A所示,第四电流门限为50mA,第三时长为2ms,受电设备的控制单元K2检测到第二正极性引脚D2+和第二负极性引脚D2-之间的电流为60mA的持续时间5ms,确定受电设备进入第二状态。
G供电设备输出到所述受电设备的电流在第三电流范围。
其中,第三电流范围不同于第一电流范围,且第三电流范围不重合与第一电流范围,第三电流范围为一个电流区间,第三电流范围可为受电设备预存储或预配置的电流区间,第三电流范围可以是基准电流为基准上下浮动形成的。例如:参见图3A所示,基准电流为2mA,以2mA为基础上下浮动10%形成第一电流范围,即第三电流范围为[1.8mA,2.2mA],受电设备的控制单元K2检测到第二正极性引脚D2+和第二负极性引脚D2-之间的电流为1.9mA,该电流在第三电流范围内,确定受电设备进入第二状态。
H、供电设备输出到所述受电设备的电流在第四电流范围的持续时间大于或等于第九时长。
其中,第四电流范围不同于第二电流范围,且第四电流范围不重合与第二电流范围,第四电流范围为一个电流区间,第四电流范围可为受电设备预存储或预配置的电流区间,第四电流范围可以是基准电流为基准上下浮动形成的。第九时长为受电设备预存储或预配置的时间长度。例如:参见图3A所示,第四电流范围是以2mA为基准电压上下浮动20%形成的,即第二电压范围为[1.6mA,2.4mA],第九时长为3ms,受电设备的控制单元K2检测到第二正极性引脚D2+和第二负极性引脚D2-之间的电压为1.9mA的时长为4ms,确定受电设备进入第二状态。
I、所述受电设备处于所述第二状态的持续时间大于或等于第十时长。
其中,第十时长为受电设备预存储或预配置的时长,受电设备的参考时间点可以是受电设备与供电设备电连接的时刻,以该时刻为零时刻开始计时。
J、接收供电设备发送的指示信号,所述指示信号用于指示所述受电设备进入所述第 二状态。或者受电设备接收其它设备发送的指示信号,而不限于从供电设备接收指示信号,本发明不作限制。
其中,指示信号为特定信号特征的信号,信号特征包括幅度、相位、周期中的一种或多种,例如:指示信号为幅度为5V,周期为1S的方波信号。
在另一种可能的实施方式中,第二条件包括如下至少一项:
供电设备输出到所述受电设备的电压小于第一电压门限;
供电设备输出到所述受电设备的电压不满足:大于或等于第二电压门限的持续时间大于或等于第一时长;
供电设备输出到所述受电设备的电压不在第一电压范围内;
供电设备输出到所述受电设备的电压不满足:在第二电压范围内的持续时间大于或等于第二时长;
供电设备输出到所述受电设备的电流小于第一电流门限;
供电设备输出到所述受电设备的电流不满足:大于或等于第二电流门限的持续时间大于或等于第三时长;
供电设备输出到所述受电设备的电流不在第一电流范围;
供电设备输出到所述受电设备的电流不满足:在第二电流范围的持续时间大于或等于第四时长;
所述受电设备处于所述第一状态的持续时间小于第五时长。
本实施例中第二条件是第一条件的否定,具体实施过程可参照第一条件中的说明,此处不再赘述。
在一种可能的实施方式中,第二控制器中的受控开关为三极管,第二控制器中的受控开关的数量为多个时,多个受控开关的类型可相同,也可以不相同。参见图4所示,第二控制器包括第一受控开关S1、第二受控开关S2和控制单元K2,第一受控开关S1和第二受控开关S2均为三级管,利用三极管的导通和截止功能控制第一负载Rs1和第二负载Rload的导通状态和断开状态。
在一种可能的实施方式中,第二控制器中的受控开关为金属氧化物半导体场效应管(metal-oxide-semiconductor field-effect transistor,MOSFET),第二控制器中的受控开关的数量为多个时,多个受控开关的类型可相同,也可以不相同。参见图5所示,第二控制器包括第一受控开关S1、第二受控开关S2和控制单元K2,第一受控开关S1和第二受控开关S2均为MOSFET,利用三极管的导通和截止功能控制第一负载Rs1和第二负载Rload的导通状态和断开状态。
根据上面的描述可知,本发明实施例采用硬件的方式检测受电设备的功率等级,相比采用请求消息和响应消息的检测功率等级的方式,无需消息的调制和解调、以及消息的传输过程,大大减少检测受电设备的功率等级的时间。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以 产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (21)

  1. 一种控制方法,其特征在于,包括:
    受电设备进入第一状态;
    所述受电设备控制所述受电设备中的一个或多个第一负载中的至少一个第一负载处于导通状态,以及所述受电设备中的第二负载处于断开状态。
  2. 根据权利要求1所述的方法,其特征在于,所述一个或多个第一负载为分级负载。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一状态为功率等级检测状态。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,
    在所述受电设备处于第一状态期间的任意时刻,处于导通状态的第一负载的数量小于所述一个或多个第一负载的数量。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述受电设备进入第一状态之前,所述方法还包括:
    所述受电设备检测满足第一条件,根据检测结果确定当前状态为所述第一状态。
  6. 根据权利要求5所述的方法,其特征在于,所述第一条件,包括如下至少一项:
    供电设备输出到所述受电设备的电压大于或等于第一电压门限;
    供电设备输出到所述受电设备的电压大于或等于第二电压门限的持续时间大于或等于第一时长;
    供电设备输出到所述受电设备的电压在第一电压范围内;
    供电设备输出到所述受电设备的电压在第二电压范围内的持续时间大于或等于第二时长;
    供电设备输出到所述受电设备的电流大于或等于第一电流门限;
    供电设备输出到所述受电设备的电流大于或等于第二电流门限的持续时间大于或等于第三时长;
    供电设备输出到所述受电设备的电流在第一电流范围;
    供电设备输出到所述受电设备的电流在第二电流范围的持续时间大于或等于第四时长;
    所述受电设备处于所述第一状态的持续时间大于或等于第五时长;
    接收供电设备发送的指示信号,所述指示信号用于指示所述受电设备进入所述第一状态。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    所述受电设备进入第二状态;其中,在所述第二状态期间,所述第二负载处于导通状态。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述受电设备控制所述受电设备中的一个或多个第一负载处于断开状态。
  9. 根据权利要求7任一项所述的方法,其特征在于,所述受电设备进入第二状态之前,所述方法还包括:
    所述受电设备检测满足第二条件,根据检测结果确定当前状态为所述第二状态。
  10. 根据权利要求7所述的方法,其特征在于,所述第二条件包括如下至少一项:
    供电设备输出到所述受电设备的电压大于或等于第三电压门限;
    供电设备输出到所述受电设备的电压大于或等于第四电压门限的持续时间大于或等于第六时长;
    供电设备输出到所述受电设备的电压在第三电压范围内;
    供电设备输出到所述受电设备的电压在第四电压范围内的持续时间大于或等于第七时长;
    供电设备输出到所述受电设备的电流大于或等于第三电流门限;
    供电设备输出到所述受电设备的电流大于或等于第四电流门限的持续时间大于或等于第八时长;
    供电设备输出到所述受电设备的电流在第三电流范围;
    供电设备输出到所述受电设备的电流在第四电流范围的持续时间大于或等于第九时长;
    所述受电设备处于所述第一状态的持续时间大于或等于第十时长;
    接收供电设备发送的指示信号,所述指示信号用于指示所述受电设备进入所述第二状态。
  11. 一种受电设备,其特征在于,包括:控制器、一个或多个第一负载,以及第二负载,
    控制器,用于控制所述受电设备进入第一状态;
    所述控制器,还用于控制所述受电设备中的一个或多个第一负载中的至少一个第一负载处于导通状态,以及所述受电设备中的第二负载处于断开状态。
  12. 根据权利要求11所述的受电设备,其特征在于,所述一个或多个第一负载为分级负载。
  13. 根据权利要求1或2所述的受电设备,其特征在于,所述第一状态为功率等级检 测状态。
  14. 根据权利要求11-13任一项所述的受电设备,其特征在于,
    在所述受电设备处于第一状态期间的任意时刻,处于导通状态的第一负载的数量小于所述一个或多个第一负载的数量。
  15. 根据权利要求11-14任一项所述的受电设备,其特征在于,所述控制器还用于:
    所述受电设备检测满足第一条件,根据检测结果确定当前状态为所述第一状态。
  16. 根据权利要求15所述的受电设备,其特征在于,所述第一条件,包括如下至少一项:
    供电设备输出到所述受电设备的电压大于或等于第一电压门限;
    供电设备输出到所述受电设备的电压大于或等于第二电压门限的持续时间大于或等于第一时长;
    供电设备输出到所述受电设备的电压在第一电压范围内;
    供电设备输出到所述受电设备的电压在第二电压范围内的持续时间大于或等于第二时长;
    供电设备输出到所述受电设备的电流大于或等于第一电流门限;
    供电设备输出到所述受电设备的电流大于或等于第二电流门限的持续时间大于或等于第三时长;
    供电设备输出到所述受电设备的电流在第一电流范围;
    供电设备输出到所述受电设备的电流在第二电流范围的持续时间大于或等于第四时长;
    所述受电设备处于所述第一状态的持续时间大于或等于第五时长;
    接收供电设备发送的指示信号,所述指示信号用于指示所述受电设备进入所述第一状态。
  17. 根据权利要求11-16任一项所述的受电设备,其特征在于,所述控制器还用于:
    控制所述受电设备进入第二状态;其中,在所述第二状态期间,所述第二负载处于导通状态。
  18. 根据权利要求17所述的受电设备,其特征在于,所述控制器还用于:
    控制所述受电设备中的一个或多个第一负载处于断开状态。
  19. 根据权利要求17任一项所述的受电设备,其特征在于,所述控制器还用于:
    检测满足第二条件,根据检测结果确定当前状态为所述第二状态。
  20. 根据权利要求17所述的受电设备,其特征在于,所述第二条件包括如下至少一 项:
    供电设备输出到所述受电设备的电压大于或等于第三电压门限;
    供电设备输出到所述受电设备的电压大于或等于第四电压门限的持续时间大于或等于第六时长;
    供电设备输出到所述受电设备的电压在第三电压范围内;
    供电设备输出到所述受电设备的电压在第四电压范围内的持续时间大于或等于第七时长;
    供电设备输出到所述受电设备的电流大于或等于第三电流门限;
    供电设备输出到所述受电设备的电流大于或等于第四电流门限的持续时间大于或等于第八时长;
    供电设备输出到所述受电设备的电流在第三电流范围;
    供电设备输出到所述受电设备的电流在第四电流范围的持续时间大于或等于第九时长;
    所述受电设备处于所述第一状态的持续时间大于或等于第十时长;
    接收供电设备发送的指示信号,所述指示信号用于指示所述受电设备进入所述第二状态。
  21. 一种以太网供电系统,其特征在于,包括供电设备以及如权利要求11至20任意一项所述的受电设备。
PCT/CN2019/117269 2018-11-12 2019-11-11 控制方法、受电设备和系统 WO2020098613A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FIEP19884531.5T FI3783834T3 (fi) 2018-11-12 2019-11-11 Ohjausmenetelmä, tehoa vastaanottava laite ja järjestelmä
EP19884531.5A EP3783834B1 (en) 2018-11-12 2019-11-11 Control method, power receiving device and system
US17/138,219 US11528154B2 (en) 2018-11-12 2020-12-30 Control method, powered device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811341257.8 2018-11-12
CN201811341257.8A CN111181737B (zh) 2018-11-12 2018-11-12 控制方法、受电设备和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/138,219 Continuation US11528154B2 (en) 2018-11-12 2020-12-30 Control method, powered device, and system

Publications (1)

Publication Number Publication Date
WO2020098613A1 true WO2020098613A1 (zh) 2020-05-22

Family

ID=70653605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117269 WO2020098613A1 (zh) 2018-11-12 2019-11-11 控制方法、受电设备和系统

Country Status (5)

Country Link
US (1) US11528154B2 (zh)
EP (1) EP3783834B1 (zh)
CN (1) CN111181737B (zh)
FI (1) FI3783834T3 (zh)
WO (1) WO2020098613A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111181737B (zh) * 2018-11-12 2021-09-14 华为技术有限公司 控制方法、受电设备和系统
CN116995678B (zh) * 2023-09-26 2024-02-13 深之蓝(天津)水下智能科技有限公司 供电装置及水下缆控机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120246458A1 (en) * 2011-03-25 2012-09-27 Cisco Technology, Inc. Power optimization on a thin client device
CN203632689U (zh) * 2013-12-23 2014-06-04 浙江大华技术股份有限公司 一种多网口受电端设备及其受电装置
CN104954145A (zh) * 2014-03-29 2015-09-30 华为技术有限公司 以太网供电方法、供电设备和以太网供电系统
CN106341237A (zh) * 2015-07-06 2017-01-18 北京东土科技股份有限公司 基于poe系统的pse供电方法及装置
CN106953734A (zh) * 2016-01-06 2017-07-14 华为技术有限公司 一种供电方法,供电设备及受电设备
CN108111316A (zh) * 2016-11-25 2018-06-01 新华三技术有限公司 一种pse

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6968466B2 (en) * 2002-09-26 2005-11-22 Dell Products L.P. Remote method for controlling power on an information handling system
AU2003236882A1 (en) * 2003-05-15 2004-12-03 3Com Corporation System and method for the management of power supplied over data lines
FR2859856A1 (fr) * 2003-09-16 2005-03-18 France Telecom Systeme et disposiif d'alimentation a distance d'un equipement de traitement d'informations
US7898406B2 (en) * 2003-10-16 2011-03-01 Microsemi Corp. - Analoged Mixed Signal Group Ltd Powered device with priority indicator
US7492059B2 (en) * 2003-10-16 2009-02-17 Microsemi Corp.—Analog Mixed Signal Group Ltd. High power architecture for power over ethernet
US7515526B2 (en) * 2004-04-19 2009-04-07 Microsemi Corp.—Analog Mixed Signal Group Ltd. Dual mode power over ethernet controller
US7793137B2 (en) * 2004-10-07 2010-09-07 Cisco Technology, Inc. Redundant power and data in a wired data telecommunincations network
US8074084B2 (en) * 2004-11-03 2011-12-06 Cisco Technology, Inc. Powered device classification in a wired data telecommunications network
US20060164098A1 (en) * 2005-01-25 2006-07-27 Linear Technology Corporation Utilization of power delivered to powered device during detection and classification mode
US7627398B1 (en) * 2005-02-17 2009-12-01 Sifos Technologies, Inc. Apparatus providing power-over-ethernet test instrument
US20060212724A1 (en) * 2005-03-15 2006-09-21 Dwelley David M System and method for supporting operations of advanced power over ethernet system
US7940787B2 (en) * 2005-08-30 2011-05-10 Cisco Technology, Inc. Low-power ethernet device
WO2007070193A1 (en) * 2005-12-12 2007-06-21 Linear Technology Corporation Integrated powered device connector in system for supplying power over communication link
US7814340B2 (en) * 2005-12-12 2010-10-12 Linear Technology Corporation Power management mechanism in system for supplying power over communication link
US7613939B2 (en) * 2006-03-14 2009-11-03 Cisco Technology, Inc. Method and apparatus for changing power class for a powered device
US7890776B2 (en) * 2006-06-28 2011-02-15 Broadcom Corporation Use of priority information to intelligently allocate power for personal computing devices in a Power-over-Ethernet system
US8149858B2 (en) * 2007-01-05 2012-04-03 Broadcom Corporation Powered device analysis and power control in a power-over-ethernet system
US20080276104A1 (en) * 2007-05-01 2008-11-06 Broadcom Corporation Power source equiment for power over ethernet system with increased cable length
US7908494B2 (en) * 2007-09-26 2011-03-15 Broadcom Corporation System and method for multiple PoE power supply management
US8595516B2 (en) * 2008-01-03 2013-11-26 Broadcom Corporation System and method for global power management in a power over ethernet chassis
GB2462312B (en) * 2008-08-01 2012-03-21 Sensormatic Electronics Llc Battery backed power-over-ethernet system
US8886973B2 (en) * 2008-08-18 2014-11-11 Cisco Technology, Inc. System employing signaling at a powered communications interface to modify or override a power-withholding policy at a power-sourcing equipment
US8207635B2 (en) * 2009-02-20 2012-06-26 Redwood Systems, Inc. Digital switch communication
US9024473B2 (en) * 2011-08-30 2015-05-05 Linear Technology Corporation Power combining in power over ethernet systems
CN102387022B (zh) * 2011-10-20 2016-08-31 华为技术有限公司 一种以太网供电方法和装置
WO2013061323A1 (en) * 2011-10-27 2013-05-02 Microsemi Corp. - Analog Mixed Signal Group, Ltd. Power sourcing equipment for power over ethernet with low energy standby mode
US9640989B2 (en) * 2012-09-27 2017-05-02 Maxim Integrated Products, Inc. Powered device controllers having shared connection interfaces and two-level inrush current limit
US9026809B2 (en) * 2012-11-05 2015-05-05 Linear Technology Corporation Polarity correction bridge controller for combined power over ethernet system
WO2014169443A1 (zh) * 2013-04-17 2014-10-23 华为技术有限公司 供电设备的识别电路以及受电设备
US10411504B2 (en) * 2013-07-31 2019-09-10 Texas Instruments Incorporated System and method for controlling power delivered to a powered device through a communication cable
US9897981B2 (en) * 2013-10-01 2018-02-20 Linear Technology Corporation Detection and classification scheme for power over ethernet system
US9594369B2 (en) * 2013-10-01 2017-03-14 Broadcom Corporation Selective industrial power-over-network configuration and operation
US9859951B2 (en) * 2013-11-26 2018-01-02 Linear Technology Corporation Power over data lines detection and classification scheme
CN104869002A (zh) * 2014-02-20 2015-08-26 中兴通讯股份有限公司 一种自动调整功率需求等级的受电方法及受电设备
US9929865B2 (en) * 2014-08-19 2018-03-27 Microsemi P.O.E. Ltd. Powered device interface classification apparatus and method
CN105471956A (zh) * 2014-09-11 2016-04-06 中兴通讯股份有限公司 社交网络用户安全控制方法、社交应用工具及终端
CN105634750B (zh) * 2014-10-30 2018-11-09 华为技术有限公司 一种供电设备芯片、以太网供电设备和方法
US9967104B2 (en) * 2014-11-19 2018-05-08 Linear Technology Corporation Detecting ground isolation fault in ethernet PoDL system
CN106034032B (zh) * 2015-03-10 2020-02-21 华为技术有限公司 一种以太网供电方法和装置
RU2718004C2 (ru) * 2015-03-11 2020-03-27 Филипс Лайтинг Холдинг Б.В. Быстрое восстановление электропитания по линии передачи данных после отключения питания
WO2016187790A1 (zh) * 2015-05-25 2016-12-01 华为技术有限公司 一种otg外设、供电方法、终端及系统
RU2716747C2 (ru) * 2015-05-28 2020-03-16 Филипс Лайтинг Холдинг Б.В. Принудительный разряд сглаживающего конденсатора в питаемом устройстве
EP3318004B1 (en) * 2015-06-30 2018-12-12 Philips Lighting Holding B.V. Power providing device and method, power receiving device
EP3318006B1 (en) * 2015-07-24 2019-10-16 Tridonic GmbH & Co. KG Emergency signaling for power over ethernet systems
US10389539B2 (en) * 2015-08-07 2019-08-20 Texas Instruments Incorporated Turn on method without power interruption redundant power over Ethernet systems
US9935560B2 (en) * 2015-09-17 2018-04-03 Stmicroelectronics S.R.L. Electronic device with a maintain power signature (MPS) device and associated methods
CN106817226B (zh) * 2015-11-30 2019-11-29 华为技术有限公司 一种基于PoE的供电方法及PSE
CN106374559B (zh) * 2016-09-14 2021-08-20 华为技术有限公司 串联电池组的快速充电方法及相关设备
US11082243B2 (en) * 2017-04-24 2021-08-03 Signify Holding B.V. Power management device for immediate start-up during power negotiation
CN110557262B (zh) * 2018-05-30 2021-05-18 华为技术有限公司 一种受电设备
CN110554725B (zh) * 2018-05-30 2021-02-23 华为技术有限公司 用于以太网供电的受电设备
US10594367B1 (en) * 2018-11-07 2020-03-17 Linear Technology Holding Llc Power over data lines system with accurate and simplified cable resistance sensing
CN111181737B (zh) * 2018-11-12 2021-09-14 华为技术有限公司 控制方法、受电设备和系统
GB2580120A (en) * 2018-12-21 2020-07-15 Canon Kk Method and device for controlling device activation
US10680836B1 (en) * 2019-02-25 2020-06-09 Cisco Technology, Inc. Virtualized chassis with power-over-Ethernet for networking applications
GB2583734B (en) * 2019-05-07 2021-12-15 Canon Kk Pairing of devices in a power network
US11309804B2 (en) * 2019-05-08 2022-04-19 Analog Devices International Unlimited Company PoDL powered device with active rectifier bridge and shunting switch
CN110323739B (zh) * 2019-06-20 2020-11-06 浙江大华技术股份有限公司 一种供电设备以及供电系统
CN113938330B (zh) * 2020-06-29 2022-12-30 华为技术有限公司 连接方式的识别方法、供电设备、受电设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120246458A1 (en) * 2011-03-25 2012-09-27 Cisco Technology, Inc. Power optimization on a thin client device
CN203632689U (zh) * 2013-12-23 2014-06-04 浙江大华技术股份有限公司 一种多网口受电端设备及其受电装置
CN104954145A (zh) * 2014-03-29 2015-09-30 华为技术有限公司 以太网供电方法、供电设备和以太网供电系统
CN106341237A (zh) * 2015-07-06 2017-01-18 北京东土科技股份有限公司 基于poe系统的pse供电方法及装置
CN106953734A (zh) * 2016-01-06 2017-07-14 华为技术有限公司 一种供电方法,供电设备及受电设备
CN108111316A (zh) * 2016-11-25 2018-06-01 新华三技术有限公司 一种pse

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3783834A4 *

Also Published As

Publication number Publication date
CN111181737B (zh) 2021-09-14
EP3783834A4 (en) 2021-07-14
US20210119813A1 (en) 2021-04-22
US11528154B2 (en) 2022-12-13
FI3783834T3 (fi) 2024-03-26
CN111181737A (zh) 2020-05-19
EP3783834B1 (en) 2024-01-03
EP3783834A1 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP6021234B2 (ja) イーサネット(登録商標)システムを経由した4ワイヤペア電力のための検出スキーム
US11005670B2 (en) Low standby power circuit architecture for power saving within power source equipment
US20170338969A1 (en) MAINTAIN POWER SIGNATURE CONTROLLER AT POWER INTERFACE OF PoE OR PoDL SYSTEM
CN103384216B (zh) 发送器电路及其操作方法
US20060168459A1 (en) Providing data communication between power supply device and powered device in system for supplying power over communication link
TWI754588B (zh) 用於藉由轉遞受電裝置(PD)輸入電壓而傳輸電力至遠端乙太網路供電(PoE)子系統之系統、其製造方法、使用方法以及電腦可讀取之非暫態程式儲存裝置
US20170237580A1 (en) Power forwarding via a powered device
TW201419791A (zh) 用於組合的乙太網路供電系統之極性校正橋接控制器
CN103384184A (zh) 发送器电路及其运行控制方法
CN102611307B (zh) 一种应用于以太网供电系统中受电设备的受电电路
EP3304809B1 (en) Forced bulk capacitor discharge in powered device
WO2020098613A1 (zh) 控制方法、受电设备和系统
US9588562B2 (en) Method for waking up a distant device from a local device without waking up a physical layer unit in the distant device
US20170208658A1 (en) Powered device and power distribution system comprising the powered device
CN103577289A (zh) 一种基于hdmi热插拔检测电路和多媒体数据传输系统
CN106576048A (zh) 以太网供电受电装置自动维持电力特征
CN103490907B (zh) Poe电源接收方法和poe电源接收设备
CN104793544B (zh) 一种以太网poe中双向供电系统
CN209184614U (zh) 一种仪表总线主机通信电路
CN113777426B (zh) 用于以太网供电系统的分级检测方法及供电设备
CN209046639U (zh) 一种数据收发电路和通信仪表
JP2015126582A (ja) 給受電システムおよび給電機器、受電機器
EP3783833B1 (en) Communication device and effectiveness detection method
CN206212015U (zh) 一种交换机的电源电路和交换机
CN203573307U (zh) 一种基于hdmi热插拔检测电路和多媒体数据传输系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884531

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 19884531.5

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019884531

Country of ref document: EP

Effective date: 20201117

NENP Non-entry into the national phase

Ref country code: DE