WO2020098300A1 - 混合型光隔离器 - Google Patents

混合型光隔离器 Download PDF

Info

Publication number
WO2020098300A1
WO2020098300A1 PCT/CN2019/096304 CN2019096304W WO2020098300A1 WO 2020098300 A1 WO2020098300 A1 WO 2020098300A1 CN 2019096304 W CN2019096304 W CN 2019096304W WO 2020098300 A1 WO2020098300 A1 WO 2020098300A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
beam splitter
monitoring component
photodetector
Prior art date
Application number
PCT/CN2019/096304
Other languages
English (en)
French (fr)
Inventor
何淳
陈广隆
秦国双
Original Assignee
英诺激光科技股份有限公司
常州英诺激光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英诺激光科技股份有限公司, 常州英诺激光科技有限公司 filed Critical 英诺激光科技股份有限公司
Publication of WO2020098300A1 publication Critical patent/WO2020098300A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0014Monitoring arrangements not otherwise provided for

Definitions

  • the present application relates to the field of optical devices for optical fiber communication, and more particularly to a hybrid optical isolator.
  • Fiber laser refers to a laser that uses rare earth-doped glass fiber as the gain medium, which is used in laser fiber communication, laser space long-distance communication, industrial shipbuilding, automobile manufacturing, laser engraving laser marking, laser cutting, metal nonmetal Drilling / cutting / welding, military defense security, medical instruments and equipment, large-scale infrastructure, etc. Because the emission spectrum of active fiber doped with rare earth elements is in the near-infrared region, many materials are more effectively marked, cut, and drilled by visible or UV lasers.
  • near-infrared polarized lasers can pass through nonlinear optical crystals, two Sub-harmonics, frequency oscillations and higher-order nonlinear processes can be converted into visible lasers or UV lasers, but the conversion of laser beams from infrared to visible or UV nonlinear laser wavelengths always has reflected lasers or reflected Amplified spontaneous emission (ASE), the reflected laser or ASE can easily destroy the stability of the laser, or even damage the fiber laser.
  • polarization-dependent optical isolators are widely used in fiber lasers.
  • the technical problem to be solved by the present application is to provide a low-cost hybrid optical isolator that can avoid damage to the laser and ensure its stability.
  • the present application provides a hybrid optical isolator, which includes:
  • An input lens is provided on the output optical path of the input fiber to collimate the incident light
  • a first optical energy monitoring component provided on the light path of the input lens, for monitoring the energy of the input laser in real time
  • a polarization state monitoring component provided on the optical path of the first optical energy monitoring component, for real-time monitoring The polarization state of the input laser
  • an optical isolation component provided on the optical path of the polarization state monitoring component, for allowing the transmitted light from the polarization state monitoring component to pass, and blocking the reverse direction of the light path opposite to the direction of the incident light;
  • a second optical energy monitoring component provided on the optical path of the optical isolation component, for real-time monitoring of the energy of the amplified spontaneous radiation reflected back;
  • An output lens is provided on the optical path of the second light energy monitoring component to couple the light beam from the second light energy monitoring component into the output fiber.
  • the first optical energy monitoring component includes a first beam splitter and a first photodetector, the first beam splitter is provided in the input lens and the polarization state monitoring component For allowing incident light to pass through and split the incident light, the first photodetector is disposed on the refracted optical path of the first beam splitter to monitor the incident light beam passing through the first beam splitter Light intensity;
  • the polarization state monitoring component includes a polarization beam splitter and a third photodetector, the polarization beam splitter is disposed on the optical path of the first beam splitter to transmit the light, and is used to allow incident light to pass through, and Split the incident light, the third photodetector is disposed on the refracted optical path of the polarizing beam splitter to monitor the light intensity of the incident light beam passing through the polarizing beam splitter;
  • the second optical energy monitoring component includes There is a second beam splitter and a second photodetector, the second beam splitter is disposed between the optical
  • the first optical energy monitoring component, the polarization state monitoring component and the second optical energy monitoring component in the hybrid optical isolator are all provided with a focusing lens to refract the light beam in the optical path Converge on the light detector.
  • the first beam splitter and the second beam splitter are parallel glass plates coated with a beam splitting film, and a parallel glass plate forms an acute angle with the output optical axis of the input lens, and the other The parallel glass plate forms a pure angle with the input optical axis of the output lens.
  • the acute angle is 45 °
  • the obtuse angle is 135 °.
  • the first beam splitter and the second beam splitter are two right-angle prisms coated with a beam splitting film.
  • the polarization beam splitter is a right angle of two inclined planes coated with S light and P light separation films Cube structure with prism glued together.
  • the first photodetector, the second photodetector and the third photodetector are all photodiodes.
  • the input lens and the output lens are both lenses with an 8-degree angle slope, the 8-degree angle slope of the input lens faces the input optical fiber, and the 8-degree angle slope of the output lens faces Output fiber.
  • the optical isolation component includes:
  • a first beam shifter for splitting the incident light from the polarization state monitoring component into 0 light and E light
  • a Faraday rotator which is disposed on the optical path of the first beam shifter and used to convert the
  • a half wave plate used to rotate the 0 light and the E light in the opposite direction with respect to the Faraday rotation direction by 45 degrees;
  • the hybrid optical isolator of the present application integrates three monitoring functions in the optical path of the fiber laser into the isolator, so that the connection between the laser optical device and the disk fiber can be avoided, and the optical fiber can be reduced
  • the effect of the fusion splice point and disk fiber on the stability of the laser greatly improves the stability of the optical path in the laser.
  • the hybrid optical isolator of this application can monitor the optical path of the fiber laser in real time, especially the spontaneous amplification of the reflected back Radiation energy monitoring, so that the laser and the protection laser can be understood more clearly.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a hybrid optical isolator of the present application.
  • FIG. 2 is a schematic structural view of a second embodiment of a hybrid optical isolator of the present application.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a hybrid optical isolator 1 of the present application.
  • the hybrid optical isolator 1 includes an input lens 10, a first optical energy monitoring component, a polarization monitoring component, an optical isolation component 30, and a second optical energy monitoring Components and one loss ⁇ 40 ⁇ The lens 40.
  • the first optical energy monitoring component includes a first optical beam splitter 201, a first focusing lens 601 and a first optical detector 502;
  • the polarization state monitoring component includes a polarizing beam splitter 203 and a third focusing lens 602 and a third light detector 501;
  • the second energy monitoring component includes a second beam splitter 202, a second focusing lens 603, and a second light detector 503.
  • the optical isolation component includes a first beam shifter 301, a Faraday rotator 302, a magnetic ring, a half-wave plate 303, and a second beam shifter 304.
  • the input lens 10 is provided on the output optical path of the input optical fiber 2 to collimate the incident light, that is, to collimate the laser beam emitted by the input optical fiber 2 with a certain beam divergence angle
  • the first beam splitter 201 is provided on the light path of the input lens 10 to allow incident light to pass through and split the incident light;
  • the first focusing lens 601 is provided on the first light beam splitter 201
  • the refracted parallel light is focused on the first photodetector 502 through the first focusing lens 601 to realize the energy monitoring of the input laser, that is, the optical energy of the input laser beam is monitored;
  • the polarization beam splitter 203 may be two A cube structure with a right angle prism coated with S-light and P-light separation films glued together, understandably, a polarizing beam splitter that uses birefringent crystals to achieve the same function also belongs to the scope of protection of this patent.
  • the third focusing lens 602 is provided on the refracted optical path of the polarizing beam splitter 203 The deflected parallel light is focused on the third photodetector 501 through the third focusing lens 602 to monitor the polarization state of the input laser, that is, the intensity of the transmitted light beam passing through the polarization beam splitter 203, and then the laser The linear polarization state of the light beam; the optical isolation component 30 is provided on the optical beam path of the polarizing beam splitter 203 to transmit the light from the polarizing beam splitter 203, and blocks the direction of the optical path opposite to the direction of the incident light Reverse light, so that the laser is protected from the reverse light; the second beam splitter 202 is used to allow the transmitted light from the optical isolation component 30 to pass through and split the reverse light; the second focusing lens 603 is disposed
  • the first photodetector 502, the second photodetector 503, and the third photodetector 501 are all photodiodes. It can be seen that the photodiodes in the hybrid optical isolator 1 of the present application are built-in and occupy optical fibers The laser is small in size and low in cost.
  • the first Both the beam splitter 201 and the second beam splitter 202 are two right-angle prisms coated with a beam splitting film.
  • the optical isolation assembly 30 includes a first beam shifter 301, a Faraday rotator 302, a magnetic ring, half wave plate 303 and a second beam shifter 304;
  • the first beam shifter 301 is used to split the light emitted from the polarization beam splitter 203 into 0 light and E light;
  • the beam shifter uses a birefringent crystal to Natural light is decomposed into polarized lights whose polarization directions are perpendicular to each other;
  • the Faraday rotator 302 is provided on the optical path of the first beam shifter 301, and is used to rotate the 0-light and E-light vibration planes by 45 ° according to the magnetic field direction;
  • the magnetic ring is sleeved on the Faraday rotator 302 to generate a magnetic field;
  • the half-wave plate 303 is used to rotate the 0 light and the E light in the opposite direction by 45 degrees relative to the Faraday rotation direction;
  • multiple isolator assemblies 30 may be connected in series, and the beam shifter may also be replaced with a polarizer. Since the polarization direction of the P light emitted by the polarizing beam splitter 203 in the embodiment of the present application is the same as the 0 light, the P light emitted can pass through the isolator assembly 30 and be coupled into the output fiber 3 through the output lens 40 without deflection.
  • the input lens 10 and the output lens 40 are both C-Len with an 8-degree slope, the 8-degree slope of the input lens 10 faces the input optical fiber 2, and the output lens 40 The 8-degree inclined surface faces the output fiber 3. Understandably, in some other embodiments, the input lens 10 and the output lens 40 may also be G-lens, or other lenses that can achieve some functions.
  • FIG. 2 is a schematic structural diagram of a second embodiment of a hybrid optical isolator 1 of the present application.
  • the difference between this embodiment and the first embodiment is that both the first beam splitter 201 and the second beam splitter 202 use a glass plate coated with a beam splitting film, the beam splitting film has a certain beam splitting ratio, and a parallel
  • the glass plate forms an acute angle with the output optical axis of the input lens 10, and another parallel glass plate forms an obtuse angle with the input optical axis of the output lens 40.
  • the acute angle is 45 ° and the obtuse angle is 135 °.
  • the first beam splitter 201 and the output optical axis of the input lens 10 are at 45 °
  • the second beam splitter 202 and the input optical axis of the output lens 40 are at 135 °.
  • two parallel glass plates are placed in opposite directions to compensate for the flat The offset of the main optical path caused by the glass. Understandably, in some other embodiments, the parallel glass plate may also be a wedge with a certain angle.
  • the hybrid optical isolator of the present application integrates three monitoring functions in the optical path of the fiber laser into the isolator, so the connection between the laser optical devices and the disk fiber can be avoided, and the fusion between the optical fibers can be reduced
  • the influence of dots and disk fibers on the stability of the laser greatly improves the stability of the optical path in the laser.
  • the hybrid optical isolator of this application can monitor the optical path of the fiber laser in real time, especially for the amplified spontaneous radiation reflected back Energy monitoring, so that you can understand the laser and protect the laser more clearly

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)

Abstract

一种混合型光隔离器(1),其包括:一输入透镜(10),设于输入光纤(2)出光光路上,以对入射光进行光束准直;一第一光能量监控组件,设于输入透镜(10)出光光路上,用于实时监控输入激光的能量;一偏振态监控组件,设于第一光能量监控组件出光光路上,用于实时监测输入激光的偏振状态;一光隔离组件(30),设于偏振态监控组件出光光路上,用于允许来自偏振态监控组件的透射光通过,并阻隔光路方向与入射光方向相反的反向光;一第二光能量监控组件,设于光隔离组件(30)出光光路上,用于实时监测反射回来的放大自发辐射的能量;一输出透镜(40),设于第二光能量监控组件出光光路上,以将来自第二光能量监控组件的光束耦合至输出光纤(3)中。

Description

混合型光隔离器
[0001] 本申请是以申请号为 201811345691.3、 申请日为 2018年 11月 13日的中国专利申 请为基础, 并主张其优先权, 该申请的全部内容在此作为整体引入本申请中。
[0002] 技术领域
[0003] 本申请涉及光纤通信的光学器件领域, 更具体地涉及一种混合型光隔离器。
[0004] 背景技术
[0005] 光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器, 其应用于激光 光纤通讯、 激光空间远距通讯、 工业造船、 汽车制造、 激光雕刻激光打标、 激 光切割、 金属非金属钻孔 /切割 /焊接、 军事国防安全、 医疗器械仪器设备、 大型 基础建设等等领域。 因稀土元素掺杂的有源光纤发光光谱在近红外区域, 但是 , 许多材料更有效地被可见或者 UV激光所打标、 切割和钻孔, 虽然近红外线偏 振激光可以通过非线性光学晶体、 二次谐波、 频振荡和高阶非线性过程可转换 成可见激光或者 UV激光, 但激光光束从红外到可见光或 UV间的非线性激光波长 转换的过程总是存在反射回来的激光或反射回来的放大自发辐射 (ASE) , 反射 回来的激光或 ASE很容易破坏激光器的稳定性, 甚至损坏光纤激光器。 为了防止 激光器反射回来的激光, 偏振相关型光隔离器被广泛应用于光纤激光器中。
[0006] 鉴于此, 有必要提供一种可避免激光器被损坏且保证其稳定性的低成本混合型 光隔离器以解决上述缺陷。
[0007] 申请内容
[0008] 本申请所要解决的技术问题是提供一种可避免激光器被损坏且保证其稳定性的 低成本混合型光隔离器。
[0009] 为解决上述技术问题, 本申请提供一种混合型光隔离器, 其包括有:
[0010] 一输入透镜, 设于输入光纤出光光路上, 以对入射光进行光束准直;
[0011] 一第一光能量监控组件, 设于所述输入透镜出光光路上, 用于实时监控输入激 光的能量;
[0012] 一偏振态监控组件, 设于所述第一光能量监控组件出光光路上, 用于实时监测 输入激光的偏振状态;
[0013] 一光隔离组件, 设于所述偏振态监控组件出光光路上, 用于允许来自偏振态监 控组件的透射光通过, 并阻隔光路方向与入射光方向相反的反向光;
[0014] 一第二光能量监控组件, 设于所述光隔离组件出光光路上, 用于实时监测反射 回来的放大自发辐射的能量;
[0015] 一输出透镜, 设于所述第二光能量监控组件出光光路上, 以将来自第二光能量 监控组件的光束耦合至输出光纤中。
[0016] 其进一步技术方案为: 所述第一光能量监控组件包括有一第一分束器及第一光 探测器, 所述第一分束器设于所述输入透镜及偏振态监控组件之间, 用于允许 入射光通过, 并对该入射光进行分光, 所述第一光探测器设于所述第一分束器 折射光路上, 以监测通过第一分束器的入射光光束的光强度; 所述偏振态监控 组件包括有一偏振分束器及第三光探测器, 所述偏振分束器设于所述第一分束 器透射出光光路上, 用于允许入射光通过, 并对该入射光进行分光, 所述第三 光探测器设于所述偏振分束器折射光路上, 以监测通过偏振分束器的入射光光 束的光强度; 所述第二光能量监控组件包括有一第二分束器及第二光探测器, 所述第二分束器设于所述光隔离组件及输出透镜之间, 用于允许来自光隔离组 件的透射光通过, 并对反向光进行分光; 所述第三光探测器设于所述第二分束 器折射光路上, 以监测反射回来的放大自发辐射的能量。
[0017] 其进一步技术方案为: 所述混合型光隔离器中的第一光能量监控组件、 偏振态 监控组件以及第二光能量监控组件中均设有一聚焦透镜, 以将折射光路中的光 束会聚到光探测器上。
[0018] 其进一步技术方案为: 所述第一分束器及第二分束器均为镀有分光膜的平行玻 璃板, 且一平行玻璃板与输入透镜的输出光轴成一锐角, 另一平行玻璃板与输 出透镜的输入光轴成一純角。
[0019] 其进一步技术方案为: 所述锐角为 45°角, 所述钝角为 135°角。
[0020] 其进一步技术方案为: 所述第一分束器及第二分束器均为镀有分光膜的两片直 角棱镜。
[0021] 其进一步技术方案为: 所述偏振分束器为两个斜面镀有 S光和 P光分离膜的直角 棱镜胶合在一起的立方体结构。
[0022] 其进一步技术方案为: 所述第一光探测器、 第二光探测器及第三光探测器均为 光电二极管。
[0023] 其进一步技术方案为: 所述输入透镜和输出透镜是均为带 8度角斜面的透镜, 所述输入透镜的 8度角斜面朝向输入光纤, 所述输出透镜的 8度角斜面朝向输出 光纤。
[0024] 其进一步技术方案为: 所述光隔离组件包括有:
[0025] 一第一光束偏移器, 用于将来自偏振态监控组件的入射光分束为 0光和 E光;
[0026] 一法拉第旋转器, 设于所述第一光束偏移器出光光路上, 用于根据磁场方向将
0光和 E光振偏面旋转 45° ;
[0027] 一磁环, 套设于所述法拉第旋转器上, 用于产生磁场;
[0028] 一半波片, 用于将 0光和 E光相对于法拉第旋转方向反向旋转 45度;
[0029] 以及一第二光束偏移器, 用于将来自半波片的 0光直线通过并偏折 E光。
[0030] 与现有技术相比, 本申请的混合型光隔离器把光纤激光器光路中的三种监控功 能集成到隔离器里面, 因此可避免激光器光器件间的连接和盘纤, 减少光纤间 的熔接点和盘纤对激光器稳定性造成的影响, 很大程度上提高激光器中光路的 稳定, 本申请的混合型光隔离器可以对光纤激光器光路进行实时监控, 特别是 对反射回来的放大自发辐射的能量监控, 从而可以更清楚的了解激光器和保护 激光器。
[0031] 附图说明
[0032] 图 1是本申请混合型光隔离器第一实施例的结构示意图。
[0033] 图 2是本申请混合型光隔离器第二实施例的结构示意图。
[0034] 具体实施方式
[0035] 为使本领域的普通技术人员更加清楚地理解本申请的目的、 技术方案和优点, 以下结合附图和实施例对本申请做进一步的阐述。
[0036] 参照图 1, 图 1为本申请混合型光隔离器 1第一实施例的结构示意图。 在附图所 示的实施例中, 所述混合型光隔离器 1包括有一输入透镜 10、 一第一光能量监控 组件、 一偏振态监控组件、 一光隔离组件 30、 一第二光能量监控组件以及一输 出透镜 40。 其中, 所述的第一光能量监控组件包括第一光分束器 201、 第一聚焦 透镜 601及第一光探测器 502; 所述偏振态监控组件包括偏振分束器 203、 第三聚 焦透镜 602及第三光探测器 501 ; 所述第二能量监控组件包括第二分束器 202、 第 二聚焦透镜 603及第二光探测器 503。 所述光隔离组件包括有第一光束偏移器 301 、 法拉第旋转器 302、 磁环、 半波片 303及第二光束偏移器 304。
[0037] 其中, 所述所述输入透镜 10设于输入光纤 2出光光路上, 以对入射光进行光束 准直, 即用于将输入光纤 2发射的具备一定束散角的激光进行光束准直; 所述第 一分束器 201设于所述输入透镜 10出光光路上, 用于允许入射光通过, 并对入射 光进行分光; 所述第一聚焦透镜 601设于第一光分束器 201折射光路上, 折射的 平行光通过第一聚焦透镜 601聚焦在第一光探测器 502上, 实现输入激光的能量 监测, 即监测输入激光光束的光能量; 所述偏振分束器 203可以为两个斜面镀有 S光和 P光分离膜的直角棱镜胶合在一起的立方体结构, 可理解地, 采用双折射 晶体实现同等功能的偏振分束器也属于本专利保护的范畴, 该偏振分束器 203设 于所述第一分束器 201透射出光光路上, 用于将 P方向偏振光透过, S方向偏振光 偏折, 所述第三聚焦透镜 602设于偏振分束器 203折射光路上, 被偏折的平行光 通过第三聚焦透镜 602聚焦在第三光探测器 501上, 实现输入激光偏振状态的监 测, 即监测通过偏振分束器 203的透射光光束的光强度, 进而监测激光光束的线 偏振状态; 所述光隔离组件 30设于所述偏振分束器 203透射出光光路上, 用于允 许来自偏振分束器 203的透射光通过, 并阻隔光路方向与入射光方向相反的反向 光, 因此使得激光器免受反向光的影响; 所述第二分束器 202用于允许来自光隔 离组件 30的透射光通过, 并对反向光进行分光; 所述第二聚焦透镜 603设于第二 光分束器 202折射光路上, 折射的平行光通过第二聚焦透镜 603聚焦在第二光探 测器 503上, 以监测反射回来的放大自发辐射 (ASE) 的能量; 所述输出透镜 40 设于所述第二分束器 202透射出光光路上, 以将来自第二分束器 202的光束耦合 至输出光纤中, 即将出射的平行光束进行耦合, 将光束束散角压缩到输出光纤 3 的数值孔径以下从而耦合到输出光纤 3纤芯中。 本实施例中, 所述第一光探测器 502、 第二光探测器 503及第三光探测器 501均为光电二极管, 可知, 本申请的混 合型光隔离器 1中光电二极管内置, 占用光纤激光器体积小, 且成本低。 所述第 一分束器 201及第二分束器 202均为镀有分光膜的两片直角棱镜。
[0038] 在某些实施例中, 所述光隔离组件 30包括有一第一光束偏移器 301、 一法拉第 旋转器 302、 一磁环、 一半波片 303以及一第二光束偏移器 304; 其中, 所述第一 光束偏移器 301用于将来自偏振分束器 203的出射的光分束为 0光和 E光; 可理解 地, 光束偏移器利用双折射晶体, 可以将一束自然光分解成偏振方向相互垂直 的偏振光; 所述法拉第旋转器 302设于所述第一光束偏移器 301出光光路上, 用 于根据磁场方向将 0光和 E光振偏面旋转 45° ; 所述磁环套设于所述法拉第旋转器 302上, 用于产生磁场; 所述半波片 303用于将 0光和 E光相对于法拉第旋转方向 反向旋转 45度; 所述第二光束偏移器 304用于将来自半波片 0光直线通过并偏折 E 光。 可理解地, 本实施例中可以串联多个隔离器组件 30, 其中的光束偏移器也 可以采用偏振片代替。 由于本申请实施例中偏振分束器 203出射的 P光偏振方向 和 0光一致, 所以出射的 P光可以无偏折通过隔离器组件 30并通过输出透镜 40稱 合进入输出光纤 3中。 同理一束与入射光方向相反的射入光隔离组件 30时, 经过 第二光束偏移器 304分解成偏振方向相互垂直的 0光和 E光, 由于法拉第旋转器 30 2旋转方向与磁场有关, 所以反向传输的 0光和 E光经过半波片 303和法拉第旋转 器 302后偏振面旋转 90°, 因此 0光和 E光经过第一光束偏移器 301均发生偏折而无 法通过输入透镜 10稱合进入光纤 2, 从而达到光隔离作用。
[0039] 本实施例中, 所述输入透镜 10和输出透镜 40是均为带 8度角斜面的 C-Len, 所述 输入透镜 10的 8度角斜面朝向输入光纤 2, 所述输出透镜 40的 8度角斜面朝向输出 光纤 3。 可理解地, 在某些其他实施例中, 所述输入透镜 10和输出透镜 40也可以 是 G-lens, 或者其它可以实现些功能的透镜。
[0040] 参照图 2, 图 2为本申请混合型光隔离器 1第二实施例的结构示意图。 本实施例 与第一实施例的不同之处在于所述第一分束器 201和第二分束器 202均选用镀有 分光膜的玻璃板, 所述分光膜具有一定分光比, 且一平行玻璃板与输入透镜 10 的输出光轴成一锐角, 另一平行玻璃板与输出透镜 40的输入光轴成一钝角, 本 实施例中, 所述锐角为 45°角, 所述钝角为 135°角。 具体的, 如图 2所示, 所述第 一分束器 201与输入透镜 10的输出光轴成 45°, 所述第二分束器 202与输出透镜 40 的输入光轴成 135°。 基于该设计, 采用两个平行玻璃板相反方向放置, 以弥补平 行玻璃对主光路造成的偏移。 可理解地, 在某些其他实施例中, 平行玻璃板也 可以是带有一定角度的锲角片。
[0041] 综上所述, 本申请的混合型光隔离器把光纤激光器光路中的三种监控功能集成 到隔离器里面, 因此可避免激光器光器件间的连接和盘纤, 减少光纤间的熔接 点和盘纤对激光器稳定性造成的影响, 很大程度上提高激光器中光路的稳定, 本申请的混合型光隔离器可以对光纤激光器光路进行实时监控, 特别是对反射 回来的放大自发辐射的能量监控, 从而可以更清楚的了解激光器和保护激光器
[0042] 以上所述仅为本申请的优选实施例, 而非对本申请做任何形式上的限制。 本领 域的技术人员可在上述实施例的基础上施以各种等同的更改和改进, 例如, 选 用不同方式的分光器件或方法, 省略半波片而把第二光束偏移器以及后面所有 的器件都旋转 45度等。 凡在权利要求范围内所做的等同变化或修饰, 均应落入 本申请的保护范围之内。
发明概述
技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 i] 一种混合型光隔离器, 其特征在于, 该混合型光隔离器包括有: 一输入透镜, 设于输入光纤出光光路上, 以对入射光进行光束准直 一第一光能量监控组件, 设于所述输入透镜出光光路上, 用于实时监 控输入激光的能量;
一偏振态监控组件, 设于所述第一光能量监控组件出光光路上, 用于 实时监测输入激光的偏振状态;
一光隔离组件, 设于所述偏振态监控组件出光光路上, 用于允许来自 偏振态监控组件的透射光通过, 并阻隔光路方向与入射光方向相反的 反向光;
一第二光能量监控组件, 设于所述光隔离组件出光光路上, 用于实时 监测反射回来的放大自发辐射的能量;
一输出透镜, 设于所述第二光能量监控组件出光光路上, 以将来自第 二光能量监控组件的光束耦合至输出光纤中。
[权利要求 2] 如权利要求 1所述的混合型光隔离器, 其特征在于: 所述第一光能量 监控组件包括有一第一分束器及第一光探测器, 所述第一分束器设于 所述输入透镜及偏振态监控组件之间, 用于允许入射光通过, 并对该 入射光进行分光, 所述第一光探测器设于所述第一分束器折射光路上 , 以监测通过第一分束器的入射光光束的光强度; 所述偏振态监控组 件包括有一偏振分束器及第三光探测器, 所述偏振分束器设于所述第 一分束器透射出光光路上, 用于允许入射光通过, 并对该入射光进行 分光, 所述第三光探测器设于所述偏振分束器折射光路上, 以监测通 过偏振分束器的入射光光束的光强度; 所述第二光能量监控组件包括 有一第二分束器及第二光探测器, 所述第二分束器设于所述光隔离组 件及输出透镜之间, 用于允许来自光隔离组件的透射光通过, 并对反 向光进行分光; 所述第三光探测器设于所述第二分束器折射光路上, 以监测反射回来的放大自发辐射的能量。
[权利要求 3] 如权利要求 2所述的混合型光隔离器, 其特征在于: 所述混合型光隔 离器中的第一光能量监控组件、 偏振态监控组件以及第二光能量监控 组件中均设有一聚焦透镜, 以将折射光路中的光束会聚到光探测器上
[权利要求 4] 如权利要求 2所述的混合型光隔离器, 其特征在于: 所述第一分束器 及第二分束器均为镀有分光膜的平行玻璃板, 且一平行玻璃板与输入 透镜的输出光轴成一锐角, 另一平行玻璃板与输出透镜的输入光轴成 一钝角。
[权利要求 5] 如权利要求 4所述的混合型光隔离器, 其特征在于: 所述锐角为 45°角 , 所述钝角为 135°角。
[权利要求 6] 如权利要求 2所述的混合型光隔离器, 其特征在于: 所述第一分束器 及第二分束器均为镀有分光膜的两片直角棱镜。
[权利要求 7] 如权利要求 2所述的混合型光隔离器, 其特征在于: 所述偏振分束器 为两个斜面镀有 S光和 P光分离膜的直角棱镜胶合在一起的立方体结 构。
[权利要求 8] 如权利要求 2所述的混合型光隔离器, 其特征在于: 所述第一光探测 器、 第二光探测器及第三光探测器均为光电二极管。
[权利要求 9] 如权利要求 1所述的混合型光隔离器, 其特征在于: 所述输入透镜和 输出透镜是均为带 8度角斜面的透镜, 所述输入透镜的 8度角斜面朝向 输入光纤, 所述输出透镜的 8度角斜面朝向输出光纤。
[权利要求 10] 如权利要求 1所述的混合型光隔离器, 其特征在于, 所述光隔离组件 包括有:
一第一光束偏移器, 用于将来自偏振态监控组件的入射光分束为 0光 和 E光;
一法拉第旋转器, 设于所述第一光束偏移器出光光路上, 用于根据磁 场方向将 0光和 E光振偏面旋转 45° ;
一磁环, 套设于所述法拉第旋转器上, 用于产生磁场;
一半波片, 用于将 0光和 E光相对于法拉第旋转方向反向旋转 45度; 以及一第二光束偏移器, 用于将来自半波片的 0光直线通过并偏折 E 光。
PCT/CN2019/096304 2018-11-13 2019-07-17 混合型光隔离器 WO2020098300A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811345691.3 2018-11-13
CN201811345691.3A CN109283706A (zh) 2018-11-13 2018-11-13 混合型光隔离器

Publications (1)

Publication Number Publication Date
WO2020098300A1 true WO2020098300A1 (zh) 2020-05-22

Family

ID=65175151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096304 WO2020098300A1 (zh) 2018-11-13 2019-07-17 混合型光隔离器

Country Status (2)

Country Link
CN (1) CN109283706A (zh)
WO (1) WO2020098300A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283706A (zh) * 2018-11-13 2019-01-29 英诺激光科技股份有限公司 混合型光隔离器
CN114900242A (zh) * 2022-07-14 2022-08-12 西安炬光科技股份有限公司 光路结构、光中继装置及光纤激光器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090213363A1 (en) * 2008-02-27 2009-08-27 Dmitry Starodubov Power monitoring device for powerful fiber laser systems
CN102360131A (zh) * 2011-09-29 2012-02-22 中国科学院上海光学精密机械研究所 多功能高功率保偏光纤隔离器
CN203561804U (zh) * 2013-09-02 2014-04-23 辽宁科旺光电科技有限公司 一种光路混合器
CN105449497A (zh) * 2014-09-30 2016-03-30 中国兵器装备研究院 一种隔离滤波耦合多功能光纤器件
CN109283706A (zh) * 2018-11-13 2019-01-29 英诺激光科技股份有限公司 混合型光隔离器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103299233A (zh) * 2012-02-28 2013-09-11 深圳市杰普特电子技术有限公司 光隔离器
JP2017135252A (ja) * 2016-01-27 2017-08-03 住友電気工業株式会社 発光モジュール
JP7062882B2 (ja) * 2017-04-28 2022-05-09 富士通オプティカルコンポーネンツ株式会社 波長モニタ装置、光源装置及び光モジュール
CN208953818U (zh) * 2018-11-13 2019-06-07 英诺激光科技股份有限公司 混合型光隔离器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090213363A1 (en) * 2008-02-27 2009-08-27 Dmitry Starodubov Power monitoring device for powerful fiber laser systems
CN102360131A (zh) * 2011-09-29 2012-02-22 中国科学院上海光学精密机械研究所 多功能高功率保偏光纤隔离器
CN203561804U (zh) * 2013-09-02 2014-04-23 辽宁科旺光电科技有限公司 一种光路混合器
CN105449497A (zh) * 2014-09-30 2016-03-30 中国兵器装备研究院 一种隔离滤波耦合多功能光纤器件
CN109283706A (zh) * 2018-11-13 2019-01-29 英诺激光科技股份有限公司 混合型光隔离器

Also Published As

Publication number Publication date
CN109283706A (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
JP2983553B2 (ja) 光学非相反装置
US7081996B2 (en) Isolated polarization beam splitter and combiner
CA2352834A1 (en) Isolated polarization beam splitter and combiner
WO2020098300A1 (zh) 混合型光隔离器
US6819810B1 (en) Depolarizer
US20120300287A1 (en) Frequency-tripled fiber mopa
CN102360131B (zh) 多功能高功率保偏光纤隔离器
US6430323B1 (en) Polarization maintaining optical isolators
CN214669710U (zh) 一种可监控回返光的光隔离器
CN208953818U (zh) 混合型光隔离器
US20040184148A1 (en) Integrated micro-optic architecture for combining and depolarizing plural polarized laser beams
US20050174640A1 (en) Optical polarization beam combiner
EP3667839B1 (en) Optical module and erbium-doped fiber amplifier
US11480735B2 (en) Optical isolator with optical fibers arranged on one single side
CN107561647A (zh) 一种尾纤相互垂直的光隔离器
GB2505180A (en) Beam combiner with birefringent and isotropic prisms
CN211123363U (zh) 一种高隔离度分光器
US11768329B2 (en) High isolation optical splitter
US20020191290A1 (en) Integrated micro-optic architecture for combining and depolarizing plural polarized laser beams
CN201352291Y (zh) 一种激光衰减器
CN205141360U (zh) 一种避免激励光光源损伤的受激散射增强装置
CN214409377U (zh) 一种偏振无关型双级光隔离器
JP2011069875A (ja) 偏光依存型インライン光アイソレータ
CN110568637A (zh) 光纤隔离器、激光器及工业设备
US11796778B2 (en) Small, high power optical isolator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885215

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.09.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19885215

Country of ref document: EP

Kind code of ref document: A1