WO2020098264A1 - 一种人体成分测量方法、装置、系统及存储介质 - Google Patents

一种人体成分测量方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2020098264A1
WO2020098264A1 PCT/CN2019/091004 CN2019091004W WO2020098264A1 WO 2020098264 A1 WO2020098264 A1 WO 2020098264A1 CN 2019091004 W CN2019091004 W CN 2019091004W WO 2020098264 A1 WO2020098264 A1 WO 2020098264A1
Authority
WO
WIPO (PCT)
Prior art keywords
body composition
impedance value
hands
rate
feet
Prior art date
Application number
PCT/CN2019/091004
Other languages
English (en)
French (fr)
Inventor
李晓
卢国建
Original Assignee
芯海科技(深圳)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芯海科技(深圳)股份有限公司 filed Critical 芯海科技(深圳)股份有限公司
Publication of WO2020098264A1 publication Critical patent/WO2020098264A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body

Definitions

  • the invention belongs to the field of human body physiological measurement, and in particular relates to a method, device, system and storage medium for human body composition measurement.
  • the body fat scale is based on the traditional weight scale, by adding electrodes suitable for the foot to measure the bioelectrical impedance between the two feet, and combining the weight, height, age, gender, etc. to estimate the various components of the human body, including fat rate , Muscle rate, basal metabolic rate, visceral fat level, etc., have a high reference value for body type management and health richness assessment in family scenes.
  • the information is not comprehensive enough, and there is a disadvantage of low accuracy when used to calculate the body composition of the whole body.
  • the eight-electrode body fat scale can also be made by referring to the eight-electrode method of the body composition analyzer.
  • FIG. 1 it is a structural diagram of the eight-electrode body fat scale 100 in the prior art, including the scale The body 120, the handle 110, and the cable 130 electrically connecting the scale body 120 and the handle 110.
  • the scale body 120 has a load cell 121 and four body impedance detection electrodes, such as electrode 122, and the handle also includes four body impedance detection electrodes, such as electrode 111. Therefore, the eight-electrode body fat scale 100 includes a total of 8 body impedance measurement electrodes for realizing whole-body impedance measurement, so as to obtain accurate body composition parameters.
  • the handle electrode and the scale body electrode need to be electrically connected by a cable 130 to ensure the formation of a current and voltage measurement loop, which results in the complexity of the overall structure, increased cost, poor storage of the handle, decreased industrial design aesthetics, and users Inconvenient operation during use.
  • a cable 130 to ensure the formation of a current and voltage measurement loop, which results in the complexity of the overall structure, increased cost, poor storage of the handle, decreased industrial design aesthetics, and users Inconvenient operation during use.
  • due to the need to increase the handle and the hand electrode it brings increased costs, complicated structure, and inconvenience in use.
  • the purpose of the present invention is to provide a method, device, system and storage medium for measuring body composition to solve the technical problems of complicated structure, inconvenient use and high cost of the eight-electrode whole-body impedance measurement device.
  • a body composition measurement method includes the following steps:
  • the body composition parameter is calculated according to the physiological parameters of the human body, the impedance value between the feet and the impedance value between the hands.
  • the physiological parameters of the human body include weight, height and gender; the parameters of the human body composition include fat content or fat rate, moisture content or water rate, muscle content or muscle rate, protein content or protein rate, inorganic content or inorganic Salt rate, and any one or more of the basal metabolic amount or basal metabolic rate.
  • a body composition measuring device includes:
  • a memory a processor, and a computer program stored on the memory and executable on the processor;
  • the device includes a body fat scale, a wearable device or an intelligent terminal.
  • a body composition measurement system including a first measurement device, a second measurement device, and a processing device, wherein:
  • the first measuring device is used to measure the impedance value between the feet of the human body and send it to the processing device;
  • the second measuring device is used to measure the impedance value between the human hands and send it to the processing device;
  • the processing device is used to calculate the body composition parameter according to the physiological parameter of the human body, the impedance value between the feet and the impedance value between the hands.
  • a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, the steps of the above-mentioned body composition measurement method are implemented.
  • the method, device, system and storage medium for measuring the body composition provided by the present invention, on the one hand, overcome the shortcomings of the traditional eight-electrode whole-body impedance measurement, which requires the two-handed electrode and the two-legged electrode to be wired to connect, which is complicated in structure, inconvenient to use, and high in cost. At the same time, it can obtain higher accuracy than the two-foot measurement of the simple body fat scale or the two-hand measurement of the bracelet handle, so as to make full use of the existing body fat scale, bracelet and other equipment, and improve the measurement without increasing the cost. Accuracy and convenience improve the user experience.
  • FIG. 1 is a structural diagram of an eight-electrode body fat scale in the prior art.
  • FIG. 2 is a configuration diagram of a body composition measuring system in the first embodiment of the present invention.
  • FIG. 3 is a flowchart of a body composition measuring method in the first embodiment of the present invention.
  • FIG. 4 is a structural diagram of a body composition measuring system in a second embodiment of the present invention.
  • FIG. 5 is a structural diagram of a body composition measuring method in a second embodiment of the present invention.
  • FIG. 6 is a structural diagram of a body composition measuring system in a third embodiment of the present invention.
  • FIG. 7 is a structural diagram of a body composition measuring method in a third embodiment of the present invention.
  • FIG. 8 is a structural diagram of a body composition measuring system in a fourth embodiment of the present invention.
  • FIG. 9 is a flowchart of the measurement process of the body composition measuring system in the fourth embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a measurement device in a fifth embodiment of the present invention.
  • the first measurement device 210 measures the impedance value between the feet of the human body and transmits it to the processing device 230 through wireless communication.
  • the second The measuring device 220 measures the impedance value between the human hands and transmits it to the processing device 230 through wireless communication; the processing device 230 is based on the impedance value between the feet, the impedance value between the hands, and the input / measured human physiological parameters (such as: height, weight, age, gender) to calculate the body composition parameters.
  • the body composition parameters include but are not limited to fat content or fat rate, moisture content or water rate, muscle content or muscle rate, protein content or protein rate, inorganic content or inorganic salt rate, and basal metabolic amount or basal metabolic rate Any one or more of the combination.
  • the first measurement device 210 includes a body fat scale with a bioelectrical impedance measurement function
  • the second measurement device 220 includes a wearable device with a bioelectrical impedance measurement function (such as a wristband and a smart watch).
  • the processing device 230 may be a processor of an intelligent terminal.
  • the processing device 230 (the processor of the intelligent terminal) performs the following steps:
  • S201 Receive the impedance value between the feet of the human body measured by the first measurement device and the impedance value between the hands of the human body measured by the second measurement device.
  • S202 Calculate the body composition parameters according to the physiological parameters of the human body, the impedance value between the feet and the impedance value between the hands.
  • the weight, height, age, gender, and upper body average of the body composition parameters can be calculated; according to the impedance value between the feet, the weight, height, age, gender, Calculate the average value of the lower limbs of the body composition parameters; the impedance value between the feet and the average value of the impedance values between the hands can also be used as the whole body impedance value, and the body average value of the body composition parameters can be calculated in conjunction with the physiological parameters of the body.
  • the upper limb fat rate parameter the following formula is used:
  • a0, b0, c0, d0, e0 are the coefficients obtained after regression analysis based on a large number of samples.
  • the remaining parameters, such as water content and muscle mass, can also be calculated with reference to the above formula, but the corresponding coefficients are different.
  • the body composition parameter of the lower limb adopts the impedance of the lower limb; the impedance value of the body composition parameter of the whole body adopts the average value of the upper limb impedance and the lower limb impedance.
  • the impedance value between the feet and the impedance value between the hands can be linearly processed, and then the average body part parameter of the body composition parameter can be calculated in combination with the body physiological parameters.
  • the existing intelligent terminal analyzes the human body composition, which has a simple structure, low cost and convenient use.
  • the processing device 330 is inside the first measurement device 310 and communicates through a wired connection; the first measurement device 310 measures between human feet The impedance value is transferred to the processing device 330 through a wired connection.
  • the second measurement device 320 measures the impedance value between the human hands and transmits it to the first measurement device 310 through wireless communication and then to the processing device 330; the processing device 330 is based on the feet Calculate each body composition parameter by the impedance value between, the impedance value between the hands, and the input / measured human physiological parameters (height, weight, age, gender).
  • the body composition parameters include but are not limited to fat content or fat rate, moisture content or moisture rate, muscle content or muscle rate, protein content or protein rate, inorganic content or inorganic salt rate, and basal metabolic amount or basal metabolic rate Any one or more combinations.
  • the first measurement device 310 includes a body fat scale with a bioelectrical impedance measurement function
  • the second measurement device 320 includes a wearable device with a bioelectrical impedance measurement function (such as a wristband and a smart watch)
  • the processing device 330 is a processor of the wearable device.
  • the processor of the processor 330 (wearable device) performs the following steps:
  • step S301 Obviously, there is no order of step S301 and step S302.
  • the structure is simple, the cost is low, and the use is convenient.
  • the processing device 430 communicates through a wired connection inside the second measurement device 420; the second measurement device 420 measures the The impedance value is transmitted to the processing device 430 through a wired connection.
  • the first measurement device 410 measures the impedance value between the feet of the human body and transmits it to the second measurement device 420 through wireless communication and then transmits it to the processing device 430; Calculate each body composition parameter by the impedance value between, the impedance value between the hands, and the input / measured human physiological parameters (height, weight, age, gender).
  • the body composition parameters include but are not limited to fat content or fat rate, moisture content or moisture rate, muscle content or muscle rate, protein content or protein rate, inorganic content or inorganic salt rate, and basal metabolic amount or basal metabolic rate Any one or more combinations.
  • the first measurement device 410 includes a body fat scale with bioelectrical impedance measurement function
  • the second measurement device 420 includes a wearable device with bioelectrical impedance measurement function (such as a wristband and a smart watch)
  • the processing device 430 is a body fat scale processor.
  • the processing device 430 (the processor of the wearable device) performs the following steps:
  • S402. Receive the impedance value between the human hands measured by the second measuring device.
  • S403. Calculate the body composition parameters according to the physiological parameters of the human body, the impedance value between the feet and the impedance value between the hands.
  • the structure is simple, the cost is low, and the use is convenient.
  • the first measuring device 510 is a body fat scale, which can measure the weight of the human body, and measure the body weight through the bioelectrical impedance measuring electrode and circuit
  • the impedance value between the feet is transmitted to the processing device mobile phone or tablet computer 530 through wireless communication (Bluetooth or WIFI).
  • the second measurement device 520 is a wearable device (such as a wristband or a smart watch).
  • the measurement electrode and circuit measure the impedance value between the human hands and pass it to the processing device mobile phone (or tablet) 530 through wireless communication (Bluetooth or WIFI); the mobile phone 530 is based on the impedance value between the feet and the impedance between the hands Value, and input / measured human physiological parameters (height, weight, age, gender) to calculate various body composition parameters.
  • Bluetooth Wireless Fidelity
  • the processing steps of the body composition measuring body system of the fourth embodiment are as follows:
  • the body fat scale measures the impedance value between the human feet and the human body weight, and sends it to the mobile phone.
  • the body fat scale 510 measures the impedance value between the feet of the human body and the body weight at the same time; and sends the impedance value and the weight between the feet to the mobile phone 530 via Bluetooth.
  • the bracelet measures the impedance value between the human hands and sends it to the mobile phone.
  • the impedance value between the two hands of the human body is measured through the bracelet 520 and sent to the mobile phone 530 through Bluetooth.
  • the mobile phone performs linear processing on the impedance value between the feet and the impedance value between the hands, and calculates the average part of the trunk of the body composition parameter in combination with the physiological parameters of the body.
  • the mobile phone 530 receives the impedance value between the feet, the impedance value between the hands, the weight, and sends it to the body composition analysis module 540 together with the preset height, age, gender, etc.
  • the impedance value obtained by dividing the sum of the impedance value between the feet and the impedance values between the hands by a preset coefficient, combined with the physiological parameters of the human body, calculates the average body part parameter of the trunk.
  • the body composition parameters include any one of fat content or fat rate, moisture content or water rate, muscle content or muscle rate, protein content or protein rate, inorganic content or inorganic salt rate, and basal metabolic amount or basal metabolic rate or Various combinations. S103.
  • the mobile phone takes the impedance value between the feet and the average value of the impedance values between the hands as the whole-body impedance value, and calculates the whole-body average value of the body composition parameter in combination with the physiological parameters of the human body.
  • the human body analysis module 540 averages the input impedance values between the feet and the hands as the whole body impedance value, and calculates the body mass increase average value of the body composition parameters in combination with the weight, height, age, and gender. Including fat rate, water rate, muscle rate, protein rate, inorganic salt rate and basal metabolic rate.
  • the mobile phone calculates the average value of the lower extremities of the body composition parameters according to the impedance value between the feet, combined with the weight, height, age, gender.
  • the body composition analysis module 540 combines the input impedance values between the feet and combines the weight, height, age, gender, and lower body average value of the body composition parameters, including fat rate and muscle rate;
  • the human body composition analysis is performed by fully utilizing the impedance values between the hands and feet measured by the existing bracelet and body fat scale, which overcomes the need for the two-hand electrode and the two-foot electrode to adopt the eight-electrode whole-body impedance measurement Wired connection has the disadvantages of complicated structure, inconvenient use, and high cost. At the same time, it can obtain higher accuracy than two-hand measurement such as two-foot measurement of a body fat scale or bracelet handle, which improves the user experience.
  • an embodiment of the present invention provides a body composition measuring device, which includes: a processor 10, a memory 20, a bioelectric impedance sensor 30, other sensors 40, a wireless communication module 50, a user input unit 60, and The display unit 70 and so on.
  • a processor 10 a memory 20
  • a bioelectric impedance sensor 30 other sensors 40
  • a wireless communication module 50 a user input unit 60
  • the display unit 70 and so on.
  • the hardware structure shown in FIG. 10 does not constitute a limitation on the human body composition measuring device, and may include more or fewer components than shown in the implementation, or combine some components, or different Parts layout.
  • the display unit 70 is used to display information input by the user or information provided to the user by running the program.
  • the user input unit 60 is used to receive input numeric or character information and generate key signal input related to user settings and function control.
  • Other sensors 40 are used to implement various detection functions, such as gravity sensors, light sensors, motion sensors, and so on.
  • each sensor includes a preset number of measurement electrode pairs, and each electrode pair includes an excitation electrode and a measurement electrode for measuring human bioelectrical impedance information between the electrode pairs.
  • the memory 20 can be used to store software programs and various data.
  • the memory 20 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, application programs required for at least one function, and the like; the storage data area may store data created according to usage and the like.
  • the processor 10 is the control center of the measurement device, and uses various interfaces and lines to connect the various parts of the entire measurement device, by running or executing the software programs and / or modules stored in the memory 20, and calling the data stored in the memory 20 , Perform various functions and process data of the measuring device.
  • the processor 10 calls the programs and data stored in the memory 20 to implement the steps of any one of the human body composition measuring methods in the first to fourth embodiments.
  • the body composition measuring device belongs to the same concept as the body composition measuring method described above, and the technical features in the method embodiments are correspondingly applicable in this embodiment.
  • the specific implementation process see the method implementation For example, no more details here.
  • the measuring device of the present invention may be a body fat scale, a wearable device, or an intelligent terminal.
  • Wearable devices include smart bracelets and smart watches.
  • mobile terminals such as smartphones can also be used as wearable devices.
  • an embodiment of the present invention also provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, any one of the human bodies in the foregoing Embodiments 1 to 4 is implemented Steps of composition measurement method.
  • the human body composition measurement method, device, system and storage medium provided by the present invention overcome the shortcomings of the traditional eight-electrode whole-body impedance measurement, which requires the two-handed electrode and the two-footed electrode to be connected by a wired connection, which is complicated in structure, inconvenient to use, and high in cost. Obtain higher accuracy than the two-body measurement of the simple body fat scale or the two-hand measurement of the bracelet handle, so as to make full use of the existing body fat scale, bracelet and other equipment, and improve the measurement accuracy and convenience without increasing the cost Sex and enhance user experience.
  • the division between the functional modules / units mentioned in the above description does not necessarily correspond to the division of physical pool components; for example, a physical pool component may have multiple functions, or a function or step may be composed of Several physical pools are executed in cooperation.
  • Some or all of the physical components can be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as dedicated integrated circuit.
  • a processor such as a central processing unit, digital signal processor, or microprocessor
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • the term computer storage medium includes both volatile and nonvolatile implemented in any method or technology for storing information such as computer readable instructions, data structures, program modules, or other data Sex, removable and non-removable media.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium for storing desired information and accessible by a computer.
  • the communication medium generally contains computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium .
  • the method, device, system and storage medium for measuring the body composition provided by the present invention, on the one hand, overcome the shortcomings of the traditional eight-electrode whole-body impedance measurement, which requires the two-handed electrode and the two-legged electrode to be wired to connect, which is complicated in structure, inconvenient to use and high in cost. At the same time, it can obtain higher accuracy than the two-foot measurement of the simple body fat scale or the two-hand measurement of the bracelet handle, so as to make full use of the existing body fat scale, bracelet and other equipment, and improve the measurement without increasing the cost. Accuracy and convenience improve the user experience. Therefore, it has industrial applicability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种人体成分测量方法、装置、系统及存储介质,属于人体生理测量领域。方法包括如下步骤:测量或接收双脚之间的阻抗值(S301、S401),测量或接收双手之间的阻抗值(S302、S402),根据双脚之间的阻抗值和双手之间的结合人体生理参数,计算人体成分参数(S303、S403)。在不增加测量装置结构复杂性和成本的情况下,提高人体成分的测量精确度。

Description

一种人体成分测量方法、装置、系统及存储介质 技术领域
本发明属于人体生理测量领域,具体是涉及一种人体成分测量方法、装置、系统及存储介质。
背景技术
近年来,人们对于健康的危害认识越来越深入,同时体型管理方面也要求越来越精确,导致了传统的体重秤渐渐不能满足人们对于体型管理的要求,于是通过生物电阻抗方法来进行人体成分分析,特别是体脂肪测量的体脂秤越来越受到人们的欢迎。
体脂秤是在传统体重秤的基础上,通过增加适用于脚部的电极来测量两脚之间生物电阻抗,结合体重、身高、年龄、性别等来估算人体的各个组成成分,包括脂肪率、肌肉率、基础代谢率、内脏脂肪等级等,对于家庭场景体型管理、健康丰富评估有着较高的参考价值。但由于只测量了下肢部分的生物电阻抗,因此其信息不够全面,用来计算全身人体成分时,存在准确性不高的缺点。
而在专业领域,例如医院、健身房等,会采用专业同时更加复杂的人体成分分析仪来进行人体成分的测量,其和普通体脂秤的不同之处在于,除了测量两脚之间的阻抗,其还能通过增加适用于两手的电极组成八电极测量方式来测量全身各段的生物电阻抗(通常为5段),因此可以得到更多的更精细的人体生物电阻抗,从而获得身体各段,如上、下肢,躯干等不同部位的人体成分组成,带来比较准确的测量结果。
尽管在家庭场景,亦可以借鉴人体成分分析仪的八电极方式做成八电极体脂秤,如图1所示,为现有技术中的八电极体脂秤100的结构图,其中,包括秤体120,手柄110,以及电性连接秤体120和手柄110的线缆130。秤体120上有称重传感器121,以及4个人体阻抗检测电极,如电极122,而手柄上也包括4个人体阻抗检测电极,如电极111。因此八电极体脂秤100一共包括8个人体阻抗测量电极,用于实现全身阻抗测量,从而获得根据准确的人体成分参数。手柄电极和秤体电极之间需要通过线缆130进行电性连接,保证形成电流和电压测量回路,从而造成了整体结构的复杂、成本增加,手柄不好收纳,工业设计美观度下降,以及用户使用时操作的不便利。但由于需要增加手柄及手部电极,带来了成本的增加、结构的复杂、以及使用的不便。
技术问题
本发明的目的在于提供一种人体成分测量方法、装置、系统和存储介质,以解决八电极全身阻抗测量装置结构复杂、使用不便、成本高的技术问题。
技术解决方案
为了实现以上目的,本发明采用的技术方案如下:
根据本发明的一个方面,提供的一种人体成分测量方法包括如下步骤:
测量或接收人体双脚之间的阻抗值;
测量或接收人体双脚之间的阻抗值;
根据人体生理参数、所述双脚之间的阻抗值和所述双手之间的阻抗值,计算人体成分参数。
优选的,所述人体生理参数包括体重、身高和性别;所述人体成分参数包括脂肪含量或脂肪率、水分含量或水分率、肌肉含量或肌肉率、蛋白质含量或蛋白质率、无机物含量或无机盐率、以及基础代谢量或基础代谢率中的任意一种或多种组合。
根据本发明的另一个方面,提供的一种人体成分测量装置包括:
存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;
所述计算机程序被所述处理器执行时实现上述人体成分测量方法的步骤。
优选的,该装置包括体脂秤、可穿戴设备或智能终端。
根据本发明的再一个方面,提供的一种人体成分的测量系统包括第一测量装置、第二测量装置和处理装置,其中:
第一测量装置,用于测量人体双脚之间的阻抗值,并发送给处理装置;
第二测量装置,用于测量人体双手之间的阻抗值,并发送给处理装置;
处理装置,用于根据人体生理参数、所述双脚之间的阻抗值和所述双手之间的阻抗值,计算人体成分参数。
根据本发明的又一个方面,提供的一种计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时,实现上述人体成分测量方法的步骤。
有益效果
本发明提供的人体成分测量方法、装置、系统和存储介质,,一方面克服了传统的八电极全身阻抗测量需要双手电极和双脚电极采用有线连接方式结构复杂、使用不便、成本高的缺点,同时又能获得比单纯体脂秤双脚测量或手环手柄等双手测量更高的准确性,从而充分利用现有的体脂秤、手环等设备,在不增加成本的情况下,提高测量准确性和便利性,提升用户体验。
附图说明
图1是现有技术中的八电极体脂秤的结构图。
图2是本发明第一实施例中的人体成分测量系统的结构图。
图3是本发明第一实施例中的人体成分测量方法的流程图。
图4是本发明第二实施例中的人体成分测量系统的结构图。
图5是本发明第二实施例中的人体成分测量方法的结构图。
图6是本发明第三实施例中的人体成分测量系统的结构图。
图7是本发明第三实施例中的人体成分测量方法的结构图。
图8是本发明第四实施例中的人体成分测量系统的结构图。
图9是本发明第四实施例中的人体成分测量系统在测量过程的流程图。
图10是本发明第五实施例中的一种测量装置的结构示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明的保护范围。
实施例一
如图2所示,在本发明的一种人体成分测量系统的第一实施例中,第一测量装置210测量人体双脚之间的阻抗值,并通过无线通讯传递给处理装置230,第二测量装置220测量人体双手之间的阻抗值,并通过无线通讯传递给处理装置230;处理装置230根据双脚之间的阻抗值、双手之间的阻抗值,及输入/测量的人体生理参数(如:身高、体重、年龄、性别)来推算各人体成分参数。
具体的,人体成分参数包括但不限于脂肪含量或脂肪率、水分含量或水分率、肌肉含量或肌肉率、蛋白质含量或蛋白质率、无机物含量或无机盐率、以及基础代谢量或基础代谢率中的任意一种或多种组合。在一种实施例中,上述第一测量装置210包括带生物电阻抗测量功能的体脂称,第二测量装置220包括带生物电阻抗测量功能的可穿戴设备(比如手环和智能手表),处理装置230可以为智能终端的处理器。
请参阅图3,处理装置230(智能终端的处理器)执行以下步骤:
S201、接收第一测量装置测量的人体双脚之间的阻抗值以及第二测量装置测量的人体双手之间的阻抗值。
S202、根据人体生理参数、双脚之间的阻抗值和双手之间的阻抗值,计算人体成分参数。
具体的,可以根据双手之间的阻抗值,并结体重、身高、年龄、性别、计算人体成分参数的上肢平均值;根据双脚之间的阻抗值,并结体重、身高、年龄、性别、计算人体成分参数的下肢平均值;还可以将双脚之间的阻抗值和双手之间的阻抗值平均值作为全身阻抗值,并结合人体生理参数计算人体成分参数的全身平均值。例如,计算上肢脂肪率参数,采用如下公式:
上肢脂肪率=a0*上肢阻抗+b0*体重+c0*身高+d0*性别+e0;
其中a0、b0、c0、d0、e0是根据大量样本回归分析后得到的系数。其余参数,如水分率、肌肉量等亦可以参照如上的公式来计算,但相应系数是不一样的。下肢的人体成分参数采用的是下肢阻抗;全身部分的人体成分参数采用的阻抗值为上肢阻抗和下肢阻抗的平均值。
在另一种实施例中,可以对双脚之间的阻抗值和双手之间的阻抗值进行线性处理后,结合人体生理参数计算人体成分参数的躯干部分平均值。比如:采用双脚之间的阻抗值和双手之间的阻抗值的和除以一个预设的系数后得到的阻抗值,结合所述人体生理参数计算人体成分参数的躯干部分平均值。
本发明实施例中,通过利用现有的测量装置测量人体双手之间和双脚之间的阻抗值,现有的智能终端分析人体成分,结构简单,成本低,使用方便。 
实施例二
如图4所示,在本发明的一种人体成分测量系统的第二实施例中,处理装置330在第一测量装置310内部,通过有线连接通讯;第一测量装置310测量人体双脚之间的阻抗值并通过有线连接传递给处理装置330,第二测量装置320测量人体双手之间的阻抗值并通过无线通讯传递给第一测量装置310再传递给处理装置330;处理装置330根据双脚之间的阻抗值、双手之间的阻抗值,及输入/测量的人体生理参数(身高、体重、年龄、性别)来推算各人体成分参数。
其中,人体成分参数包括但不限于脂肪含量或脂肪率、水分含量或水分率、肌肉含量或肌肉率、蛋白质含量或蛋白质率、无机物含量或无机盐率、以及基础代谢量或基础代谢率中的任意一种或多种组合。
在一种实施例中,上述第一测量装置310包括带生物电阻抗测量功能的体脂称,第二测量装置320包括带生物电阻抗测量功能的可穿戴设备(比如手环和智能手表),处理装置330为可穿戴设备的处理器。
请参阅图5,处理器330(可穿戴设备)的处理器执行以下步骤:
S301、测量的人体双手之间的阻抗值。
S303、接收第一测量装置测量的人体双脚之间的阻抗值。
S303、根据人体生理参数、双脚之间的阻抗值和双手之间的阻抗值,计算人体成分参数。
显然,步骤S301和步骤S302是没有先后顺序的。
本发明实施例中,通过利用现有的测量装置测量人体双手之间和双脚之间的阻抗值,并利用现有的测量装置分析人体成分,结构简单,成本低,使用方便。
实施例三
如图6所示,在本发明的一种人体成分测量系统的第三实施例中,处理装置430在第二测量装置420内部,通过有线连接通讯;第二测量装置420测量人体双手之间的阻抗值并通过有线连接传递给处理装置430,第一测量装置410测量人体双脚之间的阻抗值并通过无线通讯传递给第二测量装置420再传递给处理装置430;处理装置430根据双脚之间的阻抗值、双手之间的阻抗值,及输入/测量的人体生理参数(身高、体重、年龄、性别)来推算各人体成分参数。
其中,人体成分参数包括但不限于脂肪含量或脂肪率、水分含量或水分率、肌肉含量或肌肉率、蛋白质含量或蛋白质率、无机物含量或无机盐率、以及基础代谢量或基础代谢率中的任意一种或多种组合。
在一种实施例中,上述第一测量装置410包括带生物电阻抗测量功能的体脂称,第二测量装置420包括带生物电阻抗测量功能的可穿戴设备(比如手环和智能手表),处理装置430为体脂称的处理器。
请参阅图7,处理装置430(可穿戴设备的处理器)执行以下步骤:
S401、测量的人脚双手之间的阻抗值。
S402、接收第二测量装置测量的人体双手之间的阻抗值。
S403、根据人体生理参数、双脚之间的阻抗值和双手之间的阻抗值,计算人体成分参数。
本发明实施例中,通过利用现有的测量装置测量人体双手之间和双脚之间的阻抗值,并利用现有的测量装置分析人体成分,结构简单,成本低,使用方便。
实施例四
如图8所示,在本发明的一种人体成分测量系统的第四实施例中,第一测量装置510为体脂秤,可以测量人体体重,以及通过生物电阻抗测量电极及电路测量人体双脚之间的阻抗值,进而并通过无线通讯(蓝牙或WIFI)传递给处理装置手机或平板电脑530,第二测量装置520为可穿戴设备(比如:手环或智能手表),通过生物电阻抗测量电极和电路测量人体双手之间的阻抗值,并通过无线通讯(蓝牙或WIFI)传递给处理装置手机(或平板电脑)530;手机530根据双脚之间的阻抗值、双手之间的阻抗值,及输入/测量的人体生理参数(身高、体重、年龄、性别)来推算各人体成分参数。
如图9所示,第四实施例的人体成分测量体系统的处理步骤如下:
S100、体脂秤测量人体双脚之间的阻抗值以及人体体重,并发送给手机。
具体的,通过体脂秤510测量人体的双脚之间的阻抗值,同时测量人体体重;并将双脚之间的阻抗值和体重通过蓝牙发送给手机530。
S101、手环测量人体双手之间的阻抗值,并发送给手机。
具体的,通过手环520测量人体双手之间的阻抗值,并通过蓝牙发送给手机530。
S102、手机机对双脚之间的阻抗值和双手之间的阻抗值进行线性处理后,结合人体生理参数计算人体成分参数的躯干部分平均值。
具体的,手机530接收到双脚之间的阻抗值、双手之间的阻抗值、体重、并和预设的身高、年龄、性别等一起送入人体成分分析模块540,成分分析模块540将双脚之间的阻抗值和双手之间的阻抗值的和除以一个预设的系数后得到的阻抗值,结合所述人体生理参数计算人体成分参数的躯干部分平均值。人体成分参数包括脂肪含量或脂肪率、水分含量或水分率、肌肉含量或肌肉率、蛋白质含量或蛋白质率、无机物含量或无机盐率、以及基础代谢量或基础代谢率中的任意一种或多种组合。S103、手机将双脚之间的阻抗值和双手之间的阻抗值平均值作为全身阻抗值,并结合人体生理参数计算人体成分参数的全身平均值。具体的,人体成分析模块540将输入的双脚之间的阻抗值、双手之间的阻抗值求平均作为全身阻抗值,并结合体重、身高、年龄、性别计算人体成分参数的全身增均值、包括脂肪率、水分率、肌肉率、蛋白质率、无机盐率和基础代谢率。
S104、手机根据双脚之间的阻抗值,并结体重、身高、年龄、性别、计算人体成分参数的下肢平均值。
具体的,人体成分分析模块540将输入的双脚之间的阻抗值,并结体重、身高、年龄、性别、计算人体成分参数的下肢平均值,包括脂肪率、肌肉率;
S105、手机根据双手之间的阻抗值,并结体重、身高、年龄、性别、计算人体成分参数的上肢平均值。
具体的,人体成分分析模块540将输入的双手之间的阻抗值,并结体重、身高、年龄、性别、计算人体成分参数的上肢平均值,包括脂肪率、肌肉率。
本发明实施例中,通过充分利用现有手环和体脂称测量的双手之间和双脚之间的阻抗值进行人体成分分析,克服了八电极全身阻抗测量需要双手电极和双脚电极采用有线连接方式结构复杂、使用不便、成本高的缺点,同时又能获得比单纯体脂秤双脚测量或手环手柄等双手测量更高的准确性,提高了用户体验。
实施例五
如图10所示,本发明实施例提供一种人体成分测量装置,该装置包括:处理器10、存储器20、生物电阻抗传感器30、其他传感器40、无线通讯模块50、用户输入单元60、以及显示单元70等。本领域技术人员可以理解,图10中示出的硬件结构并不构成对人体成分测量装置的限定,实施时可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
显示单元70,用于显示由用户输入的信息或运行程序提供给用户的信息。
用户输入单元60,用于接收输入的数字或字符信息,以及产生与用户设置以及功能控制有关的键信号输入。
无线通讯模块50,用于实现与其他设备或通信网络的通信连接,可以采用WiFi等短距离无线传输技术来实现,也可以采用RF(Radio Frequency,射频)通信等远距离无线传输技术来实现。
其他传感器40,用于实现各类检测功能,比如重力传感器、光传感器、运动传感器等。
生物电阻抗传感器30, 每个传感器包括预设数量的测量电极对,每个电极对包括一个激励电极和一个测量电极,用于测量电极对之间的人体生物电阻抗信息。
存储器20可用于存储软件程序以及各种数据。存储器20可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据使用所创建的数据等。
处理器10是测量装置的控制中心,利用各种接口和线路连接整个测量装置的各个部分,通过运行或执行存储在存储器20内的软件程序和/或模块,以及调用存储在存储器20内的数据,执行测量装置的各种功能和处理数据。
本实施例中,处理器10调用存储在存储器20内的程序和数据,实现上述实施例一到实施例四中任意一种人体成分测量方法的步骤。
需要说明的是,本发明实施例的人体成分测量装置,与上述人体成分测量方法属于同一构思,且方法实施例中的技术特征在本实施例中均对应适用,其具体实现过程详细见方法实施例,这里不再赘述。
本发明的测量装置可以是体脂称、可穿戴设备、智能终端。可穿戴设备包括智能手环和智能手表等。随着屏幕技术的不断发展,柔性屏、折叠屏等屏幕形态的出现,智能手机等移动终端也可以作为可穿戴设备。
此外,本发明实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时,实现上述实施例一到实施例四中任意一种人体成分测量方法的步骤。
需要说明的是,本发明实施例的计算机可读存储介质,与上述人体成分测量方法属于同一构思,且方法实施例中的技术特征在计算机可读存储介质中均对应适用,其具体实现过程详细见方法实施例,这里不再赘述。
本发明提供的人体成分测量方法、装置、系统和存储介质,克服了传统的八电极全身阻抗测量需要双手电极和双脚电极采用有线连接方式结构复杂、使用不便、成本高的缺点,同时又能获得比单纯体脂秤双脚测量或手环手柄等双手测量更高的准确性,从而充分利用现有的体脂秤、手环等设备,在不增加成本的情况下提高测量准确性和便利性,提升用户体验。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理池件的划分;例如,一个物理池件可以具有多个功能,或者一个功能或步骤可以由若干物理池件合作执行。某些物理池件或所有物理池件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上参照附图说明了本发明的优选实施例,并非因此局限本发明的权利范围。本领域技术人员不脱离本发明的范围和实质内所作的任何修改、等同替换和改进,均应在本发明的权利范围之内。
工业实用性
本发明提供的人体成分测量方法、装置、系统和存储介质,,一方面克服了传统的八电极全身阻抗测量需要双手电极和双脚电极采用有线连接方式结构复杂、使用不便、成本高的缺点,同时又能获得比单纯体脂秤双脚测量或手环手柄等双手测量更高的准确性,从而充分利用现有的体脂秤、手环等设备,在不增加成本的情况下,提高测量准确性和便利性,提升用户体验。因此,具有工业实用性。

Claims (11)

  1. 一种人体成分测量方法,其特征在于,包括如下步骤:
    测量或接收人体双脚之间的阻抗值;
    测量或接收人体双手之间的阻抗值;根据所述双脚之间的阻抗值和所述双手之间的阻抗值以及预设的人体生理参数,计算人体成分参数。
  2. 根据权利要求1所述的人体成分测量方法,其特征在于,所述人体生理参数包括体重、身高和性别;所述人体成分参数包括脂肪含量或脂肪率、水分含量或水分率、肌肉含量或肌肉率、蛋白质含量或蛋白质率、无机物含量或无机盐率、以及基础代谢量或基础代谢率中的任意一种或多种组合。
  3. 根据权利要求1所述的人体成分测量方法,其特征在于,所述根据人体生理参数、所述双脚之间的阻抗值和所述双手之间的阻抗值,计算人体成分参数,包括:
    将所述双脚之间的阻抗值和所述双手之间的阻抗值的平均值作为人体全身阻抗值,并结合所述人体生理参数计算人体成分参数的全身平均值。
  4. 根据权利要求1所述的人体成分测量方法,其特征在于,所述根据人体生理参数、所述双脚之间的阻抗值和所述双手之间的阻抗值,计算人体成分参数,包括:
    将所述双手之间的阻抗值结合所述人体生理参数计算人体成分参数的上肢部分平均值。
  5. 根据权利要求1所述的人体成分测量方法,其特征在于,所述根据人体生理参数、所述双脚之间的阻抗值和所述双手之间的阻抗值,计算人体成分参数,包括:
    将双脚之间的阻抗值和双手之间的阻抗值的和除以预设的系数后得到的阻抗值,结合所述人体生理参数计算人体成分参数的躯干部分平均值。
  6. 一种人体成分测量装置,其特征在于,所述人体成分测量装置包括:
    存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;
    所述计算机程序被所述处理器执行时实现如权利要求1至5中任一项所述的人体成分测量方法的步骤。
  7. 根据权利要求6所述的一种人体成分分析装置,其特征在于,所述人体成分测量装置为体脂秤、可穿戴设备或智能终端。
  8. 一种人体成分的测量系统,其特征在于,所述人体成分测量系统包括第一测量装置、第二测量装置和处理装置,其中:
    第一测量装置,用于测量人体双脚之间的阻抗值,并发送给处理装置;
    第二测量装置,用于测量人体双手之间的阻抗值,并发送给处理装置;
    处理装置,用于根据人体生理参数、所述双脚之间的阻抗值和所述双手之间的阻抗值,计算人体成分参数。
  9. 根据权利要求8所述的一种人体成分的测量系统,其特征在于,所述人体生理参数包括体重、身高和性别;所述人体成分参数包括脂肪含量或脂肪率、水分含量或水分率、肌肉含量或肌肉率、蛋白质含量或蛋白质率、无机物含量或无机盐率、以及基础代谢量或基础代谢率中的任意一种或多种组合。
  10. 根据权利要求8所述的一种人体成分的测量系统,其特征在于:
    所述第一测量装置为体脂秤,所述第二测量装置为可穿戴设备,所述处理装置为所述第一测量装置、或所述第二测量装置,或智能终端。
  11. 一种计算机可读存储介质,其特征在于,所述存储介质上存储有计算机程序,所述计算机程序被处理器执行时,实现如权利要求1-5所述的人体成分的测量方法的步骤。
PCT/CN2019/091004 2018-11-15 2019-06-12 一种人体成分测量方法、装置、系统及存储介质 WO2020098264A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811364714.5A CN109820504A (zh) 2018-11-15 2018-11-15 一种提高准确度的人体成分测量方法和系统
CN201811364714.5 2018-11-15

Publications (1)

Publication Number Publication Date
WO2020098264A1 true WO2020098264A1 (zh) 2020-05-22

Family

ID=66859777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091004 WO2020098264A1 (zh) 2018-11-15 2019-06-12 一种人体成分测量方法、装置、系统及存储介质

Country Status (2)

Country Link
CN (1) CN109820504A (zh)
WO (1) WO2020098264A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109820504A (zh) * 2018-11-15 2019-05-31 芯海科技(深圳)股份有限公司 一种提高准确度的人体成分测量方法和系统
CN110917612A (zh) * 2019-11-13 2020-03-27 芯海科技(深圳)股份有限公司 游戏交互方法、装置、电子设备及存储介质
CN111528844A (zh) * 2020-04-28 2020-08-14 芯海科技(深圳)股份有限公司 人体阻抗测量方法、装置、系统、电子设备及存储介质
CN113679371B (zh) * 2020-05-19 2023-07-18 华为技术有限公司 一种体成分检测方法、电子设备和计算机可读存储介质
CN113679370B (zh) * 2020-05-19 2024-05-17 华为技术有限公司 一种体成分检测方法、设备和计算机可读存储介质
CN111700604A (zh) * 2020-05-28 2020-09-25 中北大学 检测腕表及其检测方法
WO2022204833A1 (en) * 2021-03-27 2022-10-06 Huawei Technologies Co., Ltd. Weighing scale for monitoring biometric data of user
CN114699063A (zh) * 2022-02-25 2022-07-05 深圳市伊欧乐科技有限公司 体脂率的测量方法、装置及计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000107150A (ja) * 1998-10-06 2000-04-18 Matsushita Electric Ind Co Ltd 体脂肪計
CN1611934A (zh) * 2004-04-16 2005-05-04 中体同方体育科技有限公司 一种人体体成分的检测方法
CN101697870A (zh) * 2009-11-06 2010-04-28 中国科学院合肥物质科学研究院 一种多参数人体机能检测装置及检测方法
CN101721208A (zh) * 2008-10-31 2010-06-09 启德电子股份有限公司 人体多肢段成分的生物阻抗测量装置与方法
CN108113653A (zh) * 2017-12-20 2018-06-05 中国科学院合肥物质科学研究院 一种基于3d扫描和生物电阻抗技术相融合的人体全身脂肪测量装置和方法
CN109820504A (zh) * 2018-11-15 2019-05-31 芯海科技(深圳)股份有限公司 一种提高准确度的人体成分测量方法和系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050079235A (ko) * 2004-02-04 2005-08-09 삼성전자주식회사 아동성장발육 관리시스템 및 방법
CN2812075Y (zh) * 2005-05-23 2006-08-30 创鸿电子科技有限公司 多功能手表
CN203303051U (zh) * 2013-02-05 2013-11-27 上海巨流信息科技有限公司 一种人体脂肪测量装置
CN105455810A (zh) * 2015-12-31 2016-04-06 华南理工大学 一种基于生物电阻抗可测量人体成分的可穿戴脚环
CN105496409A (zh) * 2016-01-19 2016-04-20 北京四海华辰科技有限公司 一种人体成分分析仪
CN106562788A (zh) * 2016-11-09 2017-04-19 中科院合肥技术创新工程院 一种应用于智能健康马桶的人体成分检测分析方法
CN106994015A (zh) * 2017-03-20 2017-08-01 上海斐讯数据通信技术有限公司 身高检测方法和装置及根据身高检测体脂率的方法和系统
CN108309299B (zh) * 2018-02-07 2021-04-27 中科院合肥技术创新工程院 一种基于智能坐便器的体脂率测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000107150A (ja) * 1998-10-06 2000-04-18 Matsushita Electric Ind Co Ltd 体脂肪計
CN1611934A (zh) * 2004-04-16 2005-05-04 中体同方体育科技有限公司 一种人体体成分的检测方法
CN101721208A (zh) * 2008-10-31 2010-06-09 启德电子股份有限公司 人体多肢段成分的生物阻抗测量装置与方法
CN101697870A (zh) * 2009-11-06 2010-04-28 中国科学院合肥物质科学研究院 一种多参数人体机能检测装置及检测方法
CN108113653A (zh) * 2017-12-20 2018-06-05 中国科学院合肥物质科学研究院 一种基于3d扫描和生物电阻抗技术相融合的人体全身脂肪测量装置和方法
CN109820504A (zh) * 2018-11-15 2019-05-31 芯海科技(深圳)股份有限公司 一种提高准确度的人体成分测量方法和系统

Also Published As

Publication number Publication date
CN109820504A (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
WO2020098264A1 (zh) 一种人体成分测量方法、装置、系统及存储介质
JP2020114488A (ja) モバイルデバイスを用いて身体機能測定値を得るためのシステムおよび方法
US20190200894A1 (en) Bio-impedance measuring apparatus using half of upper body, body composition analyzing apparatus and body composition analyzing method
CN106202850B (zh) 锻炼管理方法和设备
KR20160105396A (ko) 애플리케이션들과 연관된 배터리 충전기
CN102858238B (zh) 体脂肪测定装置
CN105615871A (zh) 用于测量人体信息的装置
US20220365600A1 (en) Motion data processing method and motion monitoring system
CN105455810A (zh) 一种基于生物电阻抗可测量人体成分的可穿戴脚环
CN111317472B (zh) 具有测量心率体脂功能一体的检测系统
US20150120202A1 (en) System and method for tracking biological age over time based upon heart rate variability
CN205322327U (zh) 一种基于生物电阻抗可测量人体成分的可穿戴脚环
KR20180047780A (ko) 근전도 센서가 장착된 피트니스 웨어와 무선 연결된 휴대 단말기의 근전도 측정방법 및 그 방법을 위한 소프트웨어를 구비한 소프트웨어 분배서버
CN204500690U (zh) 手表型智能身体机能检测器
CN105769194B (zh) 一种快速测量人体信息的装置
CN212574862U (zh) 血压检测装置
CN205215225U (zh) 人体阻抗测量电路
CN105615872B (zh) 用于测量人体信息的装置
US20190192043A1 (en) Body Composition Analysis Method and Apparatus
EP4215110A1 (en) Body composition measurement method and apparatus
US20180070850A1 (en) Apparatus and method for detecting body composition and correlating it with cognitive efficiency
CN213525108U (zh) 一种可穿戴设备
CN204219689U (zh) 一种智能跑步机
CN112656396A (zh) 一种基于家用体成分仪和智能设备的肌少症数据采集系统
CN102178525A (zh) 无线人体脂肪测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884627

Country of ref document: EP

Kind code of ref document: A1