WO2020098207A1 - 一种用于微流控装置的注射器泵 - Google Patents

一种用于微流控装置的注射器泵 Download PDF

Info

Publication number
WO2020098207A1
WO2020098207A1 PCT/CN2019/081224 CN2019081224W WO2020098207A1 WO 2020098207 A1 WO2020098207 A1 WO 2020098207A1 CN 2019081224 W CN2019081224 W CN 2019081224W WO 2020098207 A1 WO2020098207 A1 WO 2020098207A1
Authority
WO
WIPO (PCT)
Prior art keywords
syringe pump
plunger
control rod
head
cavity
Prior art date
Application number
PCT/CN2019/081224
Other languages
English (en)
French (fr)
Inventor
金葛瑞
杨昕
Original Assignee
南京肯辛顿诊断科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京肯辛顿诊断科技有限公司 filed Critical 南京肯辛顿诊断科技有限公司
Publication of WO2020098207A1 publication Critical patent/WO2020098207A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • F04B53/144Adaptation of piston-rods
    • F04B53/147Mounting or detaching of piston rod

Definitions

  • the invention relates to a syringe pump, in particular to a syringe pump that can be integrated into a microfluidic card box.
  • syringe pumps are often used in microfluidic systems to drive fluid into or out of microfluidic channels. Although there are many forms of pumps such as peristaltic pumps, differential pressure air pumps, piston pumps, and electrophoresis pumps, syringe pumps have microfluidic systems. Low cost and high stability. Compared with the external syringe pump, the integrated syringe pump further improves the stability and controllability of the microfluidic system. Integrated syringe pumps usually consist of a plastic tube connected to the microfluidic channel and a plunger that can draw fluid into or out of the syringe tube. However, the conventional syringe pump is not set up for the microfluidic system. Because the piston often contacts the reagent or sample, the seal is relatively poor, and there is a risk of leakage and cross-contamination. In addition, the liquid may directly contact the plunger. Causes waste of liquid volume.
  • the purpose of the present invention is to provide an integrated syringe pump in a microfluidic system, which can solve the above-mentioned problems in the prior art.
  • a syringe pump including:
  • the syringe pump barrel includes a pump barrel outer shell, a cavity is defined inside the outer shell, the outer shell has an outlet so that the cavity communicates with the liquid flow path, and the end of the pump barrel outer shell that is different from the outlet has an opening defined by a stop ;
  • the plunger is placed in the cavity of the syringe pump barrel and can move along the axis of the pump barrel, and the stopper restricts the movement of the plunger in the cavity;
  • the corresponding end portion at the opening of the outer shell is provided with a holding portion, the holding portion defines a structure matching at least a part of the control lever;
  • a control rod including a control rod spindle and a head at the end of the spindle, the control rod can enter the cavity through an opening of the syringe pump barrel, wherein the head of the control rod and the head
  • the shape of the holding portion of the plunger is adapted so that when the control rod applies a force along the axial plunger portion, the head of the control rod can be engaged with the holding portion of the plunger;
  • the axial movement of the rod part of the control rod controls the reciprocating movement of the plunger in the axial direction of the cavity of the syringe barrel; when the control rod exerts a force in the opposite direction, the pump casing
  • the restriction of the plunger by the stop portion of the body causes the head portion of the control lever and the holding portion to be released from the engaged state.
  • the head of the control rod has a size larger than that of the main shaft of the control rod, such as a tongue, block flange, or tapered or circular expansion block;
  • the holding portion of the plunger has The embedded portion and the flexible bayonet, the width of the flexible bayonet is at least smaller than the maximum inner diameter of the head of the control rod.
  • the material of the plunger is made of elastic material, and the control rod is made of hard material.
  • the diameter of the main shaft of the control rod is smaller than the opening of the syringe pump barrel, or the diameter of the two is substantially the same.
  • the syringe pump is an integrated microfluidic device syringe pump, and one side of the outer casing of the syringe pump barrel is fixed to the substrate of the microfluidic cartridge;
  • the syringe pump is detachably connected and fixed to the substrate of the microfluidic device.
  • the syringe pump barrel is axially disposed parallel to the microfluidic device substrate;
  • the syringe pump barrel is axially disposed perpendicular to the base plate, and the plunger moves up and down in the cavity defined by the syringe pump barrel when the control rod is engaged with the plunger.
  • control rod can be connected to a power control device, which drives the control rod to apply a desired force on the plunger to generate a certain positive or negative pressure to drive a desired volume of liquid from the microchannel Flow into the cavity of the syringe or flow out in the opposite direction.
  • a liquid level sensor is also included to detect the liquid flow in the syringe pump, prevent air from being pushed into the microfluidic channel, and determine the volume of the syringe pump pushed or drawn into the liquid.
  • the integrated syringe pump has a short length
  • the switching between the control rod and the pump between the engagement and release states is simple, and the control rod and the plunger are pushed toward the base plate in the axial direction, It can realize the engagement of the control rod and the plunger, and completely control the movement of the plunger in the syringe barrel by moving the control rod; and after use, the control rod and the plunger move to the top of the cavity due to the stopper
  • the plunger part and the control rod are subjected to forces in opposite directions to deform the flexible bayonet of the plunger holding part, and the control rod is disengaged from the plunger. At this time, the control rod can be removed from the cartridge.
  • the joint method between the control rod and the pump is very simple, no complicated mechanism is needed to engage and remove the plunger, and the syringe pump is always kept in a sealed state, and the contact of the liquid is always sealed in the column In the cavity defined by the plug and the syringe pump barrel, no part of the instrument will be in contact with the liquid in the cartridge, thus eliminating the risk of leakage and cross-contamination.
  • the liquid is stored in a sealed ground cartridge, and the liquid in the pump will not come into contact with the actual plunger, reducing the waste of liquid and ensuring the safety of the treatment.
  • FIG. 1 is a typical structure of a syringe pump barrel according to the present invention
  • Figure 2 is a schematic diagram of the initial state of engagement
  • Figure 3 is a schematic diagram of use in the engaged state
  • FIG. 4 is a schematic diagram of entering a released state from an engaged state
  • the microfluidic syringe pump of the present invention includes a syringe pump barrel 100, a plunger 200 and a control rod 300.
  • the syringe pump barrel 100 is provided with a pump barrel casing 101, and a cavity 102 is defined inside the pump barrel casing 101.
  • the pump barrel 100 is cylindrical, the bottom of the casing and the substrate of the microfluidic cartridge
  • the fluid outlet 103 is fixed at the bottom, and an opening 104 is provided at the upper end of the pump casing 101, and the opening has a stopper 105.
  • the stopper 105 makes the diameter of the opening 104 smaller than the inner diameter of the cavity 102.
  • the plunger 200 made of elastic material is defined inside the cavity 102 defined by the pump barrel housing 101, and can move up and down along the axial direction of the syringe pump barrel 100 when it moves to the opening of the upper end of the pump barrel 100
  • the stopper 105 restricts the plunger 200 from moving further outward.
  • the top of the plunger 200 has a holding portion 201 of a specific shape.
  • the shape of the plunger 200 is that the surface in contact with the outlet of the micro-channel is configured to fit the housing or the outlet of the micro-channel, for example, it has a conical shape or a trapezoidal or rectangular cross-section.
  • control rod 300 in this embodiment, the control rod includes a main shaft 301, the proximal end of which is a control rod head 302, wherein the distal end of the main shaft 301 can be connected to a power control system 400 to apply pressure to drive the control rod 300 in the direction of the syringe pump axis On the reciprocating movement.
  • the head 302 of the lever 300 has a structure matching the plunger holding portion 201.
  • the head 302 of the lever is provided with a tongue or block flange, and the plunger holding portion 201 has
  • the embedded portion 202 and the flexible bayonet 203 together define a portion suitable for receiving the lever head 302.
  • the width of the flexible bayonet 203 is at least smaller than the maximum inner diameter of the lever head 302, and the embedding portion 202 roughly matches the shape of the lever head 302.
  • the material of the plunger 200 is made of an elastic material
  • the control rod 300 is made of a hard material.
  • the shape of the control rod head 302 and the plunger holding portion 201 is set so that the control rod 300 is along the axial direction of the plunger 200
  • the head 302 of the control rod can be deformed by the force to cause the flexible bayonet 203 of the plunger to engage with the plunger holding portion 201 and maintain the engaged state
  • the linear effect of the control system on the rod portion of the control rod 300 causes the control rod 300 to drive the plunger to move in the axial direction within the cavity 102 of the syringe pump barrel, which plays the role of sucking the liquid in the cavity 102;
  • the stopper 105 of the syringe pump barrel blocks the plunger 200.
  • the plunger 200 Due to the downward force of the stopper 105, the lever 300 receives the force from the powertrain control system in the reverse direction, so the flange structure of the lever head 302 deforms the flexible bayonet 203 of the plunger holding portion 201, The lever head 302 is detached from the plunger holding portion 201, and the lever 300 and the plunger 200 are changed from the engaged state to the released state.
  • the diameter of the main shaft of the control rod 300 is smaller than the opening 104 of the syringe pump barrel, or the diameter of the two is substantially the same, so that the control rod is inserted into the cavity 102 of the syringe pump barrel.
  • the plunger 200 may be made of rubber, and the control rod 300 is made of a hard material such as metal or plastic.
  • the control rod 300 can be connected to the power control device 400 so that it exerts a desired force on the plunger 200 to generate a certain positive or negative pressure to drive a desired volume of liquid from the microchannel to the syringe cavity or in the opposite direction Outflow.
  • a typical power control device 400 may include a motor, a transmission mechanism, a linear drive, etc.
  • the motor may use a stepping motor
  • the transmission mechanism may be a deceleration transmission mechanism
  • the main shaft of the control rod 300 is permanently or detachably connected to the power control device through a mounting portion It can also be connected to various types of power control devices.
  • the power control device drives the control rod 300 under the action of, for example, a micromotor, the drive rod enters the cavity 102 through the opening of the syringe pump barrel ,
  • the head of the control rod 300 deforms the flexible bayonet 203 under a certain pressure, and then pushes into the embedding portion 202 of the plunger holding portion 201.
  • the head of the control rod 300 can also be tapered, round, or have a certain slope shape, which is convenient for reducing resistance when entering the holding portion of the plunger 200.
  • the plunger 200 and the control rod 300 are in an engaged state at this time, and the power control device moves the control rod 300 to control the up and down movement of the plunger 200 in the syringe pump barrel.
  • fluid can be drawn from the liquid reservoir into the pump barrel, or the liquid in the pump barrel can be pushed into other desired fluid outlets through the microchannel.
  • the control rod 300 drives the plunger 200 to move above the syringe pump barrel until the plunger 200 is restricted by the stopper 105, and the force makes the control rod 300
  • the head is detached from the holding portion of the plunger 200, thereby changing the control rod 300 and the plunger 200 from the engaged state to the released state, and the control rod 300 can be removed from the cartridge of the microfluidic device.
  • the syringe pump barrel is axially arranged perpendicular to the base plate, and when the control rod 300 is engaged with the plunger 200, the plunger 200 can move axially in the cavity 102 defined by the syringe pump barrel. In this setting state, the syringe pump barrel can also be used as a cavity for liquid mixing.
  • the desired mixed fluid is drawn into the cavity 102 of the pump barrel through the outlet channel at the bottom of the cavity, and the reciprocating reciprocating movement of the rod 300 and the plunger 200 is promoted to promote the mixing of the fluid, and
  • the vertically arranged pump barrel structure facilitates the rise of the bubbles close to the top of the plunger 200 when the mixed liquid is mixed into the bubbles; when the mixed liquid is driven into the microfluidic channel of the base again, for example, in the liquid level sensor or the fluid sensor Under monitoring, the air bubbles mixed in the liquid will remain on the top of the plunger 200 and will not be transferred to the subsequent steps.
  • the axial direction of the syringe pump barrel 100 is parallel to the substrate of the microfluidic device, that is, the control rod 300 drives the plunger 200 to move in the horizontal direction, parallel to the substrate
  • the arrangement method can save the volume of the microfluidic device in some integrated microfluidic structures or increase the moving range of the control rod 300.
  • a liquid level sensor can be provided in the cavity 102 of the syringe pump barrel to detect the liquid flow in the syringe pump, prevent air from being pushed into the microfluidic channel, and determine the volume of the syringe pump pushed out or pumped in the liquid;
  • a liquid sensor is provided in the microfluidic channel connected to the outlet of the syringe pump to detect the liquid flow rate, and the feedback control of the power control system can also detect the air in the microchannel.
  • the moving speed of the control rod 300 can be accurately adjusted, thereby controlling the flow rate of the fluid.
  • the syringe pump barrel of the present invention is suitable for a microfluidic device, which is integrated on the substrate of the microfluidic cartridge in a permanent or detachable manner, and can also be applied to other syringe pump devices or systems with certain volume and accuracy requirements in.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

一种用于微流控装置的注射器泵,包括泵筒外壳体(100),外壳体(100)限定内部空腔(102),还具有由止挡部(105)限定的开口,柱塞(200)限定在空腔(102)中,包括控制杆(300),控制杆(300)的头部(302)能够与柱塞(200)的保持部通过挠性卡口(203)进行卡合和释放状态的切换,在卡合状态下,通过移动控制杆(300)来控制柱塞(200)在注射器筒内的移动;使用完毕时,通过止挡部(105)对于柱塞(200)的限制完成控制杆(300)的释放,该注射器泵简单的实现了控制杆与柱塞之间的结合和分离,使得注射器泵始终保持密封状态,便于保持微流控系统的密封和防止不必要的样品泄露。

Description

一种用于微流控装置的注射器泵 技术领域
本发明涉及一种注射器泵,尤其涉及一种可集成到微流控卡盒中的注射器泵。
背景技术
微流控系统中常使用泵作为驱动流体进入或流出微流控通道的动力,虽然有如蠕动泵、压差空气泵、活塞泵、电泳泵等许多形式的泵,注射器泵在微流控系统中具有成本较低,稳定性高等优点。而集成式注射器泵相比其外注射器泵,进一步提高微流控系统的稳定性和可控性。集成式注射器泵通常由与微流体通道相连接的塑料管和可以将流体抽进或退出注射器管的柱塞组成。但常规的注射器泵并非为微流控系统而设置,由于活塞往往接触到试剂或样本,因此在密封性相对较差,存在着泄露和交叉污染的风险,此外,液体与柱塞直接接触也可能导致液体体积的浪费。
发明内容
本发明的目的为是设置一种微流控系统中的集成注射器泵,可以解决上述现有技术中的问题。
根据本发明的主要方面,提供了一种注射器泵,包括:
注射器泵筒,包括泵筒外壳体,外壳体内部限定有空腔,外壳体具有出口使得空腔与液体流道联通,泵筒外壳体的与出口位置不同的一端具有由止挡部限定的开口;
柱塞,所述柱塞置于所述注射器泵筒的空腔内,且可沿泵筒轴移动,所述止挡部将所述柱塞的移动限制在空腔内;所述柱塞与所述外壳体开口处相对应的端部设置有保持部,保持部限定匹配控制杆的至少一部分的结构;
控制杆,所述控制杆包括控制杆主轴及主轴端部的头部,所述控制杆能够通过所述注射器泵筒的开口进入所述空腔中,其中所述控制杆的头部与所述柱塞的保持部形状相适配,使得所述控制杆沿轴向柱塞部施加作用力时,所述控制杆的头部能够与所述柱塞的保持部进行卡合;在保持卡合状态下,通过控制杆杆部的轴向运动,控制柱塞在注射器泵筒空腔范围内的沿轴向的往复移动;所述控制杆沿相反的方向施加作用力时,所述泵筒外壳体的止挡部对于柱塞的限制使得所述控制杆的头部与所述保持部由卡合状态释放。
根据本发明的另一方面,所述控制杆的头部呈尺寸大于控制杆主轴的结构,例如舌 状、块状凸缘或锥形或圆形的膨胀块;所述柱塞的保持部具有嵌入部及挠性卡口,所述挠性卡口宽度至少小于控制杆头部的最大内径。其中,柱塞的材料采用弹性材料制成,而控制杆采用硬质材料制成。
根据本发明的一个方面,控制杆的主轴的直径与小于注射器泵筒的开口,或者两者直径基本相同。
根据本发明的一个方面,所述注射器泵为集成式微流控装置注射器泵,所述注射器泵筒外壳体的一面与微流控卡盒基板固定;
根据本发明的另一个方面,所述注射器泵可拆卸的与微流控装置的基板连接固定。
在本发明的的一个方面中,所述注射器泵筒轴向与微流控装置基板平行设置;
在本发明的另一个方面中,所述注射器泵筒轴向与基板垂直设置,在控制杆与柱塞卡合状态下,所述柱塞在所述注射器泵筒限定的空腔中上下移动。
在本发明的一个方面中,控制杆可连接动力控制装置,动力控制装置驱动控制杆将期望的力施加在柱塞上,用以产生一定正压或负压驱动期望容量的液体从微流道中流入注射器空腔或反方向流出。
在本发明的另一个方面中,还包括液位传感器,用以检测注射器泵中的液体流动情况,防止有空气被推入微液道,并确定注射器泵推出或抽入液体的容积。
本发明具有如下优点:集成式注射器泵具有较短的长度,控制杆与泵之间的卡合和释放状态的切换很简单,通过控制杆向与柱塞在轴向方向向基板的推压,即可实现控制杆与柱塞的卡合,通过移动控制杆来完全控制柱塞在注射器筒内的移动;而使用完毕后,控制杆与柱塞移动到空腔的顶端时,由于止挡部对于柱塞的限制,柱塞部分与控制杆受到相反方向的力使得柱塞保持部分的挠性卡口变形,控制杆脱离柱塞,此时控制杆可以从卡盒中取出。
在以上整个过程中,控制杆与泵之间的接合方法非常地简单,不需要复杂的机制来接合和拆除柱塞,而注射器泵始终保持着密封的状态,液体的接触始终被密封在由柱塞和注射器泵筒所限定的腔体内,仪器的任何部分都不会接触到卡盒中的液体,因此,消除了泄漏和交叉污染的风险。
同时,在操作结束时,液体被保存在密封地卡盒中,泵中的液体不会与实际操作的柱塞相接触,减少了液体的浪费,保证了处理的安全性。
附图说明
图1为本发明所述的注射器泵筒的典型结构;
图2为初始进入卡合状态的示意图;
图3为卡合状态下的使用示意图;
图4为由卡合状态进入释放状态的示意图;
具体实施方式
以下将描述本发明的一个或多个具体实施例。应该理解,任何工程或设计项目中的任何这样的实际实施方案的改进、大量的具体实施措施都应实现改进者的具体目标。当介绍本发明各实施例的元件时,冠词“一”、“该”和“所述”意图表示存在一个或多个元件。“包括”、“包含”和“具有”意图是包含性的,并且表示还可存在除了所列元件之外的其它元件。此外,“顶”、“底”、“上”、“下”及它们的变体均为了方便而使用,而并不要求部件具有特定取向。
由附图1所示,本发明的微流控注射器泵,包括注射器泵筒100,柱塞200和控制杆300。注射器泵筒100上设有泵筒壳体101,泵筒壳体101内部限定有空腔102,在此实施例中,泵筒100呈圆柱形,壳体的底部与微流控卡盒的基板固定,且底部设置流体出口103,在泵筒壳体101的上端具有开口104,开口具有止挡部105,止挡部105使得开口104的直径小于空腔102的内径。
由弹性材料构成的柱塞200,限定在由泵筒壳体101限定的的空腔102内部,可以沿着注射器泵筒100的轴向上下移动,当其移动到泵筒100上端的开口处时,止挡部105所限制柱塞200的进一步向外移动。柱塞200的顶部具有特定形状的保持部201。柱塞200的形状,与微流道出口接触的一面设置为与壳体或微流道出口适配的结构,例如呈圆锥形、或呈现截面为梯形或矩形的形状。
控制杆300,在本实施例中控制杆包括主轴301,其近端为控制杆头部302,其中主轴301远端可以连接动力控制系统400,以施加压力驱动控制杆300在注射器泵筒轴线方向上的往复移动。
控制杆300的头部302具有与柱塞保持部201相匹配的结构,在本实施例中,控制杆的头部302设置为具有舌状或者块状凸缘,而柱塞保持部201则具有的嵌入部202及挠性卡口203,嵌入部202及挠性卡口203共同限定适宜接收控制杆头部302的部分。 其中挠性卡口203的宽度至少小于控制杆头部302的最大内径,嵌入部202大致的与控制杆头部302的形状适配。
其中,柱塞200的材料采用弹性材料制成,而控制杆300采用硬质材料制成,上述控制杆头部302与柱塞保持部201的形状设置,使得控制杆300沿轴向柱塞200施以压力作用时,控制杆的头部302可以在力的作用下,使得柱塞的挠性卡口203产生形变,从而与所述柱塞的保持部201进行卡合,且保持卡合状态,此时控制系统对于控制杆300杆部的直线作用,使得控制杆300带动柱塞在注射器泵筒空腔102范围内沿轴向进行移动,起到对于空腔102内液体的抽吸作用;而当控制杆300沿轴向向相反方向运动,直至柱塞200到达接近泵筒上端开口104的位置时,注射器泵筒的止挡部105阻挡柱塞200,在此实施例中,柱塞200受到止挡部105向下方的力,控制杆300受到来自动力系控制系统的反方向的力,因此控制杆头部302的凸缘结构使得柱塞保持部201的挠性卡口203产生形变,控制杆头部302与柱塞保持部201脱离,控制杆300与柱塞200由卡合状态变为释放状态。
其中控制杆300主轴的直径与小于注射器泵筒的开口104,或者两者直径基本相同,以便于控制杆插入注射器泵筒的空腔102中。
在一种实施例中,柱塞200可以采用橡胶制成,而控制杆300由金属或塑料等硬质材料制成。控制杆300可以连接到动力控制设备400中,使其将期望的力施加在柱塞200上,用以产生一定正压或负压驱动期望容量的液体从微流道中流入注射器空腔或反方向流出。
典型的动力控制装置400可包括电机,传动机构,线性驱动器等,电机可以采用步进电机,传动机构可以为减速传动机构,控制杆300的主轴通过安装部分永久或可拆卸的连接到动力控制装置上,也可以与各种类型的动力控制装置连接。
下文叙述了本发明中微流控注射器泵的典型使用方法:
进入卡合状态:如图2所示,首先将控制杆300连接动力控制设备,动力控制设备在例如微电机的作用下驱动控制杆300,驱动杆穿过注射器泵筒的开口进入空腔102中,继续向下移动,在一定压力的作用下控制杆300头部使得挠性的卡口203形变,从而推入柱塞保持部201的嵌入部202中。控制杆300头部除舌型或块状凸缘外,还可以采用锥形、圆形或具有一定坡度的形状,便于进入柱塞200保持部时减少阻力。
使用状态中:如图3所示,此时柱塞200与控制杆300为卡合状态,动力控制装置 通过移动控制杆300来控制柱塞200在注射器泵筒中的上下移动。结合微流控阀,可以将流体从液体贮存器抽到泵筒中,或者将泵筒中的液体通过微流道推入其它期望的流体出口。
释放状态:如图4所示,当注射器泵筒使用完毕后,控制杆300带动柱塞200向注射器泵筒的上方移动至柱塞200被止挡部105所限制,作用力使得控制杆300的头部从柱塞200保持部脱离出来,从而将控制杆300和柱塞200由卡合状态变为释放状态,可将控制杆300从微流控装置的卡盒中取出。
上述实施例中,注射器泵筒轴向与基板垂直设置,在控制杆300与柱塞200卡合状态下,所述柱塞200在所述注射器泵筒限定的空腔102中可轴向移动。此种设置状态下,所述注射器泵筒还可以兼用作液体混合的腔体。结合微流控阀,将期望混合的流体通过腔体底部的出口通道抽入泵筒的空腔102内102,通过控制杆300结合柱塞200的重复性往返移动,促进对于流体的混合,且垂直设置的泵筒结构便于在混合液体混入气泡的情况下,气泡上升至接近柱塞200的顶端;混合后的液体再次被驱动至基部的微液道中时,例如在液位传感器或流体传感器的监测下,液体中被混入的气泡将留在柱塞200顶端而不会被传输至后续的步骤中。
而在另一个附图未示出的实施例中,所述注射器泵筒100的轴向与微流控装置基板平行设置,即控制杆300沿着水平方向带动柱塞200进行移动,与基板平行设置的方式在某些集成微流控结构中可以节省微流控装置的体积,或增加控制杆300的移动范围。
在注射器泵筒的空腔102中可设置液位传感器,用以检测注射器泵中的液体流动情况,防止有空气被推入微液道,并确定注射器泵推出或抽入液体的容积;也可以在注射器泵通出口接的微流控通道中设置液体传感器,进行液体流量的检测,对于动力控制系统进行反馈控制,也可以进行微流道中空气的检测。在此实施例中,通过动力设备的参数设置,可以准确的调节控制杆300的移动速度,进而控制流体的流速。
本发明的注射器泵筒适用于微流控装置,以永久或者可拆卸的方式集成在微流控卡盒的基板上,也可以适用于其它具有一定体积和精度要求的其它注射器泵的装置或系统中。
以上实施方式仅适于说明本公开,而并非对本公开的限制,有关技术领域的普通技术人员,在不脱离本公开的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本公开的范畴,本公开的专利保护范围应由权利要求限定。

Claims (10)

  1. 一种注射器泵,包括:
    注射器泵筒,包括泵筒外壳体,外壳体内部限定有空腔,外壳体具有出口使得空腔与液体流道联通,泵筒外壳体的与出口位置不同的一端具有由止挡部限定的开口;
    柱塞,所述柱塞置于所述注射器泵筒的空腔内,且可沿泵筒轴移动,所述止挡部将所述柱塞的移动限制在空腔内;所述柱塞与所述外壳体开口处相对应的端部设置有保持部;保持部限定匹配控制杆的至少一部分的结构;
    控制杆,用以施加动力,所述控制杆包括控制杆主轴及主轴端部的头部,所述控制杆能够通过所述注射器泵筒的开口进入所述空腔中,其中所述控制杆的头部与所述柱塞的保持部形状相适配,使得所述控制杆沿轴向柱塞部施加作用力时,所述控制杆的头部能够与所述柱塞的保持部进行卡合且保持卡合状态;所述控制杆沿相反的方向施加作用力时,所述泵筒外壳体的止挡部对于柱塞的限制使得所述控制杆的头部与所述保持部由卡合状态变为释放状态。
  2. 一种如权利要求1所述的注射器泵,其特征在于:在所述卡合状态下,通过控制杆杆部的轴向运动,柱塞在注射器泵筒空腔范围内沿轴向往复移动。
  3. 一种如权利要求1所述的注射器泵,其特征在于:所述保持部具有能接收所述控制杆头部的结构。
  4. 一种如权利要求3所述的注射器泵,其特征在于:所述控制杆的头部尺寸大于控制杆主轴,所述柱塞的保持部具有嵌入部及挠性卡口,所述挠性卡口的宽度至少小于控制杆头部的最大直径。
  5. 一种如权利要求4所述的注射器泵,其特征在于:所述控制杆的头部呈舌状或块状凸缘,或锥形或圆形的膨胀结构。
  6. 一种如权利要求1或3所述的注射器泵,其特征在于:所述柱塞的材料采用弹性材料制成;所述控制杆采用硬质材料制成。
  7. 一种如权利要求1或3所述的注射器泵,其特征在于:所述注射器泵为集成式微流控装置注射器泵,所述注射器泵筒外壳体的一面与微流控卡盒基板连接。
  8. 一种如权利要求7所述的注射器泵,其特征在于:所述注射器泵固定或可拆卸的与微流控装置的基板连接。
  9. 一种如权利要求7所述的注射器泵,其特征在于:所述注射器泵筒轴向与微流 控装置基板平行设置或垂直设置;当垂直设置时,在控制杆与柱塞卡合状态下,所述柱塞在所述注射器泵筒限定的空腔中上下移动。
  10. 一种如权利要求7所述的注射器泵,其特征在于:所述控制杆远离头部的一端连接动力控制装置,动力控制装置驱动控制杆将期望的力施加在柱塞上,用以产生一定正压或负压驱动期望容量的液体从所述出口连接的微流道中抽入或压出。
PCT/CN2019/081224 2018-11-16 2019-04-03 一种用于微流控装置的注射器泵 WO2020098207A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811365514.1 2018-11-16
CN201811365514.1A CN109630401B (zh) 2018-11-16 2018-11-16 一种用于微流控装置的注射器泵

Publications (1)

Publication Number Publication Date
WO2020098207A1 true WO2020098207A1 (zh) 2020-05-22

Family

ID=66068231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081224 WO2020098207A1 (zh) 2018-11-16 2019-04-03 一种用于微流控装置的注射器泵

Country Status (2)

Country Link
CN (1) CN109630401B (zh)
WO (1) WO2020098207A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129580A (ja) * 1985-11-28 1987-06-11 Hitachi Ltd 分析装置のプランジヤポンプ
US7722817B2 (en) * 2003-08-28 2010-05-25 Epocal Inc. Lateral flow diagnostic devices with instrument controlled fluidics
CN101819170A (zh) * 2010-05-13 2010-09-01 大连理工大学 一种非一体式可变体积高压相平衡测量装置
CN103930144A (zh) * 2011-09-15 2014-07-16 牛津纳米孔技术有限公司 活塞密封件
CN204371652U (zh) * 2014-12-30 2015-06-03 南京萨伯工业设计研究院有限公司 液压泵柱塞滑靴组件
US20160115951A1 (en) * 2014-10-27 2016-04-28 University Of Rochester High-performance, low-voltage electroosmotic pumps with molecularly thin nanomembranes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7204153A (zh) * 1972-03-28 1973-10-02
MY104360A (en) * 1987-12-30 1994-03-31 Verlier Jacques Non-reusable syringe
CN108744157A (zh) * 2018-06-26 2018-11-06 成都益睿信科技有限公司 一种环保注射器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129580A (ja) * 1985-11-28 1987-06-11 Hitachi Ltd 分析装置のプランジヤポンプ
US7722817B2 (en) * 2003-08-28 2010-05-25 Epocal Inc. Lateral flow diagnostic devices with instrument controlled fluidics
CN101819170A (zh) * 2010-05-13 2010-09-01 大连理工大学 一种非一体式可变体积高压相平衡测量装置
CN103930144A (zh) * 2011-09-15 2014-07-16 牛津纳米孔技术有限公司 活塞密封件
US20160115951A1 (en) * 2014-10-27 2016-04-28 University Of Rochester High-performance, low-voltage electroosmotic pumps with molecularly thin nanomembranes
CN204371652U (zh) * 2014-12-30 2015-06-03 南京萨伯工业设计研究院有限公司 液压泵柱塞滑靴组件

Also Published As

Publication number Publication date
CN109630401B (zh) 2022-11-25
CN109630401A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
CN106413897B (zh) 具有增强吹出的排气移液管
US9533093B2 (en) Cartridge connection method for precise delivery of liquid
CA2539813A1 (en) Flush syringe having anti-reflux features
EP3381573A2 (en) Motorized cartridge type fluid dispensing apparatus and system
US11123534B2 (en) Needle-free connector
US10137445B2 (en) Single use capillary micropipette for dispensing a defined volume of a liquid
EP0945150A3 (en) Liquid medicine injection apparatus utilizing negative pressure
JP5475700B2 (ja) 液体供給方法および装置
WO2020098207A1 (zh) 一种用于微流控装置的注射器泵
EP1531937A1 (de) Pipetiereinrichtung und verfahren zum betreiben einer pipetiereinrichtung
JP3787578B2 (ja) マイクロチップの微細流路における液体送液方法
JP3764762B2 (ja) ピペット装置
WO2007099870A1 (ja) 注射筒
CN209406357U (zh) 方便注液的微流控芯片
US8127794B2 (en) Dispenser arrangement for fluidic dispensing control in microfluidic system
CN105424961A (zh) 用于微流控芯片进样的负压快速对接装置
CN107596492A (zh) 一种输液器防回流装置
US20100051722A1 (en) Valve unit for interrupting or releasing a flow of a medium along a hollow duct, use thereof in a dosing system for the metered discharge of said medium, and method for the metered discharge of a medium
CN209803160U (zh) 处理样品溶液微流控芯片的液压进样装置
CN108025307A (zh) 移液管或者移液管吸头与液体注入用配件的安装结构以及液体注入用配件
WO2020088222A1 (zh) 流体控制结构与微流控芯片及芯片操作方法
NL2026780B1 (en) Precise fluid manipulation in the femtolitre range
WO2022143900A1 (zh) 活塞机构、流体控制机构及其应用
CN210616741U (zh) 用于微流控芯片的打孔装置
JP4919548B2 (ja) プランジャポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885510

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19885510

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19885510

Country of ref document: EP

Kind code of ref document: A1