WO2020098047A1 - 磁共振电影成像方法、装置、设备和存储介质 - Google Patents

磁共振电影成像方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2020098047A1
WO2020098047A1 PCT/CN2018/121403 CN2018121403W WO2020098047A1 WO 2020098047 A1 WO2020098047 A1 WO 2020098047A1 CN 2018121403 W CN2018121403 W CN 2018121403W WO 2020098047 A1 WO2020098047 A1 WO 2020098047A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
virtual
conjugate
magnetic resonance
order
Prior art date
Application number
PCT/CN2018/121403
Other languages
English (en)
French (fr)
Inventor
梁栋
王海峰
贾森
苏适
朱燕杰
刘新
郑海荣
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2020098047A1 publication Critical patent/WO2020098047A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the embodiments of the present disclosure relate to the technical field of image processing, for example, to a magnetic resonance film imaging method, device, device, and storage medium.
  • Magnetic resonance real-time cardiac film imaging technology does not require complex ECG gating and heart rate-sensitive segmented data acquisition, allows the scanned subject to breathe freely, and can provide excellent and rich soft tissue contrast, so it is widely used in heart rate Patients who are uniform or unable to hold their breath effectively.
  • cardiac real-time film imaging technology often uses a high degree of under-acquisition to increase the data acquisition speed, and the missing unsampled data is recovered by the subsequent image reconstruction process.
  • the sampled data is acquired in three-fold under-acquisition, and the sampled data is processed based on the generalized self-calibration partial parallel acquisition (Temporal, GeneRalized, Auto-calibrating, Partially, Acquisitions, TGRAPPA) algorithm of the time dimension of parallel imaging, the obtained magnetic resonance
  • the spatial resolution of cardiac movie images is only 1.9 millimeters, and the temporal resolution is only 90 milliseconds. Both the spatial resolution and the temporal resolution are much lower than the clinical requirements (spatial resolution: 1 millimeter; temporal resolution: 60-70 milliseconds).
  • the magnetic resonance spatial resolution can be increased to 1.3 mm, and the time resolution can also be increased to 70 ms, but at this time, based on the TGRAPPA algorithm
  • the quality of the unsampled data determined is low, so the signal-to-noise of the reconstructed cardiac film image is relatively low, which cannot meet the clinical use requirements.
  • the image quality of the images obtained by the related art magnetic resonance real-time cardiac film imaging method is low.
  • the present disclosure provides a magnetic resonance film imaging method, device, equipment, and storage medium to solve the technical problem of low image quality of images reconstructed by the magnetic resonance real-time cardiac film imaging method.
  • the present disclosure provides a magnetic resonance film imaging method, including:
  • the actual mining basic data and the unsampled data are combined into complete data along the direction of the coil, and magnetic resonance image reconstruction is performed on the complete data to generate a magnetic resonance movie image.
  • the present disclosure also provides a magnetic resonance film imaging device, including:
  • the virtual conjugate data module is configured to use the data of the magnetic resonance data in the phase encoding direction and the frequency encoding direction as actual acquisition basic data, and expand the actual acquisition basic data through conjugate transposition to obtain virtual conjugate data;
  • the virtual high-order data module is configured to separately obtain the virtual high-order data of the actual mining basic data and the virtual high-order data of the virtual conjugate data, wherein the virtual high-order data includes at least virtual second-order data;
  • An unsampled data determination module configured to determine unsampled data based on the actual mining basic data, the virtual conjugate data, the virtual high-order data of the actual mining basic data, and the virtual high-order data of the virtual conjugate data ;
  • the image reconstruction module is configured to combine the actual collected basic data and the unsampled data along the coil direction into complete data, and perform magnetic resonance image reconstruction on the complete data to generate a magnetic resonance movie image.
  • the present disclosure also provides a computer device including:
  • At least one processor At least one processor
  • a storage device configured to store at least one program
  • the at least one processor When the at least one program is executed by the at least one processor, the at least one processor implements the magnetic resonance film imaging method as described above.
  • the present disclosure also provides a storage medium containing computer-executable instructions, which when executed by a computer processor are used to perform the magnetic resonance film imaging method as described above.
  • the technical solution of the magnetic resonance film imaging method provided in this embodiment due to the amount of information contained in the actual mining basic data, the virtual conjugate data, the virtual higher order data of the actual mining basic data, and the virtual higher order data of the virtual conjugate data, It is much larger than the amount of information contained in the actual mining basic data, so the unsampled data determined based on the actual mining basic data, virtual conjugate data, virtual high-order data of the actual mining basic data, and virtual high-order data of the virtual conjugate data The accuracy is much greater than the accuracy of the unsampled data determined based only on the actual mining basic data, which can improve the image quality of magnetic resonance film imaging and make the image quality of magnetic resonance film imaging have a higher signal-to-noise ratio and spatiotemporal resolution Rate for clinical diagnosis.
  • FIG. 1 is a flowchart of a magnetic resonance imaging method provided by an embodiment
  • FIG. 2 is a schematic diagram of data expansion provided by an embodiment
  • FIG. 3A is a magnetic resonance film image reconstructed by a magnetic resonance film imaging method based on related technologies provided by an embodiment
  • 3B is a schematic diagram of quantitative indicators for evaluating the degree of noise amplification of a magnetic resonance film imaging method of related art provided by an embodiment
  • 4A is a magnetic resonance movie image reconstructed by a magnetic resonance movie imaging method provided by another embodiment
  • 4B is a schematic diagram of a quantitative index for evaluating the degree of noise amplification of a magnetic resonance film imaging method provided by another embodiment
  • FIG. 5 is a structural block diagram of a magnetic resonance film imaging device provided by an embodiment
  • FIG. 6 is a structural block diagram of a computer device provided by an embodiment.
  • FIG. 1 is a flowchart of a magnetic resonance film imaging method provided by an embodiment.
  • the technical solution of this embodiment is suitable for the case of quickly acquiring high-quality magnetic resonance movie images.
  • the method may be performed by the magnetic resonance film imaging apparatus provided in this embodiment.
  • the apparatus may be implemented in software and / or hardware, and configured for application in a processor. Referring to FIG. 1, the method includes the following steps.
  • the magnetic resonance data also includes data on the direction of the coil.
  • the magnetic resonance data used for magnetic resonance imaging is usually four-dimensional data, such as magnetic resonance cardiac imaging. These four dimensions include phase encoding direction, frequency encoding direction, coil direction and time.
  • the data of the magnetic resonance data in the phase encoding direction and the frequency encoding direction are used as the actual acquisition basic data, and the actual acquisition basic data is expanded by conjugate transposition to obtain virtual conjugate data, as shown in FIG. 2.
  • this embodiment also separately obtains virtual high-order data of the actual collected basic data and virtual high-order data of the virtual conjugate data, as shown in FIG. 2.
  • actual mining basic data, virtual conjugate data, virtual higher-order data of actual mining basic data, and virtual higher-order data of virtual conjugate data are used as intermediate data.
  • the virtual higher-order data includes at least the virtual second-order data, so the data volume of the high-order virtual data of the actual mining basic data is at least the data of the actual mining basic data
  • the amount of virtual high-order data of virtual conjugate data is at least double the amount of virtual conjugate data, so the amount of intermediate data is at least four times the amount of actual basic data. This makes the amount of information contained in the intermediate data much larger than the amount of data included in the actual mining basic data.
  • the actual mining basic data and the virtual conjugate data are respectively mapped to the high-dimensional space through non-linear mapping, so as to generate the virtual higher-order data of the actual mining basic data and the virtual higher-order data of the virtual conjugate data. Therefore, the virtual higher-order data of the actual mining basic data and the virtual higher-order data of the virtual conjugate data both contain high-dimensional nonlinear information, which can better characterize the nonlinear relationship between the actual mining basic data and the unsampled data caused by sampling noise.
  • the non-linear mapping in this embodiment may use a non-linear mapping method in the field of pattern recognition.
  • S1030 Determine the unsampled data according to the actual mining basic data, the virtual conjugate data, the virtual higher order data of the actual mining basic data, and the virtual higher order data of the virtual conjugate data.
  • This embodiment determines the unsampled data through the TGRAPPA algorithm based on the target data, including: Establish a linear relationship between the actual mining basic data and unsampled data, and determine the optimal solution of w in the linear relationship based on the least square method, where matrix S is the actual mining basic data, matrix T is the training data, and the training The data corresponds to unsampled data; if w is used as the weight between the actual collected basic data and unsampled data in the reconstruction process of the TGRAPPA algorithm, the unsampled data is:
  • j is the coil label where the unsampled data is located
  • l is the coil label where the actual collected basic data is located
  • s is the label of the actual collected basic data around the unsampled data in the sampling space
  • t is the unsampled data label
  • k s is the unsampled data Physical coordinates of the actual sampling basic data around the sampled data in the sampling space
  • k t is the physical coordinates of the unsampled data in the sampling space
  • S l (k s ) is the actual sampling basic data
  • w 1 (j, t, l , S) is the weight of the actual basic data
  • Is virtual conjugate data Is the weight of the virtual conjugate data
  • w 2 (j, t, l, s) is the weight of the virtual higher order data of the actual mining basic data
  • Is virtual higher order data of virtual conjugate data is the weight of the virtual higher-order data of the virtual conjugate data.
  • the TGRAPPA algorithm is still a linear model, there is still a linear relationship between unsampled data and actual mining basic data, but due to the introduction of virtual conjugate data, virtual higher-order data of actual mining basic data, and virtual conjugate data of virtual conjugate data , Increase the amount of data and information used to predict unsampled data, which can improve the accuracy of unsampled data.
  • the virtual high-order data of the actual basic data and the virtual conjugate data of the virtual conjugate data are both nonlinear data, the introduction of nonlinear information can effectively improve the number of states of the TGRAPPA algorithm, thereby suppressing noise amplification during the reconstruction process , And improve the accuracy of unsampled data.
  • performing magnetic resonance reconstruction on the complete data to generate a magnetic resonance movie image includes: determining the coil image of each coil based on the inverse Fourier transform based on the complete data; and passing all the coil images through the square sum root method (SumOfSquare, SOS) to obtain magnetic resonance movie images.
  • FIG. 3A is a movie image reconstructed by a commercial magnetic resonance movie imaging method in the related art.
  • the noise amplification factor distribution map (g-factor map) is shown in Fig. 3B.
  • the maximum value It is 5.9, and the mean is 2.8.
  • FIG. 4A is a movie image reconstructed by the magnetic resonance movie imaging method described in this embodiment.
  • the quantitative index g-factor map (noise amplification factor distribution map) of the noise amplification degree during the reconstruction of the method is shown in FIG.
  • the magnetic resonance film imaging method described in this embodiment significantly suppresses noise amplification during image reconstruction, improves the signal-to-noise ratio of the magnetic resonance film image, and improves the clarity of image details.
  • the technical solution of the magnetic resonance film imaging method uses the data of the magnetic resonance data in the phase encoding direction and the frequency encoding direction as the actual acquisition basic data, and expands the actual acquisition basic data through conjugate transposition to Obtain virtual conjugate data, where the magnetic resonance data also includes data on the direction of the coil; obtain the virtual higher-order data of the actual basic data and the virtual higher-order data of the virtual conjugate data, where the virtual higher-order data includes at least the virtual Second-order data; determine unsampled data based on actual mining basic data, virtual conjugate data, virtual higher-order data of actual mining basic data, and virtual high-order data of virtual conjugate data; follow actual mining basic data and unsampled data along the coil
  • the directions are combined into complete data, and magnetic resonance image reconstruction is performed on the complete data to generate a magnetic resonance movie image.
  • the actual mining basic data, virtual conjugate data, the virtual higher-order data of the actual mining basic data, and the virtual higher-order data of the virtual conjugate data contain much more information than the actual mining basic data, they are based on The accuracy of unsampled data determined by actual mining basic data, virtual conjugate data, virtual higher-order data of actual mining basic data, and virtual higher-order data of virtual conjugate data is much greater than that determined only based on actual mining basic data The accuracy of unsampled data can further improve the image quality of magnetic resonance film imaging, so that the image has a higher signal-to-noise ratio and spatio-temporal resolution for clinical diagnosis.
  • FIG. 5 is a structural block diagram of a magnetic resonance film imaging apparatus provided by an embodiment.
  • the device is used to execute the magnetic resonance film imaging method provided by any of the above embodiments, and the device may be implemented by software or hardware.
  • the device includes: a virtual conjugate data module 11, configured to use the data of the magnetic resonance data in the phase encoding direction and the frequency encoding direction as actual acquisition basic data, and expand the actual acquisition basic data through conjugate transposition To obtain virtual conjugate data;
  • the virtual high-order data module 12 is configured to separately obtain the virtual high-order data of the actual mining basic data and the virtual high-order data of the virtual conjugate data, wherein the virtual high-order data is at least Including virtual second-order data;
  • the unsampled data determination module 13 is set based on the actual mining basic data, the virtual conjugate data, the virtual higher-order data of the actual mining basic data, and the virtual of the virtual conjugate data High-order data determines unsampled data;
  • the image reconstruction module 14 is configured to combine the actual collected basic
  • the magnetic resonance data further includes data on the direction of the coil.
  • the technical solution of the magnetic resonance film imaging device uses the data of the magnetic resonance data in the phase encoding direction and the frequency encoding direction as the actual basic data through the virtual conjugate data module, and the conjugate transposition
  • the basic data is expanded to obtain virtual conjugate data, in which the magnetic resonance data also includes the data of the coil direction; the virtual high-order data of the actual basic data and the virtual height of the virtual conjugate data are respectively obtained through the virtual high-order data module Order data, where the virtual higher order data includes at least the virtual second order data;
  • the unsampled data determination module is based on the actual mining basic data, the virtual conjugate data, the virtual higher order data of the actual mining basic data, and the virtual high order data of the virtual conjugate data
  • the order data determines unsampled data;
  • the image reconstruction module combines the actual collected basic data and the unsampled data along the coil direction into complete data, and performs magnetic resonance image reconstruction on the complete data to generate a magnetic resonance movie image.
  • the actual mining basic data, virtual conjugate data, the virtual higher-order data of the actual mining basic data, and the virtual higher-order data of the virtual conjugate data contain much more information than the actual mining basic data, they are based on The accuracy of unsampled data determined by actual mining basic data, virtual conjugate data, virtual higher-order data of actual mining basic data, and virtual higher-order data of virtual conjugate data is much greater than that determined only based on actual mining basic data The accuracy of unsampled data can further improve the image quality of magnetic resonance film imaging, so that the image has a higher signal-to-noise ratio and spatio-temporal resolution for clinical diagnosis.
  • the virtual higher-order data module is configured to map the actual mining basic data and the virtual conjugate data to the high-dimensional space through nonlinear mapping to generate the virtual higher-order data and the virtual common data of the actual mining basic data.
  • Virtual higher order data of yoke data is configured to map the actual mining basic data and the virtual conjugate data to the high-dimensional space through nonlinear mapping to generate the virtual higher-order data and the virtual common data of the actual mining basic data.
  • the magnetic resonance film imaging apparatus provided in this embodiment can execute the magnetic resonance film imaging method provided in any of the above embodiments, and has the functional modules and beneficial effects corresponding to the execution method.
  • FIG. 6 is a structural block diagram of a computer device provided by an embodiment.
  • the computer device includes a processor 201, a memory 202, an input device 203, and an output device 204; the number of processors 201 in the computer device may be at least One, a processor 201 is taken as an example in FIG. 6; a processor 201, a memory 202, an input device 203, and an output device 204 in the device may be connected by a bus or other means, and FIG. 6 is taken as an example of connecting by a bus.
  • the memory 202 can be configured to store software programs, computer executable programs, and modules, such as program instructions / modules (for example, virtual conjugate data) corresponding to the magnetic resonance film imaging method in the embodiments of the present disclosure Module 11, virtual higher-order data module 12, unsampled data determination module 13, and image reconstruction module 14).
  • the processor 201 executes at least one functional application of the device and data processing by running software programs, instructions, and modules stored in the memory 202, that is, implementing the above-mentioned magnetic resonance movie imaging method.
  • the memory 202 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system and application programs required for at least one function; the storage data area may store data created according to the use of the terminal, and the like.
  • the memory 202 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 202 may include memories remotely provided with respect to the processor 201, and these remote memories may be connected to the device through a network. Examples of the above network include but are not limited to the Internet, intranet, local area network, mobile communication network, and combinations thereof.
  • the input device 203 may be configured to receive input numeric or character information, and generate key signal input related to user settings and function control of the device.
  • the output device 204 may include a display device such as a display screen, for example, a display screen of a user terminal.
  • This embodiment also provides a storage medium containing computer-executable instructions.
  • the method is used to perform a magnetic resonance film imaging method.
  • the method includes: placing magnetic resonance data in phase
  • the data in the encoding direction and the data in the frequency encoding direction are used as the actual mining basic data, and the actual mining basic data is expanded by conjugate transposition to obtain virtual conjugate data; the virtual height of the actual mining basic data is respectively obtained Virtual high-order data of order data and virtual conjugate data, wherein the virtual high-order data includes at least virtual second-order data; according to the actual mining basic data, the virtual conjugate data, the actual mining basic data
  • the virtual high-order data and the virtual high-order data of the virtual conjugate data determine unsampled data; combine the actual collected basic data and the unsampled data along the coil direction into complete data, and perform magnetic analysis on the complete data Resonance image reconstruction to generate magnetic resonance movie images.
  • the magnetic resonance data further includes data on the direction of the coil.
  • An embodiment of the present invention provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are not limited to the method operations described above, and can also execute the magnetic resonance film imaging method provided in any of the above embodiments. Related operations.
  • the present disclosure may be implemented by software and general hardware, or by hardware.
  • the technical solution of the present disclosure can be embodied in the form of a software product, which can be stored in a computer-readable storage medium, such as a computer floppy disk, read-only memory (Read-Only Memory, ROM), Random access memory (RAM), flash memory (FLASH), hard disk or optical disc, etc., including multiple instructions to make a computer device (which may be a personal computer, server or network device, etc.) execute any embodiment The magnetic resonance film imaging method described.
  • At least one unit and module included are only divided according to the function logic, but it is not limited to the above division, as long as the corresponding function can be realized; in addition, each function
  • the names of the units are only for the purpose of distinguishing each other, and are not used to limit the protection scope of the present disclosure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种磁共振电影成像方法、装置、设备和存储介质。其中方法包括:将磁共振数据在相位编码方向的数据和频率编码方向的数据作为实采基础数据,并通过共轭转置对实采基础数据进行扩展以得到虚拟共轭数据(s1010);分别求取实采基础数据的虚拟高阶数据和虚拟共轭数据的虚拟高阶数据(s1020);根据实采基础数据、虚拟共轭数据、实采基础数据的虚拟高阶数据以及虚拟共轭数据的虚拟高阶数据确定未采样数据(s1030);将实采基础数据和未采样数据沿线圈方向组合成完整数据,并对完整数据进行磁共振图像重建以生成磁共振电影图像(s1040)。

Description

磁共振电影成像方法、装置、设备和存储介质
本公开要求在2018年11月14日提交中国专利局、申请号为201811352417.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本公开实施例涉及图像处理技术领域,例如涉及一种磁共振电影成像方法、装置、设备和存储介质。
背景技术
磁共振实时心脏电影成像技术不需要复杂的心电门控和对心率敏感的分段式数据采集,允许被扫描对象自由呼吸,而且能够提供优异且丰富的软组织对比度,因此被广泛用于心率不齐或无法有效屏气的病人。为了获得足够高的时间分辨率,心脏实时电影成像技术往往采用高度欠采方式来提高数据采集速度,缺失的未采样数据则由后续的图像重建过程予以恢复。
若以三倍欠采方式获取采样数据,并基于并行成像的时间维度的广义自校准部分并行采集(Temporal GeneRalized Auto-calibrating Partially Parallel Acquisitions,TGRAPPA)算法对该采样数据进行处理,所获得的磁共振心脏电影图像的空间分辨率只有1.9毫米,时间分辨率也只有90毫秒,空间分辨率和时间分辨率均远低于临床需求(空间分辨率:1毫米;时间分辨率:60-70毫秒)。在相同的成像视野和线圈条件下,如果能把欠采倍数提高到四倍,那么磁共振空间分辨率可以提升到1.3毫米,时间分辨率也提高到70毫秒,但此时,基于TGRAPPA算法所确定的未采样数据的质量较低,因此重建出的心脏电影图像的信噪比较低,无法满足临床使用需求。
综上所述,对于以高倍欠采方式所获得的磁共振数据,相关技术的磁共振实时心脏电影成像方法所得到的图像的图像质量较低。
发明内容
本公开提供了一种磁共振电影成像方法、装置、设备和存储介质,以解决磁共振实时心脏电影成像方法重建出的图像的图像质量较低的技术问题。
本公开提供了一种磁共振电影成像方法,包括:
将磁共振数据在相位编码方向的数据和频率编码方向的数据作为实采基础数据,并通过共轭转置对所述实采基础数据进行扩展以得到虚拟共轭数据;
分别求取所述实采基础数据的虚拟高阶数据和虚拟共轭数据的虚拟高阶数据,其中,所述虚拟高阶数据至少包括虚拟二阶数据;
根据所述实采基础数据、所述虚拟共轭数据、所述实采基础数据的虚拟高阶数据以及所述虚拟共轭数据的虚拟高阶数据确定未采样数据;
将所述实采基础数据和所述未采样数据沿线圈方向组合成完整数据,并对所述完整数据进行磁共振图像重建以生成磁共振电影图像。
本公开还提供了一种磁共振电影成像装置,包括:
虚拟共轭数据模块,设置为将磁共振数据在相位编码方向和频率编码方向的数据作为实采基础数据,并通过共轭转置对所述实采基础数据进行扩展以得到虚拟共轭数据;
虚拟高阶数据模块,设置为分别求取所述实采基础数据的虚拟高阶数据和虚拟共轭数据的虚拟高阶数据,其中,所述虚拟高阶数据至少包括虚拟二阶数据;
未采样数据确定模块,设置为根据所述实采基础数据、所述虚拟共轭数据、所述实采基础数据的虚拟高阶数据以及所述虚拟共轭数据的虚拟高阶数据确定未采样数据;
图像重建模块,设置为将所述实采基础数据和所述未采样数据沿线圈方向组合成完整数据,并对所述完整数据进行磁共振图像重建以生成磁共振电影图像。
第本公开还提供了一种计算机设备,所述计算机设备包括:
至少一个处理器;
存储装置,设置为存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如上所述的磁共振电影成像方法。
本公开还提供了一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如上所述的磁共振电影成像方法。
本实施例提供的磁共振电影成像方法的技术方案,由于实采基础数据、虚拟共轭数据、实采基础数据的虚拟高阶数据以及虚拟共轭数据的虚拟高阶数据所包含的信息量,远大于实采基础数据所包含的信息量,因此基于实采基础数据、虚拟共轭数据、实采基础数据的虚拟高阶数据以及虚拟共轭数据的虚拟高阶数据所确定的未采样数据的准确性,远大于仅基于实采基础数据所确定的未采样数据的准确性,进而可以提高磁共振电影成像的图像质量,使磁共振电影成像的图像质量具有较高的信噪比和时空分辨率,以用于临床诊断。
附图说明
图1是一实施例提供的磁共振电影成像方法的流程图;
图2是一实施例提供的数据扩展示意图;
图3A是一实施例提供的基于相关技术的磁共振电影成像方法重建出的磁共振电影图像;
图3B是一实施例提供的用于评价相关技术的磁共振电影成像方法的噪声放大程度的定量指标示意图;
图4A是另一实施例提供的磁共振电影成像方法重建出的磁共振电影图像;
图4B是另一实施例提供的用于评价磁共振电影成像方法的噪声放大程度的定量指标示意图;
图5是一实施例提供的磁共振电影成像装置的结构框图;
图6是一实施例提供的计算机设备的结构框图。
具体实施方式
以下将参照本公开实施例中的附图,通过实施方式描述本公开的技术方案。
实施例一
图1是一实施例提供的磁共振电影成像方法的流程图。本实施例的技术方 案适用于快速获取高质量的磁共振电影图像的情况。该方法可以由本实施例提供的磁共振电影成像装置来执行,该装置可以采用软件和/或硬件的方式实现,并配置在处理器中应用。参见图1,该方法包括如下步骤。
S1010、将磁共振数据在相位编码方向的数据和频率编码方向的数据作为实采基础数据,并通过共轭转置对实采基础数据进行扩展以得到虚拟共轭数据。
在一实施例中,磁共振数据还包括线圈方向的数据。
用于磁共振电影成像的磁共振数据通常是四维数据,比如磁共振心脏电影成像,这四维包括相位编码方向、频率编码方向、线圈方向以及时间。将磁共振数据在相位编码方向的数据和频率编码方向的数据作为实采基础数据,并通过共轭转置对该实采基础数据进行扩展以得到虚拟共轭数据,如图2所示。
S1020、分别求取实采基础数据的虚拟高阶数据和虚拟共轭数据的虚拟高阶数据,其中,虚拟高阶数据至少包括虚拟二阶数据。
为了提高未采样数据的准确性,本实施例还分别求取实采基础数据的虚拟高阶数据和虚拟共轭数据的虚拟高阶数据,如图2所示。为了便于描述,本实施例将实采基础数据、虚拟共轭数据、实采基础数据的虚拟高阶数据以及虚拟共轭数据的虚拟高阶数据作为中间数据。由于虚拟共轭数据的数据量与实采基础数据的数据量相同,虚拟高阶数据至少包括虚拟二阶数据,因此实采基础数据的高阶虚拟数据的数据量至少为实采基础数据的数据量的一倍,虚拟共轭数据的虚拟高阶数据的数据量至少为虚拟共轭数据的数据量的一倍,因此中间数据的数据量至少为实采基础数据的数据量的四倍,这使得中间数据所包含的信息量远远大于实采基础数据所包括的数据量。
本实施例通过非线性映射将实采基础数据和虚拟共轭数据分别映射到高维空间,以生成实采基础数据的虚拟高阶数据和虚拟共轭数据的虚拟高阶数据。因此实采基础数据的虚拟高阶数据和虚拟共轭数据的虚拟高阶数据均包含高维非线性信息,可以更好地表征实采基础数据和未采样数据之间由采样噪声导致的非线性关系。
本实施例中的非线性映射采用模式识别领域的非线性映射方法即可。
S1030、根据实采基础数据、虚拟共轭数据、实采基础数据的虚拟高阶数据 以及虚拟共轭数据的虚拟高阶数据确定未采样数据。
本实施例基于目标数据,通过TGRAPPA算法确定未采样数据,包括:通过
Figure PCTCN2018121403-appb-000001
建立实采基础数据与未采样数据之间的线性关系,并基于最小二乘法确定该线性关系中w的最优解,其中,矩阵S为实采基础数据,矩阵T为训练数据,且该训练数据对应未采样数据;将w作为TGRAPPA算法在重建过程中的实采基础数据与未采样数据之间的权重,则未采样数据为:
Figure PCTCN2018121403-appb-000002
其中,j为未采样数据所在线圈标号,l为实采基础数据所在线圈标号,s为未采样数据周围的实采基础数据在采样空间内的标号,t为未采样数据标号,k s为未采样数据周围的实采基础数据在采样空间的物理坐标,k t为未采样数据在采样空间的物理坐标,S l(k s)为所述实采基础数据,w 1(j,t,l,s)为实采基础数据的权重,
Figure PCTCN2018121403-appb-000003
为虚拟共轭数据,
Figure PCTCN2018121403-appb-000004
为虚拟共轭数据的权重,
Figure PCTCN2018121403-appb-000005
为实采基础数据的虚拟高阶数据,w 2(j,t,l,s)为实采基础数据的虚拟高阶数据的权重,
Figure PCTCN2018121403-appb-000006
为虚拟共轭数据的虚拟高阶数据,
Figure PCTCN2018121403-appb-000007
为虚拟共轭数据的虚拟高阶数据的权重。虽然TGRAPPA算法仍为线性模型,未采样数据与实采基础数据之间还是线性关系,但由于虚拟共轭数据、实采基础数据的虚拟高阶数据以及虚拟共轭数据的虚拟共轭数据的引入,增加了用于预测未采样数据的数据量以及信息量,进而能够提高未采样数据的准确性。另外,由于实采基础数据的虚拟高阶数据和虚拟共轭数据的虚拟共轭数据均为非线性数据,非线性信息的引入可有效改善TGRAPPA算法的状态数,进而抑制重建过程中的噪声放大,以及提高未采样数据的准确性。
S1040、将实采基础数据和未采样数据沿线圈方向组合成完整数据,并对完整数据进行磁共振图像重建以生成磁共振电影图像。
未采样数据确定后,将未采样数据和实采基础数据沿线圈方向组合成完整数据,然后对完整数据进行磁共振重建以生成磁共振电影图像。在一实施例中,对完整数据进行磁共振重建以生成磁共振电影图像包括:根据完整数据,基于逆傅里叶变换确定每个线圈的线圈图像;将所有线圈图像通过平方和开根号方法(Sum Of Square,SOS)得到磁共振电影图像。
示例性的,以四倍加速的欠采方式采集健康志愿者用于磁共振心脏电影成像的磁共振数据(时间分辨率72毫秒,空间分辨率1.38毫米,28通道心脏线圈)。图3A为相关技术中的商用磁共振电影成像方法重建出的电影图像,该方法重建过程中的噪声放大程度的定量指标噪声放大因子分布图(g-factor map)如图3B所示,最大值为5.9,均值为2.8。图4A为本实施例所述的磁共振电影成像方法重建出的电影图像,该方法重建过程中的噪声放大程度的定量指标g-factor map(噪声放大因子分布图)如图4B所示,最大值为4.1,均值为1.9,相较于相关技术中的磁共振电影成像方法,评价重建过程中噪声放大程度的定量指标在二维图像中的均值从2.8下降至1.9,下降幅度达到了33%左右。由此可知,本实施例所述的磁共振电影成像方法显著抑制了图像重建过程中的噪声放大,提高了磁共振电影图像的信噪比,并改善了图像细节的清晰度。
本实施例提供的磁共振电影成像方法的技术方案,将磁共振数据在相位编码方向的数据和频率编码方向的数据作为实采基础数据,并通过共轭转置对实采基础数据进行扩展以得到虚拟共轭数据,其中,磁共振数据还包括线圈方向的数据;分别求取实采基础数据的虚拟高阶数据和虚拟共轭数据的虚拟高阶数据,其中,虚拟高阶数据至少包括虚拟二阶数据;根据实采基础数据、虚拟共轭数据、实采基础数据的虚拟高阶数据以及虚拟共轭数据的虚拟高阶数据确定未采样数据;将实采基础数据和未采样数据沿线圈方向组合成完整数据,并对完整数据进行磁共振图像重建以生成磁共振电影图像。由于实采基础数据、虚拟共轭数据、实采基础数据的虚拟高阶数据以及虚拟共轭数据的虚拟高阶数据所包含的信息量,远大于实采基础数据所包含的信息量,因此基于实采基础数据、虚拟共轭数据、实采基础数据的虚拟高阶数据以及虚拟共轭数据的虚拟高阶数据所确定的未采样数据的准确性,远大于仅基于实采基础数据所确定的未采样数据的准确性,进而可以提高磁共振电影成像的图像质量,使图像具有较高的信噪比和时空分辨率,以用于临床诊断。
实施例二
图5是一实施例提供的磁共振电影成像装置的结构框图。该装置用于执行上述任意实施例所提供的磁共振电影成像方法,该装置可选为软件或硬件实现。 该装置包括:虚拟共轭数据模块11,设置为将磁共振数据在相位编码方向的数据和频率编码方向的数据作为实采基础数据,并通过共轭转置对所述实采基础数据进行扩展以得到虚拟共轭数据;虚拟高阶数据模块12,设置为分别求取所述实采基础数据的虚拟高阶数据和虚拟共轭数据的虚拟高阶数据,其中,所述虚拟高阶数据至少包括虚拟二阶数据;未采样数据确定模块13,设置为根据所述实采基础数据、所述虚拟共轭数据、所述实采基础数据的虚拟高阶数据以及所述虚拟共轭数据的虚拟高阶数据确定未采样数据;图像重建模块14,设置为将所述实采基础数据和所述未采样数据沿线圈方向组合成完整数据,并对所述完整数据进行磁共振图像重建以生成磁共振电影图像。
在一实施例中,所述磁共振数据还包括线圈方向的数据。
本实施例提供的磁共振电影成像装置的技术方案,通过虚拟共轭数据模块将磁共振数据在相位编码方向的数据和频率编码方向的数据作为实采基础数据,并通过共轭转置对实采基础数据进行扩展以得到虚拟共轭数据,其中,磁共振数据还包括线圈方向的数据;通过虚拟高阶数据模块分别求取实采基础数据的虚拟高阶数据和虚拟共轭数据的虚拟高阶数据,其中,虚拟高阶数据至少包括虚拟二阶数据;通过未采样数据确定模块根据实采基础数据、虚拟共轭数据、实采基础数据的虚拟高阶数据以及虚拟共轭数据的虚拟高阶数据确定未采样数据;通过图像重建模块将实采基础数据和未采样数据沿线圈方向组合成完整数据,并对完整数据进行磁共振图像重建以生成磁共振电影图像。由于实采基础数据、虚拟共轭数据、实采基础数据的虚拟高阶数据以及虚拟共轭数据的虚拟高阶数据所包含的信息量,远大于实采基础数据所包含的信息量,因此基于实采基础数据、虚拟共轭数据、实采基础数据的虚拟高阶数据以及虚拟共轭数据的虚拟高阶数据所确定的未采样数据的准确性,远大于仅基于实采基础数据所确定的未采样数据的准确性,进而可以提高磁共振电影成像的图像质量,使图像具有较高的信噪比和时空分辨率,以用于临床诊断。
在一实施例中,虚拟高阶数据模块是设置为:通过非线性映射将实采基础数据和虚拟共轭数据分别映射到高维空间,以生成实采基础数据的虚拟高阶数据和虚拟共轭数据的虚拟高阶数据。
本实施例所提供的磁共振电影成像装置可执行上述任意实施例所提供的磁 共振电影成像方法,具备执行方法相应的功能模块和有益效果。
实施例三
图6为一实施例提供的计算机设备的结构框图,如图6所示,该计算机设备包括处理器201、存储器202、输入装置203以及输出装置204;计算机设备中处理器201的数量可以是至少一个,图6中以一个处理器201为例;设备中的处理器201、存储器202、输入装置203以及输出装置204可以通过总线或其他方式连接,图6中以通过总线连接为例。
存储器202作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本公开实施例中的磁共振电影成像方法对应的程序指令/模块(例如,虚拟共轭数据模块11、虚拟高阶数据模块12、未采样数据确定模块13以及图像重建模块14)。处理器201通过运行存储在存储器202中的软件程序、指令以及模块,从而执行设备的至少一种功能应用以及数据处理,即实现上述的磁共振电影成像方法。
存储器202可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器202可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器202可包括相对于处理器201远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置203可设置为接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。
输出装置204可包括显示屏等显示设备,例如,用户终端的显示屏。
实施例四
本实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种磁共振电影成像方法,该方法包 括:将磁共振数据在相位编码方向的数据和频率编码方向的数据作为实采基础数据,并通过共轭转置对所述实采基础数据进行扩展以得到虚拟共轭数据;分别求取所述实采基础数据的虚拟高阶数据和虚拟共轭数据的虚拟高阶数据,其中,所述虚拟高阶数据至少包括虚拟二阶数据;根据所述实采基础数据、所述虚拟共轭数据、所述实采基础数据的虚拟高阶数据以及所述虚拟共轭数据的虚拟高阶数据确定未采样数据;将所述实采基础数据和所述未采样数据沿线圈方向组合成完整数据,并对所述完整数据进行磁共振图像重建以生成磁共振电影图像。
在一实施例中,所述磁共振数据还包括线圈方向的数据。
本发明实施例所提供的一种包含计算机可执行指令的存储介质,所述计算机可执行指令不限于如上所述的方法操作,还可以执行上述任意实施例所提供的磁共振电影成像方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以了解到,本公开可借助软件及通用硬件来实现,也可以通过硬件实现。基于这样的理解,本公开的技术方案可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机、服务器或者网络设备等)执行任意实施例所述的磁共振电影成像方法。
上述磁共振电影成像装置的实施例中,所包括的至少一个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,每个功能单元的名称也只是为了便于相互区分,并不用于限制本公开的保护范围。

Claims (10)

  1. 一种磁共振电影成像方法,包括:
    将磁共振数据在相位编码方向的数据和频率编码方向的数据作为实采基础数据,并通过共轭转置对所述实采基础数据进行扩展以得到虚拟共轭数据;
    分别求取所述实采基础数据的虚拟高阶数据和所述虚拟共轭数据的虚拟高阶数据,其中,所述虚拟高阶数据至少包括虚拟二阶数据;
    根据所述实采基础数据、所述虚拟共轭数据、所述实采基础数据的虚拟高阶数据以及所述虚拟共轭数据的虚拟高阶数据确定未采样数据;
    将所述实采基础数据和所述未采样数据沿线圈方向组合成完整数据,并对所述完整数据进行磁共振图像重建以生成磁共振电影图像。
  2. 根据权利要求1所述的方法,其中,所述分别求取所述实采基础数据的虚拟高阶数据和所述虚拟共轭数据的虚拟高阶数据,包括:
    通过非线性映射将所述实采基础数据和所述虚拟共轭数据分别映射到高维空间,以生成所述实采基础数据的虚拟高阶数据和所述虚拟共轭数据的虚拟高阶数据。
  3. 根据权利要求2所述的方法,其中,所述根据所述实采基础数据、所述虚拟共轭数据、所述实采基础数据的虚拟高阶数据以及所述虚拟共轭数据的虚拟高阶数据确定未采样数据,包括:
    基于所述实采基础数据、所述虚拟共轭数据、所述实采基础数据的虚拟高阶数据以及所述虚拟共轭数据的虚拟高阶数据,通过时间维度的广义自校准部分并行采集TGRAPPA算法确定未采样数据。
  4. 根据权利要求3所述的方法,其中,所述基于所述实采基础数据、所述虚拟共轭数据、所述实采基础数据的虚拟高阶数据以及所述虚拟共轭数据的虚拟高阶数据,通过TGRAPPA算法确定未采样数据,包括:
    通过
    Figure PCTCN2018121403-appb-100001
    建立所述实采基础数据与未采样数据之间的线性关系,并基于最小二乘法确定所述线性关系中的w的最优解,其中,矩阵S为所述实采基础数据,矩阵T为训练数据,且所述训练数据对应未采样数据;
    将w作为TGRAPPA算法重建过程中所述实采基础数据与所述未采样数据之间的权重,则所述未采样数据为:
    Figure PCTCN2018121403-appb-100002
    其中,j为所述未采样数据所在线圈标号,l为所述实采基础数据所在线圈标号,s为所述未采样数据周围的实采基础数据在采样空间内的标号,t为所述未采样数据标号,k s为所述未采样数据周围的实采基础数据在采样空间的物理坐标,k t为所述未采样数据在采样空间的物理坐标,S l(k s)为所述实采基础数据,w 1(j,t,l,s)为所述实采基础数据的权重,
    Figure PCTCN2018121403-appb-100003
    为所述虚拟共轭数据,
    Figure PCTCN2018121403-appb-100004
    为所述虚拟共轭数据的权重,
    Figure PCTCN2018121403-appb-100005
    为所述实采基础数据的虚拟高阶数据,w 2(j,t,l,s)为所述实采基础数据的虚拟高阶数据的权重,
    Figure PCTCN2018121403-appb-100006
    为所述虚拟共轭数据的虚拟高阶数据,
    Figure PCTCN2018121403-appb-100007
    为所述虚拟共轭数据的虚拟高阶数据的权重。
  5. 根据权利要求1所述的方法,其中,所述对所述完整数据进行磁共振图像重建以生成磁共振电影图像,包括:
    根据所述完整数据,基于逆傅里叶变换确定每个线圈的线圈图像;
    将所有线圈图像通过平方和开根号方法得到磁共振电影图像。
  6. 根据权利要求1-5任一项所述的方法,其中,所述磁共振数据的欠采倍数至少为4。
  7. 一种磁共振电影成像装置,包括:
    虚拟共轭数据模块,设置为将磁共振数据在相位编码方向的数据和频率编码方向的数据作为实采基础数据,并通过共轭转置对所述实采基础数据进行扩展以得到虚拟共轭数据;
    虚拟高阶数据模块,设置为分别求取所述实采基础数据的虚拟高阶数据和所述虚拟共轭数据的虚拟高阶数据,其中,所述虚拟高阶数据至少包括虚拟二阶数据;
    未采样数据确定模块,设置为根据所述实采基础数据、所述虚拟共轭数据、所述实采基础数据的虚拟高阶数据以及所述虚拟共轭数据的虚拟高阶数据确定未采样数据;
    图像重建模块,设置为将所述实采基础数据和所述未采样数据沿线圈方向 组合成完整数据,并对所述完整数据进行磁共振图像重建以生成磁共振电影图像。
  8. 根据权利要求7所述的装置,其中,所述虚拟高阶数据模块是设置为:通过非线性映射将所述实采基础数据和所述虚拟共轭数据分别映射到高维空间,以生成所述实采基础数据的虚拟高阶数据和所述虚拟共轭数据的虚拟高阶数据。
  9. 一种计算机设备,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-6任一项所述的磁共振电影成像方法。
  10. 一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如权利要求1-6任一项所述的磁共振电影成像方法。
PCT/CN2018/121403 2018-11-14 2018-12-17 磁共振电影成像方法、装置、设备和存储介质 WO2020098047A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811352417.9 2018-11-14
CN201811352417.9A CN111192663B (zh) 2018-11-14 2018-11-14 磁共振电影成像方法、装置、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2020098047A1 true WO2020098047A1 (zh) 2020-05-22

Family

ID=70708965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121403 WO2020098047A1 (zh) 2018-11-14 2018-12-17 磁共振电影成像方法、装置、设备和存储介质

Country Status (2)

Country Link
CN (1) CN111192663B (zh)
WO (1) WO2020098047A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111714124B (zh) * 2020-06-18 2023-11-03 中国科学院深圳先进技术研究院 磁共振电影成像方法、装置、成像设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1799498A (zh) * 2004-12-31 2006-07-12 西门子(中国)有限公司 磁共振成像快速广义自校准并行采集图像重建算法
US20080107319A1 (en) * 2006-11-03 2008-05-08 Siemens Corporate Research, Inc. Practical Image Reconstruction for Magnetic Resonance Imaging
CN101975935A (zh) * 2010-09-03 2011-02-16 杭州电子科技大学 一种基于部分回波压缩感知的快速磁共振成像方法
CN103340628B (zh) * 2013-06-28 2015-07-29 中国科学院深圳先进技术研究院 心脏实时电影成像图像处理方法和系统
US20160104279A1 (en) * 2014-10-10 2016-04-14 Cedars-Sinai Medical Center Method and system for "push-button" comprehensive cardiac mr examination using continuous self-gated 3d radial imaging
CN103006217B (zh) * 2012-12-21 2016-05-25 中国科学院深圳先进技术研究院 一种心脏磁共振实时电影成像方法、系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435966B (zh) * 2011-09-02 2014-07-02 中国科学院深圳先进技术研究院 三维磁共振成像方法及系统
CN104337517B (zh) * 2014-10-20 2016-08-24 中国科学院深圳先进技术研究院 功能磁共振成像方法和装置
CN106108903B (zh) * 2016-08-08 2019-02-05 江苏大学 一种改进的并行磁共振图像重建方法
CN106339982B (zh) * 2016-08-24 2019-12-24 深圳先进技术研究院 快速磁共振心脏实时电影成像方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1799498A (zh) * 2004-12-31 2006-07-12 西门子(中国)有限公司 磁共振成像快速广义自校准并行采集图像重建算法
US20080107319A1 (en) * 2006-11-03 2008-05-08 Siemens Corporate Research, Inc. Practical Image Reconstruction for Magnetic Resonance Imaging
CN101975935A (zh) * 2010-09-03 2011-02-16 杭州电子科技大学 一种基于部分回波压缩感知的快速磁共振成像方法
CN103006217B (zh) * 2012-12-21 2016-05-25 中国科学院深圳先进技术研究院 一种心脏磁共振实时电影成像方法、系统
CN103340628B (zh) * 2013-06-28 2015-07-29 中国科学院深圳先进技术研究院 心脏实时电影成像图像处理方法和系统
US20160104279A1 (en) * 2014-10-10 2016-04-14 Cedars-Sinai Medical Center Method and system for "push-button" comprehensive cardiac mr examination using continuous self-gated 3d radial imaging

Also Published As

Publication number Publication date
CN111192663A (zh) 2020-05-22
CN111192663B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
CN110060313B (zh) 一种图像伪影校正方法和系统
WO2020134826A1 (zh) 磁共振并行成像方法及相关设备
CN109709503B (zh) 一种磁共振系统控制方法、磁共振系统、计算机设备
CN107833231B (zh) 医学图像显示方法、装置和计算机存储介质
CN111462020B (zh) 心脏图像的运动伪影校正方法、系统、存储介质和设备
US11816833B2 (en) Method for reconstructing series of slice images and apparatus using same
Marsan et al. Real-time three-dimensional echocardiography as a novel approach to quantify left ventricular dyssynchrony: a comparison study with phase analysis of gated myocardial perfusion single photon emission computed tomography
US10002424B2 (en) Image processing system and method to reconstruct a three-dimensional (3D) anatomical surface
JP2015129987A (ja) 医用高解像画像形成システムおよび方法。
US8649585B2 (en) Method and system for retrospective image combination under minimal total deformation constrain for free-breathing cardiac magnetic resonance imaging with motion correction
TW201725554A (zh) 心臟醫學影像單一腔室地圖化系統及方法
WO2019184343A1 (zh) 基于gpu的多种mv高清算法快速医学超声影像系统
CN113159040B (zh) 医学图像分割模型的生成方法及装置、系统
CN110598696A (zh) 医学图像扫描定位方法、医学图像扫描方法和计算机设备
Lingala et al. Accelerated first pass cardiac perfusion MRI using improved k− t SLR
Yang et al. Generative Adversarial Networks (GAN) Powered Fast Magnetic Resonance Imaging--Mini Review, Comparison and Perspectives
Marin et al. Numerical surrogates for human observers in myocardial motion evaluation from SPECT images
CN110415228B (zh) 神经纤维追踪方法、磁共振系统及存储介质
WO2020098047A1 (zh) 磁共振电影成像方法、装置、设备和存储介质
CN113850804A (zh) 基于生成对抗网络的视网膜图像生成系统及方法
CN112001979B (zh) 运动伪影处理方法、系统、可读存储介质和设备
CN109741439A (zh) 一种二维mri胎儿图像的三维重建方法
Ren et al. Single-beat real-time three-dimensional echocardiographic automated contour detection for quantification of left ventricular volumes and systolic function
Iddrisu et al. 3D reconstructions of brain from MRI scans using neural radiance fields
CN109118526A (zh) 一种基于虚拟现实的老年痴呆图像分析系统及分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939953

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.11.21)

122 Ep: pct application non-entry in european phase

Ref document number: 18939953

Country of ref document: EP

Kind code of ref document: A1