WO2020097751A1 - 烃制乙烯和/或乙炔的装置及制备方法 - Google Patents

烃制乙烯和/或乙炔的装置及制备方法 Download PDF

Info

Publication number
WO2020097751A1
WO2020097751A1 PCT/CN2018/114996 CN2018114996W WO2020097751A1 WO 2020097751 A1 WO2020097751 A1 WO 2020097751A1 CN 2018114996 W CN2018114996 W CN 2018114996W WO 2020097751 A1 WO2020097751 A1 WO 2020097751A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reaction chamber
inlet
oxygen
acetylene
Prior art date
Application number
PCT/CN2018/114996
Other languages
English (en)
French (fr)
Inventor
王铁峰
罗佳佳
王金福
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to PCT/CN2018/114996 priority Critical patent/WO2020097751A1/zh
Publication of WO2020097751A1 publication Critical patent/WO2020097751A1/zh
Priority to US17/193,285 priority patent/US11168263B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • C10G9/206Tube furnaces controlling or regulating the tube furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2425Tubular reactors in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/04Thermal processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/22Aliphatic unsaturated hydrocarbons containing carbon-to-carbon triple bonds
    • C07C11/24Acetylene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours

Definitions

  • the present invention generally relates to the technical field of ethylene and / or acetylene production, in particular to a device for producing ethylene and / or acetylene by cracking hydrocarbons and a method for producing ethylene and / or acetylene by using the device.
  • Ethylene is one of the largest chemical products in the world and occupies a very important position in the national economy. It is mainly used to produce polyethylene, ethylene propylene rubber, polyvinyl chloride, etc. At present, the industry mainly uses naphtha, ethane, etc. The steam is cracked to produce ethylene; acetylene is another very important basic chemical raw material. Its downstream products mainly include vinyl chloride, vinyl acetate, 1,4-butadiene, etc. At present, China mainly uses the calcium carbide method to produce acetylene, foreign natural gas Rich areas are mainly produced by partial oxidation of natural gas.
  • the steam cracking method uses a mixture of hydrocarbons and water to pyrolyze at high temperature to produce ethylene.
  • This process has the advantages of high yield, disadvantages of high energy consumption and complex reactor structure;
  • the calcium carbide method uses calcium carbide (calcium carbide CaC 2 ) It produces acetylene (C 2 H 2 ) in water to prepare acetylene.
  • the advantages of this method are high product purity, easy operation, and disadvantages are high energy consumption and large pollution.
  • Tube cracking furnace reactor Although there are different types of tube furnaces, from the structural point of view, they are composed of furnace tubes, tube racks, burners, furnace walls and furnace racks, mainly convection Segment and radiation segment.
  • the enlargement of the tube furnace reactor adopts the method of increasing the number of reaction tubes, resulting in a complicated reactor structure.
  • the specific reactor structure can be found in "Ethylene Plant Technology and Operation” edited by Wang Songhan and others.
  • the reactor for partial oxidation of natural gas to acetylene is mainly divided into a mixer, a combustion nozzle, and a reaction chamber.
  • the enlargement of the reactor is achieved by increasing the number of nozzles.
  • Acetylene entry DOI: 10.1002 / 14356007.a01_097.pub4 prepared by Ullmann Encyclopedia of Industrial Chemicals.
  • the present invention provides a device for producing ethylene and / or acetylene from low-carbon alkanes.
  • the reaction device has a simple structure, does not require an amplification effect setting, the heat carrier and the reaction material are mixed uniformly, and the ethylene and / or The advantages of high yield and selectivity of acetylene.
  • a device for producing ethylene and / or acetylene from a hydrocarbon including: a reaction chamber, a burner, a common or separate fuel gas inlet and an oxygen inlet, a preheating tube, a gas distributor, and a cracker Gas inlet and reaction product outlet;
  • the reaction chamber is a cavity structure in which the reaction raw materials react;
  • the burner, fuel gas inlet, oxygen inlet, cracking gas inlet, and reaction product outlet are provided on the wall of the reaction chamber, preheating
  • the column tube and the gas distributor are arranged in the reaction chamber;
  • the fuel gas inlet is used to pass the fuel gas into the reaction chamber;
  • the oxygen inlet is used to pass the oxygen into the reaction chamber;
  • the burner is used to ignite the fuel gas and oxygen;
  • the reaction product outlet It is used to discharge the cracking products out of the reaction chamber;
  • the cracking gas inlet is used to feed the cracking gas into the reaction chamber;
  • the gas distributor is arranged on the cross section of the reaction chamber, the
  • One end of the tube is in communication with the gas outlet on the gas distributor, and the other end is in the combustion area of fuel gas and oxygen. It is used to disperse the cracked gas evenly distributed through the gas distributor.
  • the internal preheating is sent to the fuel gas and oxygen combustion area, where the reaction products are diffused around the hollow tube during the cracking reaction, thereby preheating the cracked gas in the hollow tube.
  • the combination of the gas distributor and the preheating tube in the device for producing ethylene and / or acetylene from hydrocarbons of the present invention makes the gas distribution and gas flow direction after the cracked gas enters the reaction chamber significantly different from the conventional device for producing ethylene and / or acetylene by cracking hydrocarbon :
  • the use of gas distributors and tubes makes the cracked gas that enters the reaction chamber from the cracking gas inlet pass through the gas distributors and tubes and is dispersed or evenly distributed in the cross section of the reaction chamber. It is no longer the traditional method of cracking gas.
  • the evenly distributed cracking gas is preheated and kept uniformly distributed, and then sprayed from the hollow pipe into the heat carrier area formed by the combustion of fuel gas and oxygen for cracking reaction.
  • the high-temperature cracking products are dispersed around the hollow pipe, and the heat is transferred to the hollow pipe and The cracked gas continuously enters inside, so as to preheat the cracked gas.
  • the invention reduces or even solves the problem of the amplification effect of the traditional reaction chamber: in the prior art, when the reaction chamber is amplified, the cracking raw materials and the heat carrier are mixed unevenly, resulting in a poor reaction effect and a significant decrease in yield.
  • the cracked gas is preheated and evenly distributed by the column tube, so that the cracking raw material hydrocarbons and the heat carrier are evenly contacted and mixed, so that the yield is not affected by the enlargement of the reaction chamber.
  • the working process of the device of the present invention is as follows: fuel gas and oxygen are injected into the reaction chamber through the common or separate fuel gas inlet and oxygen inlet, and are ignited by the burner to form a heat carrier area around the combustion point;
  • the gas inlet enters the reaction chamber, and then is sent to the gas distributor gas inlet, then from the gas distributor from the gas outlet into the hollow tube of the preheating tube, and under the impact of the continuous cracking gas flow along the hollow tube
  • Internal flow heated by high-temperature cracking products when flowing in the hollow tube, when it is ejected from the other port of the hollow tube, it enters the heat carrier area formed by the combustion of fuel gas and oxygen, and the cracked gas undergoes thermal cracking to form cracking products such as alkyne and alkene.
  • the cracking products permeate the area around the hollow tube.
  • the high temperature of the cracking product causes the hollow tube and the cracking gas continuously entering into the tube to be continuously heated.
  • the cracking product exits the reaction chamber from the reaction product outlet. Therefore, the combination of the gas distributor and the preheating tube makes the cracked gas hydrocarbons evenly distributed in the hollow tubes of the preheating tube.
  • Each hollow tube port has heated cracked gas sprayed out.
  • the cracking gas contacts with the heat carrier to form a cracking gas cracking reaction point, thereby forming multiple cracking reaction points in the reaction chamber.
  • the preheating column tube plays the role of heating the cracking gas, and the reaction quantity is further amplified.
  • the cracked gas can be evenly sprayed into the reactor and mixed with the heat carrier.
  • the amplification of the reactor can be achieved by the method of quantity amplification, and there will be no occurrence of the traditional reactor because the cracked gas is in contact with the heat carrier. Unevenness causes problems of insufficient reaction and decreased yield.
  • the gas outlet of the gas distributor and the hollow tube of the preheating column tube communicating therewith are distributed on the cross section of the reaction chamber.
  • the gas outlet of the gas distributor and the hollow tube of the preheated tube communicating with it are evenly distributed on the cross section of the reaction chamber so that the cracked gas forms a uniform reaction point on the cross section of the reaction chamber. The benefit is that the reaction is more Even and sufficient.
  • the fuel gas inlet and the oxygen inlet are arranged at the top of the reaction chamber, and the cracking gas inlet, the gas distributor and the preheating tube are arranged at the lower part of the reaction chamber.
  • the common and / or separate fuel gas inlet and oxygen inlet are arranged at the top of the reaction chamber, the burner is also arranged at the top of the reaction chamber, the cracking gas inlet and the gas distributor and the preheating column
  • the tube is arranged in the lower part of the reaction chamber, and the outlet of the reaction product is arranged above the gas distributor.
  • the fuel gas inlet and the oxygen inlet are arranged at the bottom of the reaction chamber, and the cracking gas inlet, gas distributor and preheating tube are arranged at the upper part of the reaction chamber.
  • the cracked gas inlet, gas distributor, and preheating tube can be arranged at the upper part of the reaction chamber, and the fuel gas inlet and oxygen inlet can be arranged at the bottom of the reaction chamber
  • the outlet of the reaction product is set below the gas distributor.
  • the cracking gas enters from the cracking gas inlet in the upper part of the reaction chamber, and enters the hollow tube of the preheating column tube through the gas distributor.
  • the lower port is injected into the combustion zone of fuel gas and oxygen at the bottom of the reaction chamber.
  • the fuel gas inlet and the oxygen inlet are the same common inlet, and the fuel gas and oxygen are premixed to enter through the same common inlet Reaction chamber.
  • the device of the present invention in which the fuel gas inlet and the oxygen inlet are the same common inlet further includes a mixer, which is connected to the common inlet of the fuel gas inlet and the oxygen inlet for mixing the preheated fuel gas and oxygen, and then Spray into the reaction chamber.
  • the fuel gas and oxygen share the same inlet, and the preheated fuel gas and preheated oxygen premixed in the mixer are premixed flames. This premixed preheated fuel gas and preheated oxygen then pass through the common inlet
  • the solution injected into the reaction chamber helps the fuel gas burn completely, but there may be a flashback.
  • the fuel gas inlet and the oxygen inlet in the device of the present invention are independent inlets, and the fuel gas and oxygen enter the reaction through the respective fuel gas inlet and oxygen inlet respectively room.
  • the fuel gas and oxygen are separately injected into the reaction chamber through their respective inlets as a non-premixed flame.
  • the gas distributor in the device of the invention has a plate shape, and has a plurality of through holes connecting the gas inlet and the gas outlet, the through holes are evenly distributed on the entire plate surface of the cracking gas distributor, and each through hole All are connected with hollow tubes.
  • the gas distributor can have various forms.
  • the preferred distributor of the device of the present invention has a plate shape and is arranged on the cross section of the reaction chamber. The gas distributor divides the reaction chamber into two upper and lower parts which are only communicated through the through holes on the plate surface.
  • the gas distributor is a plate surface parallel to the upper and lower bottom surfaces of the reaction chamber, the through holes connecting the gas inlet and the gas outlet are evenly distributed on the plate surface, and the through holes are evenly distributed on the plate surface, that is, the hollow tubes are in the cross section of the reaction chamber Uniform distribution, that is, the cracked gas enters through the gas inlet of the distributor, and then exits from the gas outlet through the shortest path and enters the uniformly distributed hollow tube connected to the gas outlet.
  • the benefits of this arrangement are: the regions of the cross section of the reaction chamber There are hollow tubes inside, the cracking gas in the hollow tubes is heated, and cracking reaction points are formed in each area of the cross section of the reaction chamber. There are no dead ends of the cracking reaction in the reaction chamber, and there is no excessive concentration of cracking reactions leading to insufficient reaction.
  • the shape of the through hole is one of a circle, a square, a triangle, and a pentagon
  • the cross-sectional shape of the hollow tube is one of a circle, a square, and a triangle.
  • the diameter of the hollow tube is in the range of 5 mm to 60 mm.
  • the common or separate fuel gas inlet (12) and oxygen inlet (18) are distributed at the top or bottom of the reaction chamber (13), so that the fuel gas and oxygen are A plurality of heat carrier regions are formed in the cross section of the reaction chamber (13).
  • each hollow tube is provided with an indentation for gas distribution and pressure adjustment.
  • the indentation is located close to the gas distributor, which is more convenient for processing.
  • a method for producing ethylene and / or acetylene from a hydrocarbon by using the above-mentioned apparatus for producing ethylene and / or acetylene including the following steps:
  • Fuel gas and oxygen are injected into the reaction chamber through the common or separate fuel gas inlet and oxygen inlet; the burner is activated to burn the fuel gas and oxygen entering the reaction chamber to generate a high-temperature heat carrier;
  • the thermal cracking products permeate the area around the hollow tube of the preheating tube, and transfer the heat to the hollow tube and the raw material gas hydrocarbon continuously introduced into the hollow tube, thereby continuously heating the raw gas gas hydrocarbon and thermal cracking
  • the product finally exits the reaction chamber from the reaction product outlet.
  • the method further includes the steps of preheating the fuel gas and oxygen separately, and then quickly mixing the fuel gas and oxygen, wherein the temperature at which the fuel gas and oxygen are preheated is in the range of 30 ° C to 600 ° C. Increase the preheating temperature of fuel gas and oxygen and the stability of fuel combustion, and provide more heat for the subsequent cracking of cracked gas.
  • the mass ratio of the amount of feed gas hydrocarbons introduced from the cracked gas inlet in step b) to the sum of fuel gas and oxygen injected through the fuel gas inlet in step b) is 0.5 to 1.6. Reducing the mass ratio of gaseous hydrocarbons to the sum of fuel gas and oxygen is conducive to increasing the thermal cracking temperature and increasing the yield of acetylene; increasing the mass ratio will reduce the thermal cracking temperature and is beneficial to the production of ethylene.
  • the fuel gas is a mixture of one or more of hydrogen, carbon monoxide, methane, and ethane; in step a), the feed gas hydrocarbon is one or more of methane, ethane, and propane. kind of mixture.
  • the temperature at which the raw gas hydrocarbons are preheated in the hollow tube is in the range of 200 ° C to 600 ° C. Increasing the initial preheating temperature of the raw materials is helpful to reduce the heat required for the cracking of hydrocarbon raw materials and improve the yield of ethylene and acetylene.
  • the present invention is more advanced than the prior art: the device of the present invention uses a combination of a gas distributor and a preheating tube to change the direction of cracking gas into the heat carrier area from traditional oblique spray to vertical spray, and makes the cracking
  • the gas flow is evenly distributed over the entire cross-sectional area of the reaction chamber; the hydrocarbon channels are in the form of multiple hollow tubes.
  • the hydrocarbon feedstock can be preheated by the high-temperature heat of the heat carrier and cracking products before being injected into the heat carrier area.
  • the second is that the cracked gas is evenly sprayed into the heat carrier area through the hollow tube connected to the gas distributor and mixed with the heat carrier for cracking.
  • the third is the preheated cracked gas sprayed from the multiple hollow tube ports in the reaction chamber.
  • the heat carrier area forms a plurality of thermal cracking center areas, and the reaction chamber is enlarged by the method of increasing the number of reaction points, thereby avoiding the uneven mixing of the cracking gas and the heat carrier caused by the traditional reaction chamber amplification, resulting in insufficient reaction, The problem of falling yields.
  • FIG. 1 is a schematic structural cross-sectional view of an apparatus for producing ethylene and / or acetylene from hydrocarbons according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a gas distributor according to an embodiment of the present invention.
  • the wall of the reaction chamber includes the top, bottom, and side walls of the reaction chamber, and "upper reaction chamber” and “lower reaction chamber” represent the upper and lower relative positions in terms of space. May include walls and interior spaces.
  • FIG. 1 A device structure for producing ethylene and / or acetylene from hydrocarbons.
  • the cross-sectional view of the structure is shown in FIG. 1, which includes a burner 11, a common or separate fuel gas inlet 12 and an oxygen inlet 18 (the case is shared in the figure), reaction Chamber 13, preheating manifold 14, gas distributor 15, cracking gas inlet 16, reaction product outlet 17; as can be seen from FIG. 1, the reaction chamber 13 is a cavity structure in which the reaction raw materials react; fuel gas inlet 12 and the oxygen inlet 18 are provided on the top of the reaction chamber 13 for passing fuel gas and oxygen into the reaction chamber 13, the fuel gas inlet 12 and the oxygen inlet 18 can be set in two schemes, one is the fuel gas inlet 12 and oxygen The inlet 18 shares one inlet.
  • the device of this embodiment may also be provided with a mixer connected to the front of the common inlet in front of the common inlet, so that the preheated fuel gas and oxygen are first in the mixer. Fast mixing and then spray into the reaction chamber 13 through the common inlet. The other is that the fuel gas and oxygen enter the reaction chamber 13 through separate inlets.
  • the common inlet or separate inlet in both schemes is preferably in the reaction chamber 13 A plurality is evenly arranged on the top wall to form a plurality of ignited combustion zones on the cross section of the reaction chamber 13 and finally a plurality of heat carrier regions; the burner 11 is used to ignite the fuel gas and oxygen, and is also provided in the reaction chamber 13 The top; the reaction product outlet 17 is used to discharge the cracked product out of the reaction chamber 13 and is arranged on the middle side wall of the reaction chamber 12; the gas distributor 15 is arranged on the cross section of the reaction chamber 13 below the reaction product outlet 17 and has a gas inlet and a gas outlet The preferred structure of the gas distributor 15 is a plate disposed on the cross section of the reaction chamber 13 to isolate the reaction chamber 13 into upper and lower spaces.
  • a plurality of through holes 21 are provided on the plate surface Connect the gas inlet and the gas outlet so that the upper and lower spaces of the reaction chamber are only connected through the through holes 21; the gas inlet of the gas distributor 15 is connected to the lower space of the reaction chamber 13 where the cracking gas inlet 16 is located, and the gas distributor 15 The gas outlet is located in the upper space of the reaction chamber 13 and is connected to the preheating tube 14.
  • the preheating tube 14 is composed of a plurality of hollow tubes open at both ends.
  • the gas outlet of the gas distributor 15 is connected to the preheating tube 14
  • One end of the hollow tube, the other end of the hollow tube approaches or enters the heat carrier area formed by the burner 11 to ignite the fuel gas and oxygen, so that the cracked gas entering the reaction chamber 13 from the cracked gas inlet 16 passes through the gas of the gas distributor 15
  • the inlet is uniformly distributed in the cross section of the reaction chamber 13 and then enters the hollow tubes of the preheating column 14 through the gas outlet.
  • the hollow tube is surrounded by high-temperature cracking products, so that the hollow tube and the cracking gas inside it are continuously heated by the heat of the cracking product, and the preheated cracking gas is ejected from the upper end of the hollow tube, with fuel gas and oxygen
  • the heat carrier formed by the combustion is in direct contact and undergoes thermal cracking.
  • the solution of this embodiment can be changed as follows: 1)
  • the shape of the through hole 21 is one of circular, square, triangular, and pentagonal, and the cross-sectional shape of the hollow tube is one of circular, square, and triangular.
  • the gas outlet of the hole can be directly matched with the hollow tube or connected through a shape adapter.
  • the diameter of the hollow tube is in the range of 5mm to 60mm to ensure that the cracked gas is in the hollow tube Sufficient gas flow is formed, and the formation of carbon deposits of cracked gas in the hollow tube is reduced and it is not easy to clean; 2) the preheating time before the cracked gas is mixed with the heat carrier is controlled by setting the length of the hollow tube of the preheating column 14
  • the temperature at which the cracked gas is preheated in the hollow tube is generally in the range of 200 ° C to 600 ° C.
  • the cracked gas hydrocarbons can be controlled to a certain extent Reaction temperature during cracking; 3)
  • the gas outlet of the gas distributor 15 and its connection to the preheating column 14 are set at an angle of 70-110 ° with the upper and lower bottom surfaces of the reaction chamber 13, more preferably 90 °.
  • a device structure for producing ethylene and / or acetylene from hydrocarbons, its component composition and component scheme are basically the same as those in Embodiment 1, except that the burner 11, common or separate fuel gas inlet 12 and oxygen inlet 18 are provided in the reaction
  • the reaction product outlet 17 is provided on the lower side wall of the reaction chamber 13
  • the cracking gas inlet 16 is provided at the upper portion of the reaction chamber 13, accordingly, the gas inlet of the gas distributor 15 faces the top of the reaction chamber 13, and the gas outlet faces the reaction
  • the upper port of the hollow tube of the preheating tube 14 is connected to the gas outlet of the gas distributor 15, and the lower port approaches or enters the heat carrier area formed by the combustion of fuel gas and oxygen in the lower part of the reaction chamber 13. It can be seen that in this embodiment, the cracked gas hydrocarbons are sprayed downward in the reaction chamber.
  • a method for producing ethylene and / or acetylene from hydrocarbons uses the apparatus for producing ethylene and / or acetylene from hydrocarbons of Example 1 or 2 and includes the following steps:
  • Fuel gas and oxygen are injected into the reaction chamber 3 through the shared or separate fuel gas inlet 12 and oxygen inlet 18; the burner 11 is started to burn the fuel gas and oxygen entering the reaction chamber 13 to generate a high-temperature heat carrier; preferably In the scheme of using a common inlet for the fuel gas inlet and the oxygen inlet, the fuel gas and oxygen can be preheated separately before being injected into the reaction chamber 13, and then the fuel gas and oxygen can be quickly mixed in a mixer that is preferably provided by the device.
  • the temperature at which the fuel gas and oxygen are preheated is in the range of 30 ° C to 600 ° C; where the fuel gas is one or more of hydrogen, carbon monoxide, methane, and ethane mixing;
  • the feed gas hydrocarbon i.e., cracked gas, one or more selected from methane, ethane, and propane; the flow rate is preferably: inject fuel into fuel gas inlet 12 in step a)
  • the mass ratio of gas and oxygen is: 0.5 ⁇ 1.6, controlled by the injection speed and time) from the cracking gas inlet 16 into the reaction chamber 13, through the gas inlet of the gas distributor 15 into the gas distributor 15 and then from The gas outlet of the gas distributor 15 enters the hollow tube of the preheating column tube 14, and the hollow tube transfers the heat of the cracking products diffused around it to the raw gas hydrocarbon in the hollow tube.
  • the raw gas hydrocarbon is preheated from the The upper port of the empty tube is ejected, enters the high-temperature heat carrier area, and is thermally cracked;
  • the thermal cracking product diffuses in the area around the hollow tube of the preheating tube 14 and transfers the heat to the hollow tube and the raw material gas hydrocarbon continuously introduced into the hollow tube.
  • the thermal cracking product is finally discharged from the reaction product outlet 17 Reaction chamber 13.
  • the design reaction chamber 13 has a diameter of 390mm (suitable for practical application in industry), the hollow tube of the preheating tube 14 has an inner diameter of 15mm, an outer diameter of 20mm, and a length of 1000mm.
  • the fuel gas Coke oven gas
  • oxygen When the hollow tube is perpendicular to the bottom of the reaction chamber, the fuel gas ( Coke oven gas) and oxygen are preheated to 600 °C respectively, and the ratio is the stoichiometric ratio at the time of complete combustion.
  • the fuel gas and oxygen are rapidly mixed and injected into the reaction chamber 13 at a speed of 100 m / s.
  • the results under the 390mm large-diameter reaction chamber are basically consistent with the results under the 30mm small-diameter reaction chamber, which proves that the reaction chamber designed by the present invention adopts a quantity amplification method without the amplification effect and can be used for the amplification of the ethane cracking reaction chamber.
  • the reaction chamber designed by the present invention adopts a quantity amplification method without the amplification effect and can be used for the amplification of the ethane cracking reaction chamber.
  • ethane is sprayed into the reactor from the side of the reactor.
  • the ethane cracking results are similar to the results of this example, but when the reactor is scaled up to After the industrial reactor size of 390mm, the combined yield of acetylene and ethylene decreased from 65% to 48%, and the reactor amplification effect was obvious.
  • the hydrocarbon raw material is pure methane
  • the diameter of the reaction chamber 13 is 390mm (suitable for practical application in industry)
  • the inner diameter of the hollow tube of the preheating column 14 is 15mm
  • the outer diameter is 20mm
  • the length is 1000mm
  • the bottom surface is vertical
  • the fuel gas (coke oven gas) and oxygen are preheated to 600 °C respectively, and the ratio is the stoichiometric ratio at the time of complete combustion. After rapid mixing, it was sprayed into the reaction chamber 13 at a speed of 100 m / s.
  • the cracked gas methane is injected from the bottom of the reaction chamber 13, the mass ratio of methane to coke oven gas plus oxygen is 0.6, and the preheating temperature is also 600 ° C.
  • the yield of acetylene reaches its maximum, the yield of acetylene is 46%, the yield of ethylene is 1%, the combined yield of acetylene and ethylene is 47%, the conversion rate of methane is 78%, and the selectivity of acetylene and ethylene is 60%.
  • the results under the 390mm large-diameter reactor are basically consistent with the results under the 30mm small-diameter reactor, which proves that the reactor designed by the present invention adopts the quantity amplification method without the amplification effect, and can be used for the amplification of the methane cracking reactor.
  • methane is injected from the side of the reactor.
  • the maximum combined yield of acetylene and ethylene is 41%, which is lower than that of the reactor structure in the present invention.
  • the corresponding yield In practical industrial applications, methane uses partial oxidation to produce acetylene.
  • the yield of acetylene in this method is 31%, which is much lower than the yield of acetylene in the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供了烃制乙烯和/或乙炔的装置,包括:反应室(13)、烧嘴(11)、共用或分开的燃料气入口(12)和氧气入口(18)、预热列管(14)、气体分布器(15)、裂解气入口(16)、反应产物出口(17);气体分布器(15)设置在反应室(13)横截面上且具有气体入口和气体出口,气体入口与裂解气入口(16)连通,气体出口与预热列管(14)的一端开口连通,裂解气经气体分布器(15)均布后被送往预热列管(14),预热列管(14)为中空管;中空管的另一端开口处于接近或进入燃料气和氧气的燃烧区域,裂解气在中空管内预热后被送入燃料气和氧气燃烧区域,其中在裂解反应进行时,反应产物弥漫于中空管周围,从而对中空管内的裂解气预热。

Description

烃制乙烯和/或乙炔的装置及制备方法 技术领域
本发明总体地涉及乙烯和/或乙炔制备技术领域,具体地涉及烃裂解制备乙烯和/或乙炔的装置及利用该装置制备乙烯和/或乙炔的方法。
背景技术
乙烯是世界上产量最大的化学产品之一,在国民经济中占有非常重要的地位,主要用于生产聚乙烯、乙丙橡胶、聚氯乙烯等,目前工业上主要通过石脑油、乙烷等的水蒸气裂解制备乙烯;乙炔是另一种非常重要的基础化工原料,其下游产品主要有氯乙烯、醋酸乙烯、1,4-丁二烯等,目前我国主要采用电石法生产乙炔,国外天然气丰富地区主要采用天然气部分氧化的方法生产。
水蒸气裂解法是采用烃类与水的混合物在高温下热裂解制备乙烯,该工艺优点是收率高,缺点是能耗高,反应器结构复杂;电石法是利用电石(碳化钙CaC 2)遇水生成乙炔(C 2H 2)来制备乙炔,该法的优点是产品纯度高,操作简便,缺点是能耗高且污染大。
水蒸气裂解制乙烯采用管式裂解炉反应器,管式炉虽有不同类型,但从结构上看,都是有炉管、管架、燃烧器、炉墙和炉架等组成,主要有对流段和辐射段两部分组成。管式炉反应器的放大采用反应管个数增多的方法放大,造成反应器结构复杂。具体反应器结构可参见王松汉等主编的《乙烯装置技术与运行》。天然气部分氧化制乙炔反应器主要分为混合器、燃烧喷嘴、反应室,反应器的放大是通过喷嘴数量的增多实现的,具体反应器结构可参见BASF公司的Peter
Figure PCTCN2018114996-appb-000001
等人为Ullmann工业化学品百科全书编写的Acetylene词条(DOI:10.1002/14356007.a01_097.pub4)。
目前大部分专利都针对管式裂解炉进行改进,而关于燃料气燃烧产物作为热载体直接与烃类混合裂解的专利不多。CN01145130.0提出了一种将超音速热载体与烃类迅速混合后裂解制乙烯的装置,但该专利中反应器结构复杂,不利于工业化应用,最主要的问题在于该专利未考虑反应器放大的问题,反 应器放大时裂解气与热载体难以混合均匀,从而反应收率会显著降低。美国专利US2941021采用反应物料旋转喷入的方法,在热载体与反应物料混合的过程中加入搅拌作用,达到加强混合的目的,该发明装置存在两个主要问题,一个是在反应器中心轴附近,搅拌作用弱,混合效果不好;另一个问题在于当放大反应器的尺寸时,单纯通过物料旋转喷入的搅拌作用难以将热载体与物料完全混合。美国专利US4256565采用在燃料喷嘴附近将需要裂解的烃类喷入的方式达到燃烧产生的热载体与烃类快速混合的目的,这种反应器结构虽然可以采用增多喷嘴数量的方法进行数量放大,解决了反应器的放大问题,但由于燃料燃烧产生的热载体在与烃类混合时未完全燃烧,残留的氧气将烃类氧气降低了乙烯/乙炔的收率。
发明内容
本发明针对现有技术的缺陷,提供一种从低碳烷烃生产乙烯和/或乙炔的装置,该反应装置具有结构简单,不需要放大效应设置,热载体与反应物料混合均匀,乙烯和/或乙炔收率和选择性高等优点。
根据本发明的一个方案,提供了一种烃制乙烯和/或乙炔的装置,包括:反应室、烧嘴、共用或分开的燃料气入口和氧气入口、预热列管、气体分布器、裂解气入口、反应产物出口;所述反应室为反应原料在其中进行反应的腔体结构;烧嘴、燃料气入口、氧气入口、裂解气入口、反应产物出口设置于反应室的壁上,预热列管和气体分布器设置于反应室内;所述燃料气入口用于将燃料气通入反应室;氧气入口用于将氧气通入反应室;烧嘴用于点燃燃料气和氧气;反应产物出口用于将裂解产物排出反应室;裂解气入口用于向反应室内通入裂解气;所述气体分布器设置在反应室横截面上,气体分布器具有气体入口和气体出口,气体入口与裂解气入口连通,气体分布器的气体出口与预热列管连通,气体分布器用于使经裂解气入口进入的裂解气在反应室的横截面上均布、并送往预热列管;预热列管包括多个两端开口的中空管,一端开口与气体分布器上的气体出口连通,另一端开口处于燃料气和氧气的燃烧区域,用于将经气体分布器均布的裂解气在其内预热后送入燃料气和氧气燃烧区域,其中在裂解反应进行时,反应产物弥漫于中空管周围,从而对中空管内的裂解气预热。
本发明烃制乙烯和/或乙炔的装置中的气体分布器和预热列管结合,使裂解气进入反应室后的气体分布和气体流向与传统烃裂解制乙烯和/或乙炔装置中显著不同:首先,气体分布器和列管的使用使从裂解气入口进入反应室的裂解气经气体分布器和列管后在反应室的横截面上弥散甚至均匀分布,不再是传统的以裂解气入口为中心的高度集中气流,裂解气均匀分布的益处是使裂解气与热载体均匀接触和混合,从而使得后续的裂解反应更充分和均匀;与气体分布器连通的预热列管使弥散甚至均匀分布的裂解气预热并保持均布然后从中空管喷出进入燃料气和氧气燃烧形成的热载体区域进行裂解反应,高温裂解产物弥散于中空管周围,将热量传递给中空管及其内部持续进入的裂解气,从而对裂解气进行预热。
本发明减轻甚至解决了传统的反应室放大效应的问题:现有技术中,在对反应室进行放大时,裂解原料和热载体混合不均匀,导致反应效果不好,收率会明显下降。而本发明因为采用列管对裂解气进行了预热和均布,使得裂解原料烃和热载体均匀接触、混合,从而不会因为反应室放大而影响收率。
可以看出,本发明装置的工作过程为:燃料气和氧气经共用或分开的燃料气入口和氧气入口喷入反应室,被烧嘴点燃在燃烧点周围形成热载体区域;同时裂解气从裂解气入口进入反应室内,然后被送入气体分布器气体入口,再从气体分布器从气体出口进入预热列管的中空管内,并在持续通入的裂解气气流的冲击下沿着中空管内部流动,在中空管内流动时被高温裂解产物加热,从中空管的另一端口喷出时,进入燃料气和氧气燃烧形成的热载体区域,裂解气发生热裂解,形成炔、烯等裂解产物,裂解产物弥漫于中空管周围区域,裂解产物的高温使中空管及其内部持续进入的裂解气被不断加热,最后裂解产物从反应产物出口排出反应室。所以,气体分布器和预热列管结合使裂解气烃均匀地分布于预热列管的各中空管中,每个中空管的端口均有被加热的裂解气喷出,喷出的裂解气与热载体接触形成一个裂解气裂解反应点,从而在反应室内形成多个裂解反应点,预热列管起到加热裂解气作用的同时,更放大了反应数量,即裂解气通道采用多根管的形式,可将裂解气均匀喷入反应器中与热载体混合,通过数量放大的方法实现了反应器的放大,而且不会出现传统反应器放大时出现的因为裂解气与热载体接触不均而 导致反应不充分、收率下降的问题。
进一步的,上述气体分布器的气体出口和与其连通的预热列管的中空管均布于反应室的横截面上。气体分布器气体出口和与其连通的预热列管的中空管在反应室的横截面上均匀分布的目的使是裂解气在反应室横截面上形成均匀的反应点,产生的益处是反应更均匀、充分。
更进一步的,上述燃料气入口和氧气入口布置于反应室的顶部,所述裂解气入口和气体分布器以及预热列管布置于反应室的下部。这是反应室布局的一种优选方案,将共用和/或分开的燃料气入口和氧气入口设置在反应室顶部、烧嘴也设置在反应室顶部,裂解气入口和气体分布器以及预热列管布置于反应室的下部,反应产物出口设置在气体分布器上方,可以看出,这是裂解气在反应室内从下向上流动、进而从中空管上端口喷出进入反应室顶部的燃料气和氧气的的燃烧区的反应室布局方案,裂解气的裂解反应在反应室顶部进行。
更进一步的,上述燃料气入口和氧气入口布置于反应室的底部,所述裂解气入口和气体分布器以及预热列管布置于反应室的上部。作为上面一种裂解气从反应室底部向上流动方案的替代方案,可以将裂解气入口和气体分布器以及预热列管布置于反应室的上部,燃料气入口和氧气入口布置于反应室的底部,反应产物出口设置在气体分布器下方,本反应室布局方案中,裂解气从反应室上部的裂解气入口进入,向下经气体分布器进入预热列管的中空管,从中空管的下端口喷入反应室底部的燃料气和氧气的的燃烧区。
进一步的,本发明所述的装置中,作为燃料气入口和氧气入口布置的一种方案,燃料气入口和氧气入口为同一共用入口,燃料气和氧气经预混后经所述同一共用入口进入反应室。
优选的,上述燃料气入口和氧气入口为同一共用入口的本发明装置还包括混合器,混合器与燃料气入口和氧气入口的共用入口连接,用于混合分别预热的燃料气和氧气,然后喷入反应室。在本优选方案中,燃料气和氧气共用同一入口,在混合器中预先混合的预热燃料气和预热氧气为预混火焰,这种预先混合预热燃料气和预热氧气然后经共用入口喷入反应室的方案有助于燃料气完全燃烧,但可能存在回火的情况。
进一步的,作为燃料气入口和氧气入口为同一共用入口的替代方案,本 发明装置中的燃料气入口和氧气入口为各自独立的入口,燃料气和氧气分别经各自燃料气入口和氧气入口进入反应室。燃料气和氧气经各自的入口分开喷入反应室的为非预混火焰,这种方案的优点是操作简单,但完全燃烧所需时间长,导致反应器体积增大。
进一步的,本发明装置中的气体分布器为板面形状,且具有多个连接气体入口和气体出口的通孔,通孔均匀分布在裂解气分布器的整个板面上,每个通孔上均连接有中空管。气体分布器可以有多种形式,本发明装置优选的分布器为板面形状,设置于反应室横截面上,气体分布器将反应室分割成仅通过板面上的通孔相连通的上下两部分,因为气体分布器是平行于反应室上下底面的板面,连接气体入口和气体出口的通孔在板面上均匀分布,通孔在板面均布即中空管在反应室横截面上均匀分布,即裂解气经分布器的气体入口进入、然后经最短的路径从气体出口出来并进入与气体出口连接的均匀分布的中空管内,这种布置的益处是:反应室横截面上各区域内均有中空管,中空管内的裂解气被加热,且在反应室横截面上各区域内形成裂解反应点,反应室内无裂解反应死角,无裂解反应过度集中导致反应不充分情况。
更进一步的,上述通孔的形状为圆形、方形、三角形、五角形中的一种,所述中空管的截面形状为圆形、方形、三角形中的一种。进一步地,当中空管的截面为圆形时,中空管的直径在5mm~60mm范围内。
进一步的,本发明所涉及的上述装置中,所述共用或分开的燃料气入口(12)和氧气入口(18)均布在反应室(13)的顶部或底部,以使燃料气和氧气在反应室(13)横截面上形成多个热载体区域。
进一步地,在每个中空管设置起到气体均布和压力调节作用的缩进。优选地,所述缩进处于靠近所述气体分布器的位置,这样比较利于加工。
根据本发明的另一方面,还提供了利用上述烃制乙烯和/或乙炔的装置进行烃制乙烯和/或乙炔的方法,包括以下步骤:
a)、将燃料气和氧气经共用或分开的燃料气入口和氧气入口喷入反应室;启动烧嘴,使进入反应室的燃料气和氧气燃烧,产生高温热载体;
b)、将原料气体烃从裂解气入口通入反应室,经气体分布器的气体入口进入气体分布器然后从经气体分布器的气体出口进入预热列管的中空管中,原料气体烃被从中空管的上端口喷出,进入高温热载体区域,被热裂解;
c)、热裂解产物弥漫于预热列管的中空管周围区域,将热量传递给中空管及中空管中持续通入的原料气体烃,从而持续对原料气体烃进行加热,热裂解产物最后从反应产物出口排出反应室。
进一步的,上述步骤a)之前还包括分别预热燃料气和氧气、然后将燃料气和氧气快速混合的步骤,其中燃料气和氧气被预热的温度为30℃~600℃范围内。提高燃料气和氧气的预热温度与有利于燃料燃烧的稳定性,并提供更多热量用于后续裂解气的裂解。
进一步的,上述步骤b)中从裂解气入口通入的原料气体烃的通入量与步骤b)中经燃料气入口喷入燃料气和氧气之和的质量比为:0.5~1.6。降低气体烃与燃料气和氧气之和的质量比有利于提高热裂解温度,提高乙炔收率;提高质量比会降低热裂解温度,有利于乙烯的生产。
进一步的,上述述步骤a)中燃料气为氢气、一氧化碳、甲烷、乙烷中的一种或多种的混合;步骤a)中原料气体烃为甲烷、乙烷、丙烷中的一种或多种的混合。
进一步的,上述步骤b)中原料气体烃在中空管中被预热的温度为200℃~600℃范围内。提高原料初始预热温度,有利于降低烃原料裂解所需热量,提高乙烯和乙炔收率。
本发明相比于现有技术的先进点:本发明装置利用气体分布器和预热列管相结合,将裂解气进入热载体区域的方向由传统的斜喷改成垂直喷入,并使裂解气气流在反应室的整个横截面区域平均分布;烃通道采用多根中空管管的形式,一是可以使烃原料在喷入热载体区域前被热载体和裂解产物的高温热量预热,二是使裂解气经与气体分布器连接的中空管均匀喷入热载体区域与热载体混合,进行裂解,三是从多个中空管端口喷出的预热裂解气在反应室中的热载体区域形成多个热裂解中心区域,通过反应点数量放大的方法实现了反应室的放大,从而避免了传统方式的反应室放大导致的裂解气与热载体接触混合不均匀导致反应不充分、收率下降的问题。
附图说明
从下面结合附图对本发明实施例的详细描述中,本发明的这些和/或其它方面和优点将变得更加清楚并更容易理解,其中:
图1为本发明实施例的烃制乙烯和/或乙炔的装置结构剖面示意图;
图2为本发明实施例的气体分布器的结构示意图。
具体实施方式
为了使本领域技术人员更好地理解本发明,下面结合附图和具体实施方式对本发明作进一步详细说明。
需要说明的是,本发明中“反应室的壁”包括反应室的顶部、底部和侧壁,“反应室的上部”和“反应室的下部”则是从空间上来说表示上下相对位置,其可以包括壁和内部空间。
实施例1
一种烃制乙烯和/或乙炔的装置结构,其结构剖面图如图1所示,包括烧嘴11、共用或分开的燃料气入口12和氧气入口18(图中为共用的情况)、反应室13、预热列管14、气体分布器15、裂解气入口16、反应产物出口17;可以从图1中看出,反应室13为反应原料在其中进行反应的腔体结构;燃料气入口12和氧气入口18设置在反应室13的顶部,用于将燃料气和氧气通入反应室13,燃料气入口12和氧气入口18可以采取两种方案设置,一种是燃料气入口12和氧气入口18共用一个入口,在这种共用入口方案中,本实施例装置还可以在共用入口前端设置连接在共用入口前端的混合器,以使分别被预热的燃料气和氧气先在混合器中进行快速混合然后经共用入口喷入反应室13,另一种是燃料气和氧气分别采用各自独立的入口进入反应室13,两种方案中的共用入口或单独的入口均优选在反应室13的顶部壁上均匀设置多个,以在反应室13横截面上形成多个被点燃的燃烧区,最终形成多个热载体区域;烧嘴11用于点燃燃料气和氧气,也设置在反应室13顶部;反应产物出口17用于将裂解产物排出反应室13,设置在反应室12中部侧壁;气体分布器15设置在反应产物出口17下部的反应室13横截面上,具有气体入口和气体出口,气体分布器15的优选结构为设置在反应室13横截面上以将反应室13整体隔离成上、下两个空间的板,如图2所示,板面上设置有多个通孔21连接气体入口和气体出口,使反应室的上、下空间之间仅通过通孔21连接;气体分布器15的气体入口连接裂解气入口 16所在的反应室13的下空间连接,气体分布器15的气体出口位于反应室13的上空间内,与预热列管14连接,预热列管14由多个两端开口的中空管组成,气体分布器15的气体出口连接预热列管14的中空管一端,中空管的另一端接近或进入烧嘴11点燃燃料气和氧气形成的热载体区域,这样,从裂解气入口16进入反应室13的裂解气经气体分布器15的气体入口在反应室13横截面上被均匀分布,然后经气体出口进入预热列管14的各中空管。反应过程中,中空管被高温裂解产物包围,使得中空管及其内部的裂解气被裂解产物的热量持续加热,预热后的裂解气从中空管的上端喷出,与燃料气和氧气燃烧形成的热载体直接接触,进行热裂解。本实施例的方案可以进行如下变化:1)通孔21的形状为圆形、方形、三角形、五角形中的一种,中空管的截面形状为圆形、方形、三角形中的一种,通孔的气体出口可以直接与中空管匹配或者通过形状转接头连接匹配,当中空管的截面为圆形时,中空管的直径在5mm~60mm范围内,以既保证裂解气在中空管中形成足够的气流,又减少裂解气在中空管中形成碳沉积且不易清洗;2)通过设置预热列管14的中空管的长度来控制裂解气与热载体混合前的预热时间,裂解气在中空管中被预热的温度一般在200℃~600℃范围内,即通过设置预热列管14与燃料气体和氧气燃烧区的距离,可在一定程度上控制裂解气烃裂解时的反应温度;3)气体分布器15的气体出口及其连接预热列管14以与反应室13的上下底面成70-110°角度设置,更优选为90°。
实施例2
一种烃制乙烯和/或乙炔的装置结构,其部件组成和部件方案与实施例1基本相同,不同之处在于:烧嘴11、共用或分开的燃料气入口12和氧气入口18设置在反应室13的底部,反应产物出口17设置在反应室13下部侧壁上,裂解气入口16设置在反应室13上部,相应地,气体分布器15的气体入口朝向反应室13顶部,气体出口朝向反应室13底部,预热列管14的中空管上端口连接气体分布器15的气体出口,下端口接近或进入反应室13下部的燃料气和氧气燃烧形成的热载体区域。可以看出,本实施方案中,裂解气烃在反应室中是向下流动喷出的。
实施例3
烃制乙烯和/或乙炔的方法,该方法利用实施例1或2的的烃制乙烯和/或乙炔的装置,包括以下步骤:
a)、将燃料气和氧气经共用或分开的燃料气入口12和氧气入口18喷入反应室3;启动烧嘴11,使进入反应室13的燃料气和氧气燃烧,产生高温热载体;优选的,在燃料气入口和氧气入口采用共用入口的方案中,可以在喷入反应室13之前,分别预热燃料气和氧气、然后将燃料气和氧气在装置优选设置的混合器中快速混合,在包括预热燃料气和氧气的操作中,燃料气和氧气被预热的温度为30℃~600℃范围内;其中燃料气为氢气、一氧化碳、甲烷、乙烷中的一种或多种的混合;
b)、将原料气体烃(即,裂解气,选自甲烷、乙烷、丙烷中的一种或多种的混合;通入量优选为:与步骤a)中经燃料气入口12喷入燃料气和氧气之和的质量比为:0.5~1.6,通过喷入速度和时间来控制)从裂解气入口16通入反应室13,经气体分布器15的气体入口进入气体分布器15然后从经气体分布器15的气体出口进入预热列管14的中空管中,中空管将其周围弥漫的裂解产物的热量传给中空管中的原料气体烃,原料气体烃被预热后从中空管的上端口喷出,进入高温热载体区域,被热裂解;
c)、热裂解产物弥漫于预热列管14的中空管周围区域,将热量传递给中空管及中空管中持续通入的原料气体烃,热裂解产物最后从反应产物出口17排出反应室13。
实施例4
设计反应室13直径为390mm(适合工业上实际应用),预热列管14的中空管内径为15mm,外径为20mm,长度为1000mm,中空管与反应室底面垂直时,燃料气(焦炉气)和氧气分别预热到600℃,配比为完全燃烧时的化学计量配比。燃料气和氧气快速混合后以100m/s的速度喷入反应室13。裂解气乙烷从反应室13的底部喷入,乙烷与焦炉气加氧气之和的质量比为1.3,预热温度同样为600℃。在乙炔加乙烯联合收率达到最大时,乙炔收率为21%,乙烯收率为44%,乙炔和乙烯联合收率为65%,CO收率为23%,乙烷转化率为97%,乙炔和乙烯选择性为66%。390mm大直径反应 室下的结果与在30mm小直径下的反应结果基本一致,证明本发明所设计的采用数量放大方式的反应室不存在放大效应,可用于乙烷裂解反应室的放大。与此相对应,在传统的侧喷反应器中,乙烷从反应器侧面喷入反应器中,在30mm直径的反应器中,乙烷裂解结果与本实例结果相似,但当反应器放大到390mm的工业反应器尺寸后,乙炔和乙烯联合收率由65%下降到48%,反应器放大效应明显。
实施例5
选择烃原料为纯甲烷,反应室13直径为390mm(适合工业上实际应用),预热列管14的中空管内径为15mm,外径为20mm,长度为1000mm,中空管与反应室13底面垂直,燃料气(焦炉气)和氧气分别预热到600℃,配比为完全燃烧时的化学计量配比。快速混合后以100m/s的速度喷入反应室13。裂解气甲烷从反应室13的底部喷入,甲烷与焦炉气加氧气之和的质量比为0.6,预热温度同样为600℃。在乙炔收率达到最大时,乙炔收率为46%,乙烯收率为1%,乙炔和乙烯联合收率为47%,甲烷转化率为78%,乙炔和乙烯选择性为60%。390mm大直径反应器下的结果与在30mm小直径下的反应结果基本一致,证明本发明所设计的采用数量放大方式的反应器不存在放大效应,可用于甲烷裂解反应器的放大。与此相对应,在传统的侧喷反应器中,甲烷从反应器侧面喷入,在30mm直径的反应器中,乙炔和乙烯最大联合收率为41%,低于本发明中反应器结构所对应的收率。在实际工业应用中,甲烷采用部分氧化法制乙炔,该方法中乙炔的收率为31%,远低于本发明中乙炔收率。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (18)

  1. 一种烃制乙烯和/或乙炔的装置,其特征在于,它包括:反应室(13)、烧嘴(11)、共用或分开的燃料气入口(12)和氧气入口(18)、预热列管(14)、气体分布器(15)、裂解气入口(16)、反应产物出口(17);
    所述反应室(13)为反应原料在其中进行反应的腔体结构;烧嘴(11)、燃料气入口(12)、氧气入口(18)、裂解气入口(16)、反应产物出口(17)设置于反应室的壁上,预热列管(14)和气体分布器(15)设置于反应室内;
    所述燃料气入口(12)用于将燃料气通入反应室(13);氧气入口(18)用于将氧气通入反应室(13);烧嘴(11)用于点燃燃料气和氧气;反应产物出口(17)用于将裂解产物排出反应室(13);裂解气入口(16)用于向反应室(13)内通入裂解气;
    所述气体分布器(15)设置在反应室(13)横截面上,气体分布器(15)具有气体入口和气体出口,气体入口与裂解气入口(16)连通,气体分布器(15)的气体出口与预热列管(14)连通,气体分布器(15)用于使经裂解气入口(16)进入的裂解气在反应室(13)的横截面上均布、并送往预热列管(14);
    预热列管(14)包括多个两端开口的中空管,一端开口与气体分布器(15)上的气体出口连通,另一端开口处于燃料气和氧气的燃烧区域,用于将经气体分布器(15)均布的裂解气在其内预热后送入燃料气和氧气燃烧区域,其中在裂解反应进行时,反应产物弥漫于中空管周围,从而对中空管内的裂解气预热。
  2. 如权利要求1所述的烃制乙烯和/或乙炔的装置,其特征在于,所述气体分布器(15)的气体出口和与其连通的预热列管(4)的中空管均布于反应室(13)的横截面上。
  3. 如权利要求1或2所述的烃制乙烯和/或乙炔的装置,其特征在于,所述燃料气入口(12)和氧气入口(18)布置于反应室(13)的顶部,所述裂解气入口(16)和气体分布器(15)以及预热列管(14)布置于反应室的下部。
  4. 如权利要求1或2所述的烃制乙烯和/或乙炔的装置,其特征在于,所述燃料气入口(12)和氧气入口(18)布置于反应室(13)的底部,所述裂解气入口(16)和气体分布器(15)以及预热列管(14)布置于反应室的上部。
  5. 如权利要求1或2所述的烃制乙烯和/或乙炔的装置,其特征在于,所述燃料气入口(12)和氧气入口(18)为同一共用入口,燃料气和氧气经预混后经所述同一共用入口进入反应室(13)。
  6. 如权利要求5所述的烃制乙烯和/或乙炔的装置,其特征在于,还包括混合器,混合器与燃料气入口(12)和氧气入口(18)的共用入口连接,用于混合分别预热的燃料气和氧气然后喷入反应室(13)。
  7. 如权利要求1或2所述的烃制乙烯和/或乙炔的装置,其特征在于,所述燃料气入口(12)和氧气入口(18)为各自独立的入口,燃料气和氧气分别经各自燃料气入口(12)和氧气入口(18)进入反应室(13)。
  8. 如权利要求1或2所述的烃制乙烯和/或乙炔的装置,其特征在于,所述气体分布器(5)为板面形状,且具有多个连接气体入口和气体出口的通孔(21),通孔(21)均匀分布在裂解气分布器(15)的整个板面上,每个通孔(21)上均连接有中空管。
  9. 如权利要求8所述的烃制乙烯和/或乙炔的装置,其特征在于,所述通孔(21)的形状为圆形、方形、三角形、五角形中的一种,所述中空管的截面形状为圆形、方形、三角形中的一种。
  10. 如权利要求8所述的烃制乙烯和/或乙炔的装置,中空管的截面为圆形,中空管的直径在5mm~60mm范围内。
  11. 如权利要求1所述的烃制乙烯和/或乙炔的装置,其特征在于,所述共用或分开的燃料气入口(12)和氧气入口(18)均布在反应室(13)的顶部或底部,以使燃料气和氧气在反应室(13)横截面上形成多个热载体区域。
  12. 如权利要求1或2所述的烃制乙烯和/或乙炔的装置,在每个中空管设置起到气体均布和压力调节作用的缩进。
  13. 如权利要求12所述的烃制乙烯和/或乙炔的装置,所述缩进处于中空管上靠近所述气体分布器的位置。
  14. 一种烃制乙烯和/或乙炔的方法,其特征在于,它利用权利要求1-13中任一权利要求所述的烃制乙烯和/或乙炔的装置,包括以下步骤:
    a)、将燃料气和氧气经共用或分开的燃料气入口(12)和氧气入口(18)喷入反应室(13);启动烧嘴(11),使进入反应室(13)的燃料气和氧气燃烧,产生高温热载体;
    b)、将原料气体烃从裂解气入口(16)通入反应室(13),经气体分布器(15)的气体入口进入气体分布器(15)然后从气体分布器(15)的气体出口进入预热列管(14)的中空管中,原料气体烃被中空管预热后从中空管的另一端口喷出,进入热载体区域,被热裂解;
    c)、热裂解产物弥漫于预热列管(14)的中空管周围区域,将热量传递给中空管及中空管中持续通入的原料气体烃,热裂解产物最后从反应产物出口(17)排出反应室(13)。
  15. 如权利要求14所述的烃制乙烯和/或乙炔的方法,其特征在于,在所述步骤a)之前还包括分别预热燃料气和氧气、然后将燃料气和氧气混合的步骤,其中燃料气和氧气被预热的温度为30℃~600℃范围内。
  16. 如权利要求14所述的烃制乙烯和/或乙炔的方法,其特征在于,所述步骤b)中从裂解气入口(16)通入的原料气体烃的通入量与步骤a)中喷入燃料气和氧气之和的质量比为:0.5~1.6。
  17. 如权利要求14所述的烃制乙烯和/或乙炔的方法,其特征在于,所述步骤a)中燃料气为氢气、一氧化碳、甲烷、乙烷中的一种或多种的混合;步骤b)中原料气体烃为甲烷、乙烷、丙烷中的一种或多种的混合。
  18. 如权利要求14所述的烃制乙烯和/或乙炔的方法,其特征在于,所述步骤b)中原料气体烃在中空管中被预热的温度为200℃~600℃范围内。
PCT/CN2018/114996 2018-11-12 2018-11-12 烃制乙烯和/或乙炔的装置及制备方法 WO2020097751A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/114996 WO2020097751A1 (zh) 2018-11-12 2018-11-12 烃制乙烯和/或乙炔的装置及制备方法
US17/193,285 US11168263B2 (en) 2018-11-12 2021-03-05 Apparatus and method for preparing ethylene and/or acetylene using hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/114996 WO2020097751A1 (zh) 2018-11-12 2018-11-12 烃制乙烯和/或乙炔的装置及制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/193,285 Continuation US11168263B2 (en) 2018-11-12 2021-03-05 Apparatus and method for preparing ethylene and/or acetylene using hydrocarbon

Publications (1)

Publication Number Publication Date
WO2020097751A1 true WO2020097751A1 (zh) 2020-05-22

Family

ID=70730986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114996 WO2020097751A1 (zh) 2018-11-12 2018-11-12 烃制乙烯和/或乙炔的装置及制备方法

Country Status (2)

Country Link
US (1) US11168263B2 (zh)
WO (1) WO2020097751A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113231003A (zh) * 2021-05-11 2021-08-10 清华大学 烃制乙烯和/或乙炔的装置及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020081248A1 (en) * 2000-12-21 2002-06-27 Institut Francais Du Petrole Device for separate injection and homogeneous distribution of two fluids
CN103030493A (zh) * 2012-12-12 2013-04-10 清华大学 一种利用乙烷制备乙烯和乙炔的方法
CN103242122A (zh) * 2012-02-09 2013-08-14 中国石油化工股份有限公司 一种乙醇制乙烯和甲醇合成二甲醚的组合工艺方法及装置
CN106854127A (zh) * 2015-12-08 2017-06-16 清华大学 烃制乙炔和/或合成气的方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3161695A (en) * 1960-05-13 1964-12-15 Du Pont Process for making acetylene
DE10211275A1 (de) * 2002-03-13 2003-09-25 Basf Ag Verfahren der kontinuierlichen heterogen katalysierten partiellen Dehydrierung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020081248A1 (en) * 2000-12-21 2002-06-27 Institut Francais Du Petrole Device for separate injection and homogeneous distribution of two fluids
CN103242122A (zh) * 2012-02-09 2013-08-14 中国石油化工股份有限公司 一种乙醇制乙烯和甲醇合成二甲醚的组合工艺方法及装置
CN103030493A (zh) * 2012-12-12 2013-04-10 清华大学 一种利用乙烷制备乙烯和乙炔的方法
CN106854127A (zh) * 2015-12-08 2017-06-16 清华大学 烃制乙炔和/或合成气的方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113231003A (zh) * 2021-05-11 2021-08-10 清华大学 烃制乙烯和/或乙炔的装置及制备方法

Also Published As

Publication number Publication date
US11168263B2 (en) 2021-11-09
US20210189255A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
US3408417A (en) Thermal cracking method of hydrocarbons
JP6224815B2 (ja) 増量剤流体を使用してカーボンブラックを製造するための方法
ES2377563T3 (es) Procedimiento para la fabricación de negro de horno
US3633887A (en) Method of and apparatus for the direct heating of fluidized-bed and vortex-layer reactors
US3498753A (en) Apparatus for thermal cracking of hydrocarbon
CN102286221B (zh) 硬质炭黑反应炉
CN106854127B (zh) 烃制乙炔和/或合成气的方法及装置
US11168263B2 (en) Apparatus and method for preparing ethylene and/or acetylene using hydrocarbon
CN109821495B (zh) 烃制乙烯和/或乙炔的多级反应装置及制备方法
US3701827A (en) Process and apparatus for the production of large particle-size,low structure carbon black
CN110260646B (zh) 一种带烟气回流预混燃烧顺逆流综合传热的圆筒石灰竖窑
US3761577A (en) Secondary combustion process and apparatus for the manufacture of carbon black
CN105879806B (zh) 烃部分氧化制备乙炔和合成气的大型反应器
CN105473217B (zh) 用于制备乙炔和合成气的装置和方法
RU2580684C2 (ru) Способ и устройство для получения ацетилена и синтез-газа
CN109467075B (zh) 一种合成吨级富勒烯的连续燃烧生产设备及其合成方法
WO2012034295A1 (zh) 一种裂解反应制备低碳烯烃的设备及方法
CN113231003A (zh) 烃制乙烯和/或乙炔的装置及制备方法
US3019271A (en) Process and apparatus for treatment of hydrocarbons
CN1548369A (zh) 辅助燃烧反应器及其在气相法制备纳米二氧化硅中应用
RU2446195C1 (ru) Способ получения низкодисперсного технического углерода и реактор для его осуществления
RU2394054C2 (ru) Способ получения полуактивного технического углерода и реактор для его осуществления
US3565586A (en) Apparatus for producing carbon black
US3176046A (en) Pyrolysis of hydrocarbons with stable high temperature flame
US1987400A (en) Method of burning oil as city gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940040

Country of ref document: EP

Kind code of ref document: A1