WO2020095535A1 - Motor and rotary equipment - Google Patents

Motor and rotary equipment Download PDF

Info

Publication number
WO2020095535A1
WO2020095535A1 PCT/JP2019/035650 JP2019035650W WO2020095535A1 WO 2020095535 A1 WO2020095535 A1 WO 2020095535A1 JP 2019035650 W JP2019035650 W JP 2019035650W WO 2020095535 A1 WO2020095535 A1 WO 2020095535A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
rotor
shaft
sensor
motor according
Prior art date
Application number
PCT/JP2019/035650
Other languages
French (fr)
Japanese (ja)
Inventor
吉和 坂
利典 後藤
鈴木 毅
保幸 竹本
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Priority to DE112019005611.5T priority Critical patent/DE112019005611T5/en
Publication of WO2020095535A1 publication Critical patent/WO2020095535A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/22Optical devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/10Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using light effect devices

Definitions

  • the present invention relates to a motor and a rotating device.
  • a magnetic sensor such as a Hall element was used to detect the rotation state for motor control.
  • the magnetic sensor detects the magnetic flux of a magnet attached to the rotor of the motor, and outputs a signal according to the rotation state of the motor.
  • a reflective surface is attached to the concentric circles of the multi-pole magnet so that the light output from the light-emitting element is reflected and enters the light-receiving element.
  • An electric motor in which a light emitting element and a light receiving element are arranged on the surface side having a reflecting surface is disclosed (for example, refer to Patent Document 1).
  • the distance between the rotor magnet and the magnetic sensor needs to be separated to some extent because they may come into contact with each other if it is too short.If the distance is long, it may be difficult for the magnetic sensor to detect the magnetic flux of the rotor magnet. is there. Due to these, there may be a deviation between the rotation angle of the rotor detected by the magnetic sensor and the actual rotation angle of the rotor.
  • the present invention takes the above problem as an example, and an object of the present invention is to provide a motor capable of improving the detection accuracy of the rotation angle.
  • a motor includes a shaft, a rotor, a member, and a sensor.
  • the rotor is pivotally supported on the shaft.
  • the member faces the rotor in the axial direction of the shaft.
  • the sensor is provided on the member. Further, the sensor has a light source that emits light in the radial direction and a light receiving unit that receives the light from the light source.
  • the rotor has a light shielding portion formed at an end portion in the axial direction. In the rotating state of the rotor, the light traveling from the light source to the light receiving section is blocked by the light blocking section.
  • the motor according to one aspect of the present invention can improve the detection accuracy of the rotation angle.
  • FIG. 1 is an external perspective view of a motor according to the first embodiment.
  • FIG. 2 is a vertical cross-sectional view of the motor according to the first embodiment.
  • FIG. 3 is a perspective view in which elements around the sensor according to the first embodiment are extracted.
  • FIG. 4 is a diagram showing how the rotor yoke is attached in the first embodiment.
  • FIG. 5 is a view of the rotor yoke according to the first embodiment seen from another viewpoint.
  • FIG. 6 is an external perspective view of the motor according to the second embodiment.
  • FIG. 7 is a vertical cross-sectional view of the motor according to the second embodiment.
  • FIG. 8 is a diagram showing how the rotor yoke is attached in the second embodiment.
  • FIG. 9 is a view of the rotor yoke according to the second embodiment as viewed from another viewpoint.
  • FIG. 10 is an external perspective view of a rotating device according to the third embodiment.
  • FIG. 11 is an exploded perspective view of elements of the rotating device according to the third embodiment.
  • FIG. 1 is an external perspective view of a motor 100 according to the first embodiment, which is an example of an inner rotor type motor in which a rotor is provided inside the motor.
  • the motor 100 includes a housing 118 and a shaft 104.
  • the housing 118 closes a tubular portion 101 having a bottom portion on the upper side (one end portion side of the shaft 104) in the figure and an opening of the tubular portion 101 on the lower side (the other end portion side of the shaft 104) in the figure, It is composed of a lid portion (102) which is not visible in FIG.
  • the shaft 104 is rod-shaped and is exposed from the center of a convex portion 101a provided in the center of the upper end surface of the tubular portion 101 in the figure.
  • a power supply line (not shown) is connected to the wiring portion 101c provided on the outer peripheral surface (side surface) of the tubular portion 101.
  • FIG. 2 is a vertical cross-sectional view of the motor 100 according to the first embodiment.
  • a lid portion 102 that covers the lower opening of the tubular portion 101 in the drawing is fixed.
  • the lid 102 is an example of a base.
  • a cylindrical rotor yoke 105 made of a magnetic material is fixed (fitted) on the outer peripheral surface of the shaft 104.
  • a ring-shaped magnet 106 is fixed (fitted) to the outer peripheral surface of the rotor yoke 105.
  • the shaft 104, the rotor yoke 105, and the magnet 106 constitute the rotor 103.
  • the rotor yoke 105 is an example of a magnetic member.
  • the shaft 104 has the inner ring of the bearing 107 in which the outer ring is fitted to the inner surface (inner wall) of the convex portion 101a of the tubular portion 101, and the outer ring is fixed (fitted) to the inner surface (inner wall) of the convex portion 102a of the lid part 102. It is rotatably supported by the inner ring of the bearing 108. In the radial direction, a hole 101b through which the shaft 104 penetrates is formed at the center of the convex portion 101a. Further, in the radial direction, a hole 102b is formed at the center of the convex portion 102a.
  • a core 112, a first insulator 113, a second insulator 114, and a coil 115 are provided on the inner surface (inner wall) of the tubular portion 101.
  • the core 112 is formed by laminating electromagnetic steel plates.
  • the first insulator 113 and the second insulator 114 sandwich the core 112 from both sides in the axial direction.
  • the coil 115 is wound around the outer peripheral surfaces of the first insulator 113 and the second insulator 114.
  • the inner peripheral surface side of the core 112 faces the outer peripheral surface of the magnet 106 of the rotor 103 via a gap.
  • the core 112, the first insulator 113, the second insulator 114, and the coil 115 form the stator 111.
  • a substrate 116 on which electronic components such as a resistance element and a capacitor, and a circuit including these electronic components are provided, is fixed between the lid 102 and the rotor 103 in the axial direction of the shaft 104.
  • a sensor 117 is provided on the substrate 116.
  • the sensor 117 is arranged at a position sandwiching a light shielding portion (light shielding piece) 105a provided at an end portion of the rotor yoke 105 in the radial direction.
  • the sensor 117 includes a light source that emits light in the radial direction of the rotor 103 and a light receiving unit that receives light from the light source.
  • the sensor 117 has a substantially U-shaped cross-section that is laid down sideways, and one of the inner surfaces 117a and 117b of the pieces on both sides facing upward in the drawing is the light source side, and the other is the light receiving portion side. Has become. Either of the inner surfaces 117a and 117b may be on the light source side.
  • the light-shielding portion 105a can be formed integrally with the rotor yoke 105 that is a magnetic member, which facilitates manufacturing. Since the sensor 117 is provided on the substrate 116 between the lid 102 and the rotor 103, the motor does not need to be upsized.
  • the substrate 116 is an example of a member.
  • the light shielding portion 105a is an example of a light shielding portion or a convex portion.
  • FIG. 3 is a perspective view in which elements around the sensor 117 according to the first embodiment are extracted.
  • light-shielding portions 105a extending in the axial direction are provided at equal intervals at the end of the rotor yoke 105 fitted to the shaft 104 on the substrate 116 side.
  • Wiring pins (not shown) are attached to the plurality of holes 116a on the substrate 116.
  • FIG. 4 is a diagram showing how the rotor yoke 105 according to the first embodiment is attached.
  • the rotor yoke 105 is shown in a state before being fixed (fitted) to the shaft 104.
  • FIG. 5 is a view of the rotor yoke 105 according to the first embodiment as viewed from another viewpoint.
  • a total of four light shields 105a are provided at the end of the rotor yoke 105, but the number of light shields 105a is not limited to this, and may be one.
  • the lengths of the light shields 105a in the circumferential direction may not be equal, and the intervals in the circumferential direction between the adjacent light shields 105a may not be equal.
  • a cylinder (cylindrical) made of a transparent member is provided at the end of the rotor yoke 105, and the light-shielding portion is provided by the light-shielding surface by coloring or forming a light-shielding film on the transparent cylinder. You may be allowed to.
  • the number of light-shielding portions formed by the light-shielding surface is not limited, and the circumferential lengths of the light-shielding portions formed by the light-shielding surface may not be equal, or the intervals between the adjacent light-shielding portions in the circumferential direction may not be equal.
  • the light shielding portion 105a passes between the light source and the light receiving portion of the sensor 117 by the rotation of the rotor 103, and interrupts the light intermittently.
  • Is used for speed control and the like that is, the signal indicating the rotation state is used in the circuit provided on the substrate 116 and is output to the outside as necessary. To be done. In this way, it is possible to improve the detection accuracy of the rotation angle with a simple configuration.
  • it is not affected by the temperature of the magnet or the distance between the magnet and the sensor, and thus has an advantage that stable detection can be performed.
  • the reflecting surface on the magnet and the light emitting element and the light receiving element there is an advantage that stable detection can be performed because it is not affected by the vibration of the magnet.
  • the signal from the light source in the signal of the sensor 117 is changed from the state in which the light from the light source is blocked to the state in which the light blocking is released. It is desirable to detect the rotation state from the change of. This includes the case where the light from the light source is blocked, not the true blocking by the light blocking portion 105a, but the blocking by the dirt, while the state where the light blocking is released is not affected by the dirt or the like. Because.
  • FIG. 6 is an external perspective view of a motor 200 according to the second embodiment, which is an example of an outer rotor type motor in which a rotor is provided outside the motor.
  • the motor 200 includes a rotor yoke 204, a substrate 207, and a plate 206.
  • the rotor yoke 204 has a cup shape and is fixed to the shaft 202 via a hub 203.
  • the board 207 is provided with a circuit and a sensor 216.
  • the sensor 216 is arranged at a position sandwiching a light-shielding portion (light-shielding piece) 204a provided at the end of the rotor yoke 204.
  • the sensor 216 includes a light source that emits light in the radial direction and a light receiving unit that receives light from the light source.
  • the plate 206 is fixed to a sleeve (208) described later that rotatably supports the rotor yoke 204.
  • FIG. 7 is a vertical cross-sectional view of the motor 200 according to the second embodiment.
  • a hub 203 is fitted to a rod-shaped shaft 202, and a cup-shaped rotor yoke 204 formed of a magnetic material is fixed to the hub 203.
  • the rotor yoke 204 includes a tubular portion and a top surface portion (annular flat plate portion) that faces the stator 211 in the axial direction.
  • a ring-shaped magnet 205 is fixed to the inner wall surface (inner surface) of the outer peripheral portion of the rotor yoke 204.
  • the shaft 202, the hub 203, the rotor yoke 204, and the magnet 205 constitute the rotor 201.
  • the shaft 202 is rotatably supported by a bearing 209 and a bearing 210 fixed (fitted) to the inner surface of a sleeve 208 (also referred to as a bearing housing).
  • the sleeve 208 has a tubular shape and has one end fixed to the plate 206.
  • a small-diameter end of a tapered spring 217 is provided on the bearing 209 between the axial end of the hub 203 and the inner ring of the bearing 209.
  • a core 212, a first insulator 213 and a second insulator 214, and a coil 215 are provided on the outer peripheral surface of the sleeve 208.
  • the core 212 is formed by laminating electromagnetic steel plates.
  • the first insulator 213 and the second insulator 214 sandwich the core 212 from both sides in the axial direction.
  • the coil 215 is wound around the outer peripheral surfaces of the first insulator 213 and the second insulator 214.
  • the outer peripheral surface side of the core 212 faces the inner peripheral surface of the magnet 205 of the rotor 201 via a gap.
  • the core 212, the first insulator 213, the second insulator 214, and the coil 215 form the stator 211.
  • a substrate 207 provided with a circuit is fixed between the plate 206 and the rotor 201 in the axial direction of the shaft 202.
  • a sensor 216 is provided on the substrate 207.
  • the sensor 216 is arranged at a position that radially sandwiches a light-shielding portion (light-shielding piece) 204a provided at the end of the rotor yoke 204.
  • the sensor 216 includes a light source that emits light in the radial direction of the rotor 201, and a light receiving unit that receives light from the light source.
  • the senor 216 has a substantially U-shaped cross section that is laid down sideways, and one of the inner surfaces 216a and 216b of the pieces on both sides facing upward in the drawing is the light source side and the other is the light receiving portion side. Has become. Either of the inner surfaces 216a and 216b may be on the light source side.
  • the light-shielding portion 204a can be formed integrally with the rotor yoke 204, which is a magnetic member, so that manufacturing is facilitated. Since the sensor 216 is provided on the substrate 207 between the plate 206 and the rotor 201, the size of the motor is not increased.
  • the substrate 207 is an example of a member.
  • the light shielding portion 204a is an example of a light shielding portion or a convex portion.
  • FIG. 8 is a diagram showing how the rotor yoke 204 in the second embodiment is attached.
  • the rotor yoke 204 is shown in a state before being fixed (fitted) to the hub 203.
  • a sensor 216 is provided on the substrate 207.
  • Light-shielding portions 204a extending in the axial direction are provided at equal intervals at the end of the rotor yoke 204 on the substrate 207 side.
  • FIG. 9 is a view of the rotor yoke 204 according to the second embodiment as viewed from another viewpoint.
  • a total of four light shields 204a are provided at the end of the rotor yoke 204, but the number of light shields 204a is not limited to this, and may be one.
  • the circumferential lengths of the light shields 204a do not have to be equal, and the intervals between adjacent light shields 204a in the circumferential direction do not have to be equal.
  • a tube (cylindrical) made of a transparent member may be provided at the end of the rotor yoke 204, and the transparent tube may be provided with a light shielding portion by a light shielding surface by coloring or the like.
  • the number of light-shielding portions formed by the light-shielding surface is not limited, and the lengths of the light-shielding portions formed by the light-shielding surface in the circumferential direction may not be equal, or the intervals in the circumferential direction between the adjacent light-shielding portions may not be equal.
  • the rotation of the rotor 201 causes the light shielding portion 204a to pass between the light source and the light receiving portion of the sensor 216, and interrupts the light intermittently.
  • Is used for speed control or the like that is, the signal indicating the rotation state is used by the circuit provided on the substrate 207 and is output to the outside as necessary. To be done. In this way, it is possible to improve the detection accuracy of the rotation angle with a simple configuration.
  • the state in which the light from the light source is shielded is changed to the state in which the light shielding is released. It is desirable to detect the rotation state from the change of. This includes the case where the state where the light from the light source is shielded is not the case where the light is shielded by the actual light shielding portion 204a but the case where the light is shielded by the dirt, whereas the state where the light shielding is released is not affected by the dirt or the like. Because.
  • FIG. 10 is an external perspective view of the rotating device 300 according to the third embodiment, and is an example when the rotating device 300 is a blower fan.
  • the rotating device 300 includes a cover 304, a blower opening frame 305, and an impeller 303, which are visible from the outside. That is, the impeller 303 is provided inside the cover 304, and air is blown from the inside of the blower opening frame 305.
  • FIG. 11 is an exploded perspective view of elements of the rotating device 300 according to the third embodiment.
  • the rotating device 300 includes a plate 301, a motor 200, an impeller 303, a cover 304, and a blower opening frame 305. That is, the motor 200 is fixed to the hole 301a of the plate-shaped plate 301, and the impeller 303 is fixed to the rotor yoke 204 of the motor 200. Further, the blower opening frame 305 is fixed to the cover 304, and the cover 304 is fixed to the plate 301 with a plurality of screws 302.
  • the motor 200 is the outer type motor shown in FIGS. 6 to 9.
  • the motor 200 has a function of simply detecting the rotation state by the light shielding unit 204a and the sensor 216, and thus the rotation state of the motor 200 in the rotating device 300 is accurately detected. However, it is possible to properly control the blown state.
  • the motor according to the embodiment includes the shaft, the rotor axially supported by the shaft, the member facing the rotor in the axial direction of the shaft, and the sensor provided on the member.
  • the rotor has a light source that emits light in a radial direction and a light-receiving unit that receives light from the light source.
  • the rotor has a light-shielding unit formed at an end in the axial direction, and receives light from the light source when the rotor is rotating. The light directed to the section is blocked by the light blocking section. Accordingly, it is possible to provide a motor capable of improving the detection accuracy of the rotation angle.
  • the light shielding portion is a convex portion that projects in the axial direction at the end of the rotor. This makes it possible to improve the detection accuracy of the rotation angle with a simple configuration.
  • the light-shielding portion is a light-shielding surface formed on a transparent member at the end of the rotor. This makes it possible to improve the detection accuracy of the rotation angle with a simple configuration.
  • a light shielding part and a daylighting part may be provided in the circumferential direction.
  • the lighting portion corresponds to the gap formed between the plurality of light shielding portions in the circumferential direction.
  • the light-shielding portion may be longer than the light-collecting portion in the circumferential direction, or the light-collecting portion may be longer than the light-shielding portion. Further, in the circumferential direction, the sum of the lengths of the plurality of light-shielding portions may be larger than the sum of the lengths of the plurality of light-obtaining portions, and the sum of the lengths of the plurality of light-obtaining portions is the plurality of light-shielding portions. It may be larger than the total length of the parts.
  • the rotor has a cylindrical magnetic member, and the light shielding portion is formed of the magnetic member.
  • the light shielding portion can be integrally formed with the magnetic member of the rotor, which facilitates manufacturing.
  • the rotor yoke is not limited to being formed of a magnetic member, and may be formed of a non-magnetic member such as a resin member.
  • the base and a bearing that rotatably supports the shaft are provided.
  • the shaft is supported by the base via the bearing, and the member is formed between the base and the rotor in the axial direction. As a result, the size of the motor is not increased.
  • a ring-shaped pedestal (spring seat) 109 may be fixed (fitted) to the shaft 104 in contact with the inner ring of the bearing 108.
  • a spring 110 may be provided between the pedestal 109 and the end surface of the rotor yoke 105.
  • it may include a base, a bearing that rotatably supports the shaft, and an elastic member that is disposed between the bearing and the rotor or between the bearing and the base and is elastically compressible in the axial direction. ..
  • an appropriate pressurization or preload is applied to the bearing, and the position of the sensor-side end of the light shielding unit is stabilized, so that the detection accuracy is improved.
  • the rotation state is detected from the change from the state where the light from the light source is blocked to the state where the light blocking is released. This makes it possible to avoid erroneous detection due to the attachment of dirt or the like.
  • a stator surrounding the rotor is provided, and a light shield is provided on the outer periphery of the rotor. As a result, it can be easily applied to an inner rotor type motor.
  • a stator is provided inside the rotor, and a light shield is provided on the outer periphery of the rotor. As a result, it can be easily applied to an outer rotor type motor.
  • a cylindrical spring may be provided instead of the tapered spring provided between the axial end of the hub and the inner ring of the bearing.
  • the rotating device includes the above motor and an impeller fixed to the shaft. As a result, the rotation state of the motor of the rotating device can be accurately detected and properly controlled.
  • the present invention is not limited to the above embodiment.
  • the present invention also includes those configured by appropriately combining the constituent elements described above. Further, further effects and modified examples can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.

Abstract

A motor according to an embodiment of the present invention is provided with a shaft (104), a rotor (103), a member (116), and a sensor (117). The rotor (103) is rotatably supported by the shaft (104). The member (116) faces the rotor (103) in the axial direction of the shaft (104). The sensor (117) is provided to the member (116). The sensor (117) has a light source for radiating light in a radial direction, and has a light receiving section for receiving the light radiated from the light source. The rotor (103) has a light blocking section (105a) formed at an end of the rotor (103) in the axial direction. During the rotation of the rotor (103), light propagating from the light source toward the light receiving section is blocked by the light blocking section (105a).

Description

モータおよび回転機器Motors and rotating equipment
 本発明は、モータおよび回転機器に関する。 The present invention relates to a motor and a rotating device.
 従来、モータの制御のため、回転状態の検出にホール素子等による磁気センサが用いられていた。磁気センサは、モータのロータに取り付けられたマグネットの磁束を検出することで、モータの回転状態に応じた信号を出力する。 Previously, a magnetic sensor such as a Hall element was used to detect the rotation state for motor control. The magnetic sensor detects the magnetic flux of a magnet attached to the rotor of the motor, and outputs a signal according to the rotation state of the motor.
 一方、発光素子が出力する光が反射して受光素子に入るように反射面を多極マグネットの同心円上に、反射板を貼り付けるかもしくは蒸着等で反射面を複数個作り、多極マグネットの反射面を有する面側に発光素子と受光素子とを配置した電動機が開示されている(例えば、特許文献1を参照)。 On the other hand, a reflective surface is attached to the concentric circles of the multi-pole magnet so that the light output from the light-emitting element is reflected and enters the light-receiving element. An electric motor in which a light emitting element and a light receiving element are arranged on the surface side having a reflecting surface is disclosed (for example, refer to Patent Document 1).
特開昭62-2845号公報Japanese Patent Laid-Open No. 62-2845
 しかしながら、磁気センサが用いられる場合、例えば、ロータのマグネットの温度が高温になると磁束密度が低下し、磁気センサがロータのマグネットの磁束を検出しにくい場合がある。また、磁気センサにホール素子が用いられる場合には、周囲の温度が高いとホール素子の性能が変化して所望する信号をホール素子から得られずにロータのマグネットの位置を検出することが難しくなる場合がある。 However, when a magnetic sensor is used, for example, when the temperature of the rotor magnet becomes high, the magnetic flux density decreases, and it may be difficult for the magnetic sensor to detect the magnetic flux of the rotor magnet. When a Hall element is used in the magnetic sensor, if the ambient temperature is high, the performance of the Hall element changes, and it is difficult to detect the position of the magnet of the rotor without obtaining the desired signal from the Hall element. May be.
 また、ロータのマグネットと磁気センサとの距離は、近すぎると接触してしまうおそれがあるためある程度は離す必要があり、距離が長い場合、磁気センサがロータのマグネットの磁束を検出しにくい場合がある。これらにより、磁気センサにより検出されたロータの回転角と実際のロータの回転角との間にずれが生じる場合がある。 Also, the distance between the rotor magnet and the magnetic sensor needs to be separated to some extent because they may come into contact with each other if it is too short.If the distance is long, it may be difficult for the magnetic sensor to detect the magnetic flux of the rotor magnet. is there. Due to these, there may be a deviation between the rotation angle of the rotor detected by the magnetic sensor and the actual rotation angle of the rotor.
 本発明は、上記課題を一例とするものであり、回転角度の検出精度の向上を図ることができるモータを提供することを目的とする。 The present invention takes the above problem as an example, and an object of the present invention is to provide a motor capable of improving the detection accuracy of the rotation angle.
 本発明の一態様に係るモータは、シャフトと、ロータと、部材と、センサとを備える。前記ロータは、前記シャフトに軸支される。前記部材は、前記シャフトの軸方向において、前記ロータと対向する。前記センサは、前記部材に設けられる。また、前記センサは、径方向に光を放射する光源と、前記光源からの光を受光する受光部とを有する。前記ロータは、軸方向における端部に遮光部が形成される。前記ロータの回転状態において、前記光源から前記受光部へ向かう光が前記遮光部により遮光される。 A motor according to one aspect of the present invention includes a shaft, a rotor, a member, and a sensor. The rotor is pivotally supported on the shaft. The member faces the rotor in the axial direction of the shaft. The sensor is provided on the member. Further, the sensor has a light source that emits light in the radial direction and a light receiving unit that receives the light from the light source. The rotor has a light shielding portion formed at an end portion in the axial direction. In the rotating state of the rotor, the light traveling from the light source to the light receiving section is blocked by the light blocking section.
 本発明の一態様に係るモータは、回転角度の検出精度の向上を図ることができる。 The motor according to one aspect of the present invention can improve the detection accuracy of the rotation angle.
図1は、第1の実施形態に係るモータの外観斜視図である。FIG. 1 is an external perspective view of a motor according to the first embodiment. 図2は、第1の実施形態におけるモータの縦断面図である。FIG. 2 is a vertical cross-sectional view of the motor according to the first embodiment. 図3は、第1の実施形態におけるセンサの周辺の要素を抽出した斜視図である。FIG. 3 is a perspective view in which elements around the sensor according to the first embodiment are extracted. 図4は、第1の実施形態におけるロータヨークの取付の様子を示す図である。FIG. 4 is a diagram showing how the rotor yoke is attached in the first embodiment. 図5は、第1の実施形態におけるロータヨークを別の視点から見た図である。FIG. 5 is a view of the rotor yoke according to the first embodiment seen from another viewpoint. 図6は、第2の実施形態に係るモータの外観斜視図である。FIG. 6 is an external perspective view of the motor according to the second embodiment. 図7は、第2の実施形態におけるモータの縦断面図である。FIG. 7 is a vertical cross-sectional view of the motor according to the second embodiment. 図8は、第2の実施形態におけるロータヨークの取付の様子を示す図である。FIG. 8 is a diagram showing how the rotor yoke is attached in the second embodiment. 図9は、第2の実施形態におけるロータヨークを別の視点から見た図である。FIG. 9 is a view of the rotor yoke according to the second embodiment as viewed from another viewpoint. 図10は、第3の実施形態に係る回転機器の外観斜視図である。FIG. 10 is an external perspective view of a rotating device according to the third embodiment. 図11は、第3の実施形態における回転機器の要素を分解して示した斜視図である。FIG. 11 is an exploded perspective view of elements of the rotating device according to the third embodiment.
 以下、実施形態に係るモータについて図面を参照して説明する。なお、この実施形態によりこの発明が限定されるものではない。また、図面における各要素の寸法の関係、各要素の比率などは、現実と異なる場合がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、1つの実施形態や変形例に記載された内容は、原則として他の実施形態や変形例にも同様に適用される。 Hereinafter, the motor according to the embodiment will be described with reference to the drawings. The present invention is not limited to this embodiment. In addition, the dimensional relationship of each element in the drawings, the ratio of each element, and the like may differ from reality. Even between the drawings, there are cases where parts having different dimensional relationships and ratios are included. Moreover, the content described in one embodiment or the modification is similarly applied to other embodiments or the modification in principle.
(第1の実施形態)
 図1は、第1の実施形態に係るモータ100の外観斜視図であり、ロータがモータの内側に設けられたインナーロータ型のモータの例である。図1において、モータ100は、ハウジング118と、シャフト104とを備えている。ハウジング118は、図における上側(シャフト104の一端部側)に底部を有する筒状の筒部101と、この筒部101の図における下側(シャフト104の他端部側)の開口を塞ぐ、図1では見えない蓋部(102)とから構成される。シャフト104は、棒状であり、筒部101の図における上側の端面の中央部に設けられた凸部101aの中央から露出するようになっている。筒部101の外周面(側面)に設けられた配線部101cには、図示しない電源線が接続される。
(First embodiment)
FIG. 1 is an external perspective view of a motor 100 according to the first embodiment, which is an example of an inner rotor type motor in which a rotor is provided inside the motor. In FIG. 1, the motor 100 includes a housing 118 and a shaft 104. The housing 118 closes a tubular portion 101 having a bottom portion on the upper side (one end portion side of the shaft 104) in the figure and an opening of the tubular portion 101 on the lower side (the other end portion side of the shaft 104) in the figure, It is composed of a lid portion (102) which is not visible in FIG. The shaft 104 is rod-shaped and is exposed from the center of a convex portion 101a provided in the center of the upper end surface of the tubular portion 101 in the figure. A power supply line (not shown) is connected to the wiring portion 101c provided on the outer peripheral surface (side surface) of the tubular portion 101.
 図2は、第1の実施形態におけるモータ100の縦断面図である。図2において、筒部101の図における下側の開口を覆う蓋部102が固定される。蓋部102は、ベースの一例である。 FIG. 2 is a vertical cross-sectional view of the motor 100 according to the first embodiment. In FIG. 2, a lid portion 102 that covers the lower opening of the tubular portion 101 in the drawing is fixed. The lid 102 is an example of a base.
 シャフト104の外周面には磁性体により形成される筒状のロータヨーク105が固定(嵌合)されている。ロータヨーク105の外周面にはリング状のマグネット106が固定(嵌合)されている。シャフト104とロータヨーク105とマグネット106とによりロータ103が構成される。ロータヨーク105は、磁性部材の一例である。 A cylindrical rotor yoke 105 made of a magnetic material is fixed (fitted) on the outer peripheral surface of the shaft 104. A ring-shaped magnet 106 is fixed (fitted) to the outer peripheral surface of the rotor yoke 105. The shaft 104, the rotor yoke 105, and the magnet 106 constitute the rotor 103. The rotor yoke 105 is an example of a magnetic member.
 シャフト104は、筒部101の凸部101aの内面(内壁)に外輪が嵌合された軸受107の内輪と、蓋部102の凸部102aの内面(内壁)に外輪が固定(嵌合)された軸受108の内輪とにより回転可能に支持されている。径方向において、凸部101aの中央部にはシャフト104が貫通する孔部101bが形成されている。また、径方向において、凸部102aの中央部には孔部102bが形成されている。 The shaft 104 has the inner ring of the bearing 107 in which the outer ring is fitted to the inner surface (inner wall) of the convex portion 101a of the tubular portion 101, and the outer ring is fixed (fitted) to the inner surface (inner wall) of the convex portion 102a of the lid part 102. It is rotatably supported by the inner ring of the bearing 108. In the radial direction, a hole 101b through which the shaft 104 penetrates is formed at the center of the convex portion 101a. Further, in the radial direction, a hole 102b is formed at the center of the convex portion 102a.
 また、筒部101の内面(内壁)には、コア112と、第1インシュレータ113および第2インシュレータ114と、コイル115とが設けられている。コア112は、電磁鋼板が積層されて形成されている。第1インシュレータ113および第2インシュレータ114は、コア112を軸方向の両側から挟む。コイル115は、第1インシュレータ113および第2インシュレータ114の外周面に巻回されている。コア112の内周面側はロータ103のマグネット106の外周面とギャップを介して対向している。コア112と第1インシュレータ113と第2インシュレータ114とコイル115とによりステータ111が構成される。 A core 112, a first insulator 113, a second insulator 114, and a coil 115 are provided on the inner surface (inner wall) of the tubular portion 101. The core 112 is formed by laminating electromagnetic steel plates. The first insulator 113 and the second insulator 114 sandwich the core 112 from both sides in the axial direction. The coil 115 is wound around the outer peripheral surfaces of the first insulator 113 and the second insulator 114. The inner peripheral surface side of the core 112 faces the outer peripheral surface of the magnet 106 of the rotor 103 via a gap. The core 112, the first insulator 113, the second insulator 114, and the coil 115 form the stator 111.
 また、シャフト104の軸方向における蓋部102とロータ103との間には、抵抗素子やコンデンサなどの電子部品やこれら電子部品で構成される回路が設けられた基板116が固定されている。基板116上には、センサ117が設けられている。センサ117は、ロータヨーク105の端部に設けられた遮光部(遮光片)105aを径方向に挟む位置に配置されている。センサ117は、ロータ103の径方向に対して光を放射する光源と、光源からの光を受光する受光部とを備えている。すなわち、センサ117は、横に倒した略コ字状の断面形状をしており、図において上を向いて立った両側の片の内面117a、117bの一方が光源側となり、他方が受光部側となっている。なお、内面117a、117bのどちらが光源側になってもよい。遮光部105aは磁性部材のロータヨーク105と一体に構成することができ、製造が容易になる。センサ117は蓋部102とロータ103との間の基板116上に設けられるため、モータの大型化を招かないですむ。基板116は、部材の一例である。遮光部105aは、遮光部または凸部の一例である。 A substrate 116, on which electronic components such as a resistance element and a capacitor, and a circuit including these electronic components are provided, is fixed between the lid 102 and the rotor 103 in the axial direction of the shaft 104. A sensor 117 is provided on the substrate 116. The sensor 117 is arranged at a position sandwiching a light shielding portion (light shielding piece) 105a provided at an end portion of the rotor yoke 105 in the radial direction. The sensor 117 includes a light source that emits light in the radial direction of the rotor 103 and a light receiving unit that receives light from the light source. That is, the sensor 117 has a substantially U-shaped cross-section that is laid down sideways, and one of the inner surfaces 117a and 117b of the pieces on both sides facing upward in the drawing is the light source side, and the other is the light receiving portion side. Has become. Either of the inner surfaces 117a and 117b may be on the light source side. The light-shielding portion 105a can be formed integrally with the rotor yoke 105 that is a magnetic member, which facilitates manufacturing. Since the sensor 117 is provided on the substrate 116 between the lid 102 and the rotor 103, the motor does not need to be upsized. The substrate 116 is an example of a member. The light shielding portion 105a is an example of a light shielding portion or a convex portion.
 図3は、第1の実施形態におけるセンサ117の周辺の要素を抽出した斜視図である。図3において、シャフト104に嵌合されたロータヨーク105の基板116側の端部には、軸方向に延出した遮光部105aが等間隔に設けられている。なお、基板116上の複数の孔部116aには、図示しない配線ピンが取り付けられる。 FIG. 3 is a perspective view in which elements around the sensor 117 according to the first embodiment are extracted. In FIG. 3, light-shielding portions 105a extending in the axial direction are provided at equal intervals at the end of the rotor yoke 105 fitted to the shaft 104 on the substrate 116 side. Wiring pins (not shown) are attached to the plurality of holes 116a on the substrate 116.
 図4は、第1の実施形態におけるロータヨーク105の取付の様子を示す図である。図4において、ロータヨーク105はシャフト104に固定(嵌合)される前の状態が示されている。図5は、第1の実施形態におけるロータヨーク105を別の視点から見た図である。図示の例では、ロータヨーク105の端部に計4個の遮光部105aが設けられているが、遮光部105aの数はこれに限られず、一つでもよい。また、遮光部105aが複数である場合、遮光部105aの周方向の長さは等しくなくてもよいし、隣り合う遮光部105a間の周方向の間隔も等しくなくてもよい。 FIG. 4 is a diagram showing how the rotor yoke 105 according to the first embodiment is attached. In FIG. 4, the rotor yoke 105 is shown in a state before being fixed (fitted) to the shaft 104. FIG. 5 is a view of the rotor yoke 105 according to the first embodiment as viewed from another viewpoint. In the illustrated example, a total of four light shields 105a are provided at the end of the rotor yoke 105, but the number of light shields 105a is not limited to this, and may be one. When there are a plurality of light shields 105a, the lengths of the light shields 105a in the circumferential direction may not be equal, and the intervals in the circumferential direction between the adjacent light shields 105a may not be equal.
 なお、遮光部105aに代えて、ロータヨーク105の端部に透明な部材による筒(円筒)が設けられ、この透明な筒に着色や遮光膜を成膜すること等により遮光面による遮光部が設けられるようにしてもよい。遮光面による遮光部の数は任意であり、遮光面による遮光部間の周方向の長さは等しくなくてもよいし、隣り合う遮光部間の周方向の間隔も等しくなくてもよい。 Instead of the light-shielding portion 105a, a cylinder (cylindrical) made of a transparent member is provided at the end of the rotor yoke 105, and the light-shielding portion is provided by the light-shielding surface by coloring or forming a light-shielding film on the transparent cylinder. You may be allowed to. The number of light-shielding portions formed by the light-shielding surface is not limited, and the circumferential lengths of the light-shielding portions formed by the light-shielding surface may not be equal, or the intervals between the adjacent light-shielding portions in the circumferential direction may not be equal.
 図1~図5に示されたような構成により、ロータ103の回転により遮光部105aがセンサ117の光源と受光部との間を通過し、光を断続的に遮断することとなり、センサ117からはロータ103の回転状態を示す信号が得られ、速度制御等に利用される、すなわち、回転状態を示す信号は、基板116に設けられた回路で使用されるとともに、必要に応じて外部に出力される。このように、簡便な構成で回転角度の検出精度の向上を図ることができる。なお、従来のホール素子等による磁気センサの場合と比べ、マグネットの温度やマグネットとセンサとの距離に影響を受けないため、安定して検出が行える利点がある。また、マグネット上の反射面と発光素子および受光素子とによる場合と比べ、マグネットの振動による影響を受けないため、安定して検出が行える利点がある。 With the configuration as shown in FIGS. 1 to 5, the light shielding portion 105a passes between the light source and the light receiving portion of the sensor 117 by the rotation of the rotor 103, and interrupts the light intermittently. Is used for speed control and the like, that is, the signal indicating the rotation state is used in the circuit provided on the substrate 116 and is output to the outside as necessary. To be done. In this way, it is possible to improve the detection accuracy of the rotation angle with a simple configuration. It should be noted that, as compared with the case of a conventional magnetic sensor using a Hall element or the like, it is not affected by the temperature of the magnet or the distance between the magnet and the sensor, and thus has an advantage that stable detection can be performed. Further, as compared with the case where the reflecting surface on the magnet and the light emitting element and the light receiving element are used, there is an advantage that stable detection can be performed because it is not affected by the vibration of the magnet.
 なお、センサ117や遮光部105aや遮光面に汚れ等が付着することによる誤検出を避ける上で、センサ117の信号のうち、光源からの光が遮光された状態から遮光が解除された状態への変化から回転状態を検出することが望ましい。これは、光源からの光が遮光された状態は、本当の遮光部105aによる遮光でなく汚れ等による遮光である場合が含まれるのに対し、遮光が解除された状態は汚れ等による影響がないからである。 In order to avoid erroneous detection due to dirt or the like adhering to the sensor 117, the light shielding portion 105a, or the light shielding surface, the signal from the light source in the signal of the sensor 117 is changed from the state in which the light from the light source is blocked to the state in which the light blocking is released. It is desirable to detect the rotation state from the change of. This includes the case where the light from the light source is blocked, not the true blocking by the light blocking portion 105a, but the blocking by the dirt, while the state where the light blocking is released is not affected by the dirt or the like. Because.
(第2の実施形態)
 図6は、第2の実施形態に係るモータ200の外観斜視図であり、ロータがモータの外側に設けられたアウターロータ型のモータの例である。図6において、モータ200は、ロータヨーク204と、基板207と、プレート206とを備えている。ロータヨーク204は、カップ状であり、シャフト202にハブ203を介して固定されている。基板207には、回路が設けられるとともに、センサ216が設けられている。センサ216は、ロータヨーク204の端部に設けられた遮光部(遮光片)204aを挟む位置に配置されている。センサ216は、径方向に対して光を放射する光源と、光源からの光を受光する受光部とを備えている。プレート206は、ロータヨーク204を回転可能に支持する、後述するスリーブ(208)に固定されている。
(Second embodiment)
FIG. 6 is an external perspective view of a motor 200 according to the second embodiment, which is an example of an outer rotor type motor in which a rotor is provided outside the motor. In FIG. 6, the motor 200 includes a rotor yoke 204, a substrate 207, and a plate 206. The rotor yoke 204 has a cup shape and is fixed to the shaft 202 via a hub 203. The board 207 is provided with a circuit and a sensor 216. The sensor 216 is arranged at a position sandwiching a light-shielding portion (light-shielding piece) 204a provided at the end of the rotor yoke 204. The sensor 216 includes a light source that emits light in the radial direction and a light receiving unit that receives light from the light source. The plate 206 is fixed to a sleeve (208) described later that rotatably supports the rotor yoke 204.
 図7は、第2の実施形態におけるモータ200の縦断面図である。図7において、棒状のシャフト202にハブ203が嵌合され、ハブ203には磁性体により形成されるカップ状のロータヨーク204が固定されている。このロータヨーク204は筒状の筒部と、軸方向においてステータ211に対向する天面部(環状の平板部)を備えている。ロータヨーク204の外周部の内壁面(内面)にはリング状のマグネット205が固定されている。シャフト202とハブ203とロータヨーク204とマグネット205とによりロータ201が構成される。 FIG. 7 is a vertical cross-sectional view of the motor 200 according to the second embodiment. In FIG. 7, a hub 203 is fitted to a rod-shaped shaft 202, and a cup-shaped rotor yoke 204 formed of a magnetic material is fixed to the hub 203. The rotor yoke 204 includes a tubular portion and a top surface portion (annular flat plate portion) that faces the stator 211 in the axial direction. A ring-shaped magnet 205 is fixed to the inner wall surface (inner surface) of the outer peripheral portion of the rotor yoke 204. The shaft 202, the hub 203, the rotor yoke 204, and the magnet 205 constitute the rotor 201.
 また、シャフト202は、スリーブ208(軸受ハウジングともいう)の内面に固定(嵌合)された軸受209と軸受210とにより回転可能に支持されている。スリーブ208は、筒状であり、プレート206に一端が固定されている。ハブ203の軸方向の端部と軸受209の内輪との間には、テーパ状のスプリング217の小径の端部が軸受209の上に設けられている。これらの構成により、軸受209、210に与圧または予圧がかけられるとともに、遮光部204aのセンサ216側の端部の位置が安定化され、検出精度が高められるようになっている。 The shaft 202 is rotatably supported by a bearing 209 and a bearing 210 fixed (fitted) to the inner surface of a sleeve 208 (also referred to as a bearing housing). The sleeve 208 has a tubular shape and has one end fixed to the plate 206. A small-diameter end of a tapered spring 217 is provided on the bearing 209 between the axial end of the hub 203 and the inner ring of the bearing 209. With these configurations, the bearings 209 and 210 are pressurized or preloaded, and the position of the end of the light shielding portion 204a on the sensor 216 side is stabilized, so that the detection accuracy is improved.
 また、スリーブ208の外周面には、コア212と、第1インシュレータ213および第2インシュレータ214と、コイル215とが設けられている。コア212は、電磁鋼板が積層されて形成されている。第1インシュレータ213および第2インシュレータ214は、コア212を軸方向の両側から挟む。コイル215は、第1インシュレータ213および第2インシュレータ214の外周面に巻回されている。コア212の外周面側はロータ201のマグネット205の内周面とギャップを介して対向している。コア212と第1インシュレータ213と第2インシュレータ214とコイル215とによりステータ211が構成される。 A core 212, a first insulator 213 and a second insulator 214, and a coil 215 are provided on the outer peripheral surface of the sleeve 208. The core 212 is formed by laminating electromagnetic steel plates. The first insulator 213 and the second insulator 214 sandwich the core 212 from both sides in the axial direction. The coil 215 is wound around the outer peripheral surfaces of the first insulator 213 and the second insulator 214. The outer peripheral surface side of the core 212 faces the inner peripheral surface of the magnet 205 of the rotor 201 via a gap. The core 212, the first insulator 213, the second insulator 214, and the coil 215 form the stator 211.
 また、シャフト202の軸方向におけるプレート206とロータ201との間には、回路が設けられた基板207が固定されている。基板207上には、センサ216が設けられている。センサ216は、ロータヨーク204の端部に設けられた遮光部(遮光片)204aを径方向に挟む位置に配置されている。センサ216は、ロータ201の径方向に対して光を放射する光源と、光源からの光を受光する受光部とを備えている。すなわち、センサ216は、横に倒した略コ字状の断面形状をしており、図において上を向いて立った両側の片の内面216a、216bの一方が光源側となり、他方が受光部側となっている。なお、内面216a、216bのどちらが光源側になってもよい。遮光部204aは磁性部材のロータヨーク204と一体に構成することができ、製造が容易になる。センサ216はプレート206とロータ201との間の基板207上に設けられるため、モータの大型化を招かないですむ。基板207は、部材の一例である。遮光部204aは、遮光部または凸部の一例である。 A substrate 207 provided with a circuit is fixed between the plate 206 and the rotor 201 in the axial direction of the shaft 202. A sensor 216 is provided on the substrate 207. The sensor 216 is arranged at a position that radially sandwiches a light-shielding portion (light-shielding piece) 204a provided at the end of the rotor yoke 204. The sensor 216 includes a light source that emits light in the radial direction of the rotor 201, and a light receiving unit that receives light from the light source. That is, the sensor 216 has a substantially U-shaped cross section that is laid down sideways, and one of the inner surfaces 216a and 216b of the pieces on both sides facing upward in the drawing is the light source side and the other is the light receiving portion side. Has become. Either of the inner surfaces 216a and 216b may be on the light source side. The light-shielding portion 204a can be formed integrally with the rotor yoke 204, which is a magnetic member, so that manufacturing is facilitated. Since the sensor 216 is provided on the substrate 207 between the plate 206 and the rotor 201, the size of the motor is not increased. The substrate 207 is an example of a member. The light shielding portion 204a is an example of a light shielding portion or a convex portion.
 図8は、第2の実施形態におけるロータヨーク204の取付の様子を示す図である。図8において、ロータヨーク204はハブ203に固定(嵌合)される前の状態が示されている。基板207上にはセンサ216が設けられている。ロータヨーク204の基板207側の端部には、軸方向に延出した遮光部204aが等間隔に設けられている。図9は、第2の実施形態におけるロータヨーク204を別の視点から見た図である。図示の例では、ロータヨーク204の端部に計4個の遮光部204aが設けられているが、遮光部204aの数はこれに限られず、一つでもよい。また、遮光部204aが複数である場合、遮光部204aの周方向の長さは等しくなくてもよいし、隣り合う遮光部204a間の周方向の間隔も等しくなくてもよい。 FIG. 8 is a diagram showing how the rotor yoke 204 in the second embodiment is attached. In FIG. 8, the rotor yoke 204 is shown in a state before being fixed (fitted) to the hub 203. A sensor 216 is provided on the substrate 207. Light-shielding portions 204a extending in the axial direction are provided at equal intervals at the end of the rotor yoke 204 on the substrate 207 side. FIG. 9 is a view of the rotor yoke 204 according to the second embodiment as viewed from another viewpoint. In the illustrated example, a total of four light shields 204a are provided at the end of the rotor yoke 204, but the number of light shields 204a is not limited to this, and may be one. When there are a plurality of light shields 204a, the circumferential lengths of the light shields 204a do not have to be equal, and the intervals between adjacent light shields 204a in the circumferential direction do not have to be equal.
 なお、遮光部204aに代えて、ロータヨーク204の端部に透明な部材による筒(円筒)が設けられ、この透明な筒に着色等により遮光面による遮光部が設けられるようにしてもよい。遮光面による遮光部の数は任意であり、遮光面による遮光部の周方向の長さは等しくなくてもよいし、隣り合う遮光部間の周方向の間隔も等しくなくてもよい。 Instead of the light shielding portion 204a, a tube (cylindrical) made of a transparent member may be provided at the end of the rotor yoke 204, and the transparent tube may be provided with a light shielding portion by a light shielding surface by coloring or the like. The number of light-shielding portions formed by the light-shielding surface is not limited, and the lengths of the light-shielding portions formed by the light-shielding surface in the circumferential direction may not be equal, or the intervals in the circumferential direction between the adjacent light-shielding portions may not be equal.
 図6~図9に示されたような構成により、ロータ201の回転により遮光部204aがセンサ216の光源と受光部との間を通過し、光を断続的に遮断することとなり、センサ216からはロータ201の回転状態を示す信号が得られ、速度制御等に利用される、すなわち、回転状態を示す信号は、基板207に設けられた回路で使用されるとともに、必要に応じて外部に出力される。このように、簡便な構成で回転角度の検出精度の向上を図ることができる。なお、従来のホール素子等による磁気センサの場合と比べ、マグネットの温度やマグネットとセンサとの距離に影響を受けないため、安定して検出が行える利点がある。また、マグネット上の反射面と発光素子および受光素子とによる場合と比べ、マグネットの振動による影響を受けないため、安定して検出が行える利点がある。 With the configuration as shown in FIG. 6 to FIG. 9, the rotation of the rotor 201 causes the light shielding portion 204a to pass between the light source and the light receiving portion of the sensor 216, and interrupts the light intermittently. Is used for speed control or the like, that is, the signal indicating the rotation state is used by the circuit provided on the substrate 207 and is output to the outside as necessary. To be done. In this way, it is possible to improve the detection accuracy of the rotation angle with a simple configuration. It should be noted that, as compared with the case of a conventional magnetic sensor using a Hall element or the like, it is not affected by the temperature of the magnet or the distance between the magnet and the sensor, and thus has an advantage that stable detection can be performed. Further, as compared with the case where the reflecting surface on the magnet and the light emitting element and the light receiving element are used, there is an advantage that stable detection can be performed because it is not affected by the vibration of the magnet.
 なお、センサ216や遮光部204aや遮光面に汚れ等が付着することによる誤検出を避ける上で、センサ216の信号のうち、光源からの光が遮光された状態から遮光が解除された状態への変化から回転状態を検出することが望ましい。これは、光源からの光が遮光された状態は、本当の遮光部204aによる遮光でなく汚れ等による遮光である場合が含まれるのに対し、遮光が解除された状態は汚れ等による影響がないからである。 In order to avoid erroneous detection due to dirt or the like adhering to the sensor 216, the light-shielding portion 204a, or the light-shielding surface, in the signal of the sensor 216, the state in which the light from the light source is shielded is changed to the state in which the light shielding is released. It is desirable to detect the rotation state from the change of. This includes the case where the state where the light from the light source is shielded is not the case where the light is shielded by the actual light shielding portion 204a but the case where the light is shielded by the dirt, whereas the state where the light shielding is released is not affected by the dirt or the like. Because.
(第3の実施形態)
 図10は、第3の実施形態に係る回転機器300の外観斜視図であり、回転機器300が送風ファンである場合の例である。図10において、回転機器300は、外から見える部分として、カバー304と、送風口枠305と、インペラ303とを備えている。すなわち、カバー304の内部にインペラ303が設けられ、送風口枠305の内部から送風が行われる。
(Third Embodiment)
FIG. 10 is an external perspective view of the rotating device 300 according to the third embodiment, and is an example when the rotating device 300 is a blower fan. In FIG. 10, the rotating device 300 includes a cover 304, a blower opening frame 305, and an impeller 303, which are visible from the outside. That is, the impeller 303 is provided inside the cover 304, and air is blown from the inside of the blower opening frame 305.
 図11は、第3の実施形態における回転機器300の要素を分解して示した斜視図である。図11において、回転機器300は、プレート301と、モータ200と、インペラ303と、カバー304と、送風口枠305とを備えている。すなわち、板状のプレート301の孔部301aにモータ200が固定され、モータ200のロータヨーク204にインペラ303が固定される。また、カバー304に送風口枠305が固定されて、カバー304がプレート301に複数のネジ302により固定される。モータ200は、図6~図9に示されたアウター型のモータである。 FIG. 11 is an exploded perspective view of elements of the rotating device 300 according to the third embodiment. 11, the rotating device 300 includes a plate 301, a motor 200, an impeller 303, a cover 304, and a blower opening frame 305. That is, the motor 200 is fixed to the hole 301a of the plate-shaped plate 301, and the impeller 303 is fixed to the rotor yoke 204 of the motor 200. Further, the blower opening frame 305 is fixed to the cover 304, and the cover 304 is fixed to the plate 301 with a plurality of screws 302. The motor 200 is the outer type motor shown in FIGS. 6 to 9.
 モータ200は、図7等に示されたように、遮光部204aとセンサ216とにより簡便に回転状態を検出する機能を有しているため、回転機器300におけるモータ200の回転状態を正確に検出し、送風状態を適正に制御することができる。 As shown in FIG. 7 and the like, the motor 200 has a function of simply detecting the rotation state by the light shielding unit 204a and the sensor 216, and thus the rotation state of the motor 200 in the rotating device 300 is accurately detected. However, it is possible to properly control the blown state.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。 The embodiments of the present invention have been described above, but the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention.
 以上のように、実施形態に係るモータは、シャフトと、シャフトに軸支されたロータと、シャフトの軸方向において、ロータと対向する部材と、部材に設けられたセンサと、を備え、センサは、径方向に光を放射する光源と、光源からの光を受光する受光部と、を有し、ロータは、軸方向における端部に遮光部が形成され、ロータの回転状態において、光源から受光部へ向かう光が遮光部により遮光される。これにより、回転角度の検出精度の向上を図ることができるモータを提供することができる。 As described above, the motor according to the embodiment includes the shaft, the rotor axially supported by the shaft, the member facing the rotor in the axial direction of the shaft, and the sensor provided on the member. The rotor has a light source that emits light in a radial direction and a light-receiving unit that receives light from the light source.The rotor has a light-shielding unit formed at an end in the axial direction, and receives light from the light source when the rotor is rotating. The light directed to the section is blocked by the light blocking section. Accordingly, it is possible to provide a motor capable of improving the detection accuracy of the rotation angle.
 また、遮光部は、ロータの端部において軸方向に突出する凸部である。これにより、簡便な構成で回転角度の検出精度の向上を図ることができる。 Also, the light shielding portion is a convex portion that projects in the axial direction at the end of the rotor. This makes it possible to improve the detection accuracy of the rotation angle with a simple configuration.
 また、遮光部は、ロータの端部において透明な部材に形成された遮光面である。これにより、簡便な構成で回転角度の検出精度の向上を図ることができる。 Also, the light-shielding portion is a light-shielding surface formed on a transparent member at the end of the rotor. This makes it possible to improve the detection accuracy of the rotation angle with a simple configuration.
 また、ロータヨーク105の端部には、周方向において、遮光部と採光部とが設けられていても構わない。前述の実施例では、採光部は周方向において複数の遮光部の間に形成された間隙に相当する。 Further, at the end of the rotor yoke 105, a light shielding part and a daylighting part may be provided in the circumferential direction. In the above-described embodiment, the lighting portion corresponds to the gap formed between the plurality of light shielding portions in the circumferential direction.
 また、周方向において、遮光部が採光部より長くてもよく、採光部が遮光部より長くても構わない。また、周方向において、複数の遮光部の長さを合算したものが複数の採光部の長さを合算したものより大きくてもよく、複数の採光部の長さを合算したものが複数の遮光部の長さを合算したものより大きくてもよい。 Also, the light-shielding portion may be longer than the light-collecting portion in the circumferential direction, or the light-collecting portion may be longer than the light-shielding portion. Further, in the circumferential direction, the sum of the lengths of the plurality of light-shielding portions may be larger than the sum of the lengths of the plurality of light-obtaining portions, and the sum of the lengths of the plurality of light-obtaining portions is the plurality of light-shielding portions. It may be larger than the total length of the parts.
 また、ロータは、筒状の磁性部材を有し、遮光部は、磁性部材に形成される。これにより、遮光部をロータの磁性部材と一体に構成することができ、製造が容易になる。 Also, the rotor has a cylindrical magnetic member, and the light shielding portion is formed of the magnetic member. As a result, the light shielding portion can be integrally formed with the magnetic member of the rotor, which facilitates manufacturing.
 また、ロータヨークは磁性部材で形成することに限定されず、樹脂部材などの非磁性部材で形成しても構わない。 Also, the rotor yoke is not limited to being formed of a magnetic member, and may be formed of a non-magnetic member such as a resin member.
 また、ベースと、シャフトを回転自在に支持する軸受とを備え、シャフトは、軸受を介してベースに支持され、部材は、軸方向においてベースとロータとの間に形成される。これにより、モータの大型化を招かないですむ。 Also, the base and a bearing that rotatably supports the shaft are provided. The shaft is supported by the base via the bearing, and the member is formed between the base and the rotor in the axial direction. As a result, the size of the motor is not increased.
 また、軸受108の内輪に接してリング状の台座(バネ座)109がシャフト104に固定(嵌合)されていても構わない。台座109とロータヨーク105の端面との間にはスプリング110が設けられていても構わない。必要に応じて、これらの構成を設けることで、軸受107、108に与圧または予圧をかけて、遮光部105aのセンサ117側の端部の位置を安定させ、検出精度を高めても構わない。なおスプリング110は、弾性部材の一例である。 Further, a ring-shaped pedestal (spring seat) 109 may be fixed (fitted) to the shaft 104 in contact with the inner ring of the bearing 108. A spring 110 may be provided between the pedestal 109 and the end surface of the rotor yoke 105. By providing these configurations as necessary, the bearings 107 and 108 may be pressurized or preloaded to stabilize the position of the end portion of the light shielding portion 105a on the sensor 117 side and enhance the detection accuracy. .. The spring 110 is an example of an elastic member.
 また、ベースと、シャフトを回転自在に支持する軸受と、軸受とロータとの間、または軸受とベースとの間に配置され、軸方向に弾性圧縮可能な弾性部材とを備えていても構わない。これにより、軸受に適切な与圧または予圧をかけるとともに、遮光部のセンサ側の端部の位置が安定化され、検出精度が高まる。 Further, it may include a base, a bearing that rotatably supports the shaft, and an elastic member that is disposed between the bearing and the rotor or between the bearing and the base and is elastically compressible in the axial direction. .. As a result, an appropriate pressurization or preload is applied to the bearing, and the position of the sensor-side end of the light shielding unit is stabilized, so that the detection accuracy is improved.
 また、センサの信号のうち、光源からの光が遮光された状態から遮光が解除された状態への変化から回転状態を検出する。これにより、汚れ等が付着することによる誤検出を避けることができる。 Also, in the signal of the sensor, the rotation state is detected from the change from the state where the light from the light source is blocked to the state where the light blocking is released. This makes it possible to avoid erroneous detection due to the attachment of dirt or the like.
 また、ロータを囲むステータを備え、ロータの外周部に遮光部が設けられている。これにより、インナーロータ型のモータに容易に適用することができる。 Also, a stator surrounding the rotor is provided, and a light shield is provided on the outer periphery of the rotor. As a result, it can be easily applied to an inner rotor type motor.
 また、ロータの内側にはステータが設けられており、ロータの外周部に遮光部が設けられている。これにより、アウターロータ型のモータに容易に適用することができる。 Also, a stator is provided inside the rotor, and a light shield is provided on the outer periphery of the rotor. As a result, it can be easily applied to an outer rotor type motor.
 また、ハブの軸方向の端部と軸受の内輪との間に設けられているテーパ状のスプリングに代えて、筒状のスプリングを設けても構わない。 Also, a cylindrical spring may be provided instead of the tapered spring provided between the axial end of the hub and the inner ring of the bearing.
 また、回転機器は、上記のモータと、シャフトに固定されるインペラとを備える。これにより、回転機器のモータの回転状態を正確に検出し、適正に制御することができる。 Also, the rotating device includes the above motor and an impeller fixed to the shaft. As a result, the rotation state of the motor of the rotating device can be accurately detected and properly controlled.
 また、上記実施の形態により本発明が限定されるものではない。上述した各構成素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。 Also, the present invention is not limited to the above embodiment. The present invention also includes those configured by appropriately combining the constituent elements described above. Further, further effects and modified examples can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
 本願は、2018年11月8日に提出された日本出願2018-210451の利益を享有する。 This application enjoys the benefit of Japanese application 2018-210451 filed on November 8, 2018.
 100、200 モータ,103、201 ロータ,104、202 シャフト,105、204 ロータヨーク,105a、204a 遮光部,106、205 マグネット,107、108、209、210 軸受,110、217 スプリング,111、211 ステータ,116、207 基板,117、216 センサ 100, 200 motor, 103, 201 rotor, 104, 202 shaft, 105, 204 rotor yoke, 105a, 204a light shielding part, 106, 205 magnet, 107, 108, 209, 210 bearing, 110, 217 spring, 111, 211 stator, 116, 207 substrate, 117, 216 sensor

Claims (10)

  1.  シャフトと、
     前記シャフトに軸支されたロータと、
     前記シャフトの軸方向において、前記ロータと対向する部材と、
     前記部材に設けられたセンサと、
    を備え、
     前記センサは、
     径方向に光を放射する光源と、
     前記光源からの光を受光する受光部と、
    を有し、
     前記ロータは、軸方向における端部に遮光部が形成され、
     前記ロータの回転状態において、前記光源から前記受光部へ向かう光が前記遮光部により遮光される、
    モータ。
    Shaft,
    A rotor supported on the shaft,
    A member facing the rotor in the axial direction of the shaft,
    A sensor provided on the member,
    Equipped with
    The sensor is
    A light source that emits light in a radial direction,
    A light receiving portion for receiving light from the light source,
    Have
    The rotor has a light shielding portion formed at an end portion in the axial direction,
    In the rotating state of the rotor, light traveling from the light source to the light receiving section is blocked by the light blocking section,
    motor.
  2.  前記遮光部は、前記ロータの端部において軸方向に突出する凸部である、
    請求項1に記載のモータ。
    The light shielding portion is a convex portion that projects in the axial direction at the end portion of the rotor,
    The motor according to claim 1.
  3.  前記遮光部は、前記ロータの端部において透明な部材に形成された遮光面である、
    請求項1に記載のモータ。
    The light shielding portion is a light shielding surface formed on a transparent member at an end portion of the rotor,
    The motor according to claim 1.
  4.  前記ロータは、筒状の磁性部材を有し、
     前記遮光部は、前記磁性部材に形成される、
    請求項1~3のいずれか一つに記載のモータ。
    The rotor has a cylindrical magnetic member,
    The light shielding portion is formed on the magnetic member,
    The motor according to any one of claims 1 to 3.
  5.  ベースと、
     前記シャフトを回転自在に支持する軸受と、
    を備え、
     前記シャフトは、前記軸受を介して前記ベースに支持され、
     前記部材は、軸方向において前記ベースと前記ロータとの間に形成される、
    請求項1~4のいずれか一つに記載のモータ。
    Base,
    A bearing that rotatably supports the shaft,
    Equipped with
    The shaft is supported by the base via the bearing,
    The member is formed between the base and the rotor in the axial direction,
    The motor according to any one of claims 1 to 4.
  6.  ベースと、
     前記シャフトを回転自在に支持する軸受と、
     前記軸受と前記ロータとの間、または前記軸受と前記ベースとの間に配置され、軸方向に弾性圧縮可能な弾性部材と、
    を備える、
    請求項1~5のいずれか一つに記載のモータ。
    Base,
    A bearing that rotatably supports the shaft,
    An elastic member that is arranged between the bearing and the rotor or between the bearing and the base and is elastically compressible in the axial direction,
    With
    The motor according to any one of claims 1 to 5.
  7.  前記センサの信号のうち、前記光源からの光が遮光された状態から遮光が解除された状態への変化から回転状態を検出する、
    請求項1~6のいずれか一つに記載のモータ。
    Of the signal of the sensor, the rotation state is detected from the change from the state where the light from the light source is shielded to the state where the light shielding is released,
    The motor according to any one of claims 1 to 6.
  8.  前記ロータを囲むステータを備え、
     前記ロータの外周部に前記遮光部が設けられている、
    請求項1~7のいずれか一つに記載のモータ。
    A stator surrounding the rotor,
    The light shielding portion is provided on the outer peripheral portion of the rotor,
    The motor according to any one of claims 1 to 7.
  9.  前記ロータの内側にはステータが設けられており、
     前記ロータの外周部に前記遮光部が設けられている、
    請求項1~7のいずれか一つに記載のモータ。
    A stator is provided inside the rotor,
    The light shielding portion is provided on the outer peripheral portion of the rotor,
    The motor according to any one of claims 1 to 7.
  10.  請求項1~9のいずれか一つに記載の前記モータと、
     前記シャフトに固定されるインペラと、
    を備える回転機器。
    The motor according to any one of claims 1 to 9,
    An impeller fixed to the shaft,
    A rotating device equipped with.
PCT/JP2019/035650 2018-11-08 2019-09-11 Motor and rotary equipment WO2020095535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112019005611.5T DE112019005611T5 (en) 2018-11-08 2019-09-11 MOTOR AND ROTARY MACHINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-210451 2018-11-08
JP2018210451A JP7325946B2 (en) 2018-11-08 2018-11-08 Motors and rotating equipment

Publications (1)

Publication Number Publication Date
WO2020095535A1 true WO2020095535A1 (en) 2020-05-14

Family

ID=70611742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035650 WO2020095535A1 (en) 2018-11-08 2019-09-11 Motor and rotary equipment

Country Status (3)

Country Link
JP (2) JP7325946B2 (en)
DE (1) DE112019005611T5 (en)
WO (1) WO2020095535A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522889A (en) * 1991-07-10 1993-01-29 Hitachi Ltd Brushless motor
JPH0530701A (en) * 1991-07-19 1993-02-05 Matsushita Electric Ind Co Ltd Motor
JPH0549225A (en) * 1991-08-09 1993-02-26 Toshiba Corp Brushless motor
JP2000166287A (en) * 1998-07-06 2000-06-16 Fumito Komatsu Synchronous motor
JP2011147341A (en) * 2011-03-09 2011-07-28 Nidec Servo Corp Motor, and blowing fan

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622845A (en) 1985-06-26 1987-01-08 Matsushita Electric Ind Co Ltd Motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522889A (en) * 1991-07-10 1993-01-29 Hitachi Ltd Brushless motor
JPH0530701A (en) * 1991-07-19 1993-02-05 Matsushita Electric Ind Co Ltd Motor
JPH0549225A (en) * 1991-08-09 1993-02-26 Toshiba Corp Brushless motor
JP2000166287A (en) * 1998-07-06 2000-06-16 Fumito Komatsu Synchronous motor
JP2011147341A (en) * 2011-03-09 2011-07-28 Nidec Servo Corp Motor, and blowing fan

Also Published As

Publication number Publication date
JP2023143973A (en) 2023-10-06
DE112019005611T5 (en) 2021-07-22
JP2020078193A (en) 2020-05-21
JP7325946B2 (en) 2023-08-15

Similar Documents

Publication Publication Date Title
US8624453B2 (en) Motor with encoder and encoder for motor
US8653707B2 (en) Motor having an encoder to detect rotation of a rotating body
JP5747887B2 (en) Rotating electric machine
JP2018503840A (en) Magnetic angular displacement measurement system
US6993968B2 (en) Liquid level sensing apparatus
JP5886269B2 (en) Rotation detection device and motor
JP2013009573A (en) Motor
JPH09308171A (en) Motor with magnetic type encoder
JP2010271174A (en) Encoder
WO2020095535A1 (en) Motor and rotary equipment
JP2019068522A (en) motor
WO2017135440A1 (en) Rotation-angle detection device and electric motor
TW202011002A (en) Encoder with magnetic field shielding plate
JPWO2018092207A1 (en) Rotation position detector
JP2009156114A (en) Fan motor and method for measuring revolution speed
JP2007155580A (en) Rotation sensor
KR102534522B1 (en) Assembly for sensing and apparatus for steering
JP2006313073A (en) Redundant system rotation detector
JP2013246077A (en) Rotation angle detector and motor device
JP2021530707A (en) Rotation angle measurement system
JP2011151899A (en) Motor
JP5820686B2 (en) motor
JP2014180108A (en) Dynamo-electric machine
KR20120062347A (en) Spindle motor and optical disk driving device having the same
KR20180085494A (en) Detecting device for sensing the rotor position and motor having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881679

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19881679

Country of ref document: EP

Kind code of ref document: A1