WO2020095386A1 - Scroll fluid machine - Google Patents

Scroll fluid machine Download PDF

Info

Publication number
WO2020095386A1
WO2020095386A1 PCT/JP2018/041360 JP2018041360W WO2020095386A1 WO 2020095386 A1 WO2020095386 A1 WO 2020095386A1 JP 2018041360 W JP2018041360 W JP 2018041360W WO 2020095386 A1 WO2020095386 A1 WO 2020095386A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
fluid machine
wrap
expansion chamber
fixed disk
Prior art date
Application number
PCT/JP2018/041360
Other languages
French (fr)
Japanese (ja)
Inventor
藤岡 完
小林 健一
齋藤 昌之
ルカ ネスポリ
Original Assignee
アネスト岩田株式会社
エネルジェティカメンテ リノヴァービリ エス アール エル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アネスト岩田株式会社, エネルジェティカメンテ リノヴァービリ エス アール エル filed Critical アネスト岩田株式会社
Priority to PCT/JP2018/041360 priority Critical patent/WO2020095386A1/en
Publication of WO2020095386A1 publication Critical patent/WO2020095386A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present disclosure relates to scroll fluid machines.
  • scroll compressors for compressing fluids and scroll expanders for extracting and using the energy of expanding fluids as swirling forces are known.
  • Patent Document 1 two scrolls of fixed scroll wrap whose phases are shifted from each other by 180 ° about a first involute base circle and two scrolls of which phases are shifted from each other by 180 ° about a second involute base circle.
  • a scroll expander configured to apply a high torque to the orbiting scroll wrap by arranging the orbiting scroll wrap and the orbiting scroll wrap with respect to the involute base circle by shifting their phases by 90 °.
  • scroll fluid machines are characterized by less torque fluctuation, less noise and vibration, and higher energy efficiency than other fluid machines. Utilizing such characteristics, it is desired to be applied to various applications by combining scroll type fluid machinery.
  • a scroll type fluid machine for example, power generation is performed in which a fluid containing a mixture of air and fuel is compressed by a scroll compressor, and the compressed fluid is burned and expanded by a scroll expander.
  • Devices supercharged internal combustion scroll rotary motors
  • this power generation device is expected to have better performance than a power generation device such as a conventional internal combustion engine.
  • At least one embodiment of the present invention aims to realize a scroll fluid machine including a compression chamber and an expansion chamber that handles a fluid containing a mixture for power generation, in a compact configuration. ..
  • a scroll fluid machine for compressing or expanding a fluid containing a mixture of air and fuel, comprising: A swirl disk including a spiral first wrap standing on a first surface and a spiral second wrap standing on a second surface opposite to the first surface; A first fixed disk including a spiral third wrap standing on one surface opposite to the first surface and forming a compression chamber with the first wrap; A second fixed disk that includes a spiral fourth wrap that is provided upright on one surface facing the second surface and that forms an expansion chamber with the second wrap; Is equipped with.
  • the orbiting disc includes the first wrap forming the compression chamber on the first surface thereof, and the second wrap forming the expansion chamber on the second surface opposite to the first surface.
  • the scroll type compression chamber can be arranged in parallel on one side and the scroll type expansion chamber can be arranged side by side on the other side of the orbiting disc. That is, the first wrap for forming the scroll type compression chamber and the second wrap for forming the scroll type expansion chamber are provided on one surface and the other surface of the common swivel disk, respectively.
  • a first scroll unit and a second scroll unit in which the first fixed disk and the second fixed disk are combined with the orbiting disk sandwiched may be provided in the orbiting axis direction of the orbiting disk.
  • the capacity of the expansion chamber or the compression chamber required according to the desired output is arbitrarily adjusted by the number of scroll units installed in the orbiting axis direction without increasing the size in the radial direction.
  • a possible scroll fluid machine can be realized with a compact configuration.
  • the first fixed disk or the second fixed disk of the first scroll unit may be integrally configured with the first fixed disk or the second fixed disk of the second scroll unit.
  • the fixed disks of the first scroll unit and the second scroll unit that are adjacent to each other are integrally configured, so that the number of parts can be reduced.
  • the first scroll unit and the second scroll unit may be configured symmetrically with respect to a joint surface of the first scroll unit and the second scroll unit.
  • the two scroll units are symmetrically arranged in the orbiting axis direction with the joint surface of each scroll unit as a boundary. Therefore, for example, it is possible to realize a scroll fluid machine that is well balanced in the orbiting axis direction with respect to the load caused by the expansion of the compressed fluid or the orbiting motion of the orbiting disk with a compact configuration.
  • the first scroll unit and the second scroll unit may be combined so that the compression chamber is located closer to the joint surface than the expansion chamber.
  • the scroll units are combined so that the compression chamber is provided inside and the expansion chamber is provided outside with respect to the joint surface.
  • the expansion chamber can be easily accessed from the outside, and thus the fluid after expansion can be easily taken out.
  • a cooling unit including a coolant passage through which a coolant can pass may be provided between the first scroll unit and the second scroll unit.
  • a cooling unit that includes a cooling passage through which a refrigerant can pass is provided between the scroll units. It is provided. Since the cooling unit is provided between the scroll units, it is possible to cool two scroll units adjacent to each other at the same time. The refrigerant that has recovered the amount of heat by cooling the two scroll units can also be used by taking it out to the outside.
  • the swivel disc may be configured to be swivelable relative to the first fixed disc and the second fixed disc by a plurality of support mechanisms arranged at different positions along the circumferential direction.
  • the support mechanism may include a shaft that is connected to the swivel disc and extends in the swivel axis direction, and a bearing that rotatably supports the shaft.
  • the rotating disk can be rotatably supported by the bearing via the shaft rotatably supported by the bearing. Furthermore, for example, by using a bearing capable of bearing the load acting on the shaft in the radial direction and the thrust direction, it is possible to realize a smooth turning operation of the turning disk.
  • the height of the first wrap may be different from the height of the second wrap.
  • the volume of the compression chamber formed on the first surface side of the swivel disc and the volume of the expansion chamber formed on the second surface side are arbitrarily adjusted with a simple configuration. be able to.
  • the scroll fluid machine as a whole can arbitrarily change the volume ratio between the compression chamber and the expansion chamber without changing the size in the orbiting axis direction. Can be changed.
  • At least one of the first fixed disk and the second fixed disk may include a heat dissipation fin that is capable of contacting with the outside air.
  • a communication passage may be further provided that connects the compression chamber and the expansion chamber.
  • the compression chamber and the expansion chamber capable of communicating fluids with each other can be realized with a compact configuration.
  • a power generation device may be configured to output an output torque by generating a high temperature gas by expanding and igniting the high temperature gas by igniting and burning the fluid by the spark plug in the expansion chamber.
  • the spark plug is arranged in the expansion chamber.
  • a spark plug ignites and burns a fluid containing a combustible mixture to generate a high temperature gas, and the high temperature gas expands to output an output torque.
  • the fluid introduced into the expansion chamber may be configured to be compressed in the compression chamber.
  • the fluid is supplied to the compression chamber via the supply passage, and the fluid is discharged from the expansion chamber via the discharge passage. Therefore, the scroll fluid machine including the compressor and the expander and capable of smoothly supplying and discharging the fluid can be realized with a compact configuration.
  • a scroll fluid machine including a compression chamber and an expansion chamber that handles a fluid containing a mixture for power generation, with a compact configuration.
  • an expression representing a shape such as a quadrangle or a cylindrical shape does not only represent a shape such as a quadrangle or a cylindrical shape in a geometrically strict sense, but also an uneven portion or A shape including a chamfered portion and the like is also shown.
  • the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one element are not exclusive expressions excluding the existence of other elements.
  • FIG. 1 is a sectional view schematically showing a configuration of a scroll fluid machine 1 according to at least one embodiment of the present invention.
  • a scroll fluid machine 1 according to at least one embodiment of the present invention is used to compress or expand a fluid F.
  • the scroll fluid machine 1 is used to compress a mixture of air and fuel, ignite and burn the mixture, expand hot gas, and provide an output torque corresponding to an internal combustion scroll rotary motor. obtain.
  • the scroll fluid machine 1 includes a spiral first wrap 24 standing on a first surface 22 and a spiral second wrap standing on a second surface 26 opposite to the first surface 22.
  • First fixing including a swirl disc 20 including a wrap 28, and a spiral third wrap 32 standing upright on one surface of the swivel disc 20 facing the first surface 22 and forming a compression chamber 50 together with the first wrap 24.
  • the swivel disc 20 is formed by a first wrap 24 formed on the first surface 22 of the swivel disc 20 and a third wrap 32 formed on a fixed disc (first fixed disc 30).
  • Form a scroll compressor for compressing the fluid F and a second wrap 28 formed on the second surface 26 of the orbiting disc 20 and a fourth wrap formed on a fixed disc (second fixed disc 40).
  • a scroll expander for taking out the energy of the fluid F expanded in the expansion chamber 52 formed by 42 as rotation energy is formed.
  • the scroll expander introduces a high-pressure working fluid F into a gas pocket formed by meshing spiral wraps 28 and 42 provided on an orbiting scroll (orbiting disc 20) and a fixed scroll (second fixed disc 40).
  • the orbiting scroll is orbited by the energy of the working fluid F at the time of expansion, and the orbiting force of the orbiting scroll is extracted as a rotational force.
  • the extracted rotational force may, for example, be transmitted to the rotating shaft of the generator for the orbiting motion of the orbiting scroll to obtain electric power, or may be used as a power source for another machine such as a pump.
  • the first fixed disk 30 and the second fixed disk 40 are sandwiched by the single turning disk 20 having the laps formed on one surface (for example, the front surface) and the other surface (for example, the back surface).
  • the following description will be made on the assumption that the scroll unit 10 has a configuration including a compression chamber and an expansion chamber.
  • the general structure and operating principle for constructing a scroll compressor and a scroll expander are well known and will not be described in detail here.
  • the orbiting disc 20 includes the first wrap 24 forming the compression chamber 50 on the first surface 22 thereof, and the expansion chamber 52 is provided on the second surface 26 opposite to the first surface 22.
  • the second wrap 28 By including the second wrap 28 to be formed, it is possible to arrange the scroll type compression chamber 50 on one side and the scroll type expansion chamber 52 on the other side across the orbiting disc 20. That is, the first wrap 24 for forming the scroll type compression chamber and the second wrap for forming the scroll type expansion chamber 52 are formed on one surface (first surface 22) of the common orbiting disk 20.
  • the scroll fluid machine 1 including the compressor and the expander can be realized with a compact configuration.
  • the scroll fluid machine 1 according to the present disclosure may be used as a power source for extracting hot water or heat for heating while generating electric power as a CHP (combined heat and electric power), for example.
  • FIG. 2 is a perspective view schematically showing the configuration of the scroll fluid machine according to the embodiment.
  • FIG. 3 is an exploded perspective view schematically showing the configuration of the scroll fluid machine according to the embodiment.
  • FIG. 4 is a perspective sectional view schematically showing the configuration of the scroll fluid machine according to the embodiment.
  • the first scroll unit 10A and the second scroll unit 10B in which the first fixed disk 30 and the second fixed disk 40 are combined with the orbiting disk 20 interposed therebetween are combined. May be provided in the turning axis Z direction of the turning disk 20. That is, in some embodiments, it is possible to expand to a configuration having a plurality of scroll units 10 (two or more stages).
  • the capacity of the expansion chamber 52 or the compression chamber 50 required according to the desired output is not increased in the radial direction. It is possible to realize the scroll fluid machine 1 having a compact configuration, which can be arbitrarily adjusted depending on the number of scroll units 10 provided in the orbiting axis Z direction.
  • FIG. 5 is a sectional view schematically showing the configuration of the scroll fluid machine according to the embodiment.
  • the first fixed disk 30 or the second fixed disk 40 of the first scroll unit 10A is the first fixed disk 30 or the second fixed disk 40 of the second scroll unit 10B. May be integrally configured with.
  • first scroll unit 10A and the second scroll unit 10B may be configured symmetrically with respect to the joint surface 12 of the first scroll unit 10A and the second scroll unit 10B (FIG. 2 to FIG. 2). (See FIG. 4).
  • the respective units may be combined so that the compression chamber and the expansion chamber are arranged in the same order in the swivel axis Z direction toward one side and the other side with the joint surface 12 as a reference.
  • an even number of scroll units 10 may be arranged in the orbiting axis Z direction.
  • the joint surface 12 is in the Z-axis direction of the integrally formed fixed disk. It means the plane passing through the midpoint of the thickness (see FIG. 5).
  • the two scroll units 10 are arranged in the direction of the orbiting axis Z. They are arranged symmetrically with respect to the joint surface 12. Therefore, for example, it is possible to realize the scroll fluid machine 1 having a compact configuration in which the scroll fluid machine 1 is balanced with respect to the load caused by the expansion of the compressed fluid F and the orbiting operation of the orbiting disk 20.
  • first scroll unit 10A and the second scroll unit 10B may be combined so that the compression chamber 50 is located closer to the joint surface 12 than the expansion chamber 52 (FIGS. (See FIG. 5).
  • the compression chamber 50 is arranged closer to the joint surface 12 than the expansion chamber 52, in each scroll unit 10, the compression chamber 50 is provided on the inside with respect to the joint surface 12 and the expansion chamber 52 is on the outside. Are combined so as to be arranged in. As a result, the expansion chamber 52 can be easily accessed from the outside, and thus the expanded fluid can be easily taken out.
  • the scroll fluid machine 1 may include, between the first scroll unit 10A and the second scroll unit 10B, the cooling unit 60 including the refrigerant flow passage 62 through which the refrigerant 64 can pass ( (See FIGS. 4 and 5).
  • the scroll fluid machine 1 includes the cooling unit 60
  • the refrigerant is provided between the scroll units 10.
  • a cooling unit 60 including a coolant channel 62 through which 64 can pass is provided. Since the cooling unit 60 is provided between the scroll units 10, two scroll units 10 adjacent to each other can be cooled at the same time. Further, the refrigerant 64 that has recovered the amount of heat by cooling the two scroll units 10 can also be used by taking it out to the outside.
  • the coolant flow path 62 may be provided in at least one of the first fixed disk 30 and the second fixed disk 40 (see, for example, FIGS. 4 and 5). Further, the cooling unit 60 may include a transportation unit such as a pump for transporting the refrigerant 64.
  • the swivel disc 20 is configured to be swivelable relative to the first fixed disc 30 and the second fixed disc 40 by a plurality of support mechanisms 70 arranged at different positions along the circumferential direction. (See FIGS. 2 to 4).
  • the structure for swiveling the swivel disc 20 while preventing its rotation is realized in a compact manner. can do.
  • the support mechanism 70 may include a shaft 72 coupled to the swivel disc 20 and extending in the swivel axis Z direction, and a bearing 74 rotatably supporting the shaft 72 (FIGS. (See FIG. 4).
  • the swing disk 20 is swingably supported by the bearing 74 via the shaft 72 that is rotatably supported by the bearing 74.
  • the bearing 74 capable of bearing the load in the radial direction and the thrust direction that acts on the shaft 72, it is possible to realize the smooth turning operation of the turning disk 20.
  • the bearing 74 supporting the shaft 72 connected to the swivel disc 20 may be the bearing 74 capable of bearing the load in the radial direction and the thrust direction as described above.
  • the orbiting scroll (orbiting disc 20) of the first scroll unit 10A and the orbiting scroll (orbiting disc 20) of the second scroll unit 10B may be operated with a phase shift of 180 degrees. By doing so, it is possible to reduce the deviation of the vibration and the load due to the turning operation of the turning disk 20 in the direction orthogonal to the turning axis Z direction.
  • FIG. 6 is a schematic diagram schematically showing the configuration of the scroll fluid machine according to the embodiment. As shown in FIG. 6, in some embodiments, the swivel disc 20 may have different heights for the first wrap 24 and the second wrap 28.
  • the volume of the expansion chamber 52 to be adjusted can be arbitrarily adjusted with a simple configuration. For example, when the size of the orbiting disk 20 is restricted in the orbiting axis Z direction, the entire scroll fluid machine 1 does not need to change the size in the orbiting axis Z direction, and if necessary, the compression chamber 50 and the expansion chamber 52 The volume ratio of can be arbitrarily changed.
  • the third wrap 32 that forms the compression chamber with the first wrap 24 and the fourth wrap 42 that forms the expansion chamber with the second wrap 28 also have different heights according to the heights of the wraps that mesh with each other. You may have.
  • FIG. 7 is a figure which shows schematically the structure of the scroll fluid machine which concerns on one Embodiment.
  • at least one of the first fixed disk 30 and the second fixed disk 40 may include a heat dissipation fin 80 that can contact the outside air.
  • the shape, height, number or arrangement of the radiation fins 80 can be set arbitrarily.
  • the heat dissipation fin 80 can increase the contact area for heat exchange with the outside air. It is possible to improve the cooling efficiency when the scroll fluid machine 1 is used as a power source.
  • the scroll fluid machine 1 may further include a communication passage 54 that connects the compression chamber 50 and the expansion chamber 52 (see FIGS. 1, 5, and 6).
  • the flow of the fluid F through the communication passage 54 may be from the compression chamber 50 to the expansion chamber 52 or from the expansion chamber 52 to the compression chamber 50.
  • the compression chamber 50 and the expansion chamber 52 that can communicate fluids with each other can be realized with a compact structure.
  • the scroll fluid machine 1 may be configured such that the fluid F introduced into the expansion chamber 52 is compressed in the compression chamber 50 (see FIGS. 1, 3, 5, and 6). ).
  • the scroll fluid machine 1 may include a spark plug 82 arranged in the expansion chamber 52 (see FIG. 4).
  • the compressed fluid F may contain combustible fuel.
  • natural gas eg, methane gas
  • the spark plug 82 may be configured to ignite the high-pressure fuel at an appropriate timing after the compressed fluid F containing the combustible fuel is introduced into the expansion chamber 52.
  • the scroll fluid machine 1 according to some embodiments of the present disclosure can thus function as a so-called internal combustion engine (engine) that can ignite and burn or explode fuel, air, or a mixture thereof (air mixture). .
  • an internal combustion scroll rotation motor may be configured to output output torque by generating high temperature gas by expanding and igniting the high temperature gas by igniting and burning the fluid F by the spark plug 82 in the expansion chamber 52.
  • the fluid F including the compressed fluid F (for example, the air-fuel mixture) containing the combustible fuel is ignited and burned in the expansion chamber 52, so that the high temperature is achieved.
  • the output torque can be output by generating gas and expanding the high temperature gas.
  • the scroll fluid machine 1 may include a supply passage 90 for supplying the fluid F to the compression chamber 50 and a discharge passage 92 for discharging the fluid F from the expansion chamber 52. Good (see FIGS. 1, 5 and 6).
  • the scroll fluid machine 1 including the compressor and the expander and capable of smoothly supplying and discharging the fluid F can be realized with a compact configuration.
  • the present invention is not limited to the above-described embodiment, and includes a form in which the above-described embodiment is modified and a form in which these forms are appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

This scroll fluid machine is for compressing or expanding fluid containing air-fuel mixture gas and is provided with: a turning disc including a spiral-shaped first wrap standing on a first surface and a spiral-shaped second wrap standing on a second surface opposite to the first surface; a first fixed disc including a spiral-shaped third wrap standing on one surface facing the abovementioned first surface, the spiral-shaped third wrap together with the first wrap forming a compression chamber; and a second fixed disc including a spiral-shaped fourth wrap standing on one surface facing the second surface, the spiral-shaped fourth wrap together with the second wrap forming an expansion chamber.

Description

スクロール流体機械Scroll fluid machinery
 本開示はスクロール流体機械に関する。 The present disclosure relates to scroll fluid machines.
 従来、スクロール式の流体機械として、流体を圧縮するためのスクロール圧縮機や、膨張する流体のエネルギーを旋回力として取り出して利用するためのスクロール膨張機が知られている。例えば、特許文献1には、第1のインボリュート基礎円を中心に位相が互いに180°ずれた二巻きの固定スクロールラップと、第2のインボリュート基礎円を中心に位相が互いに180°ずれた二巻きの旋回スクロールラップとを、インボリュート基礎円に対して互いに位相を90°ずらして配置することにより、旋回スクロールラップに高いトルクを負荷させるように構成されたスクロール膨張機が開示されている。 Conventionally, as scroll-type fluid machines, scroll compressors for compressing fluids and scroll expanders for extracting and using the energy of expanding fluids as swirling forces are known. For example, in Patent Document 1, two scrolls of fixed scroll wrap whose phases are shifted from each other by 180 ° about a first involute base circle and two scrolls of which phases are shifted from each other by 180 ° about a second involute base circle. A scroll expander configured to apply a high torque to the orbiting scroll wrap by arranging the orbiting scroll wrap and the orbiting scroll wrap with respect to the involute base circle by shifting their phases by 90 °.
特開2011-252434号公報JP, 2011-252434, A
 ところで、一般にスクロール流体機械は、他の流体機械と比較して、トルク変動が少ないことに加え、音や振動が小さく、エネルギー効率が高いという特徴を有する。このような特徴を生かし、スクロール式の流体機械を組み合わせることで様々な用途に応用することが望まれている。 By the way, in general, scroll fluid machines are characterized by less torque fluctuation, less noise and vibration, and higher energy efficiency than other fluid machines. Utilizing such characteristics, it is desired to be applied to various applications by combining scroll type fluid machinery.
 このようなスクロール式の流体機械の応用の一つとして、例えば、空気及び燃料の混合気を含む流体をスクロール圧縮機で圧縮し、当該圧縮された流体をスクロール膨張機で燃焼及び膨張させる動力発生装置(過給式の内燃スクロール回転モータ)が考えられる。この動力発生装置では、流体の圧縮工程及び膨張工程にスクロール式の流体機械を用いることで、従来の内燃機関のような動力発生装置に比べて優れた性能が期待される。 As one of applications of such a scroll type fluid machine, for example, power generation is performed in which a fluid containing a mixture of air and fuel is compressed by a scroll compressor, and the compressed fluid is burned and expanded by a scroll expander. Devices (supercharged internal combustion scroll rotary motors) are conceivable. By using a scroll type fluid machine in the compression process and the expansion process of the fluid, this power generation device is expected to have better performance than a power generation device such as a conventional internal combustion engine.
 しかし、従来のスクロール圧縮機やスクロール膨張機は、それぞれ一対のスクロール体を組み合わせた単体のスクロール流体機械として存在することから、上述の動力発生装置を実現させるために、これらのスクロール式の流体機械同士を単に組み合わせると、装置全体が冗長で大型となってしまう。この点に関し、上記特許文献1にも、スクロール式の圧縮機と膨張機とをコンパクトに組み合わせることに関する具体的な構成については詳述されていない。 However, since the conventional scroll compressor and scroll expander exist as a single scroll fluid machine in which a pair of scroll bodies are combined, respectively, in order to realize the power generation device described above, these scroll fluid machines are used. If they are simply combined, the entire device becomes redundant and large. With respect to this point, the above-mentioned Patent Document 1 also does not describe in detail the specific configuration relating to the compact combination of the scroll compressor and the expander.
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、動力発生のための混合気を含む流体を取り扱う圧縮室及び膨張室を含むスクロール流体機械をコンパクトな構成で実現することを目的とする。 In view of the above circumstances, at least one embodiment of the present invention aims to realize a scroll fluid machine including a compression chamber and an expansion chamber that handles a fluid containing a mixture for power generation, in a compact configuration. ..
(1)本発明の少なくとも一実施形態に係るスクロール流体機械は、
 空気及び燃料の混合気を含む流体を圧縮又は膨張するためのスクロール流体機械であって、
 第1面に立設された渦巻き状の第1ラップ、及び、前記第1面の反対側にある第2面に立設された渦巻き状の第2ラップを含む旋回ディスクと、
 前記第1面に対向する一面に立設され、前記第1ラップとともに圧縮室を形成する渦巻き状の第3ラップを含む第1固定ディスクと、
 前記第2面に対向する一面に立設され、前記第2ラップとともに膨張室を形成する渦巻き状の第4ラップを含む第2固定ディスクと、
を備えている。
(1) A scroll fluid machine according to at least one embodiment of the present invention is
A scroll fluid machine for compressing or expanding a fluid containing a mixture of air and fuel, comprising:
A swirl disk including a spiral first wrap standing on a first surface and a spiral second wrap standing on a second surface opposite to the first surface;
A first fixed disk including a spiral third wrap standing on one surface opposite to the first surface and forming a compression chamber with the first wrap;
A second fixed disk that includes a spiral fourth wrap that is provided upright on one surface facing the second surface and that forms an expansion chamber with the second wrap;
Is equipped with.
 上記(1)の構成によれば、旋回ディスクが、その第1面に圧縮室を形成する第1ラップを含むとともに、第1面と反対側にある第2面に膨張室を形成する第2ラップを含むことにより、該旋回ディスクを挟んで一方にスクロール式の圧縮室を、他方にスクロール式の膨張室を並設することができる。つまり、スクロール式の圧縮室を形成するための第1ラップと、スクロール式の膨張室を形成するための第2ラップとを共通の旋回ディスクにおける一方の面と他方の面とにそれぞれ設けたことにより、動力発生のための混合気を取り扱う圧縮室及び膨張室を含むスクロール流体機械をコンパクトな構成で実現することができる。 According to the above configuration (1), the orbiting disc includes the first wrap forming the compression chamber on the first surface thereof, and the second wrap forming the expansion chamber on the second surface opposite to the first surface. By including the wrap, the scroll type compression chamber can be arranged in parallel on one side and the scroll type expansion chamber can be arranged side by side on the other side of the orbiting disc. That is, the first wrap for forming the scroll type compression chamber and the second wrap for forming the scroll type expansion chamber are provided on one surface and the other surface of the common swivel disk, respectively. As a result, the scroll fluid machine including the compression chamber and the expansion chamber that handles the air-fuel mixture for generating power can be realized with a compact configuration.
(2)幾つかの実施形態では、上記(1)の構成において、
 前記旋回ディスクを挟んで前記第1固定ディスクと前記第2固定ディスクとが組み合わされた第1スクロールユニット及び第2スクロールユニットが前記旋回ディスクの旋回軸方向に設けられていてもよい。
(2) In some embodiments, in the configuration of (1) above,
A first scroll unit and a second scroll unit in which the first fixed disk and the second fixed disk are combined with the orbiting disk sandwiched may be provided in the orbiting axis direction of the orbiting disk.
 上記(2)の構成によれば、所望の出力に応じて必要とされる膨張室又は圧縮室の容量を、径方向に大型化することなく旋回軸方向におけるスクロールユニットの併設数によって任意に調整可能なスクロール流体機械をコンパクトな構成で実現することができる。 According to the configuration of the above (2), the capacity of the expansion chamber or the compression chamber required according to the desired output is arbitrarily adjusted by the number of scroll units installed in the orbiting axis direction without increasing the size in the radial direction. A possible scroll fluid machine can be realized with a compact configuration.
(3)幾つかの実施形態では、上記(2)の構成において、
 前記第1スクロールユニットの前記第1固定ディスク又は前記第2固定ディスクは、前記第2スクロールユニットの前記第1固定ディスク又は前記第2固定ディスクと一体的に構成されてもよい。
(3) In some embodiments, in the configuration of (2) above,
The first fixed disk or the second fixed disk of the first scroll unit may be integrally configured with the first fixed disk or the second fixed disk of the second scroll unit.
 上記(3)の構成によれば、互いに隣接する第1スクロールユニット及び第2スクロールユニットの固定ディスクを一体的に構成することで、部品点数を削減することができる。 According to the configuration of (3) above, the fixed disks of the first scroll unit and the second scroll unit that are adjacent to each other are integrally configured, so that the number of parts can be reduced.
(4)幾つかの実施形態では、上記(2)又は(3)の構成において、
 前記第1スクロールユニット及び前記第2スクロールユニットは、前記第1スクロールユニット及び前記第2スクロールユニットの接合面を基準に対称的に構成されてもよい。
(4) In some embodiments, in the configuration of (2) or (3) above,
The first scroll unit and the second scroll unit may be configured symmetrically with respect to a joint surface of the first scroll unit and the second scroll unit.
 上記(4)の構成によれば、2つのスクロールユニットが、旋回軸方向において各スクロールユニットの接合面を境にして対称に配置される。よって、例えば、圧縮流体の膨張や旋回ディスクの旋回動作に伴う荷重に対して旋回軸方向にバランスのとれたスクロール流体機械をコンパクトな構成で実現することができる。 According to the configuration of (4) above, the two scroll units are symmetrically arranged in the orbiting axis direction with the joint surface of each scroll unit as a boundary. Therefore, for example, it is possible to realize a scroll fluid machine that is well balanced in the orbiting axis direction with respect to the load caused by the expansion of the compressed fluid or the orbiting motion of the orbiting disk with a compact configuration.
(5)幾つかの実施形態では、上記(4)の構成において、
 前記第1スクロールユニット及び前記第2スクロールユニットは、前記圧縮室が前記膨張室より前記接合面に近い位置に配置されるようにそれぞれ組み合わされてもよい。
(5) In some embodiments, in the configuration of (4) above,
The first scroll unit and the second scroll unit may be combined so that the compression chamber is located closer to the joint surface than the expansion chamber.
 上記(5)の構成によれば、各スクロールユニットは、接合面を基準に圧縮室が内側に設けられるとともに膨張室が外側に配置されるように組み合わされる。これにより、外部から膨張室に対して容易にアクセスできるため、膨張後の流体を容易に取り出すことができる。 According to the configuration of (5) above, the scroll units are combined so that the compression chamber is provided inside and the expansion chamber is provided outside with respect to the joint surface. With this, the expansion chamber can be easily accessed from the outside, and thus the fluid after expansion can be easily taken out.
(6)幾つかの実施形態では、上記(2)から(5)のいずれか一つの構成において、
 前記第1スクロールユニット及び前記第2スクロールユニットの間に、冷媒が通過可能な冷媒流路を含む冷却部を備えていてもよい。
(6) In some embodiments, in any one of the configurations (2) to (5) above,
A cooling unit including a coolant passage through which a coolant can pass may be provided between the first scroll unit and the second scroll unit.
 上記(6)の構成によれば、一体且つコンパクトに組み合わせた2対の圧縮機及び膨張機を備えたスクロール流体機械において、スクロールユニット間に、冷媒が通過可能な冷却流路を含む冷却部が設けられる。冷却部はスクロールユニット間に設けられるため、互いに隣接する2つのスクロールユニットを同時に冷却することができる。また2つのスクロールユニットを冷却することで熱量を回収した冷媒は、外部に取り出すことで利用することも可能である。 With configuration (6) above, in a scroll fluid machine including two pairs of a compressor and an expander that are integrally and compactly combined, a cooling unit that includes a cooling passage through which a refrigerant can pass is provided between the scroll units. It is provided. Since the cooling unit is provided between the scroll units, it is possible to cool two scroll units adjacent to each other at the same time. The refrigerant that has recovered the amount of heat by cooling the two scroll units can also be used by taking it out to the outside.
(7)幾つかの実施形態では、上記(1)から(6)のいずれか一つの構成において、
 前記旋回ディスクは、周方向に沿った異なる位置に配置された複数の支持機構によって前記第1固定ディスク及び前記第2固定ディスクに対して相対的に旋回可能に構成されてもよい。
(7) In some embodiments, in any one of the configurations (1) to (6) above,
The swivel disc may be configured to be swivelable relative to the first fixed disc and the second fixed disc by a plurality of support mechanisms arranged at different positions along the circumferential direction.
 上記(7)の構成によれば、旋回ディスクの自転を防止しながら該旋回ディスクを旋回させる構造をコンパクトに実現することができる。 According to the above configuration (7), it is possible to realize a compact structure in which the turning disc is turned while preventing the turning disc from rotating.
(8)幾つかの実施形態では、上記(7)の構成において、
 前記支持機構は、前記旋回ディスクに連結され、旋回軸方向に延在するシャフトと、前記シャフトを回転可能に支持する軸受とを含んでもよい。
(8) In some embodiments, in the configuration of (7) above,
The support mechanism may include a shaft that is connected to the swivel disc and extends in the swivel axis direction, and a bearing that rotatably supports the shaft.
 上記(8)の構成によれば、軸受により、該軸受に回転可能に支持されるシャフトを介して旋回ディスクを旋回可能に支持することができる。さらに、例えば、シャフトに作用するラジアル方向及びスラスト方向の荷重を受け持つことが可能な軸受を用いることにより、旋回ディスクの円滑な旋回動作を実現することができる。 According to the configuration of (8) above, the rotating disk can be rotatably supported by the bearing via the shaft rotatably supported by the bearing. Furthermore, for example, by using a bearing capable of bearing the load acting on the shaft in the radial direction and the thrust direction, it is possible to realize a smooth turning operation of the turning disk.
(9)幾つかの実施形態では、上記(1)から(8)のいずれか一つの構成において、
 前記旋回ディスクは、前記第1ラップの高さと前記第2ラップの高さとが異なっていてもよい。
(9) In some embodiments, in any one of the configurations (1) to (8) above,
In the turning disk, the height of the first wrap may be different from the height of the second wrap.
 上記(9)の構成によれば、旋回ディスクの第1面側に形成される圧縮室の容量と、第2面側に形成される膨張室の容量とを、簡易な構成で任意に調整することができる。例えば、旋回ディスクの旋回軸方向に寸法の制約がある場合、スクロール流体機械全体は上記旋回軸方向の寸法を変更することなく、必要に応じて、圧縮室と膨張室との容積比を任意に変更することができる。 According to the above configuration (9), the volume of the compression chamber formed on the first surface side of the swivel disc and the volume of the expansion chamber formed on the second surface side are arbitrarily adjusted with a simple configuration. be able to. For example, when the orbiting disk has a size restriction in the orbiting axis direction, the scroll fluid machine as a whole can arbitrarily change the volume ratio between the compression chamber and the expansion chamber without changing the size in the orbiting axis direction. Can be changed.
(10)幾つかの実施形態では、上記(1)から(9)のいずれか一つの構成において、
 前記第1固定ディスク又は前記第2固定ディスクの少なくとも一方は、外気と接触可能な放熱フィンを含んでいてもよい。
(10) In some embodiments, in any one of the configurations (1) to (9) above,
At least one of the first fixed disk and the second fixed disk may include a heat dissipation fin that is capable of contacting with the outside air.
 上記(10)の構成によれば、放熱フィンにより、外気との熱交換を行う接触面積を増加させることができるから、スクロール流体機械を動力源として用いた場合の冷却効率を向上させることができる。 According to the configuration of (10) above, since the contact surface for exchanging heat with the outside air can be increased by the radiation fins, it is possible to improve the cooling efficiency when the scroll fluid machine is used as a power source. ..
(11)幾つかの実施形態では、上記(1)から(10)のいずれか一つの構成において、
 前記スクロール流体機械は、
 前記圧縮室と前記膨張室とを連通する連通路を更に備えていてもよい。
(11) In some embodiments, in any one of the configurations (1) to (10) above,
The scroll fluid machine,
A communication passage may be further provided that connects the compression chamber and the expansion chamber.
 上記(11)の構成によれば、互いに流体をコミュニケーション可能な圧縮室と膨張室とをコンパクトな構成で実現することができる。 According to the configuration of (11) above, the compression chamber and the expansion chamber capable of communicating fluids with each other can be realized with a compact configuration.
(12)幾つかの実施形態では、上記(1)から(11)のいずれか一つの構成において、
 前記スクロール流体機械は、
 前記膨張室内に配置された点火プラグを備え、
 前記膨張室内で前記点火プラグによって前記流体を点火および燃焼させることにより高温ガスを発生させるとともに前記高温ガスを膨張させることで、出力トルクを出力する動力発生装置を構成してもよい。
(12) In some embodiments, in any one of the configurations (1) to (11) above,
The scroll fluid machine,
A spark plug disposed in the expansion chamber,
A power generation device may be configured to output an output torque by generating a high temperature gas by expanding and igniting the high temperature gas by igniting and burning the fluid by the spark plug in the expansion chamber.
 上記(12)の構成によれば、膨張室内に点火プラグが配置されている。膨張室では、点火プラグによって可燃性の混合気を含む流体を点火及び燃焼させることで高温ガスが発生し、当該高温ガスが膨張することで出力トルクを出力することができる。このように膨張室において点火プラグによる流体の点火及び燃焼を行うことで、流体が単に膨張室内で膨張する場合に比べて、出力を大幅に向上させることができる。 According to the configuration of (12) above, the spark plug is arranged in the expansion chamber. In the expansion chamber, a spark plug ignites and burns a fluid containing a combustible mixture to generate a high temperature gas, and the high temperature gas expands to output an output torque. By igniting and burning the fluid by the spark plug in the expansion chamber in this manner, the output can be significantly improved as compared with the case where the fluid simply expands in the expansion chamber.
(13)幾つかの実施形態では、上記(12)の構成において、
 前記スクロール流体機械は、
 前記膨張室に導入される前記流体が、前記圧縮室で圧縮されるように構成されてもよい。
(13) In some embodiments, in the configuration of (12) above,
The scroll fluid machine,
The fluid introduced into the expansion chamber may be configured to be compressed in the compression chamber.
 上記(13)の構成によれば、圧縮室で圧縮した流体を膨張室に過給することで、高出力な構成をコンパクトに実現することができる。 According to the configuration of (13) above, by supercharging the fluid compressed in the compression chamber into the expansion chamber, a high output configuration can be realized compactly.
(14)幾つかの実施形態では、上記(13)の構成において、
 前記スクロール流体機械は、
 前記圧縮室に前記流体を供給するための供給路と、
 前記膨張室から前記流体を排出するための排出路と、を備えていてもよい。
(14) In some embodiments, in the configuration of (13) above,
The scroll fluid machine,
A supply path for supplying the fluid to the compression chamber,
And a discharge path for discharging the fluid from the expansion chamber.
 上記(14)の構成によれば、供給路を介して圧縮室に流体が供給されるとともに、排出路を介して膨張室から流体が排出される。よって、圧縮機と膨張機とを含み、流体の供給と排出とを円滑に行うことができるスクロール流体機械をコンパクトな構成で実現することができる。 According to the configuration of (14) above, the fluid is supplied to the compression chamber via the supply passage, and the fluid is discharged from the expansion chamber via the discharge passage. Therefore, the scroll fluid machine including the compressor and the expander and capable of smoothly supplying and discharging the fluid can be realized with a compact configuration.
 本発明の少なくとも一実施形態によれば、動力発生のための混合気を含む流体を取り扱う圧縮室及び膨張室を含むスクロール流体機械をコンパクトな構成で実現することができる。 According to at least one embodiment of the present invention, it is possible to realize a scroll fluid machine including a compression chamber and an expansion chamber that handles a fluid containing a mixture for power generation, with a compact configuration.
本発明の少なくとも一実施形態に係るスクロール流体機械の構成を概略的に示す断面図である。It is a sectional view showing roughly composition of a scroll fluid machine concerning at least one embodiment of the present invention. 一実施形態に係るスクロール流体機械の構成を概略的に示す斜視図である。It is a perspective view which shows roughly the structure of the scroll fluid machine which concerns on one Embodiment. 一実施形態に係るスクロール流体機械の構成を概略的に示す分解斜視図である。It is an exploded perspective view showing roughly the composition of the scroll fluid machine concerning one embodiment. 一実施形態に係るスクロール流体機械の構成を概略的に示す斜視断面図である。It is a perspective sectional view showing roughly composition of a scroll fluid machine concerning one embodiment. 一実施形態に係るスクロール流体機械の構成を概略的に示す断面図である。It is a sectional view showing roughly composition of a scroll fluid machine concerning one embodiment. 一実施形態に係るスクロール流体機械の構成を概略的に示す概略図である。It is a schematic diagram showing roughly composition of a scroll fluid machine concerning one embodiment. 一実施形態に係るスクロール流体機械の構成を概略的に示す図である。It is a figure which shows roughly the structure of the scroll fluid machine which concerns on one Embodiment.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 また例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative positions, etc. of the components described as the embodiments or shown in the drawings are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. Absent.
For example, the expressions representing relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric", or "coaxial" are strict. In addition to representing such an arrangement, it also represents a state of relative displacement, or a state of relative displacement with an angle or distance such that the same function can be obtained.
Further, for example, an expression representing a shape such as a quadrangle or a cylindrical shape does not only represent a shape such as a quadrangle or a cylindrical shape in a geometrically strict sense, but also an uneven portion or A shape including a chamfered portion and the like is also shown.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one element are not exclusive expressions excluding the existence of other elements.
 図1は、本発明の少なくとも一実施形態に係るスクロール流体機械1の構成を概略的に示す断面図である。
 図1に示すように、本発明の少なくとも一実施形態に係るスクロール流体機械1は、流体Fを圧縮又は膨張するために用いられる。例えば、スクロール流体機械1は、空気と燃料との混合気を圧縮し、混合気の点火および燃焼を行い、高温ガスを膨張させ、内燃スクロール回転モータに対応する出力トルクを提供するために用いられ得る。
 このスクロール流体機械1は、第1面22に立設された渦巻き状の第1ラップ24、及び、上記第1面22の反対側にある第2面26に立設された渦巻き状の第2ラップ28を含む旋回ディスク20と、上記旋回ディスク20の第1面22に対向する一面に立設され、第1ラップ24とともに圧縮室50を形成する渦巻き状の第3ラップ32を含む第1固定ディスク30と、旋回ディスク20の第2面26に対向する一面に立設され、第2ラップ28とともに膨張室52を形成する渦巻き状の第4ラップ42を含む第2固定ディスク40と、を備えている。
FIG. 1 is a sectional view schematically showing a configuration of a scroll fluid machine 1 according to at least one embodiment of the present invention.
As shown in FIG. 1, a scroll fluid machine 1 according to at least one embodiment of the present invention is used to compress or expand a fluid F. For example, the scroll fluid machine 1 is used to compress a mixture of air and fuel, ignite and burn the mixture, expand hot gas, and provide an output torque corresponding to an internal combustion scroll rotary motor. obtain.
The scroll fluid machine 1 includes a spiral first wrap 24 standing on a first surface 22 and a spiral second wrap standing on a second surface 26 opposite to the first surface 22. First fixing including a swirl disc 20 including a wrap 28, and a spiral third wrap 32 standing upright on one surface of the swivel disc 20 facing the first surface 22 and forming a compression chamber 50 together with the first wrap 24. A disk 30 and a second fixed disk 40 including a spiral fourth wrap 42 that stands on one surface of the swivel disk 20 that faces the second surface 26 and that forms an expansion chamber 52 together with the second wrap 28. ing.
 旋回ディスク20は、当該旋回ディスク20の第1面22上に形成された第1ラップ24と固定ディスク(第1固定ディスク30)上に形成された第3ラップ32とで形成される圧縮室50で流体Fを圧縮するスクロール圧縮機を形成するとともに、当該旋回ディスク20の第2面26上に形成された第2ラップ28と固定ディスク(第2固定ディスク40)上に形成された第4ラップ42とで形成される膨張室52内で膨張された流体Fのエネルギーを回転エネルギーとして取り出すためのスクロール膨張機を形成する。
 スクロール膨張機は、旋回スクロール(旋回ディスク20)及び固定スクロール(第2固定ディスク40)に設けられた渦巻き状のラップ28,42を噛み合わせて形成したガスポケットに高圧の作動流体Fを導入し、作動流体Fの膨張時のエネルギーによって旋回スクロールを旋回させ、旋回スクロールの旋回力を回転力として取り出すようにしたものである。取り出した回転力は、例えば、旋回スクロールの旋回運動を発電機の回転軸に伝達して電力を得てもよいし、あるいはポンプのような他の機械の動力源として利用してもよい。
 なお、上記のように、一方の面(例えば表面)及び他方の面(例えば裏面)にそれぞれラップが形成された単一の旋回ディスク20を挟んで、第1固定ディスク30及び第2固定ディスク40を組み合わせ、圧縮室と膨張室とを含む構成をスクロールユニット10として以下の説明を行う。スクロール式の圧縮機及びスクロール式の膨張機を構成するための一般的な構成や作動原理については周知であるため、ここでは詳述しない。
The swivel disc 20 is formed by a first wrap 24 formed on the first surface 22 of the swivel disc 20 and a third wrap 32 formed on a fixed disc (first fixed disc 30). Form a scroll compressor for compressing the fluid F, and a second wrap 28 formed on the second surface 26 of the orbiting disc 20 and a fourth wrap formed on a fixed disc (second fixed disc 40). A scroll expander for taking out the energy of the fluid F expanded in the expansion chamber 52 formed by 42 as rotation energy is formed.
The scroll expander introduces a high-pressure working fluid F into a gas pocket formed by meshing spiral wraps 28 and 42 provided on an orbiting scroll (orbiting disc 20) and a fixed scroll (second fixed disc 40). The orbiting scroll is orbited by the energy of the working fluid F at the time of expansion, and the orbiting force of the orbiting scroll is extracted as a rotational force. The extracted rotational force may, for example, be transmitted to the rotating shaft of the generator for the orbiting motion of the orbiting scroll to obtain electric power, or may be used as a power source for another machine such as a pump.
As described above, the first fixed disk 30 and the second fixed disk 40 are sandwiched by the single turning disk 20 having the laps formed on one surface (for example, the front surface) and the other surface (for example, the back surface). The following description will be made on the assumption that the scroll unit 10 has a configuration including a compression chamber and an expansion chamber. The general structure and operating principle for constructing a scroll compressor and a scroll expander are well known and will not be described in detail here.
 上述した構成によれば、旋回ディスク20が、その第1面22に圧縮室50を形成する第1ラップ24を含むとともに、第1面22と反対側にある第2面26に膨張室52を形成する第2ラップ28を含むことにより、該旋回ディスク20を挟んで一方にスクロール式の圧縮室50を、他方にスクロール式の膨張室52を並設することができる。つまり、スクロール式の圧縮室を形成するための第1ラップ24と、スクロール式の膨張室52を形成するための第2ラップとを共通の旋回ディスク20における一方の面(第1面22)と他方の面(第2面26)とにそれぞれ設けたことにより、圧縮機と膨張機とを含むスクロール流体機械1をコンパクトな構成で実現することができる。
 なお、本開示のスクロール流体機械1は、例えば、CHP(combined heat and electric power)として電力を生成しつつ温水や暖房用の熱を取り出すための動力源として用いてもよい。
According to the above-mentioned configuration, the orbiting disc 20 includes the first wrap 24 forming the compression chamber 50 on the first surface 22 thereof, and the expansion chamber 52 is provided on the second surface 26 opposite to the first surface 22. By including the second wrap 28 to be formed, it is possible to arrange the scroll type compression chamber 50 on one side and the scroll type expansion chamber 52 on the other side across the orbiting disc 20. That is, the first wrap 24 for forming the scroll type compression chamber and the second wrap for forming the scroll type expansion chamber 52 are formed on one surface (first surface 22) of the common orbiting disk 20. By providing each on the other surface (second surface 26), the scroll fluid machine 1 including the compressor and the expander can be realized with a compact configuration.
The scroll fluid machine 1 according to the present disclosure may be used as a power source for extracting hot water or heat for heating while generating electric power as a CHP (combined heat and electric power), for example.
 図2は、一実施形態に係るスクロール流体機械の構成を概略的に示す斜視図である。図3は、一実施形態に係るスクロール流体機械の構成を概略的に示す分解斜視図である。図4は、一実施形態に係るスクロール流体機械の構成を概略的に示す斜視断面図である。
 図2~図4に示すように、幾つかの実施形態では、旋回ディスク20を挟んで第1固定ディスク30と第2固定ディスク40とが組み合わされた第1スクロールユニット10A及び第2スクロールユニット10Bが旋回ディスク20の旋回軸Z方向に設けられていてもよい。
 つまり、幾つかの実施形態では、スクロールユニット10を複数(2段以上)有する構成に拡張することが可能である。
FIG. 2 is a perspective view schematically showing the configuration of the scroll fluid machine according to the embodiment. FIG. 3 is an exploded perspective view schematically showing the configuration of the scroll fluid machine according to the embodiment. FIG. 4 is a perspective sectional view schematically showing the configuration of the scroll fluid machine according to the embodiment.
As shown in FIGS. 2 to 4, in some embodiments, the first scroll unit 10A and the second scroll unit 10B in which the first fixed disk 30 and the second fixed disk 40 are combined with the orbiting disk 20 interposed therebetween are combined. May be provided in the turning axis Z direction of the turning disk 20.
That is, in some embodiments, it is possible to expand to a configuration having a plurality of scroll units 10 (two or more stages).
 このように旋回軸Z方向に複数のスクロールユニット10を設けた構成によれば、所望の出力に応じて必要とされる膨張室52又は圧縮室50の容量を、径方向に大型化することなく旋回軸Z方向におけるスクロールユニット10の併設数によって任意に調整可能なスクロール流体機械1をコンパクトな構成で実現することができる。 According to the configuration in which the plurality of scroll units 10 are provided in the swivel axis Z direction as described above, the capacity of the expansion chamber 52 or the compression chamber 50 required according to the desired output is not increased in the radial direction. It is possible to realize the scroll fluid machine 1 having a compact configuration, which can be arbitrarily adjusted depending on the number of scroll units 10 provided in the orbiting axis Z direction.
 図5は、一実施形態に係るスクロール流体機械の構成を概略的に示す断面図である。
 図5に示すように、幾つかの実施形態において、第1スクロールユニット10Aの第1固定ディスク30又は第2固定ディスク40は、第2スクロールユニット10Bの第1固定ディスク30又は第2固定ディスク40と一体的に構成されてもよい。
FIG. 5 is a sectional view schematically showing the configuration of the scroll fluid machine according to the embodiment.
As shown in FIG. 5, in some embodiments, the first fixed disk 30 or the second fixed disk 40 of the first scroll unit 10A is the first fixed disk 30 or the second fixed disk 40 of the second scroll unit 10B. May be integrally configured with.
 このように、互いに隣接する第1スクロールユニット10A及び第2スクロールユニット10Bの固定ディスク(第1固定ディスク30又は第2固定ディスク40)を一体的に構成することで、部品点数を削減することができる。 In this way, by integrally configuring the fixed disks (the first fixed disk 30 or the second fixed disk 40) of the first scroll unit 10A and the second scroll unit 10B that are adjacent to each other, the number of parts can be reduced. it can.
 幾つかの実施形態において、第1スクロールユニット10A及び第2スクロールユニット10Bは、第1スクロールユニット10A及び第2スクロールユニット10Bの接合面12を基準に対称的に構成されてもよい(図2~図4参照)。
 この場合、旋回軸Z方向において、接合面12を基準として一方と他方とに向け、例えば、圧縮室と膨張室とが同じ順に配置されるようにして各ユニットを組み合わせてもよい。接合面12を基準として対照的な配置とするため、例えば、偶数個のスクロールユニット10を旋回軸Z方向に配置することとしてもよい。
 なお、接合面12は、両ユニット10A,10Bの固定ディスク(第1固定ディスク30又は第2固定ディスク40)が一体的に構成される場合には、一体構成された固定ディスクの旋回軸Z方向厚さの中点を通る面を意味するものとする(図5参照)。
In some embodiments, the first scroll unit 10A and the second scroll unit 10B may be configured symmetrically with respect to the joint surface 12 of the first scroll unit 10A and the second scroll unit 10B (FIG. 2 to FIG. 2). (See FIG. 4).
In this case, the respective units may be combined so that the compression chamber and the expansion chamber are arranged in the same order in the swivel axis Z direction toward one side and the other side with the joint surface 12 as a reference. In order to make a symmetrical arrangement based on the joint surface 12, for example, an even number of scroll units 10 may be arranged in the orbiting axis Z direction.
When the fixed disks (the first fixed disk 30 or the second fixed disk 40) of both units 10A, 10B are integrally formed, the joint surface 12 is in the Z-axis direction of the integrally formed fixed disk. It means the plane passing through the midpoint of the thickness (see FIG. 5).
 このように第1スクロールユニット10A及び第2スクロールユニット10Bを互いの接合面12を基準に対称的に配置した構成によれば、2つのスクロールユニット10が、旋回軸Z方向において各スクロールユニット10の接合面12を境にして対称に配置される。よって、例えば、圧縮流体Fの膨張や旋回ディスク20の旋回動作に伴う荷重に対して旋回軸Z方向にバランスのとれたスクロール流体機械1をコンパクトな構成で実現することができる。 As described above, according to the configuration in which the first scroll unit 10A and the second scroll unit 10B are symmetrically arranged with respect to the joint surface 12 of each other, the two scroll units 10 are arranged in the direction of the orbiting axis Z. They are arranged symmetrically with respect to the joint surface 12. Therefore, for example, it is possible to realize the scroll fluid machine 1 having a compact configuration in which the scroll fluid machine 1 is balanced with respect to the load caused by the expansion of the compressed fluid F and the orbiting operation of the orbiting disk 20.
 幾つかの実施形態において、第1スクロールユニット10A及び第2スクロールユニット10Bは、圧縮室50が膨張室52より接合面12に近い位置に配置されるようにそれぞれ組み合わされてもよい(図2~図5参照)。 In some embodiments, the first scroll unit 10A and the second scroll unit 10B may be combined so that the compression chamber 50 is located closer to the joint surface 12 than the expansion chamber 52 (FIGS. (See FIG. 5).
 このように、圧縮室50を膨張室52より接合面12に近く配置した構成によれば、各スクロールユニット10は、接合面12を基準に圧縮室50が内側に設けられるとともに膨張室52が外側に配置されるように組み合わされる。これにより、外部から膨張室52に対して容易にアクセスできるため、膨張後の流体を容易に取り出すことができる。 In this way, according to the configuration in which the compression chamber 50 is arranged closer to the joint surface 12 than the expansion chamber 52, in each scroll unit 10, the compression chamber 50 is provided on the inside with respect to the joint surface 12 and the expansion chamber 52 is on the outside. Are combined so as to be arranged in. As a result, the expansion chamber 52 can be easily accessed from the outside, and thus the expanded fluid can be easily taken out.
 幾つかの実施形態において、スクロール流体機械1は、第1スクロールユニット10A及び第2スクロールユニット10Bの間に、冷媒64が通過可能な冷媒流路62を含む冷却部60を備えていてもよい(図4及び図5参照)。 In some embodiments, the scroll fluid machine 1 may include, between the first scroll unit 10A and the second scroll unit 10B, the cooling unit 60 including the refrigerant flow passage 62 through which the refrigerant 64 can pass ( (See FIGS. 4 and 5).
 このように、スクロール流体機械1が冷却部60を備えた構成によれば、一体且つコンパクトに組み合わせた2対の圧縮機及び膨張機を備えたスクロール流体機械1において、スクロールユニット10間に、冷媒64が通過可能な冷媒流路62を含む冷却部60が設けられる。冷却部60はスクロールユニット10間に設けられるため、互いに隣接する2つのスクロールユニット10を同時に冷却することができる。また2つのスクロールユニット10を冷却することで熱量を回収した冷媒64は、外部に取り出すことで利用することも可能である。
 なお、冷媒流路62は、第1固定ディスク30又は第2固定ディスク40の少なくとも一方に設けられていてもよい(例えば図4及び図5参照)。また、冷却部60は、冷媒64を輸送するためのポンプ等の輸送部を備えていてもよい。
As described above, according to the configuration in which the scroll fluid machine 1 includes the cooling unit 60, in the scroll fluid machine 1 including the two pairs of the compressor and the expander that are integrally and compactly combined, the refrigerant is provided between the scroll units 10. A cooling unit 60 including a coolant channel 62 through which 64 can pass is provided. Since the cooling unit 60 is provided between the scroll units 10, two scroll units 10 adjacent to each other can be cooled at the same time. Further, the refrigerant 64 that has recovered the amount of heat by cooling the two scroll units 10 can also be used by taking it out to the outside.
The coolant flow path 62 may be provided in at least one of the first fixed disk 30 and the second fixed disk 40 (see, for example, FIGS. 4 and 5). Further, the cooling unit 60 may include a transportation unit such as a pump for transporting the refrigerant 64.
 幾つかの実施形態において、旋回ディスク20は、周方向に沿った異なる位置に配置された複数の支持機構70によって第1固定ディスク30及び第2固定ディスク40に対して相対的に旋回可能に構成されてもよい(図2~図4参照)。 In some embodiments, the swivel disc 20 is configured to be swivelable relative to the first fixed disc 30 and the second fixed disc 40 by a plurality of support mechanisms 70 arranged at different positions along the circumferential direction. (See FIGS. 2 to 4).
 このように旋回ディスク20を周方向の異なる位置に配置された複数の支持機構70で支持する構成によれば、旋回ディスク20の自転を防止しながら該旋回ディスク20を旋回させる構造をコンパクトに実現することができる。 According to the structure in which the swivel disc 20 is supported by the plurality of support mechanisms 70 arranged at different positions in the circumferential direction, the structure for swiveling the swivel disc 20 while preventing its rotation is realized in a compact manner. can do.
 幾つかの実施形態において、支持機構70は、旋回ディスク20に連結され、旋回軸Z方向に延在するシャフト72と、シャフト72を回転可能に支持する軸受74とを含んでもよい(図2~図4参照)。 In some embodiments, the support mechanism 70 may include a shaft 72 coupled to the swivel disc 20 and extending in the swivel axis Z direction, and a bearing 74 rotatably supporting the shaft 72 (FIGS. (See FIG. 4).
 このように、支持機構70がシャフト72と軸受74とを含む構成によれば、軸受74により、該軸受74に回転可能に支持されるシャフト72を介して旋回ディスク20を旋回可能に支持することができる。さらに、例えば、シャフト72に作用するラジアル方向及びスラスト方向の荷重を受け持つことが可能な軸受74を用いることにより、旋回ディスク20の円滑な旋回動作を実現することができる。
 幾つかの実施形態では、旋回ディスク20に連結されたシャフト72を支持する軸受74として、上記のようにラジアル方向及びスラスト方向の荷重を受け持つことが可能な軸受74を採用してもよい。また、第1スクロールユニット10Aの旋回スクロール(旋回ディスク20)と第2スクロールユニット10Bの旋回スクロール(旋回ディスク20)とは位相を180度ずらして動作させてもよい。このようにすれば、旋回軸Z方向に直交する方向において、旋回ディスク20の旋回動作にともなう振動や荷重の偏りを軽減することができる。
As described above, according to the structure in which the support mechanism 70 includes the shaft 72 and the bearing 74, the swing disk 20 is swingably supported by the bearing 74 via the shaft 72 that is rotatably supported by the bearing 74. You can Further, for example, by using the bearing 74 capable of bearing the load in the radial direction and the thrust direction that acts on the shaft 72, it is possible to realize the smooth turning operation of the turning disk 20.
In some embodiments, the bearing 74 supporting the shaft 72 connected to the swivel disc 20 may be the bearing 74 capable of bearing the load in the radial direction and the thrust direction as described above. Further, the orbiting scroll (orbiting disc 20) of the first scroll unit 10A and the orbiting scroll (orbiting disc 20) of the second scroll unit 10B may be operated with a phase shift of 180 degrees. By doing so, it is possible to reduce the deviation of the vibration and the load due to the turning operation of the turning disk 20 in the direction orthogonal to the turning axis Z direction.
 図6は、一実施形態に係るスクロール流体機械の構成を概略的に示す概略図である。
 図6に示すように、幾つかの実施形態において、旋回ディスク20は、第1ラップ24の高さと第2ラップ28の高さとが異なっていてもよい。
FIG. 6 is a schematic diagram schematically showing the configuration of the scroll fluid machine according to the embodiment.
As shown in FIG. 6, in some embodiments, the swivel disc 20 may have different heights for the first wrap 24 and the second wrap 28.
 このように第1ラップ24と第2ラップ28の高さが異なる構成によれば、旋回ディスク20の第1面22側に形成される圧縮室50の容量と、第2面26側に形成される膨張室52の容量とを、簡易な構成で任意に調整することができる。例えば、旋回ディスク20の旋回軸Z方向に寸法の制約がある場合、スクロール流体機械1全体は上記旋回軸Z方向の寸法を変更することなく、必要に応じて、圧縮室50と膨張室52との容積比を任意に変更することができる。
 なお、第1ラップ24と圧縮室を形成する第3ラップ32、及び、第2ラップ28と膨張室を形成する第4ラップ42も、各々と噛み合うラップの高さに合わせて異なる高さを有していてもよい。
According to the configuration in which the heights of the first wrap 24 and the second wrap 28 are different as described above, the capacity of the compression chamber 50 formed on the first surface 22 side of the orbiting disc 20 and the capacity of the compression chamber 50 formed on the second surface 26 side. The volume of the expansion chamber 52 to be adjusted can be arbitrarily adjusted with a simple configuration. For example, when the size of the orbiting disk 20 is restricted in the orbiting axis Z direction, the entire scroll fluid machine 1 does not need to change the size in the orbiting axis Z direction, and if necessary, the compression chamber 50 and the expansion chamber 52 The volume ratio of can be arbitrarily changed.
The third wrap 32 that forms the compression chamber with the first wrap 24 and the fourth wrap 42 that forms the expansion chamber with the second wrap 28 also have different heights according to the heights of the wraps that mesh with each other. You may have.
 図7は、一実施形態に係るスクロール流体機械の構成を概略的に示す図である。
 図5及び図7に示すように、幾つかの実施形態において、第1固定ディスク30又は第2固定ディスク40の少なくとも一方は、外気と接触可能な放熱フィン80を含んでいてもよい。放熱フィン80の形状、高さ、数又は配置は任意に設定することができる。
FIG. 7: is a figure which shows schematically the structure of the scroll fluid machine which concerns on one Embodiment.
As shown in FIGS. 5 and 7, in some embodiments, at least one of the first fixed disk 30 and the second fixed disk 40 may include a heat dissipation fin 80 that can contact the outside air. The shape, height, number or arrangement of the radiation fins 80 can be set arbitrarily.
 このように第1固定ディスク30又は第2固定ディスク40の少なくとも一方が放熱フィン80を含む構成によれば、放熱フィン80により、外気との熱交換を行う接触面積を増加させることができるから、スクロール流体機械1を動力源として用いた場合の冷却効率を向上させることができる。 According to the configuration in which at least one of the first fixed disk 30 and the second fixed disk 40 includes the heat dissipation fin 80, the heat dissipation fin 80 can increase the contact area for heat exchange with the outside air. It is possible to improve the cooling efficiency when the scroll fluid machine 1 is used as a power source.
 幾つかの実施形態において、スクロール流体機械1は、圧縮室50と膨張室52とを連通する連通路54を更に備えていてもよい(図1、図5及び図6参照)。
 連通路54を通した流体Fの流れは、圧縮室50から膨張室52でもよいし、膨張室52から圧縮室50でもよい。
In some embodiments, the scroll fluid machine 1 may further include a communication passage 54 that connects the compression chamber 50 and the expansion chamber 52 (see FIGS. 1, 5, and 6).
The flow of the fluid F through the communication passage 54 may be from the compression chamber 50 to the expansion chamber 52 or from the expansion chamber 52 to the compression chamber 50.
 このように圧縮室50と膨張室52とを連通する連通路54を備えた構成によれば、互いに流体をコミュニケーション可能な圧縮室50と膨張室52とをコンパクトな構成で実現することができる。 According to the configuration including the communication passage 54 that connects the compression chamber 50 and the expansion chamber 52 in this manner, the compression chamber 50 and the expansion chamber 52 that can communicate fluids with each other can be realized with a compact structure.
 幾つかの実施形態において、スクロール流体機械1は、膨張室52に導入される流体Fが圧縮室50で圧縮されるように構成されてもよい(図1、図3、図5及び図6参照)。 In some embodiments, the scroll fluid machine 1 may be configured such that the fluid F introduced into the expansion chamber 52 is compressed in the compression chamber 50 (see FIGS. 1, 3, 5, and 6). ).
 このような構成によれば、圧縮室50で圧縮した流体を膨張室52に過給することで、高出力な構成をコンパクトに実現することができる。 With such a configuration, by supercharging the fluid compressed in the compression chamber 50 into the expansion chamber 52, it is possible to realize a compact structure with high output.
 幾つかの実施形態において、スクロール流体機械1は、膨張室52内に配置された点火プラグ82を備えていてもよい(図4参照)。この場合、圧縮流体Fは可燃性の燃料を含んでいてもよい。上記の燃料は、例えば、天然ガス(例えばメタンガスなど)を用いてもよい。
 点火プラグ82は、可燃性の燃料を含む圧縮流体Fが膨張室52に導入された後、この高圧の燃料に適切なタイミングで点火するように構成してもよい。
 本開示の幾つかの実施形態におけるスクロール流体機械1は、このように、燃料、空気、又はこれらの混合物(混合気)を点火して燃焼乃至爆発させ得る所謂内燃機関(エンジン)として機能し得る。例えば、膨張室52内で点火プラグ82によって流体Fを点火および燃焼させることにより高温ガスを発生させるとともに高温ガスを膨張させることで、出力トルクを出力する内燃スクロール回転モータを構成してもよい。
In some embodiments, the scroll fluid machine 1 may include a spark plug 82 arranged in the expansion chamber 52 (see FIG. 4). In this case, the compressed fluid F may contain combustible fuel. As the fuel, for example, natural gas (eg, methane gas) may be used.
The spark plug 82 may be configured to ignite the high-pressure fuel at an appropriate timing after the compressed fluid F containing the combustible fuel is introduced into the expansion chamber 52.
The scroll fluid machine 1 according to some embodiments of the present disclosure can thus function as a so-called internal combustion engine (engine) that can ignite and burn or explode fuel, air, or a mixture thereof (air mixture). .. For example, an internal combustion scroll rotation motor may be configured to output output torque by generating high temperature gas by expanding and igniting the high temperature gas by igniting and burning the fluid F by the spark plug 82 in the expansion chamber 52.
 このように、膨張室内に点火プラグ82が配置された構成によれば、可燃性の燃料を含む圧縮流体F(例えば混合気)を含む流体Fを膨張室52内で点火および燃焼させることで高温ガスが発生し、当該高温ガスが膨張することで出力トルクを出力することができる。このように膨張室52において点火プラグ82による流体Fの点火および燃焼を行うことにより、圧縮流体Fが単に膨張室52内で膨張する場合に比べて、出力を大幅に向上させることができる。 As described above, according to the configuration in which the ignition plug 82 is arranged in the expansion chamber, the fluid F including the compressed fluid F (for example, the air-fuel mixture) containing the combustible fuel is ignited and burned in the expansion chamber 52, so that the high temperature is achieved. The output torque can be output by generating gas and expanding the high temperature gas. By igniting and burning the fluid F by the ignition plug 82 in the expansion chamber 52 in this manner, the output can be significantly improved as compared with the case where the compressed fluid F simply expands in the expansion chamber 52.
 幾つかの実施形態において、スクロール流体機械1は、圧縮室50に流体Fを供給するための供給路90と、膨張室52から流体Fを排出するための排出路92と、を備えていてもよい(図1、図5及び図6参照)。 In some embodiments, the scroll fluid machine 1 may include a supply passage 90 for supplying the fluid F to the compression chamber 50 and a discharge passage 92 for discharging the fluid F from the expansion chamber 52. Good (see FIGS. 1, 5 and 6).
 このように、流体Fの供給路90と排出路92とを備えた構成によれば、供給路90を介して圧縮室50に流体Fが供給されるとともに、排出路92を介して膨張室52から流体Fが排出される。よって、圧縮機と膨張機とを含み、流体Fの供給と排出とを円滑に行うことができるスクロール流体機械1をコンパクトな構成で実現することができる。 As described above, according to the configuration including the supply passage 90 and the discharge passage 92 for the fluid F, the fluid F is supplied to the compression chamber 50 through the supply passage 90 and the expansion chamber 52 is provided through the discharge passage 92. The fluid F is discharged from the. Therefore, the scroll fluid machine 1 including the compressor and the expander and capable of smoothly supplying and discharging the fluid F can be realized with a compact configuration.
 本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 The present invention is not limited to the above-described embodiment, and includes a form in which the above-described embodiment is modified and a form in which these forms are appropriately combined.
1 スクロール流体機械
10 スクロールユニット
10A 第1スクロールユニット
10B 第2スクロールユニット
12 接合面
20 旋回ディスク(旋回スクロール)
22 第1面
24 第1ラップ
26 第2面
28 第2ラップ
30 第1固定ディスク(固定スクロール)
32 第3ラップ
40 第2固定ディスク(固定スクロール)
42 第4ラップ
50 圧縮室
52 膨張室
54 連通路
60 冷却部
62 冷媒流路
64 冷媒
70 支持機構
72 シャフト
74 軸受
80 放熱フィン
82 点火プラグ
90 供給路
92 排出路
F 流体(圧縮流体)
Z 旋回軸方向
DESCRIPTION OF SYMBOLS 1 Scroll fluid machine 10 Scroll unit 10A 1st scroll unit 10B 2nd scroll unit 12 Joint surface 20 Orbiting disk (orbiting scroll)
22 1st surface 24 1st wrap 26 2nd surface 28 2nd wrap 30 1st fixed disk (fixed scroll)
32 3rd wrap 40 2nd fixed disk (fixed scroll)
42 4th lap 50 Compression chamber 52 Expansion chamber 54 Communication path 60 Cooling part 62 Refrigerant flow path 64 Refrigerant 70 Support mechanism 72 Shaft 74 Bearing 80 Radiating fin 82 Spark plug 90 Supply path 92 Discharge path F Fluid (compressed fluid)
Z turning axis direction

Claims (14)

  1.  空気及び燃料の混合気を含む流体を圧縮又は膨張するためのスクロール流体機械であって、
     第1面に立設された渦巻き状の第1ラップ、及び、前記第1面の反対側にある第2面に立設された渦巻き状の第2ラップを含む旋回ディスクと、
     前記第1面に対向する一面に立設され、前記第1ラップとともに圧縮室を形成する渦巻き状の第3ラップを含む第1固定ディスクと、
     前記第2面に対向する一面に立設され、前記第2ラップとともに膨張室を形成する渦巻き状の第4ラップを含む第2固定ディスクと、
    を備える、スクロール流体機械。
    A scroll fluid machine for compressing or expanding a fluid containing a mixture of air and fuel, comprising:
    A swirl disk including a spiral first wrap standing on a first surface and a spiral second wrap standing on a second surface opposite to the first surface;
    A first fixed disk including a spiral third wrap standing on one surface opposite to the first surface and forming a compression chamber with the first wrap;
    A second fixed disk that includes a spiral fourth wrap that is provided upright on one surface facing the second surface and that forms an expansion chamber with the second wrap;
    A scroll fluid machine comprising:
  2.  前記旋回ディスクを挟んで前記第1固定ディスクと前記第2固定ディスクとが組み合わされた第1スクロールユニット及び第2スクロールユニットが前記旋回ディスクの旋回軸方向に設けられている
    請求項1に記載のスクロール流体機械。
    The first scroll unit and the second scroll unit in which the first fixed disk and the second fixed disk are combined with the orbiting disk sandwiched therebetween are provided in the orbiting axis direction of the orbiting disk. Scroll fluid machinery.
  3.  前記第1スクロールユニットの前記第1固定ディスク又は前記第2固定ディスクは、前記第2スクロールユニットの前記第1固定ディスク又は前記第2固定ディスクと一体的に構成される、請求項2に記載のスクロール流体機械。 The first fixed disk or the second fixed disk of the first scroll unit is configured integrally with the first fixed disk or the second fixed disk of the second scroll unit. Scroll fluid machinery.
  4.  前記第1スクロールユニット及び前記第2スクロールユニットは、前記第1スクロールユニット及び前記第2スクロールユニットの接合面を基準に対称的に構成される、
    請求項2又は3に記載のスクロール流体機械。
    The first scroll unit and the second scroll unit are configured symmetrically with respect to a joint surface of the first scroll unit and the second scroll unit.
    The scroll fluid machine according to claim 2 or 3.
  5.  前記第1スクロールユニット及び前記第2スクロールユニットは、前記圧縮室が前記膨張室より前記接合面に近い位置に配置されるようにそれぞれ組み合わされる、
    請求項4に記載のスクロール流体機械。
    The first scroll unit and the second scroll unit are respectively combined so that the compression chamber is arranged at a position closer to the joint surface than the expansion chamber,
    The scroll fluid machine according to claim 4.
  6.  前記第1スクロールユニット及び前記第2スクロールユニットの間に、冷媒が通過可能な冷媒流路を含む冷却部を備える、
    請求項2から5のいずれか一項に記載のスクロール流体機械。
    Between the first scroll unit and the second scroll unit, a cooling unit including a coolant passage through which a coolant can pass is provided.
    The scroll fluid machine according to any one of claims 2 to 5.
  7.  前記旋回ディスクは、周方向に沿った異なる位置に配置された複数の支持機構によって前記第1固定ディスク及び前記第2固定ディスクに対して相対的に旋回可能に構成される、請求項1から6のいずれか一項に記載のスクロール流体機械。 7. The swivel disc is configured to be swivelable relative to the first fixed disc and the second fixed disc by a plurality of support mechanisms arranged at different positions along the circumferential direction. The scroll fluid machine according to claim 1.
  8.  前記支持機構は、前記旋回ディスクに連結され、旋回軸方向に延在するシャフトと、前記シャフトを回転可能に支持する軸受とを含む、
    請求項7に記載のスクロール流体機械。
    The support mechanism includes a shaft that is connected to the swivel disc and extends in the swivel axis direction, and a bearing that rotatably supports the shaft.
    The scroll fluid machine according to claim 7.
  9.  前記旋回ディスクは、前記第1ラップの高さと前記第2ラップの高さとが異なる
    請求項1から8のいずれか一項に記載のスクロール流体機械。
    The scroll fluid machine according to any one of claims 1 to 8, wherein a height of the first wrap and a height of the second wrap of the orbiting disc are different from each other.
  10.  前記第1固定ディスク又は前記第2固定ディスクの少なくとも一方は、外気と接触可能な放熱フィンを含む
    請求項1から9のいずれか一項に記載のスクロール流体機械。
    The scroll fluid machine according to any one of claims 1 to 9, wherein at least one of the first fixed disk and the second fixed disk includes a radiating fin that is capable of coming into contact with outside air.
  11.  前記圧縮室と前記膨張室とを連通する連通路を更に備える、
    請求項1から10のいずれか一項に記載のスクロール流体機械。
    Further comprising a communication passage communicating the compression chamber and the expansion chamber,
    The scroll fluid machine according to any one of claims 1 to 10.
  12.  前記膨張室内に配置された点火プラグを備え、
     前記膨張室内で前記点火プラグによって前記流体を点火および燃焼させることにより高温ガスを発生させるとともに前記高温ガスを膨張させることで、出力トルクを出力する動力発生装置を構成する、
    請求項1から11のいずれか一項に記載のスクロール流体機械。
    A spark plug disposed in the expansion chamber,
    By igniting and burning the fluid by the spark plug in the expansion chamber to generate a high temperature gas and expand the high temperature gas, a power generation device that outputs an output torque is configured.
    The scroll fluid machine according to any one of claims 1 to 11.
  13.  前記膨張室に導入される前記流体が、前記圧縮室で圧縮されるように構成される、
    請求項12に記載のスクロール流体機械。
    The fluid introduced into the expansion chamber is configured to be compressed in the compression chamber,
    The scroll fluid machine according to claim 12.
  14.  前記圧縮室に前記流体を供給するための供給路と、
     前記膨張室から前記流体を排出するための排出路と、を備える
    請求項13に記載のスクロール流体機械。
    A supply path for supplying the fluid to the compression chamber,
    The scroll fluid machine according to claim 13, further comprising a discharge path for discharging the fluid from the expansion chamber.
PCT/JP2018/041360 2018-11-07 2018-11-07 Scroll fluid machine WO2020095386A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041360 WO2020095386A1 (en) 2018-11-07 2018-11-07 Scroll fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041360 WO2020095386A1 (en) 2018-11-07 2018-11-07 Scroll fluid machine

Publications (1)

Publication Number Publication Date
WO2020095386A1 true WO2020095386A1 (en) 2020-05-14

Family

ID=70611355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041360 WO2020095386A1 (en) 2018-11-07 2018-11-07 Scroll fluid machine

Country Status (1)

Country Link
WO (1) WO2020095386A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3011694A (en) * 1958-09-12 1961-12-05 Alsacienne Constr Meca Encapsuling device for expanders, compressors or the like
JPS5951130A (en) * 1982-09-17 1984-03-24 Ebara Corp Internal-combustion engine
US5094205A (en) * 1989-10-30 1992-03-10 Billheimer James C Scroll-type engine
JPH08500664A (en) * 1992-09-02 1996-01-23 アーサー・デイ・リトル・インコーポレーテツド Portable built-in power and cooling system
JP2001355588A (en) * 2000-06-12 2001-12-26 Hitachi Ltd Power recovery scroll fluid machine and fuel cell system using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3011694A (en) * 1958-09-12 1961-12-05 Alsacienne Constr Meca Encapsuling device for expanders, compressors or the like
JPS5951130A (en) * 1982-09-17 1984-03-24 Ebara Corp Internal-combustion engine
US5094205A (en) * 1989-10-30 1992-03-10 Billheimer James C Scroll-type engine
JPH08500664A (en) * 1992-09-02 1996-01-23 アーサー・デイ・リトル・インコーポレーテツド Portable built-in power and cooling system
JP2001355588A (en) * 2000-06-12 2001-12-26 Hitachi Ltd Power recovery scroll fluid machine and fuel cell system using it

Similar Documents

Publication Publication Date Title
US7958862B2 (en) Rotary positive displacement combustor engine
JP5725694B2 (en) Rotary piston and cylinder device
US10253686B2 (en) Hybrid cycle combustion engine and methods
US5293850A (en) Scroll type rotary internal combustion engine
US7040278B2 (en) Integrated microturbine system
US20120240885A1 (en) Structurally efficient cooled engine housing for rotary engines
EP0807759A2 (en) Scroll-type fluid machinery
WO2020095386A1 (en) Scroll fluid machine
JPH04320718A (en) Gas turbine group and operating method thereof
JP2007518918A (en) Energy conversion method in capacity type rotary screw machine
AU2019226434B2 (en) Roticulating thermodynamic apparatus
US20060242960A1 (en) Hybrid engine
US8967114B2 (en) Rotary engine with rotary power heads
JPS6342085B2 (en)
WO2007037599A2 (en) Brayton-rankine-stirling engine employing two-stage compression and two-stage expansion
JPWO2005080756A1 (en) Brayton cycle device and exhaust heat energy recovery device for internal combustion engine
JP2019504239A (en) Rotary Stirling cycle apparatus and method
JP2011137432A (en) External combustion engine having lubricating oil circuit
JPS6229614B2 (en)
RU2041360C1 (en) Rotary engine
JP2007170284A (en) Fluid machine
JP7122112B2 (en) Scroll fluid machine and Rankine cycle
RU2220308C2 (en) Rotary engine
JPH01100320A (en) Prime mover
JP3154518U (en) Multi-vane expander

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP