JPS5951130A - Internal-combustion engine - Google Patents

Internal-combustion engine

Info

Publication number
JPS5951130A
JPS5951130A JP57160868A JP16086882A JPS5951130A JP S5951130 A JPS5951130 A JP S5951130A JP 57160868 A JP57160868 A JP 57160868A JP 16086882 A JP16086882 A JP 16086882A JP S5951130 A JPS5951130 A JP S5951130A
Authority
JP
Japan
Prior art keywords
compression
expansion
scroll
section
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57160868A
Other languages
Japanese (ja)
Other versions
JPH028121B2 (en
Inventor
Tatsuji Yuasa
湯浅 達治
Shinji Yosomiya
四十宮 眞次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP57160868A priority Critical patent/JPS5951130A/en
Publication of JPS5951130A publication Critical patent/JPS5951130A/en
Publication of JPH028121B2 publication Critical patent/JPH028121B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/04Engines with prolonged expansion in main cylinders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To effectively utilize the energy of combustion gas so as to improve the efficiency of internal combustion engine by determining the expansion ratio at an expansion part larger than the compression ratio at a compression part in a double scroll mechanism. CONSTITUTION:The side of moving and stationary blades 7 and 8 forms a compression part which performs the compressive action while the side of moving and stationary blades 9 and 10 forms an expansion part which performs the expansive action. The mixture of fuel and air is sucked from a suction port I into a compressor sucking space II and then fed by the blades 7 and 8 into a compression chamber III. Thereafter, the mixture is exploded and burnt by an ignition plug 12 in an enclosed chamber IV which is defined between the blades 9 and 10 to revolve a main shaft 1. The expansion ratio at the expansion part is predetermined to be greater than the compression ratio at the compression part. The energy of combustion gas may be thus effectively utilized, hence improving the efficiency of internal combustion engine.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はスクロール機構を用いた内燃機関に関するもの
である。 従来から、容積型の内燃機関としては、往復動式或はロ
ータリ一式のものが専ら用いられているが、此等の機関
は吸気、圧縮と、着火、膨張の作用か同一のチャンバー
内で行われるのが特色である。これは、−見、合理的に
見えるか、ピストンの行程容積か、圧縮の場合も膨張の
場合も同じであるため、特に着火後の膨張工程において
、ンリンダ内の高温高圧ガスか、十分に太気圧近くまで
膨張し切らないうちにピストンはF死点に達し、そのた
め、才だ圧力の高いガスか機外に放出される事になる。 これは、機関の行程容積が、一定である為ζこ生ずる現
象で、本来、圧縮ガスの体積と燃焼ガスの体積は異なる
にも拘らず、同じ容U「の空間内で作動させる為に、燃
焼ガスの方はまた作動圧力を残した時点で抽気弁が開き
、大気中に無駄にエネルギを放出することになる。 この関係を機関の気筒容積と内圧の変化で表わしたもの
が第1図に示す所の圧カー容積線図(p−vei1図又
はインジケータ線図とも呼ばれている)である。図は一
般に用いられている電気着火のガソリンエンジンの場合
で、オツトーザイクルと呼(よりているものの説明図で
ある。aの状態才で気筒に吸込まれた混合気はb点まで
圧縮され、ここで着火されて気1”fiJ内の圧力はC
意味で急激に上外する。そしてピストンを押し丁り乍ら
膨張してd点に達する。この点では、図の如く、また大
気圧よりも高いIF力状態にあるにも拘らず、ピストン
はこれ以上後退せぬため、d点から大気圧に向ってその
まま放出される事になる。そのため前述の如く、無駄に
エネルギを放出するという欠点を有するものであった。 発明者らは、従来のもののこのような欠点を除くため仙
究ケ亀ね、d点のガスが更に膨張し続ける小が出来れ(
′;]1、そのまま図のe点まで達して大気に放出され
るので、面積deaO分だけ機関の行う仕事量は増える
、ということに着目し上記の研究の折に得られた知見に
基づき本発明がなされた。 本発明の目的は、従来の内燃機関、とくに往復動式、ロ
ータリ一式等の容積型内燃機関の基本的な欠点を除き、
燃焼ガスのエネルギーを有効に利用して従来よりも高効
率の内燃機関を提供する事にある。 本発明の他の目的は、従来の容積型内燃機関に比し、相
対的に酵餉小型で、且っ摺動磨耗部分の磨耗量の少い長
寿命の内燃機関を提供する事にある。 本発明は、相対的に並進円運動を行なう2枚の渦巻状ス
クロール羽根より成るスクロール機構を2組備え、第一
のスクロール機構を圧縮作用を行なうよう構成して圧縮
部となし、第二のスクロール機構を膨張作用を行なうよ
う構成して膨張部となし、前記圧縮部の圧縮比より前記
膨張部の膨張比を大きくとり、前記圧縮部と前記膨張部
との作動を連動せしめ、前記圧縮部の吐出口と前記膨張
部の吸込口とを連通し、前記圧縮部で圧縮された燃料と
空気との混合気を前記膨張部に導いて爆発燃焼せしめ、
前記膨張部より動力を取出すことを特徴とする内燃機関
である。 本発明は、圧縮部と膨張部とを分け、全く別の行程容積
を形成した事に大きな特長がある。これを達成する為に
、所謂スクロール流体機械と呼ばれている公知の機・構
を導入した。以下“、図面lこついて本発明の詳細な説
明する。 記2図は、スクロール流体機械の動作原理の説明図であ
って、渦巻状の移動羽根7及び固定羽根8が図のように
噛み合っており、固定羽根8は固定し、移動羽根7は固
定羽根8と接触を保ち乍ら相対運動を行うように形成さ
れている。合図の(atでは、移動羽根7及び固定羽根
8はA、B、C,Dの4点で接触しており、斜11Jヲ
施した空間に、吸入ガスを閉じ込めた状態にある。(b
lは移動羽根7が、固定羽根8に対する相対姿勢を保ち
乍ら反時計方向に移動し、それにつれて、斜線空間が圧
縮された所を示す。接触点A、B、C,Dは約90゜移
動している。更に(clでは移動羽根7が(8)の位置
カラ大略180°移動した乃1にあり、斜線空間は更に
圧縮されている。そして(dlでは移動羽根7の移動に
よって斜線空間の吸入ガスは、紙面と直角にあいたn通
孔13へ圧縮ガスな送り出す。そして新たに渦巻状羽根
の外周からガスを吸入しくalの状態に戻って次のサイ
クルが始まる。ここで注意すべき点は(、)の斜線部分
の空間】4に対して丁度軸対称の位置に全く同じ形状の
空間15が存在する事で、これも空間14と同様の経過
で中心部に向って圧縮され、空間14.15が同時に貫
通孔]3にガスを送り出すことになる。 以上はガス圧縮に対する説明であるが、このスクロール
機構を、逆に膨張機関として使用する事が出来る。即ち
、同じ第5図で(dlの余1線部分のガスが、圧力を持
った燃焼ガスであるとすれば、図の(dl→(el→(
bl→(atの経過を経てガスは膨張しながら移動羽根
7を動かし、外周部分から大気へ放出される。この間に
移動羽根7の動きによって動力を発生することが出来る
。 このように、スクロール流体機械は、2枚の固定及び可
動の渦巻羽根を組ろ合せる事により、圧縮作用又は膨張
作用を行わせる事が出来るが、その圧縮比即ちガスを取
り込んだ時の容積と、これを吐出するときの容積の割合
は、渦巻きの巻き数によって変る。これは、その逆の膨
張比についても全く同様である。第5図の場合は、移動
羽根7及び固定羽Aid 8け、説明の便のため夫々約
1.5巻きで描かれているが、計算によれは、巻数3の
場合、IF縮比は約4.32巻数を4.5にふやすと圧
縮比は約6.5となる。このように巻き数により、圧縮
又は膨張1r、′Jの容積比を変える事が出来る傷長を
生かして、辺上にn5;1明する内燃機関を構成するこ
とが出来る。 21′!、 3図は、本発明の一芙施例の機関の回転1
−る主i11+ 1を含む断面図で、主lll1l11
には大歯車2が取りf=1けられており、小歯車3とか
み合っている。小歯車3は偏心軸4に取りつけられてい
るので、主軸1の回転数よりも速い速度で偏心軸4が回
転する。この偏心軸4には偏心カム5′が設けられてい
て、移動羽根鏡板5が接し、鉗・板5は主軸1の軸心C
のまわりを並進円運動による移動運動するようになって
いる。σは偏心カム5′のバランス対策として般けた逆
偏心カムで、バランスウェイト6を偏心回転させるよう
にして、偏心軸4の高速回転における動的釣り合いを保
っている。 鏡板5の片面には、スクロール式圧縮用移動羽根7が取
り付けられ、固定羽根8とかみ合っており、反対面には
同じく膨張用移動羽根9が取り付けられ、固定羽根10
とかみ合っている。両方の固定羽根8.10はケーシン
グ11に取りつけられており、移動及び固定羽根7.9
の運動により前述したスクロール流体機械の原理により
移動及び固定羽根7,8側は圧縮作用を行なう圧縮部、
移動及び固定羽根9.lO側は膨張作用を行う膨張部と
なっている。これを軸方向から見るために第1図のA−
A及びB−Bの面で切断した断面図を夫々第4図、第5
図に示す。即ち第4図は圧縮機のスクロール羽根を表わ
し、第5図は膨張様のスフ
The present invention relates to an internal combustion engine using a scroll mechanism. Conventionally, reciprocating or rotary type internal combustion engines have been exclusively used as positive displacement internal combustion engines, but these engines perform the functions of intake, compression, ignition, and expansion in the same chamber. It is characterized by being exposed. This seems reasonable, but since the stroke volume of the piston is the same for both compression and expansion, especially in the expansion process after ignition, the high-temperature, high-pressure gas in the cylinder must be sufficiently thick. The piston reaches F dead center before it fully expands to near atmospheric pressure, and therefore, high-pressure gas is released outside the machine. This is a phenomenon that occurs because the stroke volume of the engine is constant, and although the volume of compressed gas and the volume of combustion gas are originally different, in order to operate within the same volume U'', As for the combustion gas, the bleed valve opens when the operating pressure remains, and energy is wasted into the atmosphere. Figure 1 shows this relationship in terms of changes in engine cylinder volume and internal pressure. This is a pressure car volume diagram (also called a p-vei 1 diagram or an indicator diagram) as shown in Figure 1.The figure shows the case of a generally used electric ignition gasoline engine, which is called an otto cycle (more The air-fuel mixture sucked into the cylinder in state a is compressed to point b, where it is ignited and the pressure inside the air becomes C.
It suddenly goes up and down in meaning. Then, while pushing the piston, it expands and reaches point d. At this point, as shown in the figure, even though the IF force is higher than atmospheric pressure, the piston does not move back any further, so it is ejected from point d toward atmospheric pressure. Therefore, as mentioned above, it has the disadvantage of wastefully emitting energy. In order to eliminate these drawbacks of the conventional ones, the inventors have developed a mechanism in which the gas at point d continues to expand (
';] 1. We focused on the fact that the engine reaches point e in the figure and is emitted into the atmosphere, so the amount of work performed by the engine increases by the area deaO, and based on the knowledge obtained during the above research, this book was developed. An invention has been made. The purpose of the present invention is to eliminate the fundamental drawbacks of conventional internal combustion engines, especially positive displacement internal combustion engines such as reciprocating type, rotary type, etc.
The purpose is to provide an internal combustion engine that is more efficient than conventional ones by effectively utilizing the energy of combustion gas. Another object of the present invention is to provide an internal combustion engine that is relatively smaller in size than conventional positive displacement internal combustion engines, and has a long life with less wear on sliding parts. The present invention is provided with two sets of scroll mechanisms each consisting of two spiral scroll blades that perform relative translational circular motion, the first scroll mechanism is configured to perform a compression action and is used as a compression section, and the second scroll mechanism is configured to perform a compression action. The scroll mechanism is configured to perform an expansion action to serve as an expansion section, the expansion ratio of the expansion section is set larger than the compression ratio of the compression section, the operations of the compression section and the expansion section are interlocked, and the compression section communicates the discharge port of the expansion section with the suction port of the expansion section, and guides the mixture of fuel and air compressed in the compression section to the expansion section for explosive combustion;
The internal combustion engine is characterized in that power is extracted from the expansion section. A major feature of the present invention is that the compression section and the expansion section are separated to form completely different stroke volumes. In order to achieve this, a known mechanism called a scroll fluid machine was introduced. The present invention will be described in detail below with reference to Figure 1. Figure 2 is an explanatory diagram of the operating principle of a scroll fluid machine, in which a spiral movable blade 7 and a fixed blade 8 are engaged as shown in the figure. The fixed blade 8 is fixed, and the movable blade 7 is formed to perform relative movement while maintaining contact with the fixed blade 8. At the signal (at), the movable blade 7 and the fixed blade 8 are , C, and D, and the inhalation gas is trapped in the space formed by diagonal 11J. (b
1 indicates a position where the movable blade 7 moves counterclockwise while maintaining its relative attitude with respect to the fixed blade 8, and the hatched space is compressed as the movable blade 7 moves counterclockwise. Contact points A, B, C, and D have moved approximately 90°. Furthermore, in (cl), the movable vane 7 is moved approximately 180 degrees from the position (8) to 1, and the hatched space is further compressed.And (dl), due to the movement of the movable vane 7, the suction gas in the hatched space is The compressed gas is sent out to the N-hole 13 that is perpendicular to the plane of the paper.Then, gas is newly sucked in from the outer periphery of the spiral blade, and the state returns to al and the next cycle begins.The points to note here are (,) Space 15 with the same shape exists at a position exactly axially symmetrical to space 14, which is compressed toward the center in the same way as space 14, and space 14.15 becomes At the same time, the gas is sent to the through hole] 3. The above is an explanation of gas compression, but this scroll mechanism can be used conversely as an expansion engine. If the gas in the line 1 is a combustion gas with pressure, then (dl→(el→()
After the process of bl→(at, the gas moves the moving blade 7 while expanding, and is released from the outer circumferential portion to the atmosphere. During this time, power can be generated by the movement of the moving blade 7. In this way, the scroll fluid A machine can perform compression or expansion by combining two fixed and movable spiral blades, but the compression ratio, that is, the volume when gas is taken in, and the volume when it is discharged The volume ratio changes depending on the number of turns of the spiral.This is exactly the same for the opposite expansion ratio.In the case of Fig. 5, the movable blade 7 and the fixed blade Aid 8 are used for convenience of explanation. They are each drawn with approximately 1.5 turns, but according to calculations, when the number of turns is 3, the IF compression ratio is approximately 4.32.If the number of turns is increased to 4.5, the compression ratio is approximately 6.5. By taking advantage of the flaw length that can change the volume ratio of compression or expansion 1r,'J by changing the number of turns, it is possible to construct an internal combustion engine with n5;1 light on the side.21'!, Figure 3 is the rotation 1 of the engine according to one embodiment of the present invention.
- A cross-sectional view including the main i11+ 1, the main ill1l11
A large gear 2 is provided with f=1 gear, and meshes with a small gear 3. Since the small gear 3 is attached to the eccentric shaft 4, the eccentric shaft 4 rotates at a faster speed than the rotational speed of the main shaft 1. This eccentric shaft 4 is provided with an eccentric cam 5', which is in contact with the movable vane mirror plate 5, and the forceps/plate 5 is connected to the axis C of the main shaft 1.
It is designed to move in a translational circular motion around the . σ is a reverse eccentric cam that is popular as a countermeasure for balancing the eccentric cam 5', and maintains dynamic balance when the eccentric shaft 4 rotates at high speed by eccentrically rotating the balance weight 6. A scroll-type compression movable blade 7 is attached to one side of the end plate 5 and engages with a fixed blade 8, and a movable expansion blade 9 is similarly attached to the opposite side and fixed blade 10.
They are interlocked. Both fixed vanes 8.10 are mounted on the casing 11, and the moving and fixed vanes 7.9
The moving and fixed blades 7 and 8 side have a compression section that performs a compression action according to the principle of the scroll fluid machine described above.
Moving and fixed vanes9. The lO side is an expansion part that performs an expansion action. To see this from the axial direction, see A- in Figure 1.
The cross-sectional views taken along the planes A and B-B are shown in Figures 4 and 5, respectively.
As shown in the figure. That is, Fig. 4 shows the scroll blade of the compressor, and Fig. 5 shows the expansion-like sphincter.

【J−ル羽イ[(を表わす。 又、第4図では、鏡板5と、こ」1とかみ合う偏心カム
5′ヲ有′1−る偏心軸4の状1人11をも示している
。 第4図において、移動羽根7は@15板5に取りつけら
れており、釘、1板5には上F2ケr9rにイ1]4心
カム5′と滑合する案内q′が一体に設けられていて偏
心軸4の回転と共に偏心カム5′が撮れ廻り、その結果
、案内5“を介して鏡板5が上下の方向を保ったまま、
中心iIす11Cの丈わりを旋回移動する。第4図では
、羽根7,8の巻き数はほぼ3となっている。 2JN 5図においては、移動羽根9がりr7&5に取
りつけられているので、5の旋回移動と共に移動羽根9
は固定羽根10に対して相対運動を行い、スクロールイ
ト−械を形成する。第5図では羽根9.10の巻き数け
ほぼ4+に描かれており、第4図の移動及び固定羽根7
,8の巻き舷よりも多い点と、渦巻き方向が反対になっ
ている点が特長である。 このような4M造の流体機誠に内燃機関の働きをさせろ
ために、第3図に示すように釘1;板5の中心部にyb
l(l TL ] 3を設け、又膨張機側固定り′1−
板17の中心部近辺に点火栓12を設ける。この機構の
作用は次の通りである。 燃料と空気の混合気は、圧縮機側固定←板16の外周部
にケーシング】lと共に形成された吸気口■から圧縮機
吸込空間■に吸引され、鎖板5が第4図中心部に描いた
矢印の方向に旋回運動な行うと、移動及び固定羽根7,
8の働きにより中心部に向って圧縮され、圧縮室■に送
り込まれる。 圧縮室111は貫通孔】3を介して膨張側圧縮室I「と
つなかつているので、圧縮された混合気は膨張側移動羽
根9の偏心旋回に伴って、移動羽根9と固定羽根10の
接触により形成される閉込室に供給されろ。その最内端
部の閉込1. IVが閉鎖された直後の位相で点火栓】
2に71+πtし、圧縮混合気に点火し、これを爆発燃
焼させる。これにより、燃焼ガスは膨張機外周に向って
膨張し乍ら移動羽根9を旋回さぜ、従って鏡板5が偏心
旋回し新たな山1゜合気を圧縮ずろと同時に偏心軸4、
歯車3,2を粁て主軸1を回転せしめる。燃焼後の排気
ガスは、膨張部、 (+111外周室である排気空間■
を;FT’、1つて固定羽相宿、′喀板17に根けら第
1た刊気口Vlから、枦外へ制用されろ。 尚、偏心軸4とケーシング11の外周部に形成さ第1る
仕切室Vll及び、歯車2.3を格納する歯沖室■は、
上述の混合気或は排気とは隔離されており、若干の潤滑
油を封入しておく事により、各部の潤滑をはかる事が可
能である。 このように、本発明の内燃機[夕1においては、混合気
の圧縮機構と爆発炉焼5ガスの膨張機構とが、同一のO
l・板の両面に背中合せに別々に設けられており、気f
オの圧縮比と膨張比に合せて、夫々の機構の寸法を任意
に定める事が出来る。この事は、前に述べた汗21図の
ザイクル図で、圧縮機構は、@ −+ l)寸での行程
容積で設組し、ル、ンイ張4μ側はC→eの行イソ容積
で設計する事が出来、従来のピストン式などにみらJす
るような圧縮、膨張が同一容積比で作動するものに比べ
て、図の斜線を施した面積の分だl=ノ、燃焼ガスに余
分の仕事を行わせる事が出来、内燃機関の効率向上に害
鳥する01大である。 本発明により、燃料な全く増加すイ・ことなく什小遣を
増やし、仕事鄭尚たりの燃旧消費titを減少し、高効
率であり、軽お一小型の内すp機関を捉供することがで
き、実用上極めて大なる効果を奏することができる。
Figure 4 also shows the end plate 5 and the eccentric shaft 4 having an eccentric cam 5' that engages with the mirror 1. In Fig. 4, the movable blade 7 is attached to the @15 plate 5, and the nail and the guide q' that slides on the upper F2 ker r9r and the four-core cam 5' are integrally attached to the plate 5. As the eccentric shaft 4 rotates, the eccentric cam 5' rotates, and as a result, the mirror plate 5 maintains its vertical direction via the guide 5''.
Rotate and move the length of center iI 11C. In FIG. 4, the number of turns of the blades 7 and 8 is approximately three. 2JN In Figure 5, since the moving blade 9 is attached to r7 & 5, the moving blade 9 moves along with the turning movement of 5.
performs a relative movement with respect to the fixed blades 10, forming a scrolling machine. In Figure 5, the winding number of blades 9 and 10 is approximately 4+, and the moving and fixed blades 7 in Figure 4 are drawn.
, 8 has more windings than the others, and the spiral direction is opposite. In order to make such a 4M-built fluid machine work as an internal combustion engine, as shown in Fig. 3, a nail 1;
l (l TL ) 3 is provided, and the expander side fixing '1-
The spark plug 12 is provided near the center of the plate 17. The operation of this mechanism is as follows. The mixture of fuel and air is sucked into the compressor suction space ■ from the intake port ■ formed with the outer periphery of the plate 16 fixed on the compressor side ← casing ] l, and the chain plate 5 is drawn in the center of Fig. 4. When a turning movement is performed in the direction of the arrow, the moving and fixed blades 7,
8 compresses it toward the center and sends it into the compression chamber (2). Since the compression chamber 111 is connected to the expansion side compression chamber I through the through hole 3, the compressed air-fuel mixture flows between the movable blade 9 and the fixed blade 10 as the expansion side movable blade 9 eccentrically rotates. The confinement chamber formed by contacting the confinement at its innermost end 1. The spark plug in the phase immediately after the IV is closed]
2 to 71+πt, ignite the compressed air-fuel mixture, and cause it to explode and burn. As a result, the combustion gas expands toward the outer periphery of the expander while rotating the movable blade 9, so that the end plate 5 eccentrically rotates to create a new peak of 1°.
The main shaft 1 is rotated by rotating the gears 3 and 2. After combustion, the exhaust gas is transferred to the expansion part, (+111exhaust space which is the outer peripheral chamber)
; FT', one of which is fixed, from the first publication Vl on board 17, it should be used outside the box. In addition, the first partition chamber Vll formed on the outer periphery of the eccentric shaft 4 and the casing 11, and the gear space II in which the gear 2.3 is stored, are as follows:
It is isolated from the above-mentioned air-fuel mixture or exhaust gas, and by sealing in some lubricating oil, it is possible to lubricate each part. In this way, in the internal combustion engine of the present invention [in Part 1, the air-fuel mixture compression mechanism and the explosion furnace combustion gas expansion mechanism are of the same O
L・Separately installed back to back on both sides of the board,
The dimensions of each mechanism can be arbitrarily determined according to the compression ratio and expansion ratio of E. This means that in the Seikle diagram of Figure 21 mentioned earlier, the compression mechanism is installed with a stroke volume of @ - + l) dimension, and the stroke volume of the 4μ side of L, N, is the row iso volume of C → e. Compared to the conventional piston type, in which compression and expansion operate at the same volume ratio, the combustion gas is It is 01 that can cause extra work to be done and is harmful to improving the efficiency of internal combustion engines. With the present invention, it is possible to increase allowances without increasing fuel consumption, reduce fuel consumption during work, and provide a highly efficient and compact engine for light vehicles. It is possible to achieve extremely great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は内燃機関のp−v線図、第2図はスクロール機
構の説明図、第3図は本発明の実施例の縦断面図、81
!4図及び第5図は第3図のそれぞれA−A線及びB−
B綜横断面図である。 1・・・主軸、  2・・・大歯車、  3・・小歯車
、4 ・偏心iq:+、  5・・・鏡板、  5′偏
心カム、  5″・・案内、  6・・・バランスウェ
イト、  6′・・・逆偏心カム、  7・・・移動羽
根、  8・・・固定羽根、9・・・移動羽根、  1
0・・固定羽根、  11・ ケーシング、  ]第2
・・点火栓、  13・・貫通孔、第4・・・空間、 
 15・・・空間、  16・・固定羽根鏡板、 ]第
7・・固定羽根鏡板、 ■・・・吸入口、  ■・・・吸入を間、 11・・・
圧縮室、■・・・閉込室、 ■・・・排気壁間、 Vl
・・・排気口、■・・・仕切室、  Vト・・歯車室。 特許出願人   株式会社荏原製作所 イリ1!人 弁理士    端  山  五  −同 
            千    1)   稔vb
        込    鳩 各槓 (v) (a)         (b) 忙)(d)
FIG. 1 is a p-v diagram of the internal combustion engine, FIG. 2 is an explanatory diagram of the scroll mechanism, and FIG. 3 is a longitudinal cross-sectional view of an embodiment of the present invention.
! Figures 4 and 5 are lines A-A and B- of Figure 3, respectively.
FIG. 1... Main shaft, 2... Large gear, 3... Small gear, 4 - Eccentricity iq: +, 5... End plate, 5' eccentric cam, 5''... Guide, 6... Balance weight, 6'... Reverse eccentric cam, 7... Moving blade, 8... Fixed blade, 9... Moving blade, 1
0...Fixed blade, 11. Casing, ]2nd
...Ignition plug, 13..Through hole, 4th...Space,
15...Space, 16...Fixed vane mirror plate, ]7th...Fixed vane mirror plate, ■...Intake port, ■...Intake space, 11...
Compression chamber, ■...Confinement chamber, ■...Between exhaust walls, Vl
...exhaust port, ■...partition room, Vt...gear room. Patent applicant Ebara Corporation Iri1! Patent Attorney Go Hatayama - Same
Thousand 1) Minoru vb
(v) (a) (b) busy) (d)

Claims (1)

【特許請求の範囲】 1、相対的に並進円運動を行なう2枚の渦巻状スクロー
ル羽根より成るスクロール機構を2組備え、第一のスク
ロール機構を圧縮作用を行なうよう棺成して圧縮部とな
し、第二のスクロール機構を膨張作用を行なうよう構成
して膨張部となし、前記圧縮部の圧縮比より前記膨張部
の膨張比を大きくとり、前記圧縮部と前記膨張部との作
動を連動せしめ、前記圧縮部の吐出口と前記膨張部の吸
込口とを連通し、前記圧縮部で圧縮された燃料と空気と
の混合気を前記膨張部に導いて爆発燃焼せしめ、前記膨
張部より動力を取出すことを特徴とする内燃機筺I。 2 前記第−及び第ニスクロール機構がそれぞれ固定ス
クロール羽根と移動スクロール羽根を備え、第−及び第
ニスクロール機構の移動スクロール羽根が一枚の釡(1
板の表裏に設けられている特許請求の範囲第3項記載の
内炉5(機関。
[Scope of Claims] 1. Two sets of scroll mechanisms each consisting of two spiral scroll blades that perform a relative translational circular motion are provided, and the first scroll mechanism is formed into a coffin so as to perform a compression action, and serves as a compression section. None, the second scroll mechanism is configured to perform an expansion action to serve as an expansion section, the expansion ratio of the expansion section is set larger than the compression ratio of the compression section, and the operations of the compression section and the expansion section are linked. The discharge port of the compression section and the suction port of the expansion section are communicated, and the mixture of fuel and air compressed in the compression section is guided to the expansion section for explosive combustion, and power is generated from the expansion section. An internal combustion engine housing I characterized by being able to take out the engine. 2. The first and second scroll mechanisms each include a fixed scroll blade and a movable scroll blade, and the movable scroll blades of the second and second scroll mechanisms form one pot (1
The inner furnace 5 (engine) according to claim 3, which is provided on the front and back of the plate.
JP57160868A 1982-09-17 1982-09-17 Internal-combustion engine Granted JPS5951130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57160868A JPS5951130A (en) 1982-09-17 1982-09-17 Internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57160868A JPS5951130A (en) 1982-09-17 1982-09-17 Internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS5951130A true JPS5951130A (en) 1984-03-24
JPH028121B2 JPH028121B2 (en) 1990-02-22

Family

ID=15724102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57160868A Granted JPS5951130A (en) 1982-09-17 1982-09-17 Internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5951130A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209534A (en) * 1991-07-29 1993-08-20 Mitsubishi Electric Corp Internal combustion engine
EP2133511A1 (en) * 2008-06-10 2009-12-16 Energeticamente Rinnovabili SRL Internal combustion scroll engine
WO2020095386A1 (en) * 2018-11-07 2020-05-14 アネスト岩田株式会社 Scroll fluid machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2945835B1 (en) * 2009-05-25 2016-01-22 Commissariat Energie Atomique PRESSURE AND COMPRESSION TRANSFORMATION MICROSYSTEMS, SENSOR, WHEEL, CHIP, MICROMOTOR, BATTERY INCORPORATING THE MICROSYSTEM, AND METHOD OF MANUFACTURING THE MICROSYSTEM

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209534A (en) * 1991-07-29 1993-08-20 Mitsubishi Electric Corp Internal combustion engine
US5293850A (en) * 1991-07-29 1994-03-15 Mitsubishi Denki Kabushiki Kaisha Scroll type rotary internal combustion engine
EP2133511A1 (en) * 2008-06-10 2009-12-16 Energeticamente Rinnovabili SRL Internal combustion scroll engine
WO2020095386A1 (en) * 2018-11-07 2020-05-14 アネスト岩田株式会社 Scroll fluid machine

Also Published As

Publication number Publication date
JPH028121B2 (en) 1990-02-22

Similar Documents

Publication Publication Date Title
US3688749A (en) Supercharged rotary combustion engine
US6782866B2 (en) Rotary machine and thermal cycle
EP1992805A1 (en) Reciprocating machine
US6070565A (en) Rotary internal combustion engine
US3690791A (en) Rotary engine with radially shiftable rotor
JPH05503334A (en) rotary internal combustion engine
US6536403B1 (en) Direct drive rotary engine
US3902465A (en) Rotary engine
US4572121A (en) Rotary vane type I.C. engine with built-in scavenging air blower
US3208437A (en) Internal combustion engine
US3299867A (en) Vane type internal combustion engines
JPS5951130A (en) Internal-combustion engine
US2812748A (en) Rotary internal combustion engine
US5125379A (en) Rotary engine
US20140190446A1 (en) Fixed vane rotary abutment engine
US2280742A (en) Rotary internal combustion engine
US1568052A (en) Internal-combustion engine
JPH1068301A (en) Vane rotation type volume changing device and internal combustion engine using the device
JPH03151523A (en) Rotary machine
WO2019150336A1 (en) Rotary engine
RU2377426C2 (en) Rotary engine
JPS5820372B2 (en) internal combustion engine
CN213574345U (en) Slide block type rotor engine
US3951110A (en) Rotary engine arrangement
US3498271A (en) Rotary engine