WO2020095080A1 - 電力変換装置の制御方法および電力変換装置 - Google Patents

電力変換装置の制御方法および電力変換装置 Download PDF

Info

Publication number
WO2020095080A1
WO2020095080A1 PCT/IB2018/001330 IB2018001330W WO2020095080A1 WO 2020095080 A1 WO2020095080 A1 WO 2020095080A1 IB 2018001330 W IB2018001330 W IB 2018001330W WO 2020095080 A1 WO2020095080 A1 WO 2020095080A1
Authority
WO
WIPO (PCT)
Prior art keywords
power conversion
voltage
converter
conversion circuit
output
Prior art date
Application number
PCT/IB2018/001330
Other languages
English (en)
French (fr)
Other versions
WO2020095080A8 (ja
Inventor
圖子祐輔
山上滋春
斎藤雄二
富田要介
竹本圭佑
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to PCT/IB2018/001330 priority Critical patent/WO2020095080A1/ja
Priority to US17/291,095 priority patent/US11279238B2/en
Priority to CN201880099195.6A priority patent/CN112955345B/zh
Priority to JP2020556347A priority patent/JP7119118B2/ja
Priority to EP18939132.9A priority patent/EP3878682A4/en
Publication of WO2020095080A1 publication Critical patent/WO2020095080A1/ja
Publication of WO2020095080A8 publication Critical patent/WO2020095080A8/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/003Converting light into electric energy, e.g. by using photo-voltaic systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a power converter control method and a power converter.
  • a first power conversion unit that converts the output power from the solar power generation device and outputs the power after the power conversion; and a first storage battery that can store the output power from the first power conversion unit, Second power conversion means for converting power output from the first storage battery by discharging the first storage battery and outputting the power after the power conversion, and output power from the second power conversion means are stored.
  • a power conversion system including a possible second storage battery and a control unit that controls the drive of the second power conversion unit by comparing the remaining charge amount of the first storage battery with a threshold value for the first storage battery is known. (Patent Document 1).
  • the second storage battery includes at least one of an auxiliary battery that supplies operating power to an auxiliary device and a main battery that supplies operating power to a traveling drive source of the vehicle.
  • the first storage battery is provided in addition to the second storage battery that supplies electric power to the auxiliary equipment and the like, and there is a problem that the power conversion system becomes large.
  • the problem to be solved by the present invention is to provide a power conversion device control method and a power conversion device capable of preventing an increase in size.
  • the present invention controls the operation of the second power conversion circuit that converts the voltage at the connection end with the battery based on the output voltage of the solar cell module, thereby charging the battery with the output power of the second power conversion circuit.
  • FIG. 1 is a circuit diagram of a power conversion system including the power conversion device according to the first embodiment.
  • FIG. 2 is a diagram for explaining the characteristics of the output power and the conversion efficiency with respect to the boost ratio.
  • FIG. 3 is a diagram for explaining the operation of the control circuit.
  • FIG. 4 is a circuit diagram of a power conversion system including a modification of the power conversion device according to the first embodiment.
  • FIG. 5 is a circuit diagram of a power conversion system including the power conversion device according to the second embodiment.
  • FIG. 6 is a circuit diagram of a power conversion system including the power conversion device according to the third embodiment.
  • FIG. 7 is a circuit diagram of a power conversion system including the power conversion device according to the fourth embodiment.
  • FIG. 1 is a circuit diagram of a power conversion system 100 including a power conversion device 10 according to this embodiment.
  • the power conversion system 100 according to the present embodiment includes a solar cell module 1, a battery 2, and a power conversion device 10.
  • the power conversion system 100 is a system in which the power output from the solar cell module 1 is converted by the power conversion device 10 and the converted power is supplied to the battery 2.
  • the power conversion system 100 is used, for example, in a charging system mounted on a vehicle.
  • the power conversion system 100 does not necessarily have to be mounted on the vehicle, and may be mounted on a device other than the vehicle.
  • the solar cell module 1 is a module composed of a plurality of solar cells.
  • a solar cell is an energy conversion element that absorbs the light energy of sunlight and converts the light energy of sunlight into electricity.
  • Examples of the solar cell module 1 include a solar panel. When the silicon element solar cell is used, the output voltage of the solar cell is 1 V or less.
  • the solar battery module 1 is composed of a plurality of solar battery cells connected in series.
  • the electric power that can be output from the solar cell module 1 differs depending on the intensity of the light (sunlight amount) applied to the solar cell module 1.
  • the magnitude of the voltage output by the solar cell module 1 when the solar cell module 1 is shaded will be described later.
  • the solar cell module 1 has output terminals 1a and 1b.
  • the electric power generated by the solar cell module 1 is output from the output terminals 1a and 1b.
  • the output terminal 1a is connected to the input terminal 11a of the first converter 11, and the output terminal 1b is connected to the input terminal 11b of the first converter 11.
  • the electric power generated by the solar cell module 1 is output to the first converter 11.
  • the output voltage V pv of the solar cell module 1 is a voltage between the output terminals 1 a and 1 b
  • the output current I pv of the solar cell module 1 is from the output terminal 1 a to the input terminal 11 a of the first converter 11. Indicates the current flowing into the.
  • the output terminal 1a is a terminal on the higher potential side than the output terminal 1b.
  • Electric power is supplied to the battery 2 from the power converter 10.
  • the battery 2 is charged by the output power of the power conversion device 10.
  • Examples of the battery 2 include a lithium ion secondary battery.
  • the battery 2 has connection terminals 2a and 2b as terminals that can be connected to devices and devices other than the battery 2.
  • the connection terminal 2a is connected to the output terminal 11c of the first converter 11 and the input terminal 12a of the second converter 12, and the connection terminal 2b is connected to the reference terminal 12b of the second converter.
  • a current is input to the connection terminal 2a from the output terminal 11c of the first converter 11, and the battery 2 is charged.
  • the voltage of the battery 2 is input to the second converter 12.
  • the operation of the second converter 12 based on the voltage of the battery 2 will be described later. In FIG.
  • the output current I out of the first converter 11 is a current flowing from the output terminal 11 c of the first converter 11 to the connection terminal 2 a
  • the voltage V bat of the battery 2 is the voltage between the connection terminals 2 a and 2 b.
  • the connection terminal 2a is a terminal on the higher potential side than the connection terminal 2b.
  • the connection terminal 2a is connected to the positive electrode of the battery 2, and the connection terminal 2b is connected to the negative electrode of the battery 2.
  • the voltage (V bat ) of the battery 2 is higher than the output voltage (V pv ) of the solar cell module 1.
  • the maximum output voltage of the solar cell module 1 is 60 V or less, and the voltage of the battery 2 is four times or more higher than the maximum voltage of the solar cell module 1. Therefore, the power conversion device 10 described later has a function of boosting the input voltage.
  • the output voltage of the solar cell module 1 is boosted by the power conversion device 10, and the boosted voltage is output to the battery 2.
  • the power conversion device 10 includes a first converter 11, a second converter 12, and a control circuit 13.
  • the first converter 11 converts the output power of the solar cell module 1 and outputs the converted power to the battery 2.
  • the first converter 11 is a circuit that transforms an input DC voltage and outputs the transformed voltage as a DC voltage, a so-called DC-DC converter.
  • the first converter 11 has an insulation transformer 14, and is an insulation type DC-DC converter.
  • the isolation transformer 14 has a primary winding 14a provided on the input side and a secondary winding 14b provided on the output side.
  • the first converter 11 has a function of boosting the input voltage, and is a so-called boost converter.
  • the first converter 11 is composed of, for example, an inverter circuit connected to the primary winding 14a and a rectifying circuit connected to the secondary winding 14b.
  • the first converter 11 has input terminals 11a and 11b and output terminals 11c and 11d.
  • the input terminal 11a is connected to the output terminal 1a of the solar cell module 1, and the input terminal 11b is connected to the output terminal 1b of the solar cell module 1.
  • the output terminal 11c is connected to the connection terminal 2a of the battery 2, and the output terminal 11d is connected to the output terminal 12c of the second converter 12.
  • the input terminal 11a is a terminal on the higher potential side than the input terminal 11b
  • the output terminal 11c is a terminal on the higher potential side than the output terminal 11d.
  • the input voltage and the output voltage of the first converter 11 will be described.
  • the input voltage of the first converter 11 is the magnitude of the potential of the input terminal 11a with respect to the potential of the input terminal 11b.
  • the input voltage of the first converter 11 is the voltage of the input terminal 11a when the potential of the input terminal 11b is the reference potential.
  • the input voltage of the first converter 11 corresponds to the output voltage (V pv ) of the solar cell module 1.
  • the output voltage of the first converter 11 is the magnitude of the potential of the output terminal 11c with respect to the potential of the output terminal 11d.
  • the output voltage of the first converter 11 is the voltage of the output terminal 11c when the potential of the output terminal 11d is the reference potential.
  • the input terminals 11a and 11b and the output terminals 11c and 11d are insulated by the insulating transformer 14. Therefore, in the first converter 11, the reference potential on the input side and the reference potential on the output side can be different potentials. Thereby, the output voltage of the first converter 11 can be controlled according to the reference potential.
  • the first converter 11 has a function of increasing the input voltage four times, and 3V is input to the first converter 11.
  • the voltage of the input terminal 11b is zero voltage.
  • the output voltage of the first converter 11 (voltage of the output terminal 11c) is 12V. From this state, when the voltage of the output terminal 11d rises from zero voltage to 1V, the output voltage of the first converter 11 (voltage of the output terminal 11c) becomes 13V by adding 1V to 12V boosted by the first converter 11. To rise.
  • a method of controlling the voltage of the output terminal 11d to control the output voltage of the first converter 11 will be described later.
  • a control signal is input to the first converter 11 from a control circuit 13 described later.
  • the first converter 11 boosts the output power of the solar cell module 1, which is the input voltage, according to the control signal.
  • the control signal for example, a signal for turning on and off a switching element forming an inverter circuit can be mentioned.
  • the first converter 11 boosts the output voltage of the solar cell module 1 according to the switching frequency of the switching element and the duty ratio (value indicating the ON period per unit time). For example, the voltage boosted by the first converter 11 changes according to the switching frequency.
  • the magnitude of the voltage boosted by the first converter 11 is determined by the boost ratio.
  • the step-up ratio is the ratio of the output voltage to the input voltage when the input terminal 11b and the output terminal 11d have the same potential.
  • the control circuit 13 can change the boost ratio of the first converter 11 within a specific range by controlling the control signal.
  • the boost ratio has an upper limit value and a lower limit value.
  • the upper limit of the step-up ratio is determined according to the characteristics of the insulating transformer 14 and the like.
  • the upper limit value of the boost ratio is also referred to as the maximum boost ratio (N max ).
  • FIG. 2 is a diagram for explaining the characteristics of the output power and the conversion efficiency with respect to the boost ratio.
  • the horizontal axis represents the output power of the first converter 11
  • the vertical axis represents the conversion efficiency of the first converter 11 (the ratio of the output power to the input power).
  • a curve A is a characteristic of the first converter 11 when operating at the maximum step-up ratio (N max )
  • a curve B is a characteristic of the first converter 11 when operating at the minimum step-up ratio (N min ).
  • a curve C shows the characteristics of the first converter 11 when operating at a boost ratio smaller than the maximum boost ratio and larger than the minimum boost ratio. Note that FIG. 2 is an example showing the relationship between the output power of the first converter 11 and the conversion efficiency, and the boosting ratios corresponding to the curves A, B, and C are limited to the boosting ratios described above. is not.
  • the larger the boost ratio the higher the conversion efficiency and the smaller the maximum value of the power that can be output (hereinafter referred to as the maximum output power).
  • the smaller the boost ratio the larger the maximum output power and the smaller the conversion efficiency. Therefore, from the viewpoint of improving the conversion efficiency, it is preferable to operate the first converter 11 so that the boosting ratio becomes large.
  • the first converter 11 from the viewpoint of increasing the output power, it is preferable to operate the first converter 11 so that the boosting ratio becomes small.
  • the output power and the conversion efficiency have a so-called trade-off relationship with respect to the step-up ratio.
  • the rated voltage of the first converter 11 is lower than the voltage at which the maximum output power is output (also referred to as the maximum output voltage). Therefore, the boost ratio (N opt ) when the first converter 11 outputs the rated voltage is less than the maximum boost ratio (N max ).
  • the step-up ratio when the first converter 11 outputs the rated voltage is also referred to as a rated step-up ratio (N opt ).
  • the relationship between the maximum output power and conversion efficiency when operating at the rated boost ratio is the most balanced and optimal compared to the relationship between the maximum output power and conversion efficiency when operating at other boost ratios. To do. Using the example of FIG. 2, the rated boost ratio (N opt ) corresponds to curve B.
  • the second converter 12 converts the voltage of the battery 2 and outputs the converted voltage to the first converter 11.
  • the second converter 12, like the first converter 11, is a so-called DC-DC converter.
  • the second converter 12 has a function of stepping down the input voltage and is a so-called step-down converter.
  • the second converter 12 is, for example, a charge pump type step-down converter.
  • the second converter 12 is not particularly limited whether the input side and the output side are insulated, and may be an insulation type DC-DC converter or a non-insulation type DC-DC converter. Good.
  • the second converter 12 has an input terminal 12a, a reference terminal 12b, and an output terminal 12c.
  • the input terminal 12a is connected to the connection terminal 2a of the battery 2, and the reference terminal 12b is connected to the connection terminal 2b of the battery 2.
  • the output terminal 12c is connected to the output terminal 11d of the first converter 11.
  • the reference terminal 12b is a terminal that determines the reference potential of the second converter 12.
  • the input terminal 12a is a terminal on the higher potential side than the reference terminal 12b
  • the output terminal 12c is a terminal on the higher potential side than the reference terminal 12b.
  • the input voltage and the output voltage of the second converter 12 will be described.
  • the input voltage of the second converter 12 is the magnitude of the potential of the input terminal 12a with respect to the potential of the reference terminal 12b.
  • the input voltage of the second converter 12 is the voltage of the input terminal 12a when the potential of the reference terminal 12b is the reference potential.
  • the input voltage of the second converter 12 corresponds to the voltage (V bat ) of the battery 2.
  • the output voltage of the second converter 12 is the magnitude of the potential of the output terminal 12c with respect to the potential of the reference terminal 12b.
  • the output voltage of the second converter 12 is the voltage of the output terminal 12c when the potential of the reference terminal 12b is used as a reference.
  • the second converter 12 has a reference terminal 12b that serves as a reference potential common to both the input voltage and the output voltage. Therefore, in the second converter, the input voltage and the output voltage are voltages based on the common potential.
  • the voltage of the output terminal 11d of the first converter 11 changes according to the output voltage of the second converter 12.
  • the second converter 12 steps down the voltage of the battery 2 and outputs the stepped-down voltage
  • the voltage of the output terminal 11d becomes the output voltage of the second converter 12.
  • the output voltage of the first converter 11 (voltage of the output terminal 11c) becomes a voltage obtained by superimposing (adding) the output voltage of the second converter 12 on the voltage boosted by the first converter 11.
  • the output voltage V sc of the second converter 12 indicates the voltage between the output terminal 12c and the reference terminal 12b.
  • a control signal is input to the second converter 12 from a control circuit 13 described later.
  • the second converter 12 steps down the voltage of the battery 2, which is the input voltage, according to the control signal.
  • the control signal for example, a signal for turning on and off a switching element forming a charge pump can be given.
  • the second converter 12 steps down the voltage of the battery 2 according to the switching frequency of the switching element and the duty ratio. For example, the voltage stepped down by the second converter 12 changes according to the switching frequency.
  • the second converter 12 also has a diode 15 on the output side.
  • the anode terminal of the diode 15 is connected to the reference terminal 12b, and the cathode terminal of the diode 15 is connected to the output terminal 12c.
  • the output terminal 12c and the reference terminal 12b are electrically connected via the diode 15.
  • the potential of the output terminal 11d of the first converter 11 becomes the same as the potential of the connection terminal 2b of the battery 2.
  • the output voltage of the first converter 11 is the voltage of the output terminal 11c when the potential of the connection terminal 2b of the battery 2 is the reference potential.
  • the power conversion device according to the comparative example has the same configuration as that of the power conversion device according to the present embodiment except that the second converter 12 is not provided. That is, the power converter according to the comparative example boosts the output voltage of the solar cell module and outputs the boosted voltage to the battery.
  • a solar cell module is composed of multiple solar cells connected in series as described above. Therefore, for example, when a solar cell module is shaded and some of the solar cells are not irradiated with sunlight (also referred to as partial shadows), the solar cells that are not irradiated with sunlight function as high-resistance elements. As a result, the output voltage of the solar cell module is significantly reduced.
  • the solar cell module is connected in parallel to the solar cell and bypasses the current flowing through the solar cell when the voltage generated by the solar cell is lower than a predetermined value. Is provided for this purpose.
  • the current that flows through the solar cells that are not irradiated with sunlight is bypassed by the diode, so that the voltage generated by the solar cells that are irradiated with sunlight is output as the output voltage of the solar cell module.
  • a voltage drop occurs due to the current flowing through the diode, so that the output voltage of the solar cell module decreases.
  • the solar cell module Since the solar cell module is affected by sunlight, it has a wide range of output voltage unlike a DC constant voltage source that is not affected by sunlight. On the other hand, the voltage of the battery is not affected by sunlight. In other words, the voltage input to the converter varies due to the influence of sunlight, while the voltage that the converter must output does not vary due to the influence of sunlight. Therefore, for example, when a shadow is cast on a part of the solar module and the output voltage of the solar cell module decreases, the power conversion device according to the comparative example must operate the converter so as to increase the step-up ratio. ..
  • the output voltage of the solar cell module is extremely low, and even if the converter is operated at the maximum boosting ratio (N max ), the converter cannot boost the output voltage of the solar cell module to the voltage of the battery. In this case, there is a problem that the battery cannot be charged even if the solar cell module is generating power.
  • the power conversion device 10 includes the second converter 12 in order to output the voltage corresponding to the voltage of the battery 2 even if the output voltage of the solar cell module 1 changes.
  • the second converter 12 outputs a predetermined voltage to the output terminal 11d of the first converter 11, the output voltage of the first converter 11 (the voltage of the output terminal 11c) is higher than that when the second converter 12 operates only with the first converter 11. Can be higher.
  • the maximum boost ratio (N max ) required for the first converter 11 can be reduced, the first converter 11 can operate below the maximum boost ratio, and the maximum output power can be increased. ..
  • the second converter 12 steps down the voltage of the battery 2, so that it is possible that the charge amount of the battery 2 is reduced by the operation of the second converter 12.
  • the second converter 12 has only to have a function of outputting a predetermined voltage based on at least the voltage of the battery 2, and the power consumption of the second converter 12 is the power consumption of the first converter 11. Can be less than.
  • the output power of the second converter 12 is summed with the output power of the first converter 11 and supplied to the battery 2.
  • the output power of the first converter 11 is the generated power of the solar cell module 1, and therefore the output power of the first converter 11 is It is much larger than the output power of the second converter 12. Due to such a relationship of the magnitude of the electric power, the electric power of the battery 2 consumed by the second converter 12 is extremely smaller than the electric power supplied to the battery 2. That is, the operation of the second converter 12 is compared with the case where the power cannot be supplied to the battery 2 without the operation of the second converter 12 and the case where the second converter 12 is operated to supply the power to the battery 2. Therefore, even if the power of the battery 2 is consumed for the reason, the amount of charge to the battery 2 can be increased as a result when the second converter 12 is operated.
  • the control circuit 13 is composed of a microcomputer having a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory), and an FPGA (Field-Programmable Gate Array).
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • FPGA Field-Programmable Gate Array
  • Information on the output voltage (V pv ) and output current (I pv ) of the solar cell module 1 and information on the voltage (V bat ) of the battery 2 are input to the control circuit 13.
  • a voltage sensor (not shown) is connected in parallel to the output terminal 1a and the output terminal 1b of the solar cell module 1, and a current is output between the output terminal 1a of the solar cell module 1 and the input terminal 11a of the first converter 11.
  • a sensor (not shown) is inserted in series, and a voltage sensor (not shown) is connected in parallel to the connection terminals 2a and 2b of the battery 2. Then, by connecting each voltage sensor to the control circuit 13, the detection result of each voltage sensor is input to the control circuit 13.
  • control circuit 13 stores the characteristics of the first converter 11 and the second converter 12 in a memory such as a ROM in advance to acquire information on the characteristics of the first converter 11 and the second converter 12.
  • the characteristics of the first converter 11 include a circuit configuration and control method, characteristics of output power and conversion efficiency with respect to boost ratio, maximum boost ratio (N max ), rated boost ratio (N opt ), voltage range that can be output, and the like. Be done.
  • the characteristics of the second converter 12 include a circuit configuration and control method, characteristics of output power and conversion efficiency with respect to step-down ratio, upper limit value of step-down ratio, step-down ratio when outputting rated voltage, and outputtable voltage range. And so on.
  • the control circuit 13 controls the operation of the first converter 11 and outputs electric power based on the electric power generated by the solar cell module 1 to the battery 2. In addition, the control circuit 13 determines whether to operate the second converter 12 based on the output voltage of the solar cell module 1, and when operating the second converter 12, the output power of the second converter 12 is determined. The operation of the second converter 12 is controlled so that is used to charge the battery 2. In addition, when operating the second converter 12, the first converter 11 cannot boost the voltage of the battery 2 and the second converter 12 has to be operated, and when the first converter 11 operates up to the voltage of the battery 2. Although the voltage can be boosted, the case where the second converter 12 is operated in order to improve the conversion efficiency of the first converter 11 is included.
  • FIG. 3 is a diagram for explaining the operation of the control circuit 13.
  • the vertical axis of FIG. 3 represents voltage. Further, on the left side of FIG. 3, the output voltage of the solar cell module 1 (one-dot chain line), the output voltage of the first converter 11 when operating at the rated step-up ratio (N opt ) (two-dot chain line), the maximum step-up ratio ( The output voltage (broken line) of the first converter 11 when operated at N max ) is shown.
  • the voltage of the battery 2 is shown on the right side of FIG. When a lithium ion battery is used as the battery 2, the voltage of the battery 2 changes according to the charge state.
  • FIG. 3 is a diagram for explaining the operation of the control circuit 13.
  • the vertical axis of FIG. 3 represents voltage. Further, on the left side of FIG. 3, the output voltage of the solar cell module 1 (one-dot chain line), the output voltage of the first converter 11 when operating at the rated step-up ratio (N opt ) (two-dot chain
  • the upper limit voltage and the lower limit voltage of the battery 2 are shown as the upper limit value and the lower limit value of the range in which the voltage of the battery 2 changes.
  • the output voltages of the solar cell module 1 and the first converter 11 shown in FIG. 3 are characteristics when the reference potentials are the same potential (for example, zero voltage).
  • control circuit 13 compares the power generated by the solar cell module 1 with the power consumed when the first converter 11 and the second converter 12 operate (hereinafter, also referred to as power consumption), and compares them. Depending on the result, it is determined whether to operate the second converter 12.
  • the control circuit 13 calculates the electric power generated by the solar cell module 1 from the output voltage (V pv ) and the output current (I pv ) of the solar cell module 1, and the calculated electric power and the first converter 11 and The power consumption of the second converter 12 is compared.
  • the control circuit 13 determines not to operate the second converter 12.
  • the control circuit 13 determines to operate the second converter 12 when the generated power of the solar cell module 1 is larger than the power consumption of the first converter 11 and the second converter 12.
  • the power consumption of the first converter 11 and the second converter 12 is power consumption under a specific condition, and is assumed to be stored in advance in a memory such as a ROM.
  • a broken line D indicates when the generated power of the solar cell module 1 and the power consumption of the first converter 11 and the second converter 12 match.
  • the generated power of the solar cell module 1 is smaller than the power consumption of the first converter 11 and the second converter 12, so the control circuit 13 does not operate the second converter 12.
  • the generated power of the solar cell module 1 is larger than the power consumption of the first converter 11 and the second converter 12, so the control circuit 13 operates the second converter 12.
  • the control circuit 13 When determining whether to operate the second converter 12, the control circuit 13 first determines whether the first converter 11 can boost the output voltage of the solar cell module 1 to the voltage of the battery 2. When the control circuit 13 determines that the first converter 11 cannot boost the output voltage of the solar cell module 1 to the voltage of the battery 2, the control circuit 13 operates the second converter 12.
  • the control circuit 13 compares the product of the output voltage (V pv ) of the solar cell module 1 and the maximum boosting ratio (N max ) of the first converter 11 with the voltage (V bat ) of the battery 2.
  • V pv the maximum boosting ratio
  • N max the maximum boosting ratio of the first converter 11
  • the control circuit 13 cannot boost the voltage of the battery 2 by the first converter 11 alone.
  • the second converter 12 is operated.
  • a region E indicates a range in which the first converter 11 cannot boost the output voltage of the solar cell module 1 to the voltage of the battery 2.
  • the control circuit 13 reduces the voltage (V bat ) of the battery 2 and controls the operation of the second converter 12 so that the second converter 12 outputs a predetermined voltage. For example, the control circuit 13 calculates the difference between the product of the output voltage of the solar cell module 1 and the maximum boosting ratio of the first converter 11 and the voltage of the battery 2. Then, the control circuit 13 controls the operation of the second converter so that the output voltage of the second converter 12 becomes the calculated difference voltage. As a result, the voltage of the output terminal 11d of the first converter 11 becomes the output voltage of the second converter 12, so the output voltage of the first converter 11 is the voltage obtained by boosting the output voltage of the solar cell module 1 at the maximum boost ratio. In addition, the output voltage of the second converter 12 is superposed.
  • the second converter 12 operates.
  • the first converter 11 can output a voltage corresponding to the voltage of the battery 2.
  • the control circuit 13 controls the operation of the first converter 11 so as to operate at the maximum boosting ratio or a boosting ratio in the vicinity thereof.
  • control circuit 13 controls the output power and conversion efficiency of the first converter 11 and the power required for charging the battery 2 even when the first converter 11 can boost the output voltage of the solar cell module 1 to the voltage of the battery 2.
  • the second converter 12 is operated based on the relationship with.
  • the control circuit 13 calculates the power required to charge the battery 2 and the maximum output power of the first converter 11 when operating at the maximum boost ratio, and compares the calculated two powers. Then, the control circuit 13 operates the second converter 12 when the maximum output power of the first converter 11 is smaller than the power required to charge the battery 2.
  • the control circuit 13 can output the electric power required for charging the battery 2 even if the first converter 11 can boost the output voltage of the solar cell module 1 to the voltage of the battery 2. Operates the second converter 12.
  • the control circuit 13 determines the second converter 12 based on the output voltage of the first converter 11 when operating at the rated boost ratio. It is determined whether or not to operate.
  • the control circuit 13 determines that the product of the output voltage (V pv ) of the solar cell module 1 and the rated boosting ratio (N opt ) of the first converter 11 is larger than the voltage of the battery 2 (V bat ). , The second converter 12 is stopped. In this case, since the output terminal 12c of the second converter 12 and the reference terminal 12b are electrically connected via the diode 15, the output terminal 11d of the first converter 11 and the connection terminal 2b of the battery 2 are electrically connected. Thereby, the output power of the second converter 12 is not used for charging the battery 2, and the battery 2 is charged by the output power of the first converter 11. Further, the control circuit 13 operates the first converter 11 so as to operate at the rated boost ratio.
  • the conversion efficiency of the first converter 11 is optimized, and the power consumption of the second converter 12 can be suppressed, so that the power conversion efficiency of the power conversion device 10 can be improved.
  • the entire solar cell module 1 is irradiated with sunlight and the output voltage of the solar cell module 1 is relatively high.
  • the control circuit 13 determines that the product of the output voltage (V pv ) of the solar cell module 1 and the rated boosting ratio (N opt ) of the first converter 11 is smaller than the voltage of the battery 2 (V bat ), and When the product of the output voltage (V pv ) of the battery module 1 and the maximum boosting ratio (N max ) of the first converter 11 is larger than the voltage (V bat ) of the battery 2, the second converter 12 is operated. As such a scene, it is assumed that a part of the solar cell module 1 is shaded and the output voltage of the solar cell module 1 is reduced. In FIG. 3, a region F shows a range in which the first converter 11 can boost the output voltage of the solar cell module 1 to the voltage of the battery 2, but operates the second converter 12.
  • the control circuit 13 controls the operation of the first converter 11 so that the input power of the first converter 11, that is, the generated power of the solar cell module 1 is maximized.
  • MPPT Maximum Power Point Tracking
  • control circuit 13 controls the operation of the second converter 12 so that the output current of the second converter 12 is maximum and the output voltage of the second converter 12 is minimum.
  • control circuit 13 controls the operation of the second converter 12 so that the value obtained by dividing the output current by the output voltage becomes the maximum.
  • the control circuit 13 reduces the ratio of the voltage that the power converter 10 outputs to the battery 2 to the second converter 12, and reduces the ratio of the power that the power converter 10 supplies to the battery 2.
  • the operation of the second converter 12 is controlled so that the ratio of the burden on the second converter 12 is increased.
  • the power supplied to the battery 2 by the power conversion device 10 includes the output power of the first converter 11 and the output power of the second converter 12.
  • the proportion of the power that the second converter 12 bears By increasing the proportion of the power that the second converter 12 bears, the proportion of the power that the first converter 11 bears becomes relatively low, and the range of the power that the first converter 11 can output is expanded. That is, since the range of the boosting ratio at which the first converter 11 can operate can be expanded, the first converter 11 can operate at the boosting ratio with high conversion efficiency.
  • the control circuit 13 operates the first converter 11 so as to maximize the generated power of the solar cell module 1, and The second converter 12 is operated so that the conversion efficiency of the converter 11 becomes high. That is, the control circuit 13 controls the operations of the first converter 11 and the second converter 12 so that the output power of the first converter 11 is maximized and the conversion efficiency of the first converter 11 is increased at that time. To do. As a result, even when the generated power of the solar cell module 1 varies, the power supplied to the battery 2 can be increased while improving the power conversion efficiency of the first converter 11.
  • the first converter 11 is connected to the solar cell module 1 and the battery 2, and converts the output power of the solar cell module 1. Then, the converted electric power is output to the battery 2.
  • the second converter 12 is connected to the battery 2 and converts the voltage between the connection terminal 2 a and the connection terminal 2 b of the battery 2.
  • the control circuit 13 controls the operation of the second converter 12 based on the output voltage of the solar cell module 1 to use the output power of the second converter 12 for charging the battery 2.
  • the input terminal 12a of the second converter 12 is connected to the battery 2 via the connection terminal 2a, and the output terminal 12c of the second converter 12 is connected to the output terminal 11d of the first converter 11. ing.
  • the control circuit 13 superimposes the output voltage of the second converter 12 on the voltage of the output terminal 11d of the first converter 11. Thereby, even if the output voltage of the solar cell module 1 decreases and the first converter 11 cannot boost the voltage to the voltage of the battery 2, the first converter 11 can output the voltage corresponding to the voltage of the battery 2.
  • control circuit 13 controls the operation of the first converter 11 so that the input power of the first converter 11 is maximized, and outputs the output current of the second converter 12 to the output of the second converter 12.
  • the operation of the second converter 12 is controlled so that the value divided by the voltage becomes maximum. As a result, the power supplied to the battery 2 can be increased while improving the conversion efficiency of the first converter 11.
  • the second converter 12 has the diode 15 as an element that limits the direction of the current flowing to the output terminal 12c to one direction.
  • the output terminal 12c of the second converter 12 is electrically connected to the connection terminal 2b of the battery 2 via the diode 15.
  • the maximum output voltage of the solar cell module 1 is 60 V or less, and the voltage of the battery 2 is four times or more the maximum voltage of the solar cell module 1.
  • the first converter 11 also has an insulating transformer 14 that insulates the input terminals 11a and 11b from the output terminals 11c and 11d. Accordingly, the power conversion device 10 can be mounted on the vehicle.
  • the solar cell module may be provided on the exterior of the vehicle, and the power conversion device 10 may be provided in the cabin or under the floor.
  • the first converter 11 boosts the output voltage of the solar cell module 1 according to the boosting ratio.
  • the control circuit 13 controls the operation of the first converter 11 so as to operate at the maximum boost ratio. Control.
  • the battery 2 can be charged while improving the conversion efficiency of the first converter 11. ..
  • control circuit 13 controls the output power of the second converter 12 when the product of the output voltage of the solar cell module 1 and the rated boosting ratio of the first converter 11 is larger than the voltage of the battery 2.
  • the second converter 12 is stopped so as not to be used for charging the battery 2.
  • the control circuit 13 determines that the product of the output voltage of the solar cell module 1 and the rated step-up ratio of the first converter 11 is smaller than the voltage of the battery 2 and the output voltage of the solar cell module 1.
  • the second converter 12 is designed so that the value obtained by dividing the output current of the second converter 12 by the output voltage of the second converter 12 becomes the maximum. Control the behavior of.
  • the first converter 11 can operate at a step-up ratio with high conversion efficiency, and the power supplied to the battery 2 can be increased.
  • the second converter 12 has the diode 15 so that the output terminal 11d of the first converter 11 and the connection terminal 2b of the battery 2 are electrically connected when the second converter 12 is stopped.
  • a relay 16 capable of conducting or interrupting may be provided between the output terminal 11d of the first converter 11 and the connection terminal 2b of the battery 2.
  • the relay 16 By providing the relay 16, the voltage drop due to the current flowing through the diode 15 does not occur, and the potential difference between the output terminal 11d of the first converter 11 and the connection terminal 2b of the battery 2 is reduced when the relay 16 is turned on.
  • FIG. 4 is a circuit diagram of a power conversion system 100 'including a modification of the power conversion device 10' according to the first embodiment.
  • FIG. 5 is a circuit diagram of a power conversion system 200 including the power conversion device 20 according to the second embodiment.
  • the power conversion system 200 according to the present embodiment includes a plurality of solar cell modules (311 to 314, 321 to 324, 331 to 334, 341 to 344), the battery 2, and the power conversion device 20.
  • the same components as those in the above-described first embodiment are denoted by the same reference symbols as those used in the description in the first embodiment. Therefore, for the same configuration as that of the first embodiment, the description given in the first embodiment is appropriately incorporated.
  • the solar battery module can be configured by connecting a plurality of solar battery cells in series.
  • the number of solar battery cells connected in series increases, the number of solar battery cells is increased. Therefore, the probability that the power consumption will increase will increase, and the probability that the power generated by the solar cell module will significantly decrease will increase. That is, even if there are many solar cells that are not shaded, there is a high possibility that the opportunity for these solar cells to generate power is lost.
  • the solar cell outputs the optimum power as a whole solar cell, so each solar cell Looking at it, it is not possible to operate at the optimal operating point, and there is a high possibility that the photovoltaic cell loses the opportunity to generate power under optimal conditions.
  • a plurality of solar battery modules are provided instead of reducing the number of solar battery cells included in the solar battery module, and the generated power of each solar battery module is summed up. It is configured to do. It is assumed that the number of solar cells included in each solar cell module shown in FIG. 5 is smaller than the number of solar cells included in the solar cell module 1 according to the first embodiment described above. Therefore, the output voltage of each solar cell module shown in FIG. 5 is lower than the output voltage of the solar cell module 1 in the first embodiment.
  • the power conversion device 20 is configured such that, with respect to the plurality of solar cell modules (311 to 314, 321 to 324, 331 to 334, 341 to 344), the plurality of first converters ( 211 to 214, 221-224, 231-234, 241 to 244), a plurality of first converter groups 21 to 24, a second converter 12, and a control circuit 43.
  • the first converter groups 21 to 24 all have the same configuration. Therefore, the first converter group 21 will be described, and the description of the first converter group 22 to 24 will be appropriately incorporated by reference.
  • the first converter group 21 has a plurality of first converters 211 to 214 corresponding to the plurality of solar cell modules 311 to 314.
  • a control signal is input from the control circuit 43 to each of the first converters 211 to 214, and each of the first converters 211 to 214 responds to the control signal in the same manner as the first converter 11 according to the first embodiment.
  • the output terminals of the first converters 211 to 214 are sequentially connected in series. That is, the output terminal 211d of the first converter 211 is connected to the output terminal 212c of the first converter 212, the output terminal 212d of the first converter 212 is connected to the output terminal 213c of the first converter 213, and the first converter 213 is connected.
  • the output terminal 213d of is connected to the output terminal 214c of the first converter 214.
  • the output terminal 211c of the first converter 211 is connected to the battery 2, and the output terminal 214d of the first converter 214 is connected to the output terminal 12c of the second converter 12.
  • the first converter 214 By sequentially connecting the output terminals of the first converters 211 to 214 in series, the first converter 214 outputs a voltage corresponding to the potential of the output terminal 12c of the second converter 12 to the output terminal 213d of the first converter 213. To do. Further, the first converter 213 outputs a voltage corresponding to the potential of the output terminal 214d to the output terminal 212d of the first converter 212. Further, the first converter 212 outputs a voltage corresponding to the potential of the output terminal 213d to the output terminal 211d of the first converter 211. Further, the first converter 211 outputs a voltage corresponding to the potential of the output terminal 212d to the connection terminal 2a of the battery 2.
  • the first converter group 21 outputs to the battery 2 a voltage on which the output voltages of the first converters 211 to 214 are superimposed. Further, the first converter group 21 outputs to the battery 2 the electric power obtained by adding the output electric powers of the first converters 211 to 214. At this time, when the second converter 12 is operating, the first converter group 21 outputs to the battery 2 the electric power to which the output electric power of the second converter 12 is further added.
  • the output terminal 211c of the first converter group 21 is connected to the connection terminal 2a of the battery 2, the output terminal 221c of the first converter group 22, the output terminal 231c of the first converter group 23, And an output terminal 241c of the first converter group 24. That is, the output terminals of each of the first converter groups 21 to 24 are connected in parallel.
  • the output power of the first converter group 21, the output power of the first converter group 22, the output power of the first converter group 23, and the power obtained by adding the output power of the first converter group 24 are input. ..
  • the output power of the first converter group 21 decreases, but the other first converter group 22
  • the output power of ⁇ 24 does not decrease. Therefore, by controlling the operation of the first converter corresponding to the unshaded solar cell module so as to supplement the output power of the first converter group 21, some of the solar cell modules are shaded. Also, the charge amount of the battery 2 can be maintained.
  • the control circuit 43 has the same function as the control circuit 13 except that the function of determining whether to operate the second converter 12 is different from the control circuit 13 according to the first embodiment described above. Therefore, the description given in the control circuit 13 is appropriately incorporated.
  • the control circuit 43 determines, for each first converter group, whether or not the output voltage of the solar cell module can be boosted to the voltage of the battery 2. If any of the first converter groups 21 to 24 determines that the output voltage of the solar cell module cannot be boosted to the voltage of the battery 2, the control circuit 43 operates the second converter 12.
  • control circuit 43 stops the second converter 12 when it is determined that the first converter can operate at the rated boosting ratio in any of the first converter groups 21 to 24.
  • control circuit 43 can boost the output voltage of the solar cell module to the voltage of the battery 2 in any of the first converter groups 21 to 24, but cannot operate the first converter at the rated boosting ratio. While controlling the operation of the first converter so as to maximize the input power of the first converter, the operation of the second converter 12 is controlled so that the value obtained by dividing the output current by the output voltage becomes the maximum. Since the control circuit 43 performs the same calculation and control for each first converter group, the first converter group 21 will be described below as an example.
  • the control circuit 43 calculates the product of the output voltage of the solar cell module and the maximum boosting ratio of the first converter for each of the first converters 211 to 214. For example, the control circuit 43 calculates the product of the output voltage of the solar cell module 311 and the maximum boost ratio of the first converter 211.
  • the control circuit 43 also calculates the voltage that each of the first converters 211 to 214 must output in order to output the voltage of the battery 2 as the first converter group 21.
  • the first converter group 21 includes four solar cell modules and four first converters, respectively.
  • the control circuit 43 divides the voltage of the battery 2 by 4 to calculate the minimum voltage required for each of the first converters 211 to 214 (hereinafter, also referred to as necessary voltage). Then, the control circuit 43 compares the product of the output voltage of the solar cell module and the maximum step-up ratio with the calculated required voltage for each first converter, and in any one of the comparison results, the product of the maximum step-up ratio is the required voltage. If it is smaller than the above, the second converter 12 is operated.
  • control circuit 43 is configured such that, in any of the first converters included in the first converter groups 21 to 24, when the product of the maximum boosting ratios is smaller than the required voltage, the first converter group including the target first converter is included. Is specified as the target first converter group. Then, the control circuit 43 controls the operation of the first converter so that the target first converter group operates at the maximum step-up ratio or the step-up ratio around it, as in the first embodiment.
  • the control circuit 43 also calculates, for each of the first converters 211 to 214 included in the first converter group 21, the product of the output voltage of the solar cell module and the rated boosting ratio of the first converter.
  • the control circuit 43 stops the second converter 12 in any of the first converters when the product of the output voltage of the solar cell module and the rated step-up ratio is smaller than the required voltage.
  • control circuit 43 for each first converter, the product of the output voltage of the solar cell and the rated step-up ratio of the first converter is smaller than the required voltage, and the output voltage of the solar cell and the maximum step-up ratio of the first converter.
  • the second converter 12 is operated.
  • the control circuit 43 controls the operation of the first converter so that the input power of the first converter is maximized, and the value obtained by dividing the output current by the output voltage is The operation of the second converter 12 is controlled so that it becomes maximum.
  • the power conversion device 20 corresponds to each solar cell module with respect to the plurality of solar cell modules 311 to 314.
  • a first converter group 21 including one converter 211 to 214 is provided.
  • the output terminals of the first converters 211 to 214 are sequentially connected in series.
  • the power conversion device 20 includes a plurality of first converter groups 21 to 24.
  • the output terminals of the first converter groups 21 to 24 are connected in parallel. Thereby, the same effect as the above-mentioned effect is exhibited.
  • the control circuit 43 calculates a voltage required for one first converter based on the voltage of the battery 2 as a required voltage, and outputs the output voltage of the solar cell module and the maximum boost for each first converter. The product of the ratios is calculated, and the calculation result is compared with the required voltage. If the product of the output voltage of the solar cell module and the maximum step-up ratio is smaller than the required voltage in one of the comparison results, the control circuit 43 selects the first converter group including the target first converter as the target first converter group. Specify as. The control circuit 43 controls the operation of the first converter so that the target first converter group operates at the maximum boost ratio or a boost ratio in the vicinity thereof. As a result, even if the output voltage of one of the plurality of solar cell modules drops and the first converter group cannot boost the voltage of the battery 2 to the voltage of the battery 2, the conversion efficiency of the first converter is improved and the battery efficiency is improved. 2 can be charged.
  • control circuit 43 calculates the product of the output voltage of the solar cell module and the rated step-up ratio for each first converter, and compares the calculation result with the required voltage. In any of the comparison results, the control circuit 43 does not use the output power of the second converter 12 for charging the battery 2 when the product of the output voltage of the solar cell module and the rated step-up ratio is larger than the required voltage. , The second converter 12 is stopped. As a result, when the output voltage of the solar cell module 1 is relatively high, the power consumption of the second converter 12 can be suppressed and the power conversion efficiency of the power conversion device 20 can be improved.
  • control circuit 43 calculates the product of the output voltage of the solar cell module and the maximum boosting ratio for each first converter, and compares the calculation result with the required voltage. Further, the control circuit 43 calculates the product of the output voltage of the solar cell module and the rated boosting ratio, and compares the calculation result with the required voltage. Then, in any comparison result, the control circuit 43 determines that the product of the output voltage of the solar cell module and the maximum step-up ratio is smaller than the required voltage, and the product of the output voltage of the solar cell module and the rated step-up ratio is the required voltage. If it is larger than the above, the operation of the second converter is controlled so that the value obtained by dividing the output current by the output voltage becomes the maximum. As a result, the first converter can operate at a boosting ratio with high conversion efficiency, and the power supplied to the battery 2 can be increased.
  • FIG. 6 is a circuit diagram of a power conversion system 300 including the power conversion device 30 according to the third embodiment.
  • the power conversion device 30 according to the present embodiment has the same configuration as the power conversion device 20 according to the second embodiment described above, except that the number of second converters is different. Therefore, for the same configuration, the description given in the second embodiment is appropriately incorporated.
  • the power conversion device 30 includes second converters 112 to 114 for each of the first converter groups 21 to 24.
  • the second converter 112 is provided corresponding to the first converter group 21, the second converter 113 is provided corresponding to the first converter group 22, and the second converter 114 is the first converter.
  • the second converter 115 is provided corresponding to the group 23, and the second converter 115 is provided corresponding to the first converter group 24.
  • the connection relationship between the first converter group and the second converter is the same as the connection relationship between the first converter 11 and the second converter 12 in the above-described first embodiment.
  • the power conversion device 30 includes the second converters 112 to 114 for each of the first converter groups 21 to 24. ..
  • the second converter can be controlled for each first converter group, optimal operation can be performed for each first converter group, and as a result, the power conversion efficiency of the power conversion system 300 is improved.
  • the power supplied to the battery 2 can be increased.
  • FIG. 7 is a circuit diagram of a power conversion system 400 including the power conversion device 40 according to the fourth embodiment.
  • the power converter 40 according to the present embodiment is different from the power converter 10 according to the above-described first embodiment in that the circuit configuration of the second converter 17 and the control by the control circuit 63 to the second converter 17 are different. Has the same configuration. Therefore, for the same configuration, the description given in the first embodiment is appropriately incorporated.
  • the second converter 17 is a step-down DC-DC converter, like the second converter 12 in the first embodiment.
  • the second converter 17 has input terminals 17a and 17b and output terminals 17c and 17d.
  • the input terminal 17a is connected to the connection terminal 2a of the battery 2, and the input terminal 17b and the output terminal 17c are connected to the connection terminal 2b of the battery 2.
  • the output terminal 17d is connected to the output terminal 11d of the first converter 11.
  • the input terminal 17a is a terminal on the higher potential side than the input terminal 17b
  • the output terminal 17d is a terminal on the higher potential side than the output terminal 17c.
  • the second converter 17 has an insulation transformer 18, and is an insulation type DC-DC converter.
  • the isolation transformer 18 has a primary winding 18a provided on the input side and a secondary winding 18b provided on the output side.
  • the second converter 17 is composed of, for example, an inverter circuit connected to the primary winding 18a and a rectifying circuit connected to the secondary winding 18b.
  • the control circuit 63 controls the operation of the second converter 17 so that the ratio of the output voltage to the input voltage becomes constant.
  • FIG. 7 shows that the output voltage (V sc ) of the second converter 17 has a constant ratio to the voltage (V bat ) of the battery 2.
  • the control circuit 63 also controls the operation of the second converter 17 so that the inverter circuit in the second converter 17 performs soft switching.
  • the control circuit 63 controls the switching frequency and the duty ratio of the switching element to soft switch the second converter 17 and keep the ratio of the output voltage to the input voltage constant.
  • the control circuit 63 controls the output voltage with respect to the input voltage while the switching element included in the second converter 17 performs soft switching.
  • the operation of the second converter 17 is controlled so that the ratio becomes constant.
  • the operation is performed by soft switching while outputting a high voltage
  • the power consumption of the second converter 17 can be effectively suppressed.
  • the voltage of the battery 2 is relatively low, it operates by soft switching while outputting a low voltage, so that the power consumption of the second converter 17 can be effectively suppressed.
  • the output terminal 12c of the second converter is connected to the output terminal 11d of the first converter 11 to change the output voltage of the second converter 12 to the output terminal 11d of the first converter 11.
  • the output terminal 12c of the second converter 12 may be connected to the input terminal 11b of the first converter 11.
  • the target voltage to be boosted by the first converter 11 is the output voltage of the battery 2 and the second converter 12
  • the output voltage of is the superimposed (added) voltage.
  • the power conversion device in the power conversion device or the control method of the power conversion device according to the present invention will be described by taking the power conversion devices 10, 20, 30, and 40 as an example, but the present invention is not limited thereto. It is not something that will be done.
  • the first power conversion circuit according to the present invention is described by taking the first converter 11 as an example, but the present invention is not limited to this.
  • the second power conversion circuit according to the present invention is described by taking the second converters 12 and 17 as an example, but the present invention is not limited to this.
  • Power conversion system 1 ... Solar cell module 1a ... Output terminal 1b ... Output terminal 2 ... Battery 2a ... Connection terminal 2b ... Connection terminal 10 ... Power converter 11 ... 1st converter 11a ... Input terminal 11b ... Input terminal 11c ... Output Terminal 11d ... Output terminal 14 ... Isolation transformer 14a ... Primary winding 14b ... Secondary winding 12 ... Second converter 12a ... Input terminal 12b ... Reference terminal 12c ... Output terminal 13 ... Control circuit

Abstract

制御回路(13)を用いて、第1電力変換回路(11)と第2電力変換回路(12)を備える電力変換装置(10)を制御する制御方法であって、第1変換回路(11)は、太陽電池モジュール(1)及び蓄電器(2)に接続され、太陽電池モジュール(1)の出力電力を変換し、変換した電力を蓄電器(2)に出力し、第2電力変換回路(12)は、蓄電器(2)に接続され、蓄電器との接続端の電圧を変換し、制御方法は、太陽電池モジュール(1)の出力電圧に基づいて、第2電力変換回路(12)の動作を制御することで、第2電力変換回路(12)の出力電力を蓄電器(2)への充電に用いる。

Description

電力変換装置の制御方法および電力変換装置
 本発明は、電力変換装置の制御方法および電力変換装置に関するものである。
 太陽光発電装置からの出力電力を電力変換し、その電力変換後の電力を出力する第1の電力変換手段と、第1の電力変換手段からの出力電力を蓄電可能な第1の蓄電池と、第1の蓄電池の放電による当該第1の蓄電池からの出力電力を電力変換し、その電力変換後の電力を出力する第2の電力変換手段と、第2の電力変換手段からの出力電力を蓄電可能な第2の蓄電池と、第1の蓄電池の充電残量を当該第1の蓄電池に対する閾値と比較して第2の電力変換手段の駆動を制御する制御手段と、を備える電力変換システムが知られている(特許文献1)。この電力変換システムでは、第2の蓄電池は、動作電力を補機に供給する補機電池、及び動作電力を車両の走行駆動源に供給する主電池のうち少なくとも何れかを含んでいる。
特開2015−154526号公報
 従来技術では、補機などに電力を供給する第2の蓄電池とは別に第1の蓄電池を設けており、電力変換システムが大型化する、という問題がある。
 本発明が解決しようとする課題は、大型化することを防ぐことが可能な電力変換装置の制御方法および電力変換装置を提供することである。
 本発明は、太陽電池モジュールの出力電圧に基づいて、蓄電器との接続端の電圧を変換する第2電力変換回路の動作を制御することで、第2電力変換回路の出力電力を蓄電器への充電に用いることによって上記課題を解決する。
 本発明によれば、大型化することを防ぐことができる。
図1は、第1実施形態に係る電力変換装置を含む電力変換システムの回路図である。 図2は、昇圧比に対する出力電力及び変換効率の特性を説明するための図である。 図3は、制御回路の動作を説明するための図である。 図4は、第1実施形態に係る電力変換装置の変形例を含む電力変換システムの回路図である。 図5は、第2実施形態に係る電力変換装置を含む電力変換システムの回路図である。 図6は、第3実施形態に係る電力変換装置を含む電力変換システムの回路図である。 図7は、第4実施形態に係る電力変換装置を含む電力変換システムの回路図である。
 以下、本発明の実施形態を図面に基づいて説明する。
《第1実施形態》
 本実施形態に係る電力変換装置および電力変換装置の制御方法を、図1を用いて説明する。図1は、本実施形態に係る電力変換装置10を含む電力変換システム100の回路図である。本実施形態に係る電力変換システム100は、太陽電池モジュール1と、バッテリ2と、電力変換装置10を備えている。電力変換システム100は、太陽電池モジュール1から出力される電力を電力変換装置10により変換し、変換された電力をバッテリ2に供給するシステムである。電力変換システム100は、例えば、車両に搭載された充電システムに用いられる。なお、電力変換システム100は、必ずしも車両に搭載される必要はなく、車両以外の他の装置に搭載されていてもよい。
 太陽電池モジュール1は、複数の太陽電池セルから構成されるモジュールである。太陽電池セルは、太陽光の光エネルギーを吸収し、太陽光の光エネルギーを電気に変えるエネルギー変換素子である。太陽電池モジュール1としては、例えば、ソーラーパネルが挙げられる。シリコン素子の太陽電池セルを用いた場合、太陽電池セルの出力電圧は1V以下となる。太陽電池モジュール1の出力電圧を高くするために、太陽電池モジュール1は、複数の太陽電池セルの直列接続で構成される。
 また、太陽電池モジュール1の出力可能な電力(発電電力)は、太陽電池モジュール1に照射される光の強さ(日照量)によって異なる。太陽電池モジュール1に影がかかった際に、太陽電池モジュール1が出力する電圧の大きさについては、後述する。
 太陽電池モジュール1は、出力端子1a、1bを有している。太陽電池モジュール1により発電された電力は、出力端子1a、1bから出力される。出力端子1aは、第1コンバータ11の入力端子11aと接続され、出力端子1bは、第1コンバータ11の入力端子11bに接続されている。これにより、太陽電池モジュール1で発電された電力は、第1コンバータ11に出力される。図1では、太陽電池モジュール1の出力電圧Vpvは、出力端子1aと出力端子1bの間の電圧、太陽電池モジュール1の出力電流Ipvは、出力端子1aから第1コンバータ11の入力端子11aに流れ込む電流を示す。なお、説明の便宜上、出力端子1aは、出力端子1bよりも高電位側の端子とする。
 バッテリ2には、電力変換装置10から電力が供給される。バッテリ2は、電力変換装置10の出力電力により充電される。バッテリ2としては、例えば、リチウムイオン二次電池が挙げられる。バッテリ2は、バッテリ2以外の装置や機器等と接続可能な端子として、接続端子2a、2bを有している。接続端子2aは、第1コンバータ11の出力端子11c及び第2コンバータ12の入力端子12aと接続され、接続端子2bは、第2コンバータの基準端子12bと接続されている。これにより、接続端子2aには、第1コンバータ11の出力端子11cから電流が入力され、バッテリ2は充電される。また、第2コンバータ12には、バッテリ2の電圧が入力される。バッテリ2の電圧に基づく第2コンバータ12の動作については、後述する。図1では、第1コンバータ11の出力電流Ioutは、第1コンバータ11の出力端子11cから接続端子2aに流れ込む電流、バッテリ2の電圧Vbatは、接続端子2aと接続端子2bの間の電圧を示す。なお、説明の便宜上、接続端子2aは、接続端子2bよりも高電位側の端子とする。また、接続端子2aは、バッテリ2の正極と接続され、接続端子2bは、バッテリ2の負極と接続されているものとする。
 本実施形態では、バッテリ2の電圧(Vbat)は、太陽電池モジュール1の出力電圧(Vpv)よりも高い。例えば、太陽電池モジュール1の出力電圧の最大値は、60V以下であり、バッテリ2の電圧は、太陽電池モジュール1の最大電圧に対して4倍以上高い。このため、後述する電力変換装置10は、入力電圧を昇圧する機能を有している。太陽電池モジュール1の出力電圧は、電力変換装置10により昇圧され、昇圧された電圧はバッテリ2に出力される。
 次に、電力変換装置10について説明する。図1に示すように、本実施形態に係る電力変換装置10は、第1コンバータ11と、第2コンバータ12と、制御回路13を備えている。
 第1コンバータ11は、太陽電池モジュール1の出力電力を変換し、変換した電力をバッテリ2に出力する。第1コンバータ11は、入力される直流電圧を変圧し、変圧した電圧を直流電圧として出力する回路、いわゆるDC−DCコンバータである。また、本実施形態では、第1コンバータ11は、絶縁トランス14を有しており、絶縁型のDC−DCコンバータである。絶縁トランス14は、入力側に設けられた1次巻線14aと、出力側に設けられた2次巻線14bを有している。さらに、第1コンバータ11は、入力電圧を昇圧する機能を有しており、いわゆる昇圧型コンバータである。第1コンバータ11は、例えば、1次巻線14aと接続されるインバータ回路と、2次巻線14bと接続される整流回路で構成される。
 第1コンバータ11は、入力端子11a、11bと、出力端子11c、11dを有している。入力端子11aは、太陽電池モジュール1の出力端子1aと接続され、入力端子11bは、太陽電池モジュール1の出力端子1bと接続されている。出力端子11cは、バッテリ2の接続端子2aと接続され、出力端子11dは、第2コンバータ12の出力端子12cと接続されている。なお、説明の便宜上、入力端子11aは、入力端子11bよりも高電位側の端子とし、また出力端子11cは、出力端子11dよりも高電位側の端子とする。
 第1コンバータ11の入力電圧及び出力電圧について、説明する。第1コンバータ11の入力電圧とは、入力端子11bの電位に対する入力端子11aの電位の大きさである。言い換えると、第1コンバータ11の入力電圧とは、入力端子11bの電位を基準電位としたときの入力端子11aの電圧である。本実施形態では、第1コンバータ11の入力電圧は、太陽電池モジュール1の出力電圧(Vpv)に相当する。また第1コンバータ11の出力電圧とは、出力端子11dの電位に対する出力端子11cの電位の大きさである。言い換えると、第1コンバータ11の出力電圧とは、出力端子11dの電位を基準電位としたときの出力端子11cの電圧である。
 本実施形態では、入力端子11a、11bと出力端子11c、11dは、絶縁トランス14により、絶縁されている。このため、第1コンバータ11では、入力側の基準電位と、出力側の基準電位は異なる電位とすることができる。これにより、基準電位に応じて、第1コンバータ11の出力電圧を制御することができる。
 例えば、第1コンバータ11が入力電圧を4倍に昇圧できる機能を有しており、第1コンバータ11に3Vが入力されているとする。ただし、入力端子11bの電圧はゼロ電圧とする。出力端子11dの電圧がゼロ電圧の場合、第1コンバータ11の出力電圧(出力端子11cの電圧)は12Vとなる。この状態から、出力端子11dの電圧がゼロ電圧から1Vに上昇すると、第1コンバータ11の出力電圧(出力端子11cの電圧)は、第1コンバータ11が昇圧した12Vに1Vが加算されて13Vに上昇する。出力端子11dの電圧を制御して、第1コンバータ11の出力電圧を制御する方法については、後述する。
 第1コンバータ11には、後述する制御回路13から制御信号が入力される。第1コンバータ11は、制御信号に応じて、入力電圧である太陽電池モジュール1の出力電力を昇圧する。制御信号としては、例えば、インバータ回路を構成するスイッチング素子がオン及びオフするための信号が挙げられる。第1コンバータ11は、スイッチング素子のスイッチング周波数、及びデューティ比(単位時間あたりのオン期間を示す値)に応じて、太陽電池モジュール1の出力電圧を昇圧する。例えば、スイッチング周波数に応じて、第1コンバータ11が昇圧する電圧は変化する。
 第1コンバータ11が昇圧する電圧の大きさは、昇圧比により定められる。本実施形態では、昇圧比とは、入力端子11b及び出力端子11dの電位が同電位とした場合の入力電圧に対する出力電圧の比率である。制御回路13は、制御信号を制御することで、特定の範囲内において、第1コンバータ11の昇圧比を変更することができる。昇圧比には、上限値と下限値がある。昇圧比の上限値は、絶縁トランス14の特性等に応じて定められる。本実施形態では、昇圧比の上限値(Nmax)は、2次巻線14bの巻線数(N)を1次巻線14aの巻線数(N)で除算することで算出される(Nmax=N/N)。以降の説明では、説明の便宜上、昇圧比の上限値を、最大昇圧比(Nmax)ともいう。
 次に、図2を用いて、第1コンバータ11が有する昇圧比に対する出力電力及び変換効率の特性について説明する。図2は、昇圧比に対する出力電力及び変換効率の特性を説明するための図である。図2では、横軸は第1コンバータ11の出力電力、縦軸は第1コンバータ11の変換効率(入力電力に対する出力電力の比率)を示す。
 図2において、曲線Aは、最大昇圧比(Nmax)で動作したときの第1コンバータ11の特性、曲線Bは、最小昇圧比(Nmin)で動作したときの第1コンバータ11の特性、曲線Cは、最大昇圧比よりも小さく、かつ、最小昇圧比よりも大きい昇圧比で動作したときの第1コンバータ11の特性を示す。なお、図2は、第1コンバータ11の出力電力と変換効率との関係性を示す一例であって、曲線A、B、Cに対応するそれぞれの昇圧比は、上述した昇圧比に限られるものではない。
 図2に示すように、昇圧比が大きいほど、変換効率は大きくなり出力可能な電力の最大値(以降、最大出力電力という)は小さくなる。反対に、昇圧比が小さいほど、最大出力電力は大きくなり変換効率は小さくなる。このため、変換効率を向上させる観点からは、昇圧比が大きくなるように、第1コンバータ11を動作させるのが好ましい。一方で、出力電力を高くする観点からは、昇圧比が小さくなるように、第1コンバータ11を動作させるのが好ましい。このように、昇圧比に対して、出力電力及び変換効率は、いわゆるトレードオフの関係にある。一般的には、第1コンバータ11の定格電圧は、最大出力電力を出力するときの電圧(最大出力電圧ともいう)よりも低い。このため、第1コンバータ11が定格電圧を出力するときの昇圧比(Nopt)は、最大昇圧比(Nmax)未満となる。以降の説明では、説明の便宜上、第1コンバータ11が定格電圧を出力するときの昇圧比を、定格昇圧比(Nopt)ともいう。また、定格昇圧比で動作したときの最大出力電力及び変換効率の関係は、他の昇圧比で動作したときの最大出力電力及び変換効率の関係と比べて最もバランスが取れており最適なものとする。図2の例を用いると、定格昇圧比(Nopt)は、曲線Bに該当する。
 次に、第2コンバータ12について説明する。第2コンバータ12は、バッテリ2の電圧を変換し、変換した電圧を第1コンバータ11に出力する。第2コンバータ12も、第1コンバータ11と同様に、いわゆるDC−DCコンバータである。また、第2コンバータ12は、入力電圧を降圧する機能を有しており、いわゆる降圧型コンバータである。第2コンバータ12は、例えば、チャージポンプ方式の降圧コンバータで構成される。なお、第2コンバータ12は、入力側と出力側が絶縁されているか否かは特に限定されず、絶縁型のDC−DCコンバータであってもよいし、非絶縁型のDC−DCコンバータであってもよい。
 第2コンバータ12は、入力端子12aと、基準端子12bと、出力端子12cを有している。入力端子12aは、バッテリ2の接続端子2aと接続され、基準端子12bは、バッテリ2の接続端子2bと接続されている。また出力端子12cは、第1コンバータ11の出力端子11dと接続されている。なお、説明の便宜上、基準端子12bは、第2コンバータ12の基準電位を定める端子とする。また、入力端子12aは、基準端子12bよりも高電位側の端子、出力端子12cは、基準端子12bよりも高電位側の端子とする。
 第2コンバータ12の入力電圧及び出力電圧について、説明する。第2コンバータ12の入力電圧とは、基準端子12bの電位に対する入力端子12aの電位の大きさである。言い換えると、第2コンバータ12の入力電圧とは、基準端子12bの電位を基準電位としたときの入力端子12aの電圧である。本実施形態では、第2コンバータ12の入力電圧は、バッテリ2の電圧(Vbat)に相当する。また第2コンバータ12の出力電圧とは、基準端子12bの電位に対する出力端子12cの電位の大きさである。言い換えると、第2コンバータ12の出力電圧とは、基準端子12bの電位を基準として場合の出力端子12cの電圧である。本実施形態では、第2コンバータ12は、入力電圧及び出力電圧それぞれに共通の基準電位となる基準端子12bを有している。このため、第2コンバータでは、入力電圧と出力電圧は、共通した電位に基づく電圧となる。
 第2コンバータ12の出力端子12cは、第1コンバータ11の出力端子11dと接続されているため、第1コンバータ11の出力端子11dの電圧は、第2コンバータ12の出力電圧に応じて変動する。例えば、第2コンバータ12がバッテリ2の電圧を降圧し、降圧した電圧を出力すると、出力端子11dの電圧は、第2コンバータ12の出力電圧となる。この場合、第1コンバータ11の出力電圧(出力端子11cの電圧)は、第1コンバータ11が昇圧した電圧に、第2コンバータ12の出力電圧を重畳した(加えた)電圧となる。図1では、第2コンバータ12の出力電圧Vscは、出力端子12cと基準端子12bの間の電圧を示す。
 第2コンバータ12には、後述する制御回路13から制御信号が入力される。第2コンバータ12は、制御信号に応じて、入力電圧であるバッテリ2の電圧を降圧する。制御信号としては、例えば、チャージポンプを構成するスイッチング素子がオン及びオフするための信号が挙げられる。第2コンバータ12は、スイッチング素子のスイッチング周波数、及びデューティ比に応じて、バッテリ2の電圧を降圧する。例えば、スイッチング周波数に応じて、第2コンバータ12が降圧する電圧は変化する。
 また、第2コンバータ12は、出力側にダイオード15を有している。ダイオード15のアノード端子は、基準端子12bと接続され、ダイオード15のカソード端子は、出力端子12cと接続されている。本実施形態では、第2コンバータ12の動作が停止した場合、出力端子12cと基準端子12bは、ダイオード15を介して導通する。これにより、第1コンバータ11の出力端子11dの電位は、バッテリ2の接続端子2bの電位と同電位となる。この場合、第1コンバータ11の出力電圧は、バッテリ2の接続端子2bの電位を基準電位としたときの出力端子11cの電圧となる。
 ここで、本実施形態とは異なる比較例に係る電力変換装置および電力変換装置の制御方法を用いて、太陽電池モジュール1の出力電圧を昇圧するときに発生するコンバータの問題点について説明する。比較例に係る電力変換装置は、本実施形態に係る電力変換装置と比べて、第2コンバータ12を備えていない点以外は、同様の構成を有しているものとする。すなわち、比較例に係る電力変換装置は、太陽電池モジュールの出力電圧を昇圧し、昇圧した電圧をバッテリに出力する。
 一般的には、太陽電池モジュールは、上述のとおり、複数の太陽電池セルの直列接続で構成されている。このため、例えば、太陽電池モジュールに影がかかり、一部の太陽電池セルに太陽光が照射されない場合(部分影ともいう)、太陽光が照射されていない太陽電池セルが高抵抗の素子として機能してしまい、太陽電池モジュールの出力電圧は大幅に低減してしまう。このような問題を解決するために、太陽電池モジュールには、太陽電池セルに並列接続され、太陽電池セルにより発電される電圧が所定値よりも低い場合に、太陽電池セルに流れる電流をバイパスするためのダイオードが設けられている。太陽光が照射されていない太陽電池セルを流れる電流は、ダイオードによりバイパスされるため、太陽光が照射されている太陽電池セルにより発電された電圧が、太陽電池モジュールの出力電圧として出力される。しかし、太陽電池モジュール内では、ダイオードを流れる電流によって電圧降下が発生しているため、太陽電池モジュールの出力電圧は低下してしまう。
 太陽電池モジュールは、太陽光の影響を受けるため、太陽光の影響を受けない直流定電圧源と異なり、出力電圧の範囲が広範囲に及ぶ。一方で、バッテリの電圧は、太陽光の影響を受けない。言い換えると、コンバータに入力される電圧は、太陽光の影響による変動があるのに対して、コンバータが出力しなければならない電圧は、太陽光の影響による変動はない。このため、例えば、太陽モジュールの一部に影がかかり、太陽電池モジュールの出力電圧が低下した場合、比較例に係る電力変換装置では、昇圧比を大きくするように、コンバータを動作させなければならない。しかし、太陽電池モジュールの出力電圧が極めて低く、コンバータを最大昇圧比(Nmax)で動作させても、コンバータが太陽電池モジュールの出力電圧を、バッテリの電圧まで昇圧できない場合もある。この場合、太陽電池モジュールが発電していても、バッテリを充電ができない、という問題がある。
 これに対して、本実施形態に係る電力変換装置10は、太陽電池モジュール1の出力電圧が変動しても、バッテリ2の電圧に対応する電圧を出力するために、第2コンバータ12を備えている。第2コンバータ12が第1コンバータ11の出力端子11dに所定の電圧を出力することで、第1コンバータ11のみで動作したときに比べて、第1コンバータ11の出力電圧(出力端子11cの電圧)を高くすることができる。これにより、太陽電池モジュール1の出力電圧が極めて低く、第1コンバータ11が太陽電池モジュール1の出力電圧をバッテリ2の電圧まで昇圧できない場合であっても、バッテリ2を充電することができる。また、第1コンバータ11に要求される最大昇圧比(Nmax)を低減することができるとともに、第1コンバータ11が最大昇圧比未満で動作することができ、最大出力電力を大きくすることができる。
 また、本実施形態では、第2コンバータ12は、バッテリ2の電圧を降圧するため、第2コンバータ12が動作することで、バッテリ2の充電量が減少することも考えられる。しかし、本実施形態では、第2コンバータ12は少なくともバッテリ2の電圧に基づいて所定の電圧を出力する機能を有していればよく、第2コンバータ12の消費電力を第1コンバータ11の消費電力よりも少なくすることができる。また、第2コンバータ12の出力電力は、第1コンバータ11の出力電力と合算されて、バッテリ2に供給される。ここで、第1コンバータ11の出力電力と第2コンバータ12の出力電力を比較すると、第1コンバータ11の出力電力は、太陽電池モジュール1の発電電力であるため、第1コンバータ11の出力電力は第2コンバータ12の出力電力よりも極めて大きい。このような電力の大きさの関係性により、第2コンバータ12が消費するバッテリ2の電力は、バッテリ2に供給される電力に対して極めて少ない。つまり、第2コンバータ12が動作せずに、バッテリ2に電力を供給できない場合と、第2コンバータ12を動作させて、バッテリ2に電力を供給する場合とを比べると、第2コンバータ12の動作のためにバッテリ2の電力を消費したとしても、結果的には第2コンバータ12を動作させた場合の方がバッテリ2への充電量を増やすことができる。
 再び、図1に示す電力変換装置10について説明する。制御回路13は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)を備えるマイクロコンピュータやFPGA(Field−Programmable Gate Array)で構成される。
 制御回路13には、太陽電池モジュール1の出力電圧(Vpv)及び出力電流(Ipv)の情報と、バッテリ2の電圧(Vbat)の情報が入力される。例えば、太陽電池モジュール1の出力端子1a及び出力端子1bに対して電圧センサ(図示しない)を並列接続し、太陽電池モジュール1の出力端子1aと第1コンバータ11の入力端子11aとの間に電流センサ(図示しない)を直列挿入し、バッテリ2の接続端子2a及び接続端子2bに対して電圧センサ(図示しない)を並列接続する。そして、各電圧センサと制御回路13を接続することで、制御回路13には、各電圧センサの検出結果が入力される。
 また、制御回路13は、ROM等のメモリに、予め第1コンバータ11及び第2コンバータ12の特性を記憶させておくことで、第1コンバータ11及び第2コンバータ12の特性の情報を取得することができる。第1コンバータ11の特性としては、回路構成及び制御方法、昇圧比に対する出力電力及び変換効率の特性、最大昇圧比(Nmax)、定格昇圧比(Nopt)、出力可能な電圧範囲などが挙げられる。同様に、第2コンバータ12の特性としては、回路構成及び制御方法、降圧比に対する出力電力及び変換効率の特性、降圧比の上限値、定格電圧を出力するときの降圧比、出力可能な電圧範囲などが挙げられる。
 制御回路13は、第1コンバータ11の動作を制御して、太陽電池モジュール1の発電電力に基づく電力を、バッテリ2に出力する。また、制御回路13は、太陽電池モジュール1の出力電圧に基づいて、第2コンバータ12を動作させるか否かを判定し、第2コンバータ12を動作させる場合には、第2コンバータ12の出力電力を、バッテリ2への充電に用いるように、第2コンバータ12の動作を制御する。なお、第2コンバータ12を動作させる場合には、第1コンバータ11がバッテリ2の電圧まで昇圧できず、第2コンバータ12を動作させなければならない場合と、第1コンバータ11はバッテリ2の電圧まで昇圧できるが、第1コンバータ11の変換効率を向上させるために、第2コンバータ12を動作させる場合が含まれる。
 図3を用いながら、制御回路13の具体的な動作について説明する。図3は、制御回路13の動作を説明するための図である。図3の縦軸は電圧を示す。また、図3の左側には、太陽電池モジュール1の出力電圧(一転鎖線)、定格昇圧比(Nopt)で動作したときの第1コンバータ11の出力電圧(二点鎖線)、最大昇圧比(Nmax)で動作したときの第1コンバータ11の出力電圧(破線)を示す。図3の右側には、バッテリ2の電圧を示す。バッテリ2としてリチウムイオンバッテリを用いた場合、バッテリ2の電圧は、充電状態に応じて変化する。図3では、バッテリ2の電圧が変化する範囲の上限値及び下限値として、バッテリ2の上限電圧及び下限電圧を示す。なお、図3に示す太陽電池モジュール1及び第1コンバータ11の出力電圧は、それぞれの基準電位が同電位(例えば、ゼロ電圧)の場合の特性である。
 本実施形態では、制御回路13は、太陽電池モジュール1の発電電力と、第1コンバータ11及び第2コンバータ12が動作する際に消費される電力(以降、消費電力ともいう)を比較し、比較結果に応じて、第2コンバータ12を動作させるか否かの判定をする。
 具体的には、制御回路13は、太陽電池モジュール1の出力電圧(Vpv)及び出力電流(Ipv)から太陽電池モジュール1による発電電力を演算し、演算した発電電力と第1コンバータ11及び第2コンバータ12の消費電力を比較する。制御回路13は、太陽電池モジュール1の発電電力が第1コンバータ11及び第2コンバータ12の消費電力よりも小さい場合、第2コンバータ12を動作させないと判定する。反対に、制御回路13は、太陽電池モジュール1の発電電力が第1コンバータ11及び第2コンバータ12の消費電力よりも大きい場合、第2コンバータ12を動作させると判定する。このような判定を行うことで、太陽電池モジュール1の発電電力が不足しているにもかかわらず、第2コンバータ12を不要に動作させることを防ぎ、電力変換システム100の消費電力の低減を図ることができる。なお、第1コンバータ11及び第2コンバータ12の消費電力は、特定の条件における消費電力であり、予めROM等のメモリに記憶されているものとする。
 図3では、破線Dは、太陽電池モジュール1の発電電力と第1コンバータ11及び第2コンバータ12の消費電力が一致したときを示す。破線Dよりも右側の範囲では、太陽電池モジュール1の発電電力が第1コンバータ11及び第2コンバータ12の消費電力よりも小さいため、制御回路13は、第2コンバータ12を動作させない。破線Dよりも左側の範囲では、太陽電池モジュール1の発電電力が第1コンバータ11及び第2コンバータ12の消費電力よりも大きいため、制御回路13は、第2コンバータ12を動作させる。以降、この範囲(破線Dの左側範囲)における制御回路13の動作について説明する。
 制御回路13は、第2コンバータ12を動作させるか否かを判断するにあたり、まず、第1コンバータ11が太陽電池モジュール1の出力電圧をバッテリ2の電圧まで昇圧できるか否かを判定する。制御回路13は、第1コンバータ11が太陽電池モジュール1の出力電圧をバッテリ2の電圧まで昇圧できないと判定した場合、第2コンバータ12を動作させる。
 具体的には、制御回路13は、太陽電池モジュール1の出力電圧(Vpv)と第1コンバータ11の最大昇圧比(Nmax)の積と、バッテリ2の電圧(Vbat)を比較する。制御回路13は、太陽電池モジュール1の出力電圧と第1コンバータ11の最大昇圧比の積がバッテリ2の電圧よりも小さい場合、第1コンバータ11のみでは、バッテリ2の電圧まで昇圧させることができないと判断し、第2コンバータ12を動作させる。図3では、領域Eは、第1コンバータ11が太陽電池モジュール1の出力電圧をバッテリ2の電圧まで昇圧できない範囲を示す。
 制御回路13は、バッテリ2の電圧(Vbat)を降圧させて、第2コンバータ12から所定の電圧が出力されるように、第2コンバータ12の動作を制御する。例えば、制御回路13は、太陽電池モジュール1の出力電圧と第1コンバータ11の最大昇圧比の積と、バッテリ2の電圧の差分を演算する。そして、制御回路13は、第2コンバータ12の出力電圧が演算した差分の電圧となるように、第2コンバータの動作を制御する。これにより、第1コンバータ11の出力端子11dの電圧は、第2コンバータ12の出力電圧となるため、第1コンバータ11の出力電圧は、太陽電池モジュール1の出力電圧を最大昇圧比で昇圧した電圧に、第2コンバータ12の出力電圧を重畳した電圧となる。例えば、部分影の影響により太陽電池モジュール1の出力電圧が低下し、第1コンバータ11が太陽電池モジュール1の出力電圧をバッテリ2の電圧まで昇圧できない場合であっても、第2コンバータ12を動作させることで、第1コンバータ11はバッテリ2の電圧に対応する電圧を出力することができる。この際に、制御回路13は、最大昇圧比又はその周辺の昇圧比で動作するように、第1コンバータ11の動作を制御する。
 また、制御回路13は、第1コンバータ11が太陽電池モジュール1の出力電圧をバッテリ2の電圧まで昇圧できる場合でも、第1コンバータ11の出力電力及び変換効率と、バッテリ2の充電に必要な電力との関係に基づいて、第2コンバータ12を動作させる。
 例えば、最大昇圧比で動作することで、第1コンバータ11が太陽電池モジュール1の出力電圧をバッテリ2の電圧まで昇圧できたとする。この場合、制御回路13は、バッテリ2の充電に必要な電力と、最大昇圧比で動作したときの第1コンバータ11の最大出力電力を演算し、演算した2つの電力を比較する。そして、制御回路13は、第1コンバータ11の最大出力電力がバッテリ2の充電に必要な電力よりも小さい場合、第2コンバータ12を動作させる。
 昇圧比と最大出力電力の関係は、図2に示すように、昇圧比が大きいほど最大出力電力は小さくなる。そのため、最大昇圧比付近で第1コンバータ11を動作させた場合、最大出力電力が小さくなり、第1コンバータ11は、バッテリ2の充電に必要な電力を供給できなくなるおそれがある。本実施形態では、制御回路13は、第1コンバータ11が太陽電池モジュール1の出力電圧をバッテリ2の電圧まで昇圧ができる場合であっても、バッテリ2の充電に必要な電力を出力できない場合には、第2コンバータ12を動作させる。
 制御回路13は、第1コンバータ11が太陽電池モジュール1の出力電圧をバッテリ2の電圧まで昇圧できる場合、定格昇圧比で動作したときの第1コンバータ11の出力電圧に基づいて、第2コンバータ12を動作させるか否かを判定する。
 具体的には、制御回路13は、太陽電池モジュール1の出力電圧(Vpv)と第1コンバータ11の定格昇圧比(Nopt)の積が、バッテリ2の電圧(Vbat)よりも大きい場合、第2コンバータ12を停止させる。この場合、第2コンバータ12の出力端子12cと基準端子12bは、ダイオード15を介して導通するため、第1コンバータ11の出力端子11dとバッテリ2の接続端子2bが導通する。これにより、第2コンバータ12の出力電力はバッテリ2の充電に用いられず、バッテリ2は第1コンバータ11の出力電力により充電される。また、制御回路13は、定格昇圧比で動作するように、第1コンバータ11を動作させる。これにより、第1コンバータ11の変換効率が最適になるとともに、第2コンバータ12の消費電力を抑制できるため、電力変換装置10の電力変換効率を向上させることができる。このような場面としては、太陽電池モジュール1の全体に対して太陽光が照射され、太陽電池モジュール1の出力電圧が比較的高い場面が想定される。
 一方、制御回路13は、太陽電池モジュール1の出力電圧(Vpv)と第1コンバータ11の定格昇圧比(Nopt)の積が、バッテリ2の電圧(Vbat)よりも小さく、かつ、太陽電池モジュール1の出力電圧(Vpv)と第1コンバータ11の最大昇圧比(Nmax)の積がバッテリ2の電圧(Vbat)よりも大きい場合、第2コンバータ12を動作させる。このような場面としては、太陽電池モジュール1の一部に影がかかり、太陽電池モジュール1の出力電圧が低下した場面が想定される。図3では、領域Fは、第1コンバータ11が太陽電池モジュール1の出力電圧をバッテリ2の電圧まで昇圧できるが、第2コンバータ12を動作させる範囲を示す。
 次に、図3に示す領域Fにおいての第1コンバータ11及び第2コンバータ12の制御の一例について説明する。例えば、制御回路13は、第1コンバータ11の入力電力、すなわち、太陽電池モジュール1の発電電力が最大となるように、第1コンバータ11の動作を制御する。このような技術としては、例えば、最大電力点追従制御(MPPT:Maximum Power Point Tracking)が挙げられる。MPPT方式を用いた場合、気象条件等の変化により、太陽電池モジュール1の発電電力が変動する場合でも、その時点における第1コンバータ11の入力電力を最大にすることができる。例えば、第1コンバータ11の内部に、MPPT制御回路(図示しない)を設けることで、第1コンバータ11の入力電力を最大化することができる。
 また、制御回路13は、第2コンバータ12の出力電流が最大、かつ、第2コンバータ12の出力電圧が最小となるように、第2コンバータ12の動作を制御する。例えば、制御回路13は、出力電流を出力電圧で除算した値が最大となるように、第2コンバータ12の動作を制御する。言い換えると、制御回路13は、電力変換装置10がバッテリ2に出力する電圧に対して第2コンバータ12が負担する割合を低くしつつ、電力変換装置10がバッテリ2に供給する電力に対しては第2コンバータ12が負担する割合を高くなるように、第2コンバータ12の動作を制御する。電力変換装置10がバッテリ2に供給する電力には、第1コンバータ11の出力電力と第2コンバータ12の出力電力が含まれる。第2コンバータ12が負担する電力の割合を高くなることで、第1コンバータ11が負担する電力の割合は相対的に低くなり、第1コンバータ11が出力可能な電力の範囲は拡大される。すなわち、第1コンバータ11が動作可能な昇圧比の範囲を拡大させることができるため、第1コンバータ11は変換効率が高い昇圧比で動作することができる。
 上述した第1コンバータ11及び第2コンバータ12に対しての制御の一例では、制御回路13は、太陽電池モジュール1の発電電力を最大化するように、第1コンバータ11を動作させつつ、第1コンバータ11の変換効率が高くなるように、第2コンバータ12を動作させる。すなわち、制御回路13は、その時点において、第1コンバータ11の出力電力が最大化するとともに、第1コンバータ11の変換効率が高くなるように、第1コンバータ11及び第2コンバータ12の動作を制御する。これにより、太陽電池モジュール1の発電電力が変動する場合であっても、第1コンバータ11の電力変換効率を向上させながら、バッテリ2に供給する電力を大きくすることができる。
 以上のように、本実施形態に係る電力変換装置10又は電力変換装置10の制御方法において、第1コンバータ11は、太陽電池モジュール1及びバッテリ2に接続され、太陽電池モジュール1の出力電力を変換し、変換した電力をバッテリ2に出力する。また、第2コンバータ12は、バッテリ2に接続され、バッテリ2の接続端子2a及び接続端子2bの間の電圧を変換する。そして、制御回路13は、太陽電池モジュール1の出力電圧に基づいて、第2コンバータ12の動作を制御することで、第2コンバータ12の出力電力をバッテリ2への充電に用いる。これにより、気象条件等により、第1コンバータ11の入力電圧が変動する場合でも、バッテリ2を充電するための別のバッテリを設けることなく、バッテリ2を充電させることができ、電力変換システム100が大型化することを防ぐことができる。
 また、本実施形態では、第2コンバータ12の入力端子12aは、接続端子2aを介してバッテリ2に接続され、第2コンバータ12の出力端子12cは、第1コンバータ11の出力端子11dに接続されている。制御回路13は、第1コンバータ11の出力端子11dの電圧に、第2コンバータ12の出力電圧を重畳させる。これにより、太陽電池モジュール1の出力電圧が低下し、第1コンバータ11ではバッテリ2の電圧まで昇圧できない場合でも、第1コンバータ11はバッテリ2の電圧に対応する電圧を出力することができる。
 さらに、本実施形態では、制御回路13は、第1コンバータ11の入力電力が最大になるように、第1コンバータ11の動作を制御し、第2コンバータ12の出力電流を第2コンバータ12の出力電圧で除算した値が最大になるように、第2コンバータ12の動作を制御する。これにより、第1コンバータ11の変換効率を向上させつつ、バッテリ2に供給する電力を大きくすることができる。
 加えて、本実施形態では、第2コンバータ12は、出力端子12cに流れる電流の方向を一方向に制限する素子として、ダイオード15を有している。第2コンバータ12の出力端子12cは、ダイオード15を介してバッテリ2の接続端子2bと導通する。これにより、太陽電池モジュール1の出力電圧が比較的高い場合、第2コンバータ12を停止させて、第1コンバータ11のみでバッテリ2を充電することができる。その結果、第2コンバータ12の消費電力を抑制することができ、電力変換装置10の電力変換効率を向上させることができる。
 また、本実施形態では、太陽電池モジュール1の出力電圧の最大値は、60V以下であり、バッテリ2の電圧は、太陽電池モジュール1の最大電圧の4倍以上である。また、第1コンバータ11は、入力端子11a、11bと出力端子11c、11dを絶縁する絶縁トランス14を有している。これにより、電力変換装置10を車両に搭載することができる。一例としては、太陽電池モジュールを車両の外装部に設け、電力変換装置10をキャビンまたは床下に設けることが挙げられる。
 さらに、本実施形態では、第1コンバータ11は、昇圧比に応じて、太陽電池モジュール1の出力電圧を昇圧する。制御回路13は、太陽電池モジュール1の出力電圧と第1コンバータ11の最大昇圧比の積が、バッテリ2の電圧よりも小さい場合、最大昇圧比で動作するように、第1コンバータ11の動作を制御する。これにより、太陽電池モジュール1の出力電圧が低下し、第1コンバータ11ではバッテリ2の電圧まで昇圧できない場合でも、第1コンバータ11の変換効率を向上させつつ、バッテリ2に充電をすることができる。
 加えて、本実施形態では、制御回路13は、太陽電池モジュール1の出力電圧と第1コンバータ11の定格昇圧比の積が、バッテリ2の電圧よりも大きい場合、第2コンバータ12の出力電力をバッテリ2への充電に用いないように、第2コンバータ12を停止させる。これにより、太陽電池モジュール1の出力電圧が比較的高い場合、第2コンバータ12の消費電力を抑制することができ、電力変換装置10の電力変換効率を向上させることができる。
 また、本実施形態では、制御回路13は、太陽電池モジュール1の出力電圧と第1コンバータ11の定格昇圧比の積が、バッテリ2の電圧よりも小さく、かつ、太陽電池モジュール1の出力電圧と第1コンバータ11の最大定格比の積がバッテリ2の電圧よりも大きい場合、第2コンバータ12の出力電流を第2コンバータ12の出力電圧で除算した値が最大になるように、第2コンバータ12の動作を制御する。これにより、第1コンバータ11が変換効率の高い昇圧比で動作することができるとともに、バッテリ2に供給する電力を大きくすることができる。
 なお、本実施形態では、第2コンバータ12がダイオード15を有することで、第2コンバータ12が停止したときに、第1コンバータ11の出力端子11dとバッテリ2の接続端子2bとが導通する構成を例に挙げて説明したが、これに限られない。例えば、図4に示すように、ダイオード15の代わりに、第1コンバータ11の出力端子11dとバッテリ2の接続端子2bの間に、導通又は遮断可能なリレー16を設けてもよい。リレー16を設けることで、ダイオード15を流れる電流による電圧降下が発生せず、リレー16がオンした際に、第1コンバータ11の出力端子11dと、バッテリ2の接続端子2bの電位差を低減することができる。なお、図4は、第1実施形態に係る電力変換装置10’の変形例を含む電力変換システム100’の回路図である。
≪第2実施形態≫
 次に、第2実施形態に係る電力変換装置について説明する。図5は、第2実施形態に係る電力変換装置20を含む電力変換システム200の回路図である。本実施形態に係る電力変換システム200は、複数の太陽電池モジュール(311~314、321~324、331~334、341~344)と、バッテリ2と、電力変換装置20を備えている。なお、上述した第1実施形態と同様の構成については、第1実施形態での説明に用いた符号と同様の符号を付している。このため、第1実施形態と同様の構成については、第1実施形態においてした説明を適宜援用する。
 上述した第1実施形態において説明したように太陽電池モジュールは、複数の太陽電池セルの直列接続で構成することができるが、直列接続する太陽電池セルの数が増加するほど、太陽電池セルに影がかかる確率が上昇してしまい、太陽電池モジュールの発電電力が大幅に低減する確率が上昇する。すなわち、影がかかっていない太陽電池セルが多数存在していても、これらの太陽電池セルが発電する機会が失われる可能性が高くなる。また、太陽電池モジュールに影がかかっていない場合でも、太陽電池セルごとに日照量の差が生じると、太陽電池モジュールは、太陽電池モジュール全体として最適な電力を出力するため、太陽電池セルごとに観ると、最適な動作点で動作できておらず、太陽電池セルが最適な条件で発電する機会が失われる可能性が高くなる。このような場合に備えた一例として、電力変換システム200では、太陽電池モジュールに含まれる太陽電池セルの数を減らす代わりに、複数の太陽電池モジュールを設け、それぞれの太陽電池モジュールの発電電力を合算する構成になっている。図5に示す各太陽電池モジュールに含まれる太陽電池セルの数は、上述した第1実施形態に係る太陽電池モジュール1に含まれる太陽電池セルの数よりも少ないものとする。このため、図5に示す各太陽電池モジュールの出力電圧は、第1実施形態における太陽電池モジュール1の出力電圧よりも低い。
 本実施形態に係る電力変換装置20は、複数の太陽電池モジュール(311~314、321~324、331~334、341~344)に対して、各太陽電池モジュールに対応する複数の第1コンバータ(211~214、221~224、231~234、241~244)を含む複数の第1コンバータ群21~24と、第2コンバータ12と、制御回路43を備えている。なお、本実施形態では、第1コンバータ群21~24は、全て同じ構成である。このため、第1コンバータ群21について説明を行い、第1コンバータ群22~24については、第1コンバータ群21においてした説明を適宜援用する。
 第1コンバータ群21は、複数の太陽電池モジュール311~314に対応する複数の第1コンバータ211~214を有している。各第1コンバータ211~214には、制御回路43から制御信号が入力され、各第1コンバータ211~214は、制御信号に応じて、第1実施形態に係る第1コンバータ11と同様に、太陽電池モジュールの出力電圧を昇圧する。すなわち、第1コンバータ211は、太陽電池モジュール311の発電電力を変換し、第1コンバータ212は、太陽電池モジュール312の発電電力を変換し、第1コンバータ213は、太陽電池モジュール313の発電電力を変換し、第1コンバータ214は、太陽電池モジュール314の発電電力を変換する。
 また、図5に示すように、第1コンバータ211~214の出力端子同士は、順次直列に接続されている。すなわち、第1コンバータ211の出力端子211dは、第1コンバータ212の出力端子212cと接続され、第1コンバータ212の出力端子212dは、第1コンバータ213の出力端子213cと接続され、第1コンバータ213の出力端子213dは、第1コンバータ214の出力端子214cと接続されている。また、第1コンバータ211の出力端子211cは、バッテリ2と接続され、第1コンバータ214の出力端子214dは、第2コンバータ12の出力端子12cと接続されている。
 第1コンバータ211~214の出力端子を順次直列に接続することで、第1コンバータ214は、第1コンバータ213の出力端子213dに対して、第2コンバータ12の出力端子12cの電位に対する電圧を出力する。また、第1コンバータ213は、第1コンバータ212の出力端子212dに対して、出力端子214dの電位に対する電圧を出力する。また、第1コンバータ212は、第1コンバータ211の出力端子211dに対して、出力端子213dの電位に対する電圧を出力する。また、第1コンバータ211は、バッテリ2の接続端子2aに対して、出力端子212dの電位に対する電圧を出力する。これにより、本実施形態では、第1コンバータ群21は、第1コンバータ211~214それぞれの出力電圧が重畳された電圧を、バッテリ2に出力する。また、第1コンバータ群21は、第1コンバータ211~214それぞれの出力電力が合算された電力を、バッテリ2に出力する。この際に、第2コンバータ12が動作している場合には、第1コンバータ群21は、さらに第2コンバータ12の出力電力を加えた電力を、バッテリ2に出力する。
 図5に示すように、第1コンバータ群21の出力端子211cは、バッテリ2の接続端子2aに接続されるとともに、第1コンバータ群22の出力端子221c、第1コンバータ群23の出力端子231c、及び第1コンバータ群24の出力端子241cと接続されている。すなわち、各第1コンバータ群21~24のそれぞれの出力端子同士は、並列接続されている。バッテリ2には、第1コンバータ群21の出力電力、第1コンバータ群22の出力電力、第1コンバータ群23の出力電力、及び第1コンバータ群24の出力電力が合算された電力が入力される。例えば、太陽電池モジュール311~314には影がかかり、それ以外の太陽電池モジュールには影がかかっていない場合、第1コンバータ群21の出力電力は低下するが、それ以外の第1コンバータ群22~24の出力電力は低下しない。このため、第1コンバータ群21の出力電力を補うように、影がかかっていない太陽電池モジュールに対応する第1コンバータの動作を制御することで、一部の太陽電池モジュールに影がかかっていても、バッテリ2の充電量を維持することができる。
 制御回路43は、上述した第1実施形態に係る制御回路13と比べて、第2コンバータ12を動作させるか否かを判定する機能が異なる以外は、制御回路13と同様の機能を有する。このため、制御回路13においてした説明を適宜援用する。
 制御回路43は、第1コンバータ群ごとに、太陽電池モジュールの出力電圧をバッテリ2の電圧まで昇圧できるか否かを判定する。制御回路43は、いずれかの第1コンバータ群21~24において、太陽電池モジュールの出力電圧をバッテリ2の電圧まで昇圧できないと判定した場合、第2コンバータ12を動作させる。
 また、制御回路43は、いずれの第1コンバータ群21~24においても、定格昇圧比で第1コンバータが動作することができると判定した場合、第2コンバータ12を停止する。
 また、制御回路43は、いずれの第1コンバータ群21~24においても、太陽電池モジュールの出力電圧をバッテリ2の電圧まで昇圧はできるが、定格昇圧比では第1コンバータを動作させることができない場合、第1コンバータの入力電力を最大化するように、第1コンバータの動作を制御しつつ、出力電流を出力電圧で除算した値が最大となるように、第2コンバータ12の動作を制御する。制御回路43は、第1コンバータ群ごとに、同様の演算及び制御を行うため、以降では、第1コンバータ群21を例に挙げて説明する。
 制御回路43は、第1コンバータ211~214ごとに、太陽電池モジュールの出力電圧と第1コンバータの最大昇圧比の積を演算する。例えば、制御回路43は、太陽電池モジュール311の出力電圧と第1コンバータ211の最大昇圧比の積を演算する。
 また、制御回路43は、第1コンバータ群21としてバッテリ2の電圧を出力するために、各第1コンバータ211~214が出力しなければならない電圧を演算する。図5の例の場合、第1コンバータ群21は、太陽電池モジュール及び第1コンバータがそれぞれ4個から構成されている。制御回路43は、バッテリ2の電圧を4で除算することで、各第1コンバータ211~214に必要な最低限の電圧(以降、必要電圧ともいう)を演算する。そして、制御回路43は、第1コンバータごとに、太陽電池モジュールの出力電圧と最大昇圧比の積と、演算した必要電圧を比較し、いずれかの比較結果において、最大昇圧比の積が必要電圧よりも小さい場合、第2コンバータ12を動作させる。
 また、制御回路43は、第1コンバータ群21~24に含まれるいずれかの第1コンバータにおいて、最大昇圧比の積が必要電圧よりも小さい場合、対象の第1コンバータが含まれる第1コンバータ群を対象第1コンバータ群として特定する。そして、制御回路43は、対象第1コンバータ群については、第1実施形態と同様に、最大昇圧比又はその周辺の昇圧比で動作するように、第1コンバータの動作を制御する。
 また、制御回路43は、第1コンバータ群21に含まれる各第1コンバータ211~214について、太陽電池モジュールの出力電圧と第1コンバータの定格昇圧比の積を演算する。制御回路43は、いずれの第1コンバータにおいても、太陽電池モジュールの出力電圧と定格昇圧比の積が必要電圧よりも小さい場合、第2コンバータ12を停止させる。
 また、制御回路43は、第1コンバータごとに、太陽電池の出力電圧と第1コンバータの定格昇圧比の積が必要電圧よりも小さく、かつ、太陽電池の出力電圧と第1コンバータの最大昇圧比の積が必要電圧よりも大きい場合、第2コンバータ12を動作させる。この場合において、制御回路43は、第1実施形態と同様に、第1コンバータの入力電力が最大化するように、第1コンバータの動作を制御しながら、出力電流を出力電圧で除算した値が最大となるように、第2コンバータ12の動作を制御する。
 以上のように、本実施形態に係る電力変換装置20又は電力変換装置20の制御方法において、電力変換装置20は、複数の太陽電池モジュール311~314に対して、各太陽電池モジュールに対応する第1コンバータ211~214を含む第1コンバータ群21を備えている。第1コンバータ211~214それぞれの出力端子同士は、順次直列に接続されている。これにより、部分影が発生しても、影がかかっていない太陽電池セルが発電する機会が失われる可能性を低減することができる。また、太陽電池セルが最適な条件で発電する機会が失われる可能性を低減することができる。
 また、本実施形態に係る電力変換装置20及び電力変換装置20の制御方法において、電力変換装置20は、複数の第1コンバータ群21~24を備えている。第1コンバータ群21~24それぞれの出力端子同士は、並列に接続されている。これにより、上述した効果と同様の効果を奏する。
 さらに、本実施形態では、制御回路43は、バッテリ2の電圧に基づいて1つの第1コンバータあたり必要な電圧を必要電圧として演算し、第1コンバータごとに、太陽電池モジュールの出力電圧と最大昇圧比の積を演算し、演算結果と必要電圧とを比較する。制御回路43は、いずれかの比較結果において、太陽電池モジュールの出力電圧と最大昇圧比の積が必要電圧よりも小さい場合、対象の第1コンバータが含まれる第1コンバータ群を対象第1コンバータ群として特定する。制御回路43は、対象第1コンバータ群について、最大昇圧比又はその周辺の昇圧比で動作するように、第1コンバータの動作を制御する。これにより、複数の太陽電池モジュールのうちいずれかの太陽電池モジュールの出力電圧が低下し、第1コンバータ群ではバッテリ2の電圧まで昇圧できない場合でも、第1コンバータの変換効率を向上させつつ、バッテリ2に充電をすることができる。
 加えて、本実施形態では、制御回路43は、第1コンバータごとに、太陽電池モジュールの出力電圧と定格昇圧比の積を演算し、演算結果と必要電圧とを比較する。制御回路43は、いずれの比較結果においても、太陽電池モジュールの出力電圧と定格昇圧比の積が必要電圧よりも大きい場合、第2コンバータ12の出力電力をバッテリ2への充電に用いないように、第2コンバータ12を停止させる。これにより、太陽電池モジュール1の出力電圧が比較的高い場合、第2コンバータ12の消費電力を抑制することができ、電力変換装置20の電力変換効率を向上させることができる。
 加えて、本実施形態では、制御回路43は、第1コンバータごとに、太陽電池モジュールの出力電圧と最大昇圧比の積を演算し、演算結果と必要電圧を比較する。また、制御回路43は、太陽電池モジュールの出力電圧と定格昇圧比の積を演算し、演算結果と必要電圧を比較する。そして、制御回路43は、いずれの比較結果においても、太陽電池モジュールの出力電圧と最大昇圧比の積が必要電圧よりも小さく、かつ、太陽電池モジュールの出力電圧と定格昇圧比の積が必要電圧よりも大きい場合、出力電流を出力電圧で除算した値が最大となるように、第2コンバータの動作を制御する。これにより、第1コンバータが変換効率の高い昇圧比で動作することができるとともに、バッテリ2に供給する電力を大きくすることができる。
≪第3実施形態≫
 次に、第3実施形態に係る電力変換装置について説明する。図6は、第3実施形態に係る電力変換装置30を含む電力変換システム300の回路図である。本実施形態に係る電力変換装置30は、上述した第2実施形態に係る電力変換装置20と比べて、第2コンバータの数が異なる点以外は、同様の構成である。このため、同様の構成については、第2実施形態においてした説明を適宜援用する。
 電力変換装置30は、第1コンバータ群21~24ごとに、第2コンバータ112~114を備えている。具体的には、第2コンバータ112は、第1コンバータ群21に対応して設けられ、第2コンバータ113は、第1コンバータ群22に対応して設けられ、第2コンバータ114は、第1コンバータ群23に対応して設けられ、第2コンバータ115は、第1コンバータ群24に対応して設けられている。第1コンバータ群と第2コンバータとの接続関係については、上述した第1実施形態における第1コンバータ11と第2コンバータ12との接続関係と同様である。
 以上のように、本実施形態に係る電力変換装置30又は電力変換装置30の制御方法において、電力変換装置30は、第1コンバータ群21~24ごとに、第2コンバータ112~114を備えている。これにより、第1コンバータ群ごとに、第2コンバータの制御を行うことができるため、第1コンバータ群ごとに最適な動作をさせることができ、その結果、電力変換システム300の電力変換効率を向上させるとともに、バッテリ2に供給する電力を大きくすることができる。
≪第4実施形態≫
 次に、第4実施形態に係る電力変換装置について説明する。図7は、第4実施形態に係る電力変換装置40を含む電力変換システム400の回路図である。本実施形態に係る電力変換装置40は、上述した第1実施形態に係る電力変換装置10と比べて、第2コンバータ17の回路構成及び制御回路63による第2コンバータ17への制御が異なる点以外は、同様の構成である。このため、同様の構成については、第1実施形態においてした説明を適宜援用する。
 第2コンバータ17は、第1実施形態における第2コンバータ12と同様に、降圧型のDC−DCコンバータである。第2コンバータ17は、入力端子17a、17bと、出力端子17c、17dを有している。入力端子17aは、バッテリ2の接続端子2aと接続され、入力端子17b及び出力端子17cは、バッテリ2の接続端子2bと接続されている。また出力端子17dは、第1コンバータ11の出力端子11dと接続されている。なお、説明の便宜上、入力端子17aは、入力端子17bよりも高電位側の端子、出力端子17dは、出力端子17cよりも高電位側の端子とする。
 また、第2コンバータ17は、絶縁トランス18を有しており、絶縁型のDC−DCコンバータである。絶縁トランス18は、入力側に設けられた1次巻線18aと、出力側に設けられた2次巻線18bを有している。第2コンバータ17は、例えば、1次巻線18aと接続されるインバータ回路と、2次巻線18bと接続される整流回路で構成される。
 制御回路63は、入力電圧に対する出力電圧の割合が一定となるように、第2コンバータ17の動作を制御する。図7では、第2コンバータ17の出力電圧(Vsc)は、バッテリ2の電圧(Vbat)に対する割合が一定であることを示す。
 また、制御回路63は、第2コンバータ17におけるインバータ回路がソフトスイッチングするように、第2コンバータ17の動作を制御する。例えば、制御回路63は、スイッチング素子のスイッチング周波数、及びデューティ比を制御することで、第2コンバータ17をソフトスイッチングさせつつ、入力電圧に対する出力電圧の割合を一定にさせる。このような回路構成及び制御を行うことで、第2コンバータ17が常にソフトスイッチング動作をするため、第2コンバータ17の消費電力を大幅に低減することができる。
 以上のように、本実施形態に係る電力変換装置40又は電力変換装置40の制御方法において、制御回路63は、第2コンバータ17に含まれるスイッチング素子がソフトスイッチングしつつ、入力電圧に対する出力電圧の割合が一定となるように、第2コンバータ17の動作を制御する。第1コンバータ11が太陽電池モジュール1の出力電圧をバッテリ2の電圧まで昇圧できない場合、第2コンバータ17が出力しなければならない電圧は、バッテリ2の電圧に比例する。すなわち、バッテリ2の電圧が高ければ高くなり、低ければ低くなる。例えば、バッテリ2の電圧が比較的高い場合、バッテリ2の電圧に応じて第2コンバータ17の出力電圧は高くなる。この場合、高い電圧を出力しながらも、ソフトスイッチングで動作するため、第2コンバータ17の消費電力を効果的に抑制することができる。同様に、例えば、バッテリ2の電圧が比較的低い場合でも、低い電圧を出力しながらも、ソフトスイッチングで動作するため、第2コンバータ17の消費電力を効果的に抑制することができる。
 なお、以上に説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 例えば、上述した第1実施形態において、第2コンバータの出力端子12cは、第1コンバータ11の出力端子11dと接続されることで、第2コンバータ12の出力電圧を第1コンバータ11の出力端子11dの電圧に重畳させる構成を例に挙げたが、第2コンバータ12の出力端子12cを、第1コンバータ11の入力端子11bに接続させてもよい。この場合、第2コンバータ12の出力電圧が、第1コンバータ11の入力端子11bの電圧に重畳するため、第1コンバータ11が昇圧する対象の電圧は、バッテリ2の出力電圧に、第2コンバータ12の出力電圧が重畳した(加算した)電圧となる。これにより、バッテリ2の出力電圧が低下し、第1コンバータ11ではバッテリ2の電圧まで昇圧できない場合でも、第1コンバータ11はバッテリ2の電圧に対応する電圧を出力することができる。
 例えば、本明細書では、本発明に係る電力変換装置又は電力変換装置の制御方法における電力変換装置を、電力変換装置10、20、30、40を例に説明するが、本発明はこれに限定されるものではない。また、本明細書では、本発明に係る第1電力変換回路を、第1コンバータ11を例に説明するが、本発明はこれに限定されるものではない。また、本明細書では、本発明に係る第2電力変換回路を、第2コンバータ12、17を例に説明するが、本発明はこれに限定されるものではない。
100…電力変換システム
1…太陽電池モジュール
 1a…出力端子
 1b…出力端子
2…バッテリ
 2a…接続端子
 2b…接続端子
10…電力変換装置
 11…第1コンバータ
  11a…入力端子
  11b…入力端子
  11c…出力端子
  11d…出力端子
  14…絶縁トランス
   14a…1次巻線
   14b…2次巻線
 12…第2コンバータ
  12a…入力端子
  12b…基準端子
  12c…出力端子
 13…制御回路

Claims (16)

  1.  制御回路を用いて、第1電力変換回路と第2電力変換回路を備える電力変換装置を制御する制御方法であって、
     前記第1電力変換回路は、太陽電池モジュール及び蓄電器に接続され、前記太陽電池モジュールの出力電力を変換し、変換した電力を前記蓄電器に出力し、
     前記第2電力変換回路は、前記蓄電器に接続され、前記蓄電器との接続端の電圧を変換し、
    前記制御方法は、
     前記太陽電池モジュールの出力電圧に基づいて、前記第2電力変換回路の動作を制御することで、前記第2電力変換回路の出力電力を前記蓄電器への充電に用いる制御方法。
  2.  請求項1記載の制御方法であって、
    前記制御方法は、
     前記第1電力変換回路の入力端子の電圧又は出力端子の電圧に、前記第2電力変換回路の出力電圧を重畳させる制御方法。
  3.  請求項1又は2記載の制御方法であって、
     前記第2電力変換回路の入力端子は、前記接続端を介して前記蓄電器に接続され、
     前記第2電力変換回路の出力端子は、前記第1電力変換回路の出力端子のうち低電位側の前記出力端子に接続され、
    前記制御方法は、
     前記第1電力変換回路の低電位側の前記出力端子の電圧に、前記第2電力変換回路の出力電圧を重畳させる制御方法。
  4.  請求項1~3のいずれか一項に記載の制御方法であって、
    前記制御方法は、
     前記第1電力変換回路の入力電力が最大になるように、前記第1電力変換回路の動作を制御し、
     前記第2電力変換回路の出力電流を前記第2電力変換回路の出力電圧で除算した値が最大になるように、前記第2電力変換回路の動作を制御する制御方法。
  5.  請求項1~4のいずれか一項に記載の制御方法であって、
     前記第2電力変換回路は、出力端子に流れる電流の方向を一方向に制限する素子を有し、
     前記第2電力変換回路の出力端子は、前記素子を介して前記蓄電器の低電位側の接続端と導通する制御方法。
  6.  請求項1~5のいずれか一項に記載の制御方法であって、
    前記制御方法は、
     前記第2電力変換回路に含まれるスイッチング素子がソフトスイッチングしつつ、前記第2電力変換回路の入力電圧に対する出力電圧の割合が一定となるように、前記第2電力変換回路の動作を制御する制御方法。
  7.  請求項1~6のいずれか一項に記載の制御方法であって、
     前記太陽電池モジュールの出力電圧の最大値は、60V以下であり、
     前記蓄電器の電圧は、前記最大値の4倍以上であり、
     前記第1電力変換回路において、入力端子と出力端子は絶縁する素子を介して接続されている制御方法。
  8.  請求項1~7のいずれか一項に記載の制御方法であって、
     前記第1電力変換回路は、昇圧比に応じて、前記太陽電池モジュールの出力電圧を昇圧し、
    前記制御方法は、
     前記太陽電池モジュールの出力電圧と第1昇圧比の積が、前記蓄電器の電圧よりも小さい場合、前記第1昇圧比で動作するように、前記第1電力変換回路の動作を制御し、
    前記第1昇圧比は、前記第1電力変換回路の最大昇圧比である制御方法。
  9.  請求項1~8のいずれか一項に記載の制御方法であって、
     前記第1電力変換回路は、昇圧比に応じて、前記太陽電池モジュールの出力電圧を昇圧し、
    前記制御方法は、
     前記太陽電池モジュールの出力電圧と第2昇圧比との積が、前記蓄電器の電圧よりも大きい場合、前記第2電力変換回路の出力電力を前記蓄電器への充電に用いないように、前記第2電力変換回路の動作を制御し、
    前記第2昇圧比は、前記第1電力変換回路の定格昇圧比である制御方法。
  10.  請求項1~9のいずれか一項に記載の制御方法であって、
     前記第1電力変換回路は、昇圧比に応じて、前記太陽電池モジュールの出力電圧を昇圧し、
    前記制御方法は、
     前記太陽電池モジュールの出力電圧と第2昇圧比の積が、前記蓄電器の電圧よりも小さく、かつ、前記太陽電池モジュールの出力電圧と第1昇圧比の積が、前記蓄電器の電圧よりも大きい場合、前記第2電力変換回路の出力電流を前記第2電力変換回路の出力電圧で除算した値が最大となるように、前記第2電力変換回路の動作を制御し、
    前記第1昇圧比は、前記第1電力変換回路の最大昇圧比であり、
    前記第2昇圧比は、前記第1電力変換回路の定格昇圧比である制御方法。
  11.  請求項1~10のいずれか一項に記載の制御方法であって、
     前記電力変換装置は、複数の太陽電池モジュールに対して、各前記太陽電池モジュールに対応する複数の前記第1電力変換回路を含む第1電力変換回路群を備え、
     前記第1電力変換回路それぞれの出力端子同士は、順次直列に接続されている制御方法。
  12.  請求項11に記載の制御方法であって、
     前記電力変換装置は、複数の前記第1電力変換回路群を備え、
     前記第1電力変換回路群それぞれの出力端子同士は、並列に接続されている制御方法。
  13.  請求項12に記載の制御方法であって、
     前記第1電力変換回路は、昇圧比に応じて、前記太陽電池モジュールの出力電圧を昇圧し、
    前記制御方法は、
     前記蓄電器の電圧に基づいて一の前記第1電力変換回路あたり必要な電圧を必要電圧として演算し、前記第1電力変換回路ごとに、前記太陽電池モジュールの出力電圧と第1昇圧比の積と前記必要電圧とを比較し、
     いずれかの比較結果において、前記第1昇圧比との前記積が前記必要電圧よりも小さい場合、前記第1昇圧比との前記積が前記必要電圧よりも小さい前記第1電力変換回路が含まれる前記第1電力変換回路群を、対象回路群として特定し、
     前記第1昇圧比で動作するように、前記対象回路群に含まれる複数の前記第1電力変換回路の動作を制御し、
    前記第1昇圧比は、前記第1電力変換回路の最大昇圧比である制御方法。
  14.  請求項12又は13に記載の制御方法であって、
     前記第1電力変換回路は、昇圧比に応じて、前記太陽電池モジュールの出力電圧を昇圧し、
    前記制御方法は、
     前記蓄電器の電圧に基づいて一の前記第1電力変換回路あたり必要な電圧を必要電圧として演算し、前記第1電力変換回路ごとに、前記太陽電池モジュールの出力電圧と第2昇圧比の積と前記必要電圧とを比較し、
     いずれの比較結果においても、前記第2昇圧比との前記積が前記必要電圧よりも大きい場合、前記第2電力変換回路の出力電力を前記蓄電器への充電に用いないように、前記第2電力変換回路の動作を制御し、
    前記第2昇圧比は、前記第1電力変換回路の定格昇圧比である制御方法。
  15.  請求項12~14の何れか一項に記載の制御方法であって、
     前記第1電力変換回路は、昇圧比に応じて、前記太陽電池モジュールの出力電圧を昇圧し、
    前記制御方法は、
     前記蓄電器の電圧に基づいて一の前記第1電力変換回路あたり必要な電圧を必要電圧として演算し、前記第1電力変換回路ごとに、前記太陽電池モジュールの出力電圧と第1昇圧比の積と前記必要電圧とを比較し、前記太陽電池モジュールの出力電圧と第2昇圧比の積と前記必要電圧とを比較し、
     いずれの比較結果においても、前記第1昇圧比との前記積が前記必要電圧よりも小さく、かつ、前記第2昇圧比との前記積が前記必要電圧よりも大きい場合、前記第2電力変換回路の出力電流を前記第2電力変換回路の出力電圧で除算した値が最大となるように、前記第2電力変換回路の動作を制御し、
    前記第1昇圧比は、前記第1電力変換回路の最大昇圧比であり、
    前記第2昇圧比は、前記第1電力変換回路の定格昇圧比である制御方法。
  16.  太陽電池モジュール及び蓄電器に接続され、前記太陽電池モジュールの出力電力を変換し、変換した電力を前記蓄電器に出力する第1電力変換回路と、
     前記蓄電器に接続され、前記蓄電器との接続端の電圧を変換する第2電力変換回路と、
     前記第1電力変換回路及び第2電力変換回路の動作を制御する制御回路と、を備え、
     前記制御回路は、前記太陽電池モジュールの出力電圧に基づいて、前記第2電力変換回路の動作を制御することで、前記第2電力変換回路の出力電力を前記蓄電器への充電に用いる電力変換装置。
PCT/IB2018/001330 2018-11-05 2018-11-05 電力変換装置の制御方法および電力変換装置 WO2020095080A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/IB2018/001330 WO2020095080A1 (ja) 2018-11-05 2018-11-05 電力変換装置の制御方法および電力変換装置
US17/291,095 US11279238B2 (en) 2018-11-05 2018-11-05 Method for controlling power conversion device, and power conversion device
CN201880099195.6A CN112955345B (zh) 2018-11-05 2018-11-05 电力转换装置的控制方法及电力转换装置
JP2020556347A JP7119118B2 (ja) 2018-11-05 2018-11-05 電力変換装置の制御方法および電力変換装置
EP18939132.9A EP3878682A4 (en) 2018-11-05 2018-11-05 POWER CONVERSION DEVICE CONTROL PROCESS, AND POWER CONVERSION DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2018/001330 WO2020095080A1 (ja) 2018-11-05 2018-11-05 電力変換装置の制御方法および電力変換装置

Publications (2)

Publication Number Publication Date
WO2020095080A1 true WO2020095080A1 (ja) 2020-05-14
WO2020095080A8 WO2020095080A8 (ja) 2021-05-14

Family

ID=70611471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/001330 WO2020095080A1 (ja) 2018-11-05 2018-11-05 電力変換装置の制御方法および電力変換装置

Country Status (5)

Country Link
US (1) US11279238B2 (ja)
EP (1) EP3878682A4 (ja)
JP (1) JP7119118B2 (ja)
CN (1) CN112955345B (ja)
WO (1) WO2020095080A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133870A (ja) * 2014-01-15 2015-07-23 京セラ株式会社 電力変換装置及び電力変換方法
JP2015154526A (ja) 2014-02-12 2015-08-24 株式会社デンソー 電力システム
JP2018098820A (ja) * 2016-12-08 2018-06-21 パナソニックIpマネジメント株式会社 電力変換システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HK1120996A2 (en) * 2008-10-24 2009-04-09 Gen Hope Ltd Solar cell charging device and circuit thereof and vehicle using the same
CN201580268U (zh) * 2009-11-13 2010-09-15 刘传江 太阳能电动车
GB2476508B (en) * 2009-12-23 2013-08-21 Control Tech Ltd Voltage compensation for photovoltaic generator systems
US9077202B1 (en) * 2009-12-31 2015-07-07 Sunpower Corporation Power converter with series energy storage
CN102447270B (zh) * 2010-09-30 2014-01-01 比亚迪股份有限公司 车辆用太阳能供电控制系统及控制方法
GB2508222A (en) * 2012-11-26 2014-05-28 Bombardier Transp Gmbh Inductive power receiver having drain and source elements
GB2513868A (en) * 2013-05-07 2014-11-12 Control Tech Ltd High performance voltage compensation
EP2985898A1 (de) * 2014-08-12 2016-02-17 Brusa Elektronik AG Gleichspannungswandler mit zumindest zwei Betriebsmodi
WO2016157874A1 (ja) * 2015-03-27 2016-10-06 京セラ株式会社 電力供給機器の制御方法、電力供給機器及び電力供給システム
CN205883154U (zh) * 2016-06-23 2017-01-11 戚艳红 太阳能电池的电源管理电路和太阳能充电电池
CN107244239B (zh) * 2017-08-04 2023-09-08 中通客车股份有限公司 一种电动汽车太阳能充电系统及控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133870A (ja) * 2014-01-15 2015-07-23 京セラ株式会社 電力変換装置及び電力変換方法
JP2015154526A (ja) 2014-02-12 2015-08-24 株式会社デンソー 電力システム
JP2018098820A (ja) * 2016-12-08 2018-06-21 パナソニックIpマネジメント株式会社 電力変換システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3878682A4

Also Published As

Publication number Publication date
EP3878682A1 (en) 2021-09-15
CN112955345B (zh) 2021-12-21
US20220001750A1 (en) 2022-01-06
JP7119118B2 (ja) 2022-08-16
EP3878682A4 (en) 2021-12-01
WO2020095080A8 (ja) 2021-05-14
JPWO2020095080A1 (ja) 2021-10-14
US11279238B2 (en) 2022-03-22
CN112955345A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
JP5641144B2 (ja) 電力変換装置
EP3306772B1 (en) A method and system for optimally distributing power between a battery and a power grid
US9337682B2 (en) Charging control device, solar power generation system and charging control method
EP3591823A1 (en) Combined dc-dc converter for use in hybrid power system
EP4057472A1 (en) Photovoltaic energy storage system and control method thereof
US8427097B2 (en) Hybrid electrical power source
US10618419B2 (en) Energy storage arrangement comprising multiple energy stores
JP6380623B1 (ja) Dc/dcコンバータ、パワーコンディショナ、及び電源システム
US20170033678A1 (en) Power converter for eliminating ripples
WO2020095080A1 (ja) 電力変換装置の制御方法および電力変換装置
KR20160087034A (ko) 태양광 발전 시스템용 바나듐레독스흐름전지
US10965127B2 (en) Power controller
KR20220091189A (ko) 차량 배터리 충전 시스템 및 차량 배터리 충전 방법
US11305671B2 (en) Method of controlling electric vehicle and electric vehicle system
JP5810254B2 (ja) 蓄電装置
JP5849518B2 (ja) 電源システム
JP2021027749A (ja) 充放電制御装置およびそれを備えたバッテリ並びに直流給電システム
KR102535198B1 (ko) 태양광발전 ess시스템용 mppt 제어시스템
CN111033929A (zh) 电力控制系统
US20210291685A1 (en) Charging device
KR20230100965A (ko) 태양광 패널의 최대 전력점 추종 제어를 지원하는 계통연계 인버터
KR20210157530A (ko) 태양전지와 발전체 및 듀얼 배터리를 이용한 하이브리드 발전시스템
JP2000166117A (ja) 太陽電池発電モジュール
JP2014075860A (ja) 太陽電池分散蓄電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556347

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018939132

Country of ref document: EP

Effective date: 20210607