WO2020094684A1 - Pièce en acier formée par haute pression interne et utilisation d'un acier pour des produits semi-finis destinés à la fabrication d'une pièce formée par haute pression interne ainsi que produit semi-fini correspondant - Google Patents

Pièce en acier formée par haute pression interne et utilisation d'un acier pour des produits semi-finis destinés à la fabrication d'une pièce formée par haute pression interne ainsi que produit semi-fini correspondant Download PDF

Info

Publication number
WO2020094684A1
WO2020094684A1 PCT/EP2019/080325 EP2019080325W WO2020094684A1 WO 2020094684 A1 WO2020094684 A1 WO 2020094684A1 EP 2019080325 W EP2019080325 W EP 2019080325W WO 2020094684 A1 WO2020094684 A1 WO 2020094684A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
steel
component according
composition
wgt
Prior art date
Application number
PCT/EP2019/080325
Other languages
German (de)
English (en)
Inventor
Peter Freytag
Michael Braun
Ingwer Denks
Original Assignee
Salzgitter Flachstahl Gmbh
Salzgitter Hydroforming GmbH & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salzgitter Flachstahl Gmbh, Salzgitter Hydroforming GmbH & Co. KG filed Critical Salzgitter Flachstahl Gmbh
Priority to CN201980072919.2A priority Critical patent/CN113423854A/zh
Priority to EP19801265.0A priority patent/EP3877563A1/fr
Publication of WO2020094684A1 publication Critical patent/WO2020094684A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • C21D7/12Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars by expanding tubular bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/24Automatic variation of thickness according to a predetermined programme
    • B21B37/26Automatic variation of thickness according to a predetermined programme for obtaining one strip having successive lengths of different constant thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/053Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure characterised by the material of the blanks
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Definitions

  • Internal high-pressure formed component made of steel and use of a steel for preliminary products for the production of an internal high-pressure molded component and preliminary product therefor
  • the present invention relates to an internal high-pressure formed component (IHU component) made of steel and the use of a steel for preliminary products for producing an internal high-pressure molded component and a preliminary product for a
  • Flat steel products such as sheet metal.
  • the main focus of the applications are components based on hollow profiles, mostly welded steel pipes or extruded aluminum profiles, which are transformed into components for the exhaust system, frame parts of the chassis or body structure parts using this process.
  • a tube is inserted into a mostly two-part tool with a recess of any shape.
  • the pipe ends are sealed with two axial sealing punches designed as hollow punches.
  • a water-oil emulsion is then added to the pipe through the bore in the sealing plungers and the internal pressure required for the forming is built up.
  • the two hollow punches press on the
  • the emulsion in the pipe is subjected to a pressure of up to 4000 bar and so the wall of the pipe is pressed against the shape of the tool, as a result of which the recess in the mold is completely filled.
  • the standard material used in the automotive industry for internal high-pressure forming, in addition to classic, easily formable structural steels or micro-alloyed grades, is a steel with the trade name S460MC (DIN EN 10149-2). It is a high strength steel, the following
  • Alloy components contains:
  • the upper yield strength R eH of the S460MC is> 460 MPa
  • the tensile strength R m is 520-670 MPa
  • the elongation at break A80 is> 14% for nominal thicknesses ⁇ 3 mm> and the elongation at break A5 is> 17% for nominal thicknesses> 3 mm.
  • Another object of the present invention is to specify a use of a steel for preliminary products for the production of an internal high pressure formed component, in which preferably a preliminary product made of a material other than the known standard material S460MC is used.
  • the resulting hydroforming component should preferably be characterized by a higher static strength and in particular a better operational strength, ie a better stability against cyclically recurring loads. Furthermore, a
  • the preliminary product for an IHU-shaped component can be specified.
  • the preliminary product in particular through an internal high-pressure formed component made of a ferritic-bainitic steel with more than 5% by volume bainite, the preliminary product preferably belonging to strength class D according to DIN EN 10051 and having a composition which
  • a preliminary product is preferably understood to mean a hollow body, in particular a tube.
  • the preliminary product is particularly preferably a longitudinally welded or seamlessly produced tube made of ferritic-bainitic steel with at least 5% by volume bainite with the alloy components specified above, the
  • Alloy components are preferably contained in the above-mentioned proportions by weight in the ferritic-bainitic steel.
  • the preliminary product can also be a pipe, the material of the pipe being at least 80% by weight, more preferably at least 90% by weight and even more preferably at least 95% by weight of the bainitic steel with the Alloy constituents specified above.
  • the preliminary product can be a welded tube made of, for example, a laser-welded blank (Tailor Welded Blank), the blank optionally having at least two different sheet thicknesses and / or consisting of at least two sheets with different compositions.
  • the steel material used furthermore advantageously has at least 30 volume% bainite, advantageously at least 50 volume% bainite and particularly advantageously at least 90 volume% bainite, with ferrite and small proportions of pearlite, martensite or austenite of at most 10 volume%.
  • the proportion of degenerated pearlite is a maximum of 30% by volume.
  • a preliminary product in the sense of the invention are two or more metal sheets welded together all around, which delimit a cavity between them.
  • not all sheets are made of steel with the composition specified in claim 1, so that the hollow body as a whole
  • the preliminary product is a welded tube made from a flexibly rolled
  • the flat material at least two has different sheet thicknesses.
  • the flat material can consist of hot or cold strip.
  • the ferritic-bainitic steel which the preliminary product contains or of which it consists has one
  • Nb ⁇ 0.06% by weight of Nb, the total proportion of Nb and / or V and / or Ti in the composition being at most 0.20% by weight.
  • the preliminary product consists or the preliminary product comprises at least 80% by weight, at least 90% by weight or at least 95% by weight, an elastic limit R p o, 2 of 480-580 MPa and a tensile strength R m of 590- 670 MPa.
  • the preliminary product used according to the invention in particular in the case of a welded or seamless tube, has a smaller wall thickness than a corresponding preliminary product made of the standard material S460MC, for example a wall thickness of ⁇ 2.7 mm or even ⁇ 2.6 mm, while a corresponding preliminary product made of the standard material S460MC has a wall thickness of approx. 2.8 mm to 2.9 mm. This is due to the remarkable forming behavior of the ferritic-bainitic steel with those in claim 1
  • the invention furthermore also relates to the use of a ferritic-bainitic steel for preliminary products with at least 5% by volume bainite, for the production of a component molded by internal pressure, the steel which the preliminary product comprises or consists of having a composition which
  • the rest contains iron and the usual impurities due to melting, the total proportion of Nb, V and Ti in the composition being at most 0.20% by weight.
  • the steel which the preliminary product according to the invention contains or consists of has a composition which
  • Nb ⁇ 0.06% by weight of Nb
  • the rest contains iron and the usual impurities due to melting, the total proportion of Nb, V and Ti in the composition being at most 0.20% by weight.
  • the total proportion of Nb and / or V and / or Ti in the composition being at most 0.20% by weight.
  • Table 1 shows the materials according to the invention.
  • Material 1 was provided in the tube dimension 65 x 2.8 mm (according to DIN EN 10305-3, 2016) in the + CR2 state
  • material 2 was provided in the tube dimension 65 x 2.6 mm (according to DIN EN 10305-3, 2016) provided in the + CR2 state.
  • Example 1 Determination of the hardness curve HV 0.5 of the standard material S460MC and the material used according to the invention with the properties specified in claim 1
  • FIG. 1 shows a comparative representation of the hardness curve over the weld seam and the base material area of both materials, the mean values from the individual values determined in FIG. 2 at each of the three marked positions being plotted.
  • material 2 generally has a higher level of hardness than material 1, which also in the weld and in the
  • Example 2 Tube feed test and extraction of mechanical parameters from the tube feed test
  • FIG. 3 shows the stress-strain curves for the three samples of material 1
  • FIG. 4 shows the stress-strain curves for the three samples of the material 1
  • material 2 has a higher yield strength and a tensile strength which is approximately 50-60 MPa higher than that of material 1.
  • material 2 has lower uniformity and elongation at break values than material 1.
  • the determined strength values and elongation values of both materials are shown in comparison in FIGS. 5 and 6. Based on the fact that material 1 has better elongation at break values than material 2, the person skilled in the art would conclude that material 1 also has better forming behavior than material 2. However, surprisingly, this is not the case, as can be seen from the studies below.
  • Bursting tests are destructive component tests that are carried out to make statements about component properties when subjected to internal pressure can. Parameters such as the bursting pressure and the maximum circumferential expansion until failure are particularly important component properties. With the burst test, statements can be made as to whether a component is suitable for certain applications. There are different measurement methods that can be used to measure the circumferential strain.
  • test specimens were welded to the ends with round blanks.
  • burst tests were carried out according to the defined test parameters.
  • the bursting tests were carried out on four pipes of both materials.
  • test specimens were filled with inhibited water and connected to the burst test system via connection systems. The entire system was then vented and the experiment started. The internal pressure in the test specimen was increased until the test specimen failed.
  • FIG. 7 A schematic sketch of the test setup is shown in FIG. 7, in which the reference numbers mark the following components of the test system:
  • the yield point, tensile strength and wall thickness are included in the formula. With a constant yield point and tensile strength, the calculated burst pressure increases with increasing wall thickness.
  • the calculated burst pressure for pipes made of W2 with a wall thickness of 2.6 mm is 489 bar higher than the calculated burst pressure for pipes made of W1 with a wall thickness of 2.8 mm, which is 475 bar.
  • the calculated burst pressure is higher when using material W2, since the influence of the smaller wall thickness is apparently overcompensated by the 47 MPa higher yield strength and the 67 MPa higher tensile strength.
  • the results of the burst tests carried out correspond to the calculated burst pressures with a small deviation.
  • the standard deviation of burst tests on pipes made of material W2 is 4.1 bar and
  • the standard deviation of burst tests on pipes made of material W1 is 5.2 bar.
  • Circumferential strains AU are shown in FIG. 8 for both materials W1 and W2.
  • the pipe made of material W1 with a wall thickness of 2.6 mm serves as a reference, the respective values of which are given as 100%.
  • the yield strength R po , 2 and tensile strength R m of W2 are approximately 10% higher than those of W1, the elongation at break A of W2 being more than 10% less than that of W1.
  • the calculated plastic circumferential strain AU of W2 is approx. 18% higher and the burst pressure p approx. 5% higher than for material W1.
  • the material W2 can achieve significantly better results than the standard material W1 in spite of a wall thickness that is 0.2 mm smaller. Because despite a lower stretch in the uniaxial A pipe tensile test can be achieved with the pipe made of material W2 in a burst test.
  • the reason for achieving the degree of deformation of the material W2, which is greater than the elongation at break from the tensile test, is the local one
  • TFS True Fracture Strain
  • TFS TFS
  • TFS tensile fracture area - In (Ao / Af) (Formula 4), in which Ao denotes the initial sample cross-sectional area and Af the
  • TFS tensile test thickness - In (to / tmin) (Formula 5), in which to denotes the initial sheet thickness and the minimum breaking surface sheet thickness.
  • Table 4 contains the TFS values determined according to Formula 4 for 4 samples of material W1 and 4 samples of material W2.
  • Table 5 contains the TFS values determined according to Formula 5 for 4 samples of material W1 and 4 samples of material W2.
  • ti, t2 and t 3 indicate the fracture surface sheet thicknesses. to denotes the initial sheet thickness, where the initial sheet width and wt the projected fracture surface width t f denotes the projected fracture surface thickness.
  • Example 4 Optical shape change analysis of an IHU practice component
  • Material properties are analyzed with the help of a deformation analysis of the formed component.
  • a pipe made of W1 with an outer diameter of 65 mm and a wall thickness of 2.8 mm is used as standard material. The process steps for
  • Component production is: Bending - Embossing - IHU - Lasers - Washing - Packing.
  • the finished hydroforming components were subjected to a visual inspection for a rough assessment of the manufacturability of the components.
  • the IHU components made of W2 could be shaped almost completely.
  • the ARGUS deformation analysis system from GOM was used for a detailed analysis of the forming behavior of the two pipe materials. From the local distortion of the etched measuring grid (2 mm grid spacing, 1 mm
  • ARGUS provides extensive information such as 3D coordinates of the component surface, shape changes (flaupt and
  • Strength requirements and in particular operational strength are well suited.
  • Wall thickness of the tube in the initial configuration is 1.8 mm for one
  • the flange parts each have a sheet thickness of 2.5 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

L'invention concerne une pièce formée par haute pression interne en acier ferritique/bainitique, caractérisée par un produit semi-fini comportant au moins 5 % en volume de bainite, qui présente une composition qui contient 0,04 à 0,12 % en poids de C, 0,8 à 2,0 % en poids de Mn, ≤ 0,60 % en poids de Si, ≤ 0,02 % en poids de P, ≤ 0,01 % en poids de S, 0,01 à 0,08 % en poids d'AI, < 0,008 % en poids de B, ≤ 0,3 % en poids de Cu, ≤ 0,6 % en poids de Cr, ≤ 0,3 % en poids de Ni, ≤ 0,3 % en poids de Mo, ≤ 0,1 % en poids de Ti, ≤ 0,1 % en poids de V et ≤ 0,06 % en poids de Nb, le reste étant du fer et les impuretés habituelles liées à la fusion, et une proportion totale de Nb et/ou de V et/ou de Ti par rapport à la composition d'au moins 0,02 % en poids.
PCT/EP2019/080325 2018-11-06 2019-11-06 Pièce en acier formée par haute pression interne et utilisation d'un acier pour des produits semi-finis destinés à la fabrication d'une pièce formée par haute pression interne ainsi que produit semi-fini correspondant WO2020094684A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980072919.2A CN113423854A (zh) 2018-11-06 2019-11-06 钢制内高压成型部件和钢在用于制造内高压成型部件的半成品中的用途以及用于此的半成品
EP19801265.0A EP3877563A1 (fr) 2018-11-06 2019-11-06 Pièce en acier formée par haute pression interne et utilisation d'un acier pour des produits semi-finis destinés à la fabrication d'une pièce formée par haute pression interne ainsi que produit semi-fini correspondant

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102018127609.5 2018-11-06
DE102018127609 2018-11-06
DE102018133143.6A DE102018133143A1 (de) 2018-11-06 2018-12-20 Innenhochdruck umgeformtes Bauteil aus Stahl und Verwendung eines Stahls für Vorprodukte zur Herstellung eines innenhochdruckumgeformten Bauteiles sowie Vorprodukt hierfür
DE102018133143.6 2018-12-20

Publications (1)

Publication Number Publication Date
WO2020094684A1 true WO2020094684A1 (fr) 2020-05-14

Family

ID=70469656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/080325 WO2020094684A1 (fr) 2018-11-06 2019-11-06 Pièce en acier formée par haute pression interne et utilisation d'un acier pour des produits semi-finis destinés à la fabrication d'une pièce formée par haute pression interne ainsi que produit semi-fini correspondant

Country Status (4)

Country Link
EP (1) EP3877563A1 (fr)
CN (1) CN113423854A (fr)
DE (1) DE102018133143A1 (fr)
WO (1) WO2020094684A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088278A (ja) * 1996-09-19 1998-04-07 Nkk Corp 液圧バルジ成形性に優れた電縫鋼管およびその製造方法
JP2001131704A (ja) * 1999-11-05 2001-05-15 Kawasaki Steel Corp ハイドロフォーム用鋼管および鋼管用熱延素材ならびにそれらの製造方法
JP2005068534A (ja) * 2003-08-28 2005-03-17 Jfe Steel Kk ハイドロフォーミング性およびバーリング性に優れた溶接鋼管およびその製造方法
JP2005146395A (ja) * 2003-11-19 2005-06-09 Sumitomo Metal Ind Ltd ハイドロフォーム用鋼材、ハイドロフォーム用電縫管及びそれらの製造方法
EP2009120A2 (fr) * 2007-06-27 2008-12-31 Benteler Stahl/Rohr Gmbh Utilisation d'un alliage d'acier très solide destiné à la fabrication de tuyaux en acier très résistants et ayant une bonne déformabilité

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3695233B2 (ja) * 1999-07-19 2005-09-14 住友金属工業株式会社 ハイドロフォーム加工用電縫鋼管
WO2008110670A1 (fr) * 2007-03-14 2008-09-18 Arcelormittal France Acier pour formage a chaud ou trempe sous outil a ductilite amelioree
JP5811591B2 (ja) * 2011-05-24 2015-11-11 Jfeスチール株式会社 耐圧潰性および溶接熱影響部靱性に優れた高強度ラインパイプ及びその製造方法
JP6070642B2 (ja) * 2014-06-20 2017-02-01 Jfeスチール株式会社 高強度でかつ低温靭性に優れた熱延鋼板およびその製造方法
KR101758484B1 (ko) * 2015-12-15 2017-07-17 주식회사 포스코 저온 변형시효 충격특성 및 용접 열영향부 충격특성이 우수한 고강도 강재 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088278A (ja) * 1996-09-19 1998-04-07 Nkk Corp 液圧バルジ成形性に優れた電縫鋼管およびその製造方法
JP2001131704A (ja) * 1999-11-05 2001-05-15 Kawasaki Steel Corp ハイドロフォーム用鋼管および鋼管用熱延素材ならびにそれらの製造方法
JP2005068534A (ja) * 2003-08-28 2005-03-17 Jfe Steel Kk ハイドロフォーミング性およびバーリング性に優れた溶接鋼管およびその製造方法
JP2005146395A (ja) * 2003-11-19 2005-06-09 Sumitomo Metal Ind Ltd ハイドロフォーム用鋼材、ハイドロフォーム用電縫管及びそれらの製造方法
EP2009120A2 (fr) * 2007-06-27 2008-12-31 Benteler Stahl/Rohr Gmbh Utilisation d'un alliage d'acier très solide destiné à la fabrication de tuyaux en acier très résistants et ayant une bonne déformabilité

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KONIECZNY A ET AL: "Hydroforming performance of laser welded and electric resistance welded high strength steel tubes", SAE SPECIAL PUBLICATIONS, SAE INC, US, vol. Special P, no. 2004, 1 January 2004 (2004-01-01), pages 17 - 23, XP009517817, ISSN: 0099-5908, DOI: 10.4271/2004-01-0830 *
See also references of EP3877563A1 *

Also Published As

Publication number Publication date
DE102018133143A1 (de) 2020-05-07
EP3877563A1 (fr) 2021-09-15
CN113423854A (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
DE60204082T2 (de) Geschweisstes Stahlrohr mit ausgezeichneter Innnenhochdruck-Umformbarkeit und Verfahren zu dessen Herstellung
EP0946311B1 (fr) Procede pour produire une piece faconnee en tole par formage
DE60020188T2 (de) Verfahren zur Herstellung von Formteilen aus Aluminiumlegierung vom Typ 2024
DE60200326T2 (de) Ferritisches rostfreies Stahlblech mit hervorragender Verformbarkeit und Verfahren zu dessen Herstellung
DE69713446T2 (de) Verfahren zum spannungsinduzierten Umwandeln austenitischer rostfreier Stähle und Verfahren zum Herstellen zusammengesetzter magnetischer Teile
DE60128624T2 (de) Formteil, das aus einem Stahlblech hergestellt ist, und Verfahren zu dessen Herstellung
DE69317470T3 (de) Hochfester, kaltgewalzter Stahlblech mit ausgezeichneten Tiefzieheigenschaften und Verfahren zu dessen Herstellung
DE69824384T2 (de) Verfahren zur herstellung einer ferritischen rostfreien stahlplatte mit guten tiefzieheigenschaften und hohem widerstand gegen rillenfornmung
WO2020011638A1 (fr) Produit intermédiaire en acier laminé à froid medium manganèse ayant un taux de carbone réduit et procédé pour la fourniture d&#39;un tel produit intermédiaire en acier
DE69929017T2 (de) Rostfreier Stahl für eine Dichtung und Herstellungsverfahren dafür
DE102016013466A1 (de) Karosseriebauteil für ein Kraftfahrzeug und Verfahren zum Herstellen eines Karosseriebauteils
WO2013124283A1 (fr) Procédé de production de pièces moulées à haute résistance, en acier moulé austénitique à haute teneur en carbone et en manganèse, à propriétés trip/twip
DE102013214464A9 (de) Verfahren zum Herstellen einer chromhaltigen Legierung und chromhaltige Legierung
DE60133463T2 (de) Verfahren zum herstellen eines hochfesten stahlrohres
EP4298255A1 (fr) Produit plat en acier laminé à chaud à haute résistance ayant une aptitude au formage à froid locale élevée et procédé de production d?un tel produit plat en acier
DE69612922T2 (de) Eisen-Chromlegierung mit gute Beständigkeit gegen Rillenformung und mit glatten Oberflache
DE1758389C3 (de) Verfahren zur Verbesserung der physikalischen Eigenschaften von durch elektrische WiderstandsschweiBung erzeugten und kaltkalibrierten Stahlrohren
EP0748875B1 (fr) Procédé de fabrication de tubes selon le principe U-O-E
DE60202034T2 (de) Verfahren zur Herstellung von Stahlrohren
EP1218559B1 (fr) Utilisation d&#39;un alliage d&#39;acier pour produire des tubes d&#39;acier sans joint a resistance elevee
WO2020094684A1 (fr) Pièce en acier formée par haute pression interne et utilisation d&#39;un acier pour des produits semi-finis destinés à la fabrication d&#39;une pièce formée par haute pression interne ainsi que produit semi-fini correspondant
DE60205179T2 (de) Geschweisstes Stahlrohr zum Hydroformen und Verfahren zu seiner Herstellung
AT17259U1 (de) Hochtemperatur-umformwerkzeug
DE102019103502A1 (de) Verfahren zur Herstellung eines nahtlosen Stahlrohres, nahtloses Stahlrohr und Rohrprodukt
DE102019114268A1 (de) Verfahren zum Herstellen einer Kraftstoffeinspritzkomponente

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19801265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019801265

Country of ref document: EP

Effective date: 20210607