WO2020094560A1 - Procédé de calcul de courbes de découpe optimisées et lisibles par machine pour au moins un dispositif de découpe au laser - Google Patents
Procédé de calcul de courbes de découpe optimisées et lisibles par machine pour au moins un dispositif de découpe au laser Download PDFInfo
- Publication number
- WO2020094560A1 WO2020094560A1 PCT/EP2019/080083 EP2019080083W WO2020094560A1 WO 2020094560 A1 WO2020094560 A1 WO 2020094560A1 EP 2019080083 W EP2019080083 W EP 2019080083W WO 2020094560 A1 WO2020094560 A1 WO 2020094560A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cutting
- line
- readable
- contour line
- laser
- Prior art date
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 191
- 238000003698 laser cutting Methods 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 37
- 239000002184 metal Substances 0.000 claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 claims abstract description 29
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 22
- 230000000875 corresponding effect Effects 0.000 claims abstract description 18
- 238000004590 computer program Methods 0.000 claims abstract description 6
- 230000002596 correlated effect Effects 0.000 claims abstract description 5
- 230000001276 controlling effect Effects 0.000 claims description 7
- 238000010586 diagram Methods 0.000 claims description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 241001311547 Patina Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/083—Devices involving movement of the workpiece in at least one axial direction
- B23K26/0838—Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt
- B23K26/0846—Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt for moving elongated workpieces longitudinally, e.g. wire or strip material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4093—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
- G05B19/40937—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of machining or material parameters, pocket machining
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
- G06Q10/043—Optimisation of two dimensional placement, e.g. cutting of clothes or wood
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/04—Manufacturing
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/36—Nc in input of data, input key till input tape
- G05B2219/36199—Laser cutting
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45041—Laser cutting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Definitions
- the invention relates to a method for calculating optimized machine-readable cutting curves for at least one laser cutting device which can be moved in a transport direction and with which sheet metal blanks are cut from a sheet metal strip which is continuously conveyed in the transport direction.
- EP 2 961 561 B1 discloses a method for cutting a sheet metal blank with a predetermined contour from a sheet metal strip which is continuously conveyed in a transport direction by means of a transport device.
- the movements of the laser cutting device are controlled by means of a control in which machine-readable x (t) and machine-readable y (t) cutting curves correlated in time are stored.
- the programmer To produce a machine-readable cutting curve, the programmer usually starts from the drawing provided, which contains a data record describing a contour line of the sheet metal blank. The programmer then creates a cutting line corresponding to the contour line. The cutting line is generated based, among other things, on the experience of the programmer. The course of the cutting line can deviate slightly from the contour line. The start and end points are part of the cutting line. The programmer may also split the contour line into several sections. Resulting cutting line sections can also be cut by different moving laser cutting devices. After the completion of the cutting line or the cutting line sections, the data set is generated by the programmer.
- the data sets are typically available as conventional CNC files and are converted by a controller into machine-readable x (t) and y (t) cutting curves or traversing movements of the x and y axes.
- the cutting curves are corrected or adapted with regard to the transport speed of the sheet metal strip.
- the corrected cutting curves are then exported to the controller for controlling the laser cutting device.
- the conventional method requires some experience on the part of the programmer. To create the corrected cutting curves, it is necessary to create multiple files and export them to other programs. An optimization of a transport speed is only possible with a very high effort according to the conventional method.
- US Pat. No. 9,020,628 B2 describes a method for producing a large number of sheet metal blanks from a sheet metal accommodated on a laser cutting table.
- the method enables an optimal cutting path to be found
- US 9,031, 688 B2 discloses a nesting or nesting method for cutting boards by means of laser. With the nesting process, the boards to be cut are arranged so that there is as little waste as possible.
- a method for generating a cutting line is known from US Pat. No. 9,513,623 B2.
- the cutting line is created based on a contour line.
- the contour line is defined by a large number of successive points.
- the further points defining the cutting line are determined on the basis of the local costs of each point on the contour line. From this, an optimized sequence of cutting points is determined.
- the cutting curve is calculated using spline fits based on optimized cutting points.
- the object of the invention is to eliminate the disadvantages of the prior art.
- a method which is as quick and easy to carry out as possible for calculating optimized machine-readable cutting curves for at least one laser cutting device which can be moved in one transport direction for cutting sheet metal blanks from a sheet metal strip which is continuously conveyed in the transport direction is to be specified.
- a method for calculating optimized machine-readable cutting curves for at least one laser cutting device that can be moved along in a transport direction is proposed, with which sheet metal blanks are cut from a sheet metal strip that is continuously conveyed in the transport direction, with the following steps:
- At least one corresponding cutting line is initially calculated for the contour line using a predetermined first algorithm.
- the "contour line” is described as a two-dimensional geometric object in a data set.
- the data set defining the contour line is analyzed by means of the first algorithm, ie the contour line is scanned.
- a large number of data points lying thereon are generated for the contour line. Attributes, for example “laser on”, “laser off”, “distance of the cutting nozzle from the sheet surface” and the like, are assigned to the data points.
- an optimized cutting path can also be calculated using a fitting.
- the "cutting line” contains specific parameters for controlling the laser cutting devices.
- the cutting line has in particular a start and an end point.
- Algorithms for calculating cutting lines are known in the prior art, in particular for three-axis CNC machines. For example, reference is made to Zhang, Ke et al. "Cubic Spline Trajectory Generation with Axis Jerk and Tracking Error Constraints", International Journal of Precision Engineering and Manufacturing, Vol. 14, No. 7, pp. 1141-1146 (July 2013).
- step b the contour line and the cutting line generated for this, along with their start and end points, are displayed on a screen.
- step c) on the basis of the cutting line, a machine-readable x (t) - and a machine-readable y (t) cutting curve for the laser cutting device, which is temporally correlated with it, are calculated for the laser cutting device. These cutting curves must subsequently be corrected using a transport speed specified for the sheet metal strip.
- step d the cutting time required for cutting along the cutting curves to produce a sheet metal blank is calculated.
- the cutting time and / or a resulting production rate and / or a transport speed of the sheet metal strip is then displayed.
- the user is automatically provided with a proposal for a cutting line and a position of the start and end points on the basis of a provided contour line.
- the machine-readable cutting curves corresponding to the cutting line are also calculated and a cutting duration, production rate and / or transport speed resulting from the cutting curves are displayed.
- step f) To optimize the cutting curves, it is now possible according to step f) to change the number and / or the position of the start and / or end points.
- the user can do this, for example, by moving the position of the starting and / or ending points on the screen.
- the user can also change the course of the cutting line. For example, he can change an angular cutting line to a rounded cutting line.
- On the user side it is also possible to divide the cutting line into several cutting line sections. -
- the change of at least one of the parameters according to step f) can also take place automatically according to a predetermined algorithm. Steps b) to e) can then be carried out again on the basis of the changed cutting line.
- the cutting line changed by the user immediately results in a corresponding cutting time, production rate and / or transport speed using the method according to the invention.
- the user can immediately see whether the change in the cutting line z. B. would result in an increase in the production rate. This makes it quick and easy to increase z. B. the production rate to provide optimized cutting curves.
- the corresponding cutting curves can immediately be exported to a controller for controlling the laser cutting device.
- the production rate for the sheet metal blanks can be calculated and displayed on the basis of the production time of the cutting curve that requires the longest cutting time. For example, it can be specified how many sheet metal blanks can be produced per minute or per hour using the optimized cutting curves.
- the transport speed can be calculated from a quotient of a pitch length of the metal strip and the cutting time.
- the production rate can be calculated from the quotient of a division length and the transport speed.
- pitch length is understood to mean a section of the sheet metal strip in the transport direction or x-direction in which the calculated cutting curves are repeated. One or more identical sheet metal plates are therefore repeatedly produced in each section.
- the contour line can be smoothed according to a predetermined function before step a). Furthermore, one or more gaps in the contour line can be closed before step a). This ensures that a cutting line or cutting line sections is calculated without errors from the contour line using the first algorithm.
- the number of laser cutting devices and, for each of the laser cutting devices, the number of laser cutting devices Cutting field coordinates defining the work area are specified.
- the number and the working range of the laser cutting devices can be taken into account in the calculation using the first algorithm.
- Each of the laser cutting devices can be moved back and forth both in the transport direction and in the y direction running perpendicular thereto.
- the working area of each laser cutting device is defined by its freedom of movement in the transport direction and in the y direction.
- the contour line can be divided into a plurality of contour line sections in step a). Corresponding cutting line sections can then be calculated for the contour line sections by means of the first algorithm.
- each cutting line section can then be assigned exactly to one of the laser cutting devices.
- machine-readable x (t) and time-correlated machine-readable y (t) cutting curves can be calculated for each of the laser cutting devices on the basis of the respective cutting line sections according to the predetermined second algorithm.
- Cutting curves taking into account a cutting speed and / or cutting direction and / or cutting sequence, are calculated in such a way that the cutting line sections are cut simultaneously and without collisions by means of the laser cutting devices. Even if the cutting line sections initially produced are largely matched to one another in terms of their production time by means of the first algorithm, further use of the second algorithm for calculating the machine-readable cutting curves may result in differences in the production time again. This is due, for example, to the inertia of the cutting tools, for example when braking or accelerating in the area of a tight curve. According to the aforementioned embodiment, the cutting curves are calculated so that the laser cutting devices can always cut the corresponding cutting line sections simultaneously and without collisions.
- a speed of the cutting head of the respective laser cutting device is displayed over time for the cutting line or for each cutting line section on the basis of the cutting curves calculated for this. From such a representation, the manufacturing time for each of the cutting line sections can be recognized immediately.
- the proposed representation gives the user an indication of how, in all likelihood, the transport speed can be further optimized by changing the parameters in step f).
- the x and y coordinates of the contour and / or cutting line or the contour and / or cutting line section can also be represented two-dimensionally in a diagram, in each case in correlation to the display of the speed and / or the acceleration and / or the time utilization of the laser cutting devices. This is for the user z.
- the contour and / or cutting line or the contour and / or cutting line section runs in a top view of the sheet metal strip. It can be seen from this whether the laser cutting device runs through a simple or rather complex path when executing the respective cutting curve.
- a data record describing the at least one cutting curve is transmitted to a controller for controlling the at least one laser cutting device.
- the method according to the invention can be carried out on a computer which is appropriately prepared for carrying it out, for example a personal computer.
- the at least one cutting curve generated with the method according to the invention can then be exported in a conventional manner to a control or machine control of the laser cutting device.
- the method according to the invention can advantageously already be used in the design of the contour line. This means that it can be quickly and easily recognized whether a certain contour line enables a corresponding sheet metal patina to be quickly and easily set.
- Fig. 1 is a flow chart
- 2.1 to 2.1 1 are schematic screen representations according to the method steps according to FIG. 1,
- Fig. 4 shows the positioning of two differently divided
- Fig. 5 shows the positioning rates of two differently designed
- Cutting lines. 1 shows an example of the method according to the invention in a flowchart.
- a data record is imported which reproduces a contour line K of the sheet metal blank to be produced.
- Such a data record can be in DXF format, for example.
- 2.1 to 2.11 and 3.1 to 3.7 illustrate the method steps according to FIG. 1 on the basis of screen displays.
- contour line K is interrupted or has a discontinuous course. Interruptions in the contour line K can be closed by manual processing by the user. Furthermore, undesired discontinuities in the course of the curve, for. B. can be smoothed by using a specified function.
- contour line K is to be cut by means of a plurality of laser cutting devices, the contour line K is now advantageously subdivided into contour line sections K1 ... K6.
- reference numerals U1 ... U6 denote subdivisions which define the contour line sections K1 ... K6.
- the contour line sections K1 ... K6 can then be assigned to groups. Each of the groups is in turn assigned one of the laser cutting devices L1, L2, L3. The assignment of the contour line sections K1 ... K6 is shown schematically in FIGS. 2.4 to 2.6.
- Corresponding cutting line sections S1 ... S6 are then generated on the basis of the generated contour line sections K1 ... K6 using a second algorithm.
- the data records which describe the cutting line sections S1 ... S6 contain parameters for controlling the laser cutting devices L1, L2, L3. In particular, they contain start points A1 ... A6 and end points E1 ... E6, at which a laser of the respective laser cutting device L1,
- the aforementioned cutting curves M1, M2 are also referred to as cam disks. They contain all the parameters required to control the respective laser cutting device L1, L2, L3. Machine-readable x (t) and y (t) cutting curves M1, M2 for the second laser cutting device L2 are shown schematically in FIGS. 2.10 and 2.11.
- the cutting time T1, T2, T3 is then calculated on the basis of the cutting curves M1, M2 for each of the laser cutting devices L1, L2, L3.
- the cutting curves M1, M2 require the longest cutting time T2 for the second laser cutting device L2.
- the longest cutting time T2 in turn determines the production rate of the sheet metal to be produced.
- a high production rate can be achieved if the cutting times T1, T2, T3 of the laser cutting devices L1, L2, L3 are approximately of the same length.
- T 1, T2, T3 it is now possible according to the method according to the invention to subdivide the contour line K and / or to change the course of the contour line K slightly.
- a subdivision namely the subdivision points U1, U2, is omitted (see FIG. 3.3).
- Contour line sections K1 'and K6' for the first L1 and for the third laser cutting device L3 are extended at the right end.
- additional ones are created using the first algorithm
- Cutting lines (not shown here) and from this further machine-readable x (t) and y (t) cutting curves M1 ', M2' are calculated using the second algorithm. Further cutting times T1 ', T2', T3 'corresponding to each of the laser cutting devices L1, L2, L3 are in turn calculated from the further cutting curves M1', M2 '(see FIG. 3.7). In the present example, Allowing a division of the contour line sections for the second laser cutting device L2 reduces the further second cutting time T2 'for the second laser cutting device L2. The production rate can thus be increased.
- L2, L3 can be exported.
- K1 a denotes a first contour line section which is to be cut with a first laser cutting device L1.
- K2a denotes a second contour line section which is to be cut with the second laser cutting device L2.
- FIG. 5 shows the change in the production rate when the contour line is smoothed.
- the contour line formed from the contour line sections K1a and K2a has several corners.
- a production rate of 10 parts / minute results when producing sheet metal blanks according to the original contour line. If the corners are removed from the contour line, ie a modified contour line is defined according to the further first contour line sections K1'a and K2'a, there is an increased production rate of 12 parts / minute.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Tourism & Hospitality (AREA)
- Marketing (AREA)
- Manufacturing & Machinery (AREA)
- Theoretical Computer Science (AREA)
- General Business, Economics & Management (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Geometry (AREA)
- Automation & Control Theory (AREA)
- Human Computer Interaction (AREA)
- Health & Medical Sciences (AREA)
- Development Economics (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Laser Beam Processing (AREA)
Abstract
L'invention concerne un procédé de calcul de courbes de découpe optimisées et lisibles par machine pour au moins un dispositif de découpe au laser (L1, L2, L3) pouvant être déplacé en accompagnant le mouvement dans une direction de transport, avec lequel des flans de tôle sont découpés à partir d'une bande de tôle transportée en continu dans la direction de transport, le procédé comprenant les étapes suivantes : transfert d'un jeu de données décrivant une ligne de contour (K) du flan de tôle à un ordinateur doté d'un programme informatique, les étapes suivantes étant exécutées au moyen du programme informatique : a) calcul d'au moins une ligne de coupe (S1...S6) correspondant à la ligne de contour (K, K1...K6, K1'...K6') conformément à un premier algorithme prédéfini, b) affichage de la ligne de contour (K, K1...K6, K1'..K6') et/ou de la ligne de coupe (S1...S6) avec ses points de début (A1...A6) et de fin (E1... E6), c) calcul d'au moins une courbe de découpe x(t) lisible par machine et d'une courbe de découpe y(t) (M1, M2) lisible par machine corrélée dans le temps avec celle-ci pour le dispositif de découpe au laser (L1, L2, L3) sur la base de la ligne de coupe (S1... S6) conformément à un deuxième algorithme prédéfini, d) calcul d'une durée de découpe (T1, T2, T3) nécessaire pour la découpe le long des courbes de découpe (M1, M2) en vue de la fabrication d'un flan de tôle, et e) affichage de la durée de découpe (T1, T2, T3) et/ou d'une cadence de production qui en résulte et/ou d'une vitesse de transport de la bande de tôle, les étapes supplémentaires suivantes étant exécutées pour optimiser la courbe de découpe (M1, M2) : f) modification d'au moins l'un des paramètres suivants : nombre de points de début (A1...A6) et/ou de fin (E1...E6), position des points de début (A1...A6) et/ou de fin (E1...E6), tracé de la ligne de coupe (S1...S6), et ensuite g) répétition des étapes b) à e).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018127821.7 | 2018-11-07 | ||
DE102018127821.7A DE102018127821A1 (de) | 2018-11-07 | 2018-11-07 | Verfahren zum Berechnen optimierter maschinenlesbarer Schneidkurven für eine Laserschneideinrichtung |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020094560A1 true WO2020094560A1 (fr) | 2020-05-14 |
Family
ID=68470501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2019/080083 WO2020094560A1 (fr) | 2018-11-07 | 2019-11-04 | Procédé de calcul de courbes de découpe optimisées et lisibles par machine pour au moins un dispositif de découpe au laser |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102018127821A1 (fr) |
WO (1) | WO2020094560A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113751890A (zh) * | 2020-06-03 | 2021-12-07 | 上海发那科机器人有限公司 | 一种基于激光位移传感器的机器人曲面轨迹切割方法及切割系统 |
CN115685876A (zh) * | 2022-11-14 | 2023-02-03 | 英诺威讯智能科技(杭州)有限公司 | 一种基于轨迹补偿的平面激光切割控制方法及系统 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021103206A1 (de) | 2021-02-11 | 2022-08-11 | Precitec Gmbh & Co. Kg | Verfahren zum Optimieren einer Bearbeitungszeit eines Laserbearbeitungsprozesses, Verfahren zum Durchführen eines Laserbearbeitungsprozesses an einem Werkstück und Laserbearbeitungssystem, welches eingerichtet ist, um diese durchzuführen |
DE102021131830A1 (de) | 2021-12-02 | 2023-06-07 | Open Mind Technologies Ag | Verfahren zum Bestimmen einer Werkzeugbahn und Verfahren zur materialabtragenden Bearbeitung eines Werkstücks |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1044397A2 (fr) * | 1997-12-02 | 2000-10-18 | Lacent Technologies Inc. | Ajutage au laser monte sur support mobile et procede servant a commander le positionnement du laser |
US20090212033A1 (en) * | 2008-02-20 | 2009-08-27 | Kim Beck | Progressive laser blanking device for high speed cutting |
EP2163339A1 (fr) * | 2008-09-11 | 2010-03-17 | Bystronic Laser AG | Installation de coupe au laser destinée à couper une pièce usinée à l'aide d'un rayon laser à vitesse de coupe variable |
US20140005804A1 (en) * | 2012-06-27 | 2014-01-02 | Matthew Brand | System and Method for Controlling Machines According to Pattern of Contours |
US20140114463A1 (en) * | 2012-10-19 | 2014-04-24 | Mitsubishi Electric Research Laboratories, Inc. | Determining Trajectories of Redundant Actuators Jointly Tracking Reference Trajectory |
DE102013203384A1 (de) * | 2013-02-28 | 2014-08-28 | Schuler Automation Gmbh & Co. Kg | Verfahren zum Schneiden einer Blechplatine |
US9020628B2 (en) | 2004-02-10 | 2015-04-28 | Matthew Fagan | Method and system for eliminating external piercing in NC cutting of nested parts |
US9031688B2 (en) | 2009-07-09 | 2015-05-12 | Amada Company, Limited | Nesting data generation device and nesting data generation method |
DE112014001862T5 (de) | 2013-08-07 | 2015-12-31 | Mitsubishi Electric Corporation | NC-Programm-Generierungsvorrichtung, NC-Programm-Generierungsverfahren und NC-Programm-Generierungsprogramm |
EP2961561B1 (fr) | 2013-02-28 | 2016-08-31 | Schuler Automation GmbH & Co. KG | Méthode de découpe de tôle selon un contour prédéterminé |
US9513623B2 (en) | 2014-01-21 | 2016-12-06 | Mitsubishi Electric Research Laboratories, Inc. | Method for generating trajectory for numerical control process |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10357650B4 (de) * | 2003-12-10 | 2019-04-25 | Dr. Johannes Heidenhain Gmbh | Verfahren zur Glättung von Polygonzügen in NC-Programmen |
US9678499B2 (en) * | 2012-06-27 | 2017-06-13 | Mitsubishi Electric Research Laboratories, Inc. | Method for controlling redundantly actuated machines for cutting a pattern of disconnected contours |
US9046888B2 (en) * | 2012-06-27 | 2015-06-02 | Mitsubishi Electric Research Laboratories, Inc. | Method and system for detouring around features cut from sheet materials with a laser cutter according to a pattern |
EP2952990B1 (fr) * | 2014-06-06 | 2019-02-20 | Siemens Aktiengesellschaft | Commande optimisée d'une machine d'usinage pour enlèvement de copeaux |
-
2018
- 2018-11-07 DE DE102018127821.7A patent/DE102018127821A1/de not_active Withdrawn
-
2019
- 2019-11-04 WO PCT/EP2019/080083 patent/WO2020094560A1/fr active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1044397A2 (fr) * | 1997-12-02 | 2000-10-18 | Lacent Technologies Inc. | Ajutage au laser monte sur support mobile et procede servant a commander le positionnement du laser |
US9020628B2 (en) | 2004-02-10 | 2015-04-28 | Matthew Fagan | Method and system for eliminating external piercing in NC cutting of nested parts |
US20090212033A1 (en) * | 2008-02-20 | 2009-08-27 | Kim Beck | Progressive laser blanking device for high speed cutting |
EP2163339A1 (fr) * | 2008-09-11 | 2010-03-17 | Bystronic Laser AG | Installation de coupe au laser destinée à couper une pièce usinée à l'aide d'un rayon laser à vitesse de coupe variable |
US9031688B2 (en) | 2009-07-09 | 2015-05-12 | Amada Company, Limited | Nesting data generation device and nesting data generation method |
US20140005804A1 (en) * | 2012-06-27 | 2014-01-02 | Matthew Brand | System and Method for Controlling Machines According to Pattern of Contours |
US20140114463A1 (en) * | 2012-10-19 | 2014-04-24 | Mitsubishi Electric Research Laboratories, Inc. | Determining Trajectories of Redundant Actuators Jointly Tracking Reference Trajectory |
DE102013203384A1 (de) * | 2013-02-28 | 2014-08-28 | Schuler Automation Gmbh & Co. Kg | Verfahren zum Schneiden einer Blechplatine |
EP2961561B1 (fr) | 2013-02-28 | 2016-08-31 | Schuler Automation GmbH & Co. KG | Méthode de découpe de tôle selon un contour prédéterminé |
DE112014001862T5 (de) | 2013-08-07 | 2015-12-31 | Mitsubishi Electric Corporation | NC-Programm-Generierungsvorrichtung, NC-Programm-Generierungsverfahren und NC-Programm-Generierungsprogramm |
US9513623B2 (en) | 2014-01-21 | 2016-12-06 | Mitsubishi Electric Research Laboratories, Inc. | Method for generating trajectory for numerical control process |
Non-Patent Citations (1)
Title |
---|
ZHANG, KE ET AL.: "Cubic Spline Trajectory Generation with Axis Jerk and Tracking Error Constraints", INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, vol. 14, no. 7, July 2013 (2013-07-01), pages 1141 - 1146 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113751890A (zh) * | 2020-06-03 | 2021-12-07 | 上海发那科机器人有限公司 | 一种基于激光位移传感器的机器人曲面轨迹切割方法及切割系统 |
CN113751890B (zh) * | 2020-06-03 | 2024-01-23 | 上海发那科机器人有限公司 | 一种基于激光位移传感器的机器人曲面轨迹切割方法及切割系统 |
CN115685876A (zh) * | 2022-11-14 | 2023-02-03 | 英诺威讯智能科技(杭州)有限公司 | 一种基于轨迹补偿的平面激光切割控制方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
DE102018127821A1 (de) | 2020-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020094560A1 (fr) | Procédé de calcul de courbes de découpe optimisées et lisibles par machine pour au moins un dispositif de découpe au laser | |
DE102005015810B4 (de) | Bearbeitungszeit-Berechnungsvorrichtung | |
DE69712824T2 (de) | Verfahren zur Erzeugung diskreter Punkte, die einen Schneideweg definieren, der für einen Rohling gewählte Fertigungsbedingungen erfüllt | |
DE102009029062A1 (de) | Verfahren und Vorrichtung zur Bearbeitungszustandsüberwachung | |
DE112014007112B4 (de) | Numerisch gesteuerte Vorrichtung | |
EP0477397B2 (fr) | Procédé pour déterminer le contour de trajectoire de l'outil pour machines à commande numérique | |
WO2013189574A1 (fr) | Procédé pour générer une denture et machine à former les dentures fonctionnant au moyen de ce procédé | |
DE102019005506A1 (de) | Bearbeitungsbahnerstellungsvorrichtung und numerische steuervorrichtung | |
EP3818420B1 (fr) | Guidage de déplacement optimisé dans le temps entre des sections ferroviaires | |
EP0706103B1 (fr) | Méthode et dispositif de commande numérique de trajet pour machines-outil ou robots | |
EP3438773B1 (fr) | Usinage de pièces à compensation d'erreur basées sur modèles | |
DE102016007685B4 (de) | Numerische Steuervorrichtung, die einen tabellenformatdatenbasierten Betrieb durchführt | |
EP3300521B1 (fr) | Procede d'alignement pour pieces | |
DE102017011602A1 (de) | Numerische Steuerung | |
EP0417337B1 (fr) | Procédé de fonctionnement d'une machine-outil à commande numérique ou d'un robot | |
DE102011052314B4 (de) | Verfahren und Werkzeugmaschine zur Herstellung einer bogenförmigen Flanke an einem Werkstück | |
EP4246257A1 (fr) | Ponçage en fonction de la vitesse entre ensembles à courbes de trajectoire discontinues | |
EP3335087A1 (fr) | Procédé de fourniture d'un profil de trajectoire, dispositif de commande, machine ainsi que programme d'ordinateur | |
WO2016015851A9 (fr) | Procédé de réalisation par enlèvement de copeaux d'évidement dans des pièces et dispositif associé | |
DE2401424A1 (de) | Vorrichtung zum funkenerosiven schneiden von sich erweiternden durchbruechen in metallischen werkstuecken | |
DE102015003573B4 (de) | Verfahren zur Durchführung eines Produktionsprozesses mittels einer Bearbeitungsstation, sowie Anordnung zur Durchführung des Verfahrens | |
DE1946151A1 (de) | Ziehwerkzeug aus Sechskantstaeben mit Schmiersystem | |
EP3293590A1 (fr) | Évaluation automatique de la qualité d'une séquence d'ordres de déplacement | |
EP4403316A1 (fr) | Procédé de synchronisation pour l'exécution coordonnée d'étapes de travail pour l'usinage d'une pièce | |
DE19900963A1 (de) | Verfahren zum Herstellen dreidimensionaler Strukturen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19798597 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19798597 Country of ref document: EP Kind code of ref document: A1 |