WO2020093649A1 - 一种汽轮机及其内冷却方法 - Google Patents

一种汽轮机及其内冷却方法 Download PDF

Info

Publication number
WO2020093649A1
WO2020093649A1 PCT/CN2019/081018 CN2019081018W WO2020093649A1 WO 2020093649 A1 WO2020093649 A1 WO 2020093649A1 CN 2019081018 W CN2019081018 W CN 2019081018W WO 2020093649 A1 WO2020093649 A1 WO 2020093649A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
chamber
inner cylinder
blade stage
channel
Prior art date
Application number
PCT/CN2019/081018
Other languages
English (en)
French (fr)
Inventor
唐敏锦
胡怡丰
程凯
Original Assignee
上海电气电站设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海电气电站设备有限公司 filed Critical 上海电气电站设备有限公司
Priority to EP19883162.0A priority Critical patent/EP3879078A4/en
Priority to US17/288,387 priority patent/US11746674B2/en
Publication of WO2020093649A1 publication Critical patent/WO2020093649A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • F05D2240/52Axial thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys

Definitions

  • the invention relates to a steam turbine and its internal cooling method.
  • a steam turbine is a rotary steam power plant that usually includes a bladed, rotatably supported rotor, which is arranged inside a casing jacket. As the heated and under-pressure steam flow passes through the flow space formed by the housing sleeve, the steam puts the rotor in rotation through the blades.
  • Patent CN200580033477.9 discloses a steam turbine with two cooling channels, both the inner and outer cylinder sandwich and the rotor balance piston can be effectively cooled to support a higher inlet steam temperature, typically 600 ° C inlet steam.
  • the steam turbine includes an outer cylinder 2 and an inner cylinder 3.
  • the outer cylinder 2 and the inner cylinder 3 form a new steam input channel 10, and one has a thrust balance piston 4 and includes a plurality of The rotor 5 of the moving blade 7 is rotatably mounted inside the inner cylinder 3, and a plurality of stationary blades 8 are provided on the inner cylinder 3 in such a manner that a flow channel 9 including a plurality of blade stages of steam is formed along the flow direction 11 ; After a blade stage, steam flows into a chamber 15 between the inner cylinder 3 and the outer cylinder 2 through a feedback channel 14 in the inner cylinder 3, and from there into an inlet channel 16 in the inner cylinder 3 into a
  • the thrust balance piston front chamber 12 is provided between the thrust balance piston 4 and the inner cylinder 3 along the axial direction 17; the thrust balance is achieved by the steam in the thrust balance piston front chamber 12.
  • the arrow 13 symbolically represents the new steam input; most of the fresh steam flowing into the fresh steam input channel 10 flows into the flow channel 9 along the flow direction, and the smaller part flows into the one between the rotor 5 and the inner cylinder 3 as a leaked steam Seam 18
  • the steam leakage basically flows in the reverse direction 19.
  • the sealing cavity 18 is located between the inclined stationary vane and the thrust balance piston 4.
  • Inclined stationary blades are usually non-vertical first-stage stationary blades. The purpose is not to allow steam to directly contact the rotor, which can reduce the temperature of the rotor to a small extent, which is conducive to the strength of the rotor, or can increase the steam inlet parameters to a small extent.
  • the steam in the sealed chamber 18 flows into an inflow chamber 26 provided after a blade stage through a cross feedback channel 20 provided in the inner cylinder 3, and marks 21 and 22 indicate two turns of the cross feedback channel 20; Steam flows into the inflow chamber 26 through a load introduction pipe 23 passing through the outer cylinder 2 and the inner cylinder 3.
  • the feedback channel 14 is connected to the flow channel 9 after a feedback blade stage 24, the cross feedback channel 20 is connected to the flow channel 9 after a cross feedback blade stage 25, and the cross feedback blade stage 25 is along The flow direction 11 of the flow channel 9 is arranged after the feedback blade stage 24.
  • the diameter of the rotor balancing piston is large, resulting in a large cost of rotor forging purchase. Because the pressure in the front chamber 12 of the balancing piston in this scheme is the pressure after the fourth or fifth blade stage, which is a large pressure, and the exhaust pressure behind the balancing piston is a small pressure, and the pressure difference between the front and rear of the balancing piston is small. For this purpose, a balancing piston with a larger diameter is needed to balance the thrust in the blade area.
  • a steam seal section is provided in front of the rotor balancing piston and forms a sealed cavity between the inclined stationary vane and the balancing piston, used to separate the steam with different parameters after the inclined stationary vane and the front chamber of the balancing piston, so the cylinder And the structure of the rotor is more complicated.
  • the invention provides a steam turbine and its internal cooling method.
  • the sealing structure in front of the balancing piston is simplified, the rotor diameter is reduced, the rotor cost is reduced, and the cylinder diameter is also reduced; at the same time, the cylinder structure can be simplified.
  • a technical solution of the present invention is to provide a steam turbine including an outer cylinder and an inner cylinder, and a rotor with a balanced piston is rotatably mounted inside the inner cylinder, between the inner cylinder and the rotor A steam flow channel is formed, wherein a plurality of moving blades of the rotor and a plurality of stationary blades of the inner cylinder are alternately arranged to form a multi-stage blade stage group, and an interlayer for steam circulation is formed between the inner cylinder and the outer cylinder;
  • the multi-stage blade stage group includes a first set blade stage group and a second set blade stage group; a first chamber and a second chamber are provided on the top of the balance piston;
  • the first channel provided in the inner cylinder connects the flow channel after the first set of blade stages to the first chamber; the second channel connects the second chamber to the interlayer And connect the interlayer with the flow channel behind the second set blade stage group.
  • the layout structure of the first channel and the second channel is replaced by: through the first channel, the flow channel after the first set blade stage group is communicated with the interlayer, and the interlayer is connected with the The first chamber communicates; through the second passage provided in the inner cylinder, the second chamber communicates with the flow path behind the second set blade stage group; and, the balance piston corresponds to the first
  • the piston part of one chamber has the same diameter as the piston part corresponding to the second chamber.
  • fresh steam is sent into the steam inlet cavity through a fresh steam input channel provided in the inner cylinder and the outer cylinder;
  • the second chamber is close to the steam inlet chamber, and the first chamber is far from the steam inlet chamber, and the two are arranged back and forth in the axis direction of the rotor.
  • the inner cylinder is provided with an inclined static vane at the inlet cavity before the balancing piston, and the pressure in front of the balancing piston corresponds to the pressure after the inclined stationary vane; or, at the inlet cavity Without inclined vanes, the pressure in front of the balancing piston corresponds to the inlet steam pressure.
  • a supplemental steam pipe passing through the outer cylinder and inserted into the inner cylinder is provided, which communicates with the second passage, or communicates with a supplemental steam chamber in the inner cylinder close to the second passage to introduce supplemental steam .
  • a steam supplement pipe passing through the outer cylinder is provided, which communicates with the interlayer between the inner cylinder and the outer cylinder, or communicates with a steam supplement chamber formed at the sandwich layer to introduce the steam supplement.
  • the balancing piston is a single diameter piston.
  • the second set of blade stage groups is located downstream of the first set of blade stage groups in the flow channel, spaced one or more blade stages from the first set of blade stage groups; the first setting The blade stage group corresponds to the fourth blade stage or the fifth blade stage in the flow channel.
  • the rotor is made of X12CrMoWVNbN10 material or FB2 material.
  • Another technical solution of the present invention is to provide an internal cooling method of a steam turbine, using any one of the above-mentioned steam turbines; the inner and outer cylinders of the steam turbine have a fresh steam input channel to send fresh steam into the inner cylinder.
  • fresh steam starts from the steam inlet cavity and enters the flow channel between the inner cylinder and the rotor, and expands and cools the blade stages at all levels to release the thermal energy to drive the rotor to rotate;
  • steam can be transported from the flow path behind the first designated blade stage group in the multi-stage blade stage group to the first chamber at the top of the balancing piston; and, through the second channel, the Steam can be transported from the second chamber at the top of the balance piston to the interlayer between the inner cylinder and the outer cylinder, and then transferred from the interlayer to the flow channel after the second designated blade stage group to continue to work;
  • steam can be transported from the flow path after the first designated blade stage group in the multi-stage blade stage group to the interlayer between the inner cylinder and the outer cylinder, and then from the interlayer to the balance piston
  • the first chamber at the top and, through the second passage in the inner cylinder, steam can be transported from the second chamber at the top of the balance piston to the flow path after the second designated blade stage group to continue to work;
  • the pressure in front of the balancing piston corresponds to the pressure behind the inclined vane, or corresponds to the inlet steam pressure.
  • the first cooling channel is to connect the flow channel after the fourth or fifth blade stage with the thrust balance piston front chamber
  • the second cooling channel is to connect the first stage vane with the thrust
  • the sealed cavity between the balancing pistons is connected to the next vane stage. That is, a steam seal section is provided in front of the thrust balance piston of the rotor to separate the steam of different parameters after the first stage of the vane and the front chamber of the balance piston; the interlayer cooling steam passes into the thrust balance piston before The temperature is low, and the pressure difference between the front and back of the thrust balance piston is small, resulting in a large diameter and high cost of rotor forging purchase.
  • the solution in the present invention adjusts the two cooling paths.
  • the top of the balancing piston is divided into three sections by providing a first chamber away from the inlet chamber and a second chamber close to the inlet chamber, from a blade stage to the interlayer between the inner and outer cylinders. Connected to the first chamber, the second chamber is connected to the next blade stage.
  • the steam behind the slanted stationary vane or the inlet steam when there is no slanted stationary vane
  • there is communication between the inclined stationary blade and the balance piston and there is no steam seal section in front of the balance piston.
  • the differential pressure in the present invention is large, and the required bearing area of the balancing piston is small, so the diameter of the balancing piston is small, thereby effectively reducing the cost of the rotor.
  • the diameter of the balance piston is 1045mm.
  • Strength margin (actual stress / permissible stress) 0.65.
  • the solution of the prior art reduces the rotor temperature by cooling, and actually increases the allowable stress.
  • the disadvantages are that the pressure difference is small, the diameter of the balancing piston becomes larger, and the actual stress of the balancing piston is larger.
  • the two cooling channels of the present invention are different; there is no need to provide a steam seal section and a sealing cavity between the inclined stator and the balance piston.
  • the diameter of the balance piston is small, the diameter of the cylinder can be further reduced, and the structure of the rotor and the cylinder is simple and effectively reduced. Cylinder cost.
  • the temperature of the rotor is slightly higher than that of the prior art, but the strength can still meet the requirements.
  • This approach can achieve a balance between cost and safety. Under the condition that the strength and safety are qualified, the cooling circuit is simplified to achieve the purpose of reducing the diameter of the rotor, reducing the cost, and simplifying the structure of the cylinder.
  • the strength margin of the rotor balance piston part is smaller. Therefore, the shape of the rotor balance piston can be further optimized to reduce stress concentration and ensure qualified strength.
  • flow field analysis, strength calculation, cooling air volume optimization, efficiency calculation, etc. can also be performed.
  • the present invention can also utilize the achievements of the latest material technology: the current rotor material required for the 600-degree steam inlet parameter is the 600-degree grade X12CrMoWVNbN10 material.
  • the current rotor material required for the 600-degree steam inlet parameter is the 600-degree grade X12CrMoWVNbN10 material.
  • 625-degree FB2 materials have appeared. This material has better performance than the raw material under the steam inlet parameter of 600 degrees.
  • the prices of these two materials are basically the same. Therefore, thanks to the advancement of material technology, the present invention can be realized not only by means of raw materials and reducing the strength margin, but also by using new materials, which can reduce the diameter of the rotor and reduce the cost without reducing the safety margin.
  • the arrangement of the cooling channels can be further adjusted to provide more options for parameter optimization: one way is to connect the first chamber on the top of the balance piston from a vane stage through the channel of the inner cylinder; the other way is After the second blade stage is communicated from the second chamber through the interlayer channel.
  • the cylinder in the present invention mainly refers to a barrel-shaped cylinder, that is, the outer cylinder has a round barrel-shaped full-circle structure, has no mid-division surface, and is not a structure with upper and lower halves.
  • Fig. 1 is a schematic view of the structure of a steam turbine without an internal cooling flow channel in the prior art
  • Fig. 2 is a schematic view of the structure of a steam turbine with two cooling channels in the prior art.
  • FIG. 3 is a schematic view of the structure of the first embodiment of the present invention when there is an inclined stationary blade.
  • FIG. 4 is a schematic structural view of the first embodiment of the present invention when there is no inclined stationary blade.
  • FIG. 5 is a schematic structural view of the second embodiment of the present invention when there are inclined stationary blades.
  • FIG. 6 is a schematic structural view of the second embodiment of the present invention when there is no inclined stationary blade.
  • the steam turbine is provided with an outer cylinder 110 and an inner cylinder 120.
  • a rotor 130 with a balance piston 140 is rotatably installed inside the inner cylinder 120.
  • a flow channel of a medium (such as steam) is formed between the inner cylinder 120 and the rotor 130, which is basically arranged along the axial direction of the rotor 130.
  • the flow channels are alternately arranged with moving blades 150 of the rotor 130 and stationary blades 160 of the inner cylinder 120 to form a multi-stage blade stage group.
  • Fresh steam is sent into the steam inlet chamber 170 through a fresh steam input channel (not shown) provided in the inner cylinder 120 and the outer cylinder 110, thereby entering the flow channel and circling downstream the blade stage groups at various levels, along with the fresh steam
  • a fresh steam input channel (not shown) provided in the inner cylinder 120 and the outer cylinder 110, thereby entering the flow channel and circling downstream the blade stage groups at various levels, along with the fresh steam
  • the expansion and cooling of the system releases thermal energy to drive the rotor 130 to rotate.
  • the first channel is provided to allow steam to pass through the first communication tube in the inner cylinder 120 at the flow channel 181 after passing through one of the blade stages (referred to as the first blade stage group) of the flow channel 182 flows into the interlayer 183 between the inner cylinder 120 and the outer cylinder 110, and from there passes through the second communication tube 184 in the inner cylinder 120 and flows into the first chamber 180 on the top of the balancing piston 140.
  • the first blade stage group one of the blade stages of the flow channel 182 flows into the interlayer 183 between the inner cylinder 120 and the outer cylinder 110, and from there passes through the second communication tube 184 in the inner cylinder 120 and flows into the first chamber 180 on the top of the balancing piston 140.
  • a second chamber 190 is also provided on the top of the balance piston 140.
  • the second chamber 190 is close to the steam inlet chamber 170, and the first chamber 180 is away from the steam inlet chamber 170. Both have spaced positions in the axial direction relationship.
  • the steam flows from the second chamber 190 through the second channel provided in the inner cylinder 120 into the flow channel 194 after another vane stage (referred to as a second vane stage group) in the flow channel.
  • the first chamber 180 and the second chamber 190 may be a space structure of any shape, each of which is formed at the inner cylinder 120 (or in some examples, it may also be formed at the balance piston 140, or by (The shape of the inner cylinder 120 and the balance piston 140 at each interface is determined).
  • the first communication tube 182 extends upward in the direction of the substantially vertical axis in the inner cylinder 120 until it reaches the interlayer 183 between the inner cylinder 120 and the outer cylinder 110 that is substantially parallel to the axis, and leads out from the interlayer 183
  • the second communication tube 184 extends downward in the direction of the substantially vertical axis in the inner cylinder 120 until the first chamber 180 is connected.
  • the illustrated second channel is turned twice in the inner cylinder 120.
  • the first pipe section 191 leading from the second chamber 190 extends upward in a direction substantially perpendicular to the axis, and the second pipe section 192 after the first turn extends substantially parallel to the axis, and the The third pipe section 193 then extends downward in the direction of the substantially vertical axis to the flow channel 194 after accessing the second blade stage group.
  • a supplemental steam pipe 100 which is connected to the inner cylinder 120 through the outer cylinder 110 is provided, and communicates with the second channel, for example, the third pipe section 193 after the second turn, or the inner cylinder 120
  • the supplemental steam cavity (not shown in the figure) near the third pipe section 193, and then the introduced supplemental steam (schematically represented by the dot-and-dash arrows) is delivered to the flow channel 194 behind the second blade stage .
  • the second blade stage group corresponding to the second chamber 190 in the flow channel is downstream of the first blade stage group corresponding to the first chamber 180, and the two may be separated by one or more stages (for example, two stages ) Blade group.
  • the first blade stage group is, for example, the fourth blade stage or the fifth blade stage.
  • the example balance piston 140 may be a single diameter piston.
  • the inner cylinder 120 is provided with an inclined stationary vane 171 at the inlet steam chamber 170 before the balancing piston 140, that is, the pressure in front of the balancing piston 140 corresponds to the inclined stationary vane 171.
  • the inclined vanes 171 may not allow the steam to directly contact the rotor 130, which can reduce the temperature of the rotor 130 to a small extent, which is beneficial to the strength of the rotor 130, or can slightly increase the inlet steam parameters.
  • the inlet steam is 600 degrees Celsius, 27Mpa; the inclined blade 171 is 594 degrees Celsius, 26.3MPa; the fourth stage blade is 540 degrees Celsius, 18MPa; the fifth stage blade is 525 degrees Celsius, 16.5MPa; the exhaust steam is 6.5 MPa.
  • the basic structure of the stationary blade 260 and the like is the same as that of the first embodiment.
  • the main difference lies in the arrangement of the first channel, the second channel and the steam supplement structure in this embodiment.
  • the first channel of this embodiment is entirely opened inside the inner cylinder 220, its input end communicates with the flow channel 281 behind the first blade stage group in the flow channel arranged along the axial direction of the rotor 230, and the output end is connected to the One chamber 280 is in communication.
  • steam is introduced into the interlayer 292 between the inner cylinder 220 and the outer cylinder 210 through the first communication tube 291 from the second chamber 290 on the top of the balance piston 240, and then through the first The two communication tubes 293 are delivered to the flow channel 294 behind the second blade stage group in the flow channel.
  • the second chamber 290 is close to the steam inlet chamber 270, and the first chamber 280 is far away from the steam inlet chamber 270.
  • the two have a front-rear spatial positional relationship in the axial direction.
  • the second blade stage group corresponding to the second chamber 290 is downstream of the first blade stage group corresponding to the first chamber 280, and the two may be separated by one or more stages (for example, two stages) of blade groups.
  • the first blade stage group is, for example, a fourth blade stage or a fifth blade stage.
  • the illustrated first channel is turned twice in the inner cylinder 220.
  • the first pipe section 282 leading from the flow path behind the second blade stage group extends upward in a direction substantially perpendicular to the axis
  • the second pipe section 283 after the first turn extends in a direction substantially parallel to the axis, passing the first After the second turn
  • the third pipe section 284 extends downward in a direction substantially perpendicular to the first chamber 280.
  • the first communication tube 291 leading from the second chamber 290 extends upward in the direction of the substantially vertical axis in the inner cylinder 220 until it is inserted between the inner cylinder 220 and the outer cylinder 210 and is substantially parallel to the axis
  • the front section of the mezzanine 292 of the interlayer then leads a second communication pipe 293 from somewhere in the back section of the interlayer 292, the second communication pipe 293 extends downward in the direction of the substantially vertical axis in the inner cylinder 220 until the first blade stage is connected There are 294 runners after the group.
  • the example balance piston 240 may be a single diameter piston.
  • the inner cylinder 220 is provided with an inclined stationary vane 271 at the inlet steam chamber 270 before the balancing piston 240, that is, the pressure in front of the balancing piston 240 corresponds to the inclined stationary vane 271. After the pressure.
  • there is no inclined vane in front of the balancing piston 240 that is, the pressure in front of the balancing piston 240 corresponds to the inlet steam pressure.
  • the supplemental steam pipe 200 in this embodiment after passing through the outer cylinder 210, is connected to the interlayer 292 between the inner cylinder 220 and the outer cylinder 210 to introduce the supplemental steam and the steam entering the interlayer 292 from the second chamber 290 mixing.
  • the access position of the steam supplement pipe 200 in the interlayer area is not limited, and it can move back and forth along the axial direction.
  • a supplemental cavity surrounding the outside of the inner cylinder 220 may be opened in the interlayer area between the inner cylinder 220 and the outer cylinder 210.
  • the steam supplementing cavity may be a spatial structure of any shape, which is defined by the shape of the cylinder block where the outer cylinder 210 and the inner cylinder 220 are located.
  • the steam supplement chamber is, for example, a ring chamber.
  • the present invention provides a steam turbine and its internal cooling method, which is provided with two cooling channels inside, which respectively connect the first chamber and the second chamber on the top of the balancing piston to their corresponding blade stages
  • the flow channel of the simplifies the cooling circuit under the condition that the strength and safety are qualified, so as to reduce the diameter of the rotor, reduce the cost, and simplify the structure of the cylinder.

Abstract

一种汽轮机包含外缸(110)和内缸(120),一个有平衡活塞(140)的转子(130)旋转支承地装在所述内缸(120)的内部,所述内缸(120)与转子(130)之间形成有蒸汽的流动通道,交替地布置转子(130)的多个动叶片(150)和内缸(120)的多个静叶片(160)形成多级叶片级组,内缸(120)和外缸(110)之间形成有供蒸汽流通的夹层;多级叶片级组包含第一设定叶片级组和第二设定叶片级组;平衡活塞(140)的顶部设有第一腔室(180)、第二腔室(190);通过内缸(120)内设置的第一通道,将第一设定叶片级组之后的流道与第一腔室(180)连通;通过第二通道,将第二腔室(190)与夹层连通,并将夹层与第二设定叶片级组之后的流道连通。还公开了一种汽轮机内冷却方法。通过优化冷却路径,简化平衡活塞前的密封结构,减小转子直径及汽缸直径,有效简化汽缸结构,降低成本。

Description

一种汽轮机及其内冷却方法 技术领域
本发明涉及一种汽轮机及其内冷却方法。
背景技术
汽轮机是一种旋转式蒸汽动力装置,通常包括配有叶片的、可转动地支承的转子,该转子布置在壳体套内部。在经过加热的且处于压力之下的蒸汽流经由所述壳体套形成的流动空间时,所述蒸汽通过叶片将所述转子置于旋转之中。
出于效率的原因,汽轮机的运行参数(如蒸汽的压力及温度)越来越高,受强度和材料限制,为了使汽轮机在特别高的温度下仍能够可靠运行,需要对汽轮机的各构件进行冷却。因为这些构件的耐热强度都是有限的。若在温度提高时不能获得有效的冷却,则需要用非常昂贵的材料(例如镍基合金)来制造。
按迄今已知的尤其用于形式上为汽轮机汽缸或转子的汽轮机构件的冷却方法,可分为主动冷却和被动冷却。按主动冷却,冷却通过一种独立于汽轮机构件,亦即除工质之外附加输入冷却剂的方式实现。反之,被动冷却仅通过恰当导引或利用工质进行。迄今汽轮机构件优选使用被动冷却。
如图1所示,根据“火力发电厂设备手册-第二卷--汽轮机.机械工业出版社.1999”的记载,经典的平衡活塞前的压力为进汽压力,平衡活塞后的压力为排汽压力,平衡活塞前后压差大。这种汽轮机没有内部冷却流道,进汽直接进入内外缸夹层,夹层承受很大的温度和压力,因此汽缸的进汽温度需要限制在566℃以下,典型的有550℃、538℃进汽。
专利CN 200580033477.9公开了一种汽轮机,设有两道冷却通道,内外缸夹层和转子平衡活塞都能被有效地冷却,从而支撑更高的进汽温度,典型的为600℃进汽。具体参见图2所示,所述汽轮机包括一个外缸2和一个内缸3,所述外缸2和内缸3形成有一个新汽输入通道10,一个具有 一推力平衡活塞4并包括多个动叶片7的转子5旋转支承地装在内缸3的内部,在内缸3上以这样的方式设置多个静叶片8,沿流动方向11构成一个包括多个叶片级的蒸汽的流动通道9;蒸汽在一个叶片级后经过一个处于内缸3内的反馈通道14流入内缸3与外缸2之间的一腔室15内,从那里经过一个处于内缸3内的输入通道16流入一个沿轴向17设在推力平衡活塞4与内缸3之间的推力平衡活塞前室12内;通过推力平衡活塞前室12内的蒸汽达到推力平衡。
用箭头13象征性地表示新汽输入;流入新汽输入通道10的新蒸汽绝大部分沿流动方向流入流动通道9,较小的部分作为漏汽流入一个处于转子5与内缸3之间的密封腔18。在这里,漏汽基本上沿反方向19流动。所述该密封腔18位于斜置静叶与推力平衡活塞4之间。斜置静叶通常是非竖直的第1级静叶,目的是不让蒸汽直接接触转子,能够小幅度降低转子的温度,从而有利于转子的强度,或者可以小幅度提高进汽参数。
在密封腔18中的蒸汽,经过内缸3设置的一交叉反馈通道20流入一个设在一个叶片级后的流入腔26内,标记21、22表示交叉反馈通道20的两次转向;同时,补汽经过一个穿过外缸2与内缸3的负荷引入管23流入所述流入腔26内。所述反馈通道14在一个反馈叶片级24后与所述流动通道9连接,所述交叉反馈通道20在一个交叉反馈叶片级25后与所述流动通道9连接,所述交叉反馈叶片级25沿流动通道9的流动方向11设在所述反馈叶片级24之后。
上述汽轮机的缺点在于:
1)转子平衡活塞的直径较大,导致转子锻件采购的成本较大。因为该方案中平衡活塞前室12的压力为第4叶片级或第5叶片级后的压力,为大压力,平衡活塞后为排汽压力,为小压力,平衡活塞前后的压差较小,为此需使用直径较大的平衡活塞来平衡叶片区的推力。
2)转子平衡活塞前设置有汽封段,并形成斜置静叶后与平衡活塞之间的密封腔,用于隔开斜置静叶后和平衡活塞前室的不同参数的蒸汽,因此汽缸和转子的结构较为复杂。
发明的公开
本发明提供一种汽轮机及其内冷却方法,通过优化汽缸的冷却路径, 简化平衡活塞前的密封结构,减小转子直径,降低转子成本,也有利于减少汽缸直径;同时能够简化汽缸结构。
为了达到上述目的,本发明的一个技术方案是提供一种汽轮机,包含外缸和内缸,一个有平衡活塞的转子旋转支承地装在所述内缸的内部,所述内缸与转子之间形成有蒸汽的流动通道,其中交替地布置转子的多个动叶片和内缸的多个静叶片形成多级叶片级组,所述内缸和外缸之间形成有供蒸汽流通的夹层;
所述多级叶片级组包含第一设定叶片级组和第二设定叶片级组;所述平衡活塞的顶部设有第一腔室、第二腔室;
通过内缸内设置的第一通道,将所述第一设定叶片级组之后的流道与所述第一腔室连通;通过第二通道,将所述第二腔室与所述夹层连通,并将所述夹层与所述第二设定叶片级组之后的流道连通。
可选地,将第一通道和第二通道的布局结构替换为:通过第一通道,将所述第一设定叶片级组之后的流道与所述夹层连通,并将所述夹层与所述第一腔室连通;通过内缸内设置的第二通道,将所述第二腔室与所述第二设定叶片级组之后的流道连通;并且,所述平衡活塞上对应于第一腔室的活塞部位,与对应于第二腔室的活塞部位,具有相同的直径。
可选地,新鲜蒸汽通过内缸和外缸具有的一个新汽输入通道送入进汽腔;
所述第二腔室靠近进汽腔,所述第一腔室远离进汽腔,两者在转子的轴线方向上前后布置。
可选地,所述内缸中位于平衡活塞前的进汽腔处设有斜置静叶,所述平衡活塞前的压力对应于斜置静叶后的压力;或者,所述进汽腔处没有斜置静叶,所述平衡活塞前的压力对应于进汽压力。
可选地,设置有穿过外缸并插入内缸的补汽管,其与所述第二通道连通,或与所述内缸中靠近于第二通道的补汽腔连通,来引入补汽。
可选地,设置有穿过外缸的补汽管,其与内缸和外缸之间的所述夹层连通,或与形成在所述夹层处的补汽腔连通,来引入补汽。
可选地,所述平衡活塞是单一直径的活塞。
可选地,所述第二设定叶片级组在流动通道中处于第一设定叶片级组的下游,与第一设定叶片级组间隔一个或多个叶片级;所述第一设定叶片 级组对应流动通道中的第四叶片级或第五叶片级。
可选地,所述转子使用X12CrMoWVNbN10材料或FB2材料制成。
本发明的另一技术方案是提供一种汽轮机的内冷却方法,使用上述任意一项汽轮机;所述汽轮机的内缸和外缸具有一个新汽输入通道,将新鲜蒸汽送入内缸内部的进汽腔,新鲜蒸汽从进汽腔出发进入内缸和转子之间的流动通道,并绕流各级叶片级组进行膨胀及冷却,以释放热能来带动转子旋转;
通过内缸内的第一通道,使蒸汽得以从多级叶片级组中的第一指定叶片级组之后的流道,输送到平衡活塞顶部的第一腔室;以及,通过第二通道,使蒸汽得以从平衡活塞顶部的第二腔室,输送到内缸和外缸之间的夹层,再从所述夹层输送到第二指定叶片级组之后的流道处继续做功;
或者,通过第一通道,使蒸汽得以从多级叶片级组中的第一指定叶片级组之后的流道,输送到内缸和外缸之间的夹层,再从所述夹层输送到平衡活塞顶部的第一腔室;以及,通过内缸内的第二通道,使蒸汽得以从平衡活塞顶部的第二腔室,输送到第二指定叶片级组之后的流道处继续做功;
其中,所述平衡活塞前的压力,对应于斜置静叶后的压力,或对应于进汽压力。
现有技术的汽轮机方案中,第一路冷却通道是将第四或第五叶片级后的流道与推力平衡活塞前室连通,第二路冷却通道则是将第一级静叶后与推力平衡活塞之间的密封腔连通至下一个叶片级之后。即,转子的推力平衡活塞前设置有汽封段,用于隔开第1级静叶后和平衡活塞前室的不同参数的蒸汽;夹层冷却汽通入到推力平衡活塞前,推力平衡活塞的温度低,而该推力平衡活塞前后的压差较小,导致其直径较大,转子锻件采购的成本高。
与之相比,本发明中的方案对两路冷却路径进行了调整。如在实施例一中,平衡活塞顶部通过设置远离进汽腔的第一腔室和靠近进汽腔的第二腔室分为三段,从一个叶片级后接入内外缸之间的夹层再连通第一腔室,第二腔室则连通到下一个叶片级之后。平衡活塞前为斜置静叶后蒸汽(或在无斜置静叶时为进汽),不是冷却汽。同时,斜置静叶后与平衡活塞之间相通,平衡活塞前没有汽封段。由于平衡活塞前的压力明显大于现有方 案,故本发明中的差压大,需要的平衡活塞的受力面积就小,因此平衡活塞直径小,从而有效降低转子成本。
现有技术的方案中,平衡活塞前压力18MPa,压差18-6.5MPa=11.5MPa。平衡活塞直径1045mm。强度余量(实际应力/许用应力)=0.65。而本发明中,平衡活塞前压力26.3MPa,压差26.3-6.5MPa=19.8MPa。平衡活塞直径975mm。强度余量(实际应力/许用应力)=0.75。
现有技术的方案通过冷却,降低了转子温度,实际上提高了许用应力,带来的缺点是压差小,平衡活塞直径变大,平衡活塞实际应力大。本发明的两路冷却通道不同;无需在斜置静叶后与平衡活塞之间设置汽封段和密封腔,平衡活塞直径小,能够进一步减少汽缸直径,并且使转子和汽缸结构简单,有效降低汽缸成本。
然而,本发明由于平衡活塞前为斜置静叶后蒸汽或进汽,不是冷却汽,所以转子温度较现有技术的方案稍高,但强度仍然能满足要求。这种方式能够实现成本和安全性的平衡。在保证强度及安全性合格的情况下,简化冷却的回路,达到减少转子直径,降低成本,简化汽缸结构的目的。
由于本发明的冷却效果稍弱,转子平衡活塞部位强度余量较小。因此可以进一步对转子平衡活塞部位的形线进行优化,减少应力集中,保证强度合格。同时,为了提升本发明的冷却效果,还可以进行流场分析、强度计算、冷却气量优化、效率计算等等。
此外,本发明还可以利用最新材料技术的成果:目前600度进汽参数所需采用的转子材料为600度等级的X12CrMoWVNbN10材料。近年来,由于材料技术的进步,出现了625度等级的FB2材料。这种材料在600度进汽参数下,比原材料性能好。同时这两种材料价格基本一致。因此得益于材料技术的进步,本发明不仅可以采用原材料,降低强度余量的手段实现,而且可以采用新材料,不降低安全余量即可实现降低转子直径,达到降低成本的目的。
本发明的另一实施例还可以进一步调整冷却通道的布置,为参数优化提供了更多的选择:一路是从一个叶片级后利用内缸的通道连接平衡活塞顶部第一腔室;另一路是从第二腔室利用夹层通道连通下一个叶片级后。
同时,可以不将补汽腔开设在内缸内部,而是利用内外缸之间的夹层 进行补汽混合,因此不需要设置插到内缸的补汽插管,使得补气的空间位置选择更加灵活(可以在夹层区域轴向前后移动)。同时有利于内缸强度。
此外,本发明所述汽缸主要是指桶形缸,即外缸为圆桶形的整圈结构,没有中分面,不是上下两半的结构。
附图的简要说明
图1是现有技术中没有内部冷却流道的汽轮机结构示意图
图2是现有技术中有两路冷却通道的汽轮机结构示意图。
图3是本发明实施例一中有斜置静叶时的结构示意图。
图4是本发明实施例一中没有斜置静叶时的结构示意图。
图5是本发明实施例二中有斜置静叶时的结构示意图。
图6是本发明实施例二中没有斜置静叶时的结构示意图。
实现本发明的最佳方式
以下将结合附图,说明本发明的多个具体实施方式。
实施例一
如图1所示,所述汽轮机设有外缸110和内缸120,一个有平衡活塞140的转子130旋转支承地装在内缸120的内部。所述内缸120与转子130之间形成有介质(如蒸汽)的流动通道,其基本上沿转子130的轴向布置。所述流动通道交替地布置有转子130的动叶片150和内缸120的静叶片160,形成多级叶片级组。新鲜蒸汽通过内缸120和外缸110具有的一个新汽输入通道(图未示出)送入进汽腔170,由此进入流动通道并在下游绕流各级叶片级组,随着新鲜蒸汽的膨胀及冷却,释放热能以带动转子130旋转。
本实施例通过设置的第一通道,使蒸汽在流经所述流动通道的其中一个叶片级(称第一叶片级组)后的流道181处,通过处于内缸120内的第一连通管182流入内缸120与外缸110之间的夹层183内,再从那里经过处于内缸120内的第二连通管184,流入平衡活塞140顶部的第一腔室180内。
本实施例还在平衡活塞140顶部设有第二腔室190,第二腔室190靠近进汽腔170,第一腔室180远离进汽腔170,两者在轴线方向上有前后 的空间位置关系。蒸汽从所述第二腔室190,通过内缸120内设置的第二通道,流入所述流动通道中另一个叶片级(称第二叶片级组)后的流道194处。
所述的第一腔室180、第二腔室190,可以是任意形状的空间结构,其各自形成在内缸120处(或者在某些示例中,也可以形成在平衡活塞140处,或者由内缸120和平衡活塞140各自在两者界面处的形状来确定)。
示例的第一通道中,第一连通管182在内缸120内以基本垂直轴线的方向向上延伸,直至接入内缸120与外缸110之间基本平行于轴线的夹层183,自夹层183引出的第二连通管184再在内缸120内以基本垂直轴线的方向向下延伸直至接通第一腔室180。
示例的第二通道在内缸120内经过两次转向。其中,自第二腔室190引出的第一管段191以基本垂直轴线的方向向上延伸,经第一次转向后的第二管段192以基本平行于轴线的方向延伸,经第二次转向后的第三管段193再以基本垂直轴线的方向向下延伸至接入所述第二叶片级组后的流道194处。
同时,设置有穿过外缸110接入内缸120的补汽管100,其连通至所述第二通道,例如是连通第二次转向后的第三管段193,或连通内缸120内设置在第三管段193附近的补汽腔(图未示出),进而将引入的补汽(以点划线的箭头示意性地表示)输送至所述第二叶片级组后的流道194处。
所述流动通道中与第二腔室190对应的第二叶片级组,处在与第一腔室180对应的第一叶片级组的下游,两者可以间隔一级或多级(例如两级)叶片组。其中,第一叶片级组例如是第四叶片级或第五叶片级。
示例的平衡活塞140可以是单一直径的活塞。
图3的这一个示例中,所述内缸120中对应平衡活塞140前的进汽腔170处设有斜置静叶171,即所述平衡活塞140前的压力,对应于斜置静叶171后的压力。所述斜置静叶171可以不让蒸汽直接接触转子130,能够小幅度降低转子130的温度,从而有利于转子130的强度,或者可以小幅度提高进汽参数。
示例地,进汽为600摄氏度,27Mpa;斜置静叶171后为594摄氏度,26.3MPa;第四级叶片后为540摄氏度,18MPa;第五级叶片后为525摄氏度,16.5MPa;排汽6.5MPa。
如图4所示的另一个示例中,所述平衡活塞140前没有斜置静叶,即所述平衡活塞140前的压力对应于进汽压力。
实施例二
如图5所示,本实施例的汽轮机中,外缸210、内缸220、转子230、平衡活塞240、第一腔室280、第二腔室290、多级叶片级组的动叶片250及静叶片260等处的基本结构,与实施例一相同。主要的区别在于,本实施例的第一通道、第二通道及补汽结构的布置形式。
本实施例的第一通道整体开设在内缸220内部,其输入端与沿转子230轴向布置的流动通道中第一叶片级组后的流道281连通,输出端与平衡活塞240顶部的第一腔室280连通。通过本实施例的第二通道,使蒸汽从平衡活塞240顶部的第二腔室290,经过第一连通管291引入内缸220与外缸210之间的夹层292,再通过连接夹层292的第二连通管293输送到流动通道中第二叶片级组后的流道294处。
其中,第二腔室290靠近进汽腔270,第一腔室280远离进汽腔270,两者在轴线方向上有前后的空间位置关系。与第二腔室290对应的第二叶片级组,处在与第一腔室280对应的第一叶片级组的下游,两者可以间隔一级或多级(例如两级)叶片组。第一叶片级组例如是第四叶片级或第五叶片级。
示例的第一通道在内缸220内经过两次转向。其中,自第二叶片级组后的流道处引出的第一管段282以基本垂直轴线的方向向上延伸,经第一次转向后的第二管段283以基本平行于轴线的方向延伸,经第二次转向后的第三管段284再以基本垂直轴线的方向向下延伸至接入第一腔室280。
示例的第二通道中,从第二腔室290引出的第一连通管291在内缸220内以基本垂直轴线的方向向上延伸,直至接入内缸220与外缸210之间基本平行于轴线的夹层292的前段,再从夹层292后段的某处引出第二连通管293,所述第二连通管293在内缸220内以基本垂直轴线的方向向下延伸直至接通第一叶片级组后的流道294处。
示例的平衡活塞240可以是单一直径的活塞。
图5的这一个示例中,所述内缸220中对应平衡活塞240前的进汽腔270处设有斜置静叶271,即所述平衡活塞240前的压力,对应于斜置静叶271后的压力。如图6所示的另一个示例中,所述平衡活塞240前没有 斜置静叶,即所述平衡活塞240前的压力对应于进汽压力。
本实施例中的补汽管200,在穿过外缸210后接入内缸220与外缸210之间的夹层292,将补汽引入并与从第二腔室290进入该夹层292的蒸汽混合。补汽管200在夹层区域的接入位置不限,可以沿轴向前后移动。
示例地,可以在内缸220与外缸210之间的夹层区域,开设环绕内缸220外侧的补汽腔。所述补汽腔可以是任意形状的空间结构,由外缸210和内缸220各自在该处的缸体形状界定。所述补汽腔,例如是一种环状腔室。
综上所述,本发明提供一种汽轮机及其内冷却方法,内部设置有两路冷却通道,分别将平衡活塞顶部的第一腔室和第二腔室,连通至其各自对应的叶片级之后的流动通道,从而在保证强度及安全性合格的情况下,简化冷却回路,达到减少转子直径,降低成本,简化汽缸结构的目的。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (10)

  1. 一种汽轮机,包含外缸和内缸,一个有平衡活塞的转子旋转支承地装在所述内缸的内部,所述内缸与转子之间形成有蒸汽的流动通道,其中交替地布置转子的多个动叶片和内缸的多个静叶片形成多级叶片级组,所述内缸和外缸之间形成有供蒸汽流通的夹层,其特征在于,
    所述多级叶片级组包含第一设定叶片级组和第二设定叶片级组;所述平衡活塞的顶部设有第一腔室、第二腔室;
    通过内缸内设置的第一通道,将所述第一设定叶片级组之后的流道与所述第一腔室连通;通过第二通道,将所述第二腔室与所述夹层连通,并将所述夹层与所述第二设定叶片级组之后的流道连通。
  2. 如权利要求1所述的汽轮机,其特征在于,
    将权利要求1中的第一通道和第二通道的布局结构替换为:
    通过第一通道,将所述第一设定叶片级组之后的流道与所述夹层连通,并将所述夹层与所述第一腔室连通;通过内缸内设置的第二通道,将所述第二腔室与所述第二设定叶片级组之后的流道连通;
    并且,所述平衡活塞上对应于第一腔室的活塞部位,与对应于第二腔室的活塞部位,具有相同的直径。
  3. 如权利要求1或2所述的汽轮机,其特征在于,
    新鲜蒸汽通过内缸和外缸具有的一个新汽输入通道送入进汽腔;
    所述第二腔室靠近进汽腔,所述第一腔室远离进汽腔,两者在转子的轴线方向上前后布置。
  4. 如权利要求3所述的汽轮机,其特征在于,
    所述内缸中位于平衡活塞前的进汽腔处设有斜置静叶,所述平衡活塞前的压力对应于斜置静叶后的压力;
    或者,所述进汽腔处没有斜置静叶,所述平衡活塞前的压力对应于进汽压力。
  5. 如权利要求2所述的汽轮机,其特征在于,
    设置有穿过外缸并插入内缸的补汽管,其与所述第二通道连通,或与所述内缸中靠近于第二通道的补汽腔连通,来引入补汽。
  6. 如权利要求1所述的汽轮机,其特征在于,
    设置有穿过外缸的补汽管,其与内缸和外缸之间的所述夹层连通,或与形成在所述夹层处的补汽腔连通,来引入补汽。
  7. 如权利要求4所述的汽轮机,其特征在于,
    所述平衡活塞是单一直径的活塞。
  8. 如权利要求4所述的汽轮机,其特征在于,
    所述第二设定叶片级组在流动通道中处于第一设定叶片级组的下游,与第一设定叶片级组间隔一个或多个叶片级;
    所述第一设定叶片级组对应流动通道中的第四叶片级或第五叶片级。
  9. 如权利要求1或2所述的汽轮机,其特征在于,
    所述转子使用X12CrMoWVNbN10材料或FB2材料制成。
  10. 一种汽轮机的内冷却方法,使用权利要求1-9中任意一项所述的汽轮机,其特征在于,
    汽轮机的内缸和外缸具有一个新汽输入通道,将新鲜蒸汽送入内缸内部的进汽腔,新鲜蒸汽从进汽腔出发进入内缸和转子之间的流动通道,并绕流各级叶片级组进行膨胀及冷却,以释放热能来带动转子旋转;
    通过内缸内的第一通道,使蒸汽得以从多级叶片级组中的第一指定叶片级组之后的流道,输送到平衡活塞顶部的第一腔室;以及,通过第二通道,使蒸汽得以从平衡活塞顶部的第二腔室,输送到内缸和外缸之间的夹层,再从所述夹层输送到第二指定叶片级组之后的流道处 继续做功;
    或者,通过第一通道,使蒸汽得以从多级叶片级组中的第一指定叶片级组之后的流道,输送到内缸和外缸之间的夹层,再从所述夹层输送到平衡活塞顶部的第一腔室;以及,通过内缸内的第二通道,使蒸汽得以从平衡活塞顶部的第二腔室,输送到第二指定叶片级组之后的流道处继续做功;
    其中,所述平衡活塞前的压力,对应于斜置静叶后的压力,或对应于进汽压力。
PCT/CN2019/081018 2018-11-06 2019-04-02 一种汽轮机及其内冷却方法 WO2020093649A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19883162.0A EP3879078A4 (en) 2018-11-06 2019-04-02 STEAM TURBINE AND ITS INTERNAL COOLING PROCESS
US17/288,387 US11746674B2 (en) 2018-11-06 2019-04-02 Steam turbine and method for internally cooling the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811313083.4 2018-11-06
CN201811313083.4A CN109162772B (zh) 2018-11-06 2018-11-06 一种汽轮机及其内冷却方法

Publications (1)

Publication Number Publication Date
WO2020093649A1 true WO2020093649A1 (zh) 2020-05-14

Family

ID=64875811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081018 WO2020093649A1 (zh) 2018-11-06 2019-04-02 一种汽轮机及其内冷却方法

Country Status (4)

Country Link
US (1) US11746674B2 (zh)
EP (1) EP3879078A4 (zh)
CN (1) CN109162772B (zh)
WO (1) WO2020093649A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109162772B (zh) * 2018-11-06 2024-03-19 上海电气电站设备有限公司 一种汽轮机及其内冷却方法
CN109184823B (zh) * 2018-11-06 2024-03-19 上海电气电站设备有限公司 一种具有补汽结构的汽轮机及其运行方法
CN109736905A (zh) * 2019-03-21 2019-05-10 上海电气电站设备有限公司 汽轮机多级汽缸间联合冷却系统
CN114458615B (zh) * 2021-12-14 2023-11-21 泸州懋威科技有限公司 一种紧凑式涡轮发动机压气机承力结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2796231A (en) * 1954-03-24 1957-06-18 Westinghouse Electric Corp High pressure steam turbine casing structure
CN101052782A (zh) * 2004-08-02 2007-10-10 西门子公司 汽轮机和汽轮机运行方法
CN108204253A (zh) * 2016-12-20 2018-06-26 上海电气电站设备有限公司 汽轮机用的汽缸
CN109162772A (zh) * 2018-11-06 2019-01-08 上海电气电站设备有限公司 一种汽轮机及其内冷却方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780376A1 (de) * 2005-10-31 2007-05-02 Siemens Aktiengesellschaft Dampfturbine
EP2410128A1 (de) * 2010-07-21 2012-01-25 Siemens Aktiengesellschaft Interne Kühlung für eine Strömungsmaschine
EP2554789A1 (de) 2011-08-04 2013-02-06 Siemens Aktiengesellschaft Dampfturbine umfassend einen Schubausgleichskolben
EP3130748A1 (de) 2015-08-14 2017-02-15 Siemens Aktiengesellschaft Rotorkühlung für eine dampfturbine
CN209212320U (zh) * 2018-11-06 2019-08-06 上海电气电站设备有限公司 一种汽轮机
CN109902426B (zh) * 2019-03-12 2020-05-15 上海发电设备成套设计研究院有限责任公司 空冷式高参数汽轮机高中压缸性能与结构设计及监控方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2796231A (en) * 1954-03-24 1957-06-18 Westinghouse Electric Corp High pressure steam turbine casing structure
CN101052782A (zh) * 2004-08-02 2007-10-10 西门子公司 汽轮机和汽轮机运行方法
CN108204253A (zh) * 2016-12-20 2018-06-26 上海电气电站设备有限公司 汽轮机用的汽缸
CN109162772A (zh) * 2018-11-06 2019-01-08 上海电气电站设备有限公司 一种汽轮机及其内冷却方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Steam Turbine", vol. II, 1999, CHINA MACHINE PRESS, article "Thermal Power Plant Equipment Manual"

Also Published As

Publication number Publication date
US20210381394A1 (en) 2021-12-09
CN109162772A (zh) 2019-01-08
EP3879078A4 (en) 2022-08-31
CN109162772B (zh) 2024-03-19
EP3879078A1 (en) 2021-09-15
US11746674B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2020093649A1 (zh) 一种汽轮机及其内冷却方法
JP4662562B2 (ja) 蒸気タービンおよびその運転方法
WO2020093648A1 (zh) 一种具有补汽结构的汽轮机及其运行方法
EP1045114B1 (en) Land based gas turbine cooling system and method of cooling
EP2151547B1 (en) Steam turbine and steam turbine plant system
JP5692966B2 (ja) 蒸気タービン内部の回転部品を冷却するための方法及び装置
JP2008508471A5 (zh)
JP6523970B2 (ja) 遠心コンプレッサ用の内的冷却ダイアフラムの構築方法
JP2000511257A (ja) タービン軸およびタービン軸の冷却方法
JP2013531181A (ja) ターボ機械のための内部冷却装置
CN107923246A (zh) 用于蒸汽轮机的转子冷却
CN209212320U (zh) 一种汽轮机
KR101949058B1 (ko) 증기 터빈 및 증기 터빈 동작 방법
JPH09125909A (ja) 複合サイクル用蒸気タービン
US6019573A (en) Heat recovery type gas turbine
US9085993B2 (en) Cooling method and cooling device for a single-flow turbine
CN209494598U (zh) 一种具有补汽结构的汽轮机
US9267513B2 (en) Method for controlling temperature of a turbine engine compressor and compressor of a turbine engine
US20130323009A1 (en) Methods and apparatus for cooling rotary components within a steam turbine
CN113931705B (zh) 一种透平转子装置及其运行方法
JPH03233140A (ja) ガスタービン動翼冷却用空気通路
JP2021046822A (ja) タービン、および、その製造方法
CN117914075A (zh) 利用介质充当电机夹套冷却水的高压低温立式多级屏蔽泵
CN101772621A (zh) 汽轮机的供汽装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019883162

Country of ref document: EP

Effective date: 20210607