WO2020093276A1 - 增材法快速凝固全等轴晶铝合金铸锭的制备方法及装置 - Google Patents

增材法快速凝固全等轴晶铝合金铸锭的制备方法及装置 Download PDF

Info

Publication number
WO2020093276A1
WO2020093276A1 PCT/CN2018/114387 CN2018114387W WO2020093276A1 WO 2020093276 A1 WO2020093276 A1 WO 2020093276A1 CN 2018114387 W CN2018114387 W CN 2018114387W WO 2020093276 A1 WO2020093276 A1 WO 2020093276A1
Authority
WO
WIPO (PCT)
Prior art keywords
ingot
moving
negative pressure
metal
nozzle
Prior art date
Application number
PCT/CN2018/114387
Other languages
English (en)
French (fr)
Inventor
张佼
孙宝德
东青
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to JP2021506336A priority Critical patent/JP7215698B2/ja
Priority to PCT/CN2018/114387 priority patent/WO2020093276A1/zh
Priority to EP18939460.4A priority patent/EP3851224B1/en
Priority to RU2021114155A priority patent/RU2764250C1/ru
Priority to US17/285,153 priority patent/US11707778B2/en
Publication of WO2020093276A1 publication Critical patent/WO2020093276A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/003Moulding by spraying metal on a surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/15Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/005Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with heating or cooling means
    • B22D41/01Heating means
    • B22D41/015Heating means with external heating, i.e. the heat source not being a part of the ladle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/08Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like for bottom pouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/06Ingot moulds or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/20Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • B22F12/33Platforms or substrates translatory in the deposition plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a technology in the field of metallurgy, in particular to a method and equipment for additive manufacturing of a rapidly solidified melt-equiaxed aluminum alloy ingot.
  • Casting pure aluminum ingots or aluminum alloy ingots by conventional casting methods makes it difficult to obtain all equiaxed crystal structures due to the solidification order. There will always be a certain proportion of columnar crystals in the alloy structure, which is not conducive to obtaining higher alloy properties through the subsequent deformation process.
  • large macroelement segregation is likely to occur from the edge to the core, which seriously affects the quality of the ingot. It is extremely difficult to prepare ingots with full equiaxed crystals and no macro-element segregation using traditional techniques.
  • the method of spray forming can be used to prepare ingots without macro-segregation, but the aluminum ingots prepared by this method have high porosity, less dense structure and serious oxidation.
  • the invention aims at the defects that the prior art equipment and process are more complicated and energy consumption is high, and local segregation is difficult to avoid, and it is difficult to prepare a complete non-segregated ingot from macro to micro, and an additive method is used to quickly solidify fully equiaxed aluminum
  • the method and device for preparing alloy ingots improves the density of alloy ingots by changing the atomizing spray to liquid injection, reducing its oxidation and improving the production efficiency of ingots. Aluminum and its alloy ingots with equiaxed crystal structure and completely eliminating macrosegregation.
  • the invention relates to a preparation device for rapidly solidifying a full-equiaxed aluminum alloy ingot by an additive method, which comprises: a metal heating mechanism cooled by a negative pressure, wherein the metal heating mechanism is located above the negative pressure cooling mechanism and connected to it through a nozzle .
  • the metal heating mechanism includes: a crucible, a filtering device and a nozzle baffle arranged in this order from top to bottom.
  • the exterior of the crucible is sequentially provided with a heater and a heat preservation layer.
  • the outlet end of the nozzle is provided with a nozzle heater for preheating.
  • the diameter of the nozzle is 0.2-10 mm.
  • the negative pressure cooling mechanism includes: a vacuum chamber with an air inlet hole and an exhaust hole, and a three-dimensional moving ingot mechanism provided inside the vacuum chamber.
  • the three-dimensional moving ingot mechanism includes a moving ingot and a two-dimensionally vertically connected
  • the mobile platform is equipped with a water cooling mechanism on the outside of the mobile ingot, and the mobile ingot is driven by a precision motor for accurate displacement up and down.
  • the invention relates to a method for preparing a rapidly solidified fully equiaxed aluminum alloy ingot by an additive method.
  • a heated metal melt By spraying a heated metal melt through a vertical nozzle to the surface of a three-dimensional movable ingot under a negative pressure environment, the metal Instantaneous condensation occurs when the melt contacts the surface of the moving ingot.
  • a horizontal crystalline layer with a thickness of ⁇ is obtained by moving the horizontal plane of the moving ingot, and then the moving ingot is moved downward by a distance of ⁇ and the plane movement is repeated to form a new crystalline layer , Ingots can be obtained after repeated many times in additive mode.
  • the metal melt refers to: heating and melting the metal melt in a crucible, which is obtained after completely melting.
  • the temperature of the molten metal is heated to the melting point and the temperature is kept for 0.5 to 1.5 hours.
  • the metal melt is preferably filtered, and the filtered aluminum liquid is placed in a heat preservation flow tank for 0.5 to 1.5 hours and the temperature is adjusted to be above the melting point of the metal.
  • the negative pressure refers to: less than 1 normal atmospheric pressure; the speed and flow rate of the molten metal spray can be controlled by controlling the pressure difference.
  • the negative pressure is preferably evacuated in a vacuum chamber first, and then filled with an appropriate amount of argon gas so that the air pressure in the vacuum chamber is less than 1 normal atmospheric pressure.
  • the vertical nozzle is preferably preheated, and the preheating temperature is higher than the melting point of the metal.
  • the distance between the moving ingot and the nozzle outlet that is, the spray distance D1 ⁇ 50cm.
  • the vertical distance D2 of the moving ingot and the cooling surface is ⁇ 10cm.
  • the moving speed v 1 of the horizontal plane motion of the moving ingot is ⁇ 1000 mm / s, and the pass distance d ⁇ 20 mm / pass.
  • the moving ingot is made of but not limited to aluminum ingot.
  • Figure 1 is a schematic diagram of the structure of the device of the present invention.
  • Figure 2 is a top view of the contact surface and the cooling surface
  • Figure 3 is a plan view of the ingot
  • Example 4 is the grain structure prepared in Example 1 and the pure aluminum grain structure obtained in the ordinary casting method in FIG. 5;
  • Example 6 is the grain structure prepared in Example 2 and the aluminum-silicon alloy structure obtained by the ordinary casting method in FIG. 7;
  • the preparation method of the additive method for rapidly solidifying a full-equiaxed aluminum alloy ingot includes: a crucible 1, a heater 2, a heat shield 3, a filtering device 4, and a nozzle 5 , Nozzle baffle 6, nozzle heater 7, vacuum chamber 8, ingot device 9, two-dimensional mobile platform 10, motor 11, intake hole 12, exhaust hole 13, vacuum pump 14, connecting rod 15, sleeve 16, Cooling medium 17, moving ingot 18 and down-drawing device 19.
  • the above device is used. After pouring the molten pure aluminum melt into the crucible, it stays for 0.5 to 1.5 hours and adjusts the temperature to 715 ° C. Evacuate the vacuum chamber, fill with appropriate amount of argon, make the air pressure in the vacuum chamber 0.5 atm, and preheat the nozzle to 720 °C; set the spray distance to 18cm, the vertical distance between the contact surface and the cooling surface It is 2.5cm, the moving speed of the two-dimensional mobile station is 5mm / s, the interval between passes is 1.2mm, and the moving mode is shown in Figure 3.
  • X 100mm
  • Y 100mm
  • Z 100mm.
  • the aluminum liquid in the thermal insulation crucible is ejected from the nozzle under the action of the air pressure difference, and at the same time, the two-dimensional moving table is started to translate.
  • the aluminum liquid is sprayed onto the upper surface of the moving mobile ingot and under the cooling effect Condensation occurs instantly.
  • the crystallization is completed on a rectangular plane to form a thin layer with a thickness of 1.2 mm.
  • the above device is used. After pouring the aluminum-silicon alloy melt with a silicon content of 7% w.t. into the crucible, it stays for 0.5 to 1.5 hours and adjusts the temperature to 680 ° C. Evacuate the vacuum chamber, fill it with an appropriate amount of argon, make the air pressure in the vacuum chamber 0.6 atm, and preheat the nozzle to 700 °C; set the spray distance to 15cm, move the contact surface and cooling surface of the ingot The vertical distance is 2.5cm, the moving speed of the two-dimensional mobile station is 3.5mm / s, the interval between passes is 0.8mm, and the moving mode is shown in Figure 3.
  • X 120mm
  • Y 20mm
  • Z 80mm.
  • Lifting the nozzle baffle, the aluminum liquid in the thermal insulation crucible is ejected from the nozzle under the action of the air pressure difference, and at the same time, the two-dimensional mobile table is translated, and the aluminum liquid is sprayed onto the upper surface of the moving mobile ingot and occurs instantly under cooling Condensation.
  • the crystallization is completed on a rectangular plane to form a thin layer with a thickness of 0.8 mm.
  • the ingot head is moved downward by a distance of 0.8mm, and the new crystal layer is formed by repeatedly controlling the left and right and back and forth translation of the two-dimensional moving table. By repeating this process, a fully equiaxed crystal structure and no segregation can be prepared.
  • the size of the square flat ingots is 120 * 20 * 80mm.
  • the grain structure is shown in Figure 6, and the aluminum-silicon alloy structure obtained by the ordinary casting method is shown in Figure 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种增材法快速凝固全等轴晶铝合金铸锭的制备方法及装置,包括:金属加热机构和负压冷却机构,其中:金属加热机构位于负压冷却机构上方并通过喷嘴(5)与之相连;该负压冷却机构包括:带有进气孔(12)和排气孔(13)的真空室(8)以及设置于真空室(8)内部的三维移动锭机构,该三维移动锭机构包括移动锭(18)和与之竖直相连的二维移动平台(10),移动锭(18)的外部设有水冷机构,并通过精密电机(11)带动移动锭(18)进行上下精确位移。通过将雾化喷射改为液态注射的工艺手段提高合金锭的致密度,减轻其氧化,同时提高了铸锭的生产效率,可以快速制备具有全等轴晶组织且无宏观元素偏析的铝及其合金铸锭。

Description

增材法快速凝固全等轴晶铝合金铸锭的制备方法及装置 技术领域
本发明涉及的是一种冶金领域的技术,具体是一种熔体快速凝固式全等轴晶铝合金锭增材制造方法及装备。
背景技术
用常规铸造法铸造纯铝锭或铝合金锭,由于存在凝固顺序的先后,很难得到全部的等轴晶组织。合金组织中总会存在一定比例的柱状晶,不利于通过后续的变形过程得到较高的合金性能。此外,对于大型金属铸锭而言,由于主要合金元素在液固界面上发生偏析,从边部到心部容易产生较大的宏观元素偏析,严重影响铸锭质量。应用传统工艺制备全等轴晶且无宏观元素偏析的铸锭极为困难。喷射成形的方法可以用于制备无宏观成分偏析的铸锭,但该方法制备的铝锭气孔率高、组织不致密且氧化严重。
现有技术中有通过将丝材熔化形成金属液滴,然后采用磁场控制带电金属液滴直接沉积成型的金属微滴增材制造方法,但金属液滴成型效率低下,不可能用于大型铸锭的生产。当前也尚没有通过产生负压使大体积熔体经喷射形成稳定连续金属液柱并快速冷凝形成无偏析全等轴晶组织的方法。
发明内容
本发明针对现有技术设备和工艺较为复杂能耗较高且局部偏析难以避免,难以制备完全的从宏观到微观的无偏析铸锭的缺陷,提出一种增材法快速凝固全等轴晶铝合金铸锭的制备方法及装置,通过将雾化喷射改为液态注射的工艺手段提高合金锭的致密度,减轻其氧化的同时提高了铸锭的生产效率,可以快速制备具有更为细小均匀的全等轴晶组织且完全消除宏观偏析的铝及其合金铸锭。
本发明是通过以下技术方案实现的:
本发明涉及一种增材法快速凝固全等轴晶铝合金铸锭的制备装置,包括:金属加热机构以负压冷却机构,其中:金属加热机构位于负压冷却机构上方并通过喷嘴与之相连。
所述的金属加热机构包括:由上而下依次设置的坩埚、过滤装置和喷嘴挡板。
所述的坩埚的外部依次设有加热器和保温层。
所述的喷嘴的出口端设有用于预加热的喷嘴加热器。
所述的喷嘴的口径为0.2-10mm。
所述的负压冷却机构包括:带有进气孔和排气孔的真空室以及设置于真空室内部的三维 移动锭机构,该三维移动锭机构包括移动锭和与之竖直相连的二维移动平台,移动锭的外部设有水冷机构,并通过精密电机带动移动锭进行上下精确位移。
本发明涉及一种增材法快速凝固全等轴晶铝合金铸锭的制备方法,通过将加热后的金属熔液通过竖直喷嘴喷向负压环境下的三维活动移动锭的表面,使得金属熔液与移动锭表面接触时发生瞬间冷凝,通过移动锭的水平平面运动得到一厚度为δ的结晶层,然后将移动锭向下移动δ的距离并重复所述平面运动以形成新的结晶层,以增材方式重复多次后即得铸锭。
所述的金属熔液是指:在坩埚中加热熔化金属熔液,待完全熔化后得到。
所述的加热,将金属熔液温度加热至熔点并保温0.5~1.5小时。
所述的金属熔液优选经过滤处理,过滤后的铝液置于保温流槽中停留0.5~1.5小时并将温度调整到金属的熔点以上。
所述的负压是指:小于1个正常大气压;通过控制气压差可以控制金属熔液喷射的速度和流量。
所述的负压优选为先在真空室内抽真空,再充入适量氩气,使真空室内的气压小于1个正常大气压。
所述的竖直喷嘴优选经预热处理,预热温度高于其中金属的熔点。
所述的移动锭与喷嘴出口的距离,即喷射距离D1≤50cm。
所述的移动锭与冷却面的垂直距离D2≤10cm。
所述的移动锭的水平平面运动的移动速度v 1≤1000mm/s、道次间距d≤20mm/道次。
所述的移动锭采用但不限于铝锭。
附图说明
图1为本发明装置结构示意图;
图2为接触面和冷却面俯视图;
图3为铸锭俯视图;
图4为实施例1制备得到的晶粒组织与图5普通浇铸方法得到的纯铝晶粒组织;
图6为实施例2制备得到的晶粒组织与图7普通浇铸方法得到的铝硅合金组织;
图中:1坩埚、2加热器、3保温罩、4过滤装置、5喷嘴、6喷嘴挡板、7喷嘴加热器、8真空室、9引锭装置、10二维移动平台、11精密电机、12进气孔、13排气孔、14真空泵、15连杆、16套筒、17冷却介质、18移动锭、19下引装置。
具体实施方式
实施例1
如图1和图2所示,本实施例涉及的增材法快速凝固全等轴晶铝合金铸锭的制备装置, 包括:坩埚1、加热器2、保温罩3、过滤装置4、喷嘴5、喷嘴挡板6、喷嘴加热器7、真空室8、引锭装置9、二维移动平台10、电机11、进气孔12、排气孔13、真空泵14、连杆15、套筒16、冷却介质17、移动锭18以及下引装置19。
本实施例采用上述装置,将熔化的纯铝熔液倒入坩埚后,停留0.5~1.5小时,并调整温度至715℃。将真空室抽真空,充入适量氩气,使真空室内的气压为0.5个大气压,并对喷嘴进行预热,预热至温度720℃;设置喷射距离为18cm,接触面和冷却面的垂直距离为2.5cm,二维移动台的移动速度5mm/s,道次间距1.2mm,移动方式如图3。
设定二维移动台在三个方向上的总位移分别为X=100mm,Y=100mm,Z=100mm。抬起喷嘴挡板,保温坩埚中的铝液在气压差的作用下从喷嘴中喷出,同时启动二维移动台进行平移,当铝液喷射到移动的移动锭的上表面并在冷却作用下瞬间发生冷凝。通过控制二维移动台左右及前后平移,使结晶在一个矩形平面上完成,形成厚度为1.2mm的薄层。完成后将引锭头向下移动1.2mm的距离,在重复通过控制二维移动台左右及前后平移形成新的结晶层,重复这一过程即可制备出具有全等轴晶组织及无偏析的立方形铸锭,最终得到立方形铸锭的尺寸为100*100*100mm。其晶粒组织如图4所示,普通浇铸方法得到的纯铝晶粒组织如图5所示。
实施例2
本实施例采用上述装置,将硅含量为7%w.t.的铝硅合金熔液倒入坩埚后,停留0.5~1.5小时,并调整温度至680℃。将真空室抽真空,充入适量氩气,使真空室内的气压为0.6个大气压,并对喷嘴进行预热,预热至温度700℃;设置喷射距离为15cm,移动锭的接触面和冷却面的垂直距离为2.5cm,二维移动台移动速度3.5mm/s,道次间距0.8mm,移动方式如图3。设定二维移动台在三个方向上的总位移分别为X=120mm,Y=20mm,Z=80mm。抬起喷嘴挡板,保温坩埚中的铝液在气压差的作用下从喷嘴中喷出,同时启动二维移动台平移,铝液喷射到移动的移动锭的上表面并在冷却作用下瞬间发生冷凝。通过控制二维移动台左右及前后平移,使结晶在一个矩形平面上完成,形成厚度为0.8mm的薄层。完成后将引锭头向下移动0.8mm的距离,在重复通过控制二维移动台左右及前后平移形成新的结晶层,重复这一过程即可制备出具有全等轴晶组织及无偏析的方形扁锭,最终得到方形扁锭的尺寸为120*20*80mm。其晶粒组织如图6所示,普通浇铸方法得到的铝硅合金组织如图7所示。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (10)

  1. 一种增材法快速凝固全等轴晶铝合金铸锭制备装置,其特征在于,包括:金属加热机构以负压冷却机构,其中:金属加热机构位于负压冷却机构上方并通过喷嘴与之相连;该负压冷却机构包括:带有进气孔和排气孔的真空室以及设置于真空室内部的三维移动锭机构,该三维移动锭机构包括移动锭和与之竖直相连的二维移动平台,移动锭的外部设有水冷机构,并通过精密电机带动移动锭进行上下精确位移。
  2. 根据权利要求1所述的装置,其特征是,所述的金属加热机构包括:由上而下依次设置的坩埚、过滤装置和喷嘴挡板。
  3. 根据权利要求1所述的装置,其特征是,所述的坩埚的外部依次设有加热器和保温层。
  4. 根据权利要求1所述的装置,其特征是,所述的喷嘴的口径范围为0.2-10mm。
  5. 一种增材法快速凝固全等轴晶铝合金铸锭制备方法,其特征在于,通过将加热后的金属熔液通过竖直喷嘴喷向负压环境下的三维活动移动锭的表面,使得金属熔液与移动锭表面接触时发生瞬间冷凝,通过移动锭的水平平面运动得到一厚度为δ的结晶层,然后将移动锭向下移动δ的距离并重复所述平面运动以形成新的结晶层,重复多次后即得铸锭。
  6. 根据权利要求5所述的方法,其特征是,所述的金属熔液是指:加热在坩埚中熔化金属块,待完全熔化后得到。
  7. 根据权利要求5所述的方法,其特征是,所述的负压是指:小于1个正常大气压;通过控制气压差可以控制金属熔液喷射的速度和流量。
  8. 根据权利要求5所述的方法,其特征是,所述的负压为先在真空室内抽真空,再充入适量氩气,使真空室内的气压小于1个正常大气压。
  9. 根据权利要求5所述的方法,其特征是,所述的竖直喷嘴经预热处理,预热温度高于金属的熔点。
  10. 根据权利要求5所述的方法,其特征是,所述的移动锭的水平平面运动的移动速度v 1≤1000mm/s、道次间距d≤20mm/道次。
PCT/CN2018/114387 2018-11-07 2018-11-07 增材法快速凝固全等轴晶铝合金铸锭的制备方法及装置 WO2020093276A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021506336A JP7215698B2 (ja) 2018-11-07 2018-11-07 付加製造及び急速凝固で等軸晶アルミニウム合金インゴットを製造する方法及び装置
PCT/CN2018/114387 WO2020093276A1 (zh) 2018-11-07 2018-11-07 增材法快速凝固全等轴晶铝合金铸锭的制备方法及装置
EP18939460.4A EP3851224B1 (en) 2018-11-07 2018-11-07 Method for manufacturing equiaxed crystal aluminum alloy cast ingot by using additive manufacturing and rapid solidification techniques
RU2021114155A RU2764250C1 (ru) 2018-11-07 2018-11-07 Способ и устройство для изготовления литого слитка из алюминиевого сплава с кристаллической структурой с равноосным зерном с использованием технологий послойного аддитивного наращивания и быстрого затвердевания
US17/285,153 US11707778B2 (en) 2018-11-07 2018-11-07 Method and apparatus for manufacturing equiaxed crystal aluminum alloy cast ingot by using additive manufacturing and rapid solidification techniques

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/114387 WO2020093276A1 (zh) 2018-11-07 2018-11-07 增材法快速凝固全等轴晶铝合金铸锭的制备方法及装置

Publications (1)

Publication Number Publication Date
WO2020093276A1 true WO2020093276A1 (zh) 2020-05-14

Family

ID=70610780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114387 WO2020093276A1 (zh) 2018-11-07 2018-11-07 增材法快速凝固全等轴晶铝合金铸锭的制备方法及装置

Country Status (5)

Country Link
US (1) US11707778B2 (zh)
EP (1) EP3851224B1 (zh)
JP (1) JP7215698B2 (zh)
RU (1) RU2764250C1 (zh)
WO (1) WO2020093276A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113732270B (zh) * 2021-09-08 2023-09-01 昆山晶微新材料研究院有限公司 一种圆柱形金属铸锭的增材制造方法及装置
CN117548685B (zh) * 2024-01-12 2024-03-22 苏州双恩智能科技有限公司 薄膜电容器喷金工艺及3d打印喷金设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457965A (en) * 1987-08-27 1989-03-06 Sumitomo Electric Industries Production of spiral part by spray forming of aluminum alloy
CN1401450A (zh) * 2001-08-15 2003-03-12 中国科学院金属研究所 一种熔体近快速凝固方法及专用设备
CN103736946A (zh) * 2013-12-13 2014-04-23 上海交通大学 具有完全等轴晶粒组织的高纯金属及合金铸锭制造方法
CN104001906A (zh) * 2014-05-26 2014-08-27 上海大学 薄层快速凝固成型装置及方法
CN108246993A (zh) * 2018-01-18 2018-07-06 中北大学 一种铝合金半固态铸轧方法
CN108788102A (zh) * 2017-06-07 2018-11-13 上海交通大学 增材法快速凝固全等轴晶铝合金铸锭的制备方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07178537A (ja) * 1993-12-22 1995-07-18 Hitachi Metals Ltd 鋳造用取鍋
JP2000105083A (ja) * 1998-09-30 2000-04-11 Kyocera Corp 溶解装置
RU2226449C1 (ru) * 2002-11-18 2004-04-10 Цацулина Ирина Евгеньевна Способ литья деталей направленной кристаллизацией и устройство для его осуществления
KR100909708B1 (ko) * 2007-08-17 2009-07-29 한성석 금속적층체 제조장치
JP2009285726A (ja) * 2008-06-02 2009-12-10 Daido Steel Co Ltd コールドクルーシブル溶解炉における出湯方法
RU2545979C1 (ru) * 2013-10-16 2015-04-10 Рустам Фаритович Мамлеев Устройство для получения отливок направленной кристаллизацией
JP6457965B2 (ja) 2016-03-16 2019-01-23 ソニー株式会社 無線通信装置、通信システムおよび情報処理方法
CN106363920A (zh) * 2016-09-24 2017-02-01 上海大学 一种基于熔融沉积的高效高力学性能3d打印装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457965A (en) * 1987-08-27 1989-03-06 Sumitomo Electric Industries Production of spiral part by spray forming of aluminum alloy
CN1401450A (zh) * 2001-08-15 2003-03-12 中国科学院金属研究所 一种熔体近快速凝固方法及专用设备
CN103736946A (zh) * 2013-12-13 2014-04-23 上海交通大学 具有完全等轴晶粒组织的高纯金属及合金铸锭制造方法
CN104001906A (zh) * 2014-05-26 2014-08-27 上海大学 薄层快速凝固成型装置及方法
CN108788102A (zh) * 2017-06-07 2018-11-13 上海交通大学 增材法快速凝固全等轴晶铝合金铸锭的制备方法及装置
CN108246993A (zh) * 2018-01-18 2018-07-06 中北大学 一种铝合金半固态铸轧方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3851224A4 *

Also Published As

Publication number Publication date
JP7215698B2 (ja) 2023-01-31
RU2764250C1 (ru) 2022-01-14
US11707778B2 (en) 2023-07-25
EP3851224A1 (en) 2021-07-21
JP2021532994A (ja) 2021-12-02
EP3851224B1 (en) 2024-01-03
EP3851224A4 (en) 2021-09-01
US20210362224A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
US11524332B2 (en) Array-spraying additive manufacturing apparatus and method for manufacturing large-sized equiaxed crystal aluminum alloy ingot
CN108788102A (zh) 增材法快速凝固全等轴晶铝合金铸锭的制备方法及装置
CN110125411B (zh) 熔体微区冲击式全等轴晶铸锭的制备装置及方法
JP3919256B2 (ja) 方向性凝固した鋳造物を製作する方法とこの方法を実施するための装置
CN110202152B (zh) 间歇喷射式合金锭增材制造装置及方法
CN104001906B (zh) 薄层快速凝固成型装置及方法
WO2020093276A1 (zh) 增材法快速凝固全等轴晶铝合金铸锭的制备方法及装置
JP2004017158A (ja) 方向性凝固方法および装置
CN106890985B (zh) 一种用于制造无缩孔铸件的铸造装置进行铸造的方法
CN105583366A (zh) 一种薄壁高温合金浮动壁瓦片的精密铸造方法
CN104096845A (zh) 一种制备金属玻璃粒子的方法及其装置
CN201760583U (zh) 真空熔炼铝铸造炉
CN113333691B (zh) 一种用于大高径比高温合金铸锭的铸模及应用
WO2020206611A1 (zh) 一种厚度为80~1500μm的宽幅非晶薄带连续大冷速高效制备的方法
CN202224638U (zh) 一种真空-正压熔炼凝固设备
CN109248995A (zh) 一种喷带包及纳米晶带材的制备方法
CN107234220B (zh) 一种双冷场连续制备高品质铝合金圆铸锭的工艺
CN103801669B (zh) 离心铸造方法及其设备和工艺
CN214263894U (zh) 梯度铸锭装置
CN103014366A (zh) 一种大型电渣重熔钢锭强化冷却装置及方法
CN117531965A (zh) 一种逐层凝固成形设备与方法及金属铸坯
CN106734999B (zh) 一种镍铝金属间化合物锭的真空铸造装置
CN214977629U (zh) 一种半固态压力铸造成形设备
CN102534453B (zh) 一种用于模拟颗粒沉积成型的试验装置及方法
CN114226756B (zh) 增材制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506336

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018939460

Country of ref document: EP

Effective date: 20210416

NENP Non-entry into the national phase

Ref country code: DE