WO2020093254A1 - 机器人的运动控制方法、控制系统和存储装置 - Google Patents

机器人的运动控制方法、控制系统和存储装置 Download PDF

Info

Publication number
WO2020093254A1
WO2020093254A1 PCT/CN2018/114222 CN2018114222W WO2020093254A1 WO 2020093254 A1 WO2020093254 A1 WO 2020093254A1 CN 2018114222 W CN2018114222 W CN 2018114222W WO 2020093254 A1 WO2020093254 A1 WO 2020093254A1
Authority
WO
WIPO (PCT)
Prior art keywords
planned
motion
end effector
robot
posture
Prior art date
Application number
PCT/CN2018/114222
Other languages
English (en)
French (fr)
Inventor
张志明
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to PCT/CN2018/114222 priority Critical patent/WO2020093254A1/zh
Priority to CN201880087478.9A priority patent/CN111670093B/zh
Publication of WO2020093254A1 publication Critical patent/WO2020093254A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls

Definitions

  • the invention relates to the technical field of robot control, in particular to a robot motion control method, a robot motion control system and a storage device.
  • the trajectory motion of the robot usually refers to the trajectory motion of the end effector of the robot.
  • the trajectory description of the end effector can be divided into two parts: path and posture: the path describes the position of the end effector movement, that is, the position of the robot tool center point (Tool) Center (TCP), which is the origin of the robot tool coordinate system, Expressed in coordinates; posture describes the direction of end effector movement, and there are many ways to express it, such as rotation matrix, Euler angle, and quaternion. If you want to control the end effector of the robot to move according to the desired trajectory, you can use the continuous path (CP) method, where each CP motion is a linear motion.
  • CP continuous path
  • a transitional motion can be defined for two consecutive CP movements, so that they are smoothly transferred, that is, the end effector turns out from a point in the CP motion trajectory of the previous section and continues to move according to the planned transitional movement. Then it turns into a point in the trajectory of the later CP.
  • the existing planning methods for transitional motion usually only consider the continuous (or continuous) speed of the front CP motion, the transitional motion, and the rear CP motion, but do not consider their posture continuous (ie, continuous angular velocity). Therefore, at the end There may be discontinuous postures or angular velocity jumps in the transitional motion of the actuator, which affects the robot's motion control performance.
  • the present application provides a robot motion control method, a robot motion control system, and a storage device, which are used to improve the robot motion control performance.
  • a technical solution adopted by the present application is to provide a robot motion control method.
  • the method includes: acquiring a planned trajectory and a planned posture of a first planned motion and a second planned motion of the robot end effector, Wherein, the first planned motion starts at the inflection point and ends at the intermediate point, the second planned motion starts at the intermediate point and ends at the inflection point; and according to the first plan of the robot end effector
  • the planned pose of the movement, the planned pose at the intermediate point and the planned pose of the second planned movement determine the planned pose of the transitional movement of the robot end effector, wherein the transitional movement starts from the The exit point ends at the inflection point.
  • the method includes: acquiring a planned trajectory and a planned posture of a first planned motion and a second planned motion of the robot end effector , Where the first planned motion starts at the inflection point and ends at the intermediate point, and the second planned motion starts at the intermediate point and ends at the inflection point; determining the planned trajectory of the transitional motion of the robot end effector And a planned posture, the transitional motion starts at the inflection point and ends at the inflection point; wherein, the step of determining the planned posture of the transitional motion of the robot end effector includes: according to the robot The planned pose of the first planned movement of the end effector, the planned pose at the intermediate point, and the planned pose of the second planned movement determine the planned pose of the transitional movement of the robot end effector.
  • another technical solution adopted by the present application is to provide a robot motion control system, including a controller, which can load program instructions and execute any of the above robot motion control methods.
  • another technical solution adopted by the present application is to provide a device with a storage function, in which program instructions are stored, and the program instructions can be loaded and execute the motion control method of any robot described above.
  • the beneficial effect of the present application is to determine the planned posture of the transitional motion of the robot end effector by using the planned postures of the first and second planned motions of the robot end effector and the planned postures at the intermediate point.
  • the angular velocity of the transition motion of the end effector of the robot is continuous, and the transition of the angular motion of the end effector of the robot is prevented from jumping. It is beneficial to improve the efficiency and stability of robot motion control.
  • FIG. 1 is a schematic flowchart of an embodiment of a robot motion control method of the present application.
  • FIG. 2 shows exemplary trajectories of the first planned movement, the second planned movement, and the transitional movement of the robot end effector.
  • FIG. 3 is a schematic flowchart of another embodiment of the robot motion control method of the present application.
  • FIG. 4 is a schematic flowchart of another embodiment of the robot motion control method of the present application.
  • FIG. 5 is a schematic flowchart of another embodiment of the robot motion control method of the present application.
  • FIG. 6 is a schematic structural diagram of an embodiment of a robot motion control system of the present application.
  • FIG. 1 is a schematic flowchart of an embodiment of a robot motion control method of the present application. As shown, the method includes:
  • S101 Obtain the planned trajectory and planned posture of the first planned movement and the second planned movement of the end effector of the robot, where the first planned movement starts at the inflection point and ends at the middle point, and the second planned movement starts at the middle The point ends at the turning point.
  • the robot in this application may be an industrial robot or a life service robot.
  • the first planned movement and the second planned movement of the end effector of the robot are linear movements, such as CP movements.
  • the first planned movement and the second planned movement may be two consecutive CP movements or a part thereof.
  • the inflection point is the starting point of the transitional motion used to smoothly connect these two CP movements. It can be understood that when the end effector moves to the inflection point, it turns out from the originally planned CP motion trajectory; similarly, the inflection point is The end point of the transitional motion used to smoothly connect these two CP motions can be understood as the end effector moves back to the originally planned CP motion trajectory when it moves to the inflection point.
  • the trajectories of two consecutive CP motions of the end effector intersect at the intermediate point.
  • the first planned movement starts at the inflection point and ends at the intermediate point
  • the second planned movement starts at the intermediate point and ends at the inflection point.
  • FIG. 2 shows the planned trajectory AO of the first planned motion of the robot, the planned trajectory OB of the second planned motion, and the planned trajectory AB of the transitional motion, where A is an inflection point and O is The middle point, B is the inflection point.
  • A is an inflection point
  • O is The middle point
  • B is the inflection point.
  • the front CP movement of the end effector can also include other parts before point A
  • the rear CP movement of the end effector can also include other parts after point B, but this does not affect the technical solution of the present application, No limitation.
  • the end effector will not move according to the originally planned first and second planned movements, so the dashed line shows the end execution The planned trajectory AO of the first planned motion and the planned trajectory OB of the second planned motion.
  • the first planned movement and the second planned movement of the end effector may be pre-planned.
  • step S101 the planned trajectory and the planned posture of the first planned movement and the second planned movement of the end effector are obtained.
  • the planned trajectory represents the relationship between the displacement and time of the end effector
  • the planned attitude represents the relationship between the attitude and time of the end effector. It can be understood that, according to the relationship between the displacement and time of the motion and the relationship between the posture and time, the relationship between the speed / acceleration of the motion and time, and the relationship between the angular velocity / angular acceleration and time can be derived respectively.
  • S102 Determine the planned posture of the transition motion of the end effector according to the planned posture of the first planned motion of the end effector, the planned posture at the intermediate point, and the planned posture of the second planned motion, where the transition motion starts from turning out Point, ending at the turning point.
  • the transitional motion starts at the inflection point and ends at the inflection point, and the intermediate point is both a point on the first planned motion trajectory and a point on the second planned motion trajectory.
  • the planned posture of the first planned motion and the second planned motion at the intermediate point should be the same, so it can be collectively referred to as the planned posture at the intermediate point.
  • the planned posture of the first planned motion of the end effector, the planned posture at the intermediate point, and the planned posture of the second planned motion are used to determine the planned posture of the transition motion of the end effector, so that the planning of the transition motion
  • the posture at the turning point is the same as the planning posture at the turning point of the first planning motion
  • the planning posture at the turning point is the same as the planning posture at the turning point of the second planning motion
  • the first planning motion The planning posture, the planning posture of the second planning motion, and the planning posture at the intermediate point are jointly determined and continuously change.
  • the motion posture of the end effector can be expressed in various ways, such as rotation matrix, Euler angle, quaternion, etc. In this embodiment, any motion posture can be used to express the planned posture of each motion of the end effector And the planning posture at the midpoint.
  • This embodiment determines the planned posture of the transitional motion of the end effector by using the planned postures of the first planned motion and the second planned motion of the end effector and the planned posture at the intermediate point.
  • the planned angular velocity is continuous to prevent the transition of the end effector's angular velocity from jumping. Therefore, the present application facilitates the robot's motion control.
  • the duration of the first planned movement is the same as the duration of the second planned movement.
  • the duration of the end effector moving from point A to point O according to the original plan is the same as the duration of moving from point O to point B according to the original plan.
  • two parts with the same duration can be selected as the first planned motion and the second planned motion respectively in the two consecutive CP motions of the end effector.
  • the specific values of the duration of the first planned movement, the second planned movement, and the transitional movement can be reasonably determined according to specific equipment parameters and user needs, and are not limited herein.
  • FIG. 3 is a schematic flowchart of another embodiment of the robot motion control method of the present application. As shown, the method includes:
  • the motion posture of the end effector can be expressed in a rotation matrix. Therefore, in step S201, the planning trajectory and posture rotation matrix of the first planning motion and the second planning motion of the end effector are obtained.
  • the posture rotation matrix is the planned posture of the end effector expressed in the form of a rotation matrix. Depending on the specific form, it can be used to express the relationship between the end effector's posture during movement or the end effector during the motion process. At certain points in the posture. Those skilled in the art can understand that due to the subsequent interpolation process and the existence of system errors, the planned attitude is not completely equal to the actual attitude, which can be understood as the expected value of the end effector attitude.
  • the rotation matrix is denoted as Q, which can be a 3 * 3 matrix.
  • step S201 the posture rotation matrix Qc (t) of the first planned motion of the end effector and the posture rotation matrix Qn (t) of the second planned motion may be obtained first.
  • the value of t is t0 ⁇ t1
  • t0 can represent the start time of the movement
  • t1 represents the end time of the movement. Since the intermediate point is the end point of the first planned motion and the starting point of the second planned motion, the posture rotation matrix of the end effector at the intermediate point can be calculated by the following formula:
  • the posture rotation matrix Qc (t0) of the end effector at the starting point of the first planned motion ie, the inflection point
  • the posture rotation matrix at the end of the second planned motion ie, the inflection point
  • S202 Determine the transition matrix of transition of the end effector according to the attitude rotation matrix of the first planned movement of the end effector, the attitude rotation matrix at the intermediate point, and the second planned movement.
  • step S202 the posture rotation matrix of the first planned movement of the end effector, the posture rotation matrix at the intermediate point, and the posture rotation matrix of the second planned movement are used to determine the posture rotation matrix of the end effector during the transitional movement .
  • the posture rotation matrix of the transitional movement is the same as the posture rotation matrix of the first planned movement at the starting point (ie, the turning point), and the second planned movement turns at the end point (ie, the turning point)
  • the posture rotation matrix at the point is the same, while the posture rotation matrix of the intermediate process is determined by the posture rotation matrix of the first planned motion, the posture rotation matrix of the second planned motion, and the posture rotation matrix at the intermediate point and changes continuously.
  • the posture rotation matrix of the end effector's transient motion is denoted as Q (t).
  • the value of t is t0 to t1
  • t0 represents the starting moment of the transitional movement
  • t1 represents the ending moment of the transitional movement.
  • the attitude rotation matrix Q (t0) of the transitional motion at the starting point is equal to the attitude rotation matrix Qc (t0) of the original first planned motion at the inflection point.
  • Qc (t) and Qn (t) are both pose rotation matrix functions that existed in the original plan, and are continuous in the original plan (second order derivable), therefore, the pose rotation matrix Q (t) of the transitional motion is also continuously.
  • Determining the posture rotation matrix of the transition motion of the end effector according to the above method can make the planned posture rotation matrix of the transition motion change continuously (that is, the angular velocity is continuous) to prevent the angular motion jump of the transition motion of the end effector, Improve the stability and efficiency of robot motion control.
  • FIG. 4 is a schematic flowchart of another embodiment of the robot motion control method of the present application. As shown, the method includes:
  • S301 Obtain the planning trajectory and planning posture of the first planning motion and the second planning motion of the end effector, where the first planning motion starts at the inflection point and ends at the intermediate point, and the second planning motion starts at the intermediate point and ends At the turning point.
  • S302 Determine the planned posture of the transitional motion of the end effector according to the planned posture of the first planned motion of the end effector, the planned posture at the intermediate point, and the planned posture of the second planned motion, where the transitional motion starts from turning out Point, ending at the turning point.
  • Steps S301 and S302 may be similar to S101 and S102 or S201 and S202 in the foregoing embodiments, and details are not described herein again.
  • S303 Determine the planned trajectory of the transitional motion of the end effector according to the planned trajectory of the first planned motion of the end effector, the position of the intermediate point, and the planned trajectory of the second planned motion.
  • the end execution in addition to determining the planned posture of the end effector's transitional motion, can also be determined based on the planned trajectory of the first planned motion of the end effector, the position of the intermediate point, and the planned trajectory of the second planned motion Trajectory of the transitional motion of the device.
  • the motion displacements of the first planned motion and the second planned motion may be added to synthesize the trajectory of the transitional motion.
  • the specific formula is as follows:
  • the value of t is t0 to t1;
  • P (t) is the corresponding position of the transition trajectory of the end effector at each moment
  • Pc (t) is the corresponding position of the planned trajectory of the first planned movement of the end effector at each time
  • Pn (t) is the corresponding position of the planned trajectory of the second planned movement of the end effector at each time.
  • Pc (t0) is the position of the inflection point
  • Pc (t1) and Pn (t0) are the position of the intermediate point
  • Pn (t1) is the position of the inflection point
  • the position of the intermediate point has the following relationship:
  • Determining the position of the end effector's transition motion at different times according to the above method can make the planned position of the transition motion change continuously (that is, the speed is continuous) to prevent the speed jump of the end effector's transition motion. Therefore, this embodiment is advantageous for the motion control of the robot.
  • S304 Interpolate the position and posture of the actual motion of the end effector at each moment according to the planned trajectory and posture of the end motion of the end effector.
  • the position and posture of the actual motion of the end effector at each moment can be interpolated.
  • the process of interpolation is to calculate several intermediate points of the end effector movement process on the basis of planning, so as to control the "each step" of the end effector movement.
  • the planned trajectory of the transitional motion is a smooth curve, but the actual motion of the end effector is a combination of multiple polyline segments close to the curve, where the motion of each segment is calculated by interpolation.
  • the interpolation of the posture of the end effector is also similar, that is, the posture of the posture of the end effector at each moment in the actual motion is interpolated and calculated according to the posture function of the transitional motion of the planned end effector.
  • the interpolation interval can be selected according to actual needs and is not limited here.
  • S305 The driving mechanism of the control robot moves according to the result of interpolation, so that the end effector moves according to the planned trajectory and posture of the transitional motion.
  • the first planned movement of the end effector of any of the foregoing embodiments may be a deceleration movement, and the inflection point is the deceleration start point of the first planned movement, and the intermediate point is the deceleration completion point of the first planned movement.
  • the second planned motion of the end effector may be an acceleration motion, and the intermediate point is the acceleration start point of the second planned motion, and the inflection point is the acceleration completion point of the second planned motion.
  • the end effector should gradually decelerate in the AO segment to decelerate to zero at point O, and gradually accelerate in the OB segment until the acceleration at point B is completed.
  • the deceleration section in the front CP movement and the acceleration section in the rear CP movement can be selected as the first Planning movement and second planning movement, so as to replace this deceleration section and acceleration section with transitional movement to connect other parts of the CP movement in the front section and the CP movement in the rear section.
  • the repeated start and stop of the driving mechanism is avoided, which is beneficial to improving the service life of the robot.
  • FIG. 5 is a schematic flowchart of another embodiment of the robot motion control method of the present application. As shown, the method includes:
  • S401 Obtain the planning trajectory and planning posture of the first planning movement and the second planning movement of the end effector, where the first planning movement actually ends at the turning point and ends at the intermediate point, and the second planning movement starts at the intermediate point and ends at Turning point.
  • S402 Determine the planned trajectory and planned posture of the transitional motion of the end effector.
  • the transitional motion starts at the turning point and ends at the turning point.
  • the planned posture of the transitional motion of the end effector is determined according to the planned posture of the first planned motion of the end effector, the planned posture at the intermediate point and the planned posture of the second planned motion.
  • FIG. 6 is a schematic structural diagram of an embodiment of a robot motion control system provided by the present invention.
  • the robot motion control system 500 includes a communication bus 501, a controller 502, and a memory 503.
  • the controller 502 and the memory 503 are coupled through the communication bus 501.
  • the memory 503 stores program data, and the program data can be loaded by the controller 502 and execute the robot motion control method in any of the above embodiments. Understandably, in some other embodiments, the memory 503 may not be set in the same physical device as the controller 502, but the method of any of the above embodiments may be performed by combining the robot motion control system 500 with a network.
  • the robot motion control system 500 may be a control system built in the robot or a control system on an external device connected or communicating with the robot.
  • the functions described in the above embodiments are implemented in software and sold or used as independent products, they can be stored in a device with a storage function, that is, the present invention also provides a storage device that stores a program.
  • the program data in the storage device can be executed to implement the motion control method of the robot in the above embodiment, and the storage device includes, but is not limited to, a U disk, an optical disk, a server, or a hard disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

一种机器人的运动控制方法、机器人运动控制系统和存储装置,其中,运动控制方法包括:获取机器人末端执行器的第一和第二规划运动的规划轨迹和规划姿态,其中,第一规划运动起始于拐出点结束于中间点,第二规划运动起始于中间点结束于拐入点;以及根据机器人末端执行器的第一规划运动的规划姿态、在中间点处的规划姿态和第二规划运动的规划姿态确定机器人末端执行器的过渡运动的规划姿态,其中,过渡运动起始于拐出点,结束于拐入点;机器人运动控制系统包括处理器,处理器可被加载程序指令并执行机器人的运动控制方法;存储装置存储有可被加载并执行机器人的运动控制方法的程序指令。通过使用机器人的第一规划运动和第二规划运动的规划姿态以及中间点处的规划姿态来确定机器人末端执行器的过渡运动的规划姿态,可以使得到的机器人末端执行器过渡运动的规划中的角速度连续,防止机器人末端执行器的过渡运动发生角速度跳变,有利于机器人的运动控制。

Description

机器人的运动控制方法、控制系统和存储装置 【技术领域】
本发明涉及机器人控制技术领域,特别是涉及一种机器人的运动控制方法、机器人运动控制系统和存储装置。
【背景技术】
机器人的轨迹运动通常指机器人的末端执行器的轨迹运动。末端执行器的轨迹运动描述可以分为路径和姿态两个部分:路径描述了末端执行器运动的位置,也就是机器人工具中心点(Tool Center Point,TCP)即机器人工具坐标系的原点的位置,以坐标表示;姿态描述了末端执行器运动的方向,表示方式有多种,例如旋转矩阵、欧拉角和四元数等。如果要控制机器人的末端执行器按期望轨迹运动,可以使用连续路径运动(Continuous Path,CP)方式,其中每段CP运动均为直线运动。通常,可以为连续的两段CP运动定义一过渡运动,从而使它们平滑转接,也就是说,使末端执行器从前段CP运动轨迹中的一点拐出,并按规划的过渡运动继续运动,随后再拐入后段CP运动轨迹中的一点。
但现有的过渡运动的规划方法通常只考虑了前段CP运动、过渡运动和后段CP运动的速度连续(或路径连续),而没有考虑它们的姿态连续(即角速度连续),因此,在末端执行器的过渡运动中可能存在姿态不连续或角速度跳变的情况,影响机器人的运动控制性能。
【发明内容】
本申请提供一种机器人的运动控制方法、机器人运动控制系统和存储装置,用于改善机器人的运动控制性能。
为了解决上述技术问题,本申请采用的一种技术方案为提供一种机器人的运动控制方法,该方法包括:获取机器人末端执行器的第一规划运动和第二规划运动的规划轨迹和规划姿态,其中,所述第一规划运动起始于拐出点结束于 中间点,所述第二规划运动起始于中间点结束于拐入点;以及根据所述机器人末端执行器的所述第一规划运动的规划姿态、在所述中间点处的规划姿态和所述第二规划运动的规划姿态确定所述机器人末端执行器的过渡运动的规划姿态,其中,所述过渡运动起始于所述拐出点,结束于所述拐入点。
为了解决上述技术问题,本申请采用的另一种技术方案为提供一种机器人的运动控制方法,该方法包括:获取机器人末端执行器的第一规划运动和第二规划运动的规划轨迹和规划姿态,其中,所述第一规划运动起始于拐出点结束于中间点,所述第二规划运动起始于中间点结束于拐入点;确定所述机器人末端执行器的过渡运动的规划轨迹和规划姿态,所述过渡运动起始于所述拐出点,结束于所述拐入点;其中,所述确定所述机器人末端执行器的过渡运动的规划姿态的步骤包括:根据所述机器人末端执行器的所述第一规划运动的规划姿态、在所述中间点处的规划姿态和所述第二规划运动的规划姿态确定所述机器人末端执行器的过渡运动的规划姿态。
为了解决上述技术问题,本申请采用的另一种技术方案为提供一种机器人运动控制系统,包括控制器,所述控制器可加载程序指令并执行上述任意机器人的运动控制方法。
为了解决上述技术问题,本申请采用的另一种技术方案为提供一种具有存储功能的装置,其中存储有程序指令,所述程序指令可被加载并执行上述任意机器人的运动控制方法。
本申请的有益效果是:通过使用机器人末端执行器的第一规划运动和第二规划运动的规划姿态以及中间点处的规划姿态来确定机器人末端执行器的过渡运动的规划姿态,可以使得到的机器人末端执行器过渡运动的角速度连续,防止机器人末端执行器的过渡运动发生角速度跳变。有利于提高机器人运动控制的效率和稳定性。
【附图说明】
图1是本申请机器人的运动控制方法一实施例的流程示意图。
图2示出了机器人末端执行器的第一规划运动、第二规划运动和过渡运动的示例性轨迹。
图3是本申请机器人的运动控制方法另一实施例的流程示意图。
图4是本申请机器人的运动控制方法又一实施例的流程示意图。
图5是本申请机器人的运动控制方法另一实施例的流程示意图。
图6是本申请机器人运动控制系统一实施例的结构示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1是本申请机器人的运动控制方法一实施例的流程示意图。如图所示,该方法包括:
S101:获取机器人的末端执行器的第一规划运动和第二规划运动的规划轨迹和规划姿态,其中,第一规划运动起始于拐出点结束于中间点,第二规划运动起始于中间点结束于拐入点。
本申请中的机器人可以是工业机器人或生活服务类机器人。机器人的末端执行器的第一规划运动和第二规划运动为直线运动,例如CP运动。第一规划运动和第二规划运动可以是连续两段CP运动或者其中的一部分。拐出点是用来平滑连接此两段CP运动的过渡运动的起点,可以理解为末端执行器运动到拐出点时从原规划的CP运动的轨迹中拐出;类似地,拐入点是用来平滑连接此两段CP运动的过渡运动的结束点,可以理解为末端执行器运动到拐入点时重新拐入原规划的CP运动的轨迹中。末端执行器的连续两段CP运动的轨迹相交于中间点。在本实施例中,第一规划运动起始于拐出点结束于中间点,第二规划运动 起始于中间点结束于拐入点。
为方便理解,请参阅图2,图2示出了机器人的第一规划运动的规划轨迹AO、第二规划运动的规划轨迹OB和过渡运动的规划轨迹AB,其中A为拐出点,O为中间点,B为拐入点。如图所示,末端执行器的前段CP运动在A点之前还可包括其他部分,末端执行器的后段CP运动在B点之后还可包括其他部分,但不影响本申请的技术方案,因此不做限定。如果在相关的步骤中确定了末端执行器将按照过渡运动的规划运动,那么末端执行器将不按照原规划的第一规划运动和第二规划运动来运动,因此图中以虚线示出末端执行器的第一规划运动的规划轨迹AO和第二规划运动的规划轨迹OB。
末端执行器的第一规划运动和第二规划运动可以是预先规划好的,在步骤S101中,获取末端执行器的第一规划运动和第二规划运动的规划轨迹和规划姿态。规划轨迹代表了末端执行器的位移与时间的关系,规划姿态代表了末端执行器的姿态与时间的关系。可以理解,根据运动的位移与时间的关系及姿态与时间的关系,可以分别推导出运动的速度/加速度与时间的关系,以及角速度/角加速度与时间的关系。
S102:根据末端执行器的第一规划运动的规划姿态、在中间点处的规划姿态和第二规划运动的规划姿态确定末端执行器的过渡运动的规划姿态,其中,过渡运动起始于拐出点,结束于拐入点。
如前述,过渡运动起始于拐出点结束于拐入点,而中间点既是第一规划运动轨迹上的点也是第二规划运动轨迹上的点。为了保证末端执行器运动的连续性,第一规划运动和第二规划运动在中间点处的规划姿态应当相同,因此可统称为中间点处的规划姿态。在步骤S102中,使用末端执行器的第一规划运动的规划姿态、在中间点处的规划姿态和第二规划运动的规划姿态来确定末端执行器的过渡运动的规划姿态,使过渡运动的规划姿态在拐出点处与第一规划运动拐出点处的规划姿态相同,在拐入点处与第二规划运动拐入点处的规划姿态相同,而在中间过程中由第一规划运动的规划姿态、第二规划运动的规划姿态和 在中间点处的规划姿态共同决定且连续变化。其中,末端执行器的运动姿态可以有多种表述方式,例如旋转矩阵、欧拉角和四元数等,本实施例中可以使用任意运动姿态的表述方式来表述末端执行器各运动的规划姿态和在中间点处的规划姿态。
本实施例通过使用末端执行器的第一规划运动和第二规划运动的规划姿态以及中间点处的规划姿态来确定末端执行器的过渡运动的规划姿态,可以使得到的末端执行器过渡运动的规划中的角速度连续,防止末端执行器的过渡运动发生角速度跳变。因此,本申请有利于机器人的运动控制。
在一些实施例中,第一规划运动的时长和第二规划运动的时长相同。以图2为例,末端执行器根据原规划从A点运动到O点的时长,与根据原规划从O点运动到B点的时长相同。换句话说,在规划末端执行器的过渡运动时,可在末端执行器的连续两段CP运动中分别选取时长相同的两部分作为第一规划运动和第二规划运动。第一规划运动、第二规划运动和过渡运动的时长的具体数值可根据具体的设备参数和用户需要合理地确定,在此不做限定。
请参阅图3,图3是本申请机器人的运动控制方法另一实施例的流程示意图。如图所示,该方法包括:
S201:获取末端执行器的第一规划运动和第二规划运动的规划轨迹和姿态旋转矩阵。
在本实施例中,可以以旋转矩阵来表述末端执行器的运动姿态。因此在步骤S201中获取末端执行器的第一规划运动和第二规划运动的规划轨迹和姿态旋转矩阵。其中,姿态旋转矩阵即以旋转矩阵的形式表示的末端执行器的规划姿态,根据具体形式不同,其可以用于表示运动过程中末端执行器的姿态随时间变化的关系或者末端执行器在运动过程中的某些点处的姿态。本领域的技术人员可以理解,由于后续的插补过程以及系统误差的存在,规划姿态并不完全等于实际姿态,其可以被理解为末端执行器姿态的期望值。其中旋转矩阵记为Q,可以为3*3的矩阵。
在步骤S201中,可首先获取末端执行器的第一规划运动的姿态旋转矩阵Qc(t)和第二规划运动的姿态旋转矩阵Qn(t)。其中t的取值为t0~t1,t0可代表运动的起始时刻,而t1则代表运动的结束时刻。由于中间点即是第一规划运动的终点也是第二规划运动的起点,因此末端执行器在中间点处的姿态旋转矩阵可通过下式计算得到:
Qo=Qc(t1)=Qn(t0)
此外,还可得到末端执行器在第一规划运动的起点(即拐出点)处的姿态旋转矩阵Qc(t0),以及在第二规划运动的终点(即拐入点)处的姿态旋转矩阵Qn(t1)。
S202:根据末端执行器的第一规划运动的姿态旋转矩阵、在中间点处的姿态旋转矩阵和第二规划运动的确定末端执行器的过渡运动的规划旋转矩阵。
在步骤S202中,使用末端执行器的第一规划运动的姿态旋转矩阵、在中间点处的姿态旋转矩阵和第二规划运动的姿态旋转矩阵来确定末端执行器的过渡运动过程中的姿态旋转矩阵,使过渡运动的姿态旋转矩阵在起点处(即拐出点处)与第一规划运动拐出点处的姿态旋转矩阵相同,在终点处(即拐入点处)与第二规划运动拐入点处的姿态旋转矩阵相同,而中间过程的姿态旋转矩阵由第一规划运动的姿态旋转矩阵、第二规划运动的姿态旋转矩阵和在中间点处的姿态旋转矩阵共同决定且连续变化。
具体地,将末端执行器的过渡运动的姿态旋转矩阵记为Q(t)。其中t的取值为t0至t1,t0表示过渡运动的起始时刻而t1表示过渡运动的结束时刻。这样就可通过以下公式计算末端执行器的过渡运动的姿态旋转矩阵:
Q(t)=Qn(t)*Qo -1*Qc(t)
末端执行器的过渡运动在起点时t=t0,根据上式可以计算得到,末端执行器的过渡运动在该点的姿态旋转矩阵Q(t0)=Qc(t0),也就是说末端执行器的过渡运动在起点的姿态旋转矩阵Q(t0)等于原第一规划运动在拐出点的姿态旋转矩阵Qc(t0)。末端执行器的过渡运动在终点时t=t1,根据上式可以计算得到,末端执 行器的过渡运动在该点的姿态旋转矩阵Q(t1)=Qn(t1),也就是说末端执行器的过渡运动在终点的姿态旋转矩阵Q(t1)等于原第二规划运动在拐入点的姿态旋转矩阵Qn(t1)。此外,Qc(t)和Qn(t)都是在原规划中存在的姿态旋转矩阵函数,并且在原规划中是连续的(二阶可导),因此,过渡运动的姿态旋转矩阵Q(t)也是连续的。
根据上述方法确定末端执行器的过渡运动的姿态旋转矩阵,可以使得到的所规划的所述过渡运动的姿态旋转矩阵变化连续(即角速度连续),防止末端执行器的过渡运动发生角速度跳变,提高机器人运动控制的稳定性和效率。
请参阅图4,图4是本申请机器人的运动控制方法另一实施例的流程示意图。如图所示,该方法包括:
S301:获取末端执行器的第一规划运动和第二规划运动的规划轨迹和规划姿态,其中,第一规划运动起始于拐出点结束于中间点,第二规划运动起始于中间点结束于拐入点。
S302:根据末端执行器的第一规划运动的规划姿态、在中间点处的规划姿态和第二规划运动的规划姿态确定末端执行器的过渡运动的规划姿态,其中,过渡运动起始于拐出点,结束于拐入点。
步骤S301和S302可与前述实施例中的S101和S102或S201和S202类似,在此不再赘述。
S303:根据末端执行器的第一规划运动的规划轨迹、中间点的位置和第二规划运动的规划轨迹确定末端执行器的过渡运动的规划轨迹。
在一些实施例中,除确定末端执行器的过渡运动的规划姿态之外,还可根据末端执行器的第一规划运动的规划轨迹、中间点的位置和第二规划运动的规划轨迹确定末端执行器的过渡运动的规划轨迹。
例如,可以根据空间矢量理论,将第一规划运动和第二规划运动的运动位移相加,合成过渡运动的轨迹。具体公式如下:
P(t)-Po=Pc(t)-Po+Pn(t)-Po
其中,t的取值为t0至t1;
Po为中间点的位置;
P(t)为末端执行器的所述过渡运动的规划轨迹在各时刻对应的位置;
Pc(t)为末端执行器的所述第一规划运动的规划轨迹在各时刻对应的位置;
Pn(t)为末端执行器的所述第二规划运动的规划轨迹在各时刻对应的位置。
由此可以得到,Pc(t0)为所述拐出点的位置,Pc(t1)和Pn(t0)为所述中间点的位置,而Pn(t1)为所述拐入点的位置。
由于末端执行器的第一规划运动、第二规划运动和过渡运动的时长相同(此实施例中均等于t1-t0,因此t0可代表这些运动的起始时刻,而t1可代表这些运动的结束时刻。因此,可以得到中间点的位置具有如下关系:
Po=Pc(t1)=Pn(t0)
进一步地,根据公式可以计算得出,在t=t0时,末端执行器的过渡运动的起点的规划位置P(t0)=Pc(t0),即与末端执行器的第一规划运动在拐出点处的位置相同。而在t=t1时,末端执行器的过渡运动的终点的规划位置P(t1)=Pn(t1),即与末端执行器的第二规划运动在拐入点处的位置相同。此外,Pc(t)和Pn(t)都是在原规划中存在的位置函数,并且在原规划中是连续的(二阶可导),因此,过渡运动的位置函数P(t)同为连续的。
根据上述方法确定末端执行器的过渡运动的不同时刻的位置,可以使得到所述过渡运动的规划位置变化连续(即速度连续),防止末端执行器的过渡运动发生速度跳变。因此,本实施例有利于机器人的运动控制。
S304:按照末端执行器的过渡运动的规划轨迹和规划姿态,对末端执行器的实际运动各时刻的位置和姿态进行插补。
在前述步骤中确定了末端执行器的过渡运动的规划轨迹和规划姿态后,就可以对末端执行器的实际运动各时刻的位置和姿态进行插补。插补的过程是在规划的基础上,计算末端执行器运动过程的若干中间点,从而控制末端执行器“每一步”的运动。例如,在一些例子中,过渡运动的规划轨迹为光滑的曲线,但 末端执行器实际的运动为贴近该曲线的多个折线段的组合,其中每一段的运动就是通过插补计算得到的。对末端执行器的姿态的插补也与之类似,即根据规划的末端执行器的过渡运动的姿态函数来对末端执行器实际运动中各时刻的姿态进行插补计算。插补的间隔可根据实际需要选取,在此不做限定。
S305:控制机器人的驱动机构按照插补的结果动作,从而使末端执行器按过渡运动的规划轨迹和规划姿态进行运动。
至此,就完成了使用过渡运动来平滑过渡末端执行器的两段连续直线运动的整个规划、插补和执行过程。
可选地,前述任意实施例的末端执行器的第一规划运动可以是减速运动,并且拐出点是第一规划运动的减速起始点,而中间点是第一规划运动的减速完成点。末端执行器的第二规划运动可以是加速运动,并且中间点是第二规划运动的加速起始点,拐入点是第二规划运动的加速完成点。仍以图2为例,根据原规划,末端执行器在AO段应逐渐减速,至O点减速至零,而在OB段逐渐加速,直到B点加速完成。换言之,在从末端执行器原规划的两段连续运动中选取第一规划运动和第二规划运动时,可以选取前段CP运动中的减速段以及后段CP运动中的加速段以分别作为第一规划运动和第二规划运动,从而以过渡运动来替换此减速段和加速段来连接前段CP运动和后段CP运动的其他部分。这样就避免了驱动机构的反复启停,有利于提高机器人的使用寿命。
请参阅图5,图5是本申请机器人的运动控制方法又一实施例的流程示意图。如图所示,该方法包括:
S401:获取末端执行器的第一规划运动和第二规划运动的规划轨迹和规划姿态,其中,第一规划运动其实于拐出点结束于中间点,第二规划运动起始于中间点结束于拐入点。
S402:确定末端执行器的过渡运动的规划轨迹和规划姿态,过渡运动起始于拐出点结束于拐入点。其中,根据末端执行器的第一规划运动的规划姿态、在中间点处的规划姿态和第二规划运动的规划姿态确定末端执行器的过渡运动 的规划姿态。
本实施例中确定过渡运动的规划姿态的方法可参见前述任意实施例的方法,在此不再赘述。而末端执行器的过渡运动的规划轨迹可以采用本领域技术人员所悉知的任意轨迹规划方法。
请参阅图6,图6是本发明提供的机器人运动控制系统一实施例的结构示意图。该机器人运动控制系统500包括通信总线501、控制器502和存储器503。控制器502和存储器503通过通信总线501耦接。
其中,存储器503保存有程序数据,程序数据可被控制器502加载并执行上述任意实施例中的机器人的运动控制方法。可以理解地,在其它一些实施例中,存储器503可以不和控制器502设置于同一实体装置中,而是通过将机器人运动控制系统500结合网络来执行上述任一实施例的方法。
机器人运动控制系统500可以是机器人内置的控制系统,也可以是与机器人连接或通信的外部设备上的控制系统。
上述实施例所述功能如果以软件形式实现并作为独立的产品销售或使用时,可存储在一个具有存储功能的装置中,即,本发明还提供一种存储有程序的存储装置。存储装置中程序数据能够被执行以实现上述实施例中的机器人的运动控制方法,该存储装置包括但不限于U盘、光盘、服务器或者硬盘等。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (18)

  1. 一种机器人的运动控制方法,其特征在于,包括:
    获取机器人末端执行器的第一规划运动和第二规划运动的规划轨迹和规划姿态,其中,所述第一规划运动起始于拐出点结束于中间点,所述第二规划运动起始于所述中间点结束于拐入点;以及
    根据所述第一规划运动的规划姿态、在所述中间点处的规划姿态和所述第二规划运动的规划姿态确定所述机器人末端执行器的过渡运动的规划姿态,其中,所述过渡运动起始于所述拐出点,结束于所述拐入点。
  2. 如权利要求1所述的机器人的运动控制方法,其特征在于:
    所述第一规划运动的时长和所述第二规划运动的时长相同。
  3. 如权利要求2所述的机器人的运动控制方法,其特征在于,所述确定所述机器人末端执行器的过渡运动的规划姿态的步骤包括:
    根据所述机器人末端执行器的所述第一规划运动的姿态旋转矩阵、在所述中间点处的姿态旋转矩阵和所述第二规划运动的姿态旋转矩阵确定所述机器人末端执行器的所述过渡运动的姿态旋转矩阵。
  4. 如权利要求3所述的机器人的运动控制方法,其特征在于,通过以下公式计算所述机器人末端执行器的所述过渡运动的姿态旋转矩阵:
    Q(t)=Qn(t)*Qo -1*Qc(t)
    其中,t的取值为t0至t1;
    Q(t)为所述机器人末端执行器的所述过渡运动各时刻的姿态旋转矩阵;
    Qo为机器人末端执行器在中间点处的姿态旋转矩阵;
    Qc(t)为所述机器人末端执行器的所述第一规划运动各时刻的姿态旋转矩阵;
    Qn(t)为所述机器人末端执行器的所述第二规划运动各时刻的姿态旋转矩阵;并且
    Q(t0)和Qc(t0)为所述机器人末端执行器在所述拐出点处的姿态旋转矩阵, Qc(t1)和Qn(t0)等于所述机器人末端执行器在所述中间点处的姿态旋转矩阵Qo,Qn(t1)和Q(t1)为所述机器人末端执行器在所述拐入点处的姿态旋转矩阵。
  5. 如权利要求2所述的机器人的运动控制方法,其特征在于,还包括:
    根据所述机器人末端执行器的所述第一规划运动的规划轨迹、所述中间点的位置和所述机器人末端执行器的所述第二规划运动的规划轨迹确定所述机器人末端执行器的所述过渡运动的规划轨迹。
  6. 如权利要求5所述的机器人的运动控制方法,其特征在于,通过以下公式计算所述机器人末端执行器的所述过渡运动的规划轨迹:
    P(t)-Po=Pc(t)-Po+Pn(t)-Po
    其中,t的取值为t0至t1;
    P(t)为所述机器人末端执行器的所述过渡运动的规划轨迹在各时刻对应的位置;
    Po为中间点的位置;
    Pc(t)为所述机器人末端执行器的所述第一规划运动的规划轨迹在各时刻对应的位置;
    Pn(t)为所述机器人末端执行器的所述第二规划运动的规划轨迹在各时刻对应的位置;并且
    P(t0)和Pc(t0)为所述拐出点的位置,Pc(t1)和Pn(t0)等于所述中间点的位置Po,Pn(t1)和P(t1)为所述拐入点的位置。
  7. 如权利要求5所述的机器人的运动控制方法,其特征在于,还包括:
    按照所述机器人末端执行器的所述过渡运动的规划轨迹和规划姿态,对所述机器人末端执行器的实际运动各时刻的位置和姿态进行插补;
    控制所述机器人末端执行器的驱动机构按照插补的结果动作,从而使所述机器人末端执行器按所述过渡运动的规划轨迹和规划姿态进行运动。
  8. 如权利要求1所述的机器人的运动控制方法,其特征在于:
    所述第一规划运动是减速运动,并且所述拐出点是所述第一规划运动的减 速起始点,而所述中间点是所述第一规划运动的减速完成点;以及
    所述第二规划运动是加速运动,并且所述中间点是所述第二规划运动的加速起始点,而所述拐入点是所述第二规划运动的加速完成点。
  9. 一种机器人控制系统,其特征在于,包括处理器,所述处理器可加载程序指令并执行一种机器人的运动控制方法,所述方法包括:
    获取机器人末端执行器的第一规划运动和第二规划运动的规划轨迹和规划姿态,其中,所述第一规划运动起始于拐出点结束于中间点,所述第二规划运动起始于中间点结束于拐入点;以及
    根据所述机器人末端执行器的所述第一规划运动的规划姿态、在所述中间点处的规划姿态和所述第二规划运动的规划姿态确定所述机器人末端执行器的过渡运动的规划姿态,其中,所述过渡运动起始于所述拐出点,结束于所述拐入点。
  10. 如权利要求9所述的机器人控制系统,其特征在于:
    所述第一规划运动的时长和所述第二规划运动的时长相同。
  11. 如权利要求10所述的机器人控制系统,其特征在于,所述确定所述机器人末端执行器的过渡运动的规划姿态的步骤包括:
    根据所述机器人末端执行器的所述第一规划运动的姿态旋转矩阵、在所述中间点处的姿态旋转矩阵和所述第二规划运动的姿态旋转矩阵确定所述机器人末端执行器的所述过渡运动的姿态旋转矩阵。
  12. 如权利要求11所述的机器人控制系统,其特征在于,通过以下公式计算所述机器人末端执行器的所述过渡运动的姿态旋转矩阵:
    Q(t)=Qn(t)*Qo -1*Qc(t)
    其中,t的取值为t0至t1;
    Q(t)为所述机器人末端执行器的所述过渡运动各时刻的姿态旋转矩阵;
    Qo为机器人末端执行器在中间点处的姿态旋转矩阵;
    Qc(t)为所述机器人末端执行器的所述第一规划运动各时刻的姿态旋转矩阵;
    Qn(t)为所述机器人末端执行器的所述第二规划运动各时刻的姿态旋转矩阵;并且
    Q(t0)和Qc(t0)为所述机器人末端执行器在所述拐出点处的姿态旋转矩阵,Qc(t1)和Qn(t0)等于所述机器人在所述中间点处的姿态旋转矩阵Qo,Qn(t1)和Q(t1)为所述机器人在所述拐入点处的姿态旋转矩阵。
  13. 如权利要求10所述的机器人控制系统,其特征在于,所述机器人的运动控制方法还包括:
    根据所述机器人末端执行器的所述第一规划运动的规划轨迹、所述中间点的位置和所述机器人末端执行器的所述第二规划运动的规划轨迹确定所述机器人的所述过渡运动的规划轨迹。
  14. 如权利要求13所述的机器人控制系统,其特征在于,通过以下公式计算所述机器人末端执行器的所述过渡运动的规划轨迹:
    P(t)-Po=Pc(t)-Po+Pn(t)-Po
    其中,t的取值为t0至t1;
    P(t)为所述机器人末端执行器的所述过渡运动的规划轨迹在各时刻对应的位置;
    Po为中间点的位置;
    Pc(t)为所述机器人末端执行器的所述第一规划运动的规划轨迹在各时刻对应的位置;
    Pn(t)为所述机器人末端执行器的所述第二规划运动的规划轨迹在各时刻对应的位置;并且
    P(t0)和Pc(t0)为所述拐出点的位置,Pc(t1)和Pn(t0)等于所述中间点的位置Po,Pn(t1)和P(t1)为所述拐入点的位置。
  15. 如权利要求13所述的机器人控制系统,其特征在于,所述机器人的运动控制方法还包括:
    按照所述机器人末端执行器的所述过渡运动的规划轨迹和规划姿态,对所 述机器人末端执行器的实际运动各时刻的位置和姿态进行插补;
    控制所述机器人末端执行器的驱动机构按照插补的结果动作,从而使所述机器人末端执行器按所述过渡运动的规划轨迹和规划姿态进行运动。
  16. 如权利要求9所述的机器人控制系统,其特征在于:
    所述第一规划运动是减速运动,并且所述拐出点是所述第一规划运动的减速起始点,而所述中间点是所述第一规划运动的减速完成点;以及
    所述第二规划运动是加速运动,并且所述中间点是所述第二规划运动的加速起始点,而所述拐入点是所述第二规划运动的加速完成点。
  17. 一种机器人的运动控制方法,其特征在于,包括:
    获取机器人末端执行器的第一规划运动和第二规划运动的规划轨迹和规划姿态,其中,所述第一规划运动起始于拐出点结束于中间点,所述第二规划运动起始于中间点结束于拐入点;
    确定所述机器人末端执行器的过渡运动的规划轨迹和规划姿态,所述过渡运动起始于所述拐出点,结束于所述拐入点;
    其中,所述确定所述机器人末端执行器的过渡运动的规划姿态的步骤包括:根据所述机器人末端执行器的所述第一规划运动的规划姿态、在所述中间点处的规划姿态和所述第二规划运动的规划姿态确定所述机器人末端执行器的过渡运动的规划姿态。
  18. 一种具有存储功能的装置,其特征在于,存储有程序指令,所述程序指令可被加载并执行如权利要求1-8或如权利要求17所述的机器人末端执行器的运动控制方法。
PCT/CN2018/114222 2018-11-06 2018-11-06 机器人的运动控制方法、控制系统和存储装置 WO2020093254A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/114222 WO2020093254A1 (zh) 2018-11-06 2018-11-06 机器人的运动控制方法、控制系统和存储装置
CN201880087478.9A CN111670093B (zh) 2018-11-06 2018-11-06 机器人的运动控制方法、控制系统和存储装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/114222 WO2020093254A1 (zh) 2018-11-06 2018-11-06 机器人的运动控制方法、控制系统和存储装置

Publications (1)

Publication Number Publication Date
WO2020093254A1 true WO2020093254A1 (zh) 2020-05-14

Family

ID=70610759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114222 WO2020093254A1 (zh) 2018-11-06 2018-11-06 机器人的运动控制方法、控制系统和存储装置

Country Status (2)

Country Link
CN (1) CN111670093B (zh)
WO (1) WO2020093254A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115008468A (zh) * 2022-07-04 2022-09-06 中国科学院沈阳自动化研究所 一种机械臂姿态速度规划控制方法
CN117301044A (zh) * 2023-08-31 2023-12-29 北京纳通医用机器人科技有限公司 末端工具的运动控制方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100244443B1 (ko) * 1997-12-26 2000-04-01 김덕중 로봇의 연속동작(continuous path motion)을 위한 구동모터의 제어장치 및 그 방법
CN103365244A (zh) * 2013-07-12 2013-10-23 北京配天大富精密机械有限公司 机器人连续加工方法、装置及平滑转接方法、装置
CN106826829A (zh) * 2017-02-22 2017-06-13 武汉工程大学 一种可控误差的工业机器人光顺运动轨迹生成方法
CN107030697A (zh) * 2017-04-28 2017-08-11 广州大学 一种机器人笛卡尔空间平滑轨迹的规划方法
JP2017185598A (ja) * 2016-04-07 2017-10-12 セイコーエプソン株式会社 ロボット、ロボット制御装置、及びロボットシステム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8903546B2 (en) * 2009-08-15 2014-12-02 Intuitive Surgical Operations, Inc. Smooth control of an articulated instrument across areas with different work space conditions
CN102829777B (zh) * 2012-09-10 2015-09-16 江苏科技大学 自主式水下机器人组合导航系统及方法
CN107980108B (zh) * 2017-01-04 2021-07-09 深圳配天智能技术研究院有限公司 机器人运动轨迹规划方法及相关装置
CN107139171B (zh) * 2017-05-09 2019-10-22 浙江工业大学 一种基于力矩控制的工业机器人避障轨迹规划方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100244443B1 (ko) * 1997-12-26 2000-04-01 김덕중 로봇의 연속동작(continuous path motion)을 위한 구동모터의 제어장치 및 그 방법
CN103365244A (zh) * 2013-07-12 2013-10-23 北京配天大富精密机械有限公司 机器人连续加工方法、装置及平滑转接方法、装置
JP2017185598A (ja) * 2016-04-07 2017-10-12 セイコーエプソン株式会社 ロボット、ロボット制御装置、及びロボットシステム
CN106826829A (zh) * 2017-02-22 2017-06-13 武汉工程大学 一种可控误差的工业机器人光顺运动轨迹生成方法
CN107030697A (zh) * 2017-04-28 2017-08-11 广州大学 一种机器人笛卡尔空间平滑轨迹的规划方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU, XINYI EL AL.: "Design and Implementation of CP Motion Instruction for Industrial Robots", JOURNAL OF ZHEJIANG UNIVERSITY OF TECHNOLOGY, vol. 45, no. 5, 31 October 2017 (2017-10-31), pages 568 - 573, ISSN: 1006-4303 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115008468A (zh) * 2022-07-04 2022-09-06 中国科学院沈阳自动化研究所 一种机械臂姿态速度规划控制方法
CN117301044A (zh) * 2023-08-31 2023-12-29 北京纳通医用机器人科技有限公司 末端工具的运动控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN111670093B (zh) 2023-12-22
CN111670093A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
CN107263484B (zh) 机器人关节空间点到点运动的轨迹规划方法
US7979158B2 (en) Blending algorithm for trajectory planning
WO2018126354A1 (zh) 机器人运动轨迹规划方法及相关装置
CN114952868B (zh) 7自由度srs型机械臂控制方法及装置、弹琴机器人
CN109933008B (zh) 一种非实时系统和机器人控制器的双插补方法及装置
WO2020093253A1 (zh) 机器人的运动控制方法、控制系统和存储装置
WO2020093254A1 (zh) 机器人的运动控制方法、控制系统和存储装置
CN112975992B (zh) 一种误差可控的机器人轨迹同步优化方法
WO2020151406A1 (zh) 运动控制方法、装置和系统及存储介质
CN111390902A (zh) 轨迹规划方法、轨迹规划装置、设备和存储介质
CN108189034A (zh) 一种机器人连续轨迹实现方法
CN109773780B (zh) 机械臂的过渡路径的位姿同步方法及装置
EP3831544A1 (en) Method, device and system for correcting offline programming program, medium, and terminal
CN114211495A (zh) 面向半导体晶圆传送机械臂的自适应轨迹优化方法及系统
CN111496798B (zh) 机器人传送带跟踪方法、设备及存储装置
WO2023207164A1 (zh) 一种机器人作业控制方法及装置
CN109773778B (zh) 一种工业机器人关节空间同步运动的规划方法
CN117301063A (zh) 工业机器人在线前瞻轨迹规划方法、电子设备及存储介质
WO2023116129A1 (zh) 一种协作机器人的柔顺力控制方法及系统
Kong et al. Application of orientation interpolation of robot using unit quaternion
CN114454981B (zh) 双足机器人的弹跳运动控制方法、装置及双足机器人
CN116442222A (zh) 一种实现同态遥操作的机械臂转轴速度控制方法
CN112847340B (zh) 一种控制方法、控制装置及机器人
CN110543181B (zh) 一种欠驱动角度解耦姿态控制方法及系统
WO2021042389A1 (zh) 用于工业机器人的轨迹简化方法及设备、计算机存储介质以及工业机器人操作平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939429

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20.09.2021.)

122 Ep: pct application non-entry in european phase

Ref document number: 18939429

Country of ref document: EP

Kind code of ref document: A1