WO2020091201A1 - 어류의 시기능 평가 시스템 및 이를 이용한 안구 독성 약물 스크리닝 방법, 어류의 시력 등급화 방법 및 컴퓨터 판독 가능한 저장매체 - Google Patents

어류의 시기능 평가 시스템 및 이를 이용한 안구 독성 약물 스크리닝 방법, 어류의 시력 등급화 방법 및 컴퓨터 판독 가능한 저장매체 Download PDF

Info

Publication number
WO2020091201A1
WO2020091201A1 PCT/KR2019/010224 KR2019010224W WO2020091201A1 WO 2020091201 A1 WO2020091201 A1 WO 2020091201A1 KR 2019010224 W KR2019010224 W KR 2019010224W WO 2020091201 A1 WO2020091201 A1 WO 2020091201A1
Authority
WO
WIPO (PCT)
Prior art keywords
fish
water flow
difference
visual function
visual
Prior art date
Application number
PCT/KR2019/010224
Other languages
English (en)
French (fr)
Inventor
엄영섭
권순일
김재영
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180131826A external-priority patent/KR102120159B1/ko
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority claimed from KR1020190098246A external-priority patent/KR102223999B1/ko
Publication of WO2020091201A1 publication Critical patent/WO2020091201A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons

Definitions

  • the present invention relates to a system for evaluating the visual function of fish, an eye toxicity drug screening method using the same, a method for grading fish, and a computer-readable storage medium.
  • Contrast sensitivity testing one of the methods of evaluating visual function used in the ophthalmic area, can evaluate the function of a wider retina by evaluating the ability to detect light of different intensity (difference in brightness) existing between adjacent objects in space. have. This is a more sensitive evaluation method than visual function evaluation using text.
  • Non-Patent Document 1 a visual inspection method using zebrafish contrast sensitivity is disclosed. However, Non-Patent Document 1 only quantifies the visual performance of zebrafish laba that is genetically modified and lacks mobility.
  • the present inventors continue to study how to evaluate visual function using a difference in contrast sensitivity, as well as confirming an abnormal visual function that could not be confirmed by a general examination, as well as an objective and quantified time to distinguish the visual function abnormality level in stages.
  • the ability evaluation method was developed and the present invention was completed.
  • Non-Patent Document 1 Rinner, Oliver, Rick, Jens M, Neuhauss, Stephan C F. Contrast sensitivity, spatial and temporal tuning of the larval zebrafish optokinetic response Investigative Ophthalmology & Visual Science , January 2005, Vol. 46, No.
  • An object of the present invention is to provide a visual function evaluation system for fish.
  • Another object of the present invention is to provide a method for evaluating eye toxicity screening of drugs.
  • Another object of the present invention is to provide a method for grading fish eyesight.
  • the present invention provides a visual function evaluation system for fish.
  • the fish visual function evaluation system may include:
  • a display unit on which a video having a preset water flow visual stimulation pattern is displayed
  • a moving unit positioned on an upper side of the display device to enable movement of a plurality of fish visually responding to the moving image
  • a photographing unit installed to be spaced a predetermined distance from an upper side of the moving unit, and photographing the moving unit;
  • An analysis unit that analyzes the fish movement pattern by receiving and analyzing the captured image.
  • the display unit may display a video having a water flow visual stimulation pattern with a difference in sensitivity (brightness) from each stage.
  • the fish visual function evaluation system a display unit; Moving part; And a photographing unit.
  • a support may be included under the display unit.
  • contrast sensitivity refers to light (brightness difference) of different intensities existing between adjacent objects in the inspection space
  • contrast sensitivity test refers to the ability to detect the difference in contrast sensitivity. Say evaluation.
  • the difference in contrast sensitivity for each step may mean a difference in color contrast sensitivity.
  • the contrast sensitivity may be set in various stages for each color, and contrast sensitivity may be determined by a combination of various colors such as gray / black and white / blue as well as white / gray.
  • the display unit may be any device that can display a video having a water flow visual stimulation pattern with a difference in contrast sensitivity.
  • any display-implemented device such as a smartphone or tablet can be used.
  • the "water flow time stimulation pattern” refers to a video pattern that shows a water flow and has a time stimulation pattern of a repeat pattern of a certain color at the same time.
  • Mainnstream refers to the movement of cells or animals in response to stimulation of running water.
  • the present invention introduces the mainstream properties of such fish into visual function evaluation. Specifically, when a video of a stimulation pattern having a repeating pattern of a certain light (color) is reproduced, the video of a stimulation pattern of the repeating pattern is recognized as a flow of light opposite to the flow of water, and fish with normal vision react to it. Will move in the direction of the visual stimulation pattern.
  • a video having a water flow visual stimulation pattern (visual stimulus rating table) with a difference in contrast sensitivity is produced step by step in the display unit.
  • RGB color table see https://en.wikipedia.org/wiki/Web_colors, etc.
  • Gray color When gray color is expressed in RGB, it can be distinguished from 0 to 255 in 256 steps.
  • the dark color is more concentrated. This is because a person reacts nonlinearly to the brightness of color. Therefore, it is necessary to correct the gamma to nonlinearly transform the brightness of the color using the nonlinear transfer function (green in the middle of FIG. 3).
  • Gamma correction was performed with reference to "Adobe® RGB (1998) Color Image Encoding”. After gamma correction, we can see that the distribution of bright colors is more.
  • the present invention was prepared and used as a visual stimulation rating table having a difference in contrast sensitivity reflecting the gamma correction value displayed as shown at the far right of FIG. 3.
  • FIG. 4 is a visual stimulation rating table of the present invention, which is shown separately by separating the rightmost rating table of FIG. 3.
  • the difference in contrast sensitivity for each stage may be based on the color difference in the color table shown in FIG. 4.
  • the contrast sensitivity difference may be a difference from the G4 color to G7, G8, G9, G10, G11, G12, G13 or G14 color.
  • the water flow video having the color of step G4 in FIG. 4 is reproduced, and then the water flow video having the color of step G7 is played, and then the movement pattern of the fish is analyzed. Then, the water flow video having the G4 level color is played back, and then the water flow video having the G8 level color is played to analyze the movement pattern of the fish. Then, the next step is to play the G4 color water flow video and then the G9 color water flow video.
  • the display unit on which the video having the water flow visual stimulation pattern is displayed plays back a water flow image having a flow in one direction for a certain time, and after a certain time stops, has a difference in contrast sensitivity with the reproduced image while in the opposite direction.
  • the water flow image with the flow can be reproduced for a certain period of time.
  • the water flow image having the flow in one direction is reproduced for 5 to 25 seconds, and after 1 to 5 second stop, the water flow having the flow in the opposite direction while having a difference in contrast sensitivity with the reproduced image Images can be played back for 5 to 25 seconds.
  • the reason for giving a pause is to solve a problem in which it is difficult to accurately analyze when the pom is located in a dark color part of the visual stimulation pattern and it is not possible to identify the pom. That is, the purpose of this is to evaluate the distance traveled by fish in the absence of a visual stimulation pattern image in the background.
  • the moving part may include a plurality of lanes of transparent material through which fish can move. This is to ensure that shooting can be done clearly.
  • an arrow displayed on the moving part indicates a water flow direction.
  • the analysis unit may be implemented with various computing devices such as a desktop, laptop, and smartphone.
  • the analysis unit can analyze the movement pattern of the fish as follows:
  • the analysis of the movement pattern of the fish in the analysis unit may be performed through automated object tracking.
  • the automated object tracking may be implemented by a method such as an automated high-throughput tracking system.
  • the automated high performance tracking system is well known in the art. Examples include DanioVision from Nodulus and ZebraLab and VisioBox from ViewPoint.
  • the water flow video of the G4 stage is played as a starting point, and when the G7 stage video is played after the G4 stage water flow video is played, the proportion of the population moved from the starting point to the opposite side is analyzed due to the mainstream nature of the fish.
  • the fish's visual function is normal, it will move in the opposite direction when the video of water flow stimulation pattern video of G7 is played after G4 due to mainstream nature. However, if the fish's vision function is impaired, it will not be able to move in the opposite direction.
  • the compound to be tested is treated with fish and then applied to the above-mentioned visual function evaluation system to evaluate whether the drug treated with the test compound causes ocular abnormalities.
  • the present invention provides an objective and quantified evaluation method to identify visual dysfunction that could not be confirmed by a general examination, and to distinguish the degree of visual dysfunction step by step.
  • the fish may be zebrafish, but is not necessarily limited thereto.
  • the zebrafish may be at least 4 days after fertilization.
  • a method for screening ocular toxicity of a drug comprising a step is provided.
  • the water flow visual stimulation with a difference in contrast sensitivity means a water flow visual stimulation with a visual stimulation class difference based on the visual stimulation rating table disclosed in FIG. 4. For example, if the water flow time stimulation of the G4 stage is given followed by the water flow time stimulation of the G7 stage, it will be "water flow time stimulation with contrast sensitivity difference".
  • the fish will move in the opposite direction.
  • the ratio of the number of individuals moving in the opposite direction of the drug-treated fish was analyzed.
  • the difference in sensitivity compared to that of the normal fish.
  • the proportion of individuals moving in the opposite direction at a certain level compared to the rate of individuals moving in the opposite direction in response to water flow stimulation. If reduced, the drug could be evaluated as a drug with eye toxicity.
  • the fish may be zebrafish.
  • the zebrafish may be at least 4 days after fertilization.
  • the drug may be any drug that requires evaluation of eye toxicity. Specifically, it may be any one selected from the group consisting of natural compounds, synthetic compounds, RNA, DNA, polypeptides, enzymes, and proteins, but is not limited thereto.
  • the dark acclimation can be performed for 20 to 60 minutes.
  • the system for evaluating the visual function of fish of the present invention is performed in a dark room, in order to minimize other visual stimulation in addition to the water flow stimulation. Therefore, if dark adaptation is performed before the reaction of fish to the water flow stimulation, there is an effect of increasing the sensitivity to water flow stimulation.
  • the detecting step may be a step of evaluating the visual function of the animal using the aforementioned visual function evaluation system of fish of the present invention.
  • the visual function evaluation system of fish provides an effect of classifying the visual function abnormality level in stages.
  • the eye toxicity screening method of the present invention using the visual function evaluation system of the fish provides an effect capable of a rapid and efficient large-scale screening technique for evaluating eye toxicity and safety of a new drug.
  • the method for grading the eyesight of a fish according to the present invention can quantify the degree of damage to the visual function by grading the eyesight of the fish.
  • FIG. 1 is a schematic diagram of a visual function evaluation system for fish according to the present invention.
  • RGB color table 2 is a typical RGB color table.
  • Figure 3 shows the manufacturing process of the rating table of the present invention.
  • 4 is a visual stimulation rating table of the present invention.
  • FIG. 5 is a schematic diagram showing a video realization method having a water flow visual stimulation pattern.
  • Figure 6 shows the results of the zebrafish reaction experiment according to dark adaptation (top), light adaptation (middle), non-adaptation (bottom).
  • FIG. 9 is a flow chart of a method for grading fish in accordance with an embodiment of the present invention.
  • FIG. 10 is a graph for explaining the initial reaction characteristics according to an embodiment of the present invention.
  • 11 is a view showing a result of comparing the average initial reaction rate and the maximum initial reaction rate according to the difference in sensitivity compared to each step of the water stimulation pattern according to an embodiment of the present invention.
  • FIG. 12 is a view showing a result of comparing the initial reaction rate according to the difference in sensitivity of each step of the water stimulation pattern in accordance with an embodiment of the present invention.
  • FIG. 13 is a view showing a result of averaging an area under a curve of an initial reaction rate according to one or more water flow visual stimulation patterns having a plurality of contrast sensitivity differences according to an embodiment of the present invention.
  • 15 is a view showing a result of comparing the average reaction termination rate according to the difference in sensitivity of each step of the water flow stimulation pattern according to an embodiment of the present invention.
  • FIG. 16 is a view showing a result of averaging an area under a curve of an overall reaction rate according to one or more water flow visual stimulation patterns having a plurality of step contrast sensitivity differences according to an embodiment of the present invention.
  • Example 1 Construction of a zebrafish visual function evaluation system
  • a 4 day old zebrafish pom was used.
  • a display unit displaying a video with a water flow visual stimulation pattern below the moving part in the darkroom after dark acclimation or light acclimation for a certain period of time (e.g., 45 minutes)
  • the video recording was performed through the playback unit (FIG. 1).
  • the video having the water flow visual stimulation pattern is schematically shown in FIG. 5.
  • a certain amount of time e.g., 15 seconds
  • DPF post fertilization
  • the contrast sensitivity difference is based on the visual stimulation rating table in Figure 4 G4 to G7; G4 to G8; G4 to G9; G4 to G10; G4 to G11; From the G4 to the G12 and the G4 to the G13, a video having a water flow visual stimulation pattern with different contrast sensitivity was reproduced on the display.
  • the zebrafish which has normal visual function, gathers to the left when it receives the G4 level visual stimulation and moves to the right (opposite) when it receives the G7, G8, G9, G10, G11, G12 or G13 visual stimulation. If the zebrafish has abnormal visual function, it will not move well to the right (opposite side), the direction of movement of the visual stimulation with reduced contrast sensitivity.
  • the proportion of zebrafish moving individuals is analyzed and shown in FIG. 7.
  • FIG. 9 is a flow chart of a method for grading fish in accordance with an embodiment of the present invention.
  • an image of a moving fish may be acquired as a video having a preset water flow visual stimulation pattern is displayed (S110).
  • a video having a water flow visual stimulation pattern having a difference in contrast sensitivity for each step may be displayed, and an image of a moving fish may be obtained in response thereto.
  • one or more water flow visual stimuli having a difference in contrast sensitivity by giving a difference from any one of the G4 to G12 steps in the color table divided into 16 steps of G1 to G16 Patterns can be used.
  • the initial reaction characteristics may include at least one of an average initial reaction rate, a maximum initial reaction rate, and an initial reaction rate.
  • FIG. 10 is a graph for explaining the initial reaction characteristics according to an embodiment of the present invention.
  • the incubation period represents the time it takes for the first individual to cross the starting point boundary line after the start of stimulation, and the average initial reaction rate can be calculated according to the following formula, and the maximum initial reaction rate is illustrated in FIG. 10. It can be calculated as the slope of the tangent line at the time that shows the fastest rate of population reduction in the population change curve.
  • the initial reaction rate can be calculated according to the following formula.
  • FIG. 11 is a view showing a result of comparing the average initial reaction rate and the maximum initial reaction rate according to the difference in sensitivity of each step of the water flow stimulation pattern according to an embodiment of the present invention,
  • Figure 11 (a) is an average The initial reaction rate is shown, and (b) represents the maximum initial reaction rate.
  • FIG. 11 is the average initial reaction rate when the difference in sensitivity compared to each of the control fish (ie, normal fish, control) and Gentamicin treatment concentration (5uM, 10uM, 15uM) fish in the color of G7 to G12 steps
  • the control fish ie, normal fish, control
  • Gentamicin treatment concentration 5uM, 10uM, 15uM
  • FIG. 12 is a view showing a result of comparing the initial reaction rate according to the difference in sensitivity of each step of the water stimulation pattern in accordance with an embodiment of the present invention.
  • Figure 12 also shows the initial reaction rate when the difference in sensitivity compared to the control fish (control) and Gentamicin treatment concentration (5uM, 10uM, 15uM) fish color G7 to G12, respectively, the color of the G7 and G8 steps In the case of, it can be seen that the classification of reaction characteristics by concentration is relatively clear.
  • FIG. 13 is a view showing a result of averaging the area under the curve of the initial reaction rate according to one or more water flow time stimulation pattern with a plurality of step contrast sensitivity difference according to an embodiment of the present invention, (a) is Digoxigenin treatment The color of the G7 to G12 stages for each concentration indicates the result of averaging the area under the curve of the initial reaction rate when the contrast sensitivity is different, and (b) shows the difference in contrast sensitivity with the color of the G10 to G12 stage for each concentration of Digoxigenin treatment. The result of averaging the area under the curve of the initial reaction rate in the quasi case is shown.
  • the degree of impairment of visual function may be increased, and the initial reaction characteristics may be differentiated according to the degree of impairment of visual function.
  • the present invention proposes a method for grading the visual acuity of fish based on the result of comparing the initial reaction characteristics with the normal group.
  • the reaction termination property may include at least one of an average reaction termination rate, a maximum reaction termination rate, and an overall reaction rate.
  • the minimum response time represents the time it takes for the first individual to cross the arrival point boundary line after the stimulation starts
  • the average response termination rate can be calculated according to the following formula, and the maximum response termination rate is illustrated in FIG. 14. It can be calculated as the slope of the tangent line at the time that shows the fastest rate of increase in the population in the population change curve shown in.
  • the total reaction rate can be calculated according to the following formula.
  • 15 is a view showing a result of comparing the average reaction termination rate according to the difference in sensitivity of each step of the water flow stimulation pattern according to an embodiment of the present invention.
  • Figure 15 shows the average reaction termination rate when the difference in sensitivity compared to each of the control fish (control) and Gentamicin treatment concentration (5uM, 10uM, 15uM) fish color G7 to G12 steps, G7 And in the case of the color of the G8 step, it can be seen that the distinction of the reaction characteristics for each concentration is relatively clear.
  • FIG. 16 is a view showing the result of averaging the area under the curve of the overall reaction rate according to one or more water flow visual stimulation pattern with a plurality of contrast sensitivity differences according to an embodiment of the present invention, (a) is Digoxigenin treatment The results of averaging the area under the curve of the overall reaction rate when the contrast sensitivity is different for each color in the G7 to G12 steps for each concentration, and (b) shows the difference in contrast sensitivity for each of the concentrations of the G10 to G12 for each concentration of Digoxigenin treatment. It shows the result of averaging the area under the curve of the total reaction rate in the quasi case.
  • the degree of impairment of the visual function may be severe, and the termination characteristics of the reaction may be differentiated according to the degree of impairment of the visual function.
  • the present invention proposes a method for grading the visual acuity of fish based on the result of comparing the reaction termination characteristics with the normal group.
  • the visual acuity of the fish may be graded based on at least one of the calculated initial reaction characteristics and the reaction termination characteristics (S130).
  • the ratio of the characteristic value of the fish to the characteristic value of the control fish may be compared with a preset grading criterion to classify the eyesight of the fish.
  • the method of grading the eyesight described above with reference to FIG. 9 may be performed by a processing device capable of image processing and calculation.
  • a computer readable storage medium in which instructions executable by a processor for executing each step of the method for grading fish sight described above with reference to FIG. 9 may be provided. .

Abstract

본 발명은 어류의 시기능 평가 시스템 및 이를 이용한 안구 독성 약물 스크리닝 방법에 대한 것이다. 본 발명에 따른 어류의 시기능 평가 시스템은, 시기능 이상 정도를 단계별로 구분하는 효과를 제공한다.

Description

어류의 시기능 평가 시스템 및 이를 이용한 안구 독성 약물 스크리닝 방법, 어류의 시력 등급화 방법 및 컴퓨터 판독 가능한 저장매체
본 발명은 어류의 시기능 평가 시스템 및 이를 이용한 안구 독성 약물 스크리닝 방법, 어류의 시력 등급화 방법 및 컴퓨터 판독 가능한 저장매체에 대한 것이다.
국내에서 발생한 가습기 살균제 사건을 계기로, 여러 가지 화학 물질에 대한 독성 연구의 중요성이 강조되고 있다. 또한, 여러 가지 약제와 화학 물질에서 안독성이 보고되고, 약제 및 화학물질에 의한 실명이 보고되기도 한다.
전 세계적으로 80,000종 이상의 화학 물질이 등록되어 있으며, 매년 수천 개의 새로운 물질이 의약품, 식품, 화장품 등의 원료로 사용되고 있어, 여러 화학 물질의 안구 독성 조기 스크리닝을 위한 방법 개발이 필요하다.
기존 연구들은 흰색과 검은색 또는 회색의 한 가지 대비 시자극에 대한 어류(예를 들면, 제브라피쉬)의 반응을 평가하여 시자극에 대한 어류의 반응 유무만 확인할 수 있으며, 약제 또는 유전질환에 의한 시기능의 소실이 있을 경우 시기능 이상 정도의 단계를 구분할 수 있을 뿐이다.
안과 영역에서 사용되는 시기능 평가 방법 중 하나인 대비 감도 검사는 공간 내의 인접한 물체 사이에 존재하는 서로 다른 세기의 빛(명시도 차이)을 감지해 내는 능력을 평가함으로써 보다 넓은 망막의 기능을 평가할 수 있다. 이는 문자를 이용한 시기능 평가 보다 더 민감한 평가법이다.
비특허문헌 1을 보면, 제브라피쉬의 대비 감도를 이용한 시각 검사 방법에 대하여 개시하고 있다. 그러나 비특허문헌 1은 유전적으로 변형되고 운동성이 없는 제브라피쉬 라바의 시각 퍼포먼스를 정량화할 뿐이다.
본 발명자들은 대비 감도 차이를 이용하여 시기능을 평가하는 방법에 대해 연구를 계속하여, 일반적인 검사에서는 확인할 수 없었던 시기능 이상을 확인할 뿐만 아니라 시기능 이상 정도를 단계별로 구분할 수 있는 객관적이고 정량화된 시기능 평가방법을 개발하고, 본 발명을 완성하였다.
[비 특허문헌 1] Rinner, Oliver, Rick, Jens M, Neuhauss, Stephan C F. Contrast sensitivity, spatial and temporal tuning of the larval zebrafish optokinetic response Investigative Ophthalmology & Visual Science, January 2005, Vol. 46, No. 1
본 발명의 목적은 어류의 시기능 평가 시스템을 제공하기 위한 것이다.
본 발명의 다른 목적은 약물의 안구 독성 스크리닝 평가 방법을 제공하기 위한 것이다.
본 발명의 또 다른 목적은 어류의 시력 등급화 방법을 제공하기 위한 것이다.
상기 과제를 해결하기 위해서, 본 발명은 어류의 시기능 평가 시스템을 제공한다.
상기 어류의 시기능 평가 시스템은, 다음을 포함할 수 있다:
기 설정된 물흐름 시자극 패턴을 가지는 동영상이 디스플레이되는 디스플레이부;
상기 디스플레이 장치의 상부측에 위치되며, 상기 동영상에 시각적으로 반응하는 다수의 어류의 이동이 가능하도록 하는 이동부;
상기 이동부의 상부측로부터 소정 거리 이격되도록 설치되어, 상기 이동부를 촬영하는 촬영부; 및
상기 촬영 영상을 수신 및 분석하여 어류 이동 패턴을 분석하는 분석부.
상기 디스플레이부는 단계별 대비 감도(명시도) 차이가 있는 물흐름 시자극 패턴을 가지 동영상이 디스플레이될 수 있다.
도 1을 보면, 본 발명에 따른 어류의 시기능 평가 시스템은 디스플레이부; 이동부; 및 촬영부를 포함한다.
상기 디스플레이부 하부에는 지지대를 포함할 수도 있다.
본 발명에서 "대비 감도"란, 검사 공간 내의 인접한 물체 사이에 존재하는 서로 다른 세기의 빛(명시도 차이)을 말하며, "대비 감도 검사"란, 이러한 대비 감도의 차이를 감지해는 내는 능력을 평가하는 것을 말한다.
상기 단계별 대비 감도 차이가 있는 물흐름 시자극 패턴에서, 상기 단계별 대비 감도 차이란 색깔의 대비 감도 차이를 의미할 수 있다.
상기 대비 감도는 색깔별로 다양하게 단계를 정할 수 있고, 흰색/회색뿐만 아니라 회색/검은색, 흰색/파란색 등 다양한 색깔의 조합으로 대비 감도를 정할 수 있다.
상기 디스플레이부는 대비 감도 차이가 있는 물흐름 시자극 패턴을 가지는 동영상이 디스플레이 될 수 있는 장치라면 어느 장치나 이용이 가능하다. 예를 들면 스마트폰, 태블릿 등 휴대성이 있는 디스플레이 구현 장치라면 어느 것이나 사용 가능하다.
상기 "물흐름 시자극 패턴"이란, 물 흐름을 보여주면서 동시에 일정 색깔의 반복 무늬의 시자극 패턴을 가지는 동영상 패턴을 말한다.
"주류성(rheotaxis)"이란, 흐르는 물의 자극에 반응하는 세포나 동물의 이동을 의미한다.
일반적으로, 물이 흐르면 빛의 흐름은 물의 흐름과 반대 방향으로 생긴다. 치어(larvae)의 경우, 빛의 흐름을 따라 움직이는 경향이 있다.
본 발명은 이러한 어류의 주류성을 시기능 평가에 도입한 것이다. 구체적으로, 일정 빛(색깔)의 반복 무늬를 가지는 시자극 패턴 동영상을 재생하면, 반복 무늬의 시자극 패턴 동영상은 물 흐름과 반대 방향인 빛의 흐름으로 인지되고, 정상 시각을 가진 어류는 이에 반응하여 시자극 패턴 동영상의 시자극 방향으로 움직일 것이다.
본 발명에서는 상기 디스플레이부에서 단계별로 대비 감도에 차이가 있는 물흐름 시자극 패턴(시자극 등급표)을 가진 동영상을 제작하였다.
도 2는 일반적인 RGB 색상표이다(https://en.wikipedia.org/wiki/Web_colors 등 참고). 그레이(gray) 색상을 RGB로 표현하는 경우 0부터 255까지 256단계로 구별할 수 있다. 도 3의 맨 왼쪽(노란색)과 같이 그레이 등급을 일정한 간격(17)으로 16 단계로 나누는 경우, 짙은색의 색상이 더 몰려있게 느껴진다. 이는 사람이 색상의 밝기에 대해 비선형적으로 반응하기 때문이다. 따라서, 이를 비선형 전달 함수를 이용하여 색상의 밝기를 비선형적으로 변형시키는 감마 보정이 필요하다(도 3의 가운데 초록색). 감마 보정은 "Adobe® RGB (1998) Color Image Encoding"을 참고하여 수행하였다. 감마 보정을 하고 나면 밝은 색상의 분포가 더 많아진 것을 알 수 있다. 본 발명은 도 3의 맨 오른쪽과 같이 표시된 감마 보정값이 반영된 대비 감도 차이가 있는 시자극 등급표를 제작하여 이용하였다.
도 4는 도 3의 맨 오른쪽 등급표를 별도로 분리하여 나타낸 본 발명의 시자극 등급표이다.
본 발명의 상기 단계별 대비 감도(명시도) 차이가 있는 물흐름 시자극 패턴에서, 상기 단계별 대비 감도 차이는 도 4에 기재된 색상표의 색상 차이를 기준으로 할 수 있다.
상기 대비 감도 차이는 G4 단계 색상에서 G7, G8, G9, G10, G11, G12, G13 또는 G14 단계 색상으로 차이를 주는 것일 수 있다.
구체적으로 도 4의 G4 단계의 색깔을 가지는 물흐름 동영상을 재생하고, 그 다음에 G7 단계의 색깔을 가지는 물흐름 동영상을 재생한 다음 어류의 이동 패턴을 분석하는 것이다. 그 다음 G4 단계의 색깔을 가지는 물흐름 동영상을 재생하고 그 다음에 G8 단계의 색깔을 가지는 물흐름 동영상을 재생하여 어류의 이동 패턴을 분석하는 것이다. 그리고 또 그 다음 G4 단계 색깔 물흐름 동영상을 재생하고 G9 단계 색깔 물흐름 동영상을 재생하는 순서이다.
상기 물흐름 시자극 패턴을 가지는 동영상이 디스플레이되는 디스플레이부는, 일 방향의 흐름을 가진 물흐름 영상을 일정 시간 재생하고, 일정 시간 정지 이후에, 상기 재생 영상과 대비 감도에 차이를 가지면서 반대 방향의 흐름을 가진 물 흐름 영상이 일정 시간 재생될 수 있다.
일 구체예로, 상기 일 방향의 흐름을 가진 물흐름 영상을 5 내지 25초 재생하고, 1 내지 5초 정지 이후에, 상기 재생 영상과 대비 감도에 차이를 가지면서 반대 방향의 흐름을 가진 물 흐름 영상이 5 내지 25초 재생될 수 있다.
일시 시간 정지를 주는 이유는, 시자극 패턴 중 짙은 색깔 부분에 치어가 위치하는 경우, 치어 분간이 되지 않아 정확한 분석이 어려운 문제점이 발생할 경우 이를 해결하기 위한 것이다. 즉, 배경의 시자극 패턴 영상이 없는 상태에서 어류의 이동 거리를 평가하기 위함이다.
상기 이동부는 어류가 이동할 수 있는 투명 재질의 다수의 레인을 포함할 수 있다. 이는 촬영이 명확하게 이루어질 수 있게 하기 위함이다.
도 1에서 이동부에 표시된 화살표는 물 흐름 방향을 표시한 것이다.
상기 분석부는, 데스크탑, 노트북, 스마트폰 등과 같은 각종 컴퓨팅 장치로 구현될 수 있다
상기 분석부는 다음 식과 같이 어류의 이동 패턴을 분석할 수 있다:
Figure PCTKR2019010224-appb-I000001
또한 상기 분석부에서 어류의 이동 패턴 분석은 자동화 개체 추적을 통하여 수행할 수도 있다. 구체적으로 상기 자동화 개체 추적은 자동화 고성능 추적 시스템 (automated high-throughput tracking system) 등의 방법으로 구현될 수 있다.
상기 자동화 고성능 추적 시스템은 이 기술분야에 널리 알려져 있다. 예를 들면, Nodulus사의 DanioVision과 ViewPoint사의 ZebraLab 및 VisioBox 등이 있다.
G4 단계의 물 흐름 동영상이 재생되는 것을 시작점으로 보고, G4 단계 물 흐름 동영상 재생 이후 G7 단계 동영상이 재생되었을 때 어류의 주류성으로 인해 시작점에서 반대쪽으로 이동한 개체수의 비율을 분석하는 것이다.
어류의 시기능이 정상이라면 주류성으로 인해 G4 다음에 G7의 물흐름 시자극 패턴 동영상이 재생되면 반대 방향으로 이동할 것이다. 그런데 만약 어류의 시기능이 손상되었다면, 반대 방향으로 이동하지 못할 것이다.
따라서 본 발명의 어류의 시기능 평가 시스템을 통해 어떤 약물이 안구 독성이 있는지 평가 할 수 있다. 검사하고자 하는 화합물을 어류에 처리한 다음 상기 언급한 시기능 평가 시스템에 적용하여, 피검 화합물이 처리된 약물이 안구 이상을 유발하는 지 여부를 평가할 수 있다.
더욱이 본 발명은 일반적인 검사에서는 확인할 수 없었던 시기능 이상을 확인할 수 있으며, 시기능 이상 정도를 단계별로 구분할 수 있도록 객관적이고 정량화된 평가법을 제공한다.
상기 어류는 제브라피쉬(zebrafish)일 수 있으나, 반드시 이로 제한되는 것은 아니다.
상기 제브라피쉬는 수정 후 4일 이상인 치어일 수 있다.
다른 측면에서 본 발명은,
어류들에 약물을 처리하고; 그리고
상기 어류들이 대비 감도 차이가 있는 물흐름 시자극에 대해 반응하여 이동한 개체수를 검출하는;
단계를 포함하는 약물의 안구 독성 스크리닝 방법을 제공한다.
상기 대비 감도 차이가 있는 물흐름 시자극은, 앞서 설명한 바와 같이, 도 4에 개시된 시자극 등급표에 기반하여 시자극 등급 차이가 있는 물흐름 시자극을 의미한다. 예를 들면, G4 단계의 물흐름 시자극 다음에 G7 단계의 물흐름 시자극이 주어진다면, 이것이 "대비 감도 차이가 있는 물흐름 시자극"이 될 것이다.
앞서 설명한 바와 같이, 어류의 주류성으로 인해 대비 감도 차이가 있는 물흐름 시자극에 대해 정상적으로 반응하면 어류가 반대 방향으로 이동할 것이다. 약물 처리된 어류의 반대 방향으로 이동한 개체수의 비율을 분석하였는데, 정상 어류의 대비 감도 차이 물흐름 시자극에 반응하여 반대 방향으로 이동하는 개체 비율에 비해서 일정 수준으로 반대 방향으로 이동하는 개체 비율이 감소되어 있다면 그 약물은 안구 독성이 있는 약물로 평가할 수 있을 것이다.
상기 어류는 제브라피쉬(zebrafish)일 수 있다.
상기 제브라피쉬는 수정 후 4일 이상인 치어일 수 있다.
상기 약물은 안독성 평가가 필요한 약물이라면 어느 것이나 포함될 수 있다. 구체적으로, 천연화합물, 합성화합물, RNA, DNA, 폴리펩티드, 효소 및 단백질로 이루어진 군으로 선택되는 어느 하나일 수 있으나, 반드시 이로 제한 되는 것은 아니다.
상기 어류들에 약물을 처리한 단계 이후에, 일정 시간 동안 암순응 단계를 거친 다음에, 상기 어류들의 물흐름 시자극에 대한 반응을 검출하는 단계를 더 포함할 수 있다.
상기 암순응은 20 내지 60분 수행할 수 있다.
본 발명의 어류의 시기능 평가 시스템은 암실에서 수행되는데, 그 이유는 물흐름 시자극 이외에 다른 시자극을 최소화하기 위함이다. 따라서 어류의 물흐름 시자극에 대한 반응 전에 암순응을 실시하면, 물흐름 시자극에 대한 민감도가 더욱 높아지는 효과가 있다.
상기 검출 단계는, 앞서 언급한 본 발명의 어류의 시기능 평가 시스템을 이용하여 상기 동물의 시기능을 평가하는 단계일 수 있다.
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것이 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있을 것이다.
본 발명에 따른 어류의 시기능 평가 시스템은, 시기능 이상 정도를 단계별로 구분하는 효과를 제공한다. 상기 어류의 시기능 평가 시스템을 이용한 본 발명의 안구 독성 스크리닝 방법은, 신약의 안독성 및 안전성 평가에 대한 신속하고 효율적인 대규모 스크리닝 기술이 가능한 효과를 제공한다.
또한, 본 발명에 따른 어류의 시력 등급화 방법은, 어류의 시력을 등급화하여 시기능의 손상 정도를 정량화할 수 있다.
도 1은 본 발명에 따른 어류의 시기능 평가 시스템의 모식도이다.
도 2는 일반적인 RGB 색상표이다.
도 3은 본 발명의 시자극 등급표 제작 과정을 나타낸 것이다.
도 4는 본 발명의 시자극 등급표이다.
도 5는 물흐름 시자극 패턴을 가지는 동영상 구현 방법을 나타낸 모식도이다.
도 6은 암순응(상), 명순응(중), 비순응(하)에 따른 제브라피쉬 반응 실험 결과를 나타낸 것이다.
도 7은 본 발명의 일 실시예에 따른 Digoxigenin 농도 별 제브라피쉬 안구 독성 평가 결과이다.
도 8은 본 발명의 일 실시예에 따른 Gentamicin 농도 별 제브라피쉬 안구 독성 평가 결과이다.
도 9는 본 발명의 일 실시예에 따른 어류의 시력 등급화 방법의 흐름도이다.
도 10은 본 발명의 일 실시예에 따른 초기 반응 특성을 설명하기 위한 그래프이다.
도 11은 본 발명의 일 실시예에 따라 물흐름 시자극 패턴의 단계별 대비 감도 차이에 따른 평균 초기 반응 속도 및 최대 초기 반응 속도를 비교한 결과를 도시하는 도면이다.
도 12는 본 발명의 일 실시예에 따라 물흐름 시자극 패턴의 단계별 대비 감도 차이에 따른 초기 반응률을 비교한 결과를 도시하는 도면이다.
도 13은 본 발명의 일 실시예에 따라 복수의 단계별 대비 감도 차이가 있는 하나 이상의 물흐름 시자극 패턴에 따른 초기 반응률의 곡선하 면적을 평균한 결과를 도시하는 도면이다.
도 14는 본 발명의 일 실시예에 따른 반응 종료 특성을 설명하기 위한 그래프이다.
도 15는 본 발명의 일 실시예에 따라 물흐름 시자극 패턴의 단계별 대비 감도 차이에 따른 평균 반응 종료 속도를 비교한 결과를 도시하는 도면이다.
도 16은 본 발명의 일 실시예에 따라 복수의 단계별 대비 감도 차이가 있는 하나 이상의 물흐름 시자극 패턴에 따른 전체 반응률의 곡선하 면적을 평균한 결과를 도시하는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 '연결'되어 있다고 할 때, 이는 '직접적으로 연결'되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 '간접적으로 연결'되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 '포함'한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
실시예 1: 제브라피쉬의 시기능 평가 시스템 구축
수정 후 4일된 제브라피쉬 치어를 사용하였다. 제브라피쉬 시기능을 효과적으로 평가할 수 있는 물흐름 시자극 동영상 구현 방법으로, 처음 일정 시간 (예, 45분간) 암순응 혹은 명순응 이후 암실에서 이동부 아래에 물흐름 시자극 패턴을 가지는 동영상이 디스플레이되는 디스플레이부를 재생하여 촬영부를 통해 비디오 녹화를 시행하였다(도 1).
물흐름 시자극 패턴을 가지는 동영상은 도 5에 모식적으로 나타내었다. 제브라피쉬를 출발 기준점으로 이동시키기 위하여 물흐름 동영상을 한쪽 방향으로 흐르도록 일정 시간 (예, 15초간) 재생 후, 1초의 멈춤 이후, 대비 감도에 차이 물흐름 동영상이 반대 방향으로 일정 시간 (예, 15초씩) 재생되도록 하였다.
암순응, 명순응 및 비순응 조건에서 제브라피쉬의 반응 결과를 알아보기 위해, 암실에서 물흐름 시자극 패턴을 가지는 동영상이 디스플레이되는 디스플레이부를 재생하기 전에 암순응, 명순을 및 비순응 조건을 주었다. 그 결과를 도 6에 나타내었다.
도 6을 보면, 대비 감도 차이가 있는 물흐름 시자극 동영상에 노출 전, 45분 암순응 후 시행한 실험이 명순응 및 비순응에 비해서 대비 감도 차이에 따른 제브라피쉬의 반응을 평가하기 좋은 조건임을 알 수 있었다. 이는 암순응 이후 물이 흐를 때 반대 방향으로 생기는 빛의 흐름을 보다 잘 인지할 수 있기 때문으로 생각된다.
실시예 2: Digoxigenin 약물의 안구 독성 평가
수정 후 4 또는 5일 된(4 ~ 5 days post fertilization, DPF) 치어에 24 시간 동안 Digoxigenin 약물을 처리하였다. 그리고 5 DPF에서 시기능 평가를 수행하였다. 대조군으로 DMSO를 처리한 제브라피쉬를 이용하였다. 그룹 당 30마리씩 검사하였고, 6회 반복 실험을 실시하여 통계 분석을 진행하였다. Digoxigenin은 5 uM, 10 uM 및 15 uM 농도로 처리하였다.
실시예 1에 기재된 대로, 암순응을 거친 다음, 암실에서 시기능 평가 시스템을 수행하였다. 구체적으로, 대비 감도 차이는 도 4의 시자극 등급표를 기준으로 G4에서 G7; G4에서 G8; G4에서 G9; G4에서 G10; G4에서 G11; G4에서 G12 및 G4에서 G13으로 단계별로 대비 감도에 차이가 있는 물흐름 시자극 패턴을 가지는 동영상을 디스플레이부에서 재생하였다. 시기능이 정상인 제브라피쉬는 G4 단계의 시자극을 받으면 왼쪽으로 모이고, G7, G8, G9, G10, G11, G12 또는 G13 단계의 시자극을 받으면 오른쪽(반대쪽)으로 이동하게 된다. 만약 시기능에 이상 있는 제브라피쉬의 경우 대비 감도가 감소되어 있는 시자극 이동 방향인 오른쪽(반대쪽)으로 잘 움직이지 않을 것이다. 제브라피쉬의 이동 개체 비율을 분석하여 도 7에 나타내었다.
도 7을 보면, G4에서 DMSO, Digoxigenin 5 uM, 10 uM을 처리한 군 사이에는 시기능에 차이가 없으나, Digoxigenin 15 uM 처리 군에서 유의하게 시기능 저하 소견이 관찰되었다. 또한 시자극 단계별 대비 감도 차이가 작아질수록 시자극에 따른 이동 계체 비율이 감소함을 확인하였다. 또한 G4에서 G9, G4에서 G10, G4에서 G11의 대비 감도 차이가 있는 경우, DMSO, Digoxigenin 각각 10 uM, 15 uM 사이에 시기능 차이가 있음을 확인하였다. 시자극 검사의 모든 구간에서 DMSO와 Digoxigenin 5 uM 사이에는 시기능 차이가 없었다.
실시예 3: Gentamicin 약물의 안구 독성 평가
Digoxigenin 대신 Gentamicin을 사용한 것을 제외하고는 실시예 3과 동일하게 안구 독성 평가를 수행하였다. 그 결과를 도 8에 나타내었다. 도 8에 나타난 바와 같이, 시자극 단계별 대비 감도가 작아질수록 시자극에 따른 이동 계체 비율이 선형으로 감소함을 알 수 있다. 또한 G4 단계에서 G8~G13 단계로의 시자극을 준 경우, 4 그룹(DMSO, Gentamicin 5uM, 10uM 및 15uM) 사이에 Gentamicin의 농도에 따른 시기능 저하의 차이를 구별할 수 있었다.
본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명에 따른 구성요소를 치환, 변형 및 변경할 수 있다는 것이 명백할 것이다.
도 9는 본 발명의 일 실시예에 따른 어류의 시력 등급화 방법의 흐름도이다.
도 9를 참조하면, 우선, 기 설정된 물흐름 시자극 패턴을 가지는 동영상이 디스플레이됨에 따라 이동하는 어류의 영상을 획득할 수 있다(S110).
본 발명에서는 단계별 대비 감도 차이, 즉 색깔의 대비 감도 차이가 있는 물흐름 시자극 패턴을 가진 동영상을 디스플레이하고, 이에 반응하여 이동하는 어류의 영상을 획득할 수 있다.
일 실시예에 따르면, 도 4와 같이 G1 내지 G16의 16 단계로 구분된 색상표에서 G4 단계 색상에서 G7 내지 G12 단계 중 어느 하나 이상의 색상으로 차이를 주어 대비 감도 차이가 있는 하나 이상의 물흐름 시자극 패턴을 사용할 수 있다.
이후, 어류의 영상을 분석하여 초기 반응 특성 및 반응 종료 특성 중 적어도 하나를 산출할 수 있다(S120).
여기서, 초기 반응 특성은 평균 초기 반응 속도, 최대 초기 반응 속도 및 초기 반응률 중 적어도 하나를 포함할 수 있다.
도 10은 본 발명의 일 실시예에 따른 초기 반응 특성을 설명하기 위한 그래프이다.
도 10을 참조하면, 잠복기는 자극 시작 후에 첫번째 개체가 출발점 경계선을 통과할 때까지 걸리는 시간을 나타내고, 평균 초기 반응 속도는 하기의 수식에 따라 산출할 수 있으며, 최대 초기 반응 속도는 도 10에 도시된 개체수 변화곡선에서 가장 많은 개체수 감소 속도를 보이는 시간에서의 접선의 기울기로 산출할 수 있다.
Figure PCTKR2019010224-appb-I000002
또한, 초기 반응률은 하기의 수식에 따라 산출할 수 있다.
Figure PCTKR2019010224-appb-I000003
도 11은 본 발명의 일 실시예에 따라 물흐름 시자극 패턴의 단계별 대비 감도 차이에 따른 평균 초기 반응 속도 및 최대 초기 반응 속도를 비교한 결과를 도시하는 도면으로, 도 11의 (a)는 평균 초기 반응 속도를 나타내고, (b)는 최대 초기 반응 속도를 나타낸다.
구체적으로, 도 11은 대조군 어류(즉, 정상 어류, control)와 Gentamicin 처리 농도 별(5uM, 10uM, 15uM) 어류에 대해 G7 내지 G12 단계의 색상으로 각각 대비 감도 차이를 준 경우의 평균 초기 반응 속도와 최대 초기 반응 속도를 나타내는 것으로, G7 및 G8 단계의 색상의 경우에 농도 별 반응 특성의 구분이 비교적 명확함을 알 수 있다.
도 12는 본 발명의 일 실시예에 따라 물흐름 시자극 패턴의 단계별 대비 감도 차이에 따른 초기 반응률을 비교한 결과를 도시하는 도면이다.
도 12 역시 대조군 어류(control)와 Gentamicin 처리 농도 별(5uM, 10uM, 15uM) 어류에 대해 G7 내지 G12 단계의 색상으로 각각 대비 감도 차이를 준 경우의 초기 반응률을 나타내는 것으로, G7 및 G8 단계의 색상의 경우에 농도 별 반응 특성의 구분이 비교적 명확함을 알 수 있다.
도 13은 본 발명의 일 실시예에 따라 복수의 단계별 대비 감도 차이가 있는 하나 이상의 물흐름 시자극 패턴에 따른 초기 반응률의 곡선하 면적을 평균한 결과를 도시하는 도면으로, (a)는 Digoxigenin 처리 농도 별로 G7 내지 G12 단계의 색상으로 각각 대비 감도 차이를 준 경우의 초기 반응률의 곡선하 면적을 평균한 결과를 나타내고, (b)는 Digoxigenin 처리 농도 별로 G10 내지 G12 단계의 색상으로 각각 대비 감도 차이를 준 경우의 초기 반응률의 곡선하 면적을 평균한 결과를 나타낸다.
도 13을 참조하면, 복수의 단계별 대비 감도 차이가 있는 하나 이상의 물흐름 시자극 패턴에 따른 반응 특성을 평균한 결과를 사용하는 경우에도 농도 별 반응 특성의 구분이 비교적 명확함을 알 수 있다.
다시 말해, 약물의 처리 농도가 높아질수록 시기능의 손상 정도가 심해질 수 있고, 이와 같은 시기능의 손상 정도에 따라 초기 반응 특성도 차등화되어 나타난다.
이에, 본 발명에서는 이와 같은 초기 반응 특성을 정상군과 비교한 결과를 기초로 어류의 시력을 등급화하는 방법을 제시한다.
한편, 반응 종료 특성은 평균 반응 종료 속도, 최대 반응 종료 속도 및 전체 반응률 중 적어도 하나를 포함할 수 있다.
도 14는 본 발명의 일 실시예에 따른 반응 종료 특성을 설명하기 위한 그래프이다.
도 14를 참조하면, 최소반응시간은 자극 시작 후에 첫번째 개체가 도착점 경계선을 통과할 때까지 걸리는 시간을 나타내고, 평균 반응 종료 속도는 하기의 수식에 따라 산출할 수 있으며, 최대 반응 종료 속도는 도 14에 도시된 개체수 변화곡선에서 가장 많은 개체수 증가 속도를 보이는 시간에서의 접선의 기울기로 산출할 수 있다.
Figure PCTKR2019010224-appb-I000004
또한, 전체 반응률은 하기의 수식에 따라 산출할 수 있다.
Figure PCTKR2019010224-appb-I000005
도 15는 본 발명의 일 실시예에 따라 물흐름 시자극 패턴의 단계별 대비 감도 차이에 따른 평균 반응 종료 속도를 비교한 결과를 도시하는 도면이다.
구체적으로, 도 15는 대조군 어류(control)와 Gentamicin 처리 농도 별(5uM, 10uM, 15uM) 어류에 대해 G7 내지 G12 단계의 색상으로 각각 대비 감도 차이를 준 경우의 평균 반응 종료 속도를 나타내는 것으로, G7 및 G8 단계의 색상의 경우에 농도 별 반응 특성의 구분이 비교적 명확함을 알 수 있다.
도 16은 본 발명의 일 실시예에 따라 복수의 단계별 대비 감도 차이가 있는 하나 이상의 물흐름 시자극 패턴에 따른 전체 반응률의 곡선하 면적을 평균한 결과를 도시하는 도면으로, (a)는 Digoxigenin 처리 농도 별로 G7 내지 G12 단계의 색상으로 각각 대비 감도 차이를 준 경우의 전체 반응률의 곡선하 면적을 평균한 결과를 나타내고, (b)는 Digoxigenin 처리 농도 별로 G10 내지 G12 단계의 색상으로 각각 대비 감도 차이를 준 경우의 전체 반응률의 곡선하 면적을 평균한 결과를 나타낸다.
도 16을 참조하면, 복수의 단계별 대비 감도 차이가 있는 하나 이상의 물흐름 시자극 패턴에 따른 반응 특성을 평균한 결과를 사용하는 경우에도 농도 별 반응 특성의 구분이 비교적 명확함을 알 수 있다.
다시 말해, 약물의 처리 농도가 높아질수록 시기능의 손상 정도가 심해질 수 있고, 이와 같은 시기능의 손상 정도에 따라 반응 종료 특성도 차등화되어 나타난다.
이에, 본 발명에서는 이와 같은 반응 종료 특성을 정상군과 비교한 결과를 기초로 어류의 시력을 등급화하는 방법을 제시한다.
이후, 산출한 초기 반응 특성 및 반응 종료 특성 중 적어도 하나를 기초로 어류의 시력을 등급화할 수 있다(S130).
일 실시예에 따르면, 초기 반응 특성 및 반응 종료 특성 중 적어도 하나에 대해 대조군 어류의 특성값 대비 어류의 특성값의 비율을 기 설정된 등급화 기준과 비교하여 어류의 시력을 등급화할 수 있다.
도 9를 참조하여 상술한 어류의 시력 등급화 방법은 영상 처리 및 연산이 가능한 프로세싱 장치에 의해 수행될 수 있다.
또한, 본 발명의 다른 실시예에 따르면, 도 9를 참조하여 상술한 어류의 시력 등급화 방법의 각 단계를 실행하기 위한 프로세서에 의해 실행 가능한 명령들이 기록된 컴퓨터 판독 가능한 저장매체가 제공될 수 있다.

Claims (25)

  1. 기 설정된 물흐름 시자극 패턴을 가지는 동영상이 디스플레이되는 디스플레이부;
    상기 디스플레이 장치의 상부측에 위치되며, 상기 동영상에 시각적으로 반응하는 다수의 어류의 이동이 가능하도록 하는 이동부;
    상기 이동부의 상부측로부터 소정 거리 이격되도록 설치되어, 상기 이동부를 촬영하는 촬영부; 및
    상기 촬영 영상을 수신 및 분석하여 어류 이동 패턴을 분석하는 분석부;
    를 포함하는 어류의 시기능 평가 시스템.
  2. 제1항에 있어서,
    상기 디스플레이부는 단계별 대비 감도 차이가 있는 물흐름 시자극 패턴을 가지 동영상이 디스플레이 되는 것인, 어류의 시기능 평가 시스템.
  3. 제2항에 있어서,
    상기 단계별 대비 감도 차이가 있는 물흐름 시자극 패턴에서, 상기 단계별 대비 감도 차이란 색깔의 대비 감도 차이인 것인, 어류의 시기능 평가 시스템.
  4. 제2항에 있어서,
    상기 단계별 대비 감도(명시도) 차이가 있는 물흐름 시자극 패턴에서, 상기 단계별 대비 감도 차이는 도 4에 기재된 색상표의 색상 차이를 기준으로 하는 것인, 어류의 시기능 평가 시스템.
  5. 제4항에 있어서,
    상기 대비 감도 차이는 G4 단계 색상에서 G7, G8, G9, G10, G11, G12, G13 또는 G14 단계 색상으로 차이를 주는 것인, 어류의 시기능 평가 시스템.
  6. 제1항에 있어서,
    상기 물흐름 시자극 패턴을 가지 동영상이 디스플레이되는 디스플레이부는, 일 방향의 흐름을 가진 물흐름 영상을 일정 시간 재생하고, 일정 시간 정지 이후에, 상기 재생 영상과 대비 감도에 차이를 가지면서 반대 방향의 흐름을 가진 물 흐름 영상이 일정 시간 재생되는 것인, 어류의 시기능 평가 시스템.
  7. 제6항에 있어서,
    상기 일 방향의 흐름을 가진 물흐름 영상을 5 내지 25초 재생하고, 1 내지 5초 정지 이후에, 상기 재생 영상과 대비 감도에 차이를 가지면서 반대 방향의 흐름을 가진 물 흐름 영상이 5 내지 25초 재생되는 것인, 어류의 시기능 평가 시스템.
  8. 제1항에 있어서,
    상기 이동부는 어류가 이동할 수 있는 투명 재질의 다수의 레인을 포함하는 것인, 어류의 시기능 평가 시스템.
  9. 제1항에 있어서,
    상기 분석부는 다음 식과 같이 어류의 이동 패턴을 분석하는 것인, 어류의 시기능 평가 시스템:
    Figure PCTKR2019010224-appb-I000006
  10. 제1항에 있어서,
    상기 분석부는 어류 자동화 고성능 추적 시스템(automated high-throughput tracking system)을 이용하여 어류의 이동 패턴을 분석하는 것인, 어류의 시기능 평가 시스템.
  11. 제1항에 있어서,
    상기 어류는 제브라피쉬(zebrafish)인, 어류의 시기능 평가 시스템.
  12. 제10항에 있어서,
    상기 제브라피쉬는 수정후 4일 이상인 치어인 것인, 어류의 시기능 평가 시스템.
  13. 어류들에 약물을 처리하고; 그리고
    상기 어류들이 대비 감도 차이가 있는 물흐름 시자극에 대해 반응하여 이동한 개체수를 검출하는;
    단계를 포함하는 약물의 안구 독성 스크리닝 방법.
  14. 제13항에 있어서,
    상기 어류는 제브라피쉬(zebrafish)인, 어류의 시기능 평가 시스템.
  15. 제13항에 있어서,
    상기 제브라피쉬는 수정후 4일 이상인 치어인 것인, 어류의 시기능 평가 시스템.
  16. 제13항에 있어서,
    상기 약물은 천연화합물, 합성화합물, RNA, DNA, 폴리펩티드, 효소 및 단백질로 이루어진 군으로 선택되는 어느 하나인 것인, 약물의 안구 독성 스크리닝 방법.
  17. 제13 항에 있어서,
    상기 어류들에 약물을 처리한 단계 이후에,
    일정 시간 동안 암순응 단계를 더 포함하는 것인, 약물의 안구 독성 스크리닝 방법.
  18. 제17항에 있어서,
    상기 암순응은 20 내지 60분 수행하는 것인, 약물의 안구 독성 스크리닝 방법.
  19. 제13항에 있어서,
    상기 검출 단계는,
    제1항 내지 제12항 중 어느 한 항에 따른 평가 시스템을 이용하여 상기 동물의 시기능을 평가하는 단계를 포함하는 약물의 안구 독성 스크리닝 방법.
  20. 기 설정된 물흐름 시자극 패턴을 가지는 동영상이 디스플레이됨에 따라 이동하는 어류의 영상을 획득하는 단계;
    상기 어류의 영상을 분석하여 초기 반응 특성 및 반응 종료 특성 중 적어도 하나를 산출하는 단계; 및
    상기 초기 반응 특성 및 반응 종료 특성 중 적어도 하나를 기초로 상기 어류의 시력을 등급화하는 단계를 포함하는 어류의 시력 등급화 방법.
  21. 제 20 항에 있어서,
    상기 초기 반응 특성은 평균 초기 반응 속도, 최대 초기 반응 속도 및 초기 반응률 중 적어도 하나를 포함하는 것을 특징으로 하는 어류의 시력 등급화 방법.
  22. 제 20 항에 있어서,
    상기 반응 종료 특성은 평균 반응 종료 속도, 최대 반응 종료 속도 및 전체 반응률 중 적어도 하나를 포함하는 것을 특징으로 하는 어류의 시력 등급화 방법.
  23. 제 20 항에 있어서, 상기 어류의 시력을 등급화하는 단계는,
    상기 초기 반응 특성 및 반응 종료 특성 중 적어도 하나에 대해 대조군 어류의 특성값 대비 상기 어류의 특성값의 비율을 기 설정된 등급화 기준과 비교하여 상기 어류의 시력을 등급화하는 것을 특징으로 하는 어류의 시력 등급화 방법.
  24. 제 20 항에 있어서, 상기 어류의 영상을 획득하는 단계는,
    G1 내지 G16의 16 단계로 구분되어 기 정해진 색상표에서 G4 단계 색상에서 G7 내지 G12 단계 중 어느 하나 이상의 색상으로 차이를 주어 대비 감도 차이가 있는 하나 이상의 물흐름 시자극 패턴을 사용하는 것을 특징으로 하는 어류의 시력 등급화 방법.
  25. 제 20 항에 따른 어류의 시력 등급화 방법을 실행하기 위한 프로세서에 의해 실행 가능한 명령들이 기록된 컴퓨터 판독 가능한 저장 매체.
PCT/KR2019/010224 2018-10-31 2019-08-12 어류의 시기능 평가 시스템 및 이를 이용한 안구 독성 약물 스크리닝 방법, 어류의 시력 등급화 방법 및 컴퓨터 판독 가능한 저장매체 WO2020091201A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020180131826A KR102120159B1 (ko) 2018-10-31 2018-10-31 어류의 시기능 평가 시스템 및 이를 이용한 안구 독성 약물 스크리닝 방법
KR10-2018-0131826 2018-10-31
KR1020190098246A KR102223999B1 (ko) 2019-08-12 2019-08-12 어류의 시력 등급화 방법 및 컴퓨터 판독 가능한 저장매체
KR10-2019-0098246 2019-08-12

Publications (1)

Publication Number Publication Date
WO2020091201A1 true WO2020091201A1 (ko) 2020-05-07

Family

ID=70464159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010224 WO2020091201A1 (ko) 2018-10-31 2019-08-12 어류의 시기능 평가 시스템 및 이를 이용한 안구 독성 약물 스크리닝 방법, 어류의 시력 등급화 방법 및 컴퓨터 판독 가능한 저장매체

Country Status (1)

Country Link
WO (1) WO2020091201A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101476355B1 (ko) * 2014-01-22 2014-12-24 강원대학교산학협력단 제브라피쉬 약물 행동 검사장치
KR101533573B1 (ko) * 2012-07-02 2015-07-06 지노믹디자인 주식회사 어류의 시각 인식을 이용한 생리 활성 물질의 스크리닝 방법
KR101638596B1 (ko) * 2014-11-28 2016-07-11 기초과학연구원 실험체의 사회성 실험장치 및 실험방법
KR20170086678A (ko) * 2012-05-21 2017-07-26 디씨비-유에스에이 엘엘씨 제브라피시 모델을 사용한 약물 스크리닝 방법 및 이 방법으로 스크린된 화합물
US20180279921A1 (en) * 2015-10-14 2018-10-04 President And Fellows Of Harvard College Automatically classifying animal behavior

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170086678A (ko) * 2012-05-21 2017-07-26 디씨비-유에스에이 엘엘씨 제브라피시 모델을 사용한 약물 스크리닝 방법 및 이 방법으로 스크린된 화합물
KR101533573B1 (ko) * 2012-07-02 2015-07-06 지노믹디자인 주식회사 어류의 시각 인식을 이용한 생리 활성 물질의 스크리닝 방법
KR101476355B1 (ko) * 2014-01-22 2014-12-24 강원대학교산학협력단 제브라피쉬 약물 행동 검사장치
KR101638596B1 (ko) * 2014-11-28 2016-07-11 기초과학연구원 실험체의 사회성 실험장치 및 실험방법
US20180279921A1 (en) * 2015-10-14 2018-10-04 President And Fellows Of Harvard College Automatically classifying animal behavior

Similar Documents

Publication Publication Date Title
WO2014163375A1 (ko) 기판의 이물질 검사방법
WO2017039259A1 (ko) 열화상 카메라를 이용한 전력설비 진단 장치 및 방법
WO2022145614A1 (ko) 축사 영상을 이용한 가축 체중 추정 시스템 및 방법
WO2016163755A1 (ko) 품질 측정 기반의 얼굴 인식 방법 및 장치
CN107219229B (zh) 一种面板灰尘过滤方法及装置
WO2018117353A1 (ko) 홍채와 공막의 경계선 검출 방법
WO2017008320A1 (zh) 一种多晶硅薄膜的质量检测方法和系统
WO2010008134A2 (en) Image processing method
WO2021118255A2 (ko) 전안부 이미지를 이용한 각막 병변 분석 시스템 및 방법 그리고 컴퓨터로 판독 가능한 기록 매체
WO2016167499A1 (ko) 촬영 장치 및 촬영 장치의 제어 방법
WO2021132813A1 (ko) 딥러닝 모델을 이용한 통증 평가 방법 및 분석 장치
WO2020091201A1 (ko) 어류의 시기능 평가 시스템 및 이를 이용한 안구 독성 약물 스크리닝 방법, 어류의 시력 등급화 방법 및 컴퓨터 판독 가능한 저장매체
KR102120159B1 (ko) 어류의 시기능 평가 시스템 및 이를 이용한 안구 독성 약물 스크리닝 방법
WO2019103186A1 (ko) 뇌파 분석을 통한 뇌 나이 추정 방법 및 시스템
WO2019103188A1 (ko) 뇌파 분석을 통한 외상성 뇌손상 평가 시스템 및 방법
WO2018131737A1 (ko) 불량 패널 검사 장치
WO2009119983A2 (ko) 중복 영상을 이용한 에프피디 기판 및 반도체 웨이퍼 검사시스템
WO2020226273A1 (ko) 가상의 그리드 선을 이용한 미세 입자 계수용 이미지 센서 패키지, 미세 입자 계수 시스템 및 방법
WO2018088760A2 (ko) 검사체에 대한 양부 판정 조건을 조정하는 방법 및 장치
Schumann et al. The pedtracker: An automatic staging approach for drosophila melanogaster larvae
Tiriac et al. Retinal waves but not visual experience are required for development of retinal direction selectivity maps
WO2018088649A1 (ko) 글린트 검출 방법
Outlaw et al. Smartphone colorimetry using ambient subtraction: application to neonatal jaundice screening in Ghana
WO2021112436A1 (ko) 장 정결도의 자동화 계산 장치 및 방법
WO2023027494A1 (ko) 녹내장 검사를 위한 색 안저 이미지에서 딥러닝 기반 망막 신경 섬유층 두께 결정 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19877958

Country of ref document: EP

Kind code of ref document: A1