WO2020091061A1 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2020091061A1
WO2020091061A1 PCT/JP2019/043097 JP2019043097W WO2020091061A1 WO 2020091061 A1 WO2020091061 A1 WO 2020091061A1 JP 2019043097 W JP2019043097 W JP 2019043097W WO 2020091061 A1 WO2020091061 A1 WO 2020091061A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
secondary battery
positive electrode
electrolyte secondary
negative electrode
Prior art date
Application number
PCT/JP2019/043097
Other languages
French (fr)
Japanese (ja)
Inventor
一郎 有瀬
孝輔 倉金
村上 力
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020217015736A priority Critical patent/KR20210080518A/en
Publication of WO2020091061A1 publication Critical patent/WO2020091061A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are currently widely used as batteries for devices such as personal computers, mobile phones and personal digital assistants.
  • porous base material containing polyolefin as a main component as a separator.
  • the porous base material containing polyolefin as a main component has a shutdown function of closing pores open in the porous base material at about 130 ° C. to 140 ° C. when the battery internal temperature rises due to some trouble.
  • the porous base material containing polyolefin as the main component has low heat resistance, so that it is melted by being exposed to a temperature higher than the temperature at which the shutdown function operates, resulting in a short circuit inside the battery and ignition of the battery. Or there was a risk of an explosion. Therefore, for the purpose of improving the heat resistance of the porous base material, a separator in which a porous layer containing a filler and a resin is laminated on at least one surface of the porous base material is being developed.
  • Patent Document 1 describes a battery separator formed of a porous layer containing boehmite (plate-like particles) as fine particles.
  • One aspect of the present invention has been made in view of the above problems, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery in which the charge recovery capacity after a high rate cycle is favorably maintained.
  • the present invention includes the following configurations: ⁇ 1> A porous layer containing an inorganic filler and a resin, a positive electrode plate, and a negative electrode plate are provided, The interfacial barrier energy of the positive electrode active material when the positive electrode plate and the negative electrode plate are processed into a disk shape having a diameter of 15.5 mm, and immersed in an ethylene carbonate / ethyl methyl carbonate / diethyl carbonate solution of LiPF 6 having a concentration of 1 M to measure.
  • the non-aqueous electrolyte secondary battery wherein the porous layer has a value represented by the following formula (1) in a range of 0.10 to 0.42.
  • T represents a distance to a critical load in a scratch test under a constant load of 0.1 N in TD
  • M represents a scratch test under a constant load of 0.1 N in MD.
  • the resin contained in the porous layer is one or more selected from the group consisting of polyolefin, (meth) acrylate resin, fluorine-containing resin, polyamide resin, polyester resin and water-soluble polymer.
  • ⁇ 5> The non-aqueous electrolyte secondary battery according to ⁇ 4>, wherein the polyamide resin is an aramid resin.
  • a non-aqueous electrolyte secondary battery in which the charge recovery capacity after a high rate cycle is favorably maintained.
  • FIG. 1 It is a schematic diagram showing the structure of the said porous layer when the orientation of an inorganic filler is large in the porous layer containing an inorganic filler (left figure), and when the orientation of an inorganic filler is small (right figure). It is a figure which shows the apparatus and its operation in a scratch test. It is the figure which showed the critical load and the distance to a critical load in the graph created from the result of the scratch test.
  • a non-aqueous electrolyte secondary battery includes a porous layer containing an inorganic filler and a resin, a positive electrode plate, and a negative electrode plate, The interfacial barrier energy of the positive electrode active material when the positive electrode plate and the negative electrode plate are processed into a disk shape having a diameter of 15.5 mm, and immersed in an ethylene carbonate / ethyl methyl carbonate / diethyl carbonate solution of LiPF 6 having a concentration of 1 M to measure.
  • the porous layer has a value represented by the following formula (1) in the range of 0.10 to 0.42.
  • T represents a distance to a critical load in a scratch test under a constant load of 0.1 N in TD (Transverse Direction), and M represents 0.1 N in MD (Machine Direction). Indicates the distance to the critical load in the scratch test under constant load.
  • the positive electrode plate and the negative electrode plate in which the sum of the interfacial barrier energies is within the above range, migration of ions and charges on the active material surface in the positive electrode active material layer and the negative electrode active material layer during the charge / discharge cycle process. Are made uniform. Therefore, the reactivity of the entire active material becomes appropriate and uniform, and the structural change in the active material layer and the deterioration of the active material itself are suppressed.
  • the porous layer whose scratch test results fall within the above range has a uniform and dense structure. Therefore, in such a porous layer, the uniformity of lithium ion distribution is maintained.
  • the non-aqueous electrolyte secondary battery according to one aspect of the present invention has a new effect that the charge recovery capacity after a high rate cycle is favorably maintained.
  • the effect is that (i) the distribution of lithium ions in the porous layer is uniform, and (ii) the adhesion between the constituent materials of the active material layer against the expansion and contraction of the active material during the charge / discharge cycle. And that the adhesion between the constituent material of the active material layer and the current collector foil is maintained well. That is, as a result of combining the above-mentioned characteristic points, electrode deterioration due to charge / discharge cycles is suppressed. Therefore, it is estimated that the charge recovery capacity after the high-rate cycle is maintained well.
  • the charge recovery capacity after the high rate cycle is measured by the following procedure.
  • “1C” means the current value for discharging the rated capacity with the discharge capacity of 1 hour rate in 1 hour.
  • CC-CV charging means a charging method in which charging is performed with a constant current until a predetermined voltage is reached, and then charging is performed while reducing the current so that the predetermined voltage is maintained.
  • the “CC discharge” means a discharge method of discharging a predetermined voltage while maintaining a constant current.
  • the charge recovery capacity test is to discharge the non-aqueous electrolyte secondary battery after a charge / discharge cycle at a low rate (0.2 C) to completely discharge the capacity of the non-aqueous electrolyte secondary battery. Later, it is a test method to check the charge capacity more accurately. By this test, the degree of deterioration of the charging performance of the non-aqueous electrolyte secondary battery itself, particularly the degree of deterioration of the charging performance of the electrodes can be confirmed.
  • the charge recovery capacity of the non-aqueous electrolyte secondary battery according to an aspect of the present invention after the high rate cycle is preferably 14 mAh or more, more preferably 14.5 mAh or more.
  • the positive electrode plate in the non-aqueous electrolyte secondary battery according to the exemplary embodiment of the present invention is obtained by processing the positive electrode plate and a negative electrode plate described below into a disk shape having a diameter of 15.5 mm, and a concentration of 1M LiPF 6 ethylene carbonate / ethyl.
  • the sum of the interfacial barrier energies is 5000 J / mol or more as measured by dipping in a methyl carbonate / diethyl carbonate solution.
  • such a positive electrode plate includes a sheet-shaped positive electrode plate in which a positive electrode active material layer, a positive electrode mixture containing a positive electrode active material, a conductive agent, and a binder is carried on a positive electrode current collector.
  • the positive electrode plate may carry the positive electrode mixture on both surfaces of the positive electrode current collector, or may carry the positive electrode mixture on one surface of the positive electrode current collector.
  • Examples of the positive electrode active material include materials that can be doped with lithium ions and dedoped.
  • a transition metal oxide is preferable as the material.
  • Examples of the transition metal oxide include a lithium composite oxide containing at least one transition metal such as V, Mn, Fe, Co, and Ni.
  • a lithium composite oxide having an ⁇ -NaFeO 2 type structure such as lithium nickel oxide and lithium cobalt oxide
  • a lithium complex having a spinel structure such as lithium manganese spinel
  • Oxides are more preferred.
  • the lithium composite oxide may contain various metal elements, and composite lithium nickel oxide is more preferable.
  • the composite lithium nickelate containing the metal element is used such that the ratio of the at least one metal element is 0.1 to 20 mol% with respect to the sum of the number of moles of Ni in lithium nickelate, It is even more preferable because it has excellent cycle characteristics when used in a high capacity.
  • an active material containing Al or Mn and having a Ni ratio of 85% or more, and more preferably 90% or more is used in a high capacity non-aqueous electrolyte secondary battery including a positive electrode plate containing the active material. Is particularly preferable because it has excellent cycle characteristics.
  • Examples of the conductive agent include carbonaceous materials such as natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies. Only one type of the conductive agent may be used, or two or more types may be used in combination, for example, artificial graphite and carbon black may be mixed and used.
  • binder examples include polyvinylidene fluoride, vinylidene fluoride copolymer, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer.
  • Thermoplastics such as ethylene-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, thermoplastic polyimide, polyethylene and polypropylene Examples include resins, acrylic resins, and styrene-butadiene rubber.
  • the binder also has a function as a thickener.
  • a method for obtaining the positive electrode mixture for example, a method of pressurizing a positive electrode active material, a conductive agent and a binder on a positive electrode current collector to obtain a positive electrode mixture; a positive electrode active material using a suitable organic solvent, a conductive material A method of forming a positive electrode mixture by forming the paste and the binder into a paste; and the like.
  • Examples of the positive electrode current collector include conductors such as Al, Ni, and stainless steel. Among them, Al is more preferable because it is easily processed into a thin film and is inexpensive.
  • a method for producing a sheet-shaped positive electrode plate that is, a method of supporting a positive electrode mixture on a positive electrode current collector, for example, a positive electrode active material serving as a positive electrode mixture, a conductive agent, and a binder are provided on the positive electrode current collector.
  • Pressure molding method A positive electrode active material, a conductive agent and a binder are made into a paste using an appropriate organic solvent to obtain a positive electrode mixture, and then the positive electrode mixture is applied to a positive electrode current collector, A method of applying pressure to the sheet-shaped positive electrode mixture obtained by drying and fixing it to the positive electrode current collector;
  • the particle size of the positive electrode active material is represented by, for example, the average particle size per volume (D50).
  • the average particle size per volume of the positive electrode active material is usually about 0.1 to 30 ⁇ m.
  • the average particle diameter (D50) per volume of the positive electrode active material can be measured using a laser diffraction particle size distribution meter (manufactured by Shimadzu Corporation, trade name: SALD2200).
  • the aspect ratio (major axis diameter / minor axis diameter) of the positive electrode active material is usually a value of about 1 to 100.
  • the aspect ratio of the positive electrode active material is the length of the minor axis (minor axis) of 100 particles that do not overlap in the thickness direction in a SEM image observed from above the placement surface in a state where the inorganic filler is placed on a plane. It can be measured by a method represented as an average value of the ratio of the diameter) to the length of the major axis (major axis diameter).
  • the porosity of the positive electrode active material layer is usually about 10 to 80%.
  • the porosity ( ⁇ ) of the positive electrode active material layer is the density ⁇ (g / m 3 ) of the positive electrode active material layer, and each of the substances (eg, positive electrode active material, conductive agent, binder, etc.) constituting the positive electrode active material layer.
  • the density of the positive electrode active material layer
  • each of the substances eg, positive electrode active material, conductive agent, binder, etc.
  • 1- ⁇ ⁇ (b 1/100) / c 1 + ⁇ ⁇ (b 2/100) / c 2 + ⁇ ⁇ ⁇ (b n / 100) / c n ⁇ ⁇ 100.
  • the proportion of the positive electrode active material in the positive electrode active material layer is usually 70% by weight or more.
  • the coating line speed for applying the positive electrode mixture containing the positive electrode active material on the current collector is in the range of 10 to 200 m / min.
  • the coating line speed during coating can be adjusted by appropriately setting the device for coating the positive electrode active material.
  • the negative electrode plate in the non-aqueous electrolyte secondary battery according to the exemplary embodiment of the present invention is obtained by processing the positive electrode plate and the negative electrode plate into a disk shape having a diameter of 15.5 mm, and a concentration of 1 M of LiPF 6 ethylene carbonate / ethyl methyl.
  • such a negative electrode plate includes a sheet-shaped negative electrode plate in which a negative electrode active material layer, a negative electrode mixture containing a negative electrode active material, a conductive agent, and a binder is carried on a negative electrode current collector.
  • the negative electrode plate may carry the negative electrode mixture on both surfaces of the negative electrode current collector, or may carry the negative electrode mixture on one surface of the negative electrode current collector.
  • the sheet-shaped negative electrode plate preferably contains the conductive agent and the binder.
  • the negative electrode active material examples include materials that can be doped / dedoped with lithium ions, lithium metal, lithium alloys, and the like.
  • the material include carbonaceous materials such as natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies; potential lower than that of the positive electrode plate Chalcogen compounds such as oxides and sulfides for doping and dedoping lithium ions with Al; Al, Pb, Sn, Bi, Si and other metals alloying with them, and cubic crystals capable of intercalating alkali metals Examples thereof include system intermetallic compounds (AlSb, Mg 2 Si, NiSi 2 ), lithium nitrogen compounds (Li 3 ⁇ x M x N (M: transition metal)), and the like.
  • the negative electrode active materials those having graphite are preferable because they have high potential flatness and can obtain a large energy density when combined with the positive electrode plate because of low average discharge potential, and thus, those containing graphite are preferable, such as natural graphite and artificial graphite.
  • the carbonaceous material containing the graphite material as a main component is more preferable.
  • the negative electrode active material may be a mixture of graphite and silicon, and the negative electrode active material having a ratio of Si to C constituting the graphite of 5% or more is preferable, and the negative electrode active material having 10% or more is preferable. More preferable.
  • a method of obtaining the negative electrode mixture for example, a method of pressing the negative electrode active material on the negative electrode current collector to obtain the negative electrode mixture; making the negative electrode active material into a paste using an appropriate organic solvent to form the negative electrode mixture. And the like.
  • Examples of the negative electrode current collector include Cu, Ni, and stainless steel. Particularly, in a lithium ion secondary battery, Cu is more preferable because it is difficult to form an alloy with lithium and is easily processed into a thin film.
  • a method for producing a sheet-shaped negative electrode plate that is, a method of supporting a negative electrode mixture on a negative electrode current collector, for example, a method of press-molding a negative electrode active material to be a negative electrode mixture on the negative electrode current collector;
  • a negative electrode active material is made into a paste using a different organic solvent to obtain a negative electrode mixture, and then the negative electrode mixture is applied to a negative electrode current collector, and the sheet-shaped negative electrode mixture obtained by drying is added.
  • the paste preferably contains the conductive agent and the binder.
  • the average particle size (D50) per volume of the negative electrode active material is usually about 0.1 to 30 ⁇ m.
  • the aspect ratio (major axis diameter / minor axis diameter) of the negative electrode active material is usually a value of about 1 to 10.
  • the porosity of the negative electrode active material layer is usually about 10 to 60%.
  • the proportion of the active material in the negative electrode active material layer is usually 70% by weight or more, preferably 80% or more, more preferably 90% or more.
  • the coating line speed for coating the negative electrode mixture containing the negative electrode active material on the current collector is in the range of 10 to 200 m / min.
  • the coating line speed during coating can be adjusted by appropriately setting the device for coating the negative electrode active material.
  • the method for determining the particle size, aspect ratio, porosity, proportion occupied in the negative electrode active material layer, and coating roll speed of the negative electrode active material is the same as the method described in [Positive electrode plate].
  • the sum of energy is 5000 J / mol or more.
  • the sum of the interface barrier energies is preferably 5100 J / mol or more, more preferably 5200 J / mol or more.
  • the movement of ions and charges on the surface of the active material in the active material layer is made uniform, and as a result, the reactivity of the entire active material layer is appropriate, and Be uniform. It is considered that this suppresses structural changes in the active material layer and deterioration of the active material itself.
  • the reactivity in the active material layer becomes non-uniform, which causes a local structural change in the active material layer or a partial active material It is considered to cause deterioration (generation of gas, etc.).
  • the non-aqueous electrolyte secondary battery according to the embodiment of the present invention has This brings about an effect that the charge recovery capacity is favorably maintained.
  • the upper limit of the sum of interface barrier energy is not particularly limited. However, an excessively high sum of interfacial barrier energies is not preferable because it inhibits the movement of ions and charges on the surface of the active material, and as a result, the redox reaction of the active material due to charging and discharging is less likely to occur.
  • the upper limit of the sum of interface barrier energies is about 15,000 J / mol.
  • the sum of the interface barrier energies explained above is measured and calculated as the sum of the interface barrier energies of the positive electrode active material and the negative electrode active material according to the following procedure.
  • a negative electrode plate, a separator, a positive electrode plate, a SUS plate (diameter: 15.5 mm, thickness: 0.5 mm) and a wave washer are laminated in this order from the bottom side in a CR2032 type battery case. After that, an electrolytic solution is injected, the lid is closed, and a coin battery is manufactured.
  • the resistance r 1 + r 2 on the interface of the electrode active material of the positive electrode plate and the negative electrode plate at each temperature is obtained.
  • the resistance r 1 + r 2 is the sum of the resistance associated with the ion movement of the positive electrode and the negative electrode and the resistance associated with the charge transfer of the positive electrode and the negative electrode.
  • This semi-circular arc may be completely divided into two circular arcs, or may be a flat circle in which two circles overlap each other.
  • the sum of the interface barrier energy of the positive electrode active material and the interface barrier energy of the negative electrode active material is calculated according to the following equations (2) and (3).
  • the expression (3) is an expression in which natural logarithms of both sides of the expression (2) are taken.
  • ln ⁇ 1 / (r 1 + r 2 ) ⁇ is a linear function of 1 / T. Therefore, Ea / R is obtained from the slope of the approximate straight line obtained by plotting the resistance values at the respective temperatures in the equation (3) and obtaining the least squares method from the plot. By substituting the gas constant R into this value, the sum Ea of interface barrier energies can be calculated.
  • the sum of interface barrier energies can be controlled by, for example, the particle size ratio of the positive electrode active material and the negative electrode active material.
  • the value of the particle size ratio between the positive electrode active material and the negative electrode active material is preferably 6.0 or less. If the value of the particle size ratio of the positive electrode active material and the negative electrode active material is too large, the sum of the interface barrier energies tends to be too small.
  • the porous layer may be disposed between the polyolefin porous film and at least one of the positive electrode plate and the negative electrode plate as a member constituting the non-aqueous electrolyte secondary battery.
  • the porous layer may be formed on one side or both sides of the polyolefin porous film.
  • the porous layer may be formed on the active material layer of at least one of the positive electrode plate and the negative electrode plate.
  • the porous layer may be arranged between the polyolefin porous film and at least one of the positive electrode plate and the negative electrode plate so as to be in contact with them.
  • the porous layer disposed between the polyolefin porous film and at least one of the positive electrode plate and the negative electrode plate may be one layer or two or more layers.
  • the porous layer is preferably an insulating porous layer containing a resin.
  • the porous layer is laminated on one side of the polyolefin porous film
  • the porous layer is preferably laminated on the surface of the polyolefin porous film facing the positive electrode plate. More preferably, the porous layer is laminated on the surface in contact with the positive electrode plate.
  • the porous layer in one embodiment of the present invention contains an inorganic filler and a resin.
  • the porous layer has a large number of pores inside and has a structure in which these pores are connected, and is a layer through which gas or liquid can pass from one surface to the other surface.
  • the porous layer in one embodiment of the present invention is used as a member constituting a laminated separator for a non-aqueous electrolyte secondary battery described later, the porous layer is for the non-aqueous electrolyte secondary battery.
  • the outermost layer of the laminated separator can be a layer in contact with the electrode.
  • the resin used for the porous layer in one embodiment of the present invention is preferably insoluble in the electrolytic solution of the battery and electrochemically stable in the range of use of the battery.
  • the resin used for the porous layer examples include polyolefin; (meth) acrylate resin; fluorine-containing resin; polyamide resin; polyimide resin; polyester resin; rubbers; melting point or glass transition temperature of 180 ° C. or higher. Resins; water-soluble polymers; polycarbonates, polyacetals, polyether ether ketones and the like.
  • polyolefin, (meth) acrylate resin, fluorine-containing resin, polyamide resin, polyester resin and water-soluble polymer are preferable.
  • polyethylene polyethylene, polypropylene, polybutene, ethylene-propylene copolymer and the like are preferable.
  • fluorine-containing resin examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer Coalescence, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-trichloroethylene copolymer, vinylidene fluoride-vinyl fluoride copolymer, vinylidene fluoride-hexafluoro Examples thereof include propylene-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer and the like, and fluorine-containing rubber having a glass transition temperature of 23 ° C. or lower among the fluor
  • polyamide resin aramid resins such as aromatic polyamide and wholly aromatic polyamide are preferable.
  • the aramid resin examples include poly (paraphenylene terephthalamide), poly (metaphenylene isophthalamide), poly (parabenzamide), poly (metabenzamide), poly (4,4′-benzanilide terephthalate). Amide), poly (paraphenylene-4,4′-biphenylenedicarboxylic acid amide), poly (metaphenylene-4,4′-biphenylenedicarboxylic acid amide), poly (paraphenylene-2,6-naphthalenedicarboxylic acid amide), Poly (metaphenylene-2,6-naphthalenedicarboxylic acid amide), poly (2-chloroparaphenylene terephthalamide), paraphenylene terephthalamide / 2,6-dichloroparaphenylene terephthalamide copolymer, metaphenylene terephthalamide / 2 , 6-diclosure Paraphenylene terephthalamide copolymer and the like. Of these, poly (paraphenylene
  • polyester resin aromatic polyester such as polyarylate and liquid crystal polyester are preferable.
  • Examples of rubbers include styrene-butadiene copolymer and its hydride, methacrylic acid ester copolymer, acrylonitrile-acrylic acid ester copolymer, styrene-acrylic acid ester copolymer, ethylene propylene rubber, polyvinyl acetate and the like. Can be mentioned.
  • Examples of the resin having a melting point or glass transition temperature of 180 ° C. or higher include polyphenylene ether, polysulfone, polyether sulfone, polyphenylene sulfide, polyetherimide, polyamideimide, and polyetheramide.
  • water-soluble polymers examples include polyvinyl alcohol, polyethylene glycol, cellulose ether, sodium alginate, polyacrylic acid, polyacrylamide, polymethacrylic acid and the like.
  • the resin used for the porous layer only one kind may be used, or two or more kinds may be used in combination.
  • a fluorine-containing resin is preferable because it can be easily maintained.
  • the porous layer in one embodiment of the present invention contains an inorganic filler.
  • the lower limit of the content is preferably 50% by weight or more and 70% by weight or more based on the total weight of the filler and the resin constituting the porous layer in the embodiment of the present invention. More preferably, it is more preferably 90% by weight or more.
  • the upper limit of the content of the inorganic filler in the porous layer in the embodiment of the present invention is preferably 99% by weight or less, and more preferably 98% by weight or less.
  • the content of the filler is preferably 50% by weight or more from the viewpoint of heat resistance, and the content of the filler is preferably 99% by weight or less from the viewpoint of adhesion between the fillers.
  • the inorganic filler is not particularly limited as long as it is a filler that is stable in a non-aqueous electrolytic solution and is electrochemically stable. From the viewpoint of ensuring the safety of the battery, a filler having a heat resistant temperature of 150 ° C. or higher is preferable.
  • the inorganic filler is not particularly limited, but is usually an insulating filler.
  • the inorganic filler is preferably an inorganic material containing at least one element selected from the group consisting of aluminum element, zinc element, calcium element, zirconium element, silicon element, magnesium element, barium element, and boron element, and preferably Is an inorganic substance containing an aluminum element.
  • the inorganic filler preferably contains an oxide of the above element.
  • the inorganic filler titanium oxide, alumina (Al 2 O 3 ), zinc oxide (ZnO), calcium oxide (CaO), zirconia oxide (ZrO 2 ), silica, magnesia, barium oxide, boron oxide, Examples thereof include mica, wollastonite, attapulgite, and boehmite (alumina monohydrate).
  • the inorganic filler one kind of filler may be used alone, or two or more kinds of filler may be used in combination.
  • the inorganic filler in the porous layer in one embodiment of the present invention preferably contains alumina and a plate-like filler.
  • the plate-like filler include one or more fillers selected from the group consisting of zinc oxide (ZnO), mica, and boehmite among oxides of the above-mentioned elements.
  • the volume average particle size of the inorganic filler is preferably in the range of 0.01 ⁇ m to 10 ⁇ m from the viewpoint of ensuring good adhesiveness and slipperiness, and moldability of the laminate.
  • the lower limit value is more preferably 0.05 ⁇ m or more, further preferably 0.1 ⁇ m or more.
  • the upper limit value is more preferably 5 ⁇ m or less, further preferably 1 ⁇ m or less.
  • the shape of the inorganic filler is arbitrary and is not particularly limited.
  • the shape of the inorganic filler may be a particle shape, for example, a spherical shape; an elliptical shape; a plate shape; a rod shape; an indefinite shape; a fibrous shape; a spherical or columnar single particle such as a peanut shape and / or a tetrapot shape.
  • the shape may be any of the above.
  • the inorganic filler is preferably plate-like particles and / or non-aggregated primary particles.
  • the shape of the inorganic filler is such that the particles in the porous material are difficult to be most closely packed, voids are easily formed between the particles, bumps, dents, constrictions, ridges or bulges, and dendritic
  • a single particle is heat-fused such as an indeterminate shape such as a shape, a coral shape, or a tuft shape; a fibrous shape; a peanut shape and / or a tetrapot shape.
  • the shape of the inorganic filler is particularly preferably a shape in which spherical or columnar single particles such as peanut-shaped and / or tetrapot-shaped particles are heat-sealed.
  • the filler can improve the slipperiness by forming fine irregularities on the surface of the porous layer, but when the filler is plate-like particles and / or primary particles which are not aggregated, the filler is As a result, the unevenness formed on the surface of the porous layer becomes finer, and the adhesiveness between the porous layer and the electrode becomes better.
  • the oxygen atom mass percentage of the oxide of the element forming the inorganic filler contained in the porous layer is preferably 10% to 50%, and preferably 20% to 50%. Is more preferable.
  • the oxygen atomic mass percentage of the oxide of the element is in the above range, the affinity between the solvent or the dispersion medium in the coating liquid used in the method for producing a porous layer described later and the inorganic filler is preferable. It is possible to maintain a proper distance between the inorganic fillers. As a result, the dispersibility of the coating liquid can be improved, and as a result, the above formula (1) can be controlled within an appropriate specified range.
  • the aspect ratio of the inorganic filler itself contained in the porous layer in the embodiment of the present invention is such that, in a state where the inorganic filler is arranged on a plane, in the SEM image observed from vertically above the arrangement surface, the aspect ratio overlaps in the thickness direction. It is expressed as the average value of the ratio of the length of the minor axis (minor axis diameter) to the length of the major axis (minor axis diameter) of 100 particles that are not present.
  • the aspect ratio of the inorganic filler itself is preferably 1 to 10, more preferably 1.1 to 8, and even more preferably 1.2 to 5.
  • the aspect ratio of the inorganic filler itself is in the above range, when the porous layer in one embodiment of the present invention is formed by the method described below, in the resulting porous layer, the orientation of the filler, The uniformity of the distribution of the filler on the surface of the porous layer can be controlled within a preferable range.
  • the porous layer in one embodiment of the present invention may contain other components than the above-mentioned inorganic filler and resin.
  • the other components include surfactants, waxes and binder resins.
  • the content of the other components is preferably 0% by weight to 50% by weight based on the weight of the entire porous layer.
  • the average film thickness of the porous layer in one embodiment of the present invention is preferably in the range of 0.5 ⁇ m to 10 ⁇ m per one layer of the porous layer from the viewpoint of ensuring adhesiveness to the electrode and high energy density. More preferably, it is in the range of 1 ⁇ m to 5 ⁇ m.
  • the basis weight per unit area of the porous layer can be appropriately determined in consideration of the strength, film thickness, weight and handling property of the porous layer.
  • the basis weight per unit area of the porous layer is preferably 0.5 to 20 g / m 2 and more preferably 0.5 to 10 g / m 2 per porous layer.
  • the weight energy density and volume energy density of the non-aqueous electrolyte secondary battery can be increased.
  • the basis weight of the porous layer exceeds the above range, the non-aqueous electrolyte secondary battery tends to be heavy.
  • the porosity of the porous layer is preferably 20 to 90% by volume, and more preferably 30 to 80% by volume so that sufficient ion permeability can be obtained.
  • the pore size of the pores of the porous layer is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less. By setting the pore diameters to these sizes, the non-aqueous electrolyte secondary battery can obtain sufficient ion permeability.
  • the value represented by the following formula (1) is preferably in the range of 0.10 to 0.42, and in the range of 0.10 to 0.30. More preferably.
  • FIG. 1 shows a schematic view of the state of the inorganic filler in the porous layer when the orientation is high (anisotropic) and when the orientation is low (isotropic).
  • the left diagram of FIG. 1 is a schematic diagram showing the structure of the porous layer containing an inorganic filler, in which the orientation of the inorganic filler is large and exhibits anisotropy, and the right diagram of FIG. It is a schematic diagram showing the structure of the said porous layer in case the orientation of an inorganic filler is small and it shows isotropic property.
  • the value represented by the above formula (1) is a value indicating the anisotropy of the distance to the critical load in the scratch test. The closer the value is to zero, the more isotropic the distance to the critical load is. Indicates that there is.
  • the value represented by the formula (1) is also simply referred to as “formula (1)”.
  • the "scratch test" in the present invention means, as shown in FIG. 2, a constant load is applied to the indenter, and the porous membrane is moved horizontally while the surface layer of the porous membrane to be measured is compressed and deformed in the thickness direction.
  • This is a test for measuring the stress generated at a certain indenter movement distance when the pressure is applied.
  • the state in which the surface layer of the porous membrane is compressed and deformed in the thickness direction is the state in which the indenter is pushed into the porous membrane.
  • the test is specifically carried out by the following method: (1) A laminate, which is a laminated porous film obtained by laminating a measurement target porous layer on a porous substrate, is cut into 20 mm ⁇ 60 mm.
  • the cut laminated body 3 is pasted on a 30 mm ⁇ 70 mm glass preparation, which is the substrate 2, with an aqueous paste, and dried at 25 ° C. for 24 hours to prepare a test sample. ..
  • bubbles are prevented from entering between the laminated body and the glass slide.
  • step (2) Install the test sample prepared in step (1) in the micro scratch tester.
  • the table in the test apparatus is directed toward the TD of the laminated body at 5 mm / min. At speed, move a distance of 10 mm. During that time, a frictional force, which is a stress generated between the diamond indenter and the test sample, is measured.
  • the distance to the critical load value calculated by the scratch test is (a) an index of plastic deformation easiness of the surface of the laminated porous film, (b) an index of transmissibility of shear stress to the surface opposite to the measurement surface. Becomes The long distance to the critical load value means that in the laminated porous film to be measured, (a ') the surface layer portion is less likely to be plastically deformed, and (b') the transmission of shear stress to the surface opposite to the measurement surface. Is low, that is, it is difficult for stress to be transmitted.
  • the distance to the critical load in the TD and MD directions is considered to be strongly influenced by the structural factors of the laminated porous film shown below.
  • the anisotropy of the internal structure of the porous layer becomes excessively high, and the ion permeation flow path length inside the porous layer becomes long.
  • the ion permeation resistance of the porous layer increases, and the resistance of the separator in the non-aqueous electrolyte secondary battery increases.
  • the above formula (1) is less than 0.10, it is considered that the structure of the porous layer is a structure having an excessively high isotropic property.
  • the electrolyte receiving ability of the porous layer during battery operation tends to be excessively high.
  • the electrolyte solution supply capabilities of the separator base material and the electrode that are in contact with the porous layer and supply the electrolyte solution to the porous layer will control the flow rate of the electrolyte solution of the entire non-aqueous electrolyte secondary battery.
  • the resistance of the separator in the non-aqueous electrolyte secondary battery increases.
  • the median particle diameter (D50) of the inorganic filler is preferably in the range of 0.1 ⁇ m to 11 ⁇ m, more preferably in the range of 0.1 ⁇ m to 10 ⁇ m, and 0 The range is more preferably from 1 ⁇ m to 5 ⁇ m, and particularly preferably 0.5 ⁇ m.
  • the method for measuring the median particle diameter of the inorganic filler is not particularly limited, but for example, it is measured by the method described in the examples.
  • the center particle size of the inorganic filler is larger than 11 ⁇ m, the film thickness of the heat-resistant layer increases and unevenness occurs, resulting in unevenness in ion permeation of the porous layer. As a result, the resistance of the separator in the non-aqueous electrolyte secondary battery incorporating the porous layer tends to increase.
  • the median particle diameter of the inorganic filler is less than 0.1 ⁇ m, the viscosity of the coating liquid containing the inorganic filler becomes high, which may cause dilatancy. As a result, the coating liquid may have poor coating performance and uneven coating on the porous layer may occur.
  • the central particle diameter of the inorganic filler is small, the amount of binder required to bind the inorganic filler increases.
  • the ion permeation resistance of the porous layer increases, and the resistance of the separator in the non-aqueous electrolyte secondary battery increases.
  • the BET specific surface area per unit area of the inorganic filler is preferably 100 m 2 / g or less, more preferably 50 m 2 / g or less, and 10 m 2 / g. It may be the following.
  • the method for measuring the BET specific surface area per unit area of the inorganic filler is not particularly limited, but for example, a method including the steps shown in (1) to (3) below can be mentioned.
  • the pretreatment device and the measurement device are not particularly limited.
  • BELPREP-vacII manufactured by Microtrac Bell Co., Ltd.
  • BELSORP-mini manufactured by Microtrac Bell Co., Ltd.
  • the measurement conditions for measuring the specific surface area of the filler are not particularly limited and can be appropriately set by those skilled in the art.
  • the BET specific surface area per unit area of the inorganic filler is larger than 100 m 2 / g, the filler oiling property is increased due to the increase in the BET specific surface area, and accordingly, the properties of the porous layer as a coating liquid are decreased, There is a risk of poor coatability. As a result, the resistance of the separator in the non-aqueous electrolyte secondary battery incorporating the porous layer tends to increase.
  • the method for producing the porous layer according to the embodiment of the present invention is not particularly limited, but for example, one of the following steps (1) to (3) may be used on the substrate, A method of forming a porous layer containing the inorganic filler and the resin can be mentioned.
  • the porous layer can be produced by depositing the resin and then drying it to remove the solvent.
  • the coating liquid in steps (1) to (3) may be in a state in which the inorganic filler is dispersed and the resin is dissolved.
  • the solvent can be said to be a solvent for dissolving the resin and a dispersion medium for dispersing the resin or the inorganic filler.
  • a step of forming a porous layer by applying a coating liquid containing the inorganic filler and the resin onto a substrate and drying and removing the solvent in the coating liquid.
  • the liquid property of the coating liquid is made acidic by using a low-boiling organic acid, A step of depositing a resin to form a porous layer.
  • the solvent does not adversely affect the base material, dissolves the resin uniformly and stably, and disperses the inorganic filler uniformly and stably.
  • the solvent include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, acetone and water.
  • the deposition solvent for example, isopropyl alcohol or t-butyl alcohol is preferably used.
  • the low boiling point organic acid for example, paratoluenesulfonic acid, acetic acid, etc. can be used.
  • the inorganic filler and the inorganic filler used for the production of the porous layer are described below. It can be mentioned that the solid content concentration of the coating liquid containing a resin and the coating shear rate at the time of coating the coating liquid on a substrate are adjusted.
  • a suitable solid content concentration of the coating liquid may vary depending on the type of filler, etc., but generally it is preferably more than 20% by weight and 40% by weight or less. It is preferable that the solid content concentration is within the above range because the viscosity of the coating liquid can be appropriately maintained, and as a result, the above formula (1) can be controlled within the above suitable range.
  • the coating shear rate at the time of coating the coating liquid on the base material may vary depending on the kind of the filler and the like, but in general, it is preferably 2s -1 or more, and 4s -1 to 50s -1. Is more preferable.
  • the inorganic filler a shape in which spherical or columnar single particles such as peanut-shaped and / or tetrapot-shaped are heat-fused, spherical-shaped, elliptical-shaped, plate-shaped, rod-shaped, or irregular-shaped.
  • the coating shear rate is increased, a high shearing force is applied to the inorganic filler, so that the anisotropy tends to increase.
  • the coating shear rate is reduced, the shearing force is not applied to the inorganic filler, so that the inorganic filler tends to be oriented isotropically.
  • the inorganic filler is a long fiber diameter inorganic filler such as long wollastonite having a large fiber diameter
  • the coating shear rate is increased, the long fibers are entangled with each other, or the long blades of the doctor blade are long fibers. Tend to be in a disoriented orientation due to the trapping of the, and anisotropy tends to be low.
  • the coating shear rate is reduced, the long fibers do not become entangled with each other and do not get caught by the blade of the doctor blade, so that they tend to be oriented and the anisotropy tends to increase.
  • the non-aqueous electrolyte secondary battery in one embodiment of the present invention may include a polyolefin porous film.
  • a polyolefin porous film may only be called a "porous film.”
  • the porous film contains a polyolefin-based resin as a main component and has a large number of pores connected to the inside thereof, so that a gas and a liquid can pass from one surface to the other surface.
  • the porous film alone can serve as a separator for a non-aqueous electrolyte secondary battery. It can also serve as a porous base material in the laminated separator for a non-aqueous electrolyte secondary battery in which the above-mentioned porous layer is laminated.
  • a laminate in which the porous layer is laminated in the present specification, also referred to as "non-aqueous electrolyte secondary battery laminated separator” or “laminated separator” .
  • the separator for a non-aqueous electrolyte secondary battery in one embodiment of the present invention may further include other layers such as an adhesive layer, a heat resistant layer, and a protective layer, in addition to the polyolefin porous film.
  • the proportion of polyolefin in the porous film is 50% by volume or more of the entire porous film, more preferably 90% by volume or more, and further preferably 95% by volume or more. Further, it is more preferable that the polyolefin contains a high molecular weight component having a weight average molecular weight of 5 ⁇ 10 5 to 15 ⁇ 10 6 . In particular, when the polyolefin contains a high molecular weight component having a weight average molecular weight of 1,000,000 or more, the strength of the separator for a non-aqueous electrolyte secondary battery is improved, which is more preferable.
  • the polyolefin which is a thermoplastic resin
  • a copolymer may be used.
  • the homopolymer include polyethylene, polypropylene and polybutene.
  • the copolymer include ethylene-propylene copolymer.
  • polyethylene is more preferable because it can block excessive current from flowing at lower temperatures. Note that blocking the flow of this excessive current is also referred to as shutdown.
  • the polyethylene include low density polyethylene, high density polyethylene, linear polyethylene (ethylene- ⁇ -olefin copolymer), and ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more. Among these, ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more is more preferable.
  • the thickness of the porous film is preferably 4 to 40 ⁇ m, more preferably 5 to 30 ⁇ m, and further preferably 6 to 15 ⁇ m.
  • the basis weight per unit area of the porous film can be appropriately determined in consideration of strength, film thickness, weight and handleability.
  • the basis weight is preferably 4 to 20 g / m 2 , and preferably 4 to 12 g / m 2 so that the weight energy density and the volume energy density of the non-aqueous electrolyte secondary battery can be increased. More preferably, it is more preferably 5 to 10 g / m 2 .
  • the air permeability of the porous film is preferably 30 to 500 sec / 100 mL in Gurley value, and more preferably 50 to 300 sec / 100 mL.
  • the air permeability of the laminated separator for a non-aqueous electrolyte secondary battery in which the above-mentioned porous layer is laminated on the porous film is preferably 30 to 1000 sec / 100 mL in terms of Gurley value, and is 50 to 800 sec / 100 mL. Is more preferable. Since the laminated separator for a non-aqueous electrolyte secondary battery has the above-mentioned air permeability, it is possible to obtain sufficient ion permeability in the non-aqueous electrolyte secondary battery.
  • the porosity of the porous film is preferably 20 to 80% by volume so as to increase the holding amount of the electrolytic solution and to surely prevent the flow of an excessive current at a lower temperature. It is more preferably 30 to 75% by volume.
  • the pore size of the pores of the porous film is 0.3 ⁇ m or less so that sufficient ion permeability can be obtained and particles can be prevented from entering the positive electrode plate and the negative electrode plate. Is preferably 0.14 ⁇ m or less, and more preferably 0.14 ⁇ m or less.
  • the method for producing the polyolefin porous film is not particularly limited.
  • a sheet-shaped polyolefin resin composition is prepared by kneading a polyolefin resin, a pore-forming agent such as an inorganic filler and a plasticizer, and optionally an antioxidant and the like and then extruding the kneaded product.
  • the polyolefin resin composition from which the pore-forming agent has been removed may be stretched to produce a polyolefin porous film. it can.
  • the above-mentioned inorganic filler is not particularly limited, and examples thereof include inorganic fillers, specifically calcium carbonate and the like.
  • the plasticizer is not particularly limited, and examples thereof include low molecular weight hydrocarbons such as liquid paraffin.
  • A a step of kneading an ultrahigh molecular weight polyethylene, a low molecular weight polyethylene having a weight average molecular weight of 10,000 or less, a pore forming agent such as calcium carbonate or a plasticizer, and an antioxidant to obtain a polyolefin resin composition
  • B a step of rolling the obtained polyolefin resin composition with a pair of rolling rollers and gradually cooling it while pulling it with a take-up roller having a different speed ratio to form a sheet
  • C a step of removing the pore forming agent from the obtained sheet with a suitable solvent
  • D A step of stretching the sheet from which the pore forming agent has been removed at an appropriate stretching ratio.
  • Method for producing laminated separator for non-aqueous electrolyte secondary battery examples include, for example, in the above-mentioned “method for producing a porous layer”, as the base material to which the coating liquid is applied, The method of using a polyolefin porous film can be mentioned.
  • the non-aqueous electrolyte that can be included in the non-aqueous electrolyte secondary battery according to the embodiment of the present invention is not particularly limited as long as it is a non-aqueous electrolyte that is generally used in non-aqueous electrolyte secondary batteries.
  • a non-aqueous electrolyte obtained by dissolving a lithium salt in an organic solvent can be used.
  • lithium salt examples include LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Li 2 B 10 Cl. 10 , lower aliphatic carboxylic acid lithium salt, LiAlCl 4 and the like.
  • the lithium salt may be used alone or in combination of two or more kinds.
  • organic solvent that constitutes the non-aqueous electrolytic solution
  • examples of the organic solvent that constitutes the non-aqueous electrolytic solution include carbonates, ethers, esters, nitriles, amides, carbamates and sulfur-containing compounds, and fluorine-containing compounds introduced into these organic solvents. Fluorine organic solvents and the like can be mentioned.
  • the organic solvent may be used alone or in combination of two or more.
  • Examples of the method for producing the non-aqueous electrolyte secondary battery according to the embodiment of the present invention include the following methods. First, the positive electrode, the non-aqueous electrolyte secondary battery laminated separator, and the negative electrode are arranged in this order to form a non-aqueous electrolyte secondary battery member. After that, the member for a non-aqueous electrolyte secondary battery is put in a container that will be the casing of the non-aqueous electrolyte secondary battery, and then the inside of the container is filled with the non-aqueous electrolyte solution and then sealed while depressurizing. Thereby, the non-aqueous electrolyte secondary battery according to the embodiment of the present invention can be manufactured.
  • Film thickness (unit: ⁇ m) The thickness of the polyolefin porous film and the porous layer was measured using a high precision digital length measuring machine (VL-50) manufactured by Mitutoyo Corporation. The film thickness of the porous layer was a value obtained by subtracting the film thickness of the part where the porous layer was not formed from the film thickness of the part where the porous layer was formed in each laminate.
  • a laminate obtained by laminating the porous layers produced in Examples and Comparative Examples on a porous substrate was cut into 20 mm ⁇ 60 mm. Then, an arabic Yamato aqueous liquid paste (manufactured by Yamato Co., Ltd.) diluted 5 times with water was applied on the separator side of the cut laminate, that is, the entire surface of the porous substrate side, in a small amount of about 1.5 g / m 2 per unit area. It was applied thinly. Next, the surface coated with the aqueous liquid paste was pasted on a glass slide having a size of 30 mm ⁇ 70 mm and then dried at 25 ° C. for 24 hours to prepare a test sample. At the time of the above-mentioned bonding, bubbles were prevented from entering between the laminate and the glass slide.
  • test sample prepared in step (1) was installed in a micro scratch tester (CSEM Instruments). With the diamond indenter (conical shape with an apex angle of 120 ° and a tip radius of 0.2 mm) in the test apparatus, a vertical load of 0.1 N was applied on the test sample while the test apparatus was used. The table was moved toward the TD of the laminate at a speed of 5 mm / min and a distance of 10 mm. During that time, the stress generated between the diamond indenter and the test sample, that is, the frictional force was measured.
  • CSEM Instruments CSEM Instruments
  • Example 1 [Preparation of porous layer and laminate] (Production of polyolefin porous film) A polyolefin porous film was produced using polyethylene as the polyolefin. Specifically, 70 parts by weight of ultra high molecular weight polyethylene powder (340M, manufactured by Mitsui Chemicals, Inc.) and 30 parts by weight of polyethylene wax having a weight average molecular weight of 1000 (FNP-0115, manufactured by Nippon Seiro Co., Ltd.) are mixed. To obtain mixed polyethylene.
  • ultra high molecular weight polyethylene powder (340M, manufactured by Mitsui Chemicals, Inc.)
  • polyethylene wax having a weight average molecular weight of 1000 FNP-0115, manufactured by Nippon Seiro Co., Ltd.
  • this polyethylene resin composition was rolled with a pair of rolls whose surface temperature was set to 150 ° C. to prepare a sheet.
  • This sheet was immersed in an aqueous hydrochloric acid solution prepared by mixing 0.5 mol% of a nonionic surfactant in 4 mol / L hydrochloric acid to dissolve and remove calcium carbonate.
  • the polyolefin porous film 1 made of polyethylene was produced by stretching the sheet 6 times at 105 ° C.
  • the polyolefin porous film 1 had a porosity of 53%, a basis weight of 7 g / m 2 , and a film thickness of 16 ⁇ m.
  • the inorganic filler 1 hexagonal plate-shaped zinc oxide having a mass percentage of oxygen atoms of 20% (manufactured by Sakai Chemical Industry Co., Ltd., trade name: XZ-100F) was used.
  • the BET specific surface area per unit area of the inorganic filler 1 was 7.3 m 2 / g.
  • the volume-based particle size distribution of the inorganic filler was calculated by measuring D10, D50 and D90 using a laser diffraction particle size distribution analyzer SALD2200 manufactured by Shimadzu Corporation (D50, D10 and D90 are, respectively, The particle size is such that the cumulative distribution based on volume is 50%, the particle size is 10%, and the particle size is 90%).
  • the specific surface area of the inorganic filler was calculated from the BET method by measuring the adsorption-desorption isotherm with nitrogen using a constant volume method. Specifically, in Examples and Comparative Examples, the BET specific surface area per unit area was measured using BELSORP-mini (manufactured by Microtrac Bell Co., Ltd.).
  • the adsorption-desorption isotherm by nitrogen of the filler that had been vacuum dried at a pretreatment temperature of 80 ° C. for 8 hours was measured by the constant volume method, and calculated by the BET method.
  • Various conditions in the constant volume method are as follows: adsorption temperature; 77 K, adsorbate; nitrogen, saturated vapor pressure; measured value, adsorbate cross section; 0.162 nm 2 , equilibrium waiting time (adsorption equilibrium state (adsorption Waiting time after the pressure change during desorption reaches a value below a predetermined value)): 500 sec.
  • the pore volume was calculated by the MP method and the BJH method, and the pretreatment device used was BELPREP-vacII (manufactured by Microtrac Bell Co., Ltd.).
  • a vinylidene fluoride-hexafluoropropylene copolymer (manufactured by Arkema Ltd .; trade name “KYNAR2801”) was used.
  • Inorganic filler 1, vinylidene fluoride-hexafluoropropylene copolymer and solvent (N-methyl-2-pyrrolidinone manufactured by Kanto Chemical Co., Inc.) were mixed in the following proportions. That is, 10 parts by weight of vinylidene fluoride-hexafluoropropylene copolymer was mixed with 90 parts by weight of inorganic filler, and the solid content in the resulting mixed solution (inorganic filler 1 and vinylidene fluoride-hexafluoropropylene copolymer). The solvent was mixed so that the concentration of was 37% by weight. The obtained mixed liquid was stirred and mixed with a thin film swivel type high speed mixer (Filmiku (registered trademark) manufactured by Primix Co., Ltd.) to obtain a uniform coating liquid 1.
  • a thin film swivel type high speed mixer Finmiku (registered trademark) manufactured by Primix Co., Ltd.
  • the obtained coating liquid 1 was applied to one surface of the polyolefin porous film 1 by a doctor blade method at a coating shear rate of 3.9 s ⁇ 1 to form a coating film. Then, the coating film was dried at 65 ° C. for 20 minutes to form a porous layer.
  • the thus obtained laminated body was used as a laminated separator 1 for a non-aqueous electrolyte secondary battery.
  • the basis weight of the porous layer was 7 g / m 2 and the thickness was 4 ⁇ m.
  • the positive electrode mixture LiNi 0.5 Mn 0.3 Co 0.2 O 2 / conductive agent / PVDF (weight ratio: 92/5/3) was laminated on one surface of the positive electrode current collector (aluminum foil). A positive electrode plate was obtained.
  • the volume-based average particle diameter (D50) of LiNi 0.5 Mn 0.3 Co 0.2 O 2 was 5 ⁇ m.
  • the positive electrode plate is cut so that the size of the portion where the positive electrode active material layer is laminated is 45 mm ⁇ 30 mm, and the outer periphery thereof has a width of 13 mm where the positive electrode active material layer is not laminated.
  • the thickness of the positive electrode active material layer of the positive electrode plate 1 was 38 ⁇ m.
  • the volume-based average particle diameter (D50) of the natural graphite was 15 ⁇ m.
  • the negative electrode plate is cut so that the size of the portion where the negative electrode active material layer is laminated is 50 mm ⁇ 35 mm, and the outer periphery thereof has a width of 13 mm where the negative electrode active material layer is not laminated.
  • the thickness of the negative electrode active material layer of the negative electrode plate 1 was 38 ⁇ m.
  • a non-aqueous electrolyte secondary battery (Assembly of non-aqueous electrolyte secondary battery) Using the positive electrode plate 1, the negative electrode plate 1 and the non-aqueous electrolyte secondary battery laminated separator 1, a non-aqueous electrolyte secondary battery was manufactured by the following method.
  • the positive electrode plate 1, the non-aqueous electrolyte secondary battery laminated separator 1 and the negative electrode plate 1 were laminated in this order to obtain a non-aqueous electrolyte secondary battery member 1.
  • the positive electrode plate 1 and the negative electrode plate 1 were arranged such that the entire main surface of the positive electrode active material layer of the positive electrode plate 1 was included in the range of the main surface of the negative electrode active material layer of the negative electrode plate 1. That is, the positive electrode plate 1 and the negative electrode plate 1 were arranged so that the entire main surface of the positive electrode active material layer of the positive electrode plate 1 overlaps the main surface of the negative electrode active material layer of the negative electrode plate 1.
  • the surface of the non-aqueous electrolyte secondary battery laminated separator 1 on the side of the porous layer was opposed to the positive electrode active material layer of the positive electrode plate 1.
  • the non-aqueous electrolyte secondary battery member 1 was placed in a previously prepared bag in which an aluminum layer and a heat seal layer were laminated, and 0.23 mL of the non-aqueous electrolyte solution was further placed in this bag. Injected.
  • the non-aqueous electrolyte is prepared by dissolving LiPF 6 in a mixed solvent prepared by mixing ethylene carbonate, ethylmethyl carbonate and diethyl carbonate in a volume ratio of 3: 5: 2 so as to have a concentration of 1 mol / L. Prepared. Then, the inside of the bag was depressurized and the bag was heat-sealed to manufacture the non-aqueous electrolyte secondary battery 1.
  • Example 2 [Preparation of non-aqueous electrolyte secondary battery] A laminated separator 2 for a non-aqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except for the following changes.
  • As the raw material of the inorganic filler 2 spherical alumina (Sumitomo Chemical Co., Ltd., trade name AA03) and mica (Wako Pure Chemical Industries, Ltd., trade name: non-swelling synthetic mica) were used.
  • Inorganic filler 2 was prepared by mixing 50 parts by weight of each of these raw materials in a mortar (oxygen atom mass percentage 45%).
  • the BET specific surface area per unit area of the inorganic filler 2 was 4.5 m 2 / g. 10 parts by weight of vinylidene fluoride-hexafluoropropylene copolymer are mixed with 90 parts by weight of inorganic filler 2, and the solid content (inorganic filler and vinylidene fluoride-hexafluoropropylene copolymer) in the resulting mixed liquid is mixed.
  • Coating solution 2 was prepared by mixing a solvent so that the concentration of the above) would be 30% by weight.
  • the coating liquid 2 was applied to one side of the polyolefin porous film 1 at a coating shear rate of 7.9 s -1 .
  • a non-aqueous electrolyte secondary battery 2 was produced in the same manner as in Example 1, using the non-aqueous electrolyte secondary battery laminated separator 2 instead of the non-aqueous electrolyte secondary battery laminated separator 1. Then, the battery characteristics of the non-aqueous electrolyte secondary battery 2 were measured by the method described above. The results are shown in Table 1.
  • Example 3 [Preparation of non-aqueous electrolyte secondary battery] A laminated separator 3 for a non-aqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except for the following changes.
  • the inorganic filler 3 wollastonite (Hayashi Kasei Co., Ltd., trade name: Wollastonite VM-8N) having an oxygen atomic mass percentage of 42% was used.
  • the BET specific surface area per unit area of the inorganic filler 3 was 1.3 m 2 / g.
  • the coating liquid 3 was prepared by mixing the solvents so that the concentration of the (combined) was 40% by weight. The coating liquid 3 was applied to one surface of the polyolefin porous film 1 at a coating shear rate of 7.9 s -1 .
  • a non-aqueous electrolyte secondary battery 3 was produced in the same manner as in Example 1 using the non-aqueous electrolyte secondary battery laminated separator 3 instead of the non-aqueous electrolyte secondary battery laminated separator 1. After that, the battery characteristics of the non-aqueous electrolyte secondary battery 3 were measured by the method described above. The results are shown in Table 1.
  • Example 4 Preparation of laminated separator for non-aqueous electrolyte secondary battery
  • a laminated separator 4 for a non-aqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except for the following changes.
  • ⁇ -alumina Suditomo Chemical Co., Ltd., trade name: AKP3000
  • hexagonal plate-shaped zinc oxide Sakai Chemical Industry Co., Ltd., trade name: XZ-1000F
  • a mixture oxygen atom mass percentage 47%) obtained by mixing 99 parts by weight of ⁇ -alumina, 1 part by weight of hexagonal plate-shaped zinc oxide in a mortar was used as the inorganic filler 4.
  • the BET specific surface area per unit area of the inorganic filler 4 was 4.5 m 2 / g.
  • the solid content (inorganic filler 4 and vinylidene fluoride-hexafluoropropylene copolymer) in the resulting mixed liquid is mixed.
  • the coating liquid 4 was prepared by mixing the solvents so that the concentration of the (combined) was 40% by weight.
  • the coating liquid 4 was applied to one side of the polyolefin porous film 1 at a coating shear rate of 39.4 s -1 .
  • a positive electrode plate was obtained in which the positive electrode mixture (LiCoO 2 / conductive agent / PVDF (weight ratio: 100/5/3)) was laminated on one surface of the positive electrode current collector (aluminum foil).
  • the positive electrode plate is cut so that the size of the portion where the positive electrode active material layer is laminated is 45 mm ⁇ 30 mm, and the outer periphery thereof has a width of 13 mm where the positive electrode active material layer is not laminated.
  • the thickness of the positive electrode active material layer of the positive electrode plate 2 was 38 ⁇ m.
  • the non-aqueous electrolyte secondary battery laminated separator 4 was used in place of the non-aqueous electrolyte secondary battery laminated separator 1 and the positive electrode plate 2 was used in place of the positive electrode plate 1, and the non-aqueous electrolyte secondary battery laminated separator 1 was prepared in the same manner as in Example 1.
  • a water electrolyte secondary battery 4 was produced. After that, the battery characteristics of the non-aqueous electrolyte secondary battery 4 were measured by the method described above. The results are shown in Table 1.
  • Coating solution 5 was prepared by mixing the solvents so that the concentration of (combined) was 40% by weight.
  • the coating liquid 5 was applied to one side of the polyolefin porous film 1 at a coating shear rate of 7.9 s -1 .
  • a non-aqueous electrolyte secondary battery 5 was produced in the same manner as in Example 1 using the non-aqueous electrolyte secondary battery laminated separator 5 instead of the non-aqueous electrolyte secondary battery laminated separator 1. After that, the battery characteristics of the non-aqueous electrolyte secondary battery 5 were measured by the method described above. The results are shown in Table 1.
  • Negative electrode plate A negative electrode plate was obtained in which a negative electrode mixture (artificial spherulite graphite / conductive agent / PVDF (weight ratio 85/15 / 7.5)) was laminated on one surface of a negative electrode current collector (copper foil). The negative electrode plate is cut so that the size of the portion where the negative electrode active material layer is laminated is 50 mm ⁇ 35 mm, and the outer periphery thereof has a width of 13 mm where the negative electrode active material layer is not laminated. Got 2. The thickness of the negative electrode active material layer of the negative electrode plate 2 was 36 ⁇ m.
  • a non-aqueous electrolyte secondary battery laminated separator 4 was used in place of the non-aqueous electrolyte secondary battery laminated separator 1, and a negative electrode plate 2 was used in place of the negative electrode plate 1 in the same manner as in Example 1.
  • a water electrolyte secondary battery 7 was produced. After that, the battery characteristics of the non-aqueous electrolyte secondary battery 6 were measured by the method described above. The results are shown in Table 1.
  • a positive electrode plate and a negative electrode plate in which the particle size ratio of the positive electrode active material and the negative electrode active material was adjusted were prepared, and the sum of interface barrier energies was measured.
  • a positive electrode plate and a negative electrode plate were produced with the same composition as in Example 1 but changing the particle size of the active material as follows.
  • Table 2 shows the results of measuring the interface barrier energy using the positive electrode plate and the negative electrode plate.
  • the positive electrode plate and the negative electrode plate in Example 1 have the same composition as the positive electrode plate and the negative electrode plate in the reference example.
  • the particle size ratio of the positive electrode active material and the negative electrode active material ((the value of the particle size of the negative electrode active material / the particle size of the positive electrode active material)) was 3 in Example 1, while in the reference example. It was 24.7.
  • the sum of the interface barrier energies was 9069 J / mol in Example 1, whereas it was only 4228 J / mol in Reference Example.
  • the non-aqueous electrolyte secondary battery according to an aspect of the present invention maintains good charge recovery capacity after a high rate cycle. Therefore, it can be suitably used as a battery used in a personal computer, a mobile phone, a personal digital assistant, and the like, and a vehicle-mounted battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

The purpose of the present invention is to provide a non-aqueous electrolyte secondary battery in which the charge recovery capacity after high-rate cycles is favorably retained. A non-aqueous electrolyte secondary battery according to an aspect of the present invention comprises: a porous layer containing an inorganic filler and a resin; a positive electrode plate; and a negative electrode plate, wherein (i) the sum of the interface barrier energy of the positive electrode active material of the positive electrode plate and the interface barrier energy of the negative electrode active material of the negative electrode plate is within a specific range, and (ii) in the porous layer, the ratio between a distance (T) to a critical load in TD and a distance (M) to a critical load in MD is within a specific range as measured by a scratch test.

Description

非水電解液二次電池Non-aqueous electrolyte secondary battery
 本発明は、非水電解液二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery.
 リチウム二次電池等の非水電解液二次電池は、現在、パーソナルコンピュータ、携帯電話、携帯情報端末等の機器に用いる電池として広く使用されている。 Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are currently widely used as batteries for devices such as personal computers, mobile phones and personal digital assistants.
 リチウムイオン電池を搭載する機器では充電器および電池パックに多種類の電気的保護回路を設けることにより、電池を正常、安全に作動させる対策を施している。しかしながら、例えば、これら保護回路の故障または誤作動により、リチウムイオン電池が充電され続けると、発熱を伴う正負極表面での電解液の酸化還元分解、正極活物質の分解による酸素放出、さらには負極における金属リチウムの析出が起こることがある。その結果、最終的に熱暴走状態に陥ることで、場合によって電池の発火または破裂を引き起こす危険がある。 For equipment equipped with a lithium-ion battery, measures have been taken to ensure normal and safe operation of the battery by providing various types of electrical protection circuits in the charger and battery pack. However, if the lithium ion battery continues to be charged due to failure or malfunction of these protection circuits, redox decomposition of the electrolytic solution on the positive and negative electrode surfaces accompanied by heat generation, oxygen release due to decomposition of the positive electrode active material, and further negative electrode Of metallic lithium may occur. As a result, there is a risk of eventually causing a battery to ignite or explode by falling into a thermal runaway state.
 このような危険な熱暴走状態に至る前に電池を安全に停止させるため、現在ほとんどのリチウムイオン電池には、ポリオレフィンを主成分とする多孔質基材が、セパレータとして使用されている。当該ポリオレフィンを主成分とする多孔質基材は、何らかの不具合で電池内部温度が上昇すると約130℃~140℃で多孔質基材に開いている細孔が閉塞するシャットダウン機能を有する。 In order to safely stop the battery before it reaches such a dangerous thermal runaway state, most lithium-ion batteries currently use a porous base material containing polyolefin as a main component as a separator. The porous base material containing polyolefin as a main component has a shutdown function of closing pores open in the porous base material at about 130 ° C. to 140 ° C. when the battery internal temperature rises due to some trouble.
 一方、ポリオレフィンを主成分とする多孔質基材は、耐熱性が低いために、シャットダウン機能が作動する温度以上に曝されることで溶融し、その結果、電池内部で短絡が生じ、電池の発火または爆発を生じる虞があった。そこで、前記多孔質基材の耐熱性を改善する目的で、前記多孔質基材の少なくとも一面に、フィラーと、樹脂とを含む多孔質層を積層させたセパレータの開発が進められている。 On the other hand, the porous base material containing polyolefin as the main component has low heat resistance, so that it is melted by being exposed to a temperature higher than the temperature at which the shutdown function operates, resulting in a short circuit inside the battery and ignition of the battery. Or there was a risk of an explosion. Therefore, for the purpose of improving the heat resistance of the porous base material, a separator in which a porous layer containing a filler and a resin is laminated on at least one surface of the porous base material is being developed.
 そのようなセパレータの一例として、特許文献1には、微粒子としてベーマイト(板状粒子)を含有する多孔質層で形成された電池用セパレータが記載されている。 As an example of such a separator, Patent Document 1 describes a battery separator formed of a porous layer containing boehmite (plate-like particles) as fine particles.
特開2008-4438号公報(2006年1月10日公開)Japanese Unexamined Patent Application Publication No. 2008-4438 (Published January 10, 2006)
 しかしながら、前述のような従来技術には、ハイレートサイクル後の充電回復容量に関して改善の余地があった。
本発明の一態様は前記の問題点に鑑みてなされたものであり、ハイレートサイクル後の充電回復容量が良好に維持されている非水電解液二次電池を提供することを目的とする。
However, there is room for improvement in the charge recovery capacity after the high rate cycle in the above-described conventional technology.
One aspect of the present invention has been made in view of the above problems, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery in which the charge recovery capacity after a high rate cycle is favorably maintained.
 本発明は、以下の構成を包含している:
<1>無機フィラーと樹脂とを含む多孔質層、正極板、および負極板を備え、
 前記正極板および前記負極板を直径15.5mmの円盤状に加工し、濃度1MのLiPFのエチレンカーボネート/エチルメチルカーボネート/ジエチルカーボネート溶液に浸して測定したときの、正極活物質の界面障壁エネルギーと負極活物質の界面障壁エネルギーとの和が5000J/mol以上であり、
 前記多孔質層は、下記式(1)で表される値が、0.10~0.42の範囲にあることを特徴とする、非水電解液二次電池。
|1-T/M|・・・(1)
 (式(1)中、Tは、TDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す。)
<2>前記多孔質層は、ポリオレフィン多孔質フィルムの片面または両面に積層されている、<1>に記載の非水電解液二次電池。
<3>前記正極板は遷移金属を含み、前記負極板は黒鉛を含む、<1>または<2>に記載の非水電解液二次電池。
<4>前記多孔質層に含まれる前記樹脂は、ポリオレフィン、(メタ)アクリレート系樹脂、含フッ素樹脂、ポリアミド系樹脂、ポリエステル系樹脂および水溶性ポリマーからなる群より選択される1種類以上である、<1>~<3>のいずれか1つに記載の非水電解液二次電池。
<5>前記ポリアミド系樹脂がアラミド樹脂である、<4>に記載の非水電解液二次電池。
The present invention includes the following configurations:
<1> A porous layer containing an inorganic filler and a resin, a positive electrode plate, and a negative electrode plate are provided,
The interfacial barrier energy of the positive electrode active material when the positive electrode plate and the negative electrode plate are processed into a disk shape having a diameter of 15.5 mm, and immersed in an ethylene carbonate / ethyl methyl carbonate / diethyl carbonate solution of LiPF 6 having a concentration of 1 M to measure. And the interfacial barrier energy of the negative electrode active material is 5000 J / mol or more,
The non-aqueous electrolyte secondary battery, wherein the porous layer has a value represented by the following formula (1) in a range of 0.10 to 0.42.
| 1-T / M | ... (1)
(In Formula (1), T represents a distance to a critical load in a scratch test under a constant load of 0.1 N in TD, and M represents a scratch test under a constant load of 0.1 N in MD. , Represents the distance to the critical load.)
<2> The non-aqueous electrolyte secondary battery according to <1>, wherein the porous layer is laminated on one side or both sides of a polyolefin porous film.
<3> The nonaqueous electrolyte secondary battery according to <1> or <2>, wherein the positive electrode plate contains a transition metal and the negative electrode plate contains graphite.
<4> The resin contained in the porous layer is one or more selected from the group consisting of polyolefin, (meth) acrylate resin, fluorine-containing resin, polyamide resin, polyester resin and water-soluble polymer. The non-aqueous electrolyte secondary battery according to any one of <1> to <3>.
<5> The non-aqueous electrolyte secondary battery according to <4>, wherein the polyamide resin is an aramid resin.
 本発明の一態様によれば、ハイレートサイクル後の充電回復容量が良好に維持されている非水電解液二次電池が提供される。 According to one aspect of the present invention, there is provided a non-aqueous electrolyte secondary battery in which the charge recovery capacity after a high rate cycle is favorably maintained.
無機フィラーを含む多孔質層における、無機フィラーの配向性が大きい場合(左図)および無機フィラーの配向性が小さい場合(右図)の、当該多孔質層の構造を表す模式図である。It is a schematic diagram showing the structure of the said porous layer when the orientation of an inorganic filler is large in the porous layer containing an inorganic filler (left figure), and when the orientation of an inorganic filler is small (right figure). スクラッチ試験における、装置およびその操作を示す図である。It is a figure which shows the apparatus and its operation in a scratch test. スクラッチ試験の結果から作成したグラフにおける、臨界荷重および臨界荷重までの距離を示した図である。It is the figure which showed the critical load and the distance to a critical load in the graph created from the result of the scratch test.
 本発明の一実施形態に関して以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態に関しても本発明の技術的範囲に含まれる。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。 An embodiment of the present invention will be described below, but the present invention is not limited to this. The present invention is not limited to each configuration described below, various modifications are possible within the scope shown in the claims, and the technical means disclosed in different embodiments are appropriately combined. The obtained embodiments are also included in the technical scope of the present invention. Unless otherwise specified in the present specification, “A to B” representing a numerical range means “A or more and B or less”.
 〔1.本発明の一態様に係る非水電解液二次電池〕
 本発明の一態様に係る非水電解液二次電池は、無機フィラーと樹脂とを含む多孔質層、正極板、および負極板を備え、
 前記正極板および前記負極板を直径15.5mmの円盤状に加工し、濃度1MのLiPFのエチレンカーボネート/エチルメチルカーボネート/ジエチルカーボネート溶液に浸して測定したときの、正極活物質の界面障壁エネルギーと負極活物質の界面障壁エネルギーとの和が5000J/mol以上であり、
 前記多孔質層は、下記式(1)で表される値が、0.10~0.42の範囲にある。
|1-T/M|・・・(1)
 (式(1)中、Tは、TD(Transverse Direction)における0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MD(Machine Direction)における0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す。)。
[1. Non-aqueous electrolyte secondary battery according to one embodiment of the present invention]
A non-aqueous electrolyte secondary battery according to an aspect of the present invention includes a porous layer containing an inorganic filler and a resin, a positive electrode plate, and a negative electrode plate,
The interfacial barrier energy of the positive electrode active material when the positive electrode plate and the negative electrode plate are processed into a disk shape having a diameter of 15.5 mm, and immersed in an ethylene carbonate / ethyl methyl carbonate / diethyl carbonate solution of LiPF 6 having a concentration of 1 M to measure. And the interfacial barrier energy of the negative electrode active material is 5000 J / mol or more,
The porous layer has a value represented by the following formula (1) in the range of 0.10 to 0.42.
| 1-T / M | ... (1)
(In Formula (1), T represents a distance to a critical load in a scratch test under a constant load of 0.1 N in TD (Transverse Direction), and M represents 0.1 N in MD (Machine Direction). Indicates the distance to the critical load in the scratch test under constant load.
 界面障壁エネルギーの和が前述の範囲にある正極板および負極板の組み合わせによれば、充放電サイクルの過程において、正極活物質層内および負極活物質層内の活物質表面におけるイオンおよび電荷の移動が均一化される。そのため、活物質全体の反応性が適度かつ均一になり、活物質層内の構造変化や活物質自体の劣化が抑制される。 According to the combination of the positive electrode plate and the negative electrode plate in which the sum of the interfacial barrier energies is within the above range, migration of ions and charges on the active material surface in the positive electrode active material layer and the negative electrode active material layer during the charge / discharge cycle process. Are made uniform. Therefore, the reactivity of the entire active material becomes appropriate and uniform, and the structural change in the active material layer and the deterioration of the active material itself are suppressed.
 スクラッチ試験の結果が前述の範囲にある多孔質層は、均一かつ緻密な構造を有している。そのため、このような多孔質層中では、リチウムイオンの分布の均一性が維持される。 The porous layer whose scratch test results fall within the above range has a uniform and dense structure. Therefore, in such a porous layer, the uniformity of lithium ion distribution is maintained.
 以上の部材を選択することによって、本発明の一態様に係る非水電解液二次電池は、ハイレートサイクル後の充電回復容量が良好に維持されるという、新たな効果を得るに至った。この効果は、(i)多孔質層中のリチウムイオンの分布が均一であること、ならびに(ii)充放電サイクルにおける活物質の膨脹・収縮に対して、活物質層の構成材間の密着性、および活物質層の構成材と集電箔との密着性が良好に維持されること、に起因すると考えられる。すなわち、前述の特徴点を組み合わせた結果、充放電サイクルに伴う電極劣化が抑制される。そのため、ハイレートサイクル後の充電回復容量が良好に維持されると推定される。 By selecting the above members, the non-aqueous electrolyte secondary battery according to one aspect of the present invention has a new effect that the charge recovery capacity after a high rate cycle is favorably maintained. The effect is that (i) the distribution of lithium ions in the porous layer is uniform, and (ii) the adhesion between the constituent materials of the active material layer against the expansion and contraction of the active material during the charge / discharge cycle. And that the adhesion between the constituent material of the active material layer and the current collector foil is maintained well. That is, as a result of combining the above-mentioned characteristic points, electrode deterioration due to charge / discharge cycles is suppressed. Therefore, it is estimated that the charge recovery capacity after the high-rate cycle is maintained well.
 一例において、ハイレートサイクル後の充電回復容量は、以下の手順で測定される。なお、以下の説明において、「1C」とは、1時間率の放電容量による定格容量を、1時間で放電する電流値を意味する。「CC-CV充電」とは、所定の電圧に到達するまで一定の電流で充電し、その後、前記所定の電圧が維持されるように電流を低下させながら充電する充電方法を意味する。「CC放電」とは、一定の電流を維持しながら、所定の電圧に達するまで放電する放電方法を意味する。 In one example, the charge recovery capacity after the high rate cycle is measured by the following procedure. In the following description, "1C" means the current value for discharging the rated capacity with the discharge capacity of 1 hour rate in 1 hour. “CC-CV charging” means a charging method in which charging is performed with a constant current until a predetermined voltage is reached, and then charging is performed while reducing the current so that the predetermined voltage is maintained. The “CC discharge” means a discharge method of discharging a predetermined voltage while maintaining a constant current.
 1.(初期充放電)組み立ての完了した非水電解液二次電池に、(i)電圧範囲:2.7~4.1V、充電電流値:0.2CでCC-CV充電を行い(終止電流条件:0.02C)、次いで(ii)放電電流値:0.2CでCC放電を行う。この充放電サイクルは、25℃にて実施する。前記のサイクルを1サイクルとして、4サイクルの初期充放電を行う。この充放電サイクルは、25℃にて実施する。 1. (Initial charge / discharge) The assembled non-aqueous electrolyte secondary battery was charged with CC-CV at (i) voltage range: 2.7 to 4.1V and charging current value: 0.2C (cutoff current condition). : 0.02C), and then (ii) CC discharge is performed at a discharge current value: 0.2C. This charge / discharge cycle is carried out at 25 ° C. With the above cycle as one cycle, four cycles of initial charge and discharge are performed. This charge / discharge cycle is carried out at 25 ° C.
 2.(ハイレートサイクル試験)(i)電圧範囲:2.7~4.1V、充電電流値:1CでCC-CV充電を行い(終止電流条件:0.02C)、次いで(ii)放電電流値:10CでCC放電を行う。前記のサイクルを1サイクルとして、100サイクルの充放電を行う。この充放電サイクルは、55℃にて実施する。 2. (High rate cycle test) (i) CC-CV charging was performed at a voltage range: 2.7 to 4.1 V and a charging current value: 1 C (end current condition: 0.02 C), and then (ii) discharge current value: 10 C Then, CC discharge is performed. 100 cycles of charging and discharging are performed with the above cycle as one cycle. This charge / discharge cycle is carried out at 55 ° C.
 3.(充電回復容量試験)(i)電圧範囲:2.7~4.1V、充電電流値:1CでCC-CV充電を行い(終止電流条件:0.02C)、次いで(ii)放電電流値:0.2CでCC放電を行う。前記のサイクルを1サイクルとして、3サイクルの充放電を行う。この充放電サイクルは、55℃にて実施する。本工程における3サイクル目の充電容量を、「ハイレートサイクル後の充電回復容量」とする。 3. (Charge recovery capacity test) (i) Voltage range: 2.7 to 4.1V, charging current value: 1C, CC-CV charging (end current condition: 0.02C), then (ii) discharging current value: CC discharge is performed at 0.2C. Three cycles of charging and discharging are performed with the above cycle as one cycle. This charge / discharge cycle is carried out at 55 ° C. The charge capacity at the third cycle in this step is defined as "charge recovery capacity after high rate cycle".
 ここで、充電回復容量試験とは、充放電サイクル後の非水電解液二次電池を低いレート(0.2C)で放電させ、当該非水電解液二次電池の容量を完全に放電させた後に、充電容量をより正確に確認する試験方法である。この試験により、非水電解液二次電池自体の充電性能の劣化程度、特に電極の充電性能の劣化程度が確認できる。 Here, the charge recovery capacity test is to discharge the non-aqueous electrolyte secondary battery after a charge / discharge cycle at a low rate (0.2 C) to completely discharge the capacity of the non-aqueous electrolyte secondary battery. Later, it is a test method to check the charge capacity more accurately. By this test, the degree of deterioration of the charging performance of the non-aqueous electrolyte secondary battery itself, particularly the degree of deterioration of the charging performance of the electrodes can be confirmed.
 本発明の一態様に係る非水電解液二次電池のハイレートサイクル後の充電回復容量は、14mAh以上が好ましく、14.5mAh以上がより好ましい。 The charge recovery capacity of the non-aqueous electrolyte secondary battery according to an aspect of the present invention after the high rate cycle is preferably 14 mAh or more, more preferably 14.5 mAh or more.
 〔2.正極板および負極板〕
 [正極板]
 本発明の一実施形態に係る非水電解液二次電池における正極板は、前記正極板および後述する負極板を直径15.5mmの円盤状に加工し、濃度1MのLiPFのエチレンカーボネート/エチルメチルカーボネート/ジエチルカーボネート溶液に浸して測定したときの、界面障壁エネルギーの和が5000J/mol以上であれば特に限定されない。例えば、正極活物質層として、正極活物質、導電剤および結着剤を含む正極合剤を正極集電体上に担持したシート状の正極板が、このような正極板に含まれる。なお、正極板は、正極集電体の両面上に正極合剤を担持してもよく、正極集電体の片面上に正極合剤を担持してもよい。
[2. Positive electrode plate and negative electrode plate]
[Positive plate]
The positive electrode plate in the non-aqueous electrolyte secondary battery according to the exemplary embodiment of the present invention is obtained by processing the positive electrode plate and a negative electrode plate described below into a disk shape having a diameter of 15.5 mm, and a concentration of 1M LiPF 6 ethylene carbonate / ethyl. There is no particular limitation as long as the sum of the interfacial barrier energies is 5000 J / mol or more as measured by dipping in a methyl carbonate / diethyl carbonate solution. For example, such a positive electrode plate includes a sheet-shaped positive electrode plate in which a positive electrode active material layer, a positive electrode mixture containing a positive electrode active material, a conductive agent, and a binder is carried on a positive electrode current collector. The positive electrode plate may carry the positive electrode mixture on both surfaces of the positive electrode current collector, or may carry the positive electrode mixture on one surface of the positive electrode current collector.
 前記正極活物質としては、例えば、リチウムイオンをドープ・脱ドープ可能な材料が挙げられる。当該材料としては、遷移金属酸化物が好ましい。当該遷移金属酸化物として、例えば、V、Mn、Fe、Co、Ni等の遷移金属を少なくとも1種類含んでいるリチウム複合酸化物が挙げられる。前記リチウム複合酸化物のうち、平均放電電位が高いことから、ニッケル酸リチウム、コバルト酸リチウム等のα-NaFeO型構造を有するリチウム複合酸化物、リチウムマンガンスピネル等のスピネル型構造を有するリチウム複合酸化物がより好ましい。当該リチウム複合酸化物は、種々の金属元素を含んでいてもよく、複合ニッケル酸リチウムがさらに好ましい。 Examples of the positive electrode active material include materials that can be doped with lithium ions and dedoped. A transition metal oxide is preferable as the material. Examples of the transition metal oxide include a lithium composite oxide containing at least one transition metal such as V, Mn, Fe, Co, and Ni. Among the above-mentioned lithium composite oxides, a lithium composite oxide having an α-NaFeO 2 type structure, such as lithium nickel oxide and lithium cobalt oxide, and a lithium complex having a spinel structure, such as lithium manganese spinel, because they have a high average discharge potential. Oxides are more preferred. The lithium composite oxide may contain various metal elements, and composite lithium nickel oxide is more preferable.
 さらに、Ti、Zr、Ce、Y、V、Cr、Mn、Fe、Co、Cu、Ag、Mg、Al、Ga、InおよびSnからなる群から選択される少なくとも1種の金属元素のモル数とニッケル酸リチウム中のNiのモル数との和に対して、前記少なくとも1種の金属元素の割合が0.1~20モル%となるように当該金属元素を含む複合ニッケル酸リチウムを用いると、高容量での使用におけるサイクル特性に優れるのでさらにより好ましい。中でもAlまたはMnを含み、かつ、Ni比率が85%以上、さらに好ましくは90%以上である活物質が、当該活物質を含む正極板を備える非水電解液二次電池の高容量での使用におけるサイクル特性に優れることから、特に好ましい。 Furthermore, the number of moles of at least one metal element selected from the group consisting of Ti, Zr, Ce, Y, V, Cr, Mn, Fe, Co, Cu, Ag, Mg, Al, Ga, In and Sn, and When the composite lithium nickelate containing the metal element is used such that the ratio of the at least one metal element is 0.1 to 20 mol% with respect to the sum of the number of moles of Ni in lithium nickelate, It is even more preferable because it has excellent cycle characteristics when used in a high capacity. Above all, an active material containing Al or Mn and having a Ni ratio of 85% or more, and more preferably 90% or more is used in a high capacity non-aqueous electrolyte secondary battery including a positive electrode plate containing the active material. Is particularly preferable because it has excellent cycle characteristics.
 前記導電剤としては、例えば、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体等の炭素質材料等が挙げられる。前記導電剤は、1種類のみを用いてもよく、例えば人造黒鉛とカーボンブラックとを混合して用いる等、2種類以上を組み合わせて用いてもよい。 Examples of the conductive agent include carbonaceous materials such as natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies. Only one type of the conductive agent may be used, or two or more types may be used in combination, for example, artificial graphite and carbon black may be mixed and used.
 前記結着剤としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデンの共重合体、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレンの共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテルの共重合体、エチレン-テトラフルオロエチレンの共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレンの共重合体、熱可塑性ポリイミド、ポリエチレン、およびポリプロピレン等の熱可塑性樹脂、アクリル樹脂、並びに、スチレンブタジエンゴムが挙げられる。尚、結着剤は、増粘剤としての機能も有している。 Examples of the binder include polyvinylidene fluoride, vinylidene fluoride copolymer, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. Thermoplastics such as ethylene-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, thermoplastic polyimide, polyethylene and polypropylene Examples include resins, acrylic resins, and styrene-butadiene rubber. The binder also has a function as a thickener.
 正極合剤を得る方法としては、例えば、正極活物質、導電剤および結着剤を正極集電体上で加圧して正極合剤を得る方法;適当な有機溶剤を用いて正極活物質、導電剤および結着剤をペースト状にして正極合剤を得る方法;等が挙げられる。 As a method for obtaining the positive electrode mixture, for example, a method of pressurizing a positive electrode active material, a conductive agent and a binder on a positive electrode current collector to obtain a positive electrode mixture; a positive electrode active material using a suitable organic solvent, a conductive material A method of forming a positive electrode mixture by forming the paste and the binder into a paste; and the like.
 前記正極集電体としては、例えば、Al、Ni、ステンレス等の導電体が挙げられる。中でも、薄膜に加工し易く、安価であることから、Alがより好ましい。 Examples of the positive electrode current collector include conductors such as Al, Ni, and stainless steel. Among them, Al is more preferable because it is easily processed into a thin film and is inexpensive.
 シート状の正極板の製造方法、即ち、正極集電体に正極合剤を担持させる方法としては、例えば、正極合剤となる正極活物質、導電剤および結着剤を正極集電体上で加圧成型する方法;適当な有機溶剤を用いて正極活物質、導電剤および結着剤をペースト状にして正極合剤を得た後、当該正極合剤を正極集電体に塗工し、乾燥して得られたシート状の正極合剤を加圧して正極集電体に固着する方法;等が挙げられる。 As a method for producing a sheet-shaped positive electrode plate, that is, a method of supporting a positive electrode mixture on a positive electrode current collector, for example, a positive electrode active material serving as a positive electrode mixture, a conductive agent, and a binder are provided on the positive electrode current collector. Pressure molding method: A positive electrode active material, a conductive agent and a binder are made into a paste using an appropriate organic solvent to obtain a positive electrode mixture, and then the positive electrode mixture is applied to a positive electrode current collector, A method of applying pressure to the sheet-shaped positive electrode mixture obtained by drying and fixing it to the positive electrode current collector;
 正極活物質の粒径は、例えば、体積当たりの平均粒径(D50)によって表される。正極活物質の体積当たりの平均粒径は、通常、0.1~30μm程度の値となる。正極活物質の体積当たりの平均粒径(D50)は、レーザー回折式粒度分布計(島津製作所製、商品名:SALD2200)を用いて測定することができる。 The particle size of the positive electrode active material is represented by, for example, the average particle size per volume (D50). The average particle size per volume of the positive electrode active material is usually about 0.1 to 30 μm. The average particle diameter (D50) per volume of the positive electrode active material can be measured using a laser diffraction particle size distribution meter (manufactured by Shimadzu Corporation, trade name: SALD2200).
 正極活物質のアスペクト比(長軸径/短軸径)は、通常、1~100程度の値となる。正極活物質のアスペクト比は、無機フィラーを平面上に配置した状態で、配置面の垂直上方から観察したSEM像において、厚み方向に重なりあわない粒子100個の、短軸の長さ(短軸径)と長軸の長さ(長軸径)との比の平均値として表す方法を用いて測定することができる。 The aspect ratio (major axis diameter / minor axis diameter) of the positive electrode active material is usually a value of about 1 to 100. The aspect ratio of the positive electrode active material is the length of the minor axis (minor axis) of 100 particles that do not overlap in the thickness direction in a SEM image observed from above the placement surface in a state where the inorganic filler is placed on a plane. It can be measured by a method represented as an average value of the ratio of the diameter) to the length of the major axis (major axis diameter).
 正極活物質層の空隙率は、通常、10~80%程度の値となる。正極活物質層の空隙率(ε)は、正極活物質層の密度ρ(g/m)、正極活物質層を構成する物質(例えば正極活物質、導電剤、結着剤など)の各々の質量組成(重量%)b、b、・・・b、および当該物質の各々の真密度(g/m)c、c、・・・cから、下記式に基づいて算出することができる。ここで、前記物質の真密度には、文献値を用いてもよいし、ピクノメーター法を用いて測定された値を用いてもよい。
ε=1-{ρ×(b/100)/c+ρ×(b/100)/c+・・・ρ×(b/100)/c}×100。
The porosity of the positive electrode active material layer is usually about 10 to 80%. The porosity (ε) of the positive electrode active material layer is the density ρ (g / m 3 ) of the positive electrode active material layer, and each of the substances (eg, positive electrode active material, conductive agent, binder, etc.) constituting the positive electrode active material layer. Based on the following formula, from the mass composition (wt%) b 1 , b 2 , ... B n of the substance and the true density (g / m 3 ) c 1 , c 2 , ... C n of each of the substances. Can be calculated by Here, as the true density of the substance, a literature value may be used, or a value measured using a pycnometer method may be used.
ε = 1- {ρ × (b 1/100) / c 1 + ρ × (b 2/100) / c 2 + ··· ρ × (b n / 100) / c n} × 100.
 正極活物質層に占める正極活物質の割合は、通常、70重量%以上である。 The proportion of the positive electrode active material in the positive electrode active material layer is usually 70% by weight or more.
 集電体上に正極活物質を含む正極合剤を塗工する塗工ライン速度は10~200m/分の範囲である。塗工時の塗工ライン速度は、正極活物質を塗工する装置を適宜設定することにより、調節できる。 The coating line speed for applying the positive electrode mixture containing the positive electrode active material on the current collector is in the range of 10 to 200 m / min. The coating line speed during coating can be adjusted by appropriately setting the device for coating the positive electrode active material.
 [負極板]
 本発明の一実施形態に係る非水電解液二次電池における負極板は、前記正極板および前記負極板を直径15.5mmの円盤状に加工し、濃度1MのLiPFのエチレンカーボネート/エチルメチルカーボネート/ジエチルカーボネート溶液に浸して測定したときの、界面障壁エネルギーの和が5000J/mol以上であれば特に限定されない。例えば、負極活物質層として、負極活物質、導電剤および結着剤を含む負極合剤を負極集電体上に担持したシート状の負極板が、このような負極板に含まれる。なお、負極板は、負極集電体の両面上に負極合剤を担持してもよく、負極集電体の片面上に負極合剤を担持してもよい。
[Negative electrode plate]
The negative electrode plate in the non-aqueous electrolyte secondary battery according to the exemplary embodiment of the present invention is obtained by processing the positive electrode plate and the negative electrode plate into a disk shape having a diameter of 15.5 mm, and a concentration of 1 M of LiPF 6 ethylene carbonate / ethyl methyl. There is no particular limitation as long as the sum of interface barrier energies is 5000 J / mol or more when measured by immersing in a carbonate / diethyl carbonate solution. For example, such a negative electrode plate includes a sheet-shaped negative electrode plate in which a negative electrode active material layer, a negative electrode mixture containing a negative electrode active material, a conductive agent, and a binder is carried on a negative electrode current collector. The negative electrode plate may carry the negative electrode mixture on both surfaces of the negative electrode current collector, or may carry the negative electrode mixture on one surface of the negative electrode current collector.
 シート状の負極板には、好ましくは前記導電剤、および、前記結着剤が含まれる。 The sheet-shaped negative electrode plate preferably contains the conductive agent and the binder.
 前記負極活物質としては、例えば、リチウムイオンをドープ・脱ドープ可能な材料、リチウム金属またはリチウム合金等が挙げられる。当該材料としては、具体的には、例えば、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体等の炭素質材料;正極板よりも低い電位でリチウムイオンのドープ・脱ドープを行う酸化物、硫化物等のカルコゲン化合物;アルカリ金属と合金化するAl、Pb、Sn、Bi、Siなどの金属、アルカリ金属を格子間に挿入可能な立方晶系の金属間化合物(AlSb、MgSi、NiSi)、リチウム窒素化合物(Li3-xN(M:遷移金属))等が挙げられる。前記負極活物質のうち、電位平坦性が高く、また平均放電電位が低いために正極板と組み合わせた場合に大きなエネルギー密度が得られることから、黒鉛を含むものが好ましく、天然黒鉛、人造黒鉛等の黒鉛材料を主成分とする炭素質材料がより好ましい。また、前記負極活物質は、黒鉛とシリコンの混合物であってもよく、その黒鉛を構成するCに対するSiの比率が5%以上である負極活物質が好ましく、10%以上である負極活物質がより好ましい。 Examples of the negative electrode active material include materials that can be doped / dedoped with lithium ions, lithium metal, lithium alloys, and the like. Specific examples of the material include carbonaceous materials such as natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies; potential lower than that of the positive electrode plate Chalcogen compounds such as oxides and sulfides for doping and dedoping lithium ions with Al; Al, Pb, Sn, Bi, Si and other metals alloying with them, and cubic crystals capable of intercalating alkali metals Examples thereof include system intermetallic compounds (AlSb, Mg 2 Si, NiSi 2 ), lithium nitrogen compounds (Li 3 −x M x N (M: transition metal)), and the like. Among the negative electrode active materials, those having graphite are preferable because they have high potential flatness and can obtain a large energy density when combined with the positive electrode plate because of low average discharge potential, and thus, those containing graphite are preferable, such as natural graphite and artificial graphite. The carbonaceous material containing the graphite material as a main component is more preferable. The negative electrode active material may be a mixture of graphite and silicon, and the negative electrode active material having a ratio of Si to C constituting the graphite of 5% or more is preferable, and the negative electrode active material having 10% or more is preferable. More preferable.
 負極合剤を得る方法としては、例えば、負極活物質を負極集電体上で加圧して負極合剤を得る方法;適当な有機溶剤を用いて負極活物質をペースト状にして負極合剤を得る方法;等が挙げられる。 As a method of obtaining the negative electrode mixture, for example, a method of pressing the negative electrode active material on the negative electrode current collector to obtain the negative electrode mixture; making the negative electrode active material into a paste using an appropriate organic solvent to form the negative electrode mixture. And the like.
 前記負極集電体としては、例えば、Cu、Ni、ステンレス等が挙げられ、特にリチウムイオン二次電池においてはリチウムと合金を作り難く、かつ薄膜に加工し易いことから、Cuがより好ましい。 Examples of the negative electrode current collector include Cu, Ni, and stainless steel. Particularly, in a lithium ion secondary battery, Cu is more preferable because it is difficult to form an alloy with lithium and is easily processed into a thin film.
 シート状の負極板の製造方法、即ち、負極集電体に負極合剤を担持させる方法としては、例えば、負極合剤となる負極活物質を負極集電体上で加圧成型する方法;適当な有機溶剤を用いて負極活物質をペースト状にして負極合剤を得た後、当該負極合剤を負極集電体に塗工し、乾燥して得られたシート状の負極合剤を加圧して負極集電体に固着する方法;等が挙げられる。前記ペーストには、好ましくは前記導電剤、および、前記結着剤が含まれる。 As a method for producing a sheet-shaped negative electrode plate, that is, a method of supporting a negative electrode mixture on a negative electrode current collector, for example, a method of press-molding a negative electrode active material to be a negative electrode mixture on the negative electrode current collector; A negative electrode active material is made into a paste using a different organic solvent to obtain a negative electrode mixture, and then the negative electrode mixture is applied to a negative electrode current collector, and the sheet-shaped negative electrode mixture obtained by drying is added. A method of applying pressure to fix to the negative electrode current collector; and the like. The paste preferably contains the conductive agent and the binder.
 負極活物質の体積当たりの平均粒径(D50)は、通常、0.1~30μm程度の値となる。 The average particle size (D50) per volume of the negative electrode active material is usually about 0.1 to 30 μm.
 負極活物質のアスペクト比(長軸径/短軸径)は、通常、1~10程度の値となる。 The aspect ratio (major axis diameter / minor axis diameter) of the negative electrode active material is usually a value of about 1 to 10.
 負極活物質層の空隙率は、通常、10~60%程度の値となる。 The porosity of the negative electrode active material layer is usually about 10 to 60%.
 負極活物質層に占める活物質の割合は、通常、70重量%以上であり、好ましくは80%以上、さらに好ましくは90%以上である。 The proportion of the active material in the negative electrode active material layer is usually 70% by weight or more, preferably 80% or more, more preferably 90% or more.
 集電体上に負極活物質を含む負極合剤を塗工する塗工ライン速度は10~200m/分の範囲である。塗工時の塗工ライン速度は、負極活物質を塗工する装置を適宜設定することにより、調節できる。 The coating line speed for coating the negative electrode mixture containing the negative electrode active material on the current collector is in the range of 10 to 200 m / min. The coating line speed during coating can be adjusted by appropriately setting the device for coating the negative electrode active material.
 前記負極活物質の粒径、アスペクト比、空隙率、負極活物質層に占める割合、および塗工ロール速度の決定方法は、[正極板]で説明した方法と同じである。 The method for determining the particle size, aspect ratio, porosity, proportion occupied in the negative electrode active material layer, and coating roll speed of the negative electrode active material is the same as the method described in [Positive electrode plate].
 [界面障壁エネルギーの和]
 本発明の一実施形態における正極板および負極板を直径15.5mmの円盤状に加工し、濃度1MのLiPFのエチレンカーボネート/エチルメチルカーボネート/ジエチルカーボネート溶液に浸して測定したときの、界面障壁エネルギーの和は5000J/mol以上である。前記界面障壁エネルギーの和は、5100J/mol以上であることが好ましく、5200J/mol以上であることがより好ましい。
[Sum of interface barrier energy]
An interfacial barrier when a positive electrode plate and a negative electrode plate according to an embodiment of the present invention are processed into a disk shape having a diameter of 15.5 mm and immersed in an ethylene carbonate / ethyl methyl carbonate / diethyl carbonate solution of LiPF 6 having a concentration of 1 M for measurement. The sum of energy is 5000 J / mol or more. The sum of the interface barrier energies is preferably 5100 J / mol or more, more preferably 5200 J / mol or more.
 界面障壁エネルギーの和を5000J/mol以上とすることにより、活物質層内の活物質表面における、イオンおよび電荷の移動は均一化され、結果として活物質層全体の反応性が適度であり、かつ均一になる。これにより、活物質層内の構造変化や活物質自体の劣化が抑制されると考えられる。 By setting the sum of interface barrier energies to 5000 J / mol or more, the movement of ions and charges on the surface of the active material in the active material layer is made uniform, and as a result, the reactivity of the entire active material layer is appropriate, and Be uniform. It is considered that this suppresses structural changes in the active material layer and deterioration of the active material itself.
 逆に、界面障壁エネルギーの和が5000J/molより小さい場合は、活物質層内の反応性が不均一になることにより、活物質層内の局所的な構造変化や、部分的な活物質の劣化(ガスの発生等)を生じると考えられる。 On the other hand, when the sum of the interfacial barrier energies is less than 5000 J / mol, the reactivity in the active material layer becomes non-uniform, which causes a local structural change in the active material layer or a partial active material It is considered to cause deterioration (generation of gas, etc.).
 以上の理由により、界面障壁エネルギーの和が5000J/mol以上である正極板および負極板の組み合わせを用いることによって、本発明の一実施形態に係る非水電解液二次電池は、ハイレートサイクル後の充電回復容量が良好に維持される、という効果を奏するようになる。 For the above reason, by using the combination of the positive electrode plate and the negative electrode plate having the sum of interface barrier energies of 5000 J / mol or more, the non-aqueous electrolyte secondary battery according to the embodiment of the present invention has This brings about an effect that the charge recovery capacity is favorably maintained.
 界面障壁エネルギーの和の上限は、特に限定されない。ただし、過剰に高い界面障壁エネルギーの和は、活物質表面でのイオンおよび電荷の移動を阻害し、結果として充放電に伴う活物質の酸化還元反応が生じにくくなるので、好ましくない。一例として、界面障壁エネルギーの和の上限は、15,000J/mol程度である。 The upper limit of the sum of interface barrier energy is not particularly limited. However, an excessively high sum of interfacial barrier energies is not preferable because it inhibits the movement of ions and charges on the surface of the active material, and as a result, the redox reaction of the active material due to charging and discharging is less likely to occur. As an example, the upper limit of the sum of interface barrier energies is about 15,000 J / mol.
 前記に説明した、界面障壁エネルギーの和は、以下の手順に従って正極活物質の界面障壁エネルギーと負極活物質の界面障壁エネルギーの和として測定・算出される。 The sum of the interface barrier energies explained above is measured and calculated as the sum of the interface barrier energies of the positive electrode active material and the negative electrode active material according to the following procedure.
 (1)正極板および負極板を、直径15mmの円盤状に切断する。併せて、ポリオレフィン多孔質フィルムを直径17mmの円盤状に切断し、これをセパレータとする。 (1) Cut the positive electrode plate and the negative electrode plate into a disk shape with a diameter of 15 mm. At the same time, the polyolefin porous film is cut into a disk shape having a diameter of 17 mm, which is used as a separator.
 (2)エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジエチルカーボネート(DEC)が、体積比で3/5/2である混合溶媒を調製する。前記混合溶媒に、LiPFを1mol/Lとなるように溶解させて、電解液を調製する。 (2) Prepare a mixed solvent of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / diethyl carbonate (DEC) in a volume ratio of 3/5/2. LiPF 6 is dissolved in the mixed solvent so as to be 1 mol / L to prepare an electrolytic solution.
 (3)CR2032型の電槽に、底側から順に、負極板、セパレータ、正極板、SUS板(直径:15.5mm、厚み:0.5mm)、ウェーブワッシャーを積層する。その後、電解液を注液し、蓋を閉めて、コイン電池を作製する。 (3) A negative electrode plate, a separator, a positive electrode plate, a SUS plate (diameter: 15.5 mm, thickness: 0.5 mm) and a wave washer are laminated in this order from the bottom side in a CR2032 type battery case. After that, an electrolytic solution is injected, the lid is closed, and a coin battery is manufactured.
 (4)作製したコイン電池を恒温槽内に設置する。交流インピーダンス装置(FRA 1255B、ソーラトロン社製)およびセルテストシステム(1470E)を用いて、周波数:1MHz~0.1Hz、電圧振幅:10mVの条件で、ナイキストプロットを測定する。なお、恒温槽の温度は、50℃、25℃、5℃または-10℃とする。 (4) Install the coin battery prepared in the constant temperature bath. A Nyquist plot is measured under the conditions of frequency: 1 MHz to 0.1 Hz and voltage amplitude: 10 mV using an AC impedance device (FRA 1255B, manufactured by Solartron) and a cell test system (1470E). The temperature of the constant temperature bath is 50 ° C, 25 ° C, 5 ° C or -10 ° C.
 (5)得られたナイキストプロットの半円弧(または扁平円の弧)の直径から、各温度における、正極板および負極板の電極活物質界面上の抵抗r+rを求める。ここで、抵抗r+rは、正極および負極のイオン移動に伴う抵抗と、正極および負極の電荷移動に伴う抵抗の和である。この半円弧は完全に2つの円弧に分離されている場合もあるし、二つの円が重なりあった扁平円の場合もある。下記の式(2)および式(3)に従って、正極活物質の界面障壁エネルギーと負極活物質との界面障壁エネルギーの和を算出する。 (5) From the diameter of the semicircular arc (or the arc of a flat circle) of the obtained Nyquist plot, the resistance r 1 + r 2 on the interface of the electrode active material of the positive electrode plate and the negative electrode plate at each temperature is obtained. Here, the resistance r 1 + r 2 is the sum of the resistance associated with the ion movement of the positive electrode and the negative electrode and the resistance associated with the charge transfer of the positive electrode and the negative electrode. This semi-circular arc may be completely divided into two circular arcs, or may be a flat circle in which two circles overlap each other. The sum of the interface barrier energy of the positive electrode active material and the interface barrier energy of the negative electrode active material is calculated according to the following equations (2) and (3).
 k=1/(r+r2)=Aexp(-Ea/RT) ・・・式(2)
 ln(k)=ln{1/(r+r)}=ln(A)-Ea/RT ・・・式(3)Ea:正極活物質と負極活物質との界面障壁エネルギーの和(J/mol)
k:移動定数
+r:抵抗(Ω)
A:頻度因子
R:気体定数=8.314J/mol/K
T:恒温槽の温度(K)。
k = 1 / (r 1 + r 2 ) = Aexp (−Ea / RT) (2)
ln (k) = ln {1 / (r 1 + r 2 )} = ln (A) −Ea / RT Formula (3) Ea: Sum of interface barrier energies between the positive electrode active material and the negative electrode active material (J / Mol)
k: transfer constant r 1 + r 2 : resistance (Ω)
A: Frequency factor R: Gas constant = 8.314 J / mol / K
T: Temperature of constant temperature bath (K).
 ここで、式(3)は、式(2)の両辺の自然対数を取った式である。式(3)において、ln{1/(r+r)}は、1/Tの一次関数となっている。したがって、式(3)に、それぞれの温度における抵抗の値を代入した点をプロットし、当該プロットから最小二乗法によって得られる近似直線の傾きから、Ea/Rが求められる。この値に、気体定数Rを代入すれば、界面障壁エネルギーの和Eaを算出できる。 Here, the expression (3) is an expression in which natural logarithms of both sides of the expression (2) are taken. In Expression (3), ln {1 / (r 1 + r 2 )} is a linear function of 1 / T. Therefore, Ea / R is obtained from the slope of the approximate straight line obtained by plotting the resistance values at the respective temperatures in the equation (3) and obtaining the least squares method from the plot. By substituting the gas constant R into this value, the sum Ea of interface barrier energies can be calculated.
 なお、頻度因子Aは、温度変化によって変動しない固有の値である。この値は、電解液バルクのリチウムイオンのモル濃度などに依存して決定される。式(3)に即すると、頻度因子Aは、(1/T)=0の場合のln(1/r)の値であり、前記近似直線に基づいて算出することができる。 The frequency factor A is a unique value that does not change due to temperature changes. This value is determined depending on the molar concentration of lithium ions in the electrolytic solution bulk and the like. According to the expression (3), the frequency factor A is a value of ln (1 / r 0 ) when (1 / T) = 0, and can be calculated based on the approximate straight line.
 界面障壁エネルギーの和は、例えば、正極活物質と負極活物質との粒径比によって制御することができる。正極活物質と負極活物質との粒径比(負極活物質の粒径/正極活物質の粒径)の値は、好ましくは6.0以下である。正極活物質と負極活物質との粒径比の値が大きくなり過ぎると、界面障壁エネルギーの和が小さくなり過ぎる傾向にある。 The sum of interface barrier energies can be controlled by, for example, the particle size ratio of the positive electrode active material and the negative electrode active material. The value of the particle size ratio between the positive electrode active material and the negative electrode active material (particle size of the negative electrode active material / particle size of the positive electrode active material) is preferably 6.0 or less. If the value of the particle size ratio of the positive electrode active material and the negative electrode active material is too large, the sum of the interface barrier energies tends to be too small.
 〔3.多孔質層〕
 本発明の一実施形態において、多孔質層は、非水電解液二次電池を構成する部材として、ポリオレフィン多孔質フィルムと、正極板および負極板の少なくともいずれか一方との間に配置され得る。前記多孔質層は、ポリオレフィン多孔質フィルムの片面または両面に形成され得る。或いは、前記多孔質層は、正極板および負極板の少なくともいずれか一方の活物質層上に形成され得る。或いは、前記多孔質層は、ポリオレフィン多孔質フィルムと、正極板および負極板の少なくともいずれか一方との間に、これらと接するように配置されてもよい。ポリオレフィン多孔質フィルムと正極板および負極板の少なくともいずれか一方との間に配置される多孔質層は1層でもよく2層以上であってもよい。多孔質層は、樹脂を含む絶縁性の多孔質層であることが好ましい。
[3. Porous layer)
In one embodiment of the present invention, the porous layer may be disposed between the polyolefin porous film and at least one of the positive electrode plate and the negative electrode plate as a member constituting the non-aqueous electrolyte secondary battery. The porous layer may be formed on one side or both sides of the polyolefin porous film. Alternatively, the porous layer may be formed on the active material layer of at least one of the positive electrode plate and the negative electrode plate. Alternatively, the porous layer may be arranged between the polyolefin porous film and at least one of the positive electrode plate and the negative electrode plate so as to be in contact with them. The porous layer disposed between the polyolefin porous film and at least one of the positive electrode plate and the negative electrode plate may be one layer or two or more layers. The porous layer is preferably an insulating porous layer containing a resin.
 ポリオレフィン多孔質フィルムの片面に多孔質層が積層される場合には、当該多孔質層は、好ましくは、ポリオレフィン多孔質フィルムにおける正極板と対向する面に積層される。より好ましくは、当該多孔質層は、正極板と接する面に積層される。 When the porous layer is laminated on one side of the polyolefin porous film, the porous layer is preferably laminated on the surface of the polyolefin porous film facing the positive electrode plate. More preferably, the porous layer is laminated on the surface in contact with the positive electrode plate.
 本発明の一実施形態における多孔質層は、無機フィラーと、樹脂とを含む。多孔質層は、内部に多数の細孔を有し、これら細孔が連結された構造となっており、一方の面から他方の面へと気体或いは液体が通過可能となった層である。また、本発明の一実施形態における多孔質層が後述する非水電解液二次電池用積層セパレータを構成する部材として使用される場合、前記多孔質層は、当該非水電解液二次電池用積層セパレータの最外層として、電極と接する層となり得る。 The porous layer in one embodiment of the present invention contains an inorganic filler and a resin. The porous layer has a large number of pores inside and has a structure in which these pores are connected, and is a layer through which gas or liquid can pass from one surface to the other surface. Further, when the porous layer in one embodiment of the present invention is used as a member constituting a laminated separator for a non-aqueous electrolyte secondary battery described later, the porous layer is for the non-aqueous electrolyte secondary battery. The outermost layer of the laminated separator can be a layer in contact with the electrode.
 本発明の一実施形態における多孔質層に用いられる樹脂は、電池の電解液に不溶であり、また、その電池の使用範囲において電気化学的に安定であることが好ましい。 The resin used for the porous layer in one embodiment of the present invention is preferably insoluble in the electrolytic solution of the battery and electrochemically stable in the range of use of the battery.
 多孔質層に用いられる樹脂としては、例えば、ポリオレフィン;(メタ)アクリレート系樹脂;含フッ素樹脂;ポリアミド系樹脂;ポリイミド系樹脂;ポリエステル系樹脂;ゴム類;融点またはガラス転移温度が180℃以上の樹脂;水溶性ポリマー;ポリカーボネート、ポリアセタール、ポリエーテルエーテルケトン等が挙げられる。 Examples of the resin used for the porous layer include polyolefin; (meth) acrylate resin; fluorine-containing resin; polyamide resin; polyimide resin; polyester resin; rubbers; melting point or glass transition temperature of 180 ° C. or higher. Resins; water-soluble polymers; polycarbonates, polyacetals, polyether ether ketones and the like.
 上述の樹脂のうち、ポリオレフィン、(メタ)アクリレート系樹脂、含フッ素樹脂、ポリアミド系樹脂、ポリエステル系樹脂および水溶性ポリマーが好ましい。 Among the above resins, polyolefin, (meth) acrylate resin, fluorine-containing resin, polyamide resin, polyester resin and water-soluble polymer are preferable.
 ポリオレフィンとしては、ポリエチレン、ポリプロピレン、ポリブテン、及びエチレン-プロピレン共重合体等が好ましい。 As the polyolefin, polyethylene, polypropylene, polybutene, ethylene-propylene copolymer and the like are preferable.
 含フッ素樹脂としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-トリクロロエチレン共重合体、フッ化ビニリデン-フッ化ビニル共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、及びエチレン-テトラフルオロエチレン共重合体等、並びに、前記含フッ素樹脂の中でもガラス転移温度が23℃以下である含フッ素ゴムを挙げることができる。 Examples of the fluorine-containing resin include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer Coalescence, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-trichloroethylene copolymer, vinylidene fluoride-vinyl fluoride copolymer, vinylidene fluoride-hexafluoro Examples thereof include propylene-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer and the like, and fluorine-containing rubber having a glass transition temperature of 23 ° C. or lower among the fluorine-containing resins. .
 ポリアミド系樹脂としては、芳香族ポリアミドおよび全芳香族ポリアミドなどのアラミド樹脂が好ましい。 As the polyamide resin, aramid resins such as aromatic polyamide and wholly aromatic polyamide are preferable.
 アラミド樹脂としては、具体的には、例えば、ポリ(パラフェニレンテレフタルアミド)、ポリ(メタフェニレンイソフタルアミド)、ポリ(パラベンズアミド)、ポリ(メタベンズアミド)、ポリ(4,4’-ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン-4,4’-ビフェニレンジカルボン酸アミド)、ポリ(メタフェニレン-4,4’-ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン-2,6-ナフタレンジカルボン酸アミド)、ポリ(メタフェニレン-2,6-ナフタレンジカルボン酸アミド)、ポリ(2-クロロパラフェニレンテレフタルアミド)、パラフェニレンテレフタルアミド/2,6-ジクロロパラフェニレンテレフタルアミド共重合体、メタフェニレンテレフタルアミド/2,6-ジクロロパラフェニレンテレフタルアミド共重合体等が挙げられる。このうち、ポリ(パラフェニレンテレフタルアミド)がより好ましい。 Specific examples of the aramid resin include poly (paraphenylene terephthalamide), poly (metaphenylene isophthalamide), poly (parabenzamide), poly (metabenzamide), poly (4,4′-benzanilide terephthalate). Amide), poly (paraphenylene-4,4′-biphenylenedicarboxylic acid amide), poly (metaphenylene-4,4′-biphenylenedicarboxylic acid amide), poly (paraphenylene-2,6-naphthalenedicarboxylic acid amide), Poly (metaphenylene-2,6-naphthalenedicarboxylic acid amide), poly (2-chloroparaphenylene terephthalamide), paraphenylene terephthalamide / 2,6-dichloroparaphenylene terephthalamide copolymer, metaphenylene terephthalamide / 2 , 6-diclosure Paraphenylene terephthalamide copolymer and the like. Of these, poly (paraphenylene terephthalamide) is more preferable.
 ポリエステル系樹脂としては、ポリアリレートなどの芳香族ポリエステルおよび液晶ポリエステルが好ましい。 As the polyester resin, aromatic polyester such as polyarylate and liquid crystal polyester are preferable.
 ゴム類としては、スチレン-ブタジエン共重合体およびその水素化物、メタクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリ酢酸ビニル等を挙げることができる。 Examples of rubbers include styrene-butadiene copolymer and its hydride, methacrylic acid ester copolymer, acrylonitrile-acrylic acid ester copolymer, styrene-acrylic acid ester copolymer, ethylene propylene rubber, polyvinyl acetate and the like. Can be mentioned.
 融点又はガラス転移温度が180℃以上の樹脂としては、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリエーテルアミド等を挙げることができる。 Examples of the resin having a melting point or glass transition temperature of 180 ° C. or higher include polyphenylene ether, polysulfone, polyether sulfone, polyphenylene sulfide, polyetherimide, polyamideimide, and polyetheramide.
 水溶性ポリマーとしては、ポリビニルアルコール、ポリエチレングリコール、セルロースエーテル、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリルアミド、ポリメタクリル酸等を挙げることができる。 Examples of water-soluble polymers include polyvinyl alcohol, polyethylene glycol, cellulose ether, sodium alginate, polyacrylic acid, polyacrylamide, polymethacrylic acid and the like.
 なお、多孔質層に用いられる樹脂としては、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。 As the resin used for the porous layer, only one kind may be used, or two or more kinds may be used in combination.
 前記樹脂の中でも、多孔質層が正極板に対向して配置される場合には、電池作動時に酸化劣化が生じたとしても非水電解液二次電池のレート特性および抵抗特性等の各種性能を維持し易いため、含フッ素樹脂が好ましい。 Among the resins, when the porous layer is arranged to face the positive electrode plate, various performances such as rate characteristics and resistance characteristics of the non-aqueous electrolyte secondary battery can be obtained even if oxidative deterioration occurs during battery operation. A fluorine-containing resin is preferable because it can be easily maintained.
 本発明の一実施形態における多孔質層は、無機フィラーを含む。その含有量の下限値は、前記フィラーと、本発明の一実施形態における多孔質層を構成する樹脂との総重量に対して、50重量%以上であることが好ましく、70重量%以上であることがより好ましく、90重量%以上であることがさらに好ましい。一方、本発明の一実施形態における多孔質層における、無機フィラーの含有量の上限値は、99重量%以下であることが好ましく、98重量%以下であることがより好ましい。前記フィラーの含有量が、50重量%以上であることが耐熱性の観点から好ましく、前記フィラーの含有量が、99重量%以下であることがフィラー間の密着性の観点から好ましい。無機フィラーを含有することで、前記多孔質層を含むセパレータの滑り性および耐熱性を向上し得る。無機フィラーとしては、非水電解液に安定であり、かつ、電気化学的に安定なフィラーであれば特に限定されない。電池の安全性を確保する観点からは、耐熱温度が150℃以上のフィラーが好ましい。 The porous layer in one embodiment of the present invention contains an inorganic filler. The lower limit of the content is preferably 50% by weight or more and 70% by weight or more based on the total weight of the filler and the resin constituting the porous layer in the embodiment of the present invention. More preferably, it is more preferably 90% by weight or more. On the other hand, the upper limit of the content of the inorganic filler in the porous layer in the embodiment of the present invention is preferably 99% by weight or less, and more preferably 98% by weight or less. The content of the filler is preferably 50% by weight or more from the viewpoint of heat resistance, and the content of the filler is preferably 99% by weight or less from the viewpoint of adhesion between the fillers. By containing the inorganic filler, the slipperiness and heat resistance of the separator including the porous layer can be improved. The inorganic filler is not particularly limited as long as it is a filler that is stable in a non-aqueous electrolytic solution and is electrochemically stable. From the viewpoint of ensuring the safety of the battery, a filler having a heat resistant temperature of 150 ° C. or higher is preferable.
 前記無機フィラーは、特に限定されないが、通常、絶縁性フィラーである。前記無機フィラーは、好ましくは、アルミニウム元素、亜鉛元素、カルシウム元素、ジルコニウム元素、ケイ素元素、マグネシウム元素、バリウム元素、およびホウ素元素からなる群から選ばれる少なくとも1種の元素を含む無機物であり、好ましくはアルミニウム元素を含む無機物である。また、無機フィラーは、好ましくは前記元素の酸化物を含む。 The inorganic filler is not particularly limited, but is usually an insulating filler. The inorganic filler is preferably an inorganic material containing at least one element selected from the group consisting of aluminum element, zinc element, calcium element, zirconium element, silicon element, magnesium element, barium element, and boron element, and preferably Is an inorganic substance containing an aluminum element. The inorganic filler preferably contains an oxide of the above element.
 具体的には、無機フィラーとして、チタン酸化物、アルミナ(Al)、酸化亜鉛(ZnO)、酸化カルシウム(CaO)、酸化ジルコニア(ZrO)、シリカ、マグネシア、酸化バリウム、酸化ホウ素、マイカ、ワラストナイト、アタパルジャイト、ベーマイト(アルミナ1水和物)などを挙げることができる。前記無機フィラーとしては、1種類のフィラーを単独で使用してもよく、2種類以上のフィラーを組み合わせて使用してもよい。 Specifically, as the inorganic filler, titanium oxide, alumina (Al 2 O 3 ), zinc oxide (ZnO), calcium oxide (CaO), zirconia oxide (ZrO 2 ), silica, magnesia, barium oxide, boron oxide, Examples thereof include mica, wollastonite, attapulgite, and boehmite (alumina monohydrate). As the inorganic filler, one kind of filler may be used alone, or two or more kinds of filler may be used in combination.
 本発明の一実施形態における多孔質層における無機フィラーは、アルミナおよび板状フィラーを含むことが好ましい。前記板状フィラーとしては、上で挙げた元素の酸化物のうち、例えば、酸化亜鉛(ZnO)、マイカおよびベーマイトからなる群より選ばれる1以上のフィラーを挙げることができる。 The inorganic filler in the porous layer in one embodiment of the present invention preferably contains alumina and a plate-like filler. Examples of the plate-like filler include one or more fillers selected from the group consisting of zinc oxide (ZnO), mica, and boehmite among oxides of the above-mentioned elements.
 前記無機フィラーの体積平均粒子径は、良好な接着性と滑り性の確保、および積層体の成形性の観点から、0.01μm~10μmの範囲であることが好ましい。その下限値としては0.05μm以上がより好ましく、0.1μm以上がさらに好ましい。その上限値としては5μm以下がより好ましく、1μm以下がさらに好ましい。 The volume average particle size of the inorganic filler is preferably in the range of 0.01 μm to 10 μm from the viewpoint of ensuring good adhesiveness and slipperiness, and moldability of the laminate. The lower limit value is more preferably 0.05 μm or more, further preferably 0.1 μm or more. The upper limit value is more preferably 5 μm or less, further preferably 1 μm or less.
 前記無機フィラーの形状は、任意であり、特に限定されない。前記無機フィラーの形状は、粒子状であり得、例えば、球形状;楕円形状;板状;棒状;不定形状;繊維状;ピーナッツ状および/またはテトラポット状のように球状または柱状の単一粒子が熱融着した形状;の何れでもよい。電池の短絡防止の観点から、前記無機フィラーは、板状の粒子、および/または、凝集していない一次粒子であることが好ましい。また、イオン透過の観点からは、前記無機フィラーの形状は、多孔質中の粒子が最密充填され難く、粒子間に空隙が形成され易い、瘤、へこみ、くびれ、隆起もしくは膨らみを有する、樹枝状、珊瑚状、もしくは房(ふさ)状などの不定形状;繊維状;ピーナッツ状および/またはテトラポット状のように単一粒子が熱融着した形状であることが好ましい。前記無機フィラーの形状は、特に、ピーナッツ状および/またはテトラポット状のように球状または柱状の単一粒子が熱融着した形状であることが特にさらに好ましい。 The shape of the inorganic filler is arbitrary and is not particularly limited. The shape of the inorganic filler may be a particle shape, for example, a spherical shape; an elliptical shape; a plate shape; a rod shape; an indefinite shape; a fibrous shape; a spherical or columnar single particle such as a peanut shape and / or a tetrapot shape. The shape may be any of the above. From the viewpoint of preventing a short circuit in the battery, the inorganic filler is preferably plate-like particles and / or non-aggregated primary particles. Further, from the viewpoint of ion permeation, the shape of the inorganic filler is such that the particles in the porous material are difficult to be most closely packed, voids are easily formed between the particles, bumps, dents, constrictions, ridges or bulges, and dendritic It is preferable that a single particle is heat-fused such as an indeterminate shape such as a shape, a coral shape, or a tuft shape; a fibrous shape; a peanut shape and / or a tetrapot shape. The shape of the inorganic filler is particularly preferably a shape in which spherical or columnar single particles such as peanut-shaped and / or tetrapot-shaped particles are heat-sealed.
 フィラーは、多孔質層の表面に微細な凹凸を形成することで滑り性を向上させ得るものであるが、フィラーが板状の粒子および/または凝集していない一次粒子である場合には、フィラーによって多孔質層の表面に形成される凹凸がより微細になり、多孔質層と電極との接着性がより良好となる。 The filler can improve the slipperiness by forming fine irregularities on the surface of the porous layer, but when the filler is plate-like particles and / or primary particles which are not aggregated, the filler is As a result, the unevenness formed on the surface of the porous layer becomes finer, and the adhesiveness between the porous layer and the electrode becomes better.
 本発明の一実施形態における多孔質層に含まれる、無機フィラーを構成する前記元素の酸化物の酸素原子質量百分率は、10%~50%であることが好ましく、20%~50%であることがより好ましい。本明細書において、「酸素原子質量百分率」とは、前記元素の酸化物全体の総質量に対する、当該酸化物中の酸素原子の質量の比を百分率で表したものを意味する。例えば、酸化亜鉛の場合、亜鉛の原子量:65.4、酸素の原子量:16.0より酸化亜鉛(ZnO)の分子量が65.4+16.0=81.4であることから、酸化亜鉛中の酸素原子質量百分率は16.0/81.4×100=20(%)である。 In the embodiment of the present invention, the oxygen atom mass percentage of the oxide of the element forming the inorganic filler contained in the porous layer is preferably 10% to 50%, and preferably 20% to 50%. Is more preferable. In the present specification, “oxygen atom mass percentage” means a ratio of the mass of oxygen atoms in the oxide to the total mass of the oxide of the element, which is expressed as a percentage. For example, in the case of zinc oxide, since the atomic weight of zinc is 65.4 and the atomic weight of oxygen is 16.0, the molecular weight of zinc oxide (ZnO) is 65.4 + 16.0 = 81.4. The atomic mass percentage is 16.0 / 81.4 × 100 = 20 (%).
 前記元素の酸化物の酸素原子質量百分率が上述の範囲であれば、後述する多孔質層の製造方法にて使用する塗工液中の溶媒または分散媒と、前記無機フィラーとの親和性を好適に保ち、前記無機フィラー間を適切な距離に保つことができる。これにより塗工液の分散性を良好にすることができ、その結果、上述の式(1)を適切な規定範囲に制御することができる。 If the oxygen atomic mass percentage of the oxide of the element is in the above range, the affinity between the solvent or the dispersion medium in the coating liquid used in the method for producing a porous layer described later and the inorganic filler is preferable. It is possible to maintain a proper distance between the inorganic fillers. As a result, the dispersibility of the coating liquid can be improved, and as a result, the above formula (1) can be controlled within an appropriate specified range.
 本発明の一実施形態における多孔質層に含まれる、無機フィラー自体のアスペクト比は、無機フィラーを平面上に配置した状態で、配置面の垂直上方から観察したSEM像において、厚み方向に重なりあわない粒子100個の、短軸の長さ(短軸径)と長軸の長さ(長軸径)との比の平均値として表される。前記無機フィラー自体のアスペクト比は、1~10であることが好ましく、1.1~8であることがより好ましく、1.2~5であることがさらに好ましい。無機フィラー自体のアスペクト比が上述の範囲であることによって、後述する方法にて本発明の一実施形態における多孔質層を形成した際に、得られる多孔質層において、当該フィラーの配向性や、多孔質層表面におけるフィラーの分布の均一性を好ましい範囲に制御することができる。 The aspect ratio of the inorganic filler itself contained in the porous layer in the embodiment of the present invention is such that, in a state where the inorganic filler is arranged on a plane, in the SEM image observed from vertically above the arrangement surface, the aspect ratio overlaps in the thickness direction. It is expressed as the average value of the ratio of the length of the minor axis (minor axis diameter) to the length of the major axis (minor axis diameter) of 100 particles that are not present. The aspect ratio of the inorganic filler itself is preferably 1 to 10, more preferably 1.1 to 8, and even more preferably 1.2 to 5. By the aspect ratio of the inorganic filler itself is in the above range, when the porous layer in one embodiment of the present invention is formed by the method described below, in the resulting porous layer, the orientation of the filler, The uniformity of the distribution of the filler on the surface of the porous layer can be controlled within a preferable range.
 本発明の一実施形態における多孔質層は、上述の無機フィラーおよび樹脂以外のその他の成分を含んでいてもよい。前記その他の成分としては、例えば、界面活性剤、ワックス、バインダー樹脂などを挙げることができる。また、前記その他の成分の含有量は、多孔質層全体の重量に対して、0重量%~50重量%であることが好ましい。 The porous layer in one embodiment of the present invention may contain other components than the above-mentioned inorganic filler and resin. Examples of the other components include surfactants, waxes and binder resins. The content of the other components is preferably 0% by weight to 50% by weight based on the weight of the entire porous layer.
 本発明の一実施形態における多孔質層の平均膜厚は、電極との接着性および高エネルギー密度を確保する観点から、多孔質層一層当たり、0.5μm~10μmの範囲であることが好ましく、1μm~5μmの範囲であることがより好ましい。 The average film thickness of the porous layer in one embodiment of the present invention is preferably in the range of 0.5 μm to 10 μm per one layer of the porous layer from the viewpoint of ensuring adhesiveness to the electrode and high energy density. More preferably, it is in the range of 1 μm to 5 μm.
 多孔質層の単位面積当たりの目付は、多孔質層の強度、膜厚、重量およびハンドリング性を考慮して適宜決定することができる。多孔質層の単位面積当たりの目付は、多孔質層一層当たり、0.5~20g/mであることが好ましく、0.5~10g/mであることがより好ましい。 The basis weight per unit area of the porous layer can be appropriately determined in consideration of the strength, film thickness, weight and handling property of the porous layer. The basis weight per unit area of the porous layer is preferably 0.5 to 20 g / m 2 and more preferably 0.5 to 10 g / m 2 per porous layer.
 多孔質層の単位面積当たりの目付をこれらの数値範囲とすることにより、非水電解液二次電池の重量エネルギー密度および体積エネルギー密度を高くすることができる。多孔質層の目付が前記範囲を超える場合には、非水電解液二次電池が重くなる傾向がある。 By setting the basis weight per unit area of the porous layer within these numerical ranges, the weight energy density and volume energy density of the non-aqueous electrolyte secondary battery can be increased. When the basis weight of the porous layer exceeds the above range, the non-aqueous electrolyte secondary battery tends to be heavy.
 多孔質層の空隙率は、充分なイオン透過性を得ることができるように、20~90体積%であることが好ましく、30~80体積%であることがより好ましい。また、多孔質層が有する細孔の孔径は、1.0μm以下であることが好ましく、0.5μm以下であることがより好ましい。細孔の孔径をこれらのサイズとすることにより、非水電解液二次電池は、充分なイオン透過性を得ることができる。 The porosity of the porous layer is preferably 20 to 90% by volume, and more preferably 30 to 80% by volume so that sufficient ion permeability can be obtained. The pore size of the pores of the porous layer is preferably 1.0 μm or less, more preferably 0.5 μm or less. By setting the pore diameters to these sizes, the non-aqueous electrolyte secondary battery can obtain sufficient ion permeability.
 [多孔質層表面のT/M比]
 本発明の一実施形態における多孔質層は、以下の式(1)で表される値が、0.10~0.42の範囲であることが好ましく、0.10~0.30の範囲であることがより好ましい。
|1-T/M|・・・(1)
 (式(1)中、Tは、TDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す)。
[T / M ratio of porous layer surface]
In the porous layer according to one embodiment of the present invention, the value represented by the following formula (1) is preferably in the range of 0.10 to 0.42, and in the range of 0.10 to 0.30. More preferably.
| 1-T / M | ... (1)
(In Formula (1), T represents a distance to a critical load in a scratch test under a constant load of 0.1 N in TD, and M represents a scratch test under a constant load of 0.1 N in MD. , Represents the distance to the critical load).
 上述のスクラッチ試験により測定された、TDにおける臨界荷重までの距離(T)と、MDにおける臨界荷重までの距離(M)との割合は、多孔質層における無機フィラーの配向性を表す指標である。ここで、前記配向性が高い場合(異方性)と、前記配向性が低い場合(等方性)の、多孔質層における無機フィラーの様態の模式図を図1に示す。図1の左図が、無機フィラーを含む多孔質層における、無機フィラーの配向性が大きく異方性を示す場合の当該多孔質層の構造を表す模式図であり、図1の右図が、無機フィラーの配向性が小さく等方性を示す場合の当該多孔質層の構造を表す模式図である。 The ratio of the distance (T) to the critical load in TD and the distance (M) to the critical load in MD measured by the above scratch test is an index showing the orientation of the inorganic filler in the porous layer. .. Here, FIG. 1 shows a schematic view of the state of the inorganic filler in the porous layer when the orientation is high (anisotropic) and when the orientation is low (isotropic). The left diagram of FIG. 1 is a schematic diagram showing the structure of the porous layer containing an inorganic filler, in which the orientation of the inorganic filler is large and exhibits anisotropy, and the right diagram of FIG. It is a schematic diagram showing the structure of the said porous layer in case the orientation of an inorganic filler is small and it shows isotropic property.
 上記式(1)にて表される値は、スクラッチ試験における臨界荷重までの距離の異方性を示す値であり、その値がゼロに近いほど、上記臨界荷重までの距離が等方性であることを示す。以下、式(1)にて表される値を単に「式(1)」とも称する。 The value represented by the above formula (1) is a value indicating the anisotropy of the distance to the critical load in the scratch test. The closer the value is to zero, the more isotropic the distance to the critical load is. Indicates that there is. Hereinafter, the value represented by the formula (1) is also simply referred to as “formula (1)”.
 本発明における「スクラッチ試験」とは、図2に示すように、圧子に一定の荷重をかけ、測定対象の多孔膜の表層を厚み方向に圧縮変形させた状態で水平方向に多孔膜を移動させたときの、ある圧子移動距離における発生応力を測定する試験である。多孔膜の表層を厚み方向に圧縮変形させた状態とは、すなわち、多孔膜に圧子を押し込んだ状態である。当該試験は、具体的には、以下に示す方法にて実施される:
 (1)測定対象の多孔質層を多孔質基材に積層することにより得た積層多孔質フィルムである積層体を20mm×60mmに裁断する。その後、当該裁断した積層体3を、基板2である30mm×70mmのガラス製プレパラート上に水性糊にて貼合し、25℃の温度下にて一昼夜乾燥させることにより、試験用サンプルを作製する。なお、上記貼合のときは、積層体とガラス製プレパラートとの間に気泡が入らないようにする。
The "scratch test" in the present invention means, as shown in FIG. 2, a constant load is applied to the indenter, and the porous membrane is moved horizontally while the surface layer of the porous membrane to be measured is compressed and deformed in the thickness direction. This is a test for measuring the stress generated at a certain indenter movement distance when the pressure is applied. The state in which the surface layer of the porous membrane is compressed and deformed in the thickness direction is the state in which the indenter is pushed into the porous membrane. The test is specifically carried out by the following method:
(1) A laminate, which is a laminated porous film obtained by laminating a measurement target porous layer on a porous substrate, is cut into 20 mm × 60 mm. Then, the cut laminated body 3 is pasted on a 30 mm × 70 mm glass preparation, which is the substrate 2, with an aqueous paste, and dried at 25 ° C. for 24 hours to prepare a test sample. .. In addition, at the time of the above-mentioned bonding, bubbles are prevented from entering between the laminated body and the glass slide.
 (2)工程(1)にて作製された試験用サンプルを、マイクロスクラッチ試験装置に設置する。当該試験装置におけるダイヤモンド圧子1によって当該試験用サンプル上に0.1Nの大きさの垂直荷重をかけたままの状態にて、当該試験装置におけるテーブルを積層体のTDに向けて、5mm/minの速さにて、10mmの距離を移動させる。その間の、上記ダイヤモンド圧子と当該試験用サンプルとの間に発生する応力である摩擦力を測定する。 (2) Install the test sample prepared in step (1) in the micro scratch tester. With the diamond indenter 1 in the test apparatus, while the vertical load of 0.1 N is applied to the test sample, the table in the test apparatus is directed toward the TD of the laminated body at 5 mm / min. At speed, move a distance of 10 mm. During that time, a frictional force, which is a stress generated between the diamond indenter and the test sample, is measured.
 (3)工程(2)にて測定された応力の変位と、上記テーブルの移動距離との関係を示す曲線グラフを作成し、当該曲線グラフから、図3に示すように、TDにおける、臨界荷重値および、臨界荷重に至るまでの距離を算出する。 (3) A curve graph showing the relationship between the displacement of the stress measured in the step (2) and the moving distance of the table is created, and from the curve graph, as shown in FIG. Calculate the value and the distance to reach the critical load.
 (4)上記テーブルの移動方向をMDに変更して、上述の工程(1)~(3)を繰り返して行い、MDにおける、臨界荷重値および、臨界荷重に至るまでの距離を算出する。 (4) The moving direction of the table is changed to MD, and the above steps (1) to (3) are repeated to calculate the critical load value and the distance to reach the critical load in MD.
 なお、上記スクラッチ試験における、上述した条件以外の測定条件等に関しては、JIS R 3255に記載の方法と同様の条件にて実施される。 Note that the measurement conditions other than the above-mentioned conditions in the scratch test will be performed under the same conditions as the method described in JIS R3255.
 上記スクラッチ試験にて算出される臨界荷重値までの距離は、(a)積層多孔質フィルム表層の塑性変形容易性の指標、(b)測定面と反対の面へのせん断応力の伝達性の指標となる。上記臨界荷重値までの距離が長いことは、測定対象の積層多孔質フィルムにおいて、(a’)表層部が塑性変形し難く、(b’)測定面と反対の面へのせん断応力の伝達性が低いこと、すなわち応力が伝わり難いことを示す。 The distance to the critical load value calculated by the scratch test is (a) an index of plastic deformation easiness of the surface of the laminated porous film, (b) an index of transmissibility of shear stress to the surface opposite to the measurement surface. Becomes The long distance to the critical load value means that in the laminated porous film to be measured, (a ') the surface layer portion is less likely to be plastically deformed, and (b') the transmission of shear stress to the surface opposite to the measurement surface. Is low, that is, it is difficult for stress to be transmitted.
 なお、TD方向、MD方向における臨界荷重までの距離は、以下に示す積層多孔質フィルムの構造因子に強く影響を受けると考えられる。 The distance to the critical load in the TD and MD directions is considered to be strongly influenced by the structural factors of the laminated porous film shown below.
 (i)積層多孔質フィルムにおけるMDへの樹脂の配向状態
 (ii)積層多孔質フィルムにおけるTDへの樹脂の配向状態
 (iii)積層多孔質フィルムの厚み方向におけるMD方向、TD方向に配向した樹脂の接触状態。
(I) Orientation state of resin to MD in laminated porous film (ii) Orientation state of resin to TD in laminated porous film (iii) Resin oriented in MD direction and TD direction in thickness direction of laminated porous film Contact state.
 上述の式(1)が0.42より大きい場合には、多孔質層内部構造の異方性が過度に高い構造となるため、多孔質層内部のイオン透過流路長が長くなる。その結果、前記多孔質層を組み込んだ非水電解液二次電池において、多孔質層のイオン透過抵抗が増加し、当該非水電解液二次電池におけるセパレータの抵抗が増加する。一方、上述の式(1)が0.10未満である場合には、多孔質層の構造が、過度に高い等方性を有する構造となっていると考えられる。多孔質層の構造が過度に高い等方性を有するときには、当該多孔質層を組み込んだ非水電解液二次電池において、電池作動時の多孔質層の電解液受入能力が過度に高くなる傾向がある。その結果、多孔質層と接し、当該多孔質層へ電解液を供給するセパレータ基材および電極の電解液供給能力が非水電解液二次電池全体の電解液の流れを律速することになる。結果として、当該非水電解液二次電池におけるセパレータの抵抗が増加する。 When the above formula (1) is larger than 0.42, the anisotropy of the internal structure of the porous layer becomes excessively high, and the ion permeation flow path length inside the porous layer becomes long. As a result, in the non-aqueous electrolyte secondary battery incorporating the porous layer, the ion permeation resistance of the porous layer increases, and the resistance of the separator in the non-aqueous electrolyte secondary battery increases. On the other hand, when the above formula (1) is less than 0.10, it is considered that the structure of the porous layer is a structure having an excessively high isotropic property. When the structure of the porous layer has an excessively high isotropic property, in a non-aqueous electrolyte secondary battery incorporating the porous layer, the electrolyte receiving ability of the porous layer during battery operation tends to be excessively high. There is. As a result, the electrolyte solution supply capabilities of the separator base material and the electrode that are in contact with the porous layer and supply the electrolyte solution to the porous layer will control the flow rate of the electrolyte solution of the entire non-aqueous electrolyte secondary battery. As a result, the resistance of the separator in the non-aqueous electrolyte secondary battery increases.
 [中心粒径(D50)]
 本発明の一実施形態における多孔質層は、無機フィラーの中心粒径(D50)が0.1μm~11μmの範囲であることが好ましく、0.1μm~10μmの範囲であることがより好ましく、0.1μm~5μmの範囲であることがさらに好ましく、0.5μmであることが特に好ましい。
[Center particle size (D50)]
In the porous layer according to one embodiment of the present invention, the median particle diameter (D50) of the inorganic filler is preferably in the range of 0.1 μm to 11 μm, more preferably in the range of 0.1 μm to 10 μm, and 0 The range is more preferably from 1 μm to 5 μm, and particularly preferably 0.5 μm.
 無機フィラーの中心粒径を測定する方法は、特に限定されないが、例えば、実施例に記載の方法で測定される。 The method for measuring the median particle diameter of the inorganic filler is not particularly limited, but for example, it is measured by the method described in the examples.
 無機フィラーの中心粒径が11μmより大きい場合には、耐熱層の膜厚が増加してムラが発生するため、多孔質層のイオン透過にもムラが生じることとなる。その結果、前記多孔質層を組み込んだ非水電解液二次電池におけるセパレータの抵抗が増加する傾向がある。一方、無機フィラーの中心粒径が0.1μm未満である場合には、無機フィラーを含む塗工液の粘度が高くなるため、ダイラタンシー性を発現するおそれがある。その結果、塗工液は塗工性能不良となり、多孔質層への塗工ムラが発生することがある。また、無機フィラーの中心粒径が小さいため、無機フィラーを結着するために要するバインダー量が増加する。その結果、前記多孔質層を組み込んだ非水電解液二次電池において、多孔質層のイオン透過抵抗が増加し、当該非水電解液二次電池におけるセパレータの抵抗が増加する。 If the center particle size of the inorganic filler is larger than 11 μm, the film thickness of the heat-resistant layer increases and unevenness occurs, resulting in unevenness in ion permeation of the porous layer. As a result, the resistance of the separator in the non-aqueous electrolyte secondary battery incorporating the porous layer tends to increase. On the other hand, when the median particle diameter of the inorganic filler is less than 0.1 μm, the viscosity of the coating liquid containing the inorganic filler becomes high, which may cause dilatancy. As a result, the coating liquid may have poor coating performance and uneven coating on the porous layer may occur. Moreover, since the central particle diameter of the inorganic filler is small, the amount of binder required to bind the inorganic filler increases. As a result, in the non-aqueous electrolyte secondary battery incorporating the porous layer, the ion permeation resistance of the porous layer increases, and the resistance of the separator in the non-aqueous electrolyte secondary battery increases.
 [BET比表面積]
 本発明の一実施形態における多孔質層は、無機フィラーの単位面積当たりのBET比表面積が100m/g以下であることが好ましく、50m/g以下であることがより好ましく、10m/g以下であってもよい。
[BET specific surface area]
In the porous layer according to one embodiment of the present invention, the BET specific surface area per unit area of the inorganic filler is preferably 100 m 2 / g or less, more preferably 50 m 2 / g or less, and 10 m 2 / g. It may be the following.
 無機フィラーの単位面積当たりのBET比表面積を測定する方法は、特に限定されないが、例えば、以下の(1)~(3)に示す工程からなる方法を挙げることができる。 The method for measuring the BET specific surface area per unit area of the inorganic filler is not particularly limited, but for example, a method including the steps shown in (1) to (3) below can be mentioned.
 (1)80℃で8時間の真空乾燥により、フィラーの前処理を行う工程。 (1) A step of pretreatment of the filler by vacuum drying at 80 ° C. for 8 hours.
 (2)定容法により、窒素による吸着脱離等温線を測定する工程。 (2) Process of measuring adsorption-desorption isotherm by nitrogen by constant volume method.
 (3)BET法により、フィラーの比表面積を算出する工程。 (3) A step of calculating the specific surface area of the filler by the BET method.
 なお、フィラーの比表面積の測定において、前処理を行う装置および測定装置は、特に限定されないが、例えば、前処理を行う装置としてBELPREP-vacII(マイクロトラック・ベル株式会社製)を、測定装置としてBELSORP-mini(マイクロトラック・ベル株式会社製)を使用することができる。 In the measurement of the specific surface area of the filler, the pretreatment device and the measurement device are not particularly limited. For example, BELPREP-vacII (manufactured by Microtrac Bell Co., Ltd.) is used as the pretreatment device. BELSORP-mini (manufactured by Microtrac Bell Co., Ltd.) can be used.
 また、フィラーの比表面積を測定する際の測定条件は、特に限定されることなく、当業者により適宜設定され得る。 Further, the measurement conditions for measuring the specific surface area of the filler are not particularly limited and can be appropriately set by those skilled in the art.
 無機フィラーの単位面積当たりのBET比表面積が100m/gより大きい場合には、BET比表面積の増大によりフィラー給油性が増大し、それに伴い多孔質層の塗工液としての性状が低下し、塗工性不良となるおそれがある。その結果、前記多孔質層を組み込んだ非水電解液二次電池におけるセパレータの抵抗が高くなる傾向がある。 When the BET specific surface area per unit area of the inorganic filler is larger than 100 m 2 / g, the filler oiling property is increased due to the increase in the BET specific surface area, and accordingly, the properties of the porous layer as a coating liquid are decreased, There is a risk of poor coatability. As a result, the resistance of the separator in the non-aqueous electrolyte secondary battery incorporating the porous layer tends to increase.
 [多孔質層の製造方法]
 本発明の一実施形態における多孔質層の製造方法としては、特に限定されないが、例えば、基材上に、以下に示す工程(1)~(3)の何れかの1つの工程を用いて、前記無機フィラーと、前記樹脂とを含む多孔質層を形成する方法を挙げることができる。以下に示す工程(2)および工程(3)の場合においては、前記樹脂を析出させた後にさらに乾燥させ、溶媒を除去することによって、多孔質層が製造され得る。工程(1)~(3)における塗工液は、前記無機フィラーが分散しており、かつ、前記樹脂が溶解している状態であってもよい。なお、前記溶媒は、樹脂を溶解させる溶媒であるとともに、樹脂または無機フィラーを分散させる分散媒であるとも言える。
[Method for producing porous layer]
The method for producing the porous layer according to the embodiment of the present invention is not particularly limited, but for example, one of the following steps (1) to (3) may be used on the substrate, A method of forming a porous layer containing the inorganic filler and the resin can be mentioned. In the case of the step (2) and the step (3) shown below, the porous layer can be produced by depositing the resin and then drying it to remove the solvent. The coating liquid in steps (1) to (3) may be in a state in which the inorganic filler is dispersed and the resin is dissolved. The solvent can be said to be a solvent for dissolving the resin and a dispersion medium for dispersing the resin or the inorganic filler.
 (1)前記無機フィラーおよび前記樹脂を含む塗工液を、基材上に塗工し、前記塗工液中の溶媒を乾燥除去することによって多孔質層を形成させる工程。 (1) A step of forming a porous layer by applying a coating liquid containing the inorganic filler and the resin onto a substrate and drying and removing the solvent in the coating liquid.
 (2)前記無機フィラーおよび前記樹脂を含む塗工液を、前記基材の表面に塗工した後、その基材を前記樹脂に対して貧溶媒である、析出溶媒に浸漬することによって、前記樹脂を析出させ、多孔質層を形成する工程。 (2) After applying a coating liquid containing the inorganic filler and the resin on the surface of the base material, the base material is immersed in a deposition solvent that is a poor solvent for the resin, A step of depositing a resin to form a porous layer.
 (3)前記無機フィラーおよび前記樹脂を含む塗工液を、前記基材の表面に塗工した後、低沸点有機酸を用いて、前記塗工液の液性を酸性にすることによって、前記樹脂を析出させ、多孔質層を形成する工程。 (3) After coating a coating liquid containing the inorganic filler and the resin on the surface of the base material, the liquid property of the coating liquid is made acidic by using a low-boiling organic acid, A step of depositing a resin to form a porous layer.
 前記基材には、後述するポリオレフィン多孔質フィルムの他に、その他のフィルム、正極板および負極板などを用いることができる。 In addition to the polyolefin porous film described below, other films, a positive electrode plate, a negative electrode plate, and the like can be used as the base material.
 前記溶媒は基材に悪影響を及ぼさず、前記樹脂を均一かつ安定に溶解し、前記無機フィラーを均一かつ安定に分散させる溶媒であることが好ましい。前記溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、アセトンおよび水等が挙げられる。 Preferably, the solvent does not adversely affect the base material, dissolves the resin uniformly and stably, and disperses the inorganic filler uniformly and stably. Examples of the solvent include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, acetone and water.
 前記析出溶媒としては、例えば、イソプロピルアルコールまたはt-ブチルアルコールを用いることが好ましい。 As the deposition solvent, for example, isopropyl alcohol or t-butyl alcohol is preferably used.
 前記工程(3)において、低沸点有機酸としては、例えば、パラトルエンスルホン酸、酢酸等を使用することができる。 In the step (3), as the low boiling point organic acid, for example, paratoluenesulfonic acid, acetic acid, etc. can be used.
 また、本発明の一実施形態における多孔質層の配向性、すなわち、上述の式(1)を制御する方法として、以下に示すように、多孔質層の製造に使用する、前記無機フィラーおよび前記樹脂を含む塗工液の固形分濃度、並びに、前記塗工液を基材上に塗工する際の塗工せん断速度を調節することを挙げることができる。 In addition, as the method for controlling the orientation of the porous layer in one embodiment of the present invention, that is, the above formula (1), the inorganic filler and the inorganic filler used for the production of the porous layer are described below. It can be mentioned that the solid content concentration of the coating liquid containing a resin and the coating shear rate at the time of coating the coating liquid on a substrate are adjusted.
 前記塗工液の好適な固形分濃度は、フィラーの種類などによって変化し得るが、一般には、20重量%より大きく40重量%以下であることが好ましい。前記固形分濃度が上述の範囲であることは、前記塗工液の粘度を適切に保ち、その結果、上述の式(1)を上述の好適な範囲に制御することができるため好ましい。 A suitable solid content concentration of the coating liquid may vary depending on the type of filler, etc., but generally it is preferably more than 20% by weight and 40% by weight or less. It is preferable that the solid content concentration is within the above range because the viscosity of the coating liquid can be appropriately maintained, and as a result, the above formula (1) can be controlled within the above suitable range.
 前記塗工液を基材上に塗工する際の塗工せん断速度は、フィラーの種類などによって変化し得るが、一般には、2s-1以上であることが好ましく、4s-1~50s-1であることがより好ましい。 The coating shear rate at the time of coating the coating liquid on the base material may vary depending on the kind of the filler and the like, but in general, it is preferably 2s -1 or more, and 4s -1 to 50s -1. Is more preferable.
 ここで、例えば、前記無機フィラーとして、ピーナッツ状および/またはテトラポット状のように球状または柱状の単一粒子が熱融着した形状、球形状、楕円形状、板状、棒状、または、不定形状の形状を有する無機フィラーを用いた場合、前記塗工せん断速度を大きくすると、高せん断力が無機フィラーにかかるため、異方性が高くなる傾向がある。一方、前記塗工せん断速度を小さくするとせん断力が無機フィラーにかからないため、等方的に配向する傾向がある。 Here, for example, as the inorganic filler, a shape in which spherical or columnar single particles such as peanut-shaped and / or tetrapot-shaped are heat-fused, spherical-shaped, elliptical-shaped, plate-shaped, rod-shaped, or irregular-shaped. When an inorganic filler having the above-mentioned shape is used, if the coating shear rate is increased, a high shearing force is applied to the inorganic filler, so that the anisotropy tends to increase. On the other hand, when the coating shear rate is reduced, the shearing force is not applied to the inorganic filler, so that the inorganic filler tends to be oriented isotropically.
 一方、前記無機フィラーが繊維径の長いワラストナイトのような長繊維径無機フィラーである場合には、前記塗工せん断速度を大きくすると、長繊維どうしが絡み合う、あるいはドクターブレードの刃に長繊維がひっかかるためばらばらの配向になり、異方性が低くなる傾向がある。一方、前記塗工せん断速度を小さくすると、長繊維が、互いに絡み合うことがなく、ドクターブレードの刃にひっかからないので、配向しやすくなり、異方性は高くなる傾向がある。 On the other hand, when the inorganic filler is a long fiber diameter inorganic filler such as long wollastonite having a large fiber diameter, when the coating shear rate is increased, the long fibers are entangled with each other, or the long blades of the doctor blade are long fibers. Tend to be in a disoriented orientation due to the trapping of the, and anisotropy tends to be low. On the other hand, when the coating shear rate is reduced, the long fibers do not become entangled with each other and do not get caught by the blade of the doctor blade, so that they tend to be oriented and the anisotropy tends to increase.
 〔4.非水電解液二次電池用積層セパレータ〕
 本発明の一実施形態における非水電解液二次電池は、ポリオレフィン多孔質フィルムを備えていてもよい。以下では、ポリオレフィン多孔質フィルムを単に「多孔質フィルム」と称することがある。前記多孔質フィルムは、ポリオレフィン系樹脂を主成分とし、その内部に連結した細孔を多数有しており、一方の面から他方の面に気体および液体を通過させることが可能となっている。前記多孔質フィルムは、単独で非水電解液二次電池用セパレータとなり得る。また、上述の多孔質層が積層された非水電解液二次電池用積層セパレータにおける多孔質基材ともなり得る。
[4. Non-aqueous electrolyte secondary battery laminated separator]
The non-aqueous electrolyte secondary battery in one embodiment of the present invention may include a polyolefin porous film. Below, a polyolefin porous film may only be called a "porous film." The porous film contains a polyolefin-based resin as a main component and has a large number of pores connected to the inside thereof, so that a gas and a liquid can pass from one surface to the other surface. The porous film alone can serve as a separator for a non-aqueous electrolyte secondary battery. It can also serve as a porous base material in the laminated separator for a non-aqueous electrolyte secondary battery in which the above-mentioned porous layer is laminated.
 前記ポリオレフィン多孔質フィルムの少なくとも一方の面上に、前記多孔質層が積層されてなる積層体を、本明細書において、「非水電解液二次電池用積層セパレータ」または「積層セパレータ」とも称する。また、本発明の一実施形態における非水電解液二次電池用セパレータは、ポリオレフィン多孔質フィルムの他に、接着層、耐熱層、保護層等のその他の層をさらに備えていてもよい。 On at least one surface of the polyolefin porous film, a laminate in which the porous layer is laminated, in the present specification, also referred to as "non-aqueous electrolyte secondary battery laminated separator" or "laminated separator" .. Further, the separator for a non-aqueous electrolyte secondary battery in one embodiment of the present invention may further include other layers such as an adhesive layer, a heat resistant layer, and a protective layer, in addition to the polyolefin porous film.
 多孔質フィルムに占めるポリオレフィンの割合は、多孔質フィルム全体の50体積%以上であり、90体積%以上であることがより好ましく、95体積%以上であることがさらに好ましい。また、前記ポリオレフィンには、重量平均分子量が5×10~15×10の高分子量成分が含まれていることがより好ましい。特に、ポリオレフィンに重量平均分子量が100万以上の高分子量成分が含まれていると、非水電解液二次電池用セパレータの強度が向上するのでより好ましい。 The proportion of polyolefin in the porous film is 50% by volume or more of the entire porous film, more preferably 90% by volume or more, and further preferably 95% by volume or more. Further, it is more preferable that the polyolefin contains a high molecular weight component having a weight average molecular weight of 5 × 10 5 to 15 × 10 6 . In particular, when the polyolefin contains a high molecular weight component having a weight average molecular weight of 1,000,000 or more, the strength of the separator for a non-aqueous electrolyte secondary battery is improved, which is more preferable.
 熱可塑性樹脂である前記ポリオレフィンとしては、具体的には、例えば、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンおよび1-ヘキセン等の単量体を重合してなる、単独重合体または共重合体が挙げられる。前記単独重合体としては、例えばポリエチレン、ポリプロピレン、ポリブテンを挙げることができる。また、前記共重合体としては、例えばエチレン-プロピレン共重合体を挙げることができる。 The polyolefin, which is a thermoplastic resin, is specifically a homopolymer obtained by polymerizing monomers such as ethylene, propylene, 1-butene, 4-methyl-1-pentene and 1-hexene. Alternatively, a copolymer may be used. Examples of the homopolymer include polyethylene, polypropylene and polybutene. Examples of the copolymer include ethylene-propylene copolymer.
 このうち、過大電流が流れることをより低温で阻止することができるため、ポリエチレンがより好ましい。なお、この過大電流が流れることを阻止することをシャットダウンともいう。前記ポリエチレンとしては、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレン(エチレン-α-オレフィン共重合体)、重量平均分子量が100万以上の超高分子量ポリエチレン等が挙げられる。このうち、重量平均分子量が100万以上の超高分子量ポリエチレンがさらに好ましい。 Among these, polyethylene is more preferable because it can block excessive current from flowing at lower temperatures. Note that blocking the flow of this excessive current is also referred to as shutdown. Examples of the polyethylene include low density polyethylene, high density polyethylene, linear polyethylene (ethylene-α-olefin copolymer), and ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more. Among these, ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more is more preferable.
 多孔質フィルムの膜厚は、4~40μmであることが好ましく、5~30μmであることがより好ましく、6~15μmであることがさらに好ましい。 The thickness of the porous film is preferably 4 to 40 μm, more preferably 5 to 30 μm, and further preferably 6 to 15 μm.
 多孔質フィルムの単位面積当たりの目付は、強度、膜厚、重量およびハンドリング性を考慮して適宜決定することができる。ただし、非水電解液二次電池の重量エネルギー密度および体積エネルギー密度を高くすることができるように、前記目付は、4~20g/mであることが好ましく、4~12g/mであることがより好ましく、5~10g/mであることがさらに好ましい。 The basis weight per unit area of the porous film can be appropriately determined in consideration of strength, film thickness, weight and handleability. However, the basis weight is preferably 4 to 20 g / m 2 , and preferably 4 to 12 g / m 2 so that the weight energy density and the volume energy density of the non-aqueous electrolyte secondary battery can be increased. More preferably, it is more preferably 5 to 10 g / m 2 .
 多孔質フィルムの透気度は、ガーレ値で30~500sec/100mLであることが好ましく、50~300sec/100mLであることがより好ましい。多孔質フィルムが前記透気度を有することにより、充分なイオン透過性を得ることができる。多孔質フィルムに上述の多孔質層を積層させた非水電解液二次電池用積層セパレータの透気度は、ガーレ値で30~1000sec/100mLであることが好ましく、50~800sec/100mLであることがより好ましい。非水電解液二次電池用積層セパレータは、前記透気度を有することにより、非水電解液二次電池において、充分なイオン透過性を得ることができる。 The air permeability of the porous film is preferably 30 to 500 sec / 100 mL in Gurley value, and more preferably 50 to 300 sec / 100 mL. When the porous film has the above-mentioned air permeability, sufficient ion permeability can be obtained. The air permeability of the laminated separator for a non-aqueous electrolyte secondary battery in which the above-mentioned porous layer is laminated on the porous film is preferably 30 to 1000 sec / 100 mL in terms of Gurley value, and is 50 to 800 sec / 100 mL. Is more preferable. Since the laminated separator for a non-aqueous electrolyte secondary battery has the above-mentioned air permeability, it is possible to obtain sufficient ion permeability in the non-aqueous electrolyte secondary battery.
 多孔質フィルムの空隙率は、電解液の保持量を高めると共に、過大電流が流れることをより低温で確実に阻止する機能を得ることができるように、20~80体積%であることが好ましく、30~75体積%であることがより好ましい。また、多孔質フィルムが有する細孔の孔径は、充分なイオン透過性を得ることができ、かつ、正極板および負極板への粒子の入り込みを防止することができるように、0.3μm以下であることが好ましく、0.14μm以下であることがより好ましい。 The porosity of the porous film is preferably 20 to 80% by volume so as to increase the holding amount of the electrolytic solution and to surely prevent the flow of an excessive current at a lower temperature. It is more preferably 30 to 75% by volume. The pore size of the pores of the porous film is 0.3 μm or less so that sufficient ion permeability can be obtained and particles can be prevented from entering the positive electrode plate and the negative electrode plate. Is preferably 0.14 μm or less, and more preferably 0.14 μm or less.
 [ポリオレフィン多孔質フィルムの製造方法]
 前記ポリオレフィン多孔質フィルムの製造方法は特に限定されるものではない。例えば、ポリオレフィン系樹脂と、無機充填剤および可塑剤等の孔形成剤と、任意で酸化防止剤等を混練した後に押し出すことで、シート状のポリオレフィン樹脂組成物を作製する。適当な溶媒にて当該孔形成剤を当該シート状のポリオレフィン樹脂組成物から除去した後、当該孔形成剤が除去されたポリオレフィン樹脂組成物を延伸することで、ポリオレフィン多孔質フィルムを製造することができる。
[Method for producing polyolefin porous film]
The method for producing the polyolefin porous film is not particularly limited. For example, a sheet-shaped polyolefin resin composition is prepared by kneading a polyolefin resin, a pore-forming agent such as an inorganic filler and a plasticizer, and optionally an antioxidant and the like and then extruding the kneaded product. After removing the pore-forming agent from the sheet-shaped polyolefin resin composition with an appropriate solvent, the polyolefin resin composition from which the pore-forming agent has been removed may be stretched to produce a polyolefin porous film. it can.
 上記無機充填剤としては、特に限定されるものではなく、無機フィラー、具体的には炭酸カルシウム等が挙げられる。上記可塑剤としては、特に限定されるものではなく、流動パラフィン等の低分子量の炭化水素が挙げられる。 The above-mentioned inorganic filler is not particularly limited, and examples thereof include inorganic fillers, specifically calcium carbonate and the like. The plasticizer is not particularly limited, and examples thereof include low molecular weight hydrocarbons such as liquid paraffin.
 具体的には、以下に示すような工程を含む方法を挙げることができる。 Specifically, a method including the following steps can be mentioned.
 (A)超高分子量ポリエチレンと、重量平均分子量1万以下の低分子量ポリエチレンと、炭酸カルシウムまたは可塑剤等の孔形成剤と、酸化防止剤とを混練してポリオレフィン樹脂組成物を得る工程、
 (B)得られたポリオレフィン樹脂組成物を一対の圧延ローラで圧延し、速度比を変えた巻き取りローラで引っ張りながら段階的に冷却し、シートを成形する工程、
 (C)得られたシートの中から適当な溶媒にて孔形成剤を除去する工程、
 (D)孔形成剤が除去されたシートを適当な延伸倍率にて延伸する工程。
(A) a step of kneading an ultrahigh molecular weight polyethylene, a low molecular weight polyethylene having a weight average molecular weight of 10,000 or less, a pore forming agent such as calcium carbonate or a plasticizer, and an antioxidant to obtain a polyolefin resin composition,
(B) a step of rolling the obtained polyolefin resin composition with a pair of rolling rollers and gradually cooling it while pulling it with a take-up roller having a different speed ratio to form a sheet,
(C) a step of removing the pore forming agent from the obtained sheet with a suitable solvent,
(D) A step of stretching the sheet from which the pore forming agent has been removed at an appropriate stretching ratio.
 [非水電解液二次電池用積層セパレータの製造方法]
 本発明の一実施形態における非水電解液二次電池用積層セパレータの製造方法としては、例えば、上述の「多孔質層の製造方法」において、前記塗工液を塗布する基材として、上述のポリオレフィン多孔質フィルムを使用する方法を挙げることができる。
[Method for producing laminated separator for non-aqueous electrolyte secondary battery]
Examples of the method for producing a laminated separator for a non-aqueous electrolyte secondary battery in one embodiment of the present invention include, for example, in the above-mentioned “method for producing a porous layer”, as the base material to which the coating liquid is applied, The method of using a polyolefin porous film can be mentioned.
 〔5.非水電解液〕
 本発明の一実施形態に係る非水電解液二次電池に含まれ得る非水電解液は、一般に非水電解液二次電池に使用される非水電解液であれば特に限定されない。前記非水電解液としては、例えば、リチウム塩を有機溶媒に溶解してなる非水電解液を用いることができる。リチウム塩としては、例えば、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、LiC(CFSO、Li10Cl10、低級脂肪族カルボン酸リチウム塩およびLiAlCl等が挙げられる。前記リチウム塩は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
[5. Non-aqueous electrolyte)
The non-aqueous electrolyte that can be included in the non-aqueous electrolyte secondary battery according to the embodiment of the present invention is not particularly limited as long as it is a non-aqueous electrolyte that is generally used in non-aqueous electrolyte secondary batteries. As the non-aqueous electrolyte, for example, a non-aqueous electrolyte obtained by dissolving a lithium salt in an organic solvent can be used. Examples of the lithium salt include LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Li 2 B 10 Cl. 10 , lower aliphatic carboxylic acid lithium salt, LiAlCl 4 and the like. The lithium salt may be used alone or in combination of two or more kinds.
 非水電解液を構成する有機溶媒としては、例えば、カーボネート類、エーテル類、エステル類、ニトリル類、アミド類、カーバメート類および含硫黄化合物、並びにこれらの有機溶媒にフッ素基が導入されてなる含フッ素有機溶媒等が挙げられる。前記有機溶媒は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the organic solvent that constitutes the non-aqueous electrolytic solution include carbonates, ethers, esters, nitriles, amides, carbamates and sulfur-containing compounds, and fluorine-containing compounds introduced into these organic solvents. Fluorine organic solvents and the like can be mentioned. The organic solvent may be used alone or in combination of two or more.
 〔6.非水電解液二次電池の製造方法〕
 本発明の一実施形態に係る非水電解液二次電池を製造する方法として、例えば、以下の方法が挙げられる。まず、前記正極、非水電解液二次電池用積層セパレータ、および負極をこの順で配置して非水電解液二次電池用部材を形成する。その後、非水電解液二次電池の筐体となる容器に当該非水電解液二次電池用部材を入れ、次いで、当該容器内を非水電解液で満たした後、減圧しつつ密閉する。これにより、本発明の一実施形態に係る非水電解液二次電池を製造することができる。
[6. Method for manufacturing non-aqueous electrolyte secondary battery]
Examples of the method for producing the non-aqueous electrolyte secondary battery according to the embodiment of the present invention include the following methods. First, the positive electrode, the non-aqueous electrolyte secondary battery laminated separator, and the negative electrode are arranged in this order to form a non-aqueous electrolyte secondary battery member. After that, the member for a non-aqueous electrolyte secondary battery is put in a container that will be the casing of the non-aqueous electrolyte secondary battery, and then the inside of the container is filled with the non-aqueous electrolyte solution and then sealed while depressurizing. Thereby, the non-aqueous electrolyte secondary battery according to the embodiment of the present invention can be manufactured.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
 以下、実施例および比較例により、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
 〔各種物性の測定方法〕
 以下の製造例および比較例に係る非水電解液二次電池の各種物性を、以下の方法で測定した。
[Methods for measuring various physical properties]
Various physical properties of the non-aqueous electrolyte secondary batteries according to the following Production Examples and Comparative Examples were measured by the following methods.
 (1)膜厚(単位:μm)
 ポリオレフィン多孔質フィルムおよび多孔質層の膜厚は、株式会社ミツトヨ製の高精度デジタル測長機(VL-50)を用いて測定した。多孔質層の膜厚は、各々の積層体において多孔質層が形成されている部分の膜厚から、多孔質層が形成されていない部分の膜厚を引いた値とした。
(1) Film thickness (unit: μm)
The thickness of the polyolefin porous film and the porous layer was measured using a high precision digital length measuring machine (VL-50) manufactured by Mitutoyo Corporation. The film thickness of the porous layer was a value obtained by subtracting the film thickness of the part where the porous layer was not formed from the film thickness of the part where the porous layer was formed in each laminate.
 (2)スクラッチ試験
 臨界荷重値、および臨界荷重までの距離のT/M比を以下に示すスクラッチ試験にて測定した。以下に記載する以外の測定条件等は、JIS R 3255と同様の条件等にして、測定を行った。また、測定装置は、マイクロスクラッチ試験装置(CSEM Instruments社製)を使用した。
(2) Scratch test The critical load value and the T / M ratio of the distance to the critical load were measured by the scratch test shown below. The measurement conditions were the same as those of JIS R 3255 except for those described below. A micro scratch tester (manufactured by CSEM Instruments) was used as the measuring device.
 (1)実施例、比較例にて製造された多孔質層を多孔質基材に積層することにより得た積層体を20mm×60mmに裁断した。その後、当該裁断した積層体のセパレータ側、すなわち多孔質基材側の全面に、水で5倍希釈したアラビックヤマト水性液状糊(ヤマト株式会社製)を目付1.5g/m程度に少量で薄く塗布した。次いで、その水性液状糊を塗布した面を、30mm×70mmのガラス製プレパラート上に貼合した後、25℃の温度下にて一昼夜乾燥させることにより、試験用サンプルを作製した。なお、上記貼合のときは、積層体とガラス製プレパラートとの間に気泡が入らない様にした。 (1) A laminate obtained by laminating the porous layers produced in Examples and Comparative Examples on a porous substrate was cut into 20 mm × 60 mm. Then, an arabic Yamato aqueous liquid paste (manufactured by Yamato Co., Ltd.) diluted 5 times with water was applied on the separator side of the cut laminate, that is, the entire surface of the porous substrate side, in a small amount of about 1.5 g / m 2 per unit area. It was applied thinly. Next, the surface coated with the aqueous liquid paste was pasted on a glass slide having a size of 30 mm × 70 mm and then dried at 25 ° C. for 24 hours to prepare a test sample. At the time of the above-mentioned bonding, bubbles were prevented from entering between the laminate and the glass slide.
 (2)工程(1)にて作製された試験用サンプルを、マイクロスクラッチ試験装置(CSEM Instruments社製)に設置した。当該試験装置におけるダイヤモンド圧子(頂角120゜、先端半径0.2mmの円錐状)によって当該試験用サンプル上に0.1Nの大きさの垂直荷重をかけたままの状態にて、当該試験装置におけるテーブルを、積層体のTDに向けて5mm/minの速さにて、10mmの距離を移動させた。その間の、上記ダイヤモンド圧子と当該試験用サンプルとの間に発生する応力、すなわち摩擦力を測定した。 (2) The test sample prepared in step (1) was installed in a micro scratch tester (CSEM Instruments). With the diamond indenter (conical shape with an apex angle of 120 ° and a tip radius of 0.2 mm) in the test apparatus, a vertical load of 0.1 N was applied on the test sample while the test apparatus was used. The table was moved toward the TD of the laminate at a speed of 5 mm / min and a distance of 10 mm. During that time, the stress generated between the diamond indenter and the test sample, that is, the frictional force was measured.
 (3)工程(2)にて測定された応力の変位と、上記テーブルの移動距離との関係を示す曲線グラフを作成した。当該曲線グラフから、TDにおける、臨界荷重値および、臨界荷重に至るまでの距離を算出した。 (3) A curve graph showing the relationship between the displacement of the stress measured in the step (2) and the moving distance of the table was created. From the curve graph, the critical load value in TD and the distance to reach the critical load were calculated.
 (4)上記テーブルの移動方向をMDに変更して、上述の工程(1)~(3)を繰り返して行い、MDにおける、臨界荷重値および、臨界荷重に至るまでの距離を算出した。 (4) The moving direction of the table was changed to MD, and the above steps (1) to (3) were repeated to calculate the critical load value and the distance to reach the critical load in MD.
 (3)界面障壁エネルギーの和
 〔2〕の[界面障壁エネルギーの和]の項目にて説明した方法に基づき、界面障壁エネルギーの和を測定した。
(3) Sum of interface barrier energies The sum of interface barrier energies was measured based on the method described in the item of [sum of interface barrier energies] in [2].
 (4)100サイクル後の充電回復容量
 〔1〕にて説明した方法に基づき、100サイクル後の充電回復容量を測定した。
(4) Charge recovery capacity after 100 cycles Based on the method described in [1], the charge recovery capacity after 100 cycles was measured.
 〔実施例1〕
 [多孔質層、積層体の作製]
 (ポリオレフィン多孔質フィルムの作製)
 ポリオレフィンとして、ポリエチレンを用いてポリオレフィン多孔質フィルムを作製した。具体的には、超高分子量ポリエチレン粉末(340M、三井化学株式会社製)70重量部と、重量平均分子量1000のポリエチレンワックス(FNP-0115、日本精鑞株式会社製)30重量部とを混合して混合ポリエチレンを得た。得られた混合ポリエチレン100重量部に対して、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ株式会社製)0.4重量部、酸化防止剤(P168、チバ・スペシャリティ・ケミカルズ株式会社製)0.1重量部、およびステアリン酸ナトリウム1.3重量部を加え、さらに、全体積に占める割合が38体積%となるように、平均粒子径0.1μmの炭酸カルシウム(丸尾カルシウム株式会社製)を加えた。この組成物を粉末のまま、ヘンシェルミキサーで混合した後、二軸混練機で溶融混練することにより、ポリエチレン樹脂組成物を得た。次いで、このポリエチレン樹脂組成物を、表面温度が150℃に設定された一対のロールにて圧延することにより、シートを作製した。このシートを、4mol/Lの塩酸に0.5重量%の非イオン系界面活性剤を配合して調製した塩酸水溶液に浸漬させることで、炭酸カルシウムを溶解して除去した。続いて、当該シートを105℃で6倍に延伸することにより、ポリエチレン製のポリオレフィン多孔質フィルム1を作製した。ポリオレフィン多孔質フィルム1は、空隙率:53%、目付:7g/m、膜厚:16μmであった。
[Example 1]
[Preparation of porous layer and laminate]
(Production of polyolefin porous film)
A polyolefin porous film was produced using polyethylene as the polyolefin. Specifically, 70 parts by weight of ultra high molecular weight polyethylene powder (340M, manufactured by Mitsui Chemicals, Inc.) and 30 parts by weight of polyethylene wax having a weight average molecular weight of 1000 (FNP-0115, manufactured by Nippon Seiro Co., Ltd.) are mixed. To obtain mixed polyethylene. With respect to 100 parts by weight of the obtained mixed polyethylene, 0.4 parts by weight of an antioxidant (Irg1010, manufactured by Ciba Specialty Chemicals Co., Ltd.), and an antioxidant (P168, manufactured by Ciba Specialty Chemicals Co., Ltd.) 0. 1 part by weight and 1.3 parts by weight of sodium stearate were added, and further, calcium carbonate having an average particle size of 0.1 μm (manufactured by Maruo Calcium Co., Ltd.) was added so that the ratio of the total volume was 38% by volume. It was This composition as a powder was mixed with a Henschel mixer and then melt-kneaded with a biaxial kneader to obtain a polyethylene resin composition. Then, this polyethylene resin composition was rolled with a pair of rolls whose surface temperature was set to 150 ° C. to prepare a sheet. This sheet was immersed in an aqueous hydrochloric acid solution prepared by mixing 0.5 mol% of a nonionic surfactant in 4 mol / L hydrochloric acid to dissolve and remove calcium carbonate. Subsequently, the polyolefin porous film 1 made of polyethylene was produced by stretching the sheet 6 times at 105 ° C. The polyolefin porous film 1 had a porosity of 53%, a basis weight of 7 g / m 2 , and a film thickness of 16 μm.
 (塗工液の調製)
 無機フィラー1として、酸素原子質量百分率が20%である六角板状酸化亜鉛(堺化学工業株式会社製、商品名:XZ-100F)を用いた。前記無機フィラー1の粒子径は、D10=0.2μm、D50=0.4μm、D90=2.1μmであった。また、前記無機フィラー1の単位面積当たりのBET比表面積は7.3m/gであった。
(Preparation of coating liquid)
As the inorganic filler 1, hexagonal plate-shaped zinc oxide having a mass percentage of oxygen atoms of 20% (manufactured by Sakai Chemical Industry Co., Ltd., trade name: XZ-100F) was used. The particle size of the inorganic filler 1 was D10 = 0.2 μm, D50 = 0.4 μm, and D90 = 2.1 μm. The BET specific surface area per unit area of the inorganic filler 1 was 7.3 m 2 / g.
 無機フィラーの体積基準の粒度分布の算出は、島津製作所製 レーザー回折式粒度分布計SALD2200を使用して、D10、D50、D90を測定することにより行った(D50、D10、D90とは、それぞれ、体積基準による積算分布が50%になる値の粒子径、10%になる値の粒子径、90%になる値の粒子径のことである)。無機フィラーの比表面積は、定容法を用いて窒素による吸着脱離等温線を測定し、BET法から算出した。具体的には、実施例および比較例において、単位面積当たりのBET比表面積を、BELSORP-mini(マイクロトラック・ベル株式会社製)を用いて測定した。前処理温度80℃で8時間真空乾燥を行ったフィラーを、定容法を用いて、窒素による吸着脱離等温線を測定し、BET法にて算出した。定容法における各種条件は、以下のとおりである:吸着温度;77K、吸着質;窒素、飽和蒸気圧;実測値、吸着質断面積;0.162nm、平衡待ち時間(吸着平衡状態(吸脱着の際の圧力変化が所定の値以下になる状態)に達してからの待ち時間);500sec。また、細孔容積は、MP法、BJH法により算出し、前処理装置は、BELPREP-vacII(マイクロトラック・ベル株式会社製)を用いた。 The volume-based particle size distribution of the inorganic filler was calculated by measuring D10, D50 and D90 using a laser diffraction particle size distribution analyzer SALD2200 manufactured by Shimadzu Corporation (D50, D10 and D90 are, respectively, The particle size is such that the cumulative distribution based on volume is 50%, the particle size is 10%, and the particle size is 90%). The specific surface area of the inorganic filler was calculated from the BET method by measuring the adsorption-desorption isotherm with nitrogen using a constant volume method. Specifically, in Examples and Comparative Examples, the BET specific surface area per unit area was measured using BELSORP-mini (manufactured by Microtrac Bell Co., Ltd.). The adsorption-desorption isotherm by nitrogen of the filler that had been vacuum dried at a pretreatment temperature of 80 ° C. for 8 hours was measured by the constant volume method, and calculated by the BET method. Various conditions in the constant volume method are as follows: adsorption temperature; 77 K, adsorbate; nitrogen, saturated vapor pressure; measured value, adsorbate cross section; 0.162 nm 2 , equilibrium waiting time (adsorption equilibrium state (adsorption Waiting time after the pressure change during desorption reaches a value below a predetermined value)): 500 sec. The pore volume was calculated by the MP method and the BJH method, and the pretreatment device used was BELPREP-vacII (manufactured by Microtrac Bell Co., Ltd.).
 結着剤として、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(アルケマ株式会社製;商品名「KYNAR2801」)を用いた。 As a binder, a vinylidene fluoride-hexafluoropropylene copolymer (manufactured by Arkema Ltd .; trade name “KYNAR2801”) was used.
 無機フィラー1、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体および溶媒(関東化学株式会社製 N-メチル‐2-ピロリジノン)を、下記割合となるように混合した。すなわち無機フィラー1 90重量部に対してフッ化ビニリデン-ヘキサフルオロプロピレン共重合体10重量部混合すると共に、得られる混合液における固形分(無機フィラー1およびフッ化ビニリデン-ヘキサフルオロプロピレン共重合体)の濃度が37重量%となるように溶媒を混合した。得られた混合液を薄膜旋回型高速ミキサー(プライミクス(株)製フィルミク(登録商標))で攪拌および混合して、均一な塗工液1を得た。 Inorganic filler 1, vinylidene fluoride-hexafluoropropylene copolymer and solvent (N-methyl-2-pyrrolidinone manufactured by Kanto Chemical Co., Inc.) were mixed in the following proportions. That is, 10 parts by weight of vinylidene fluoride-hexafluoropropylene copolymer was mixed with 90 parts by weight of inorganic filler, and the solid content in the resulting mixed solution (inorganic filler 1 and vinylidene fluoride-hexafluoropropylene copolymer). The solvent was mixed so that the concentration of was 37% by weight. The obtained mixed liquid was stirred and mixed with a thin film swivel type high speed mixer (Filmiku (registered trademark) manufactured by Primix Co., Ltd.) to obtain a uniform coating liquid 1.
 (多孔質層および非水電解液二次電池用積層セパレータの作製)
 得られた塗工液1を、ポリオレフィン多孔質フィルム1の片面に、ドクターブレード法により、塗工せん断速度3.9s-1にて塗工し、塗膜を形成させた。その後、前記塗膜を、65℃にて20分間かけて乾燥させることで、多孔質層を形成させた。このようにして得られた積層体を、非水電解液二次電池用積層セパレータ1とした。多孔質層の目付は7g/mであり、厚みは4μmであった。
(Preparation of porous layer and laminated separator for non-aqueous electrolyte secondary battery)
The obtained coating liquid 1 was applied to one surface of the polyolefin porous film 1 by a doctor blade method at a coating shear rate of 3.9 s −1 to form a coating film. Then, the coating film was dried at 65 ° C. for 20 minutes to form a porous layer. The thus obtained laminated body was used as a laminated separator 1 for a non-aqueous electrolyte secondary battery. The basis weight of the porous layer was 7 g / m 2 and the thickness was 4 μm.
 [非水電解液二次電池の作製]
 (正極板)
 正極合剤(LiNi0.5Mn0.3Co0.2/導電剤/PVDF(重量比:92/5/3))が、正極集電体(アルミニウム箔)の片面に積層された正極板を得た。LiNi0.5Mn0.3Co0.2の体積基準の平均粒径(D50)は、5μmであった。前記正極板を、正極活物質層が積層された部分の大きさが45mm×30mmであり、かつその外周に幅13mmで正極活物質層が積層されていない部分が残るように切り取って、正極板1を得た。正極板1の正極活物質層の厚さは、38μmであった。
[Preparation of non-aqueous electrolyte secondary battery]
(Positive plate)
The positive electrode mixture (LiNi 0.5 Mn 0.3 Co 0.2 O 2 / conductive agent / PVDF (weight ratio: 92/5/3)) was laminated on one surface of the positive electrode current collector (aluminum foil). A positive electrode plate was obtained. The volume-based average particle diameter (D50) of LiNi 0.5 Mn 0.3 Co 0.2 O 2 was 5 μm. The positive electrode plate is cut so that the size of the portion where the positive electrode active material layer is laminated is 45 mm × 30 mm, and the outer periphery thereof has a width of 13 mm where the positive electrode active material layer is not laminated. Got 1. The thickness of the positive electrode active material layer of the positive electrode plate 1 was 38 μm.
 (負極板)
 負極合剤(天然黒鉛/スチレン-1,3-ブタジエン共重合体/カルボキシメチルセルロースナトリウム(重量比98/1/1))が、負極集電体(銅箔)の片面に積層された負極板を得た。天然黒鉛の体積基準の平均粒径(D50)は、15μmであった。前記負極板を、負極活物質層が積層された部分の大きさが50mm×35mmであり、かつその外周に幅13mmで負極活物質層が積層されていない部分が残るように切り取って、負極板1を得た。負極板1の負極活物質層の厚さは、38μmであった。
(Negative electrode plate)
A negative electrode plate in which a negative electrode mixture (natural graphite / styrene-1,3-butadiene copolymer / sodium carboxymethyl cellulose (weight ratio 98/1/1)) is laminated on one side of a negative electrode current collector (copper foil) Obtained. The volume-based average particle diameter (D50) of the natural graphite was 15 μm. The negative electrode plate is cut so that the size of the portion where the negative electrode active material layer is laminated is 50 mm × 35 mm, and the outer periphery thereof has a width of 13 mm where the negative electrode active material layer is not laminated. Got 1. The thickness of the negative electrode active material layer of the negative electrode plate 1 was 38 μm.
 (非水電解液二次電池の組み立て)
 正極板1、負極板1および非水電解液二次電池用積層セパレータ1を使用して、以下に示す方法にて非水電解液二次電池を製造した。
(Assembly of non-aqueous electrolyte secondary battery)
Using the positive electrode plate 1, the negative electrode plate 1 and the non-aqueous electrolyte secondary battery laminated separator 1, a non-aqueous electrolyte secondary battery was manufactured by the following method.
 ラミネートパウチ内で、正極板1、非水電解液二次電池用積層セパレータ1および負極板1を、この順に積層することにより、非水電解液二次電池用部材1を得た。このとき、正極板1の正極活物質層における主面の全部が、負極板1の負極活物質層における主面の範囲に含まれるように、正極板1および負極板1を配置した。すなわち、正極板1の正極活物質層における主面の全部が、負極板1の負極活物質層における主面に重なるように、正極板1および負極板1を配置した。また、非水電解液二次電池用積層セパレータ1の多孔質層側の面を、正極板1の正極活物質層に対向させた。 In the laminate pouch, the positive electrode plate 1, the non-aqueous electrolyte secondary battery laminated separator 1 and the negative electrode plate 1 were laminated in this order to obtain a non-aqueous electrolyte secondary battery member 1. At this time, the positive electrode plate 1 and the negative electrode plate 1 were arranged such that the entire main surface of the positive electrode active material layer of the positive electrode plate 1 was included in the range of the main surface of the negative electrode active material layer of the negative electrode plate 1. That is, the positive electrode plate 1 and the negative electrode plate 1 were arranged so that the entire main surface of the positive electrode active material layer of the positive electrode plate 1 overlaps the main surface of the negative electrode active material layer of the negative electrode plate 1. The surface of the non-aqueous electrolyte secondary battery laminated separator 1 on the side of the porous layer was opposed to the positive electrode active material layer of the positive electrode plate 1.
 続いて、非水電解液二次電池用部材1を、予め作製していた、アルミニウム層とヒートシール層とが積層されてなる袋に入れ、さらにこの袋に、非水電解液を0.23mL注入した。前記非水電解液は、エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネートを3:5:2(体積比)で混合してなる混合溶媒に、LiPFを1mol/Lとなるように溶解することにより、調製した。そして、袋内を減圧しつつ、当該袋をヒートシールすることにより、非水電解液二次電池1を作製した。 Then, the non-aqueous electrolyte secondary battery member 1 was placed in a previously prepared bag in which an aluminum layer and a heat seal layer were laminated, and 0.23 mL of the non-aqueous electrolyte solution was further placed in this bag. Injected. The non-aqueous electrolyte is prepared by dissolving LiPF 6 in a mixed solvent prepared by mixing ethylene carbonate, ethylmethyl carbonate and diethyl carbonate in a volume ratio of 3: 5: 2 so as to have a concentration of 1 mol / L. Prepared. Then, the inside of the bag was depressurized and the bag was heat-sealed to manufacture the non-aqueous electrolyte secondary battery 1.
 その後、前述の方法にて、非水電解液二次電池1の電池特性の測定を行った。その結果を表1に示す。 After that, the battery characteristics of the non-aqueous electrolyte secondary battery 1 were measured by the method described above. The results are shown in Table 1.
 〔実施例2〕
 [非水電解液二次電池の作製]
 以下の変更点の他は、実施例1と同様にして、非水電解液二次電池用積層セパレータ2を得た。
・無機フィラー2の原料として、球状アルミナ(住友化学株式会社製、商品名AA03)およびマイカ(株式会社和光純薬製、商品名:非膨潤性合成雲母)を用いた。これらの原料を50重量部ずつ、乳鉢で混合した混合物(酸素原子質量百分率45%)を無機フィラー2とした。前記無機フィラーの粒子径は、D10=0.5μm、D50=4.2μm、D90=11.5μmであった。また、前記無機フィラー2の単位面積当たりのBET比表面積は4.5m/gであった。
・無機フィラー2 90重量部に対して、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体を10重量部混合すると共に、得られる混合液における固形分(無機フィラーおよびフッ化ビニリデン-ヘキサフルオロプロピレン共重合体)の濃度が30重量%となるように溶媒を混合して塗工液2を調製した。
・塗工液2を、ポリオレフィン多孔質フィルム1の片面に、塗工せん断速度7.9s-1にて塗工した。
[Example 2]
[Preparation of non-aqueous electrolyte secondary battery]
A laminated separator 2 for a non-aqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except for the following changes.
As the raw material of the inorganic filler 2, spherical alumina (Sumitomo Chemical Co., Ltd., trade name AA03) and mica (Wako Pure Chemical Industries, Ltd., trade name: non-swelling synthetic mica) were used. Inorganic filler 2 was prepared by mixing 50 parts by weight of each of these raw materials in a mortar (oxygen atom mass percentage 45%). The particle size of the inorganic filler was D10 = 0.5 μm, D50 = 4.2 μm, and D90 = 11.5 μm. The BET specific surface area per unit area of the inorganic filler 2 was 4.5 m 2 / g.
10 parts by weight of vinylidene fluoride-hexafluoropropylene copolymer are mixed with 90 parts by weight of inorganic filler 2, and the solid content (inorganic filler and vinylidene fluoride-hexafluoropropylene copolymer) in the resulting mixed liquid is mixed. Coating solution 2 was prepared by mixing a solvent so that the concentration of the above) would be 30% by weight.
The coating liquid 2 was applied to one side of the polyolefin porous film 1 at a coating shear rate of 7.9 s -1 .
 非水電解液二次電池用積層セパレータ1の代わりに、非水電解液二次電池用積層セパレータ2を使用して、実施例1と同様に非水電解液二次電池2を作製した。その後前述の方法にて、非水電解液二次電池2の電池特性の測定を行った。その結果を表1に示す。 A non-aqueous electrolyte secondary battery 2 was produced in the same manner as in Example 1, using the non-aqueous electrolyte secondary battery laminated separator 2 instead of the non-aqueous electrolyte secondary battery laminated separator 1. Then, the battery characteristics of the non-aqueous electrolyte secondary battery 2 were measured by the method described above. The results are shown in Table 1.
 〔実施例3〕
 [非水電解液二次電池の作製]
 以下の変更点の他は、実施例1と同様にして、非水電解液二次電池用積層セパレータ3を得た。
・無機フィラー3として、酸素原子質量百分率42%であるワラストナイト(林化成株式会社製、商品名:ワラストナイト VM-8N)を用いた。前記無機フィラー3の粒子径は、D10=2.4μm、D50=10.6μm、D90=25.3μmであった。また、前記無機フィラー3の単位面積当たりのBET比表面積は1.3m/gであった。
・無機フィラー3 90重量部に対して、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体を10重量部混合すると共に、得られる混合液における固形分(無機フィラー3およびフッ化ビニリデン-ヘキサフルオロプロピレン共重合体)の濃度が40重量%となるように溶媒を混合して、塗工液3を調製した。
・塗工液3を、ポリオレフィン多孔質フィルム1の片面に、塗工せん断速度7.9s-1にて塗工した。
[Example 3]
[Preparation of non-aqueous electrolyte secondary battery]
A laminated separator 3 for a non-aqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except for the following changes.
As the inorganic filler 3, wollastonite (Hayashi Kasei Co., Ltd., trade name: Wollastonite VM-8N) having an oxygen atomic mass percentage of 42% was used. The particle size of the inorganic filler 3 was D10 = 2.4 μm, D50 = 10.6 μm, and D90 = 25.3 μm. The BET specific surface area per unit area of the inorganic filler 3 was 1.3 m 2 / g.
10 parts by weight of vinylidene fluoride-hexafluoropropylene copolymer are mixed with 90 parts by weight of inorganic filler 3, and the solid content (inorganic filler 3 and vinylidene fluoride-hexafluoropropylene copolymer) in the resulting mixed liquid is mixed. The coating liquid 3 was prepared by mixing the solvents so that the concentration of the (combined) was 40% by weight.
The coating liquid 3 was applied to one surface of the polyolefin porous film 1 at a coating shear rate of 7.9 s -1 .
 非水電解液二次電池用積層セパレータ1の代わりに、非水電解液二次電池用積層セパレータ3を使用して、実施例1と同様に非水電解液二次電池3を作製した。その後前述の方法にて、非水電解液二次電池3の電池特性の測定を行った。その結果を表1に示す。 A non-aqueous electrolyte secondary battery 3 was produced in the same manner as in Example 1 using the non-aqueous electrolyte secondary battery laminated separator 3 instead of the non-aqueous electrolyte secondary battery laminated separator 1. After that, the battery characteristics of the non-aqueous electrolyte secondary battery 3 were measured by the method described above. The results are shown in Table 1.
 〔実施例4〕
 [非水電解液二次電池用積層セパレータの作製]
 以下の変更点の他は、実施例1と同様にして、非水電解液二次電池用積層セパレータ4を得た。
・無機フィラー4の原料として、αアルミナ(住友化学株式会社製、商品名:AKP3000)および六角板状酸化亜鉛(堺化学工業株式会社製、商品名:XZ-1000F)を用いた。そして、αアルミナを99重量部、六角板状酸化亜鉛を1重量部、乳鉢で混合した混合物(酸素原子質量百分率47%)を、無機フィラー4とした。前記無機フィラーの粒子径は、D10=0.4μm、D50=0.8μm、D90=2.2μmであった。また、前記無機フィラー4の単位面積当たりのBET比表面積は4.5m/gであった。
・無機フィラー4 90重量部に対して、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体を10重量部混合すると共に、得られる混合液における固形分(無機フィラー4およびフッ化ビニリデン-ヘキサフルオロプロピレン共重合体)の濃度が40重量%となるように溶媒を混合して塗工液4を調製した。
・塗工液4を、ポリオレフィン多孔質フィルム1の片面に、塗工せん断速度39.4s-1にて塗工した。
[Example 4]
[Preparation of laminated separator for non-aqueous electrolyte secondary battery]
A laminated separator 4 for a non-aqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except for the following changes.
As the raw material for the inorganic filler 4, α-alumina (Sumitomo Chemical Co., Ltd., trade name: AKP3000) and hexagonal plate-shaped zinc oxide (Sakai Chemical Industry Co., Ltd., trade name: XZ-1000F) were used. Then, a mixture (oxygen atom mass percentage 47%) obtained by mixing 99 parts by weight of α-alumina, 1 part by weight of hexagonal plate-shaped zinc oxide in a mortar was used as the inorganic filler 4. The particle size of the inorganic filler was D10 = 0.4 μm, D50 = 0.8 μm, and D90 = 2.2 μm. The BET specific surface area per unit area of the inorganic filler 4 was 4.5 m 2 / g.
In addition to mixing 90 parts by weight of inorganic filler 4 with 10 parts by weight of vinylidene fluoride-hexafluoropropylene copolymer, the solid content (inorganic filler 4 and vinylidene fluoride-hexafluoropropylene copolymer) in the resulting mixed liquid is mixed. The coating liquid 4 was prepared by mixing the solvents so that the concentration of the (combined) was 40% by weight.
The coating liquid 4 was applied to one side of the polyolefin porous film 1 at a coating shear rate of 39.4 s -1 .
 [非水電解液二次電池の作製]
 (正極板)
 正極合剤(LiCoO/導電剤/PVDF(重量比:100/5/3))が、正極集電体(アルミニウム箔)の片面に積層された正極板を得た。前記正極板を、正極活物質層が積層された部分の大きさが45mm×30mmであり、かつその外周に幅13mmで正極活物質層が積層されていない部分が残るように切り取って、正極板2を得た。正極板2の正極活物質層の厚さは、38μmであった。
[Preparation of non-aqueous electrolyte secondary battery]
(Positive plate)
A positive electrode plate was obtained in which the positive electrode mixture (LiCoO 2 / conductive agent / PVDF (weight ratio: 100/5/3)) was laminated on one surface of the positive electrode current collector (aluminum foil). The positive electrode plate is cut so that the size of the portion where the positive electrode active material layer is laminated is 45 mm × 30 mm, and the outer periphery thereof has a width of 13 mm where the positive electrode active material layer is not laminated. Got 2. The thickness of the positive electrode active material layer of the positive electrode plate 2 was 38 μm.
 (非水電解液二次電池の組み立て)
 非水電解液二次電池用積層セパレータ1の代わりに非水電解液二次電池用積層セパレータ4を使用し、正極板1の代わりに正極板2を使用して、実施例1と同様に非水電解液二次電池4を作製した。その後前述の方法にて、非水電解液二次電池4の電池特性の測定を行った。その結果を表1に示す。
(Assembly of non-aqueous electrolyte secondary battery)
The non-aqueous electrolyte secondary battery laminated separator 4 was used in place of the non-aqueous electrolyte secondary battery laminated separator 1 and the positive electrode plate 2 was used in place of the positive electrode plate 1, and the non-aqueous electrolyte secondary battery laminated separator 1 was prepared in the same manner as in Example 1. A water electrolyte secondary battery 4 was produced. After that, the battery characteristics of the non-aqueous electrolyte secondary battery 4 were measured by the method described above. The results are shown in Table 1.
 〔比較例1〕
 [非水電解液二次電池の作製]
 以下の変更点の他は、実施例1と同様にして、非水電解液二次電池用積層セパレータ5を得た。
・無機フィラー5として、酸素原子質量百分率71%であるホウ砂(和光純薬製)を用いた。前記無機フィラー5の粒子径は、D10=6.3μm、D50=27μm、D90=111μmであった。また、前記無機フィラー5の単位面積当たりのBET比表面積は2.5m/gであった。
・無機フィラー5 90重量部に対して、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体を10重量部混合すると共に、得られる混合液における固形分(無機フィラー5およびフッ化ビニリデン-ヘキサフルオロプロピレン共重合体)の濃度が40重量%となるように溶媒を混合して塗工液5を調製した。
・塗工液5を、ポリオレフィン多孔質フィルム1の片面に、塗工せん断速度7.9s-1にて塗工した。
[Comparative Example 1]
[Preparation of non-aqueous electrolyte secondary battery]
A laminated separator 5 for a non-aqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except for the following changes.
-As the inorganic filler 5, borax (manufactured by Wako Pure Chemical Industries, Ltd.) having an oxygen atomic mass percentage of 71% was used. The particle size of the inorganic filler 5 was D10 = 6.3 μm, D50 = 27 μm, and D90 = 111 μm. The BET specific surface area per unit area of the inorganic filler 5 was 2.5 m 2 / g.
10 parts by weight of vinylidene fluoride-hexafluoropropylene copolymer are mixed with 90 parts by weight of inorganic filler 5, and the solid content (inorganic filler 5 and vinylidene fluoride-hexafluoropropylene copolymer) in the resulting mixed liquid is mixed. Coating solution 5 was prepared by mixing the solvents so that the concentration of (combined) was 40% by weight.
The coating liquid 5 was applied to one side of the polyolefin porous film 1 at a coating shear rate of 7.9 s -1 .
 非水電解液二次電池用積層セパレータ1の代わりに、非水電解液二次電池用積層セパレータ5を使用して、実施例1と同様に非水電解液二次電池5を作製した。その後前述の方法にて、非水電解液二次電池5の電池特性の測定を行った。その結果を表1に示す。 A non-aqueous electrolyte secondary battery 5 was produced in the same manner as in Example 1 using the non-aqueous electrolyte secondary battery laminated separator 5 instead of the non-aqueous electrolyte secondary battery laminated separator 1. After that, the battery characteristics of the non-aqueous electrolyte secondary battery 5 were measured by the method described above. The results are shown in Table 1.
 〔比較例2〕
 [非水電解液二次電池の作製]
 (負極板)
 負極合剤(人造球晶黒鉛/導電剤/PVDF(重量比85/15/7.5))が、負極集電体(銅箔)の片面に積層された負極板を得た。前記負極板を、負極活物質層が積層された部分の大きさが50mm×35mmであり、かつその外周に幅13mmで負極活物質層が積層されていない部分が残るように切り取って、負極板2を得た。負極板2の負極活物質層の厚さは、36μmであった。
[Comparative Example 2]
[Preparation of non-aqueous electrolyte secondary battery]
(Negative electrode plate)
A negative electrode plate was obtained in which a negative electrode mixture (artificial spherulite graphite / conductive agent / PVDF (weight ratio 85/15 / 7.5)) was laminated on one surface of a negative electrode current collector (copper foil). The negative electrode plate is cut so that the size of the portion where the negative electrode active material layer is laminated is 50 mm × 35 mm, and the outer periphery thereof has a width of 13 mm where the negative electrode active material layer is not laminated. Got 2. The thickness of the negative electrode active material layer of the negative electrode plate 2 was 36 μm.
 (非水電解液二次電池の組み立て)
 非水電解液二次電池用積層セパレータ1の代わりに非水電解液二次電池用積層セパレータ4を使用し、負極板1の代わりに負極板2を使用して、実施例1と同様に非水電解液二次電池7を作製した。その後前述の方法にて、非水電解液二次電池6の電池特性の測定を行った。その結果を表1に示す。
(Assembly of non-aqueous electrolyte secondary battery)
A non-aqueous electrolyte secondary battery laminated separator 4 was used in place of the non-aqueous electrolyte secondary battery laminated separator 1, and a negative electrode plate 2 was used in place of the negative electrode plate 1 in the same manner as in Example 1. A water electrolyte secondary battery 7 was produced. After that, the battery characteristics of the non-aqueous electrolyte secondary battery 6 were measured by the method described above. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 (結果)
 表1より、(i)多孔質層表面のスクラッチ試験の要件、および(ii)界面障壁エネルギーの和の要件、の2つを充足する非水電解液二次電池は、サイクル後の充電回復容量が良好であった。一方、前記条件を1つでも満たさない非水電解二次電池は、サイクル後の充電回復容量が劣っていた。
Figure JPOXMLDOC01-appb-T000001
(result)
From Table 1, the non-aqueous electrolyte secondary battery satisfying the two requirements of (i) the scratch test on the surface of the porous layer and (ii) the requirement of the sum of the interfacial barrier energies has a charge recovery capacity after cycling. Was good. On the other hand, the non-aqueous electrolytic secondary battery that did not satisfy any one of the above conditions had a poor charge recovery capacity after cycling.
 〔参考例:界面障壁エネルギーの制御〕
 正極活物質と負極活物質との粒径比を調節した正極板および負極板を作製し、界面障壁エネルギーの和を測定した。具体的には、実施例1と同じ組成のままで、活物質の粒径を以下のように変更した、正極板および負極板を作製した。この正極板および負極板を用いて、界面障壁エネルギーを測定した結果を表2に示す。
[Reference example: Control of interface barrier energy]
A positive electrode plate and a negative electrode plate in which the particle size ratio of the positive electrode active material and the negative electrode active material was adjusted were prepared, and the sum of interface barrier energies was measured. Specifically, a positive electrode plate and a negative electrode plate were produced with the same composition as in Example 1 but changing the particle size of the active material as follows. Table 2 shows the results of measuring the interface barrier energy using the positive electrode plate and the negative electrode plate.
Figure JPOXMLDOC01-appb-T000002
 (結果)
 実施例1における正極板および負極板と、参考例における正極板および負極板とは、組成が一致している。しかし、正極活物質と負極活物質との粒径比((負極活物質の粒径/正極活物質の粒径)の値)は、実施例1では3であったのに対し、参考例では24.7であった。そして、界面障壁エネルギーの和は、実施例1では9069J/molであったのに対し、参考例では4228J/molに過ぎなかった。
Figure JPOXMLDOC01-appb-T000002
(result)
The positive electrode plate and the negative electrode plate in Example 1 have the same composition as the positive electrode plate and the negative electrode plate in the reference example. However, the particle size ratio of the positive electrode active material and the negative electrode active material ((the value of the particle size of the negative electrode active material / the particle size of the positive electrode active material)) was 3 in Example 1, while in the reference example. It was 24.7. The sum of the interface barrier energies was 9069 J / mol in Example 1, whereas it was only 4228 J / mol in Reference Example.
 この実験結果から、界面障壁エネルギーの和を制御するためには、例えば、正極活物質と負極活物質との粒径比を調節することが有効であることが示された。もちろん、界面障壁エネルギーの和の制御は、他の方法によっても成しうるものである。 From these experimental results, it was shown that adjusting the particle size ratio of the positive electrode active material and the negative electrode active material is effective for controlling the sum of the interfacial barrier energies. Of course, the control of the sum of the interface barrier energies can be performed by other methods.
 本発明の一態様に係る非水電解液二次電池は、ハイレートサイクル後の充電回復容量が良好に維持されている。そのため、パーソナルコンピュータ、携帯電話および携帯情報端末などに用いる電池、ならびに、車載用電池として好適に利用することができる。 The non-aqueous electrolyte secondary battery according to an aspect of the present invention maintains good charge recovery capacity after a high rate cycle. Therefore, it can be suitably used as a battery used in a personal computer, a mobile phone, a personal digital assistant, and the like, and a vehicle-mounted battery.
 1 ダイヤモンド圧子
 2 基板
 3 積層体
1 Diamond indenter 2 Substrate 3 Laminate

Claims (5)

  1.  無機フィラーと樹脂とを含む多孔質層、正極板、および負極板を備え、
     前記正極板および前記負極板を直径15.5mmの円盤状に加工し、濃度1MのLiPFのエチレンカーボネート/エチルメチルカーボネート/ジエチルカーボネート溶液に浸して測定したときの、正極活物質の界面障壁エネルギーと負極活物質の界面障壁エネルギーとの和が5000J/mol以上であり、
     前記多孔質層は、下記式(1)で表される値が、0.10~0.42の範囲にあることを特徴とする、非水電解液二次電池。
    |1-T/M|・・・(1)
     (式(1)中、Tは、TDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す)
    A porous layer containing an inorganic filler and a resin, a positive electrode plate, and a negative electrode plate,
    The interfacial barrier energy of the positive electrode active material when the positive electrode plate and the negative electrode plate are processed into a disk shape having a diameter of 15.5 mm, and immersed in an ethylene carbonate / ethyl methyl carbonate / diethyl carbonate solution of LiPF 6 having a concentration of 1 M to measure. And the interfacial barrier energy of the negative electrode active material is 5000 J / mol or more,
    The non-aqueous electrolyte secondary battery, wherein the porous layer has a value represented by the following formula (1) in a range of 0.10 to 0.42.
    | 1-T / M | ... (1)
    (In Formula (1), T represents a distance to a critical load in a scratch test under a constant load of 0.1 N in TD, and M represents a scratch test under a constant load of 0.1 N in MD. , Represents the distance to the critical load)
  2.  前記多孔質層は、ポリオレフィン多孔質フィルムの片面または両面に積層されている、請求項1に記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the porous layer is laminated on one side or both sides of a polyolefin porous film.
  3.  前記正極板は遷移金属を含み、前記負極板は黒鉛を含む、請求項1または2に記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the positive electrode plate contains a transition metal, and the negative electrode plate contains graphite.
  4.  前記多孔質層に含まれる前記樹脂は、ポリオレフィン、(メタ)アクリレート系樹脂、含フッ素樹脂、ポリアミド系樹脂、ポリエステル系樹脂および水溶性ポリマーからなる群より選択される1種類以上である、請求項1~3のいずれか1項に記載の非水電解液二次電池。 The resin contained in the porous layer is one or more selected from the group consisting of polyolefin, (meth) acrylate resin, fluorine-containing resin, polyamide resin, polyester resin and water-soluble polymer. 4. The non-aqueous electrolyte secondary battery according to any one of 1 to 3.
  5.  前記ポリアミド系樹脂がアラミド樹脂である、請求項4に記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 4, wherein the polyamide resin is an aramid resin.
PCT/JP2019/043097 2018-11-01 2019-11-01 Non-aqueous electrolyte secondary battery WO2020091061A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217015736A KR20210080518A (en) 2018-11-01 2019-11-01 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-206788 2018-11-01
JP2018206788A JP7257773B2 (en) 2018-11-01 2018-11-01 Wound type non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2020091061A1 true WO2020091061A1 (en) 2020-05-07

Family

ID=70463324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043097 WO2020091061A1 (en) 2018-11-01 2019-11-01 Non-aqueous electrolyte secondary battery

Country Status (3)

Country Link
JP (2) JP7257773B2 (en)
KR (1) KR20210080518A (en)
WO (1) WO2020091061A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239547A1 (en) * 2021-05-10 2022-11-17 東レ株式会社 Porous film, separator for secondary battery, and secondary battery
WO2022239548A1 (en) * 2021-05-10 2022-11-17 東レ株式会社 Porous film, separator for secondary batteries, and secondary battery
EP4210160A3 (en) * 2022-01-06 2023-07-26 SK Innovation Co., Ltd. Separator for a secondary battery and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162517A (en) * 2015-02-27 2016-09-05 住友金属鉱山株式会社 Positive electrode for nonaqueous electrolyte secondary battery and positive electrode active material used therefor, and secondary battery utilizing the positive electrode for nonaqueous electrolyte secondary battery
JP2017107848A (en) * 2015-11-30 2017-06-15 住友化学株式会社 Nonaqueous electrolyte secondary battery separator
JP2017226122A (en) * 2016-06-21 2017-12-28 住友化学株式会社 Laminate
JP2019110070A (en) * 2017-12-19 2019-07-04 住友化学株式会社 Nonaqueous electrolyte secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004438A (en) 2006-06-23 2008-01-10 Hitachi Maxell Ltd Separator for battery, and lithium secondary cell
JP5141147B2 (en) * 2006-09-08 2013-02-13 東レ株式会社 Coating method and coating apparatus
JP5966233B2 (en) * 2011-12-08 2016-08-10 住友化学株式会社 Method for producing secondary battery electrode, method for producing secondary battery paint

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162517A (en) * 2015-02-27 2016-09-05 住友金属鉱山株式会社 Positive electrode for nonaqueous electrolyte secondary battery and positive electrode active material used therefor, and secondary battery utilizing the positive electrode for nonaqueous electrolyte secondary battery
JP2017107848A (en) * 2015-11-30 2017-06-15 住友化学株式会社 Nonaqueous electrolyte secondary battery separator
JP2017226122A (en) * 2016-06-21 2017-12-28 住友化学株式会社 Laminate
JP2019110070A (en) * 2017-12-19 2019-07-04 住友化学株式会社 Nonaqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239547A1 (en) * 2021-05-10 2022-11-17 東レ株式会社 Porous film, separator for secondary battery, and secondary battery
WO2022239548A1 (en) * 2021-05-10 2022-11-17 東レ株式会社 Porous film, separator for secondary batteries, and secondary battery
EP4210160A3 (en) * 2022-01-06 2023-07-26 SK Innovation Co., Ltd. Separator for a secondary battery and method for producing the same

Also Published As

Publication number Publication date
JP7257773B2 (en) 2023-04-14
KR20210080518A (en) 2021-06-30
JP2020072042A (en) 2020-05-07
JP2023076607A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
CN111682148B (en) Insulating porous layer for nonaqueous electrolyte secondary battery
CN108807811B (en) Insulating porous layer for nonaqueous electrolyte secondary battery
JP2023076607A (en) Nonaqueous electrolyte secondary battery
WO2020091026A1 (en) Non-aqueous electrolyte secondary battery
WO2020091059A1 (en) Nonaqueous electrolyte secondary battery
CN109935767B (en) Non-aqueous electrolyte secondary battery
WO2020091027A1 (en) Nonaqueous electrolyte secondary battery
US10741815B2 (en) Nonaqueous electrolyte secondary battery
WO2020091060A1 (en) Nonaqueous electrolyte secondary battery
KR102538460B1 (en) Non-aqueous electrolyte secondary battery
WO2020091025A1 (en) Non-aqueous electrolyte secondary battery
KR20190074252A (en) Nonaqueous electrolyte secondary battery
KR20190074254A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217015736

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19878681

Country of ref document: EP

Kind code of ref document: A1