WO2022239547A1 - Porous film, separator for secondary battery, and secondary battery - Google Patents

Porous film, separator for secondary battery, and secondary battery Download PDF

Info

Publication number
WO2022239547A1
WO2022239547A1 PCT/JP2022/015369 JP2022015369W WO2022239547A1 WO 2022239547 A1 WO2022239547 A1 WO 2022239547A1 JP 2022015369 W JP2022015369 W JP 2022015369W WO 2022239547 A1 WO2022239547 A1 WO 2022239547A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous
monomer
porous film
organic resin
porous layer
Prior art date
Application number
PCT/JP2022/015369
Other languages
French (fr)
Japanese (ja)
Inventor
加門慶一
甲斐信康
西村直哉
久万琢也
佃明光
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202280030526.7A priority Critical patent/CN117203846A/en
Priority to KR1020237028341A priority patent/KR20240006493A/en
Priority to JP2022521274A priority patent/JPWO2022239547A1/ja
Publication of WO2022239547A1 publication Critical patent/WO2022239547A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a porous film, a secondary battery separator, and a secondary battery.
  • Secondary batteries such as lithium-ion batteries are used in automotive applications such as electric vehicles, hybrid vehicles, and plug-in hybrid vehicles, as well as portable applications such as smartphones, tablets, mobile phones, laptops, digital cameras, digital video cameras, and handheld game consoles. It is widely used in digital devices, electric tools, electric motorcycles, electric assist bicycles, etc.
  • Lithium ion batteries generally have a secondary battery separator and an electrolyte interposed between a positive electrode in which a positive electrode active material is laminated on a positive electrode current collector and a negative electrode in which a negative electrode active material is laminated on a negative electrode current collector. have a configuration.
  • Polyolefin-based porous substrates are used as separators for secondary batteries.
  • the characteristics required for secondary battery separators are the ability to contain electrolyte in the porous structure and enable ion movement, and the ability to close the porous structure by melting when the lithium ion battery overheats. and a shutdown characteristic that stops the discharge by stopping ion migration.
  • the battery form is being replaced from the wound type to the laminated type.
  • the laminated type in the manufacturing process of a secondary battery using an electrode laminate in which a positive electrode, a separator, and a negative electrode are laminated, when the electrode laminate is transported, the laminate structure may be maintained, or the electrode laminate may be rolled into a cylinder. When inserting into a mold, square, etc.
  • a battery is required to have adhesiveness (dry adhesiveness) between the separator and the electrode before being impregnated with the electrolytic solution in order to prevent the shape from being deformed after being inserted into the outer packaging material. Therefore, in the above process, the electrode laminate may be subjected to hot pressing. Lithium-ion batteries are also required to have good battery characteristics such as adhesion (wet adhesion) to electrodes impregnated with electrolyte, high output, and long life.
  • Patent Document 1 In response to the above requirement for dry adhesion, in Patent Document 1, an adhesive layer formed on a heat-resistant layer is laminated to develop dry adhesion with the electrode.
  • Patent Document 2 the dry adhesion to the electrode is enhanced by satisfying a specific relationship between the particle size of the particulate polymer and the particle size of the inorganic particles. Further, it is known that smoothing the outermost surface of the separator improves the dry adhesion to the electrode (Patent Document 3). In addition, it is being studied to improve the yield during battery production and the yield during initial charge/discharge by developing both dry adhesiveness and wet adhesiveness (Patent Document 4).
  • the object of the present invention is to provide a porous film having excellent adhesion (dry adhesion, wet adhesion) with electrodes, thermal dimensional stability, and low resistance.
  • the present inventors focused on the adhesiveness with the electrode by high pressure heat press for shortening the heat press time, and as a result of extensive studies, the arithmetic mean height of the porous substrate was set to a certain height. It has been found that organic resin particles are unevenly distributed on the surface layer and layer-separated from the inorganic particles, resulting in excellent dry adhesion to electrodes, thermal dimensional stability, and low resistance. Furthermore, they have found that by appropriately selecting the composition of the organic resin particles, in addition to the properties described above, the wet adhesion is also excellent.
  • the porous film of the present invention has the following configuration.
  • Sa arithmetic mean height
  • porous substrate according to any one of (1) to (4), wherein the surface in contact with the porous layer has an arithmetic mean roughness (Ra) of 40 nm or more and 300 nm or less in a 12 nm square. porous film.
  • the porous substrate has a protruding ridge height (Spk) of 0.10 ⁇ m or more and 0.40 ⁇ m or less in a 2200 ⁇ m square on the surface on the side in contact with the porous layer of (1) to (5).
  • Spk protruding ridge height
  • the inorganic particles are an inorganic hydroxide, an inorganic oxide and an inorganic sulfuric acid
  • the organic resin particles are fluorine-containing (meth)acrylate monomers, unsaturated carboxylic acid monomers, (meth)acrylate monomers, styrene-based monomers, olefin-based monomers, and diene-based monomers. Any one of (1) to (9), which has a polymer polymerized using at least one monomer selected from the group consisting of a monomer, an acrylamide-based monomer, and a vinylidene fluoride monomer.
  • the ratio of the (meth)acrylate monomer having a hydroxyl group is greater than 0% by mass and 7.0% by mass when the total constituent monomer components of the organic resin particles are 100% by mass.
  • the porous film according to any one of (10) to (15), which is a monomer having a temperature of -100°C or higher and 0°C or lower. (17) The monomer having a glass transition temperature of ⁇ 100° C. or more and 0° C.
  • the porous film according to any one of (1) to (19), wherein the film thickness of the porous substrate is 3 ⁇ m or more and 15 ⁇ m or less.
  • a porous film having a porous substrate and a porous layer containing inorganic particles and organic resin particles on at least one surface of the porous substrate,
  • the porous substrate is made of a polyolefin microporous membrane whose surface in contact with the porous layer has an arithmetic mean height (Sa) of 0.09 ⁇ m or more in a 2200 ⁇ m square
  • the inorganic particles are particles composed of at least one selected from the group consisting of inorganic hydroxides, inorganic oxides and inorganic sulfates
  • the organic resin particles contain a fluorine-containing (meth)acrylate monomer, an unsaturated carboxylic acid monomer, a (meth)acrylic acid ester monomer, a styrene monomer, an olefin monomer, and a diene monomer.
  • the volume content ratio ⁇ of the inorganic particles is 30% by volume or more and 80% by volume or less,
  • the battery separator wherein the relationship between the volume content ⁇ of the inorganic particles and the occupation ratio ⁇ of the inorganic particles in the surface portion of the porous layer satisfies ⁇ >0 and ⁇ / ⁇ 1.
  • the present invention it is possible to provide a porous film having excellent adhesiveness (dry adhesiveness, wet adhesiveness) with electrodes, thermal dimensional stability, and low resistance. In particular, when subjected to high-pressure heat pressing, excellent dry adhesion can be exhibited. Further, by using the porous film as a battery separator, it is possible to improve the yield in the battery manufacturing process and provide a secondary battery having excellent battery life and rate characteristics.
  • the porous film of the present invention is a porous film having a porous substrate and a porous layer containing inorganic particles and organic resin particles on at least one surface of the porous substrate, wherein the porous
  • the base material has an arithmetic mean height (Sa) of 0.09 ⁇ m or more in a 2200 ⁇ m square of the surface on the side in contact with the porous layer, and the amount of inorganic particles when the volume of all constituent components of the porous layer is 100% by volume.
  • the volume content ⁇ (% by volume) and the occupation ratio ⁇ (% by area) of the inorganic particles in the surface portion of the porous layer satisfy ⁇ / ⁇ 1.
  • porous film of the present invention will be described in detail below.
  • the porous film of the present invention has an arithmetic mean height (Sa) of 0.09 ⁇ m or more and 0.3 ⁇ m or less in a 2200 ⁇ m square on the surface of the porous substrate on the side in contact with the porous layer.
  • Sa arithmetic mean height
  • the adhesion to the electrode can be further improved.
  • the upper limit of the arithmetic mean height (Sa) it is possible to prevent the ion transport from becoming too strong due to excessively strong adhesion to the electrode, resulting in a high resistance.
  • the arithmetic mean height (Sa) in 2200 ⁇ m square of the surface of the porous substrate on the side in contact with the porous layer is 0.09 ⁇ m or more and 0.3 ⁇ m or less, so that dry adhesion with the electrode found to improve performance.
  • the arithmetic mean height (Sa) of the surface of the porous substrate on the side in contact with the porous layer is also improved, and the step of bonding with the electrode (hot press) In this case, it can follow the unevenness of the active material present in the electrode, and exhibits high dry adhesion to the electrode.
  • the dry adhesion to the electrode can be improved without increasing the amount of the organic resin particles while reducing the cost, and the improvement of the dry adhesion improves the uniformity of ion transport and lowers the resistance. Therefore, a battery using the porous film of the present invention can achieve both rate characteristics and battery life.
  • the lower limit of the arithmetic mean height (Sa) on the surface of the porous substrate of 2200 ⁇ m square is preferably 0.012 ⁇ m or more.
  • the arithmetic mean height (Sa) in 2200 ⁇ m square of the surface of the porous substrate on the side in contact with the porous layer By adjusting various manufacturing conditions such as the magnification, stretching temperature, and dry re-stretching after stretching, it is possible to achieve a predetermined range.
  • the porous layer in the present invention contains inorganic particles and organic resin particles.
  • the porous layer has a volume content rate ⁇ (% by volume) of inorganic particles when the volume of all constituent components of the porous layer is 100% by volume, and an occupation rate ⁇ ( area %) satisfies ⁇ / ⁇ 1.
  • ⁇ / ⁇ is less than 1, it means that the occupancy rate of the inorganic particles in the surface portion of the porous layer is lower than the content rate of the inorganic particles in the entire porous layer. It shows that it is unevenly distributed on the surface of the Since the organic resin particles are unevenly distributed on the surface portion of the porous layer, a large amount of organic resin particles are present on the surface portion, thereby exhibiting sufficient adhesiveness to the electrode.
  • volume content ⁇ of the inorganic particles and the occupation ratio ⁇ of the inorganic particles described above are obtained by the method described in the Examples section.
  • the porous film of the present invention uses a porous substrate having an arithmetic mean height (Sa) of 0.09 ⁇ m or more and 0.3 ⁇ m or less at 2200 ⁇ m on the surface of the porous substrate on the side in contact with the porous layer. And, when the total constituent components of the porous layer are 100% by volume, the porous layer has a volume content rate ⁇ (% by volume) of the inorganic particles and an occupation rate ⁇ of the inorganic particles at the surface of the porous layer ( area %) satisfies ⁇ / ⁇ 1, high dry adhesion and wet adhesion to the electrode can be obtained, especially when high-pressure heat pressing is performed, and good battery characteristics can be obtained.
  • ⁇ / ⁇ is more preferably 0.5 or less, still more preferably 0.3 or less. Although the lower limit of ⁇ / ⁇ is not particularly limited, it is preferably 0.01 or more.
  • a porous layer in which ⁇ / ⁇ is within the above range it may be formed through a two-step coating process using two types of coating liquids, or one step using one type of coating liquid. It is more preferable to form in the coating step of . If it can be formed by a one-stage coating process, the cost can be reduced by reducing the number of times of coating. For a one-stage coating process, for example, the surface free energy of the organic resin particles, the viscosity of the coating liquid, the solid content concentration, and the drying temperature can be adjusted appropriately to set ⁇ / ⁇ within a predetermined range. It becomes possible. Details will be described later.
  • the volume content ⁇ of the inorganic particles is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less, when the volume of all constituent components of the porous layer is 100% by volume. and more preferably 50% by volume or more and 60% by volume or less.
  • the volume content ⁇ of the inorganic particles is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less, when the volume of all constituent components of the porous layer is 100% by volume. and more preferably 50% by volume or more and 60% by volume or less.
  • the occupancy ⁇ of the inorganic particles on the surface of the porous layer is preferably greater than 0%. More preferably, it is 1% or more, and still more preferably 5% or more.
  • the cost can be reduced by reducing the number of times of coating by a one-step coating process or by reducing the cost of coating materials by reducing raw materials.
  • the upper limit is not particularly limited, it is preferably less than 50%. More preferably less than 30%, still more preferably less than 20%.
  • the surface portion of the porous layer is a surface layer having a depth that affects the adhesiveness between the outer surface of the porous layer and the electrode, and is shown in the image obtained using SEM-EDX, which will be described later. .
  • porous layer In the porous film of the present invention, a porous layer containing inorganic particles and organic resin particles is formed on at least one surface of a porous substrate which will be described later in detail.
  • the lower limit of the film thickness of the porous layer is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, and still more preferably 4 ⁇ m or more.
  • the upper limit of the film thickness of the porous layer is preferably 8 ⁇ m or less, preferably 7 ⁇ m or less, and more preferably 6 ⁇ m or less.
  • the film thickness of the porous layer as used herein refers to the total thickness of the porous layers provided on the porous substrate.
  • the surface free energy of the porous layer is preferably 10 mN/m or more and 80 mN/m or less, more preferably 15 mN/m or more and 70 mN/m or less, and still more preferably 20 mN/m or more and 60 mN/m or less.
  • 10 mN/m or more the coating stability of the porous layer is improved.
  • 80 mN/m or less uneven surface distribution due to layer separation of the organic resin particles is likely to occur, and ⁇ / ⁇ can be easily controlled.
  • the porous layer preferably has a glass transition temperature of 20°C or more and less than 80°C.
  • the lower limit is more preferably 30°C or higher, still more preferably 40°C or higher.
  • the upper limit is more preferably 70° C. or lower, still more preferably 60° C. or lower.
  • Organic resin particles improve adhesion to electrodes.
  • the resin constituting the organic resin particles is preferably a resin having adhesiveness to the electrode, and by unevenly distributing the organic resin particles on the surface layer of the porous film, the ion permeability is improved and the rate characteristics are improved.
  • ⁇ / ⁇ can be lowered by lowering the surface free energy of the organic resin particles.
  • organic resin particles examples include fluorine-containing (meth)acrylate monomers, unsaturated carboxylic acid monomers, (meth)acrylic acid ester monomers, styrene monomers, olefin monomers, and diene monomers. It is preferable to have a polymer polymerized by using at least one monomer selected from the group consisting of polyimides, acrylamide-based monomers, and vinylidene fluoride monomers. Among these, in particular, the organic resin particles are a mixture of a polymer polymerized only with a fluorine-containing (meth)acrylate monomer and other polymers, or a mixture of a fluorine-containing (meth)acrylate monomer and other monomers.
  • (meth)acrylate means both “acrylate” and “methacrylate”.
  • Polymers polymerized using fluorine-containing (meth)acrylate monomers contain repeating units obtained by polymerizing fluorine-containing (meth)acrylates.
  • Fluorine-containing (meth)acrylate monomers include 2,2,2-trifluoroethyl (meth)acrylate, 2,2,3,3,3-pentafluoropropyl (meth)acrylate, 2-(perfluorobutyl ) ethyl (meth) acrylate, 3-(perfluorobutyl)-2-hydroxypropyl (meth) acrylate, 2-(perfluorohexyl) ethyl (meth) acrylate, 3-perfluorohexyl-2-hydroxypropyl (meth) acrylates, 3-(perfluoro-3-methylbutyl)-2-hydroxypropyl (meth)acrylate, 1H,1H,3H-tetrafluoropropyl (meth)acrylate, 1H,1H,5H-octafluoropentyl (meth)acrylate, 1H,1H,7H-dodecafluoroheptyl (meth)acrylate, 1
  • the proportion of the fluorine-containing (meth)acrylate monomer used in the organic resin particles is preferably greater than 20% by mass, more preferably 22%, based on 100% by mass of all constituent monomer components of the organic resin particles. % by mass or more, more preferably 25% by mass or more, and even more preferably 30% by mass or more. Also, it is preferably 80% by mass or less, more preferably 60% by mass or less, still more preferably 50% by mass or less, still more preferably 40% by mass or less, and most preferably 35% by mass or less. Within the above range, the organic resin particles are likely to be unevenly distributed on the surface layer, and sufficient adhesiveness to the electrode can be obtained.
  • the fluorine-containing (meth)acrylate monomer is used in the organic resin particles, and the proportion of the fluorine-containing (meth)acrylate monomer used in the organic resin particles are measured using a known method.
  • a known method can do. For example, first, the porous layer is removed from the porous film using an organic solvent such as water and alcohol, and then the organic solvent such as water and alcohol is sufficiently dried to obtain the constituents contained in the porous layer. An organic solvent capable of dissolving the organic resin component is added to the resulting component to dissolve only the organic resin component. Subsequently, the organic solvent is dried from the solution in which the organic resin component is dissolved, and only the organic resin component is extracted.
  • nuclear magnetic resonance spectroscopy 1 H-NMR, 19 F-NMR, 13 C-NMR
  • infrared absorption spectroscopy IR
  • X-ray photoelectron spectroscopy XPS
  • fluorescence It can be calculated from the intensity of the signal derived from the fluorine-containing (meth)acrylate monomer by X-ray analysis (EDX), elemental analysis, pyrolysis gas chromatograph mass spectrometer (pyrolysis GC/MS), etc. can.
  • the number of fluorine atoms contained in one molecule of the fluorine-containing (meth)acrylate monomer is preferably 3 or more and 13 or less.
  • the number of fluorine atoms is more preferably 3 or more and 11 or less, still more preferably 3 or more and 9 or less.
  • the number of fluorine atoms in the fluorine-containing (meth)acrylate can be measured using a known method. For example, first, the porous layer is removed from the porous film using an organic solvent such as water and alcohol, and then the organic solvent such as water and alcohol is sufficiently dried to obtain the constituents contained in the porous layer. An organic solvent capable of dissolving the organic resin component is added to the resulting constituent components to dissolve only the organic resin component and separate it from the inorganic particles. Subsequently, the organic solvent is dried from the solution in which the organic resin component is dissolved, and only the organic resin component is extracted.
  • an organic solvent such as water and alcohol
  • nuclear magnetic resonance spectroscopy 1 H-NMR, 19 F-NMR, 13 C-NMR
  • infrared absorption spectroscopy IR
  • XPS X-ray photoelectron spectroscopy
  • fluorescence It can be calculated from the intensity of the signal derived from the fluorine-containing (meth)acrylate monomer by X-ray analysis (EDX), elemental analysis, pyrolysis gas chromatograph mass spectrometer (pyrolysis GC/MS), etc. can.
  • pyrolysis GC/MS is particularly useful.
  • unsaturated carboxylic acid monomers examples include acrylic acid, methacrylic acid, and crotonic acid.
  • One type of unsaturated carboxylic acid monomer may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • (Meth)acrylate monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, and octyl acrylate.
  • a (meth)acrylate monomer having a hydroxyl group it is preferable to use a (meth)acrylate monomer having a hydroxyl group.
  • a (meth)acrylate monomer having a hydroxyl group By using a (meth)acrylate monomer having a hydroxyl group, the glass transition temperature of the organic resin particles can be adjusted and the dry adhesion to the electrode can be improved.
  • the (meth)acrylate monomers having a hydroxyl group may be used singly or in combination of two or more at any ratio. Hydroxyethyl acrylate (HEA), 4-hydroxybutyl acrylate (4-HBA), and 2-hydroxypropyl acrylate (2-HPA) are particularly preferred.
  • Styrenic monomers include styrene, ⁇ -methylstyrene, paramethylstyrene, t-butylstyrene, chlorostyrene, chloromethylstyrene, hydroxymethylstyrene and the like.
  • olefinic monomers include ethylene and propylene.
  • diene-based monomers include butadiene and isoprene.
  • acrylamide-based monomers examples include acrylamide.
  • one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the vinylidene fluoride monomer may be a homopolymer using a vinylidene fluoride monomer alone or a copolymer with other monomers.
  • Monomers copolymerizable with vinylidene fluoride include, for example, tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, trichloroethylene, vinyl fluoride, (meth)acrylic acid, methyl (meth)acrylate, (meth)acrylic acid (Meth)acrylic acid esters such as ethyl, vinyl acetate, vinyl chloride, acrylonitrile and the like. These may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
  • the organic resin particles are a mixture containing a polymer polymerized using a fluorine-containing (meth)acrylate monomer and a polymer polymerized using a (meth)acrylate monomer having a hydroxyl group, or It preferably contains a copolymer polymerized using a monomer mixture containing a fluorine-containing (meth)acrylate monomer and a hydroxyl group-containing (meth)acrylate monomer.
  • the content of the polymer or copolymer polymerized using a (meth)acrylate monomer having a hydroxyl group contained in the organic resin particles is 0 when the total constituent components of the organic resin particles are 100% by mass. More than mass % and 7.0 mass % or less are preferable. It is more preferably 0.5% by mass or more and 5.0% by mass or less, and still more preferably 1.0% by mass or more and 3.0% by mass or less. When this content is greater than 0% by mass, the polymerization stability of the organic resin particles is improved. In addition, by making it 7.0% by mass or less, sufficient dry adhesion with the electrode can be obtained, and by suppressing swelling in the electrolytic solution, sufficient wet adhesion with the electrode can be obtained. , the distance between the electrodes becomes constant, and the decrease in capacity during initial charge/discharge can be suppressed, so that the yield during initial charge/discharge is improved.
  • the content of the polymer or copolymer polymerized using the (meth)acrylate monomer having a hydroxyl group contained in the organic resin particles can be measured using a known method. For example, first, the porous layer is detached from the porous film using an organic solvent such as water and alcohol, and then the organic solvent such as water and alcohol is sufficiently dried to obtain the constituents contained in the porous layer. An organic solvent capable of dissolving the organic resin component is added to the resulting component to dissolve only the organic resin component. Subsequently, the organic solvent is dried from the solution in which the organic resin component is dissolved, and only the organic resin component is extracted.
  • an organic solvent such as water and alcohol
  • a monomer having two or more reactive groups per molecule is used. It is preferred to carry out the polymerization using a monomer.
  • a monomer having two or more reactive groups per molecule it has excellent electrolyte resistance with suppressed swelling in the electrolyte, dry adhesion with the electrode, and electrode in the electrolyte. It is possible to obtain polymer particles having excellent wet adhesiveness with.
  • the monomer having two or more reactive groups per molecule for example, it is preferable to use a (meth)acrylate monomer having two or more reactive groups per molecule, and alkylene glycol di(meth) ) acrylates and urethane di(meth)acrylates are more preferred.
  • the polymer contained in the organic resin particles has a glass transition temperature of ⁇ It is preferable that a monomer having a temperature of 100° C. or higher and 0° C. or lower is used and polymerized.
  • the glass transition temperature range is more preferably -70°C or higher and -10°C or lower, more preferably -50°C or higher -20°C.
  • the glass transition temperature is the midpoint glass transition temperature measured by differential scanning calorimetry (DSC) according to JIS K7121:2012.
  • the midpoint glass transition temperature is defined as the temperature at the point where a straight line equidistant in the vertical axis direction from the extended straight line of each base line intersects with the curve of the stepwise change portion of the glass transition.
  • the ratio of the monomer having a glass transition temperature of ⁇ 100° C. or more and 0° C. or less when polymerized only by the monomer is 100% by mass of the total constituent monomer components of the organic resin particles. , it is preferably greater than 0% by mass and 10.0% by mass or less. This ratio is more preferably 1% by mass or more and 7.0% by mass or less, and still more preferably 3.0% by mass or more and 5.0% by mass or less. When the amount is greater than 0% by mass, the organic resin particles are softened and the adhesiveness is improved. On the other hand, by setting this ratio to 10.0% by mass or less, the softening of the organic resin particles is less likely to occur, and the swelling of the organic resin particles in the electrolytic solution can be suppressed.
  • the porous layer of the porous film of the present invention may contain organic resin particles that impart different functions in addition to organic resin particles that have adhesiveness to electrodes. That is, the porous layer can contain at least two types of organic resin particles.
  • an emulsion binder is used to adhere the organic resin particles to each other or to adhere the organic resin particles and the inorganic particles to each other, or to provide a binder function to adhere the organic resin particles to the porous substrate. You can use it as Adhesion is improved by the binder function, and adhesion to the electrode can be further improved.
  • As the organic resin particles a resin that is electrochemically stable within the battery usage range is preferable.
  • the organic resin particles include, in addition to those having a particle shape, those partially formed into a film and fused with the surrounding particles and binder.
  • the shape is not particularly limited, and may be spherical, polygonal, flat, fibrous, or the like.
  • the average particle size of the organic resin particles is preferably 100 nm or more and 500 nm or less.
  • the lower limit is more preferably 120 nm or more, still more preferably 150 nm or more, and most preferably 170 nm or more.
  • the upper limit is more preferably 400 nm or less, still more preferably 300 nm or less, and most preferably 250 nm or less.
  • the average particle size of organic resin particles can be measured using the following method.
  • An image (image 1) obtained by imaging the surface of the porous layer at a magnification of 30,000 times using a field emission scanning electron microscope (S-3400N manufactured by Hitachi, Ltd.), and only inorganic particles are contained in the same field of view.
  • An EDX image (image 2) of the element is obtained.
  • the image size is 4.0 ⁇ m ⁇ 3.0 ⁇ m, the number of pixels is 1,280 pixels ⁇ 1,024 pixels, and the size of one pixel is 3.1 nm ⁇ 2.9 nm.
  • Particles that do not contain the element that only the inorganic particles in Image 2 have are defined as organic resin particles.
  • the organic resin particles are defined as those containing elemental fluorine by elemental analysis.
  • the particle diameters of all the organic resin particles found in Image 1 were measured, and the arithmetic average value was taken as the average particle diameter.
  • 50 organic resin particles are not observed in image 1, a plurality of images are taken, and the total number of particles of all the organic resin particles contained in the plurality of images reaches 50. I took a picture and found it.
  • the organic resin particles were measured, and the arithmetic average value was taken as the average particle size.
  • the porous layer of the porous film of the present invention contains inorganic particles.
  • the porous layer contains inorganic particles, it is possible to impart thermal dimensional stability and suppress short circuits due to foreign matter.
  • inorganic particles include inorganic oxide particles such as aluminum oxide, boehmite, silica, titanium oxide, zirconium oxide, iron oxide, and magnesium oxide; inorganic nitride particles such as aluminum nitride and silicon nitride; calcium fluoride; Poorly soluble ionic crystal particles such as barium fluoride and barium sulfate may be used.
  • the inorganic particles are preferably particles composed of at least one selected from the group consisting of inorganic hydroxides, inorganic oxides and inorganic sulfates. Among them, aluminum oxide which is effective in increasing strength, and organic resins.
  • boehmite and barium sulfate which are effective in reducing wear of parts during the process of dispersing particles and inorganic particles.
  • one type of these inorganic particles may be used, or two or more types may be mixed and used.
  • the shape of the inorganic particles used may be spherical, plate-like, needle-like, rod-like, elliptical, etc. Any shape may be used. Among them, a spherical shape is preferable from the viewpoint of surface modification properties, dispersibility, and coatability.
  • Binder The porous layer of the porous film of the present invention is composed of: It may contain a binder.
  • a binder a resin that is electrochemically stable within the battery usage range is preferred.
  • binders include organic solvent-soluble binders, water-soluble binders, emulsion binders, and the like, and may be used alone or in combination.
  • the preferred viscosity of the binder itself is preferably 10000 mPa ⁇ s or less when the concentration is 15% by mass. It is more preferably 8000 mPa ⁇ s or less, still more preferably 5000 mPa ⁇ s or less. When the concentration is 15% by mass and the viscosity is 10,000 mPa s or less, the viscosity increase of the coating material can be suppressed, and the organic resin particles are unevenly distributed on the surface, thereby improving dry adhesion and wet adhesion with the electrode. .
  • the dispersant includes water and organic solvents such as alcohol solvents such as ethanol and ketone solvents such as acetone.
  • organic solvents such as alcohol solvents such as ethanol and ketone solvents such as acetone.
  • the particle size of the emulsion binder is 30-1000 nm, preferably 50-500 nm, more preferably 70-400 nm, still more preferably 80-300 nm.
  • Resins that can be used as binders include, for example, polyamide, polyamideimide, polyimide, polyetherimide, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polytetrafluoroethylene, polysulfone, polyketone, polyetherketone, Resins such as polycarbonate, polyacetal, polyvinyl alcohol, polyethylene glycol, cellulose ether, acrylic resin, polyethylene, polypropylene, polystyrene, and urethane can be used. Among these, it is particularly preferable to use an acrylic resin because stronger adhesion can be obtained by interacting with the organic resin particles.
  • polyvinylidene fluoride resin vinylidene fluoride-hexafluoropropylene copolymer
  • the adhesiveness with the electrode in the electrolytic solution is further improved.
  • these resins may be used singly or in combination of two or more if necessary.
  • the vinylidene fluoride content of the polyvinylidene fluoride-based resin is preferably 80% by mass or more and less than 100% by mass of the components constituting the resin. More preferably, it is 85% by mass or more and 99% by mass or less. More preferably, it is 90% by mass or more and 98% by mass or less. If the vinylidene fluoride content is less than 80% by mass, sufficient mechanical strength cannot be obtained, and although the adhesiveness to the electrode is exhibited, the strength is weak and the adhesiveness may be easily peeled off. Moreover, when the vinylidene fluoride content is 100% by mass, the electrolytic solution resistance is lowered, and sufficient adhesiveness may not be obtained.
  • the content in the porous layer is preferably 0.5% by mass or more with respect to the total amount of the organic resin particles and the inorganic particles. It is more preferably 1% by mass or more, still more preferably 1.5% by mass or more. Moreover, 10 mass % or less is preferable. More preferably 8% by mass or less, still more preferably 6% by mass or less.
  • the content in the porous layer is preferably 1% by mass or more with respect to the total amount of the organic resin particles and the inorganic particles. It is more preferably 5% by mass or more, still more preferably 7.5% by mass or more, and most preferably 10% by mass or more. Also, it is preferably 30% by mass or less, more preferably 25% by mass or less, and still more preferably 20% by mass or less. Sufficient adhesion between the porous layer and the porous substrate can be obtained by setting the content of the emulsion binder to 1% by mass or more. Moreover, by making it 30% by mass or less, an increase in air permeability can be suppressed, and battery characteristics are improved.
  • the content of 7.5% by mass or more and 20% by mass or less not only promotes the adhesion of the organic resin particles and the inorganic particles and the adhesion of these particles to the substrate, but also interacts with the organic resin particles, and the electrodes. dry adhesion and wet adhesion are also improved.
  • Porous Layer A method for forming the porous layer will be described below.
  • the porous layer may be formed through a two-step coating process, or may be formed through a one-step coating process.
  • a coat layer containing inorganic particles is formed in the first step, and a coat layer containing organic resin particles is formed in the second step in this order. Since the coating liquid containing the organic resin particles is present on the surface layer, the adhesion to the electrode can be easily ensured. In this case, the coating layer containing the organic resin particles can be made thinner, or the amount of the organic resin particles can be reduced to such an extent that the organic resin particles are locally present on the surface, so that the cost can be reduced.
  • the two-step coating process involves preparing a coating liquid consisting of inorganic particles and a solvent, coating the coating liquid on a porous substrate, drying the solvent of the coating liquid, and then organic resin particles and the solvent.
  • a coating solution is prepared, the coating solution is applied onto the inorganic particle coating layer, and the solvent of the coating solution is dried to form a porous layer, thereby obtaining a porous film.
  • Spray coating may be used as the coating method.
  • a coating solution comprising organic resin particles, inorganic particles and a solvent is prepared, the coating solution is applied onto a porous substrate, and the solvent of the coating solution is dried to form a porous layer. , a method of obtaining a porous film.
  • the coating method is not particularly limited, but the latter can reduce costs by reducing the number of coatings. Therefore, the method for forming the porous layer by the latter method will be described below.
  • a coating liquid is prepared by dispersing organic resin particles at a predetermined concentration.
  • the coating liquid is prepared by dispersing, suspending, or emulsifying organic resin particles in a solvent.
  • the solvent for the water-based dispersion coating liquid is not necessarily limited, but is not particularly limited as long as it can disperse, suspend or emulsify the organic resin particles in a solid state. Examples include organic solvents such as methanol, ethanol, 2-propanol, acetone, tetrahydrofuran, methyl ethyl ketone, ethyl acetate, N-methylpyrrolidone, dimethylacetamide, dimethylformamide and dimethylformamide. From the viewpoints of low environmental load, safety, and economy, water-based emulsions in which an organic resin is emulsified in water or a mixture of water and alcohol are preferred. When water is used, a solvent other than water may be added.
  • the solid content concentration of the coating liquid is preferably 5% or more and 40% or less. By setting it to the predetermined range, both coating stability and uneven surface distribution during coating and drying can be achieved. Moreover, the solution viscosity of the coating liquid is preferably 5 mPa ⁇ s or more and 50 mPa ⁇ s or less. By setting it to the predetermined range, both the dispersibility of the coating liquid and the surface uneven distribution during coating and drying can be achieved. By adjusting the solid content concentration of the coating liquid to be low and the viscosity to be low within the above preferable range, the organic resin particles can be adjusted so as to be unevenly distributed in the outer layer.
  • film-forming aids may be added to the coating liquid as necessary.
  • Examples of methods for dispersing the coating liquid include ball mills, bead mills, sand mills, roll mills, homogenizers, ultrasonic homogenizers, high-pressure homogenizers, ultrasonic devices, and paint shakers.
  • a dispersing method (bead mill, sand mill) in which a high pressure is applied to the inorganic particles and the organic resin particles during dispersing, the dispersibility is improved and the surface uneven distribution of the organic resin particles is more likely to occur.
  • a plurality of these mixing and dispersing machines may be combined for stepwise dispersion.
  • Coating methods include, for example, dip coating, gravure coating, slit die coating, knife coating, comma coating, kiss coating, roll coating, bar coating, spray coating, dip coating, spin coating, screen printing, inkjet printing, and pad printing. , other types of printing methods, etc. can be used.
  • the coating method is not limited to these, and the coating method may be selected according to preferable conditions such as the organic resin, binder, dispersant, leveling agent, solvent to be used, and base material.
  • the solvent of the coating liquid is dried to form a porous layer.
  • the drying temperature is preferably 40°C or higher and 100°C or lower.
  • the porous layer is uniformly dried, and the arithmetic mean height (Sa) in 2200 ⁇ m square of the porous film surface on the side in contact with the porous layer is the height of the porous substrate surface on the side in contact with the porous layer. It becomes susceptible to the arithmetic mean height (Sa) in 2200 ⁇ m square, and the adhesiveness with the electrode is improved. If the temperature is less than 40°C, the solvent in the coating liquid will not dry.
  • the drying temperature is higher than 100° C., the amount of heat during drying increases and the shape of the particles cannot be maintained, resulting in film formation. Therefore, it is possible to achieve both good adhesiveness with the electrode and cost reduction by improving the coating and drying speeds by setting the content to a predetermined range.
  • the porous substrate has a structure in which micropores are formed therein and these micropores are connected from one surface to the other surface.
  • porous substrates include microporous membranes, non-woven fabrics, and porous membrane sheets made of fibrous materials.
  • the porous base material is preferably a polyolefin microporous membrane because of ease of adjustment of the arithmetic mean roughness (Ra) in 2200 ⁇ m square and the height of protruding peaks (Spk) in 2200 ⁇ m square. That is, it is preferably a porous membrane made of polyolefin. Resins constituting the polyolefin microporous membrane include polyethylene, polypropylene, ethylene-propylene copolymers, and mixtures thereof.
  • the polyolefin microporous membrane may be a single membrane or a laminated membrane having a plurality of layers. Examples thereof include a single membrane containing 90% by mass or more of polyethylene and a laminated membrane made of polyethylene and polypropylene.
  • the lower limit of the arithmetic mean roughness (Ra) of the surface of the porous base material on the side in contact with the porous layer on a 12 nm square is preferably 40 nm or more and 300 nm, more preferably 80 nm or more, and still more preferably 120 nm or more.
  • the arithmetic mean roughness (Ra) is also improved, and since fine unevenness exists in a local range of 12 nm square, it follows the unevenness of the active material in the electrode. Therefore, dry adhesion and wet adhesion to the electrode can be further improved.
  • the arithmetic mean roughness (Ra) to 300 nm or less, excessive adhesion to the electrode can be suppressed, and good rate characteristics and battery life can be exhibited.
  • the height (Spk) of protruding peaks in a 2200 ⁇ m square on the surface of the porous substrate on the side in contact with the porous layer is preferably 0.10 ⁇ m or more and 0.40 ⁇ m or less, and the lower limit is more preferably 0.12 ⁇ m or more. 0.15 ⁇ m or more is more preferable.
  • the upper limit of the protruding peak height (Spk) is more preferably 0.30 ⁇ m or less, and even more preferably 0.25 ⁇ m or less.
  • the height (Spk) of the protruding ridges to 0.10 ⁇ m or more, there are sufficient protruding portions on the porous base material, and when the porous layer is formed, the porous base material and the porous base material The peelability of the porous layer is improved to form a strong porous layer. By improving the releasability, it is possible to further improve dry adhesion and wet adhesion to the electrode.
  • the protruding peak height (Spk) to 0.40 ⁇ m or less, the porous layer appropriately enters the porous base material, and the rate characteristics and battery life can be exhibited.
  • the thickness of the porous substrate is preferably 3 ⁇ m or more and 15 ⁇ m or less, more preferably 5 ⁇ m or more as the lower limit, and more preferably 12 ⁇ m or less as the upper limit.
  • the method for manufacturing the porous base material will be explained.
  • the method for producing the porous substrate is not particularly limited, but the method for producing a polyolefin microporous membrane will be described below as an example.
  • a plasticizer is added to the polyolefin resin composition described above in a twin-screw extruder, and melt-kneaded to prepare a resin solution.
  • the polyolefin resin composition is composed of a polyolefin resin, and may be a single composition or a mixture of two or more polyolefin resins.
  • Polyolefin resins include, but are not limited to, polyethylene, polypropylene, and the like.
  • As the polyethylene resin ultra-high molecular weight polyethylene, high density polyethylene, and medium density polyethylene low density may be used as a single composition, or a mixture of different molecular weights may be used. It is preferable to use a mixture of two or more polyethylenes selected from the group consisting of ultra - high molecular weight polyethylene, high-density polyethylene, medium-density polyethylene and low-density polyethylene.
  • a mixture of A) and polyethylene (B) having an Mw of 1 ⁇ 10 4 or more and less than 9 ⁇ 10 4 is preferable, and it is more preferable to contain an ultra-high molecular weight polyethylene having an Mw of 1 ⁇ 10 6 or more.
  • the ratio of ultra high molecular weight polyethylene (A) and polyethylene (B) is 50% by mass, with the total of ultra high molecular weight polyethylene (A) and polyethylene (B) being 100% by mass. It is preferable in it being above.
  • the plasticizer is preferably liquid at room temperature so that it can be stretched at a relatively high magnification.
  • Specific examples include aliphatic hydrocarbons such as nonane, decane, decalin, paraxylene, undecane, dodecane, and liquid paraffin.
  • the content of the polyolefin resin composition is preferably 10% by mass or more and 50% by weight or less.
  • the arithmetic mean height (Sa) and the height of the protruding peaks (Spk ), the arithmetic mean roughness (Ra) in 12 nm square can be adjusted to a large extent, and it becomes easy to set it within a predetermined range.
  • the gel-like sheet is stretched.
  • the gel-like sheet is preferably stretched at a predetermined magnification by a tenter method, a roll method, an inflation method, or a combination thereof.
  • the stretched area ratio is preferably 4 times or more and 100 times or less, more preferably 12 times or more and 64 times or less, and particularly preferably 25 times or more and 49 times or less.
  • the lower the draw ratio the higher the arithmetic mean height (Sa) and protruding peak height (Spk) in 2200 ⁇ m square of the surface of the porous substrate on the side in contact with the porous layer, and the arithmetic mean roughness (Ra) in 12 nm square. can be increased.
  • the plasticizer is removed using a washing solvent, and the polyolefin microporous membrane can be obtained by drying.
  • stretching also called dry re-stretching
  • the second stretching can be performed by a tenter method or the like while heating the polyolefin microporous membrane in the same manner as the stretching described above.
  • the re-stretching ratio is preferably 1.01 to 2.0 times in the case of uniaxial stretching, and preferably 1.01 to 2.0 times in the case of biaxial stretching.
  • the porous film of the present invention preferably has an arithmetic mean height (Sa) of 0.085 ⁇ m or more and 0.3 ⁇ m or less in a 2200 ⁇ m square on the surface on which the porous layer is provided. More preferably, it is 0.010 ⁇ m or more.
  • the arithmetic mean height (Sa) in 2200 ⁇ m square of the surface on the side where the porous layer is provided is the arithmetic mean height (Sa) in 2200 ⁇ m square of the surface of the porous substrate in contact with the porous layer ( Sa) tends to be greatly affected, and the arithmetic mean height (Sa) in a 2200 ⁇ m square of the surface of the porous substrate on the side in contact with the porous layer is appropriately selected within the above preferable range. can be within
  • the porous film of the present invention can be suitably used as a separator for secondary batteries such as lithium ion batteries.
  • a lithium-ion battery has a configuration in which a secondary battery separator and an electrolyte are interposed between a positive electrode in which a positive electrode active material is laminated on a positive electrode current collector and a negative electrode in which a negative electrode active material is laminated on a negative electrode current collector.
  • the positive electrode is obtained by laminating a positive electrode material composed of an active material, a binder resin , and a conductive aid on a current collector.
  • Lithium-containing transition metal oxides having a layered structure, spinel-type manganese oxides such as LiMn 2 O 4 , and iron-based compounds such as LiFePO 4 can be used.
  • a resin having high oxidation resistance may be used as the binder resin. Specific examples include fluorine resins, acrylic resins, styrene-butadiene resins, and the like. Carbon materials such as carbon black and graphite are used as conductive aids.
  • a metal foil is suitable, and an aluminum foil is often used in particular.
  • the negative electrode is obtained by laminating a negative electrode material composed of an active material and a binder resin on a current collector, and the active material includes carbon materials such as artificial graphite, natural graphite, hard carbon and soft carbon, tin and silicon. , metal materials such as metallic lithium, and lithium titanate (Li 4 Ti 5 O 12 ).
  • a fluorine resin, an acrylic resin, a styrene-butadiene resin, or the like is used as the binder resin.
  • metal foil is suitable, and copper foil is often used in particular.
  • the electrolytic solution serves as a field for transferring ions between the positive electrode and the negative electrode in the secondary battery, and is made by dissolving the electrolyte in an organic solvent.
  • electrolytes include LiPF 6 , LiBF 4 , and LiClO 4 , and LiPF 6 is preferably used from the viewpoint of solubility in organic solvents and ionic conductivity.
  • organic solvent include ethylene carbonate, propylene carbonate, fluoroethylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, etc. Two or more of these organic solvents may be used in combination.
  • an active material and a conductive agent are dispersed in a solution of a binder resin to prepare a coating liquid for an electrode.
  • a positive electrode and a negative electrode are obtained by drying.
  • the film thickness of the coating film after drying is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • a secondary battery separator is placed between the obtained positive electrode and negative electrode so as to be in contact with the active material layer of each electrode, enclosed in an outer packaging material such as an aluminum laminate film, and after injecting an electrolytic solution, the negative electrode lead and the Install a safety valve and seal the exterior material.
  • the secondary battery thus obtained has high adhesion between the electrode and the secondary battery separator, has excellent rate characteristics and battery life, and can be manufactured at low cost.
  • volume content rate ⁇ of inorganic particles in the porous layer (volume content rate ⁇ ) A 10 cm ⁇ 10 cm sample cut out from the porous film was used to extract the porous layer using 40 g of water, and the water was sufficiently dried to obtain the constituent components of the porous layer. In addition, an organic solvent such as alcohol may be used when water cannot be used to sufficiently desorb. After measuring the mass of the total amount of the constituent components obtained, the constituent components were burned at a high temperature at which the organic resin component melts and decomposes, and the mass of only the inorganic particles was measured. The content of the inorganic particles in the porous layer was calculated in % by mass from the formula (mass of inorganic particles/mass of total amount of constituent components) ⁇ 100.
  • the content of the organic resin component in the porous layer was calculated in mass % by the formula ((mass of the total amount of the constituent components ⁇ mass of the inorganic particles)/(mass of the total amount of the constituent ingredients)) ⁇ 100.
  • the density of each of the inorganic particles and the organic resin component was measured with a hydrometer.
  • the volume content of the inorganic particles in the porous layer was calculated in volume % from the mass content (% by mass) of the inorganic particles and the organic resin component obtained above and the density of the inorganic particles and the organic resin component. The above measurements were performed on five samples, and the measured values were averaged.
  • the threshold level of the threshold is set to 130 nm as a detection method
  • the area ratio (%) which is a parameter representing the area of the portion corresponding to the inorganic element of the inorganic particle with respect to the area of the image as a percentage, is the occupancy rate of the inorganic particle. ⁇ . The above measurements were performed on five samples, and the measured values were averaged.
  • Arithmetic mean roughness (Ra) of 12 nm square on the surface of the porous substrate on the side in contact with the porous layer 50 g of water was used to remove the porous layer from a sample cut out from the porous film to a size of 12 cm ⁇ 12 cm, and the water was sufficiently dried to obtain the target porous substrate.
  • an organic solvent such as alcohol is used, and after the desorption, it is sufficiently dried.
  • the porous substrate is fixed to the sample stage with carbon tape, the cantilever is SI-DF40, the measurement area is 12 ⁇ m square, and the amplitude attenuation rate is ⁇ 0.
  • Arithmetic mean roughness (Ra) was measured in DFM mode with a scanning frequency of 0.5 Hz.
  • Ra Arithmetic mean roughness
  • the interface was defined as a place where the inorganic particles were no longer observed in the region where the inorganic particles were present.
  • the above measurements were performed on five samples, and the measured values were arithmetically averaged.
  • Dry Adhesion with Electrode Active material is Li(Ni 5/10 Mn 2/10 Co 3/10 )O 2
  • binder is vinylidene fluoride resin
  • conductive aid is acetylene black and graphite positive electrode 20 mm ⁇ 50 mm. and a porous film of 25 mm ⁇ 55 mm are placed so that the active material and the porous layer are in contact, and hot press is performed for 10 seconds at a pressure of 5 MPa in a heating environment of 70 ° C. to bond the electrode and the porous film. .
  • hot press is performed for 10 seconds at a pressure of 5 MPa in a heating environment of 70 ° C. to bond the electrode and the porous film.
  • the adhesive strength between the porous film and the negative electrode in which the active material is graphite, the binder is vinylidene fluoride resin, and the conductive agent is carbon black is measured. It was determined as adhesive strength.
  • ⁇ Excellent adhesion strength The electrode and the porous film were separated with a stronger force.
  • - Adhesive strength is "excellent”: The electrode and the porous film were separated with a strong force.
  • - “Good” adhesion strength The electrode and the porous film were separated with a slightly strong force.
  • ⁇ Adhesion strength is “Fair”: The electrode and the porous film were peeled off with a weak force.
  • - “Poor” adhesive strength The electrode and the porous film were separated with very weak force.
  • a negative electrode (width 20 mm ⁇ length 70 mm) containing graphite as an active material, vinylidene fluoride resin as a binder, and carbon black as a conductive aid was used as an electrode.
  • a porous film (width 25 mm ⁇ length 80 mm) was placed so that the ends of the electrode and the porous film overlapped in the length direction, and the active material and the porous layer were in contact, and the condition a (70 C. for 6 seconds at a pressure of 5 MPa) to adhere the electrode and the porous film to prepare a test piece.
  • the test piece is placed in a bag-shaped aluminum laminate film with three pieces closed, and after the electrolytic solution injection process (1 g of electrolytic solution is impregnated from the porous film side of the test piece), the aluminum is sealed using a vacuum sealer. The remaining one side of the laminate film was enclosed.
  • the aluminum laminate film after enclosing this test piece was stored in a 60° C. environment for 17 hours under static conditions. The test piece was taken out from the aluminum laminate film, and the electrolytic solution on the surface of the test piece was wiped.
  • the positive electrode sheet contains 96 parts by mass of Li(Ni 5/10 Mn 2/10 Co 3/10 )O 2 as a positive electrode active material, and 1.0 parts by mass of acetylene black and graphite as positive electrode conductive aids.
  • Each positive electrode slurry was prepared by dispersing 2 parts by mass of polyvinylidene fluoride as a positive electrode binder in N-methyl-2-pyrrolidone using a planetary mixer. (Coating basis weight: 10.0 mg/cm 2 ).
  • This positive electrode sheet was cut into a size of 40 mm ⁇ 40 mm. At this time, a current-collecting tab bonding portion without an active material layer was cut out to a size of 5 mm ⁇ 5 mm outside the active material surface.
  • An aluminum tab having a width of 5 mm and a thickness of 0.1 mm was ultrasonically welded to the tab bonding portion.
  • the negative electrode sheet 98 parts by mass of natural graphite as a negative electrode active material, 1 part by mass of carboxymethyl cellulose as a thickener, and 1 part by mass of a styrene-butadiene copolymer as a negative electrode binder are dispersed in water using a planetary mixer. The resulting negative electrode slurry was coated on a copper foil, dried, and rolled to prepare a negative electrode slurry (coating basis weight: 6.6 mg/cm 2 ). This negative electrode sheet was cut into a size of 45 mm ⁇ 45 mm.
  • a current-collecting tab bonding portion without an active material layer was cut out to a size of 5 mm ⁇ 5 mm outside the active material surface.
  • a copper tab having the same size as the positive electrode tab was ultrasonically welded to the tab bonding portion.
  • the porous film was cut into a size of 55 mm ⁇ 55 mm, and the positive electrode and the negative electrode were superimposed on both sides of the porous film so that the active material layer separated the porous film, and the positive electrode coated portion was entirely opposed to the negative electrode coated portion. Arranged to obtain an electrode group.
  • hot pressing was performed for 10 seconds at a pressure of 5 MPa in a heating environment of 70° C. to bond the positive electrode, the porous film, and the negative electrode.
  • the above positive electrode, porous film, and negative electrode were sandwiched between a sheet of aluminum laminate film of 90 mm ⁇ 200 mm.
  • 1.5 g of the electrolytic solution was poured into a bag-shaped aluminum laminate film, and the short sides of the aluminum laminate film were heat-sealed while being impregnated under reduced pressure to obtain a laminate type battery.
  • Discharge load characteristics were tested according to the following procedure, and evaluated by the discharge capacity retention rate. Using the laminate type battery, the discharge capacity when discharged at 0.5 C at 25 ° C. and the discharge capacity when discharged at 10 C at 25 ° C. are measured, (discharge capacity at 7 C) / ( Discharge capacity at 0.5 C) ⁇ 100 was used to calculate the discharge capacity retention rate.
  • the charging conditions were constant current charging at 0.5C and 4.3V, and the discharging conditions were constant current discharge at 2.7V.
  • Five laminate-type batteries were produced, and the average of the measurement results of the three batteries after removing the maximum and minimum discharge capacity retention rates was taken as the capacity retention rate.
  • a discharge capacity retention rate of less than 40% was rated as "bad", 45% or more and less than 50% as "good”, 50% or more and less than 55% as "excellent", and 55% or more as "excellent”.
  • Life characteristics were tested according to the following procedure, and evaluated by the discharge capacity retention rate. ⁇ 1st to 300th cycles> Charging and discharging were set as one cycle, charging conditions were constant current charging at 2C and 4.3V, and discharging conditions were constant current discharging at 2C and 2.7V, and charging and discharging were repeated 300 times at 25°C. ⁇ Calculation of discharge capacity maintenance rate> The discharge capacity retention rate (%) was calculated by the formula of (discharge capacity at 300th cycle)/(discharge capacity at 1st cycle) ⁇ 100. Five laminate-type batteries were produced, and the average of the measurement results of the three batteries after removing the maximum and minimum discharge capacity retention rates was taken as the capacity retention rate. The life characteristics are "bad" when the discharge capacity retention rate is less than 50%; The life characteristics of 70% or more were evaluated as "excellent".
  • Example 1 Dispersion A 120 parts of ion-exchanged water and 1 part of Adekaria Sorb SR-1025 (an emulsifier manufactured by Adeka Corporation) were charged into a reactor, and stirring was started. To this, 0.4 parts of 2,2′-azobis(2-(2-imidazolin-2-yl)propane) (manufactured by Wako Pure Chemical Industries, Ltd.) was added under a nitrogen atmosphere, and 2,2,2- Trifluoroethyl methacrylate (3FM) 30 parts, cyclohexyl acrylate (CHA) 54 parts, hydroxyethyl methacrylate (HEMA) 5 parts, alkylene glycol dimethacrylate (AGDMA) 11 parts, Adekaria Sorb SR-1025 (emulsifier, manufactured by Adeka Co., Ltd.) 9 and 115 parts of ion-exchanged water are continuously added dropwise at 60° C. over 2 hours. ) (particle size 180 n
  • Dispersion Z Using alumina particles (aluminum oxide) having an average particle size of 0.5 ⁇ m as inorganic particles, adding water in the same amount as the inorganic particles as a solvent, and carboxymethyl cellulose as a dispersant at 1% by mass relative to the inorganic particles, followed by bead milling. to prepare a dispersion liquid Z.
  • alumina particles aluminum oxide having an average particle size of 0.5 ⁇ m as inorganic particles
  • Coating liquid Dispersion liquid A and dispersion liquid Z are dispersed in water so that the volume content ⁇ of the inorganic particles contained in the porous layer is 55% by volume and the solid content concentration is 20% by mass, and mixed with a stirrer. did.
  • the resulting coating liquid had a viscosity of 15 mPa ⁇ s.
  • the obtained coating liquid was applied to a polyolefin microporous film (arithmetic mean height (Sa) 0.15 ⁇ m, protruding peak height (Spk) 0.19 ⁇ m, arithmetic average roughness (Ra) 120 nm, thickness 9 ⁇ m), dried for 1 minute in a hot air oven (drying set temperature 50 ° C.), and volatilizing the contained solvent to form a porous layer, A porous film was obtained.
  • Table 1 shows the arithmetic mean height (Sa) of the surface of the porous substrate on the side in contact with the porous layer used in Examples 1 to 32, the coating conditions, the type of inorganic particles, the volume content ⁇ , the organic resin Indicates the type of particle.
  • Table 2 shows the ⁇ / ⁇ of the porous films obtained in Examples 1 to 32, the occupation ratio ⁇ of the inorganic particles in the porous surface layer portion, and the arithmetic mean height of the surface of the porous film on the side having the porous layer.
  • Sa surface free energy
  • °C glass transition temperature
  • Table 3 shows the measurement results of thermal dimensional stability, peel strength, dry adhesion to electrodes, rate characteristics, and life characteristics of the porous films obtained in Examples 1 to 32 and batteries using them.
  • Example 2 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.20 ⁇ m.
  • Example 3 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.30 ⁇ m.
  • Example 4 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.09 ⁇ m.
  • Example 5 A porous film was obtained in the same manner as in Example 1, except that the volume content ⁇ of the inorganic particles contained in the porous layer was changed to 30% by volume.
  • Example 6 A porous film was obtained in the same manner as in Example 1, except that the volume content ⁇ of the inorganic particles contained in the porous layer was changed to 80% by volume.
  • Example 7 A porous film was obtained in the same manner as in Example 1, except that the solid content concentration of the coating liquid was changed to 10% by mass and the viscosity was changed to 10 mPa ⁇ s.
  • Example 8 A porous film was obtained in the same manner as in Example 1, except that the solid content concentration of the coating liquid was changed to 40% by mass and the viscosity was changed to 40 mPa ⁇ s.
  • Example 9 Dispersion liquid A and dispersion liquid Z were prepared in the same manner as in Example 1.
  • Dispersion B A dispersion liquid B comprising a polymer (polymer B) comprising methyl acrylate as an acrylate monomer was prepared. After that, the dispersion liquid A, the dispersion liquid Z, and the dispersion liquid B were mixed in the porous layer so that the volume content ⁇ of the inorganic particles contained in the porous layer was 55% by volume, the content of the organic resin particles (polymer A) was 35% by volume, and the organic resin The particles (polymer B) were dispersed in water so that the content of the particles (polymer B) was 10% by volume and the solid concentration was 20% by mass, and mixed with a stirrer. The resulting coating liquid had a viscosity of 10 mPa ⁇ s.
  • the organic resin particles are a mixture of two kinds of particles containing 90% by mass of a polymer A composed of a fluorine-containing methacrylate monomer and 10% by mass of a polymer B (average particle diameter 130 nm) composed of an acrylic acid ester monomer. obtained a porous film in the same manner as in Example 1.
  • Example 10 Dispersion A containing polymer C was prepared in the same manner as dispersion A of Example 1, except that 2,2,2-trifluoroethyl methacrylate (3FM) was replaced with 1H,1H,5H-octafluoropentyl acrylate (8FA). Dispersion C was prepared. Thereafter, in the same manner as in Example 1, a porous film was obtained.
  • 2,2,2-trifluoroethyl methacrylate (3FM) was replaced with 1H,1H,5H-octafluoropentyl acrylate (8FA).
  • Example 11 30 parts of 2,2,2-trifluoroethyl methacrylate (3FM), 54 parts of cyclohexyl acrylate (CHA), and 5 parts of hydroxyethyl methacrylate (HEMA) as monomers for constituting the polymer D that forms the organic resin particles and 11 parts of alkylene glycol dimethacrylate (AGDMA) were replaced with 100 parts of ethyl methacrylate as the methacrylic acid ester monomer. Dispersion D was prepared. Thereafter, in the same manner as in Example 1, a porous film was obtained.
  • 3FM 2,2,2-trifluoroethyl methacrylate
  • CHA cyclohexyl acrylate
  • HEMA hydroxyethyl methacrylate
  • Example 12 A porous film was obtained in the same manner as in Example 11, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.30 ⁇ m.
  • Example 13 A porous film was obtained in the same manner as in Example 11, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.09 ⁇ m.
  • Example 14 30 parts of 2,2,2-trifluoroethyl methacrylate (3FM), 54 parts of cyclohexyl acrylate (CHA), and 5 parts of hydroxyethyl methacrylate (HEMA) as monomers for constituting the polymer E forming the organic resin particles and 11 parts of alkylene glycol dimethacrylate (AGDMA) were replaced with 100 parts of vinylidene fluoride monomer. manufactured. Thereafter, in the same manner as in Example 1, a porous film was obtained.
  • 3FM 2,2,2-trifluoroethyl methacrylate
  • CHA cyclohexyl acrylate
  • HEMA hydroxyethyl methacrylate
  • Example 15 A porous film was obtained in the same manner as in Example 1, except that the average particle size of the organic resin particles was 70 nm.
  • Example 16 A porous film was obtained in the same manner as in Example 1, except that the average particle size of the organic resin particles was 100 nm.
  • Example 17 A porous film was obtained in the same manner as in Example 1, except that the average particle size of the organic resin particles was 500 nm.
  • Example 18 A porous film was obtained in the same manner as in Example 1, except that the average particle size of the organic resin particles was 800 nm.
  • Example 19 A porous film was obtained in the same manner as in Example 1, except that the inorganic particles were barium sulfate particles.
  • Example 20 A porous film was obtained in the same manner as in Example 1, except that boehmite particles were used as the inorganic particles.
  • Example 21 A porous film was obtained in the same manner as in Example 1, except that the film thickness of the porous layer was 5 ⁇ m.
  • Example 22 A porous film was obtained in the same manner as in Example 1, except that the film thickness of the porous layer was 8 ⁇ m.
  • Example 23 Polymer F was obtained by adjusting the amounts of CHA, HEMA, and AGDMA so that the glass transition temperature was 20° C. under the conditions for producing dispersion liquid A of Example 1, with 20 parts of 3FM. A porous film was obtained in the same manner.
  • Example 24 Polymer G was obtained by adjusting the amounts of CHA, HEMA, and AGDMA so that the glass transition temperature was 20° C. under the conditions for producing Dispersion A of Example 1, with the exception that 80 parts of 3FM was used. A porous film was obtained in the same manner.
  • Example 25 A porous film was obtained in the same manner as in Example 1, except that the drying temperature of the coating liquid was set to 70°C.
  • Example 26 A porous film was obtained in the same manner as in Example 1, except that the drying temperature of the coating liquid was set to 100°C.
  • Example 27 Using the same polyolefin microporous membrane as in Example 1 as the porous substrate, the dispersion liquid Z was coated on both sides of the polyolefin microporous membrane using a #9 wire bar, and dried in a hot air oven (drying set temperature 50 ° C.). The first porous layer was formed by drying in the chamber for 1 minute and volatilizing the contained solvent. After that, dispersion liquid A was dispersed in water so as to have a solid content concentration of 7% by mass, and mixed with a stirrer. The resulting coating liquid had a viscosity of 6 mPa ⁇ s.
  • the coating liquid is coated on both sides of the first coating layer using a #1.5 wire bar and dried in a hot air oven (drying temperature set at 50°C) for 1 minute to volatilize the contained solvent.
  • a porous film was obtained in the same manner as in Example 6, except that the second porous layer was formed by heating.
  • the occupation ratio ⁇ of the inorganic particles in the surface portion of the porous layer was 20%.
  • Example 28 A porous film was obtained in the same manner as in Example 27, except that polymer D was used instead of polymer A.
  • Example 29 Polymer H obtained by selecting a methacrylic acid ester monomer (butyl methacrylate) suitable for constituting the polymer forming the organic resin particles so that the glass transition temperature of the porous layer is 20°C.
  • a porous film was obtained in the same manner as in Example 27, except for using instead of Polymer A.
  • Example 30 Acrylic acid ester monomers (50 parts of methyl acrylate and 50 parts of butyl acrylate) suitable for forming the polymer forming the organic resin particles were selected so that the glass transition temperature of the porous layer was 80°C.
  • a porous film was obtained in the same manner as in Example 1, except that the polymer I obtained in the above step was used in place of the polymer A.
  • Example 31 A porous film was obtained in the same manner as in Example 28, except that the height (Spk) of the protrusion peaks of the polyolefin microporous membrane was changed to 0.10 ⁇ m.
  • Example 32 A porous film was obtained in the same manner as in Example 28, except that the height (Spk) of the protrusion peaks of the polyolefin microporous membrane was changed to 0.40 ⁇ m.
  • Polymers in the table represent the following.
  • Polymer A A polymer polymerized using a fluorine-containing methacrylate monomer (ratio of fluorine-containing methacrylate monomer to total monomers used: 30% by mass)
  • Polymer B polymer polymerized using acrylic acid ester monomer
  • Polymer C polymer polymerized using fluorine-containing acrylate monomer
  • Polymer D methacrylic acid ester monomer used
  • Polymer E polymer polymerized using vinylidene fluoride monomer
  • Polymer F polymer polymerized using fluorine-containing methacrylate monomer (total monomers used Proportion of fluorine-containing methacrylate monomer accounted for: 20% by mass)
  • Polymer G A polymer polymerized using a fluorine-containing methacrylate monomer (ratio of fluorine-containing methacrylate monomer to total monomers used: 80% by mass)
  • Polymer H polymer polymerized using methacrylic acid ester monomer
  • Example 33 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean roughness (Ra) of the polyolefin microporous membrane was changed to 30 nm.
  • Example 34 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean roughness (Ra) of the polyolefin microporous membrane was changed to 40 nm.
  • Example 35 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean roughness (Ra) of the polyolefin microporous membrane was changed to 200 nm.
  • Example 36 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean roughness (Ra) of the polyolefin microporous membrane was changed to 300 nm.
  • Example 37 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean roughness (Ra) of the polyolefin microporous membrane was changed to 350 nm.
  • Example 38 A porous film was obtained in the same manner as in Example 1, except that the height (Spk) of the protrusion peaks of the polyolefin microporous membrane was changed to 0.05 ⁇ m.
  • Example 39 A porous film was obtained in the same manner as in Example 1, except that the height (Spk) of the protrusion peaks of the polyolefin microporous membrane was changed to 0.10 ⁇ m.
  • Example 40 A porous film was obtained in the same manner as in Example 1, except that the height (Spk) of the protrusion peaks of the polyolefin microporous membrane was changed to 0.40 ⁇ m.
  • Example 41 A porous film was obtained in the same manner as in Example 1, except that the height (Spk) of the protrusion peaks of the polyolefin microporous membrane was changed to 0.50 ⁇ m.
  • Example 42 Dispersion J containing polymer J was prepared in the same manner as dispersion A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Thereafter, in the same manner as in Example 1, a porous film was obtained.
  • Example 43 Dispersion K containing polymer K was prepared in the same manner as dispersion A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Thereafter, in the same manner as in Example 1, a porous film was obtained.
  • Example 44 Dispersion L containing polymer L was prepared in the same manner as dispersion A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Thereafter, in the same manner as in Example 1, a porous film was obtained.
  • Example 45 Dispersion M containing polymer M was prepared in the same manner as Dispersion A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Thereafter, in the same manner as in Example 1, a porous film was obtained.
  • Example 46 Dispersion N containing polymer N was prepared in the same manner as dispersion A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Thereafter, in the same manner as in Example 1, a porous film was obtained.
  • Example 47 Dispersion liquid O containing polymer O was produced in the same manner as dispersion liquid A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Then, in the same manner as in Example 1, a porous film was obtained.
  • Example 48 A porous film was obtained in the same manner as in Example 44, except that the volume content ⁇ of the inorganic particles contained in the porous layer was changed to 30% by volume.
  • Example 49 A porous film was obtained in the same manner as in Example 44, except that the volume content ⁇ of the inorganic particles contained in the porous layer was changed to 80% by volume.
  • Example 50 A porous film was obtained in the same manner as in Example 44, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.30 ⁇ m.
  • Example 51 A porous film was obtained in the same manner as in Example 44, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.30 ⁇ m.
  • Table 6 shows the arithmetic mean height (Sa) of the porous substrate used in Examples 1 and 42 to 51, the type of monomer used for polymerization of the polymer constituting the organic resin particles, and each monomer
  • the ratio of the monomers used (denoted as “ ⁇ ” in Table 6) at ⁇ 100° C. or higher and 0° C. or lower is shown.
  • Table 7 shows the types of inorganic particles used in Examples 1 and 42 to 51, the volume content ⁇ , and the ⁇ / ⁇ of the porous films obtained in Examples 1 and 42 to 51.
  • Example 1 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.07 ⁇ m.
  • Example 2 A porous film was obtained in the same manner as in Example 1, except that the solid content concentration of the coating liquid was changed to 50% by mass and the viscosity was changed to 80 mPa ⁇ s.
  • Example 3 A porous film was obtained in the same manner as in Example 1, except that the drying temperature of the coating liquid was set to 105°C.
  • Example 4 A porous film was obtained in the same manner as in Example 1, except that the composition shown in Table 8 was used without using the organic resin particles A.
  • Example 5 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.35 ⁇ m.
  • Example 6 A porous film was obtained in the same manner as in Example 44, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.07 ⁇ m.
  • Example 7 A porous film was obtained in the same manner as in Example 44, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.35 ⁇ m.
  • Table 8 shows the arithmetic mean height (Sa) of the porous substrate used in Comparative Examples 1 to 7, the type of monomer used for polymerization of the polymer constituting the organic resin particles, and each monomer
  • the glass transition temperature (° C.) of the polymer polymerized using only the monomer, the proportion (%) of each monomer used, and the glass transition temperature of the polymer polymerized only with the monomer are ⁇ 100. ° C. to 0 °C.
  • Table 9 shows the ⁇ / ⁇ of the porous films obtained in Comparative Examples 1 to 7, the occupancy ⁇ of the inorganic particles in the porous surface layer, and the arithmetic of the surface of the porous film on the side where the porous layer is provided.
  • Table 10 shows the thermal dimensional stability, peel strength, dry adhesion to electrodes, wet adhesion to electrodes, rate characteristics, and life of the porous films obtained in Comparative Examples 1 to 7 and the batteries using them. The measurement results of the characteristics are shown.
  • Examples 1 to 51 all have a porous substrate and a porous layer containing inorganic particles and organic resin particles on at least one surface of the porous substrate.
  • the porous substrate has an arithmetic mean height (Sa) of 0.09 ⁇ m or more and 0.3 ⁇ m or less in a 2200 ⁇ m square on the surface of the porous substrate on the side in contact with the porous layer.
  • Sa arithmetic mean height
  • the volume of all constituent components of the layer is 100% by volume, the volume content ⁇ (% by volume) of the inorganic particles and the occupation ratio ⁇ (% by mass) of the inorganic particles at the surface of the porous layer are ⁇ / ⁇ 1.
  • It is a porous film has excellent dry adhesion to electrodes, and has good rate characteristics and battery life.
  • Examples 42 to 45 and 48 to 51 also have excellent wet adhesion to the electrode by appropriately selecting the composition of the organic resin particles.
  • the arithmetic mean height (Sa) of the surface of the porous substrate on the side in contact with the porous layer is less than 0.09 ⁇ m, so the adhesiveness to the electrode is poor.
  • the drying temperature of the coating liquid exceeded 100° C., the organic resin particles could not retain their particle shape during the drying process, and film formation hindered uneven distribution of the organic resin particles on the surface.
  • Comparative Example 4 does not contain organic resin particles, uneven distribution of the organic resin particles on the surface does not occur.
  • Comparative Examples 5 and 7 since the arithmetic mean height (Sa) of the surface of the porous substrate on the side in contact with the porous layer is larger than 0.3 ⁇ m, the adhesion to the electrode becomes too strong, thereby inhibiting ion transport. However, the resistance became high and the battery characteristics deteriorated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Composite Materials (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Separators (AREA)

Abstract

The present invention addresses the problem of providing a porous film that has excellent adherence to an electrode, thermal dimensional stability, and low resistance. Provided is a porous film comprising a porous substrate and a porous layer disposed on at least one side of the substrate, the porous layer containing inorganic particles and organic resin particles. The porous substrate has an arithmetic mean height (Sa) of 0.09-0.3 µm, per 2200 µm squared of the surface that is in contact with the porous layer. When all the structural components of the porous layer are 100 vol%, the volume content ratio α of the inorganic particles and the occupancy ratio β of the inorganic particles in the surface area of the porous layer satisfies β/α < 1.

Description

多孔性フィルム、二次電池用セパレータおよび二次電池Porous film, secondary battery separator and secondary battery
 本発明は、多孔性フィルム、二次電池用セパレータおよび二次電池に関する。 The present invention relates to a porous film, a secondary battery separator, and a secondary battery.
 リチウムイオン電池のような二次電池は、電気自動車、ハイブリッド車、プラグインハイブリッド車などの自動車用途や、スマートフォン、タブレット、携帯電話、ノートパソコン、デジタルカメラ、デジタルビデオカメラ、携帯ゲーム機などのポータブルデジタル機器、電動工具、電動バイク、電動アシスト補助自転車などに幅広く使用されている。 Secondary batteries such as lithium-ion batteries are used in automotive applications such as electric vehicles, hybrid vehicles, and plug-in hybrid vehicles, as well as portable applications such as smartphones, tablets, mobile phones, laptops, digital cameras, digital video cameras, and handheld game consoles. It is widely used in digital devices, electric tools, electric motorcycles, electric assist bicycles, etc.
 リチウムイオン電池は、一般的に、正極活物質を正極集電体に積層した正極と、負極活物質を負極集電体に積層した負極との間に、二次電池用セパレータと電解質が介在した構成を有している。 Lithium ion batteries generally have a secondary battery separator and an electrolyte interposed between a positive electrode in which a positive electrode active material is laminated on a positive electrode current collector and a negative electrode in which a negative electrode active material is laminated on a negative electrode current collector. have a configuration.
 二次電池用セパレータとしては、ポリオレフィン系多孔質基材が用いられている。二次電池用セパレータに求められる特性としては、多孔構造中に電解液を含み、イオン移動を可能にする特性と、リチウムイオン電池が異常発熱した場合に、熱で溶融することで多孔構造が閉鎖され、イオン移動を停止させることで、放電を停止させるシャットダウン特性が挙げられる。 Polyolefin-based porous substrates are used as separators for secondary batteries. The characteristics required for secondary battery separators are the ability to contain electrolyte in the porous structure and enable ion movement, and the ability to close the porous structure by melting when the lithium ion battery overheats. and a shutdown characteristic that stops the discharge by stopping ion migration.
 また、リチウムイオン電池のエネルギー密度向上のために、電池形態が捲回型から積層型への置き換えが進んでいる。積層型の場合、正極、セパレータ、負極を積層した電極積層体を用いる二次電池の製造工程において、電極積層体を運搬する際に、積層体構造を維持するため、または、電極積層体を円筒型、角型などの缶に挿入する場合、その際に形が崩れないようにするため、もしくは、より多くの電極積層体を缶の中に入れてエネルギー密度を高くするため、さらにはラミネート型電池においては、外装材に挿入した後に形状が変形しないようにするために、電解液を含浸する前のセパレータと電極との接着性(ドライ接着性)が求められている。そのために上記工程において、電極積層体に熱プレスを実施する場合がある。またリチウムイオン電池には、電解液を含浸した状態での電極との接着性(ウェット接着性)や高出力化、高寿命化などの良好な電池特性も求められている。 Also, in order to improve the energy density of lithium-ion batteries, the battery form is being replaced from the wound type to the laminated type. In the case of the laminated type, in the manufacturing process of a secondary battery using an electrode laminate in which a positive electrode, a separator, and a negative electrode are laminated, when the electrode laminate is transported, the laminate structure may be maintained, or the electrode laminate may be rolled into a cylinder. When inserting into a mold, square, etc. can, in order to keep the shape at that time, or to increase the energy density by putting more electrode laminates in the can, or to laminate type A battery is required to have adhesiveness (dry adhesiveness) between the separator and the electrode before being impregnated with the electrolytic solution in order to prevent the shape from being deformed after being inserted into the outer packaging material. Therefore, in the above process, the electrode laminate may be subjected to hot pressing. Lithium-ion batteries are also required to have good battery characteristics such as adhesion (wet adhesion) to electrodes impregnated with electrolyte, high output, and long life.
 上記ドライ接着性の要求に対して、特許文献1では、耐熱層上に形成された接着剤層を積層することで電極とのドライ接着性の発現を図っている。特許文献2では、粒子状重合体の粒子径と無機粒子の粒子径が特定の関係を満たすことで電極とのドライ接着性を高めている。また、セパレータの最表面を平滑にすることで電極とのドライ接着性を向上させることが知られている(特許文献3)。またドライ接着性とウェット接着性の両方を発現させることでの電池作製時の歩留まり性、初期充放電時の歩留まり性の向上が検討されている(特許文献4)。 In response to the above requirement for dry adhesion, in Patent Document 1, an adhesive layer formed on a heat-resistant layer is laminated to develop dry adhesion with the electrode. In Patent Document 2, the dry adhesion to the electrode is enhanced by satisfying a specific relationship between the particle size of the particulate polymer and the particle size of the inorganic particles. Further, it is known that smoothing the outermost surface of the separator improves the dry adhesion to the electrode (Patent Document 3). In addition, it is being studied to improve the yield during battery production and the yield during initial charge/discharge by developing both dry adhesiveness and wet adhesiveness (Patent Document 4).
国際公開第2013/151144号WO2013/151144 国際公開第2018/034094号WO2018/034094 国際公開第2014/021293号WO2014/021293 国際公開第2016/098684号WO2016/098684
 前述のとおり、二次電池の製造工程における熱プレス工程によって電極とセパレータのドライ接着性が求められる。さらに電池の大型化によって電極積層体の大型化、さらなる高容量化が求められており、電極とのドライ接着性に加えてウェット接着性も向上させる必要がある。また、積層型電池の需要増加により、生産性向上も求められており、接着性向上のための熱プレス時間の短縮も必要である。電極との接着性向上のため、電極との接着を担う有機樹脂粒子を増加することが検討されているが、電池抵抗の増大によりレート特性、電池寿命が悪化する問題がある。 As mentioned above, dry adhesion between electrodes and separators is required due to the heat press process in the manufacturing process of secondary batteries. Furthermore, due to the increase in the size of batteries, the electrode laminate is required to be increased in size and to have a higher capacity, and it is necessary to improve not only the dry adhesion to the electrodes but also the wet adhesion. In addition, due to the increase in demand for laminated type batteries, productivity improvement is also required, and it is also necessary to shorten the heat press time for improving adhesiveness. In order to improve the adhesiveness with the electrode, it has been studied to increase the amount of organic resin particles responsible for adhesion with the electrode, but there is a problem that the rate characteristics and battery life deteriorate due to the increase in battery resistance.
 本発明の目的は、上記問題に鑑み、電極との優れた接着性(ドライ接着性、ウェット接着性)と熱寸法安定性を有し、低抵抗な多孔性フィルムを提供する。 In view of the above problems, the object of the present invention is to provide a porous film having excellent adhesion (dry adhesion, wet adhesion) with electrodes, thermal dimensional stability, and low resistance.
 そこで、本発明者らは、熱プレス時間短縮のための高圧熱プレスによる電極との接着性に着眼し、鋭意検討を重ねた結果、多孔質基材の算術平均高さをある一定の高さとし、表層に有機樹脂粒子を偏在させて無機粒子と層分離させることで電極とのドライ接着性と熱寸法安定性、および低抵抗に優れることを見出した。さらに有機樹脂粒子の組成を適宜選択することで、上述した特性に加えてウェット接着性にも優れることを見出した。 Therefore, the present inventors focused on the adhesiveness with the electrode by high pressure heat press for shortening the heat press time, and as a result of extensive studies, the arithmetic mean height of the porous substrate was set to a certain height. It has been found that organic resin particles are unevenly distributed on the surface layer and layer-separated from the inorganic particles, resulting in excellent dry adhesion to electrodes, thermal dimensional stability, and low resistance. Furthermore, they have found that by appropriately selecting the composition of the organic resin particles, in addition to the properties described above, the wet adhesion is also excellent.
 上記課題を解決するため本発明の多孔性フィルムは次の構成を有する。
(1)多孔質基材と、該多孔質基材の少なくとも一方の面に、無機粒子と有機樹脂粒子とを含む多孔質層とを有する多孔性フィルムであって、前記多孔質基材は、前記多孔質層と接する側の表面の2200μm四方における算術平均高さ(Sa)が0.09μm以上0.3μm以下であり、多孔質層の全構成成分の体積を100体積%としたとき無機粒子の体積含有率α(体積%)と多孔質層の表面部での無機粒子の占有率β(面積%)がβ/α<1を満たす、多孔性フィルム。
(2)前記多孔性フィルムは、多孔質層を有する側の表面の2200μm四方における算術平均高さ(Sa)が0.085μm以上0.3μm以下である、(1)に記載の多孔性フィルム。
(3)前記無機粒子の体積含有率αが多孔質層の全構成成分の体積を100体積%としたとき30体積%以上80体積%以下である、(1)または(2)に記載の多孔性フィルム。
(4)前記多孔質表面部での無機粒子の占有率βが0より大きい、(1)から(3)のいずれかに記載の多孔性フィルム。
(5)前記多孔質基材は、多孔質層と接する側の表面の12nm四方における算術平均粗さ(Ra)が40nm以上300nm以下である、(1)から(4)のいずれかに記載の多孔性フィルム。
(6)前記多孔質基材は、多孔質層と接する側の表面の2200μm四方における突出山部高さ(Spk)が0.10μm以上0.40μm以下である、(1)から(5)のいずれかに記載の多孔性フィルム。
(7)前記多孔質層の表面自由エネルギーが10mN/m以上80mN/m以下である、(1)から(6)のいずれかに記載の多孔性フィルム。
(8)前記前記多孔質基材がポリオレフィン微多孔膜である(1)から(7)のいずれかに記載の多孔性フィルム
(9)前記無機粒子が無機水酸化物、無機酸化物および無機硫酸化物からなる群から選ばれる少なくとも1種によって構成された粒子である、(1)から(8)のいずれかに記載の多孔性フィルム。
(10)前記有機樹脂粒子がフッ素含有(メタ)アクリレート単量体、不飽和カルボン酸単量体、(メタ)アクリル酸エステル単量体、スチレン系単量体、オレフィン系単量体、ジエン系単量体、アクリルアミド系単量体、フッ化ビニリデン単量体からなる群から選ばれる少なくとも1つの単量体が用いられて重合された重合体を有する、(1)から(9)のいずれかに記載の多孔性フィルム。
(11)前記有機樹脂粒子について、有機樹脂粒子の全構成単量体成分を100質量%としたとき、フッ素含有(メタ)アクリレート単量体の割合が20質量%以上80質量%以下である、(10)に記載の多孔性フィルム。
(12)前記有機樹脂粒子がフッ素含有(メタ)アクリレート単量体のみで重合された重合体を含む、(11)に記載の多孔性フィルム。
(13)前記フッ素含有(メタ)アクリレート単量体一分子に含有されるフッ素原子数が3以上13以下である、(10)から(12)のいずれかに記載の多孔性フィルム。
(14)前記有機樹脂粒子が、さらに水酸基を有する(メタ)アクリレート単量体を用いて重合された重合体または共重合体を有する、(12)または(13)に記載の多孔性フィルム。
(15)前記有機樹脂粒子について、有機樹脂粒子の全構成単量体成分を100質量%としたとき、水酸基を有する(メタ)アクリレート単量体の割合が0質量%より大きく7.0質量%以下である請求項14に記載の多孔性フィルム。
(16)前記有機樹脂粒子に含まれる重合体について、該重合体の原材料である単量体のうち少なくとも1つの単量体が、その単量体のみで重合されたときの重合体のガラス転移温度が-100℃以上0℃以下となる単量体であることを特徴とする、(10)から(15)のいずれかに記載の多孔性フィルム。
(17)前記その単量体のみで重合されたときの重合体のガラス転移温度が-100℃以上0℃以下である単量体が、有機樹脂粒子の全構成単量体成分を100質量%としたとき、0質量%より大きく、10.0質量%以下である、(16)に記載の多孔性フィルム。
(18)前記多孔質層が少なくとも2種類の有機樹脂粒子を含む、(1)から(17)のいずれかに記載の多孔性フィルム。
(19)前記有機樹脂粒子の平均粒径が100nm以上500nm以下である、(1)から(18)のいずれかに記載の多孔性フィルム。
(20)前記多孔質基材の膜厚が3μm以上15μm以下である、(1)から(19)のいずれかに記載の多孔性フィルム。
(21)前記多孔質層の膜厚が2μm以上8μm以下である、(1)から(20)のいずれかに記載の多孔性フィルム。
(22)(1)から(21)のいずれかに記載の多孔性フィルムを用いてなる二次電池用セパレータ。
(23)(22)に記載の二次電池用セパレータを用いてなる二次電池。
(24)多孔質基材と、該多孔質基材の少なくとも一方の面に、無機粒子と有機樹脂粒子とを含む多孔質層とを有する多孔性フィルムであって、
前記多孔質基材は、前記多孔質層と接する側の表面の2200μm四方における算術平均高さ(Sa)が0.09μm以上であるポリオレフィン微多孔膜からなり、
前記無機粒子が、無機水酸化物、無機酸化物および無機硫酸化物からなる群から選ばれる少なくとも1種によって構成された粒子であり、
前記有機樹脂粒子が、フッ素含有(メタ)アクリレート単量体、不飽和カルボン酸単量体、(メタ)アクリル酸エステル単量体、スチレン系単量体、オレフィン系単量体、ジエン系単量体、アミド系単量体、フッ化ビニリデン単量体からなる群から選ばれる少なくとも1つの単量体が用いられて重合された重合体であり、
前記多孔質層の全構成成分の体積を100体積%としたとき無機粒子の体積含有率αが30体積%以上80体積%以下であり、
該無機粒子の体積含有率αと前記多孔質層の表面部での無機粒子の占有率βとの関係が、β>0かつβ/α<1を満たす、電池用セパレータ。
In order to solve the above problems, the porous film of the present invention has the following configuration.
(1) A porous film having a porous substrate and a porous layer containing inorganic particles and organic resin particles on at least one surface of the porous substrate, wherein the porous substrate comprises: Inorganic particles having an arithmetic mean height (Sa) of 0.09 μm or more and 0.3 μm or less in a 2200 μm square of the surface on the side in contact with the porous layer, and when the volume of all constituent components of the porous layer is 100% by volume and the occupancy ratio β (area %) of the inorganic particles in the surface portion of the porous layer satisfies β/α<1.
(2) The porous film according to (1), wherein the porous film has an arithmetic mean height (Sa) of 0.085 μm or more and 0.3 μm or less in a 2200 μm square of the surface on the side having the porous layer.
(3) The porous material according to (1) or (2), wherein the volume content α of the inorganic particles is 30% by volume or more and 80% by volume or less when the volume of all constituent components of the porous layer is 100% by volume. sex film.
(4) The porous film according to any one of (1) to (3), wherein the occupancy β of the inorganic particles in the porous surface portion is greater than 0.
(5) The porous substrate according to any one of (1) to (4), wherein the surface in contact with the porous layer has an arithmetic mean roughness (Ra) of 40 nm or more and 300 nm or less in a 12 nm square. porous film.
(6) The porous substrate has a protruding ridge height (Spk) of 0.10 μm or more and 0.40 μm or less in a 2200 μm square on the surface on the side in contact with the porous layer of (1) to (5). A porous film according to any one of the preceding claims.
(7) The porous film according to any one of (1) to (6), wherein the porous layer has a surface free energy of 10 mN/m or more and 80 mN/m or less.
(8) The porous film according to any one of (1) to (7), wherein the porous substrate is a polyolefin microporous film (9) The inorganic particles are an inorganic hydroxide, an inorganic oxide and an inorganic sulfuric acid The porous film according to any one of (1) to (8), which is a particle composed of at least one selected from the group consisting of compounds.
(10) The organic resin particles are fluorine-containing (meth)acrylate monomers, unsaturated carboxylic acid monomers, (meth)acrylate monomers, styrene-based monomers, olefin-based monomers, and diene-based monomers. Any one of (1) to (9), which has a polymer polymerized using at least one monomer selected from the group consisting of a monomer, an acrylamide-based monomer, and a vinylidene fluoride monomer. The porous film according to .
(11) With respect to the organic resin particles, the ratio of the fluorine-containing (meth)acrylate monomer is 20% by mass or more and 80% by mass or less when the total constituent monomer components of the organic resin particles are 100% by mass. The porous film according to (10).
(12) The porous film according to (11), wherein the organic resin particles contain a polymer polymerized only with a fluorine-containing (meth)acrylate monomer.
(13) The porous film according to any one of (10) to (12), wherein the number of fluorine atoms contained in one molecule of the fluorine-containing (meth)acrylate monomer is 3 or more and 13 or less.
(14) The porous film according to (12) or (13), wherein the organic resin particles further comprise a polymer or copolymer polymerized using a (meth)acrylate monomer having a hydroxyl group.
(15) With respect to the organic resin particles, the ratio of the (meth)acrylate monomer having a hydroxyl group is greater than 0% by mass and 7.0% by mass when the total constituent monomer components of the organic resin particles are 100% by mass. 15. The porous film of claim 14, wherein:
(16) Regarding the polymer contained in the organic resin particles, the glass transition of the polymer when at least one of the monomers that are the raw materials of the polymer is polymerized only with that monomer. The porous film according to any one of (10) to (15), which is a monomer having a temperature of -100°C or higher and 0°C or lower.
(17) The monomer having a glass transition temperature of −100° C. or more and 0° C. or less when polymerized only by the monomer accounts for 100% by mass of the total constituent monomer components of the organic resin particles. , the porous film according to (16), which is greater than 0% by mass and 10.0% by mass or less.
(18) The porous film according to any one of (1) to (17), wherein the porous layer contains at least two types of organic resin particles.
(19) The porous film according to any one of (1) to (18), wherein the organic resin particles have an average particle size of 100 nm or more and 500 nm or less.
(20) The porous film according to any one of (1) to (19), wherein the film thickness of the porous substrate is 3 μm or more and 15 μm or less.
(21) The porous film according to any one of (1) to (20), wherein the porous layer has a thickness of 2 μm or more and 8 μm or less.
(22) A secondary battery separator comprising the porous film according to any one of (1) to (21).
(23) A secondary battery using the secondary battery separator according to (22).
(24) A porous film having a porous substrate and a porous layer containing inorganic particles and organic resin particles on at least one surface of the porous substrate,
The porous substrate is made of a polyolefin microporous membrane whose surface in contact with the porous layer has an arithmetic mean height (Sa) of 0.09 μm or more in a 2200 μm square,
The inorganic particles are particles composed of at least one selected from the group consisting of inorganic hydroxides, inorganic oxides and inorganic sulfates,
The organic resin particles contain a fluorine-containing (meth)acrylate monomer, an unsaturated carboxylic acid monomer, a (meth)acrylic acid ester monomer, a styrene monomer, an olefin monomer, and a diene monomer. is a polymer polymerized using at least one monomer selected from the group consisting of a polymer, an amide-based monomer, and a vinylidene fluoride monomer,
When the volume of all constituent components of the porous layer is 100% by volume, the volume content ratio α of the inorganic particles is 30% by volume or more and 80% by volume or less,
The battery separator, wherein the relationship between the volume content α of the inorganic particles and the occupation ratio β of the inorganic particles in the surface portion of the porous layer satisfies β>0 and β/α<1.
 本発明によれば、電極との優れた接着性(ドライ接着性、ウェット接着性)と熱寸法安定性を有し、低抵抗な多孔性フィルムを提供することができる。特に高圧熱プレスした際に、優れたドライ接着性を発現することができる。また、該多孔性フィルムを電池用セパレータとして用いることで、電池作製工程の歩留まり向上、電池寿命とレート特性に優れた二次電池を提供することができる。 According to the present invention, it is possible to provide a porous film having excellent adhesiveness (dry adhesiveness, wet adhesiveness) with electrodes, thermal dimensional stability, and low resistance. In particular, when subjected to high-pressure heat pressing, excellent dry adhesion can be exhibited. Further, by using the porous film as a battery separator, it is possible to improve the yield in the battery manufacturing process and provide a secondary battery having excellent battery life and rate characteristics.
 本発明の多孔性フィルムは、多孔質基材と、該多孔質基材の少なくとも一方の面に、無機粒子と有機樹脂粒子を含む多孔質層とを有する多孔性フィルムであって、前記多孔質基材は、多孔質層と接する側の表面の2200μm四方における算術平均高さ(Sa)が0.09μm以上であり、多孔質層の全構成成分の体積を100体積%としたとき無機粒子の体積含有率α(体積%)と多孔質層の表面部での無機粒子の占有率β(面積%)がβ/α<1を満たすことを特徴とする。 The porous film of the present invention is a porous film having a porous substrate and a porous layer containing inorganic particles and organic resin particles on at least one surface of the porous substrate, wherein the porous The base material has an arithmetic mean height (Sa) of 0.09 μm or more in a 2200 μm square of the surface on the side in contact with the porous layer, and the amount of inorganic particles when the volume of all constituent components of the porous layer is 100% by volume. The volume content α (% by volume) and the occupation ratio β (% by area) of the inorganic particles in the surface portion of the porous layer satisfy β/α<1.
 以下、本発明の多孔性フィルムについて詳細に説明する。 The porous film of the present invention will be described in detail below.
 本発明の多孔性フィルムは、多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)が0.09μm以上0.3μm以下である。この算術平均高さ(Sa)の下限を0.09μm以上とすることで、電極との接着性をより向上させることができる。また、この算術平均高さ(Sa)の上限を0.3μm以下とすることで電極との接着性が強固になりすぎることでイオン輸送を阻害し、高抵抗となることを抑制できる。 The porous film of the present invention has an arithmetic mean height (Sa) of 0.09 μm or more and 0.3 μm or less in a 2200 μm square on the surface of the porous substrate on the side in contact with the porous layer. By setting the lower limit of the arithmetic mean height (Sa) to 0.09 μm or more, the adhesion to the electrode can be further improved. In addition, by setting the upper limit of the arithmetic mean height (Sa) to 0.3 μm or less, it is possible to prevent the ion transport from becoming too strong due to excessively strong adhesion to the electrode, resulting in a high resistance.
 これまで、電極とのドライ接着性を向上させるためには、セパレータの最表面に設けた接着層を平滑することが検討されている。さらに、近年、電解液を含浸する前のセパレータと電極とのドライ接着性の歩留まりを向上するために、電極との接着工程(熱プレス)においてプレス圧力を大幅に上げることで、セパレータと電極との接着工程時間を大幅に短縮することが検討されている。その場合、ドライ接着性を向上させるためにはセパレータの最表面が電極により深くプレスされることで、電極内に存在する活物質への凹凸に追従する必要があるが、最表面が平滑であるとその凹凸に追従しないため、電極とのドライ接着性が逆に低下することがわかった。 Until now, in order to improve the dry adhesion with the electrodes, it has been studied to smooth the adhesive layer provided on the outermost surface of the separator. Furthermore, in recent years, in order to improve the yield of dry adhesion between the separator and the electrode before impregnating with the electrolyte, the pressing pressure in the adhesion process (heat press) with the electrode has been greatly increased to improve the adhesion between the separator and the electrode. It has been studied to greatly shorten the time required for the bonding process. In that case, in order to improve the dry adhesion, the outermost surface of the separator needs to be pressed deeply by the electrode so that it follows the unevenness of the active material present in the electrode, but the outermost surface is smooth. It was found that the dry adhesion to the electrode decreased because it did not follow the unevenness.
 また、電極とのドライ接着性およびウェット接着性を向上させるために、電極との接着を担う有機樹脂粒子の含有量を増やすことが検討されている。しかしながら、有機樹脂粒子量の増加によりイオン輸送を阻害し、膜の抵抗が悪化する場合があった。そのため、電極とのドライ接着性およびウェット接着性と膜の低抵抗の維持との両立に課題があった。 In addition, in order to improve the dry and wet adhesion with the electrode, it is being considered to increase the content of the organic resin particles responsible for adhesion with the electrode. However, an increase in the amount of organic resin particles may hinder ion transport and deteriorate the resistance of the membrane. Therefore, there has been a problem in achieving both dry adhesion and wet adhesion to electrodes and maintaining low resistance of the film.
 本発明の多孔性フィルムについて、多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)を0.09μm以上0.3μm以下とすることで、電極とのドライ接着性が向上することを見出した。多孔質層と接する側の多孔質基材表面の前記算術平均高さ(Sa)を前記範囲とすることで、多孔質層表面の算術平均高さも向上し、電極との接着工程(熱プレス)の際に、電極内に存在する活物質への凹凸に追従することができ、電極との高いドライ接着性を示すものである。有機樹脂粒子量を増やすことなくコストを抑えて電極とのドライ接着性を向上させることができ、かつドライ接着性の向上によりイオン輸送の均一性が向上し、低抵抗とすることができる。そのため、本発明の多孔性フィルムを用いる電池は、レート特性及び電池寿命の両立が可能となる。この多孔質基材表面2200μm四方における算術平均高さ(Sa)の下限は、好ましくは0.012μm以上である。 For the porous film of the present invention, the arithmetic mean height (Sa) in 2200 μm square of the surface of the porous substrate on the side in contact with the porous layer is 0.09 μm or more and 0.3 μm or less, so that dry adhesion with the electrode found to improve performance. By setting the arithmetic mean height (Sa) of the surface of the porous substrate on the side in contact with the porous layer within the above range, the arithmetic mean height of the surface of the porous layer is also improved, and the step of bonding with the electrode (hot press) In this case, it can follow the unevenness of the active material present in the electrode, and exhibits high dry adhesion to the electrode. The dry adhesion to the electrode can be improved without increasing the amount of the organic resin particles while reducing the cost, and the improvement of the dry adhesion improves the uniformity of ion transport and lowers the resistance. Therefore, a battery using the porous film of the present invention can achieve both rate characteristics and battery life. The lower limit of the arithmetic mean height (Sa) on the surface of the porous substrate of 2200 μm square is preferably 0.012 μm or more.
 ここで多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)は、多孔質基材の樹脂種類、可塑剤種類、シート形成後の冷却有無、延伸方法、延伸倍率、延伸温度、延伸後の乾式再延伸といった各種製造条件を調整することで、所定の範囲とすることが可能となる。 Here, the arithmetic mean height (Sa) in 2200 μm square of the surface of the porous substrate on the side in contact with the porous layer, By adjusting various manufacturing conditions such as the magnification, stretching temperature, and dry re-stretching after stretching, it is possible to achieve a predetermined range.
 本発明における多孔質層は、無機粒子と有機樹脂粒子を含有する。多孔質層は、多孔質層の全構成成分の体積を100体積%としたときの無機粒子の体積含有率α(体積%)と、多孔質層の表面部での無機粒子の占有率β(面積%)がβ/α<1を満たす。β/αが1より小さいことは、多孔質層の表面部での無機粒子の占有率が多孔質層全体の無機粒子の含有率より低いことを示しており、すなわち有機樹脂粒子が多孔質層の表面部に偏在していることを示している。多孔質層の表面部に有機樹脂粒子が偏在することで、表面部は有機樹脂粒子が多く存在するため、十分な電極との接着性を示す。 The porous layer in the present invention contains inorganic particles and organic resin particles. The porous layer has a volume content rate α (% by volume) of inorganic particles when the volume of all constituent components of the porous layer is 100% by volume, and an occupation rate β ( area %) satisfies β/α<1. When β/α is less than 1, it means that the occupancy rate of the inorganic particles in the surface portion of the porous layer is lower than the content rate of the inorganic particles in the entire porous layer. It shows that it is unevenly distributed on the surface of the Since the organic resin particles are unevenly distributed on the surface portion of the porous layer, a large amount of organic resin particles are present on the surface portion, thereby exhibiting sufficient adhesiveness to the electrode.
 なお、上記説明した、無機粒子の体積含有率αおよび無機粒子の占有率βは、実施例の項に記載の方法によって求められる。 It should be noted that the volume content α of the inorganic particles and the occupation ratio β of the inorganic particles described above are obtained by the method described in the Examples section.
 そして、本発明の多孔性フィルムは、多孔質層と接する側の多孔質基材表面の2200μmにおける算術平均高さ(Sa)が0.09μm以上0.3μm以下である多孔質基材を用いて、かつ、多孔質層が、多孔質層の全構成成分を100体積%としたとき、無機粒子の体積含有率α(体積%)と多孔質層の表面部での無機粒子の占有率β(面積%)がβ/α<1を満たすことで、特に高圧熱プレスをしたときに電極との高いドライ接着性およびウェット接着性が得られ、また、良好な電池特性が得られる。β/αは、より好ましくは0.5以下であり、さらに好ましくは0.3以下である。β/αの下限は、特に制限されるものではないが、0.01以上であると良い。 The porous film of the present invention uses a porous substrate having an arithmetic mean height (Sa) of 0.09 μm or more and 0.3 μm or less at 2200 μm on the surface of the porous substrate on the side in contact with the porous layer. And, when the total constituent components of the porous layer are 100% by volume, the porous layer has a volume content rate α (% by volume) of the inorganic particles and an occupation rate β of the inorganic particles at the surface of the porous layer ( area %) satisfies β/α<1, high dry adhesion and wet adhesion to the electrode can be obtained, especially when high-pressure heat pressing is performed, and good battery characteristics can be obtained. β/α is more preferably 0.5 or less, still more preferably 0.3 or less. Although the lower limit of β/α is not particularly limited, it is preferably 0.01 or more.
 β/αが前記範囲内である多孔質層を形成するためには、2種の塗工液を用いる2段階の塗布工程を経て形成してもよく、1種の塗工液を用いる1段階の塗布工程で形成することがより好ましい。1段階の塗布工程で形成できると、塗工回数の低減による低コスト化が可能となる。1段階の塗布工程とするには、例えば、有機樹脂粒子の表面自由エネルギー、塗工液の粘度、固形分濃度、乾燥温度を適宜調節することで、β/αを所定の範囲とすることが可能となる。詳細については後述する。 In order to form a porous layer in which β/α is within the above range, it may be formed through a two-step coating process using two types of coating liquids, or one step using one type of coating liquid. It is more preferable to form in the coating step of . If it can be formed by a one-stage coating process, the cost can be reduced by reducing the number of times of coating. For a one-stage coating process, for example, the surface free energy of the organic resin particles, the viscosity of the coating liquid, the solid content concentration, and the drying temperature can be adjusted appropriately to set β/α within a predetermined range. It becomes possible. Details will be described later.
 無機粒子の体積含有率αは、多孔質層の全構成成分の体積を100体積%としたとき、好ましくは30体積%以上80体積%以下であり、より好ましくは40体積%以上70体積%以下であり、さらに好ましくは50体積%以上60体積%以下である。無機粒子の体積含有率αを30体積%以上とすることで、十分な熱寸法安定性が得られる。また80体積%以下とすることで、有機樹脂粒子の含有率が十分となり、電極とのドライ接着性およびウェット接着性が向上する。 The volume content α of the inorganic particles is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less, when the volume of all constituent components of the porous layer is 100% by volume. and more preferably 50% by volume or more and 60% by volume or less. By setting the volume content α of the inorganic particles to 30% by volume or more, sufficient thermal dimensional stability can be obtained. Moreover, by making it 80 volume % or less, the content of the organic resin particles becomes sufficient, and dry adhesion and wet adhesion to the electrode are improved.
 多孔質層の表面部での無機粒子の占有率βは0%より大きいことが好ましい。より好ましくは、1%以上、さらに好ましくは5%以上である。βが0%より大きいことで1段階の塗布工程による塗工回数低減または原料減少による塗材費の低減により低コスト化が可能となる。上限は、特に制限されるものではないが、50%未満であると良い。より好ましくは30%未満、更に好ましくは20%未満である。50%未満であることで、電極との接着性が良好となる。β=0ということは多孔質層表面に無機粒子が存在しておらず、多孔質中に全て存在することを示す。なお、多孔質層の表面部とは、多孔質層の外側表面および電極との接着性に影響する深さの表面層であり、後述するSEM-EDXを用いて得られる画像が示すものとする。 The occupancy β of the inorganic particles on the surface of the porous layer is preferably greater than 0%. More preferably, it is 1% or more, and still more preferably 5% or more. When β is greater than 0%, the cost can be reduced by reducing the number of times of coating by a one-step coating process or by reducing the cost of coating materials by reducing raw materials. Although the upper limit is not particularly limited, it is preferably less than 50%. More preferably less than 30%, still more preferably less than 20%. When it is less than 50%, the adhesiveness with the electrode is improved. β=0 means that no inorganic particles are present on the surface of the porous layer and all are present in the porous layer. The surface portion of the porous layer is a surface layer having a depth that affects the adhesiveness between the outer surface of the porous layer and the electrode, and is shown in the image obtained using SEM-EDX, which will be described later. .
 [多孔質層]
 本発明の多孔性フィルムは、後ろで詳しく説明する多孔質基材の少なくとも一方の面に、無機粒子と有機樹脂粒子を含む多孔質層が形成されている。
[Porous layer]
In the porous film of the present invention, a porous layer containing inorganic particles and organic resin particles is formed on at least one surface of a porous substrate which will be described later in detail.
 多孔質層の膜厚は、下限としては、2μm以上とすることが好ましく、より好ましくは3μm以上、さらに好ましくは4μm以上である。また、多孔質層の膜厚の上限としては、8μm以下とすることが好ましく、7μm以下であることが好ましく、より好ましくは6μm以下である。ここでいう多孔質層の膜厚とは、多孔質基材に設けられた多孔質層の合計厚みをいう。多孔質層の膜厚が2μm以上とすることで、十分な熱寸法安定性および有機樹脂の偏在が起こりやすくなり電極との接着性が得られる。また、8μm以下とすることで、多孔質構造となり、レート特性、電池寿命が良好となる。また、コスト面でも有利となる。 The lower limit of the film thickness of the porous layer is preferably 2 μm or more, more preferably 3 μm or more, and still more preferably 4 μm or more. The upper limit of the film thickness of the porous layer is preferably 8 μm or less, preferably 7 μm or less, and more preferably 6 μm or less. The film thickness of the porous layer as used herein refers to the total thickness of the porous layers provided on the porous substrate. By setting the film thickness of the porous layer to 2 μm or more, sufficient thermal dimensional stability and uneven distribution of the organic resin tend to occur, and adhesion to the electrode can be obtained. Further, by setting the thickness to 8 μm or less, a porous structure is obtained, and rate characteristics and battery life are improved. Moreover, it is advantageous in terms of cost.
 多孔質層の表面自由エネルギーは、10mN/m以上80mN/m以下であることが好ましく、より好ましくは15mN/m以上70mN/m以下、さらに好ましくは20mN/m以上60mN/m以下である。10mN/m以上とすることで、多孔質層の塗工安定性が向上する。また80mN/m以下とすることで、有機樹脂粒子の層分離による表面偏在が生じやすくβ/αを制御しやすくなる。 The surface free energy of the porous layer is preferably 10 mN/m or more and 80 mN/m or less, more preferably 15 mN/m or more and 70 mN/m or less, and still more preferably 20 mN/m or more and 60 mN/m or less. By making it 10 mN/m or more, the coating stability of the porous layer is improved. Further, by making it 80 mN/m or less, uneven surface distribution due to layer separation of the organic resin particles is likely to occur, and β/α can be easily controlled.
 また多孔質層は20℃以上80℃未満にガラス転移温度を有することが好ましい。下限はより好ましくは30℃以上、さらに好ましくは40℃以上である。また、上限はより好ましくは70℃以下、さらに好ましくは60℃以下である。ガラス転移温度を20℃以上とすることで、電解液への膨潤性を抑制し、ウェット接着性、レート特性、電池寿命が良好となる。また80℃未満とすることで、電極とのドライ接着性がより向上する。ガラス転移温度を適切な範囲にするために、特定の単量体群から適宜選択することができる。 Also, the porous layer preferably has a glass transition temperature of 20°C or more and less than 80°C. The lower limit is more preferably 30°C or higher, still more preferably 40°C or higher. Also, the upper limit is more preferably 70° C. or lower, still more preferably 60° C. or lower. By setting the glass transition temperature to 20° C. or higher, swelling in the electrolyte is suppressed, and wet adhesion, rate characteristics, and battery life are improved. Moreover, by making it below 80 degreeC, the dry adhesiveness with an electrode improves more. In order to set the glass transition temperature in an appropriate range, it can be appropriately selected from a specific group of monomers.
 (1)有機樹脂粒子
 有機樹脂粒子は電極との接着性を改善する。有機樹脂粒子を構成する樹脂は、電極との接着性を有する樹脂が好ましく、有機樹脂粒子を多孔性フィルム表層に偏在させることでイオン透過性が向上して、レート特性が向上する。また有機樹脂粒子の表面自由エネルギーを低くすることで、β/αを低くすることができる。
(1) Organic Resin Particles Organic resin particles improve adhesion to electrodes. The resin constituting the organic resin particles is preferably a resin having adhesiveness to the electrode, and by unevenly distributing the organic resin particles on the surface layer of the porous film, the ion permeability is improved and the rate characteristics are improved. In addition, β/α can be lowered by lowering the surface free energy of the organic resin particles.
 有機樹脂粒子としては、フッ素含有(メタ)アクリレート単量体、不飽和カルボン酸単量体、(メタ)アクリル酸エステル単量体、スチレン系単量体、オレフィン系単量体、ジエン系単量体、アクリルアミド系単量体、フッ化ビニリデン単量体からなる群から選ばれる少なくとも1つの単量体が用いられて重合された重合体を有することが好ましい。この中でも特に有機樹脂粒子は、フッ素含有(メタ)アクリレート単量体のみで重合された重合体と他の重合体との混合物、又は、フッ素含有(メタ)アクリレート単量体と他の単量体との共重合体を有することが望ましい。これにより、有機樹脂粒子の表面自由エネルギーを低くすることで有機樹脂粒子を表面側に偏在することができ、多孔質層の電極との接着性を向上することができる。なお、本明細書において、「(メタ)アクリレート」は「アクリレート」および「メタクリレート」の両方の意味を意味する。 Examples of organic resin particles include fluorine-containing (meth)acrylate monomers, unsaturated carboxylic acid monomers, (meth)acrylic acid ester monomers, styrene monomers, olefin monomers, and diene monomers. It is preferable to have a polymer polymerized by using at least one monomer selected from the group consisting of polyimides, acrylamide-based monomers, and vinylidene fluoride monomers. Among these, in particular, the organic resin particles are a mixture of a polymer polymerized only with a fluorine-containing (meth)acrylate monomer and other polymers, or a mixture of a fluorine-containing (meth)acrylate monomer and other monomers. It is desirable to have a copolymer with As a result, by lowering the surface free energy of the organic resin particles, the organic resin particles can be unevenly distributed on the surface side, and the adhesion of the porous layer to the electrode can be improved. In this specification, "(meth)acrylate" means both "acrylate" and "methacrylate".
 フッ素含有(メタ)アクリレート単量体が用いられて重合された重合体は、フッ素含有(メタ)アクリレートを重合して得られる繰り返し単位を含む。 Polymers polymerized using fluorine-containing (meth)acrylate monomers contain repeating units obtained by polymerizing fluorine-containing (meth)acrylates.
 フッ素含有(メタ)アクリレート単量体としては、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3,3-ペンタフルオロプロピル(メタ)アクリレート、2-(パーフルオロブチル)エチル(メタ)アクリレート、3-(パーフルオロブチル)-2-ヒドロキシプロピル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート、3-パーフルオロヘキシル-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-3-メチルブチル)-2-ヒドロキシプロピル(メタ)アクリレート、1H,1H,3H-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、1H,1H,7H-ドデカフルオロヘプチル(メタ)アクリレート、1H-1-(トリフルオロメチル)トリフルオロエチル(メタ)アクリレート、1H,1H,3H-ヘキサフルオロブチル(メタ)アクリレート、1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル(メタ)アクリレート、2-(パーフルオロオクチル)エチル(メタ)アクリレートなどが挙げられる。フッ素含有(メタ)アクリレート単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Fluorine-containing (meth)acrylate monomers include 2,2,2-trifluoroethyl (meth)acrylate, 2,2,3,3,3-pentafluoropropyl (meth)acrylate, 2-(perfluorobutyl ) ethyl (meth) acrylate, 3-(perfluorobutyl)-2-hydroxypropyl (meth) acrylate, 2-(perfluorohexyl) ethyl (meth) acrylate, 3-perfluorohexyl-2-hydroxypropyl (meth) acrylates, 3-(perfluoro-3-methylbutyl)-2-hydroxypropyl (meth)acrylate, 1H,1H,3H-tetrafluoropropyl (meth)acrylate, 1H,1H,5H-octafluoropentyl (meth)acrylate, 1H,1H,7H-dodecafluoroheptyl (meth)acrylate, 1H-1-(trifluoromethyl)trifluoroethyl (meth)acrylate, 1H,1H,3H-hexafluorobutyl (meth)acrylate, 1,2,2 , 2-tetrafluoro-1-(trifluoromethyl)ethyl (meth)acrylate, 2-(perfluorooctyl)ethyl (meth)acrylate and the like. One fluorine-containing (meth)acrylate monomer may be used alone, or two or more may be used in combination at an arbitrary ratio.
 有機樹脂粒子に用いられるフッ素含有(メタ)アクリレート単量体の割合は、有機樹脂粒子の全構成単量体成分を100質量%としたとき、20質量%より大きいことが好ましく、より好ましくは22質量%以上、さらに好ましくは25質量%以上、一層好ましくは30質量%以上である。また、80質量%以下が好ましく、より好ましくは60質量%以下、さらに好ましくは50質量%以下、一層好ましくは40質量%以下、最も好ましくは35質量%以下である。上記範囲とすることで、有機樹脂粒子が表層に偏在しやすくなり、十分な電極との接着性が得られる。 The proportion of the fluorine-containing (meth)acrylate monomer used in the organic resin particles is preferably greater than 20% by mass, more preferably 22%, based on 100% by mass of all constituent monomer components of the organic resin particles. % by mass or more, more preferably 25% by mass or more, and even more preferably 30% by mass or more. Also, it is preferably 80% by mass or less, more preferably 60% by mass or less, still more preferably 50% by mass or less, still more preferably 40% by mass or less, and most preferably 35% by mass or less. Within the above range, the organic resin particles are likely to be unevenly distributed on the surface layer, and sufficient adhesiveness to the electrode can be obtained.
 有機樹脂粒子にフッ素含有(メタ)アクリレート単量体が用いられているか否か、さらには有機樹脂粒子に用いられたフッ素含有(メタ)アクリレート単量体の割合は、公知の方法を用いて測定することができる。例えば、まず多孔性フィルム上から水およびアルコールなどの有機溶媒を用いて多孔質層を脱離させ、水およびアルコールなどの有機溶媒を十分に乾燥させて多孔質層に含まれる構成成分を得る。得られた構成成分に有機樹脂成分を溶解する有機溶媒を添加して有機樹脂成分のみを溶解する。続いて、有機樹脂成分が溶解した溶液から有機溶媒を乾燥させ、有機樹脂成分のみを抽出する。得られた有機樹脂成分を用いて、核磁気共鳴法(H-NMR、19F-NMR、13C-NMR)、赤外吸収分光法(IR)、X線光電子分光法(XPS)、蛍光X線分析法(EDX)、および元素分析法、熱分解ガスクロマトグラフ質量分析計(熱分解GC/MS)などにより、フッ素含有(メタ)アクリレート単量体に由来するシグナルの強度から算出することができる。特に熱分解GC/MSによってフッ素含有(メタ)アクリレート単量体が用いられているかを確認した後、13C-NMR(固体NMR試料管に前記有機樹脂成分と適当量の溶媒(重クロロホルム)を充填し、一晩静置後にDD/MAS法にて測定)によって、用いられたフッ素含有(メタ)アクリレート単量体の割合を求めることができる。 Whether or not the fluorine-containing (meth)acrylate monomer is used in the organic resin particles, and the proportion of the fluorine-containing (meth)acrylate monomer used in the organic resin particles are measured using a known method. can do. For example, first, the porous layer is removed from the porous film using an organic solvent such as water and alcohol, and then the organic solvent such as water and alcohol is sufficiently dried to obtain the constituents contained in the porous layer. An organic solvent capable of dissolving the organic resin component is added to the resulting component to dissolve only the organic resin component. Subsequently, the organic solvent is dried from the solution in which the organic resin component is dissolved, and only the organic resin component is extracted. Using the obtained organic resin component, nuclear magnetic resonance spectroscopy ( 1 H-NMR, 19 F-NMR, 13 C-NMR), infrared absorption spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), fluorescence It can be calculated from the intensity of the signal derived from the fluorine-containing (meth)acrylate monomer by X-ray analysis (EDX), elemental analysis, pyrolysis gas chromatograph mass spectrometer (pyrolysis GC/MS), etc. can. In particular, after confirming the use of a fluorine-containing (meth)acrylate monomer by pyrolysis GC/MS, 13 C-NMR (a solid NMR sample tube was charged with the above organic resin component and an appropriate amount of solvent (deuterated chloroform)). The ratio of the fluorine-containing (meth)acrylate monomer used can be obtained by filling and standing overnight and then measuring by the DD/MAS method).
 また、フッ素含有(メタ)アクリレート単量体一分子に含まれるフッ素原子数は、3以上13以下が好ましい。フッ素原子数は、より好ましくは3以上11以下、さらに好ましくは3以上9以下である。上記範囲にすることで、有機樹脂粒子の表面自由エネルギーを小さくでき、また、塗工性を両立することができる。フッ素原子数が3以上の場合は有機樹脂粒子の表面自由エネルギーの低下が十分となり、電極との接着性が十分となる。また、フッ素原子数が13以下の場合、多孔質基材への塗工性が担保され、生産性が向上する。 Also, the number of fluorine atoms contained in one molecule of the fluorine-containing (meth)acrylate monomer is preferably 3 or more and 13 or less. The number of fluorine atoms is more preferably 3 or more and 11 or less, still more preferably 3 or more and 9 or less. By setting the amount within the above range, the surface free energy of the organic resin particles can be reduced, and the coatability can be achieved at the same time. When the number of fluorine atoms is 3 or more, the surface free energy of the organic resin particles is sufficiently reduced, and the adhesiveness to the electrode is sufficient. Moreover, when the number of fluorine atoms is 13 or less, the coatability to the porous substrate is ensured, and the productivity is improved.
 なお、フッ素含有(メタ)アクリレートのフッ素原子数は、公知の方法を用いて測定することができる。例えば、まず多孔性フィルム上から水およびアルコールなどの有機溶媒を用いて多孔質層を脱離させ、水およびアルコールなどの有機溶媒を十分に乾燥させて多孔質層に含まれる構成成分を得る。得られた構成成分に有機樹脂成分を溶解する有機溶媒を添加して有機樹脂成分のみを溶解し、無機粒子と分離する。続いて、有機樹脂成分が溶解した溶液から有機溶媒を乾燥させ、有機樹脂成分のみを抽出する。得られた有機樹脂成分を用いて、核磁気共鳴法(H-NMR、19F-NMR、13C-NMR)、赤外吸収分光法(IR)、X線光電子分光法(XPS)、蛍光X線分析法(EDX)、および元素分析法、熱分解ガスクロマトグラフ質量分析計(熱分解GC/MS)などにより、フッ素含有(メタ)アクリレート単量体に由来するシグナルの強度から算出することができる。この中でも特に熱分解GC/MSが有用である。 The number of fluorine atoms in the fluorine-containing (meth)acrylate can be measured using a known method. For example, first, the porous layer is removed from the porous film using an organic solvent such as water and alcohol, and then the organic solvent such as water and alcohol is sufficiently dried to obtain the constituents contained in the porous layer. An organic solvent capable of dissolving the organic resin component is added to the resulting constituent components to dissolve only the organic resin component and separate it from the inorganic particles. Subsequently, the organic solvent is dried from the solution in which the organic resin component is dissolved, and only the organic resin component is extracted. Using the obtained organic resin component, nuclear magnetic resonance spectroscopy ( 1 H-NMR, 19 F-NMR, 13 C-NMR), infrared absorption spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), fluorescence It can be calculated from the intensity of the signal derived from the fluorine-containing (meth)acrylate monomer by X-ray analysis (EDX), elemental analysis, pyrolysis gas chromatograph mass spectrometer (pyrolysis GC/MS), etc. can. Among these, pyrolysis GC/MS is particularly useful.
 不飽和カルボン酸単量体としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。不飽和カルボン酸単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of unsaturated carboxylic acid monomers include acrylic acid, methacrylic acid, and crotonic acid. One type of unsaturated carboxylic acid monomer may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 (メタ)アクリル酸エステル単量体としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート、シクロヘキシルアクリレート、ヒドロキシエチルアクリレート、ベンジルアクリレート、イソボルニルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、ヒドロキシメチルアクリレート、2-ヒドロキシエチルアクリレート、3-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、5-ヒドロキシペンチルアクリレート、6-ヒドロキシヘキシルアクリレート、7-ヒドロキシヘプチシルアクリレート、8-ヒドロキシオクチルアクリレートなどのアクリル酸エステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、イソブチルメタクリレート、t-ブチルメタクリレート、t-ブチルシクロヘキシルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート、シクロヘキシルメタクリレート、ヒドロキシエチルメタクリレート、ベンジルメタクリレート、イソボルニルメタクリレート、ジシクロペンタニルメタクリレート、ジシクロペンテニルメタクリレート、ヒドロキシメチルメタクリレート、2-ヒドロキシエチルメタクリレート、3-ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルメタクリレート、5-ヒドロキシペンチルメタクリレート、6-ヒドロキシヘキシルメタクリレート、7-ヒドロキシヘプチシルメタクリレート、8-ヒドロキシオクチルメタクリレートなどのメタクリル酸エステルなどが挙げられる。(メタ)アクリル酸エステル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 (Meth)acrylate monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, and octyl acrylate. , 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate, cyclohexyl acrylate, hydroxyethyl acrylate, benzyl acrylate, isobornyl acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, Acrylics such as hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 3-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 5-hydroxypentyl acrylate, 6-hydroxyhexyl acrylate, 7-hydroxyheptyl acrylate, 8-hydroxyoctyl acrylate acid ester; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, t-butylcyclohexyl methacrylate, pentyl methacrylate, hexyl methacrylate, heptyl methacrylate, Octyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, lauryl methacrylate, n-tetradecyl methacrylate, stearyl methacrylate, cyclohexyl methacrylate, hydroxyethyl methacrylate, benzyl methacrylate, isobornyl methacrylate, dicyclopentanyl methacrylate, dicyclopentenyl methacrylate, hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate, 3-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, 5-hydroxypentyl methacrylate, 6-hydroxyhexyl methacrylate, 7-hydroxyheptyl methacrylate, 8-hydroxyoctyl methacrylate, etc. and methacrylic acid esters of. The (meth)acrylic acid ester monomers may be used singly or in combination of two or more at any ratio.
 上記(メタ)アクリル酸エステル単量体の中でも、水酸基を有する(メタ)アクリレート単量体を用いることが好ましい。水酸基を有する(メタ)アクリレート単量体を用いることで有機樹脂粒子のガラス転移温度を調整し、電極とのドライ接着性を優れたものにすることができる。水酸基を有する(メタ)アクリレート単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。特に、ヒドロキシエチルアクリレート(HEA)、4-ヒドロキシブチルアクリレート(4-HBA)、2-ヒドロキシプロピルアクリレート(2-HPA)が好ましい。 Among the above (meth)acrylic acid ester monomers, it is preferable to use a (meth)acrylate monomer having a hydroxyl group. By using a (meth)acrylate monomer having a hydroxyl group, the glass transition temperature of the organic resin particles can be adjusted and the dry adhesion to the electrode can be improved. The (meth)acrylate monomers having a hydroxyl group may be used singly or in combination of two or more at any ratio. Hydroxyethyl acrylate (HEA), 4-hydroxybutyl acrylate (4-HBA), and 2-hydroxypropyl acrylate (2-HPA) are particularly preferred.
 スチレン系単量体としては、スチレン、α―メチルスチレン、パラメチルスチレン、t-ブチルスチレン、クロロスチレン、クロロメチルスチレン、ヒドロキシメチルスチレンなどが挙げられる。オレフィン系単量体としては、エチレン、プロピレンなどが挙げられる。ジエン系単量体としては、ブタジエン、イソプレンなどが挙げられる。 Styrenic monomers include styrene, α-methylstyrene, paramethylstyrene, t-butylstyrene, chlorostyrene, chloromethylstyrene, hydroxymethylstyrene and the like. Examples of olefinic monomers include ethylene and propylene. Examples of diene-based monomers include butadiene and isoprene.
 アクリルアミド系単量体としては、アクリルアミドなどが挙げられる。これらのうち、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of acrylamide-based monomers include acrylamide. Among these, one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 フッ化ビニリデン単量体としては、フッ化ビニリデン単量体単独を用いたホモポリマーまたはその他単量体との共重合体であってもよい。フッ化ビニリデンと共重合可能なモノマーとしては、例えば、テトラフルオロエチレン、ヘキサフルオロプロピレン、トリフルオロエチレン、トリクロロエチレン、フッ化ビニル、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の(メタ)アクリル酸エステル、酢酸ビニル、塩化ビニル、アクリロニトリル等が挙げられる。これらは、1種単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。 The vinylidene fluoride monomer may be a homopolymer using a vinylidene fluoride monomer alone or a copolymer with other monomers. Monomers copolymerizable with vinylidene fluoride include, for example, tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, trichloroethylene, vinyl fluoride, (meth)acrylic acid, methyl (meth)acrylate, (meth)acrylic acid (Meth)acrylic acid esters such as ethyl, vinyl acetate, vinyl chloride, acrylonitrile and the like. These may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
 有機樹脂粒子は、フッ素含有(メタ)アクリレート単量体が用いられて重合された重合体と水酸基を有する(メタ)アクリレート単量体が用いられて重合された重合体とを含む混合物、又は、フッ素含有(メタ)アクリレート単量体および水酸基を有する(メタ)アクリレート単量体を含む単量体混合物が用いられて重合された共重合体を含んでいることが好ましい。 The organic resin particles are a mixture containing a polymer polymerized using a fluorine-containing (meth)acrylate monomer and a polymer polymerized using a (meth)acrylate monomer having a hydroxyl group, or It preferably contains a copolymer polymerized using a monomer mixture containing a fluorine-containing (meth)acrylate monomer and a hydroxyl group-containing (meth)acrylate monomer.
 有機樹脂粒子に含有される水酸基を有する(メタ)アクリレート単量体を用いて重合された重合体または共重合体の含有率は、有機樹脂粒子の全構成成分を100質量%としたとき、0質量%より大きく、7.0質量%以下が好ましい。さらに好ましくは0.5質量%以上5.0質量%以下、さらに好ましくは1.0質量%以上3.0質量%以下である。この含有率が0質量%より大きいことで、有機樹脂粒子の重合安定性が向上する。また7.0質量%以下とすることで、十分な電極とのドライ接着性が得られる、また電解液への膨潤性を抑制することで、十分な電極とのウェット接着性を得られることで、電極間距離が一定となり、初期充放電時の容量低下を抑制することが出来るため、初期充放電時の歩留まり性が向上する。 The content of the polymer or copolymer polymerized using a (meth)acrylate monomer having a hydroxyl group contained in the organic resin particles is 0 when the total constituent components of the organic resin particles are 100% by mass. More than mass % and 7.0 mass % or less are preferable. It is more preferably 0.5% by mass or more and 5.0% by mass or less, and still more preferably 1.0% by mass or more and 3.0% by mass or less. When this content is greater than 0% by mass, the polymerization stability of the organic resin particles is improved. In addition, by making it 7.0% by mass or less, sufficient dry adhesion with the electrode can be obtained, and by suppressing swelling in the electrolytic solution, sufficient wet adhesion with the electrode can be obtained. , the distance between the electrodes becomes constant, and the decrease in capacity during initial charge/discharge can be suppressed, so that the yield during initial charge/discharge is improved.
 なお、有機樹脂粒子に含まれる水酸基を有する(メタ)アクリレート単量体を用いて重合された重合体または共重合体の含有率は、公知の方法を用いて測定することができる。例えば、まず多孔質フィルム上から水およびアルコールなどの有機溶媒を用いて多孔質層を脱離させ、水およびアルコールなどの有機溶媒を十分に乾燥させて多孔質層に含まれる構成成分を得る。得られた構成成分に有機樹脂成分を溶解する有機溶媒を添加して有機樹脂成分のみを溶解する。続いて、有機樹脂成分が溶解した溶液から有機溶媒を乾燥させ、有機樹脂成分のみを抽出する。得られた有機樹脂成分を用いて、熱分解GC/MSによって水酸基を有する(メタ)アクリレート単量体の存在有無を確認した後、13C-NMR(固体NMR試料管に前記有機樹脂成分と適当量の溶媒(重クロロホルム)を充填し、一晩静置後にDD/MAS法にて測定)によって、水酸基を有する(メタ)アクリレート単量体を用いて重合された共重合体の含有率を求めることができる。 The content of the polymer or copolymer polymerized using the (meth)acrylate monomer having a hydroxyl group contained in the organic resin particles can be measured using a known method. For example, first, the porous layer is detached from the porous film using an organic solvent such as water and alcohol, and then the organic solvent such as water and alcohol is sufficiently dried to obtain the constituents contained in the porous layer. An organic solvent capable of dissolving the organic resin component is added to the resulting component to dissolve only the organic resin component. Subsequently, the organic solvent is dried from the solution in which the organic resin component is dissolved, and only the organic resin component is extracted. Using the obtained organic resin component, after confirming the presence or absence of a (meth)acrylate monomer having a hydroxyl group by pyrolysis GC/MS, 13 C-NMR (solid NMR sample tube with the above organic resin component) Amount of solvent (heavy chloroform) is filled, left to stand overnight, and then measured by DD/MAS method) to determine the content of the copolymer polymerized using the (meth)acrylate monomer having a hydroxyl group. be able to.
 フッ素含有(メタ)アクリレート単量体と水酸基を有する(メタ)アクリレート単量体とが用いられて重合された共重合体を得るに際しては、さらに1分子あたり2個以上の反応性基を有する単量体を用いて重合を行うことが好ましい。1分子あたり2個以上の反応性基を有する単量体を用いることにより、電解液への膨潤性を抑制した耐電解液性に優れ、かつ電極とのドライ接着性、電解液中での電極とのウェット接着性に優れた重合体粒子を得ることができる。 When obtaining a copolymer polymerized by using a fluorine-containing (meth)acrylate monomer and a (meth)acrylate monomer having a hydroxyl group, a monomer having two or more reactive groups per molecule is used. It is preferred to carry out the polymerization using a monomer. By using a monomer having two or more reactive groups per molecule, it has excellent electrolyte resistance with suppressed swelling in the electrolyte, dry adhesion with the electrode, and electrode in the electrolyte. It is possible to obtain polymer particles having excellent wet adhesiveness with.
 1分子あたり2個以上の反応性基を有する単量体としては、たとえば、1分子あたり2個以上の反応性基を有する(メタ)アクリレート単量体を用いることが好ましく、アルキレングリコールジ(メタ)アクリレート、及びウレタンジ(メタ)アクリレートを用いることがより好ましい。 As the monomer having two or more reactive groups per molecule, for example, it is preferable to use a (meth)acrylate monomer having two or more reactive groups per molecule, and alkylene glycol di(meth) ) acrylates and urethane di(meth)acrylates are more preferred.
 有機樹脂粒子に含まれる重合体は、該重合体の原材料である単量体のうち少なくとも1つの単量体が、その単量体のみで重合されたときの重合体のガラス転移温度が、-100℃以上0℃以下となる単量体が用いられて重合されたものであることが好ましい。このガラス転移温度の範囲はより好ましくは-70℃以上-10℃以下、さらに好ましくは-50℃以上-20℃である。ここでガラス転移温度とは、JIS K7121:2012に従って、示差走査熱量測定(DSC)により測定された中間点ガラス転移温度とする。中間点ガラス転移温度は、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の温度とする。 The polymer contained in the organic resin particles has a glass transition temperature of − It is preferable that a monomer having a temperature of 100° C. or higher and 0° C. or lower is used and polymerized. The glass transition temperature range is more preferably -70°C or higher and -10°C or lower, more preferably -50°C or higher -20°C. Here, the glass transition temperature is the midpoint glass transition temperature measured by differential scanning calorimetry (DSC) according to JIS K7121:2012. The midpoint glass transition temperature is defined as the temperature at the point where a straight line equidistant in the vertical axis direction from the extended straight line of each base line intersects with the curve of the stepwise change portion of the glass transition.
 前記その単量体のみで重合されたときの重合体のガラス転移温度が-100℃以上0℃以下である単量体の割合が、有機樹脂粒子の全構成単量体成分を100質量%としたとき、0質量%より大きく、10.0質量%以下であることが好ましい。この割合は、より好ましくは1質量%以上7.0質量%以下、さらに好ましくは3.0質量%以上5.0質量%以下である。0質量%より大きくすることで、有機樹脂粒子が柔軟化して接着性が良好となる。一方、この割合を10.0質量%以下とすることで、有機樹脂粒子の柔軟化が起こりにくくなることで、有機樹脂粒子の電解液への膨潤性を抑制することができる。その単量体のみで重合されたときの重合体のガラス転移温度が-100℃以上0℃以下である単量体の割合を少なくすると、ドライ接着後のウェット接着の低下率が抑制される傾向があり、ウェット接着性の改善の点で有利である。 The ratio of the monomer having a glass transition temperature of −100° C. or more and 0° C. or less when polymerized only by the monomer is 100% by mass of the total constituent monomer components of the organic resin particles. , it is preferably greater than 0% by mass and 10.0% by mass or less. This ratio is more preferably 1% by mass or more and 7.0% by mass or less, and still more preferably 3.0% by mass or more and 5.0% by mass or less. When the amount is greater than 0% by mass, the organic resin particles are softened and the adhesiveness is improved. On the other hand, by setting this ratio to 10.0% by mass or less, the softening of the organic resin particles is less likely to occur, and the swelling of the organic resin particles in the electrolytic solution can be suppressed. When the proportion of the monomer having a glass transition temperature of −100° C. or more and 0° C. or less when polymerized only by the monomer is reduced, the rate of decrease in wet adhesion after dry adhesion tends to be suppressed. , which is advantageous in terms of improving wet adhesion.
 本発明の多孔性フィルムの多孔質層には、電極との接着性を有する有機樹脂粒子のほかに、異なる機能を付与する有機樹脂粒子を含んでもよい。つまり、多孔質層は少なくとも2種類の有機樹脂粒子を含むことができる。異なる機能を付与する有機樹脂粒子としては、有機樹脂粒子同士また有機樹脂粒子と無機粒子を互いに密着させるため、または有機樹脂粒子を多孔質基材に密着させるバインダー機能を持たせるために、エマルジョンバインダーとして用いても良い。バインダー機能により密着性が向上して、電極との接着性をより向上させることが出来る。有機樹脂粒子としては電池の使用範囲で電気化学的に安定である樹脂が好ましい。 The porous layer of the porous film of the present invention may contain organic resin particles that impart different functions in addition to organic resin particles that have adhesiveness to electrodes. That is, the porous layer can contain at least two types of organic resin particles. As the organic resin particles imparting different functions, an emulsion binder is used to adhere the organic resin particles to each other or to adhere the organic resin particles and the inorganic particles to each other, or to provide a binder function to adhere the organic resin particles to the porous substrate. You can use it as Adhesion is improved by the binder function, and adhesion to the electrode can be further improved. As the organic resin particles, a resin that is electrochemically stable within the battery usage range is preferable.
 本発明において、有機樹脂粒子は、粒子形状を有するものに加え、部分的に造膜し、周辺の粒子およびバインダーと融着しているものも含む。その形状は、特に制限されず、球状、多角形状、扁平状、繊維状等のいずれであってもよい。 In the present invention, the organic resin particles include, in addition to those having a particle shape, those partially formed into a film and fused with the surrounding particles and binder. The shape is not particularly limited, and may be spherical, polygonal, flat, fibrous, or the like.
 有機樹脂粒子の平均粒径は、100nm以上500nm以下が好ましい。下限はより好ましくは120nm以上であり、さらに好ましくは150nm以上であり、最も好ましくは170nm以上である。また、上限はより好ましくは400nm以下であり、さらに好ましくは300nm以下であり、最も好ましくは250nm以下である。平均粒径を100nm以上とすることで、多孔質構造となり、レート特性、電池寿命がより向上する。また、500nm以下とすることで、多孔質層の膜厚が適切となり、レート特性、電池寿命をより向上できる。 The average particle size of the organic resin particles is preferably 100 nm or more and 500 nm or less. The lower limit is more preferably 120 nm or more, still more preferably 150 nm or more, and most preferably 170 nm or more. Also, the upper limit is more preferably 400 nm or less, still more preferably 300 nm or less, and most preferably 250 nm or less. By setting the average particle size to 100 nm or more, a porous structure is obtained, and rate characteristics and battery life are further improved. Further, by setting the thickness to 500 nm or less, the film thickness of the porous layer becomes appropriate, and the rate characteristics and battery life can be further improved.
 有機樹脂粒子の平均粒径は以下の方法を用いて測定できる。電解放射型走査電子顕微鏡((株)日立製作所製S-3400N)を用いて、多孔質層の表面を倍率3万倍で撮像した画像(画像1)と、同視野で無機粒子のみが含有する元素を対象としたEDX画像(画像2)とを得る。画像サイズは4.0μm×3.0μm、画素数は1,280画素×1,024画素であり、1画素の大きさは3.1nm×2.9nmとする。画像2の中の無機粒子のみが有する元素を含まない粒子を有機樹脂粒子とする。目視で区別できないときには元素分析でフッ素元素を含有するものを有機樹脂粒子とする。次に、該有機樹脂粒子について、画像1上で各有機樹脂に対して面積が最小となる外接長方形(正方形を含む)を描き、長辺(正方形の場合は一辺)の長さをその粒子の粒径とし、画像1内にみられる全ての有機樹脂粒子についてそれぞれの粒径を測定し、その算術平均値を平均粒径とした。ただし、画像1中に50個の有機樹脂粒子が観察されなかった場合は、複数の画像を撮影し、その複数の画像に含まれる全ての有機樹脂粒子の粒子数の合計が50個に達するまで撮像を行って求めた。有機樹脂粒子を測定し、その算術平均値を平均粒径とした。 The average particle size of organic resin particles can be measured using the following method. An image (image 1) obtained by imaging the surface of the porous layer at a magnification of 30,000 times using a field emission scanning electron microscope (S-3400N manufactured by Hitachi, Ltd.), and only inorganic particles are contained in the same field of view. An EDX image (image 2) of the element is obtained. The image size is 4.0 μm×3.0 μm, the number of pixels is 1,280 pixels×1,024 pixels, and the size of one pixel is 3.1 nm×2.9 nm. Particles that do not contain the element that only the inorganic particles in Image 2 have are defined as organic resin particles. If the particles cannot be visually distinguished, the organic resin particles are defined as those containing elemental fluorine by elemental analysis. Next, for the organic resin particles, draw a circumscribed rectangle (including a square) with the smallest area for each organic resin on Image 1, and measure the length of the long side (one side in the case of a square) of the particle. The particle diameters of all the organic resin particles found in Image 1 were measured, and the arithmetic average value was taken as the average particle diameter. However, if 50 organic resin particles are not observed in image 1, a plurality of images are taken, and the total number of particles of all the organic resin particles contained in the plurality of images reaches 50. I took a picture and found it. The organic resin particles were measured, and the arithmetic average value was taken as the average particle size.
 (2)無機粒子
 本発明の多孔性フィルムの多孔質層は、無機粒子を含有する。多孔質層が無機粒子を含むことで熱寸法安定性および異物による短絡の抑制を付与することができる。
(2) Inorganic Particles The porous layer of the porous film of the present invention contains inorganic particles. When the porous layer contains inorganic particles, it is possible to impart thermal dimensional stability and suppress short circuits due to foreign matter.
 無機粒子としては、具体的には酸化アルミニウム、ベーマイト、シリカ、酸化チタン、酸化ジルコニウム、酸化鉄、酸化マグネシウムなどの無機酸化物粒子、窒化アルミニウム、窒化硅素などの無機窒化物粒子、フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶粒子などが挙げられる。無機粒子としては、無機水酸化物、無機酸化物及び無機硫酸化物からなる群から選ばれる少なくとも一種によって構成された粒子であることが好ましく、中でも高強度化に効果のある酸化アルミニウム、また有機樹脂粒子と無機粒子の分散工程の部品摩耗低減に効果のあるベーマイト、硫酸バリウムが特に好ましい。さらにこれらの無機粒子を1種類で用いてもよく、2種類以上を混合して用いてもよい。 Specific examples of inorganic particles include inorganic oxide particles such as aluminum oxide, boehmite, silica, titanium oxide, zirconium oxide, iron oxide, and magnesium oxide; inorganic nitride particles such as aluminum nitride and silicon nitride; calcium fluoride; Poorly soluble ionic crystal particles such as barium fluoride and barium sulfate may be used. The inorganic particles are preferably particles composed of at least one selected from the group consisting of inorganic hydroxides, inorganic oxides and inorganic sulfates. Among them, aluminum oxide which is effective in increasing strength, and organic resins. Particularly preferred are boehmite and barium sulfate, which are effective in reducing wear of parts during the process of dispersing particles and inorganic particles. Furthermore, one type of these inorganic particles may be used, or two or more types may be mixed and used.
 用いる無機粒子の形状としては、球状、板状、針状、棒状、楕円状などが挙げられ、いずれの形状であってもよい。その中でも、表面修飾性、分散性、塗工性の観点から球状であることが好ましい。 The shape of the inorganic particles used may be spherical, plate-like, needle-like, rod-like, elliptical, etc. Any shape may be used. Among them, a spherical shape is preferable from the viewpoint of surface modification properties, dispersibility, and coatability.
 (3)バインダー
 本発明の多孔性フィルムの多孔質層は、上で説明した有機樹脂粒子および無機粒子を互いに密着させるため、および有機樹脂粒子および無機粒子を多孔質基材に密着させるために、バインダーを含有してもよい。バインダーとしては、電池の使用範囲で電気化学的に安定である樹脂が好ましい。また、バインダーは有機溶媒に可溶なバインダー、水溶性バインダー、エマルジョンバインダーなどが挙げられ、単体でも、組み合わせて使用してもよい。
(3) Binder The porous layer of the porous film of the present invention is composed of: It may contain a binder. As the binder, a resin that is electrochemically stable within the battery usage range is preferred. In addition, binders include organic solvent-soluble binders, water-soluble binders, emulsion binders, and the like, and may be used alone or in combination.
 有機溶媒に可溶なバインダーおよび水溶性バインダーを用いる場合、バインダー自体の好ましい粘度は、濃度が15質量%の際に、10000mPa・s以下であることが好ましい。より好ましくは8000mPa・s以下であり、さらに好ましくは5000mPa・s以下である。濃度が15質量%で粘度を10000mPa・s以下とすることで、塗剤の粘度上昇を抑制でき、有機樹脂粒子が表面へ偏在することで、電極とのドライ接着性およびウェット接着性が向上する。 When using a binder soluble in an organic solvent and a water-soluble binder, the preferred viscosity of the binder itself is preferably 10000 mPa·s or less when the concentration is 15% by mass. It is more preferably 8000 mPa·s or less, still more preferably 5000 mPa·s or less. When the concentration is 15% by mass and the viscosity is 10,000 mPa s or less, the viscosity increase of the coating material can be suppressed, and the organic resin particles are unevenly distributed on the surface, thereby improving dry adhesion and wet adhesion with the electrode. .
 また、エマルジョンバインダーを用いる場合、分散剤は水や有機溶媒として、エタノールなどのアルコール系溶媒、アセトンなどのケトン系溶媒などが挙げられるが、水分散系のものが取り扱い性や、他の成分との混合性の点から好ましい。エマルジョンバインダーの粒径は、30~1000nm、好ましくは50~500nm、より好ましくは70~400nm、さらに好ましくは80~300nmである。エマルジョンバインダーの粒径を30nm以上とすることで透気度の上昇を抑制でき、電池特性が良好となる。また、1000nm以下とすることで、多孔質層と多孔質基材との十分な密着性が得られる。 When an emulsion binder is used, the dispersant includes water and organic solvents such as alcohol solvents such as ethanol and ketone solvents such as acetone. from the point of view of the mixability of The particle size of the emulsion binder is 30-1000 nm, preferably 50-500 nm, more preferably 70-400 nm, still more preferably 80-300 nm. By setting the particle size of the emulsion binder to 30 nm or more, an increase in air permeability can be suppressed, and battery characteristics are improved. Further, by setting the thickness to 1000 nm or less, sufficient adhesion between the porous layer and the porous substrate can be obtained.
 バインダーに用いることができる樹脂は、例えば、ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン、ポリスルホン、ポリケトン、ポリエーテルケトン、ポリカーボネート、ポリアセタール、ポリビニルアルコール、ポリエチレングリコール、セルロースエーテル、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ウレタンなどの樹脂が挙げられる。これらの中でもアクリル樹脂を用いることで、有機樹脂粒子との相互作用により、より強固な密着性が得られるため、特に好ましい。またポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(以下、「ポリフッ化ビニリデン系樹脂」ということがある)を用いることで、電解液中での電極との接着性がさらに向上するため、特に好ましい。これらの樹脂は、1種または必要に応じ2種以上を混合して用いてもよい。 Resins that can be used as binders include, for example, polyamide, polyamideimide, polyimide, polyetherimide, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polytetrafluoroethylene, polysulfone, polyketone, polyetherketone, Resins such as polycarbonate, polyacetal, polyvinyl alcohol, polyethylene glycol, cellulose ether, acrylic resin, polyethylene, polypropylene, polystyrene, and urethane can be used. Among these, it is particularly preferable to use an acrylic resin because stronger adhesion can be obtained by interacting with the organic resin particles. In addition, by using polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer (hereinafter sometimes referred to as "polyvinylidene fluoride resin"), the adhesiveness with the electrode in the electrolytic solution is further improved. , is particularly preferred. These resins may be used singly or in combination of two or more if necessary.
 また、ポリフッ化ビニリデン系樹脂のフッ化ビニリデン含有率は、樹脂を構成する成分のうち、80質量%以上100質量%未満が好ましい。より好ましくは、85質量%以上であり、また99質量%以下である。さらに好ましくは、90質量%以上であり、また98質量%以下である。フッ化ビニリデン含有率が80質量%より小さいと、十分な力学的強度が得られず、電極との接着性は発現するがその強度が弱いために剥離しやすくなる場合がある。また、フッ化ビニリデン含有率が100質量%の場合、耐電解液性が低下するため、十分な接着性を得ることができない場合がある。 Also, the vinylidene fluoride content of the polyvinylidene fluoride-based resin is preferably 80% by mass or more and less than 100% by mass of the components constituting the resin. More preferably, it is 85% by mass or more and 99% by mass or less. More preferably, it is 90% by mass or more and 98% by mass or less. If the vinylidene fluoride content is less than 80% by mass, sufficient mechanical strength cannot be obtained, and although the adhesiveness to the electrode is exhibited, the strength is weak and the adhesiveness may be easily peeled off. Moreover, when the vinylidene fluoride content is 100% by mass, the electrolytic solution resistance is lowered, and sufficient adhesiveness may not be obtained.
 水溶性バインダーを用いる場合の多孔質層における含有量は、有機樹脂粒子と無機粒子の合計量に対して、0.5質量%以上が好ましい。より好ましくは1質量%以上、さらに好ましくは1.5質量%以上である。また、10質量%以下が好ましい。より好ましくは8質量%以下、さらに好ましくは6質量%以下である。水溶性バインダーの含有量を0.5質量%以上とすることで、多孔質層と多孔質基材との十分な密着性が得られる。また、10質量%以下とすることで、透気度上昇を抑制でき、電池特性が良好となる。 When using a water-soluble binder, the content in the porous layer is preferably 0.5% by mass or more with respect to the total amount of the organic resin particles and the inorganic particles. It is more preferably 1% by mass or more, still more preferably 1.5% by mass or more. Moreover, 10 mass % or less is preferable. More preferably 8% by mass or less, still more preferably 6% by mass or less. By setting the content of the water-soluble binder to 0.5% by mass or more, sufficient adhesion between the porous layer and the porous substrate can be obtained. Moreover, by making it 10% by mass or less, an increase in air permeability can be suppressed, and battery characteristics are improved.
 エマルジョンバインダーを用いる場合の多孔質層における含有量は、有機樹脂粒子と無機粒子の合計量に対して、1質量%以上が好ましい。より好ましくは5質量%以上、さらに好ましくは7.5質量%以上、最も好ましくは10質量%以上である。また、30質量%以下が好ましく、より好ましくは25質量%以下、さらに好ましくは20質量%以下である。エマルジョン系バインダーの含有量を1質量%以上とすることで、多孔質層と多孔質基材との十分な密着性が得られる。また、30質量%以下とすることで、透気度上昇を抑制でき、電池特性が良好となる。特に7.5質量%以上20質量%以下とすることで有機樹脂粒子と無機粒子の密着およびこれら粒子の基材への密着を促進するだけでなく、有機樹脂粒子と相互作用を示し、電極とのドライ接着性、ウェット接着性も向上する。 When using an emulsion binder, the content in the porous layer is preferably 1% by mass or more with respect to the total amount of the organic resin particles and the inorganic particles. It is more preferably 5% by mass or more, still more preferably 7.5% by mass or more, and most preferably 10% by mass or more. Also, it is preferably 30% by mass or less, more preferably 25% by mass or less, and still more preferably 20% by mass or less. Sufficient adhesion between the porous layer and the porous substrate can be obtained by setting the content of the emulsion binder to 1% by mass or more. Moreover, by making it 30% by mass or less, an increase in air permeability can be suppressed, and battery characteristics are improved. In particular, the content of 7.5% by mass or more and 20% by mass or less not only promotes the adhesion of the organic resin particles and the inorganic particles and the adhesion of these particles to the substrate, but also interacts with the organic resin particles, and the electrodes. dry adhesion and wet adhesion are also improved.
 (4)多孔質層の形成
 多孔質層の形成方法について以下に説明する。
(4) Formation of Porous Layer A method for forming the porous layer will be described below.
 多孔質層は、2段階塗布工程を経て形成してもよく、1段階塗布工程を経て形成してもよい。2段階の塗布工程で形成する場合には、1段階目に無機粒子を含有するコート層、2段階目に有機樹脂粒子を含有するコート層の順に形成する。有機樹脂粒子を含有する塗工液が表層にあることで電極との接着を容易に担保することができる。その場合、有機樹脂粒子を含有するコート層は薄膜化、もしくは表面に局所的に存在させるほどの有機樹脂粒子両低減が可能となるため、低コスト化が可能となる。 The porous layer may be formed through a two-step coating process, or may be formed through a one-step coating process. When forming by a two-step coating process, a coat layer containing inorganic particles is formed in the first step, and a coat layer containing organic resin particles is formed in the second step in this order. Since the coating liquid containing the organic resin particles is present on the surface layer, the adhesion to the electrode can be easily ensured. In this case, the coating layer containing the organic resin particles can be made thinner, or the amount of the organic resin particles can be reduced to such an extent that the organic resin particles are locally present on the surface, so that the cost can be reduced.
 2段階塗布工程とは、無機粒子と溶媒からなる塗工液を調整し、多孔質基材上にこれを塗布し、塗工液の溶媒を乾燥させた後、次に有機樹脂粒子と溶媒からなる塗工液を調整し、前記無機粒子塗工層上にこれを塗布し、塗工液の溶媒を乾燥させて多孔質層を形成し、多孔性フィルムを得る方法である。塗布方法としてはスプレーコーティングを用いてもよい。 The two-step coating process involves preparing a coating liquid consisting of inorganic particles and a solvent, coating the coating liquid on a porous substrate, drying the solvent of the coating liquid, and then organic resin particles and the solvent. In this method, a coating solution is prepared, the coating solution is applied onto the inorganic particle coating layer, and the solvent of the coating solution is dried to form a porous layer, thereby obtaining a porous film. Spray coating may be used as the coating method.
 1段階塗布工程とは、有機樹脂粒子、無機粒子と溶媒からなる塗工液を調製し、多孔質基材上にこれを塗布し、塗工液の溶媒を乾燥させて多孔質層を形成し、多孔性フィルムを得る方法である。 In the one-step coating process, a coating solution comprising organic resin particles, inorganic particles and a solvent is prepared, the coating solution is applied onto a porous substrate, and the solvent of the coating solution is dried to form a porous layer. , a method of obtaining a porous film.
 塗工方法について、特に限定されるものではないが、後者については塗工回数減少によるコストダウンが可能である。そこで、後者による多孔質層の形成方法を以下に説明する。 The coating method is not particularly limited, but the latter can reduce costs by reducing the number of coatings. Therefore, the method for forming the porous layer by the latter method will be described below.
 (i)まず、有機樹脂粒子を、所定の濃度に分散させることで塗工液を調製する。塗工液は、有機樹脂粒子を、溶媒に分散、懸濁、又は乳化することで調製される。水系分散塗工液の溶媒としては、必ずしも限定されないが、有機樹脂粒子を固体状態で、分散、懸濁又は乳化し得る溶媒であれば特に限定されるものではない。例えば、メタノール、エタノール、2-プロパノール、アセトン、テトラヒドロフラン、メチルエチルケトン、酢酸エチル、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルホルムアミド等の有機溶剤が挙げられる。環境への負荷の低さ、安全性及び経済的な観点からは、水、又は、水とアルコールとの混合液に、有機樹脂を乳化した水系エマルションが好ましい。水を用いる場合には、さらに水以外の溶媒を加えても良い。 (i) First, a coating liquid is prepared by dispersing organic resin particles at a predetermined concentration. The coating liquid is prepared by dispersing, suspending, or emulsifying organic resin particles in a solvent. The solvent for the water-based dispersion coating liquid is not necessarily limited, but is not particularly limited as long as it can disperse, suspend or emulsify the organic resin particles in a solid state. Examples include organic solvents such as methanol, ethanol, 2-propanol, acetone, tetrahydrofuran, methyl ethyl ketone, ethyl acetate, N-methylpyrrolidone, dimethylacetamide, dimethylformamide and dimethylformamide. From the viewpoints of low environmental load, safety, and economy, water-based emulsions in which an organic resin is emulsified in water or a mixture of water and alcohol are preferred. When water is used, a solvent other than water may be added.
 塗工液の固形分濃度は、5%以上40%以下であることが好ましい。所定の範囲とすることで、塗工安定性と塗工、乾燥における表面偏在が両立できる。また、塗工液の溶液粘度は、5mPa・s以上50mPa・s以下であることが好ましい。所定の範囲とすることで、塗工液の分散性と塗工、乾燥における表面偏在が両立できる。前記好ましい範囲で塗工液の固形分濃度を低く、粘度を小さく調整することで、有機樹脂粒子を外側層に偏在するように調整できる。 The solid content concentration of the coating liquid is preferably 5% or more and 40% or less. By setting it to the predetermined range, both coating stability and uneven surface distribution during coating and drying can be achieved. Moreover, the solution viscosity of the coating liquid is preferably 5 mPa·s or more and 50 mPa·s or less. By setting it to the predetermined range, both the dispersibility of the coating liquid and the surface uneven distribution during coating and drying can be achieved. By adjusting the solid content concentration of the coating liquid to be low and the viscosity to be low within the above preferable range, the organic resin particles can be adjusted so as to be unevenly distributed in the outer layer.
 また塗工液には、必要に応じて、造膜助剤、分散剤、増粘剤、安定化剤、消泡剤、レベリング剤等を添加してもよい。 In addition, film-forming aids, dispersants, thickeners, stabilizers, antifoaming agents, leveling agents, etc. may be added to the coating liquid as necessary.
 塗工液の分散方法としては、例えば、ボールミル、ビーズミル、サンドミル、ロールミル、ホモジナイザー、超音波ホモジナイザー、高圧ホモジナイザー、超音波装置、ペイントシェーカーなどが挙げられる。その中でも分散時に無機粒子、有機樹脂粒子にかかる圧力が高い分散方法(ビーズミル、サンドミル)を選択することで、分散性が向上し、有機樹脂粒子の表面偏在がより起こりやすくなる。これら複数の混合分散機を組み合わせて段階的に分散を行ってもよい。 Examples of methods for dispersing the coating liquid include ball mills, bead mills, sand mills, roll mills, homogenizers, ultrasonic homogenizers, high-pressure homogenizers, ultrasonic devices, and paint shakers. Among them, by selecting a dispersing method (bead mill, sand mill) in which a high pressure is applied to the inorganic particles and the organic resin particles during dispersing, the dispersibility is improved and the surface uneven distribution of the organic resin particles is more likely to occur. A plurality of these mixing and dispersing machines may be combined for stepwise dispersion.
 (ii)次に、得られた塗工液を多孔質基材上に塗工する。塗工方法としては、例えば、ディップコーティング、グラビアコーティング、スリットダイコーティング、ナイフコーティング、コンマコーティング、キスコーティング、ロールコーティング、バーコーティング、吹き付け塗装、浸漬コーティング、スピンコーティング、スクリーン印刷、インクジェット印刷、パット印刷、他の種類の印刷方法などが利用できる。これらに限定されることはなく、用いる有機樹脂、バインダー、分散剤、レベリング剤、使用する溶媒、基材などの好ましい条件に合わせて塗工方法を選択すればよい。 (ii) Next, the obtained coating liquid is applied onto the porous substrate. Coating methods include, for example, dip coating, gravure coating, slit die coating, knife coating, comma coating, kiss coating, roll coating, bar coating, spray coating, dip coating, spin coating, screen printing, inkjet printing, and pad printing. , other types of printing methods, etc. can be used. The coating method is not limited to these, and the coating method may be selected according to preferable conditions such as the organic resin, binder, dispersant, leveling agent, solvent to be used, and base material.
 (iii)その後、塗工液の溶媒を乾燥させて多孔質層を形成する。乾燥温度は40℃以上100℃以下であることが好ましい。そうすることで、多孔質層の乾燥が均一となり、多孔質層と接する側の多孔性フィルム表面の2200μm四方における算術平均高さ(Sa)が多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)の影響を受けやすくなり、電極との接着性が向上する。40℃未満の場合、塗工液の溶媒が乾燥しない。一方100℃より高い場合、乾燥時の熱量が多くなり粒子の形状を維持できずに造膜するため、有機樹脂粒子の表面偏在が起こらなくなるため、β/α=0となる。よって、所定の範囲とすることでの良好な電極との接着性と塗工、乾燥速度向上による低コスト化の両立が可能となる。 (iii) After that, the solvent of the coating liquid is dried to form a porous layer. The drying temperature is preferably 40°C or higher and 100°C or lower. By doing so, the porous layer is uniformly dried, and the arithmetic mean height (Sa) in 2200 μm square of the porous film surface on the side in contact with the porous layer is the height of the porous substrate surface on the side in contact with the porous layer. It becomes susceptible to the arithmetic mean height (Sa) in 2200 μm square, and the adhesiveness with the electrode is improved. If the temperature is less than 40°C, the solvent in the coating liquid will not dry. On the other hand, if the drying temperature is higher than 100° C., the amount of heat during drying increases and the shape of the particles cannot be maintained, resulting in film formation. Therefore, it is possible to achieve both good adhesiveness with the electrode and cost reduction by improving the coating and drying speeds by setting the content to a predetermined range.
 [多孔質基材]
 本発明において、多孔質基材は、内部に微細孔を有しこれら微細孔が一方の面から他方の面へと連結された構造を有する。多孔質基材としては、例えば微多孔膜、不織布、または繊維状物からなる多孔膜シートなどが挙げられる。電気絶縁性であり、電気的に安定で、電解液にも安定の観点および製造方法による、多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)、12nm四方における算術平均粗さ(Ra)、2200μm四方における突出山部高さ(Spk)の調整の容易さから、多孔質基材は、ポリオレフィン微多孔膜であることが好ましい。すなわち、ポリオレフィンで構成された多孔質の膜であることが好ましい。ポリオレフィン微多孔膜を構成する樹脂は、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、およびこれらを組み合わせた混合物などが挙げられる。ポリオフレフィン微多孔膜は単膜でも複数の層を有する積層膜でもよく、例えばポリエチレンを90質量%以上含有する単膜、ポリエチレンとポリプロピレンからなる積層膜などが挙げられる。
[Porous substrate]
In the present invention, the porous substrate has a structure in which micropores are formed therein and these micropores are connected from one surface to the other surface. Examples of porous substrates include microporous membranes, non-woven fabrics, and porous membrane sheets made of fibrous materials. Arithmetic average height (Sa) in 2200 μm square of the porous substrate surface on the side in contact with the porous layer, 12 nm square, from the viewpoint of being electrically insulating, electrically stable, and stable to the electrolytic solution and the manufacturing method. The porous base material is preferably a polyolefin microporous membrane because of ease of adjustment of the arithmetic mean roughness (Ra) in 2200 μm square and the height of protruding peaks (Spk) in 2200 μm square. That is, it is preferably a porous membrane made of polyolefin. Resins constituting the polyolefin microporous membrane include polyethylene, polypropylene, ethylene-propylene copolymers, and mixtures thereof. The polyolefin microporous membrane may be a single membrane or a laminated membrane having a plurality of layers. Examples thereof include a single membrane containing 90% by mass or more of polyethylene and a laminated membrane made of polyethylene and polypropylene.
 多孔質層と接する側の多孔質基材表面の12nm四方における算術平均粗さ(Ra)は、下限が40nm以上300nmであることが好ましく、より好ましく80nm以上であり、さらに好ましく120nm以上である。この算術平均粗さ(Ra)を40nm以上とすることで、多孔質基材の算術平均粗さも向上し、12nm四方という局所範囲に細かい凹凸が存在するため、電極内の活物質の凹凸に追従しやすくなるため、電極とのドライ接着性およびウェット接着性もより向上させることができる。また、この算術平均粗さ(Ra)を300nm以下とすることで電極との接着性が強固になりすぎることを抑制し、良好なレート特性、電池寿命を発揮できる。 The lower limit of the arithmetic mean roughness (Ra) of the surface of the porous base material on the side in contact with the porous layer on a 12 nm square is preferably 40 nm or more and 300 nm, more preferably 80 nm or more, and still more preferably 120 nm or more. By setting the arithmetic mean roughness (Ra) to 40 nm or more, the arithmetic mean roughness of the porous substrate is also improved, and since fine unevenness exists in a local range of 12 nm square, it follows the unevenness of the active material in the electrode. Therefore, dry adhesion and wet adhesion to the electrode can be further improved. In addition, by setting the arithmetic mean roughness (Ra) to 300 nm or less, excessive adhesion to the electrode can be suppressed, and good rate characteristics and battery life can be exhibited.
 多孔質層と接する側の多孔質基材表面の2200μm四方における突出山部高さ(Spk)は、0.10μm以上0.40μm以下であることが好ましく、下限は0.12μm以上がより好ましく、0.15μm以上が更に好ましい。この突出山部高さ(Spk)の上限は0.30μm以下がより好ましく、0.25μm以下が更に好ましい。また、この突出山部高さ(Spk)を0.10μm以上とすることで、多孔質基材上に高さが突出した箇所が十分にあり、多孔質層を形成時に多孔質基材と多孔質層の剥離性が向上して強固な多孔質層となる。剥離性が向上することで、電極とのドライ接着性およびウェット接着性もより向上させることができる。一方、この突出山部高さ(Spk)を0.40μm以下とすることで、多孔質基材内に適度に多孔質層が入り込みレート特性、電池寿命を発揮できる。 The height (Spk) of protruding peaks in a 2200 μm square on the surface of the porous substrate on the side in contact with the porous layer is preferably 0.10 μm or more and 0.40 μm or less, and the lower limit is more preferably 0.12 μm or more. 0.15 μm or more is more preferable. The upper limit of the protruding peak height (Spk) is more preferably 0.30 μm or less, and even more preferably 0.25 μm or less. In addition, by setting the height (Spk) of the protruding ridges to 0.10 μm or more, there are sufficient protruding portions on the porous base material, and when the porous layer is formed, the porous base material and the porous base material The peelability of the porous layer is improved to form a strong porous layer. By improving the releasability, it is possible to further improve dry adhesion and wet adhesion to the electrode. On the other hand, by setting the protruding peak height (Spk) to 0.40 μm or less, the porous layer appropriately enters the porous base material, and the rate characteristics and battery life can be exhibited.
 多孔質基材の厚みは、3μm以上15μm以下が好ましく、下限は5μm以上がより好ましく、また上限は12μm以下であることがより好ましい。 The thickness of the porous substrate is preferably 3 μm or more and 15 μm or less, more preferably 5 μm or more as the lower limit, and more preferably 12 μm or less as the upper limit.
 次に、多孔質基材の製造方法について説明する。ここで、多孔質基材の製造方法は特に限定されるものでないが、ポリオレフィン微多孔膜の製造方法を例にあげて以下に説明する。 Next, the method for manufacturing the porous base material will be explained. Here, the method for producing the porous substrate is not particularly limited, but the method for producing a polyolefin microporous membrane will be described below as an example.
 (a)まず、二軸押出し機中にて上述したポリオレフィンからなる樹脂組成物に可塑剤を添加し、溶融混練して樹脂溶液を調整する。 (a) First, a plasticizer is added to the polyolefin resin composition described above in a twin-screw extruder, and melt-kneaded to prepare a resin solution.
 ポリオレフィン樹脂組成物は、ポリオレフィン樹脂で構成され、単一組成でもよく、2種以上のポリオレフィン樹脂からなる混合物であってもよい。ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン等が挙げられるがこれに限定されない。ポリエチレン樹脂物として、超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン低密度を単一組成で用いてもよく、分子量の異なる混合物としてもよい。超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンからなる群から選ばれた2種以上ポリエチレンの混合物を用いることが好ましく、特に、Mwが1×10以上の超高分子量ポリエチレン(A)とMwが1×10以上9×10未満のポリエチレン(B)からなる混合物が好ましく、Mwが1×10以上の超高分子量ポリエチレンを含有することがより好ましい。超高分子量ポリエチレン(A)とポリエチレン(B)の割合は、超高分子量ポリエチレン(A)とポリエチレン(B)の合計を100質量%として、超高分子量ポリエチレン(A)の含有率は50質量%以上であると好ましい。 The polyolefin resin composition is composed of a polyolefin resin, and may be a single composition or a mixture of two or more polyolefin resins. Polyolefin resins include, but are not limited to, polyethylene, polypropylene, and the like. As the polyethylene resin, ultra-high molecular weight polyethylene, high density polyethylene, and medium density polyethylene low density may be used as a single composition, or a mixture of different molecular weights may be used. It is preferable to use a mixture of two or more polyethylenes selected from the group consisting of ultra - high molecular weight polyethylene, high-density polyethylene, medium-density polyethylene and low-density polyethylene. A mixture of A) and polyethylene (B) having an Mw of 1×10 4 or more and less than 9×10 4 is preferable, and it is more preferable to contain an ultra-high molecular weight polyethylene having an Mw of 1×10 6 or more. The ratio of ultra high molecular weight polyethylene (A) and polyethylene (B) is 50% by mass, with the total of ultra high molecular weight polyethylene (A) and polyethylene (B) being 100% by mass. It is preferable in it being above.
 可塑剤は、比較的高倍率の延伸を可能とするため、室温で液体であることが好ましい。具体的には、ノナン、デカン、デカリン、パラキシレン、ウンデカン、ドデカン、流動パラフィン等の脂肪族炭化水素等が挙げられる。ポリオレフィン樹脂組成物と可塑剤との配合割合は、ポリオレフィン樹脂組成物の含有率を10質量%以上50重量%以下とすることが好ましい。 The plasticizer is preferably liquid at room temperature so that it can be stretched at a relatively high magnification. Specific examples include aliphatic hydrocarbons such as nonane, decane, decalin, paraxylene, undecane, dodecane, and liquid paraffin. As for the mixing ratio of the polyolefin resin composition and the plasticizer, the content of the polyolefin resin composition is preferably 10% by mass or more and 50% by weight or less.
 前記ポリオレフィン樹脂組成物、可塑剤の含有量、冷却工程を設けることで、多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)や突出山部高さ(Spk)、12nm四方における算術平均粗さ(Ra)を大きく調整することが可能となり、所定の範囲としやすくなる。 By providing the polyolefin resin composition, the content of the plasticizer, and the cooling step, the arithmetic mean height (Sa) and the height of the protruding peaks (Spk ), the arithmetic mean roughness (Ra) in 12 nm square can be adjusted to a large extent, and it becomes easy to set it within a predetermined range.
 (b)次いで、樹脂溶液を押出機からダイに送給し、シート状に押し出し冷却することによりゲル状シートを成形する。 (b) Next, the resin solution is fed from the extruder to a die, extruded into a sheet, and cooled to form a gel sheet.
 (c)その後、ゲル状シートを延伸する。ゲル状シートの延伸は、テンター法、ロール法、インフレーション法、又はこれらの組合せにより所定の倍率で延伸することが好ましい。延伸面倍率は、4倍以上100倍以下が好ましく、12倍以上64倍がより好ましく、25倍以上49倍以下が特に好ましい。延伸倍率を低くするほど、多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)や突出山部高さ(Spk)、12nm四方における算術平均粗さ(Ra)を大きくすることできる。 (c) After that, the gel-like sheet is stretched. The gel-like sheet is preferably stretched at a predetermined magnification by a tenter method, a roll method, an inflation method, or a combination thereof. The stretched area ratio is preferably 4 times or more and 100 times or less, more preferably 12 times or more and 64 times or less, and particularly preferably 25 times or more and 49 times or less. The lower the draw ratio, the higher the arithmetic mean height (Sa) and protruding peak height (Spk) in 2200 μm square of the surface of the porous substrate on the side in contact with the porous layer, and the arithmetic mean roughness (Ra) in 12 nm square. can be increased.
 (d)その後、洗浄溶媒を用いて、可塑剤の除去を行い、乾燥することでポリオレフィン微多孔膜を得ることができる。 (d) After that, the plasticizer is removed using a washing solvent, and the polyolefin microporous membrane can be obtained by drying.
 (e)上記工程に加え、乾燥工程後に延伸(乾式再延伸ともいう)を行ってもよい。第二の延伸は、ポリオレフィン微多孔膜を加熱しながら上述の延伸と同様にテンター法等により行うことができる。 再延伸の倍率は、一軸延伸の場合、1.01~2.0倍が好ましく、二軸延伸を行う場合は1.01~2.0倍延伸するのが好ましい。再延伸倍率が低いほど、多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)や突出山部高さ(Spk)、12nm四方における算術平均粗さ(Ra)を大きくすることできる。 (e) In addition to the above steps, stretching (also called dry re-stretching) may be performed after the drying step. The second stretching can be performed by a tenter method or the like while heating the polyolefin microporous membrane in the same manner as the stretching described above. The re-stretching ratio is preferably 1.01 to 2.0 times in the case of uniaxial stretching, and preferably 1.01 to 2.0 times in the case of biaxial stretching. The lower the re-stretching ratio, the higher the arithmetic average height (Sa) and protruding peak height (Spk) in 2200 μm square of the surface of the porous substrate on the side in contact with the porous layer, and the arithmetic average roughness (Ra) in 12 nm square. can be increased.
 [多孔性フィルム]
 本発明の多孔性フィルムは、多孔質層が設けられた側の表面の2200μm四方における算術平均高さ(Sa)が0.085μm以上0.3μm以下であることが好ましい。より好ましくは0.010μm以上である。上記範囲とすることで、上述した電極との接着工程(熱プレス)の際に、電極内に存在する活物質への凹凸に追従することで、電極との接着性をより向上させることができる。多孔性フィルムは、多孔質層が設けられた側の表面の2200μm四方における算術平均高さ(Sa)は、多孔質基材の多孔質層と接する側の表面の2200μm四方における算術平均高さ(Sa)の影響を大きく受ける傾向があり、多孔質基材の多孔質層と接する側の表面の2200μm四方における算術平均高さ(Sa)の上記好ましい範囲内で適宜選定することで、所定の範囲内とすることができる。
[Porous film]
The porous film of the present invention preferably has an arithmetic mean height (Sa) of 0.085 μm or more and 0.3 μm or less in a 2200 μm square on the surface on which the porous layer is provided. More preferably, it is 0.010 μm or more. By setting it to the above range, it is possible to further improve the adhesiveness with the electrode by following the unevenness of the active material existing in the electrode during the bonding step (heat press) with the electrode described above. . In the porous film, the arithmetic mean height (Sa) in 2200 μm square of the surface on the side where the porous layer is provided is the arithmetic mean height (Sa) in 2200 μm square of the surface of the porous substrate in contact with the porous layer ( Sa) tends to be greatly affected, and the arithmetic mean height (Sa) in a 2200 μm square of the surface of the porous substrate on the side in contact with the porous layer is appropriately selected within the above preferable range. can be within
 [二次電池]
 本発明の多孔性フィルムは、リチウムイオン電池等の二次電池用セパレータに好適に用いることができる。リチウムイオン電池は、正極活物質を正極集電体に積層した正極と、負極活物質を負極集電体に積層した負極との間に、二次電池用セパレータと電解質が介在した構成となっている。
[Secondary battery]
The porous film of the present invention can be suitably used as a separator for secondary batteries such as lithium ion batteries. A lithium-ion battery has a configuration in which a secondary battery separator and an electrolyte are interposed between a positive electrode in which a positive electrode active material is laminated on a positive electrode current collector and a negative electrode in which a negative electrode active material is laminated on a negative electrode current collector. there is
 正極は、活物質、バインダー樹脂、および導電助剤からなる正極材が集電体上に積層されたものであり、活物質としては、LiCoO、LiNiO、Li(NiCoMn)O、などの層状構造のリチウム含有遷移金属酸化物、LiMnなどのスピネル型マンガン酸化物、およびLiFePOなどの鉄系化合物などが挙げられる。バインダー樹脂としては、耐酸化性が高い樹脂を使用すればよい。具体的にはフッ素樹脂、アクリル樹脂、スチレン-ブタジエン樹脂などが挙げられる。導電助剤としては、カーボンブラック、黒鉛などの炭素材料が用いられている。集電体としては、金属箔が好適であり、特にアルミニウム箔が用いられることが多い。 The positive electrode is obtained by laminating a positive electrode material composed of an active material, a binder resin , and a conductive aid on a current collector. Lithium-containing transition metal oxides having a layered structure, spinel-type manganese oxides such as LiMn 2 O 4 , and iron-based compounds such as LiFePO 4 can be used. A resin having high oxidation resistance may be used as the binder resin. Specific examples include fluorine resins, acrylic resins, styrene-butadiene resins, and the like. Carbon materials such as carbon black and graphite are used as conductive aids. As the current collector, a metal foil is suitable, and an aluminum foil is often used in particular.
 負極は、活物質およびバインダー樹脂からなる負極材が集電体上に積層されたものであり、活物質としては、人造黒鉛、天然黒鉛、ハードカーボン、ソフトカーボンなどの炭素材料、スズやシリコンなどのリチウム合金系材料、金属リチウムなどの金属材料、およびチタン酸リチウム(LiTi12)などが挙げられる。バインダー樹脂としては、フッ素樹脂、アクリル樹脂、スチレン-ブタジエン樹脂などが用いられる。集電体としては、金属箔が好適であり、特に銅箔が用いられることが多い。 The negative electrode is obtained by laminating a negative electrode material composed of an active material and a binder resin on a current collector, and the active material includes carbon materials such as artificial graphite, natural graphite, hard carbon and soft carbon, tin and silicon. , metal materials such as metallic lithium, and lithium titanate (Li 4 Ti 5 O 12 ). A fluorine resin, an acrylic resin, a styrene-butadiene resin, or the like is used as the binder resin. As the current collector, metal foil is suitable, and copper foil is often used in particular.
 電解液は、二次電池の中で正極と負極との間でイオンを移動させる場となっており、電解質を有機溶媒にて溶解させた構成をしている。電解質としては、LiPF、LiBF、およびLiClOなどが挙げられるが、有機溶媒への溶解性、イオン電導度の観点からLiPFが好適に用いられている。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどが挙げられ、これらの有機溶媒を2種類以上混合して使用してもよい。 The electrolytic solution serves as a field for transferring ions between the positive electrode and the negative electrode in the secondary battery, and is made by dissolving the electrolyte in an organic solvent. Examples of electrolytes include LiPF 6 , LiBF 4 , and LiClO 4 , and LiPF 6 is preferably used from the viewpoint of solubility in organic solvents and ionic conductivity. Examples of the organic solvent include ethylene carbonate, propylene carbonate, fluoroethylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, etc. Two or more of these organic solvents may be used in combination.
 二次電池の作製方法としては、まず活物質と導電助剤をバインダー樹脂の溶液中に分散して電極用塗布液を調製し、この塗布液を集電体上に塗工して、溶媒を乾燥させることで正極、負極がそれぞれ得られる。乾燥後の塗工膜の膜厚は50μm以上500μm以下とすることが好ましい。得られた正極と負極の間に二次電池用セパレータを、それぞれの電極の活物質層と接するように配置し、アルミラミネートフィルム等の外装材に封入し、電解液を注入後、負極リードや安全弁を設置し、外装材を封止する。このようにして得られた二次電池は、電極と二次電池用セパレータとの接着性が高く、かつ優れたレート特性、電池寿命を有し、また、低コストでの製造が可能となる。 As a method for producing a secondary battery, first, an active material and a conductive agent are dispersed in a solution of a binder resin to prepare a coating liquid for an electrode. A positive electrode and a negative electrode are obtained by drying. The film thickness of the coating film after drying is preferably 50 μm or more and 500 μm or less. A secondary battery separator is placed between the obtained positive electrode and negative electrode so as to be in contact with the active material layer of each electrode, enclosed in an outer packaging material such as an aluminum laminate film, and after injecting an electrolytic solution, the negative electrode lead and the Install a safety valve and seal the exterior material. The secondary battery thus obtained has high adhesion between the electrode and the secondary battery separator, has excellent rate characteristics and battery life, and can be manufactured at low cost.
 以下、本発明を実施例により詳細に説明するが、これにより本発明が制限されるものではない。なお、以下の記載において「%」および「部」は、それぞれ「質量%」および「質量部」を表わす。 The present invention will be described in detail below with reference to examples, but the present invention is not limited by these. In the description below, "%" and "parts" represent "% by mass" and "parts by mass", respectively.
 以下、本発明を実施例により具体的に説明するが、本発明はこれにより何ら制限されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited by these.
 [測定方法]
 (1)多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)、突出山部高さ(Spk)
 多孔性フィルムから5cm×5cmに切り出した試料から水20gを用いて多孔質層を脱離させ、水を十分に乾燥させて目的の多孔質基材を得た。なお、水で十分に脱離できないときにはアルコールなどの有機溶媒を用い、脱離後にこれを十分に乾燥させる。次に得られた多孔質基材を外寸6cm四方、内寸3cm四方の金属枠にシワが入らないよう貼り付けた。日立ハイテクサイエンス社製の走査型白色干渉顕微鏡VS-1540を用い、以下の条件で表面粗さの測定を行い、ISO 25178に準拠し三次元表面粗さパラメータ(Sa、Spk)を算出した。多孔質基材の両面に多孔質層が形成された場合は、同条件で多孔質層と接する側の基材の両表面に対し、各面4点、計8点測定を実施し、計測された値を平均した。また多孔質基材の片面に多孔質層が形成された場合は、同条件で多孔質層側と接する側の多孔質基材表面に対し、4点測定を実施し、計測された値を平均した。
・対物レンズ:5倍
・鏡筒レンズ:0.5倍
・波長フィルター:530white
・カメラ:高画素
・測定モード:Wave
・カットオフ:無し   。
[Measuring method]
(1) Arithmetic mean height (Sa) in 2200 μm square on the surface of the porous substrate on the side in contact with the porous layer, protruding peak height (Spk)
20 g of water was used to remove the porous layer from a 5 cm×5 cm sample cut out from the porous film, and the water was sufficiently dried to obtain the target porous substrate. In addition, when it is not possible to sufficiently desorb with water, an organic solvent such as alcohol is used, and after the desorption, it is sufficiently dried. Next, the obtained porous substrate was attached to a metal frame having an outer size of 6 cm square and an inner size of 3 cm square so as not to cause wrinkles. Using a scanning white light interference microscope VS-1540 manufactured by Hitachi High-Tech Science Co., Ltd., the surface roughness was measured under the following conditions, and the three-dimensional surface roughness parameters (Sa, Spk) were calculated according to ISO 25178. When the porous layer is formed on both sides of the porous substrate, 4 points on each side, 8 points in total, are measured on both surfaces of the substrate on the side in contact with the porous layer under the same conditions. The values were averaged. In addition, when a porous layer is formed on one side of the porous substrate, 4-point measurement is performed on the surface of the porous substrate on the side in contact with the porous layer side under the same conditions, and the measured values are averaged. did.
・Objective lens: 5x ・Tube lens: 0.5x ・Wavelength filter: 530white
・Camera: High pixel ・Measurement mode: Wave
・Cutoff: None.
 (2)多孔質層における無機粒子の体積含有率α(体積含有率α)
 多孔性フィルムから10cm×10cmに切り出した試料から水40gを用いて多孔質層を抽出し、水を十分に乾燥させて多孔質層の構成成分を得た。なお、水で十分に脱離できないときにはアルコールなどの有機溶媒を用いてもよい。得られた構成成分全量の質量を測定した後、構成成分を有機樹脂成分が溶融・分解する程度の高温で燃焼し、無機粒子のみの質量を測定した。(無機粒子の質量/構成成分全量の質量)×100の式より多孔質層における無機粒子の含有率を質量%で算出した。また、((構成成分全量の質量-無機粒子の質量)/(構成成分全量の質量))×100の式により多孔質層における有機樹脂成分の含有率を質量%で算出した。次に、無機粒子および有機樹脂成分それぞれの成分の密度は比重計にて測定した。先に得られた無機粒子および有機樹脂成分の質量含有率(質量%)と無機粒子および有機樹脂成分の密度から多孔質層における無機粒子の体積含有率を体積%で算出した。上記測定を試料5枚について実施し、計測された値を平均した。
(2) Volume content rate α of inorganic particles in the porous layer (volume content rate α)
A 10 cm×10 cm sample cut out from the porous film was used to extract the porous layer using 40 g of water, and the water was sufficiently dried to obtain the constituent components of the porous layer. In addition, an organic solvent such as alcohol may be used when water cannot be used to sufficiently desorb. After measuring the mass of the total amount of the constituent components obtained, the constituent components were burned at a high temperature at which the organic resin component melts and decomposes, and the mass of only the inorganic particles was measured. The content of the inorganic particles in the porous layer was calculated in % by mass from the formula (mass of inorganic particles/mass of total amount of constituent components)×100. In addition, the content of the organic resin component in the porous layer was calculated in mass % by the formula ((mass of the total amount of the constituent components−mass of the inorganic particles)/(mass of the total amount of the constituent ingredients))×100. Next, the density of each of the inorganic particles and the organic resin component was measured with a hydrometer. The volume content of the inorganic particles in the porous layer was calculated in volume % from the mass content (% by mass) of the inorganic particles and the organic resin component obtained above and the density of the inorganic particles and the organic resin component. The above measurements were performed on five samples, and the measured values were averaged.
 (3)多孔質層の表面部での無機粒子の占有率β(占有率β)
 多孔性フィルムをPt/Pdを30秒蒸着した試料の多孔質層の表面をSEM-EDX(Hitachi SE8200)で倍率10,000倍、加速電圧5.0kVで測定し、無機粒子の無機元素について解析を行った。画像解析ソフト(東陽テクニカ,SPIP6.0.10)を使用して、EDX画像中の元素記号表示、倍率表示、スケールバー、加速電圧表示部をマスクして除いた後に、「粒子・孔解析」モードで、検出方法としては閾値の閾値レベルを130nmで行い、画像の面積に対する無機粒子の無機元素に対応する部分の面積を百分率で表したパラメータである面積率(%)を無機粒子の占有率βとした。上記測定を試料5枚について実施し、計測された値を平均した。
(3) Occupancy β of inorganic particles on the surface of the porous layer (occupancy β)
The surface of the porous layer of the sample in which Pt/Pd was deposited on the porous film for 30 seconds was measured with SEM-EDX (Hitachi SE8200) at a magnification of 10,000 and an acceleration voltage of 5.0 kV, and the inorganic elements of the inorganic particles were analyzed. did Using image analysis software (Toyo Technica, SPIP 6.0.10), after masking and removing the element symbol display, magnification display, scale bar, and acceleration voltage display part in the EDX image, "particle / hole analysis" mode, the threshold level of the threshold is set to 130 nm as a detection method, and the area ratio (%), which is a parameter representing the area of the portion corresponding to the inorganic element of the inorganic particle with respect to the area of the image as a percentage, is the occupancy rate of the inorganic particle. β. The above measurements were performed on five samples, and the measured values were averaged.
 (4)多孔質層が設けられた側の多孔性フィルム表面の2200μm四方における算術平均高さ(Sa)
 多孔性フィルムから5cm×5cmに切り出した試料を外寸6cm四方、内寸3cm四方の金属枠にシワが入らないよう貼り付けた。日立ハイテクサイエンス社製の走査型白色干渉顕微鏡VS-1540を用い、以下の条件で表面粗さの測定を行い、ISO 25178に準拠し三次元表面粗さパラメータ(Sa)を算出した。同条件で多孔性フィルムの両表面に対し、各面4点、計8点の測定を実施し、計測された値を平均した。なお、多孔質層を片面に設けた場合には、多孔質層が設けられた側の表面に対して4点計測した値を平均した。
・対物レンズ:5倍
・鏡筒レンズ:0.5倍
・波長フィルター:530white
・カメラ:高画素
・測定モード:Wave
・カットオフ:無し   。
(4) Arithmetic mean height (Sa) in 2200 μm square of the porous film surface on the side where the porous layer is provided
A sample of 5 cm×5 cm cut out from the porous film was pasted on a metal frame with an outer size of 6 cm square and an inner size of 3 cm square so as not to cause wrinkles. Using a scanning white light interference microscope VS-1540 manufactured by Hitachi High-Tech Science Co., Ltd., the surface roughness was measured under the following conditions, and the three-dimensional surface roughness parameter (Sa) was calculated according to ISO 25178. Under the same conditions, both surfaces of the porous film were measured at 4 points on each side, 8 points in total, and the measured values were averaged. When the porous layer was provided on one side, the values measured at four points on the surface on which the porous layer was provided were averaged.
・Objective lens: 5x ・Tube lens: 0.5x ・Wavelength filter: 530white
・Camera: High pixel ・Measurement mode: Wave
・Cutoff: None.
 (5)多孔質層と接する側の多孔質基材表面の12nm四方における算術平均粗さ(Ra)
 多孔性フィルムから12cm×12cmに切り出した試料から水50gを用いて多孔質層を脱離させ、水を十分に乾燥させて目的の多孔質基材を得た。なお、水で十分に脱離できないときにはアルコールなどの有機溶媒を用い、脱離後にこれを十分に乾燥させる。走査型プローブ顕微鏡(セイコーインスツルメンツ製SPA-500)を用いて、多孔質基材をカーボンテープで試料台に固定し、カンチレバーはSI-DF40を用い、測定領域を12μm四方、振幅減衰率を-0.25、走査周波数を0.5HzとしDFMモードで算術平均粗さ(Ra)の測定を行った。多孔質基材の両面に多孔質層が形成された場合は、同条件で多孔質基材の両表面に対し、各面3点、計6点の測定を実施し、計測された値を平均した。また多孔質基材の片面に多孔質層が形成された場合は、同条件で多孔質基材の多孔質層側の面に対し、3点測定を実施し、計測された値を算術平均した。
(5) Arithmetic mean roughness (Ra) of 12 nm square on the surface of the porous substrate on the side in contact with the porous layer
50 g of water was used to remove the porous layer from a sample cut out from the porous film to a size of 12 cm×12 cm, and the water was sufficiently dried to obtain the target porous substrate. In addition, when it is not possible to sufficiently desorb with water, an organic solvent such as alcohol is used, and after the desorption, it is sufficiently dried. Using a scanning probe microscope (Seiko Instruments SPA-500), the porous substrate is fixed to the sample stage with carbon tape, the cantilever is SI-DF40, the measurement area is 12 μm square, and the amplitude attenuation rate is −0. Arithmetic mean roughness (Ra) was measured in DFM mode with a scanning frequency of 0.5 Hz. When porous layers are formed on both sides of the porous substrate, measure 3 points on each side, 6 points in total, on both surfaces of the porous substrate under the same conditions, and average the measured values. did. In addition, when a porous layer is formed on one side of the porous substrate, three-point measurement is performed on the surface of the porous substrate on the porous layer side under the same conditions, and the measured values are arithmetically averaged. .
 (6)多孔質層の表面自由エネルギー
 多孔性フィルムから100mm×100mmに切り出した試料の表面を水、エチレングリコール、ヨウ化メチレン、ホルムアミドのそれぞれにおける接触角測定を行い、Young-Dupreの式より多孔質層の表面自由エネルギー(mN/m)を測定した。上記測定を試料5枚について実施し、計測された値を算術平均した。
(6) Surface free energy of porous layer The surface of a sample cut into 100 mm × 100 mm from the porous film is subjected to contact angle measurement with water, ethylene glycol, methylene iodide, and formamide, and the porous layer is calculated according to the Young-Dupre equation. The surface free energy (mN/m) of the thin layer was measured. The above measurements were performed on five samples, and the measured values were arithmetically averaged.
 (7)多孔質層の膜厚
 多孔性フィルムから100mm×100mmに切り出した試料の中央部において、ミクロトームに試料の断面を切り出し、その断面を電解放射型走査電子顕微鏡((株)日立製作所製S-800、加速電圧26kV)にて10000倍の倍率にて観察して、多孔質基材との界面から表面の最も高いところまでの距離を計測した。片面の場合は片面のみ、両面の場合は両面ともに計測し、その合計を多孔質層の膜厚とした。なお多孔質基材と多孔質層の界面について、無機粒子の存在領域において、無機粒子が確認されなくなった場所を界面と規定した。上記測定を試料5枚について実施し、計測された値を算術平均した。
(7) Film thickness of the porous layer At the center of the sample cut out from the porous film to 100 mm × 100 mm, cut out a cross section of the sample with a microtome, and examine the cross section with a field emission scanning electron microscope (manufactured by Hitachi, Ltd. S -800, acceleration voltage of 26 kV) and a magnification of 10,000 times, and the distance from the interface with the porous substrate to the highest point on the surface was measured. In the case of one side, only one side was measured, and in the case of both sides, both sides were measured, and the total was taken as the film thickness of the porous layer. Regarding the interface between the porous base material and the porous layer, the interface was defined as a place where the inorganic particles were no longer observed in the region where the inorganic particles were present. The above measurements were performed on five samples, and the measured values were arithmetically averaged.
 (8)多孔性フィルムの膜厚
 多孔性フィルムをから100mm×100mmに切り出した試料の中央部における膜厚を接触厚み計(株式会社ミツトヨ製ライトマチック)により測定した。上記測定を試料5枚について実施し、計測された値を算術平均した。
(8) Film Thickness of Porous Film The film thickness at the central portion of a sample of 100 mm×100 mm cut out from the porous film was measured with a contact thickness meter (Lightmatic manufactured by Mitutoyo Co., Ltd.). The above measurements were performed on five samples, and the measured values were arithmetically averaged.
 (9)多孔性フィルムのガラス転移温度
 「JIS K7121:2012 プラスチックの転移温度測定方法」の規定に準じた示差走査熱量測定(DSC)にて測定された多孔性フィルムの中間点ガラス転移温度とした。中間点ガラス転移温度は、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の温度とした。上記測定を試料3枚について実施し、計測された値を算術平均した。
(9) Glass transition temperature of porous film The midpoint glass transition temperature of the porous film measured by differential scanning calorimetry (DSC) in accordance with the provisions of "JIS K7121: 2012 Method for measuring the transition temperature of plastics" . The midpoint glass transition temperature was taken as the temperature at the point where a straight line equidistant from the extended straight line of each base line intersects the curve of the stepwise change portion of the glass transition. The above measurements were performed on three samples, and the measured values were arithmetically averaged.
 (10)多孔質基材と多孔質層の剥離強度
 多孔性フィルムをから25mm幅、100mm長さ切り出した試料を厚み2cmのアクリル板に貼り付けた。次に試料に18mm幅、150mm長さにカットしたテープ(3M社製、品番810-3-15)を0.5MPa、25℃、0.2m/分でロールプレスを行うことで貼り付けた。その後、剥離速度300mm/minの条件で、テープを180度で剥離し、長さ方向の30mmから70mmまでの平均値を剥離強度とした。
・剥離強度が「秀」: より強い力で多孔質基材と多孔質層が剥離した。
・剥離強度が「優」: 強い力で多孔質基材と多孔質層が剥離した。
・剥離強度が「良」: やや強い力で多孔質基材と多孔質層が剥離した。
・剥離強度が「可」: 弱い力で多孔質基材と多孔質層が剥離した。
・剥離強度が「悪」: 極弱い力で多孔質基材と多孔質層が剥離した。
(10) Peel Strength Between Porous Substrate and Porous Layer A sample of 25 mm wide and 100 mm long was cut out of the porous film and attached to an acrylic plate having a thickness of 2 cm. Next, a tape (manufactured by 3M, product number 810-3-15) cut into 18 mm width and 150 mm length was attached to the sample by roll pressing at 0.5 MPa, 25° C., 0.2 m/min. Thereafter, the tape was peeled off at 180 degrees under the condition of a peeling speed of 300 mm/min, and the peel strength was taken as the average value from 30 mm to 70 mm in the length direction.
・Excellent peel strength: The porous substrate and the porous layer were peeled off with a stronger force.
- "Excellent" peel strength: The porous base material and the porous layer were separated with a strong force.
- Peel strength is "good": The porous substrate and the porous layer were peeled with a slightly strong force.
- Peel strength is "Fair": The porous substrate and the porous layer were peeled off with a weak force.
- "Poor" peel strength: The porous substrate and the porous layer were peeled off with an extremely weak force.
 なお、剥離に要した力の大きさは、「秀」>「優」>「良」>「可」>「悪」である。 The magnitude of the force required for peeling is "excellent" > "excellent" > "good" > "acceptable" > "bad".
 (11)熱収縮率(熱寸法安定性)
 多孔性フィルムをから100mm×100mmに切り出した試料3枚について各試料の一辺の中点と対辺の中点をマークし、中点間の長さを測定した後、150℃のオーブン中に無張力下で30分熱処理を行った。熱処理後の試料について、熱処理前と同一箇所の中点間の長さを測定し、以下の式より熱収縮率を算出し、以下の5段階(5%未満を秀、5%以上10%未満を「優」、10%以上20%未満を「良」、20%以上40%未満を「可」、40%以上を「悪」)にて評価を行った。
熱収縮率(%)=[(熱処理前の中点間の長さ-熱処理後の中点間の長さ)/(熱処理前の中点間の長さ)]×100  。
(11) Thermal shrinkage (thermal dimensional stability)
For three samples of 100 mm × 100 mm cut out from the porous film, mark the midpoint of one side and the midpoint of the opposite side of each sample, measure the length between the midpoints, and place in an oven at 150 ° C. without tension. Heat treatment was performed for 30 minutes at the bottom. For the sample after heat treatment, measure the length between the midpoints of the same place as before heat treatment, calculate the thermal shrinkage rate from the following formula, "Excellent", 10% or more and less than 20% as "Good", 20% or more and less than 40% as "Fair", 40% or more as "Bad").
Thermal shrinkage rate (%)=[(length between midpoints before heat treatment−length between midpoints after heat treatment)/(length between midpoints before heat treatment)]×100.
 (12)電極とのドライ接着性
 活物質がLi(Ni5/10Mn2/10Co3/10)O、バインダーがフッ化ビニリデン樹脂、導電助剤がアセチレンブラックとグラファイトの正極20mm×50mmと多孔性フィルム25mm×55mmを、活物質と多孔質層が接触するように設置し、70℃の加熱環境下、5MPaの圧力で10秒間熱プレスを行い、電極と多孔性フィルムを接着させた。次にピンセットを用いて手動で剥離させ、接着強度を下記5段階にて評価を行った。同様に、活物質が黒鉛、バインダーがフッ化ビニリデン樹脂、導電助剤がカーボンブラックの負極と多孔性フィルムとの接着強度も測定し、正極および負極のそれぞれの評価結果を統合した平均接着強度を接着強度として判定した。
・接着強度が「秀」: より強い力で電極と多孔性フィルムが剥離した。
・接着強度が「優」: 強い力で電極と多孔性フィルムが剥離した。
・接着強度が「良」: やや強い力で電極と多孔性フィルムが剥離した。
・接着強度が「可」: 弱い力で電極と多孔性フィルムが剥離した。
・接着強度が「悪」: 極弱い力で電極と多孔性フィルムが剥離した。
(12) Dry Adhesion with Electrode Active material is Li(Ni 5/10 Mn 2/10 Co 3/10 )O 2 , binder is vinylidene fluoride resin, and conductive aid is acetylene black and graphite positive electrode 20 mm×50 mm. and a porous film of 25 mm × 55 mm are placed so that the active material and the porous layer are in contact, and hot press is performed for 10 seconds at a pressure of 5 MPa in a heating environment of 70 ° C. to bond the electrode and the porous film. . Next, it was manually peeled off using tweezers, and the adhesive strength was evaluated in the following 5 stages. Similarly, the adhesive strength between the porous film and the negative electrode in which the active material is graphite, the binder is vinylidene fluoride resin, and the conductive agent is carbon black, is measured. It was determined as adhesive strength.
・Excellent adhesion strength: The electrode and the porous film were separated with a stronger force.
- Adhesive strength is "excellent": The electrode and the porous film were separated with a strong force.
- "Good" adhesion strength: The electrode and the porous film were separated with a slightly strong force.
・Adhesion strength is “Fair”: The electrode and the porous film were peeled off with a weak force.
- "Poor" adhesive strength: The electrode and the porous film were separated with very weak force.
 なお、剥離に要した力の大きさは、「秀」>「優」>「良」>「可」>「悪」である。 The magnitude of the force required for peeling is "excellent" > "excellent" > "good" > "acceptable" > "bad".
 (13)電極とのウェット接着性
 活物質が黒鉛、バインダーがフッ化ビニリデン樹脂、導電助剤がカーボンブラックの負極(幅20mm×長さ70mm)を電極として用いた。多孔性フィルム(幅25mm×長さ80mm)を、電極と多孔性フィルムの長さ方向に端部が重なるように、また活物質と多孔質層が接触するように設置して、条件a(70℃の加熱環境下、5MPaの圧力で6秒間)で熱プレスを行い、電極と多孔性フィルムを接着させて試験片を作製した。試験片を、3片を閉じて袋状にしたアルミラミネートフィルム内に設置し、電解液注液工程(電解液1gを試験片の多孔性フィルム側から染み込ませる)後、真空シーラーを用いてアルミラミネートフィルムの残り1辺を封入した。ここで、電解液はエチレンカーボネート:ジエチルカーボネート=1:1(体積比)の混合溶媒に、溶質としてLiPFを濃度1モル/リットルとなるように溶解させ、作製したものを用いた。次に、この試験片を封入後のアルミラミネートフィルムを60℃環境下で17時間静置条件にて保存した。アルミラミネートフィルムから試験片を取り出し、試験片表面の電解液を拭いた。その後、ピンセットを用いて手動で剥離させ、接着強度を下記5段階にて評価を行った。
・接着強度が「秀」: より強い力で電極と多孔性フィルムが剥離した。
・接着強度が「優」: 強い力で電極と多孔性フィルムが剥離した。
・接着強度が「良」: やや強い力で電極と多孔性フィルムが剥離した。
・接着強度が「可」: 弱い力で電極と多孔性フィルムが剥離した。
・接着強度が「悪」: 極弱い力で電極と多孔性フィルムが剥離した。
(13) Wet Adhesion to Electrode A negative electrode (width 20 mm×length 70 mm) containing graphite as an active material, vinylidene fluoride resin as a binder, and carbon black as a conductive aid was used as an electrode. A porous film (width 25 mm × length 80 mm) was placed so that the ends of the electrode and the porous film overlapped in the length direction, and the active material and the porous layer were in contact, and the condition a (70 C. for 6 seconds at a pressure of 5 MPa) to adhere the electrode and the porous film to prepare a test piece. The test piece is placed in a bag-shaped aluminum laminate film with three pieces closed, and after the electrolytic solution injection process (1 g of electrolytic solution is impregnated from the porous film side of the test piece), the aluminum is sealed using a vacuum sealer. The remaining one side of the laminate film was enclosed. Here, the electrolytic solution used was prepared by dissolving LiPF 6 as a solute in a mixed solvent of ethylene carbonate:diethyl carbonate=1:1 (volume ratio) so as to have a concentration of 1 mol/liter. Next, the aluminum laminate film after enclosing this test piece was stored in a 60° C. environment for 17 hours under static conditions. The test piece was taken out from the aluminum laminate film, and the electrolytic solution on the surface of the test piece was wiped. After that, the adhesive strength was evaluated in the following 5 stages by manually peeling using tweezers.
・Excellent adhesion strength: The electrode and the porous film were separated with a stronger force.
- Adhesive strength is "excellent": The electrode and the porous film were separated with a strong force.
- "Good" adhesion strength: The electrode and the porous film were separated with a slightly strong force.
・Adhesion strength is “Fair”: The electrode and the porous film were peeled off with a weak force.
- "Poor" adhesive strength: The electrode and the porous film were separated with very weak force.
 なお、剥離に要した力の大きさは、「秀」>「優」>「良」>「可」>「悪」である。 The magnitude of the force required for peeling is "excellent" > "excellent" > "good" > "acceptable" > "bad".
 (14)電池作製
 正極シートは、正極活物質としてLi(Ni5/10Mn2/10Co3/10)Oを96質量部、正極導電助剤としてアセチレンブラックとグラファイトを1.0質量部ずつ、正極結着剤としてポリフッ化ビニリデン2質量部を、プラネタリーミキサーを用いてN-メチル-2-ピロリドン中に分散させた正極スラリーを、アルミ箔上に塗布、乾燥、圧延して作製した(塗布目付:10.0mg/cm)。この正極シートを40mm×40mmに切り出した。この時、活物質層の付いていない集電用のタブ接着部が、前記活物質面の外側に5mm×5mmの大きさになるように切り出した。幅5mm、厚み0.1mmのアルミ製のタブをタブ接着部に超音波溶接した。負極シートは、負極活物質として天然黒鉛98質量部、増粘剤としてカルボキシメチルセルロースを1質量部、負極結着剤としてスチレン-ブタジエン共重合体1質量部を、プラネタリーミキサーを用いて水中に分散させた負極スラリーを、銅箔上に塗布、乾燥、圧延して作製した(塗布目付:6.6mg/cm)。この負極シートを45mm×45mmに切り出した。この時、活物質層の付いていない集電用のタブ接着部が、前記活物質面の外側に5mm×5mmの大きさになるように切り出した。正極タブと同サイズの銅製のタブをタブ接着部に超音波溶接した。次に、多孔性フィルムを55mm×55mmに切り出し、多孔性フィルムの両面に上記正極と負極を活物質層が多孔性フィルムを隔てるように重ね、正極塗布部が全て負極塗布部と対向するように配置して電極群を得た。その後、70℃の加熱環境下、5MPaの圧力で10秒間熱プレスを行い、正極・多孔性フィルム・負極を接着させた。1枚の90mm×200mmのアルミラミネートフィルムに上記正極・多孔性フィルム・負極を挟み込み、アルミラミネートフィルムの長辺を折り、アルミラミネートフィルムの長辺2辺を熱融着し、袋状とした。エチレンカーボネート:エチルメチルカーボネート=3:7(体積比)の混合溶媒に、溶質としてLiPFを濃度1モル/リットルとなるように溶解させ、作製した電解液を用いた。袋状にしたアルミラミネートフィルムに電解液1.5gを注入し、減圧含浸させながらアルミラミネートフィルムの短辺部を熱融着させてラミネート型電池とした。
(14) Battery production The positive electrode sheet contains 96 parts by mass of Li(Ni 5/10 Mn 2/10 Co 3/10 )O 2 as a positive electrode active material, and 1.0 parts by mass of acetylene black and graphite as positive electrode conductive aids. Each positive electrode slurry was prepared by dispersing 2 parts by mass of polyvinylidene fluoride as a positive electrode binder in N-methyl-2-pyrrolidone using a planetary mixer. (Coating basis weight: 10.0 mg/cm 2 ). This positive electrode sheet was cut into a size of 40 mm×40 mm. At this time, a current-collecting tab bonding portion without an active material layer was cut out to a size of 5 mm×5 mm outside the active material surface. An aluminum tab having a width of 5 mm and a thickness of 0.1 mm was ultrasonically welded to the tab bonding portion. For the negative electrode sheet, 98 parts by mass of natural graphite as a negative electrode active material, 1 part by mass of carboxymethyl cellulose as a thickener, and 1 part by mass of a styrene-butadiene copolymer as a negative electrode binder are dispersed in water using a planetary mixer. The resulting negative electrode slurry was coated on a copper foil, dried, and rolled to prepare a negative electrode slurry (coating basis weight: 6.6 mg/cm 2 ). This negative electrode sheet was cut into a size of 45 mm×45 mm. At this time, a current-collecting tab bonding portion without an active material layer was cut out to a size of 5 mm×5 mm outside the active material surface. A copper tab having the same size as the positive electrode tab was ultrasonically welded to the tab bonding portion. Next, the porous film was cut into a size of 55 mm×55 mm, and the positive electrode and the negative electrode were superimposed on both sides of the porous film so that the active material layer separated the porous film, and the positive electrode coated portion was entirely opposed to the negative electrode coated portion. Arranged to obtain an electrode group. After that, hot pressing was performed for 10 seconds at a pressure of 5 MPa in a heating environment of 70° C. to bond the positive electrode, the porous film, and the negative electrode. The above positive electrode, porous film, and negative electrode were sandwiched between a sheet of aluminum laminate film of 90 mm×200 mm. An electrolytic solution prepared by dissolving LiPF 6 as a solute in a mixed solvent of ethylene carbonate:ethyl methyl carbonate=3:7 (volume ratio) at a concentration of 1 mol/liter was used. 1.5 g of the electrolytic solution was poured into a bag-shaped aluminum laminate film, and the short sides of the aluminum laminate film were heat-sealed while being impregnated under reduced pressure to obtain a laminate type battery.
 (14)放電負荷特性
 放電負荷特性を下記手順にて試験を行い、放電容量維持率にて評価した。上記ラミネート型電池を用いて、25℃下、0.5Cで放電したときの放電容量と、25℃下、10Cで放電したときの放電容量とを測定し、(7Cでの放電容量)/(0.5Cでの放電容量)×100の式で放電容量維持率を算出した。ここで、充電条件は0.5C、4.3Vの定電流充電とし、放電条件は2.7Vでの定電流放電とした。上記ラミネート型電池を5個作製し、放電容量維持率が最大、最小となる結果を除去した3個の測定結果の平均を容量維持率とした。放電容量維持率が40%未満を「悪」、45%以上50%未満を「良」、50%以上55%未満を「優」、55%以上を「秀」とした。
(14) Discharge load characteristics Discharge load characteristics were tested according to the following procedure, and evaluated by the discharge capacity retention rate. Using the laminate type battery, the discharge capacity when discharged at 0.5 C at 25 ° C. and the discharge capacity when discharged at 10 C at 25 ° C. are measured, (discharge capacity at 7 C) / ( Discharge capacity at 0.5 C)×100 was used to calculate the discharge capacity retention rate. Here, the charging conditions were constant current charging at 0.5C and 4.3V, and the discharging conditions were constant current discharge at 2.7V. Five laminate-type batteries were produced, and the average of the measurement results of the three batteries after removing the maximum and minimum discharge capacity retention rates was taken as the capacity retention rate. A discharge capacity retention rate of less than 40% was rated as "bad", 45% or more and less than 50% as "good", 50% or more and less than 55% as "excellent", and 55% or more as "excellent".
 (15)寿命特性
 寿命特性を下記手順にて試験を行い、放電容量維持率にて評価した。
〈1~300サイクル目〉
 充電、放電を1サイクルとし、充電条件を2C、4.3Vの定電流充電、放電条件を2C、2.7Vの定電流放電とし、25℃下で充放電を300回繰り返し行った。
〈放電容量維持率の算出〉
 (300サイクル目の放電容量)/(1サイクル目の放電容量)×100の式で放電容量維持率(%)を算出した。上記ラミネート型電池を5個作製し、放電容量維持率が最大、最小となる結果を除去した3個の測定結果の平均を容量維持率とした。放電容量維持率が50%未満のものを寿命特性が「悪」、50%以上60%未満のものを寿命特性が「良」、60%以上70%未満のものを寿命特性が「優」、70%以上のものを寿命特性が「秀」とした。
(15) Life characteristics Life characteristics were tested according to the following procedure, and evaluated by the discharge capacity retention rate.
<1st to 300th cycles>
Charging and discharging were set as one cycle, charging conditions were constant current charging at 2C and 4.3V, and discharging conditions were constant current discharging at 2C and 2.7V, and charging and discharging were repeated 300 times at 25°C.
<Calculation of discharge capacity maintenance rate>
The discharge capacity retention rate (%) was calculated by the formula of (discharge capacity at 300th cycle)/(discharge capacity at 1st cycle)×100. Five laminate-type batteries were produced, and the average of the measurement results of the three batteries after removing the maximum and minimum discharge capacity retention rates was taken as the capacity retention rate. The life characteristics are "bad" when the discharge capacity retention rate is less than 50%; The life characteristics of 70% or more were evaluated as "excellent".
 (実施例1)
 分散液A
 イオン交換水120部、アデカリアソーブSR-1025(アデカ(株)製乳化剤)1部を反応器に仕込み、撹拌を開始した。これに窒素雰囲気下で2,2’-アゾビス(2-(2-イミダゾリン-2-イル)プロパン)(和光純薬工業(株)製)0.4部を添加し、2,2,2-トリフルオロエチルメタクリレート(3FM)30部、シクロヘキシルアクリレート(CHA)54部、ヒドロキシエチルメタクリレート(HEMA)5部、アルキレングリコールジメタクリレート(AGDMA)11部、アデカリアソーブSR-1025(乳化剤、アデカ株式会社製)9部、イオン交換水115部からなる単量体混合物を60℃で2時間かけて連続的に滴下し、滴下終了後4時間にわたり重合処理を行い、共重合体からなる有機樹脂粒子(重合体A)(粒径180nm、ガラス転移温度:45℃)を含む分散液Aを製造した。
(Example 1)
Dispersion A
120 parts of ion-exchanged water and 1 part of Adekaria Sorb SR-1025 (an emulsifier manufactured by Adeka Corporation) were charged into a reactor, and stirring was started. To this, 0.4 parts of 2,2′-azobis(2-(2-imidazolin-2-yl)propane) (manufactured by Wako Pure Chemical Industries, Ltd.) was added under a nitrogen atmosphere, and 2,2,2- Trifluoroethyl methacrylate (3FM) 30 parts, cyclohexyl acrylate (CHA) 54 parts, hydroxyethyl methacrylate (HEMA) 5 parts, alkylene glycol dimethacrylate (AGDMA) 11 parts, Adekaria Sorb SR-1025 (emulsifier, manufactured by Adeka Co., Ltd.) 9 and 115 parts of ion-exchanged water are continuously added dropwise at 60° C. over 2 hours. ) (particle size 180 nm, glass transition temperature: 45° C.).
 分散液Z
 無機粒子として平均粒径0.5μmのアルミナ粒子(酸化アルミニウム)を用い、溶媒として無機粒子と同量の水、および分散剤としてカルボキシメチルセルロースを無機粒子に対して1質量%添加した上で、ビーズミルにて分散し、分散液Zを調製した。
Dispersion Z
Using alumina particles (aluminum oxide) having an average particle size of 0.5 μm as inorganic particles, adding water in the same amount as the inorganic particles as a solvent, and carboxymethyl cellulose as a dispersant at 1% by mass relative to the inorganic particles, followed by bead milling. to prepare a dispersion liquid Z.
 塗工液
 分散液Aと分散液Zを多孔質層に含まれる無機粒子の体積含有率αが55体積%、固形分濃度20質量%となるように、水中に分散させて、攪拌機にて混合した。得られた塗工液の粘度は15mPa・sであった。得られた塗工液を、#10のワイヤーバーを用いて多孔質基材としてポリオレフィン微多孔膜(算術平均高さ(Sa)0.15μm、突出山部高さ(Spk)0.19μm、算術平均粗さ(Ra)120nm、厚み9μm)上へ両面塗工し、熱風オーブン(乾燥設定温度50℃)内で1分間乾燥し、含有される溶媒が揮発することで多孔質層を形成し、多孔性フィルムを得た。表1には、実施例1~32で用いた多孔質層と接する側の多孔質基材表面の算術平均高さ(Sa)、塗工条件、無機粒子の種類、体積含有率α、有機樹脂粒子の種類を示す。表2には、実施例1~32で得られた多孔性フィルムのβ/α、多孔質表層部での無機粒子の占有率β、多孔質層を有する側の多孔性フィルム表面の算術平均高さ(Sa)、表面自由エネルギー、多孔性フィルムのガラス転移温度(℃)及び多孔質層の膜厚を示す。表3には、実施例1~32で得られた多孔性フィルムおよびそれを用いた電池について熱寸法安定性、剥離強度、電極とのドライ接着性、レート特性、寿命特性の測定結果を示す。
Coating liquid Dispersion liquid A and dispersion liquid Z are dispersed in water so that the volume content α of the inorganic particles contained in the porous layer is 55% by volume and the solid content concentration is 20% by mass, and mixed with a stirrer. did. The resulting coating liquid had a viscosity of 15 mPa·s. The obtained coating liquid was applied to a polyolefin microporous film (arithmetic mean height (Sa) 0.15 μm, protruding peak height (Spk) 0.19 μm, arithmetic average roughness (Ra) 120 nm, thickness 9 μm), dried for 1 minute in a hot air oven (drying set temperature 50 ° C.), and volatilizing the contained solvent to form a porous layer, A porous film was obtained. Table 1 shows the arithmetic mean height (Sa) of the surface of the porous substrate on the side in contact with the porous layer used in Examples 1 to 32, the coating conditions, the type of inorganic particles, the volume content α, the organic resin Indicates the type of particle. Table 2 shows the β/α of the porous films obtained in Examples 1 to 32, the occupation ratio β of the inorganic particles in the porous surface layer portion, and the arithmetic mean height of the surface of the porous film on the side having the porous layer. (Sa), surface free energy, glass transition temperature (°C) of the porous film, and thickness of the porous layer. Table 3 shows the measurement results of thermal dimensional stability, peel strength, dry adhesion to electrodes, rate characteristics, and life characteristics of the porous films obtained in Examples 1 to 32 and batteries using them.
 (実施例2)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.20μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 2)
A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.20 µm.
 (実施例3)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.30μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 3)
A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.30 μm.
 (実施例4)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.09μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 4)
A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.09 μm.
 (実施例5)
 多孔質層に含まれる無機粒子の体積含有率αを30体積%に変更した以外は実施例1と同様にして、多孔性フィルムを得た。
(Example 5)
A porous film was obtained in the same manner as in Example 1, except that the volume content α of the inorganic particles contained in the porous layer was changed to 30% by volume.
 (実施例6)
 多孔質層に含まれる無機粒子の体積含有率αを80体積%に変更した以外は実施例1と同様にして、多孔性フィルムを得た。
(Example 6)
A porous film was obtained in the same manner as in Example 1, except that the volume content α of the inorganic particles contained in the porous layer was changed to 80% by volume.
 (実施例7)
 塗工液の固形分濃度を10質量%、粘度を10mPa・sに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 7)
A porous film was obtained in the same manner as in Example 1, except that the solid content concentration of the coating liquid was changed to 10% by mass and the viscosity was changed to 10 mPa·s.
 (実施例8)
 塗工液の固形分濃度を40質量%、粘度を40mPa・sに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 8)
A porous film was obtained in the same manner as in Example 1, except that the solid content concentration of the coating liquid was changed to 40% by mass and the viscosity was changed to 40 mPa·s.
 (実施例9)
 実施例1と同様に分散液Aおよび分散液Zを調整した。
(Example 9)
Dispersion liquid A and dispersion liquid Z were prepared in the same manner as in Example 1.
 分散液B
 アクリル酸エステル単量体としてメチルアクリレートからなる重合体(重合体B)をからなる分散液Bを調整した。その後、分散液Aと分散液Zと分散液Bを多孔質層に含まれる無機粒子の体積含有率αが55体積%、有機樹脂粒子(重合体A)の含有率が35体積%、有機樹脂粒子(重合体B)の含有率が10体積%、固形分濃度20質量%となるように、水中に分散させて、攪拌機にて混合した。得られた塗工液の粘度は10mPa・sであった。有機樹脂粒子を、フッ素含有メタクリレート単量体からなる重合体Aを90質量%とアクリル酸エステル単量体からなる重合体B(平均粒子径130nm)を10質量%含む2種類の混合物とした以外は、実施例1と同様にして、多孔性フィルムを得た。
Dispersion B
A dispersion liquid B comprising a polymer (polymer B) comprising methyl acrylate as an acrylate monomer was prepared. After that, the dispersion liquid A, the dispersion liquid Z, and the dispersion liquid B were mixed in the porous layer so that the volume content α of the inorganic particles contained in the porous layer was 55% by volume, the content of the organic resin particles (polymer A) was 35% by volume, and the organic resin The particles (polymer B) were dispersed in water so that the content of the particles (polymer B) was 10% by volume and the solid concentration was 20% by mass, and mixed with a stirrer. The resulting coating liquid had a viscosity of 10 mPa·s. Except that the organic resin particles are a mixture of two kinds of particles containing 90% by mass of a polymer A composed of a fluorine-containing methacrylate monomer and 10% by mass of a polymer B (average particle diameter 130 nm) composed of an acrylic acid ester monomer. obtained a porous film in the same manner as in Example 1.
 (実施例10)
 2,2,2-トリフルオロエチルメタクリレート(3FM)を1H,1H,5H-オクタフルオロペンチルアクリレート(8FA)に替えた以外は実施例1の分散液Aと同様に調製して重合体Cを含む分散液Cを製造した。その後、実施例1と同様にして、多孔性フィルムを得た。
(Example 10)
Dispersion A containing polymer C was prepared in the same manner as dispersion A of Example 1, except that 2,2,2-trifluoroethyl methacrylate (3FM) was replaced with 1H,1H,5H-octafluoropentyl acrylate (8FA). Dispersion C was prepared. Thereafter, in the same manner as in Example 1, a porous film was obtained.
 (実施例11)
 有機樹脂粒子を形成する重合体Dを構成するための単量体として、2,2,2-トリフルオロエチルメタクリレート(3FM)30部、シクロヘキシルアクリレート(CHA)54部、ヒドロキシエチルメタクリレート(HEMA)5部およびアルキレングリコールジメタクリレート(AGDMA)11部に代えて、メタクリル酸エステル単量体としてエチルメタクリレート100部を用いた以外は、実施例1の分散液Aと同様に調製して重合体Dを含む分散液Dを製造した。その後、実施例1と同様にして、多孔性フィルムを得た。
(Example 11)
30 parts of 2,2,2-trifluoroethyl methacrylate (3FM), 54 parts of cyclohexyl acrylate (CHA), and 5 parts of hydroxyethyl methacrylate (HEMA) as monomers for constituting the polymer D that forms the organic resin particles and 11 parts of alkylene glycol dimethacrylate (AGDMA) were replaced with 100 parts of ethyl methacrylate as the methacrylic acid ester monomer. Dispersion D was prepared. Thereafter, in the same manner as in Example 1, a porous film was obtained.
 (実施例12)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.30μmに変更した以外は、実施例11と同様にして、多孔性フィルムを得た。
(Example 12)
A porous film was obtained in the same manner as in Example 11, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.30 µm.
 (実施例13)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.09μmに変更した以外は、実施例11と同様にして、多孔性フィルムを得た。
(Example 13)
A porous film was obtained in the same manner as in Example 11, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.09 μm.
 (実施例14)
 有機樹脂粒子を形成する重合体Eを構成するための単量体として、2,2,2-トリフルオロエチルメタクリレート(3FM)30部、シクロヘキシルアクリレート(CHA)54部、ヒドロキシエチルメタクリレート(HEMA)5部およびアルキレングリコールジメタクリレート(AGDMA)11部に代えて、フッ化ビニリデン単量体100部を用いた以外は、実施例1の分散液Aと同様に調製して重合体Eを含む分散液Eを製造した。その後、実施例1と同様にして、多孔性フィルムを得た。
(Example 14)
30 parts of 2,2,2-trifluoroethyl methacrylate (3FM), 54 parts of cyclohexyl acrylate (CHA), and 5 parts of hydroxyethyl methacrylate (HEMA) as monomers for constituting the polymer E forming the organic resin particles and 11 parts of alkylene glycol dimethacrylate (AGDMA) were replaced with 100 parts of vinylidene fluoride monomer. manufactured. Thereafter, in the same manner as in Example 1, a porous film was obtained.
 (実施例15)
 有機樹脂粒子の平均粒径を70nmとした以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 15)
A porous film was obtained in the same manner as in Example 1, except that the average particle size of the organic resin particles was 70 nm.
 (実施例16)
 有機樹脂粒子の平均粒径を100nmとした以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 16)
A porous film was obtained in the same manner as in Example 1, except that the average particle size of the organic resin particles was 100 nm.
 (実施例17)
 有機樹脂粒子の平均粒径を500nmとした以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 17)
A porous film was obtained in the same manner as in Example 1, except that the average particle size of the organic resin particles was 500 nm.
 (実施例18)
 有機樹脂粒子の平均粒径を800nmとした以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 18)
A porous film was obtained in the same manner as in Example 1, except that the average particle size of the organic resin particles was 800 nm.
 (実施例19)
 無機粒子を硫酸バリウム粒子とした以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 19)
A porous film was obtained in the same manner as in Example 1, except that the inorganic particles were barium sulfate particles.
 (実施例20)
 無機粒子をベーマイト粒子とした以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 20)
A porous film was obtained in the same manner as in Example 1, except that boehmite particles were used as the inorganic particles.
 (実施例21)
 多孔質層の膜厚を5μmとした以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 21)
A porous film was obtained in the same manner as in Example 1, except that the film thickness of the porous layer was 5 μm.
 (実施例22)
 多孔質層の膜厚を8μmとした以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 22)
A porous film was obtained in the same manner as in Example 1, except that the film thickness of the porous layer was 8 μm.
 (実施例23)
 実施例1の分散液Aの製造条件において、3FM20部とし、ガラス転移温度が20℃となるようにCHA、HEMA、AGDMAの量を調整して重合体Fを得た以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 23)
Polymer F was obtained by adjusting the amounts of CHA, HEMA, and AGDMA so that the glass transition temperature was 20° C. under the conditions for producing dispersion liquid A of Example 1, with 20 parts of 3FM. A porous film was obtained in the same manner.
 (実施例24)
 実施例1の分散液Aの製造条件において、3FM80部とし、ガラス転移温度が20℃となるようにCHA、HEMA、AGDMAの量を調整して重合体Gを得た以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 24)
Polymer G was obtained by adjusting the amounts of CHA, HEMA, and AGDMA so that the glass transition temperature was 20° C. under the conditions for producing Dispersion A of Example 1, with the exception that 80 parts of 3FM was used. A porous film was obtained in the same manner.
 (実施例25)
 塗工液の乾燥温度設定を70℃とした以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 25)
A porous film was obtained in the same manner as in Example 1, except that the drying temperature of the coating liquid was set to 70°C.
 (実施例26)
 塗工液の乾燥温度設定を100℃とした以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 26)
A porous film was obtained in the same manner as in Example 1, except that the drying temperature of the coating liquid was set to 100°C.
 (実施例27)
 多孔質基材として実施例1と同じポリオレフィン微多孔膜を用い、該ポリオレフィン微多孔膜上に分散液Zを#9のワイヤーバーを用いて両面塗工し、熱風オーブン(乾燥設定温度50℃)内で1分間乾燥し、含有される溶媒が揮発することで第一多孔質層を形成した。その後、分散液Aを固形分濃度7質量%となるように、水中に分散させて、攪拌機にて混合した。得られた塗工液の粘度は6mPa・sであった。該塗工液を、第一塗工層上に#1.5のワイヤーバーを用いて両面塗工し、熱風オーブン(乾燥設定温度50℃)内で1分間乾燥し、含有される溶媒が揮発することで第二多孔質層を形成した以外は、実施例6と同様にして、多孔性フィルムを得た。固形分濃度とワイヤーバーを上記とすることで、多孔質層の表面部の無機粒子の占有率βは20%であった。
(Example 27)
Using the same polyolefin microporous membrane as in Example 1 as the porous substrate, the dispersion liquid Z was coated on both sides of the polyolefin microporous membrane using a #9 wire bar, and dried in a hot air oven (drying set temperature 50 ° C.). The first porous layer was formed by drying in the chamber for 1 minute and volatilizing the contained solvent. After that, dispersion liquid A was dispersed in water so as to have a solid content concentration of 7% by mass, and mixed with a stirrer. The resulting coating liquid had a viscosity of 6 mPa·s. The coating liquid is coated on both sides of the first coating layer using a #1.5 wire bar and dried in a hot air oven (drying temperature set at 50°C) for 1 minute to volatilize the contained solvent. A porous film was obtained in the same manner as in Example 6, except that the second porous layer was formed by heating. By setting the solid content concentration and the wire bar to the above values, the occupation ratio β of the inorganic particles in the surface portion of the porous layer was 20%.
 (実施例28)
 重合体Aに代えて、重合体Dを用いた以外は、実施例27と同様にして、多孔性フィルムを得た。
(Example 28)
A porous film was obtained in the same manner as in Example 27, except that polymer D was used instead of polymer A.
 (実施例29)
 多孔質層のガラス転移温度を20℃となるように、有機樹脂粒子を形成する重合体を構成するために好適なメタクリル酸エステル単量体(ブチルメタクリレート)を選定して得られた重合体Hを重合体Aに代えて用いた以外は、実施例27と同様にして、多孔性フィルムを得た。
(Example 29)
Polymer H obtained by selecting a methacrylic acid ester monomer (butyl methacrylate) suitable for constituting the polymer forming the organic resin particles so that the glass transition temperature of the porous layer is 20°C. A porous film was obtained in the same manner as in Example 27, except for using instead of Polymer A.
 (実施例30)
 多孔質層のガラス転移温度を80℃となるように、有機樹脂粒子を形成する重合体を構成するために好適なアクリル酸エステル単量体(メチルアクリレート50部、ブチルアクリレート50部)を選定して得られた重合体Iを重合体Aに代えて用いた以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 30)
Acrylic acid ester monomers (50 parts of methyl acrylate and 50 parts of butyl acrylate) suitable for forming the polymer forming the organic resin particles were selected so that the glass transition temperature of the porous layer was 80°C. A porous film was obtained in the same manner as in Example 1, except that the polymer I obtained in the above step was used in place of the polymer A.
 (実施例31)
 ポリオレフィン微多孔膜の突出山部高さ(Spk)を0.10μmに変更した以外は、実施例28と同様にして、多孔性フィルムを得た。
(Example 31)
A porous film was obtained in the same manner as in Example 28, except that the height (Spk) of the protrusion peaks of the polyolefin microporous membrane was changed to 0.10 μm.
 (実施例32)
 ポリオレフィン微多孔膜の突出山部高さ(Spk)を0.40μmに変更した以外は、実施例28と同様にして、多孔性フィルムを得た。
(Example 32)
A porous film was obtained in the same manner as in Example 28, except that the height (Spk) of the protrusion peaks of the polyolefin microporous membrane was changed to 0.40 μm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表中の重合体は以下を表す。
重合体A: フッ素含有メタクリレート単量体が用いられて重合された重合体(用いられた全単量体に占めるフッ素含有メタクリレート単量体の割合:30質量%)
重合体B: アクリル酸エステル単量体が用いられて重合された重合体
重合体C: フッ素含有アクリレート単量体が用いられて重合された重合体
重合体D: メタクリル酸エステル単量体が用いられて重合された重合体
重合体E: フッ化ビニリデン単量体が用いられて重合された重合体
重合体F: フッ素含有メタクリレート単量体が用いられて重合された重合体(用いられた全単量体に占めるフッ素含有メタクリレート単量体の割合:20質量%)
重合体G: フッ素含有メタクリレート単量体が用いられて重合された重合体(用いられた全単量体に占めるフッ素含有メタクリレート単量体の割合:80質量%)
重合体H: メタクリル酸エステル単量体が用いられて重合された重合体
重合体I: アクリル酸エステル単量体が用いられて重合された共重合体
Polymers in the table represent the following.
Polymer A: A polymer polymerized using a fluorine-containing methacrylate monomer (ratio of fluorine-containing methacrylate monomer to total monomers used: 30% by mass)
Polymer B: polymer polymerized using acrylic acid ester monomer Polymer C: polymer polymerized using fluorine-containing acrylate monomer Polymer D: methacrylic acid ester monomer used Polymer E: polymer polymerized using vinylidene fluoride monomer Polymer F: polymer polymerized using fluorine-containing methacrylate monomer (total monomers used Proportion of fluorine-containing methacrylate monomer accounted for: 20% by mass)
Polymer G: A polymer polymerized using a fluorine-containing methacrylate monomer (ratio of fluorine-containing methacrylate monomer to total monomers used: 80% by mass)
Polymer H: polymer polymerized using methacrylic acid ester monomer Polymer I: copolymer polymerized using acrylic acid ester monomer
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (実施例33)
 ポリオレフィン微多孔膜の算術平均粗さ(Ra)を30nmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 33)
A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean roughness (Ra) of the polyolefin microporous membrane was changed to 30 nm.
 (実施例34)
 ポリオレフィン微多孔膜の算術平均粗さ(Ra)を40nmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 34)
A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean roughness (Ra) of the polyolefin microporous membrane was changed to 40 nm.
 (実施例35)
 ポリオレフィン微多孔膜の算術平均粗さ(Ra)を200nmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 35)
A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean roughness (Ra) of the polyolefin microporous membrane was changed to 200 nm.
 (実施例36)
 ポリオレフィン微多孔膜の算術平均粗さ(Ra)を300nmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 36)
A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean roughness (Ra) of the polyolefin microporous membrane was changed to 300 nm.
 (実施例37)
 ポリオレフィン微多孔膜の算術平均粗さ(Ra)を350nmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 37)
A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean roughness (Ra) of the polyolefin microporous membrane was changed to 350 nm.
 (実施例38)
 ポリオレフィン微多孔膜の突出山部高さ(Spk)を0.05μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 38)
A porous film was obtained in the same manner as in Example 1, except that the height (Spk) of the protrusion peaks of the polyolefin microporous membrane was changed to 0.05 μm.
 (実施例39)
 ポリオレフィン微多孔膜の突出山部高さ(Spk)を0.10μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 39)
A porous film was obtained in the same manner as in Example 1, except that the height (Spk) of the protrusion peaks of the polyolefin microporous membrane was changed to 0.10 μm.
 (実施例40)
 ポリオレフィン微多孔膜の突出山部高さ(Spk)を0.40μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 40)
A porous film was obtained in the same manner as in Example 1, except that the height (Spk) of the protrusion peaks of the polyolefin microporous membrane was changed to 0.40 μm.
 (実施例41)
 ポリオレフィン微多孔膜の突出山部高さ(Spk)を0.50μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
(Example 41)
A porous film was obtained in the same manner as in Example 1, except that the height (Spk) of the protrusion peaks of the polyolefin microporous membrane was changed to 0.50 μm.
 実施例33~41で用いた多孔質基材の算術平均高さ(Sa)、算術平均粗さ(Ra)もしくは突出山部高さ(Spk)および、実施例33~41で得られた多孔性フィルムおよびそれを用いた電池について剥離強度、電極とのドライ接着性、レート特性、寿命特性の測定結果を表4、表5に示す。 Arithmetic mean height (Sa), arithmetic mean roughness (Ra) or peak height (Spk) of porous substrates used in Examples 33-41, and porosity obtained in Examples 33-41 Tables 4 and 5 show the measurement results of peel strength, dry adhesion to electrodes, rate characteristics, and life characteristics of the film and the battery using it.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (実施例42)
 有機樹脂粒子の構成を表6に示すように変更した以外は実施例1の分散液Aと同じように重合体Jを含む分散液Jを製造した。その後、実施例1と同様にして、多孔性フィルムを得た。
(Example 42)
Dispersion J containing polymer J was prepared in the same manner as dispersion A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Thereafter, in the same manner as in Example 1, a porous film was obtained.
 (実施例43)
 有機樹脂粒子の構成を表6に示すように変更した以外は実施例1の分散液Aと同じように重合体Kを含む分散液Kを製造した。その後、実施例1と同様にして、多孔性フィルムを得た。
(Example 43)
Dispersion K containing polymer K was prepared in the same manner as dispersion A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Thereafter, in the same manner as in Example 1, a porous film was obtained.
 (実施例44)
 有機樹脂粒子の構成を表6に示すように変更した以外は実施例1の分散液Aと同じように重合体Lを含む分散液Lを製造した。その後、実施例1と同様にして、多孔性フィルムを得た。
(Example 44)
Dispersion L containing polymer L was prepared in the same manner as dispersion A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Thereafter, in the same manner as in Example 1, a porous film was obtained.
 (実施例45)
 有機樹脂粒子の構成を表6に示すように変更した以外は実施例1の分散液Aと同じように重合体Mを含む分散液Mを製造した。その後、実施例1と同様にして、多孔性フィルムを得た。
(Example 45)
Dispersion M containing polymer M was prepared in the same manner as Dispersion A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Thereafter, in the same manner as in Example 1, a porous film was obtained.
 (実施例46)
 有機樹脂粒子の構成を表6に示すように変更した以外は実施例1の分散液Aと同じように重合体Nを含む分散液Nを製造した。その後、実施例1と同様にして、多孔性フィルムを得た。
(Example 46)
Dispersion N containing polymer N was prepared in the same manner as dispersion A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Thereafter, in the same manner as in Example 1, a porous film was obtained.
 (実施例47)
 有機樹脂粒子の構成を表6に示すように変更した以外は実施例1の分散液Aと同じように重合体Oを含む分散液Oを製造した。その後、実施例1と同様にして、の多孔性フィルムを得た。
(Example 47)
Dispersion liquid O containing polymer O was produced in the same manner as dispersion liquid A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Then, in the same manner as in Example 1, a porous film was obtained.
 (実施例48)
 多孔質層に含まれる無機粒子の体積含有率αを30体積%に変更した以外は実施例44と同様にして、多孔性フィルムを得た。
(Example 48)
A porous film was obtained in the same manner as in Example 44, except that the volume content α of the inorganic particles contained in the porous layer was changed to 30% by volume.
 (実施例49)
 多孔質層に含まれる無機粒子の体積含有率αを80体積%に変更した以外は実施例44と同様にして、多孔性フィルムを得た。
(Example 49)
A porous film was obtained in the same manner as in Example 44, except that the volume content α of the inorganic particles contained in the porous layer was changed to 80% by volume.
 (実施例50)
 をポリオレフィン微多孔膜の算術平均高さ(Sa)を0.30μmに変更した以外は、実施例44と同様にして、多孔性フィルムを得た。
(Example 50)
A porous film was obtained in the same manner as in Example 44, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.30 μm.
 (実施例51)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.30μmに変更した以外は、実施例44と同様にして、多孔性フィルムを得た。
(Example 51)
A porous film was obtained in the same manner as in Example 44, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.30 μm.
 表6には、実施例1、42~51で用いた多孔質基材の算術平均高さ(Sa)、有機樹脂粒子を構成する重合体の重合に用いた単量体の種類、各単量体について該単量体のみを用いて重合した重合体のガラス転移温度(℃)、各単量体の使用割合(%)、および、その単量体のみで重合した重合体のガラス転移温度が-100℃以上0℃以下となる単量体の使用割合(表6中、「γ」と表記)を示す。 Table 6 shows the arithmetic mean height (Sa) of the porous substrate used in Examples 1 and 42 to 51, the type of monomer used for polymerization of the polymer constituting the organic resin particles, and each monomer The glass transition temperature (°C) of the polymer polymerized using only the monomer for the body, the usage ratio (%) of each monomer, and the glass transition temperature of the polymer polymerized only with the monomer The ratio of the monomers used (denoted as “γ” in Table 6) at −100° C. or higher and 0° C. or lower is shown.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表7には、実施例1、42~51で用いた無機粒子の種類、体積含有率α、および実施例1、42~51で得られた多孔性フィルムのβ/α、多孔質表層部での無機粒子の占有率β、多孔質層が設けられた側の多孔性フィルム表面の算術平均高さ(Sa)、表面自由エネルギー、ガラス転移温度(℃)、熱寸法安定性、剥離強度、電極とのドライ接着性、電極とのウェット接着性、そして該多孔性フィルムを用いた電池のレート特性、寿命特性を示す。 Table 7 shows the types of inorganic particles used in Examples 1 and 42 to 51, the volume content α, and the β/α of the porous films obtained in Examples 1 and 42 to 51. Inorganic particle occupancy β, arithmetic mean height (Sa) of the porous film surface on the side where the porous layer is provided, surface free energy, glass transition temperature (° C.), thermal dimensional stability, peel strength, electrode dry adhesion to electrodes, wet adhesion to electrodes, and rate characteristics and life characteristics of batteries using the porous film.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (比較例1)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.07μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
(Comparative example 1)
A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.07 μm.
 (比較例2)
 塗工液の固形分濃度を50質量%に変更にして粘度を80mPa・sにした以外は、実施例1と同様にして、多孔性フィルムを得た。
(Comparative example 2)
A porous film was obtained in the same manner as in Example 1, except that the solid content concentration of the coating liquid was changed to 50% by mass and the viscosity was changed to 80 mPa·s.
 (比較例3)
 塗工液の乾燥温度設定を105℃とした以外は、実施例1と同様にして、多孔性フィルムを得た。
(Comparative Example 3)
A porous film was obtained in the same manner as in Example 1, except that the drying temperature of the coating liquid was set to 105°C.
 (比較例4)
 有機樹脂粒子Aを用いずに表8に示す組成に変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
(Comparative Example 4)
A porous film was obtained in the same manner as in Example 1, except that the composition shown in Table 8 was used without using the organic resin particles A.
 (比較例5)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.35μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
(Comparative Example 5)
A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.35 μm.
 (比較例6)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.07μmに変更した以外は、実施例44と同様にして、多孔性フィルムを得た。
(Comparative Example 6)
A porous film was obtained in the same manner as in Example 44, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.07 μm.
 (比較例7)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.35μmに変更した以外は、実施例44と同様にして、多孔性フィルムを得た。
(Comparative Example 7)
A porous film was obtained in the same manner as in Example 44, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.35 μm.
 表8には、比較例1~7で用いた多孔質基材の算術平均高さ(Sa)、有機樹脂粒子を構成する重合体の重合に用いた単量体の種類、各単量体について該単量体のみを用いて重合した重合体のガラス転移温度(℃)、各単量体の使用割合(%)、および、その単量体のみで重合した重合体のガラス転移温度が-100℃以上0℃以下となる単量体の使用割合(表8中、「γ」と表記)を示す。表9には、比較例1~7で得られた多孔性フィルムのβ/α、多孔質表層部での無機粒子の占有率β、多孔質層が設けられた側の多孔性フィルム表面の算術平均高さ(Sa)、表面自由エネルギー、ガラス転移温度(℃)及び多孔質層の膜厚を示す。表10には、比較例1~7で得られた多孔性フィルムおよびそれを用いた電池について熱寸法安定性、剥離強度、電極とのドライ接着性、電極とのウェット接着性、レート特性、寿命特性の測定結果を示す。 Table 8 shows the arithmetic mean height (Sa) of the porous substrate used in Comparative Examples 1 to 7, the type of monomer used for polymerization of the polymer constituting the organic resin particles, and each monomer The glass transition temperature (° C.) of the polymer polymerized using only the monomer, the proportion (%) of each monomer used, and the glass transition temperature of the polymer polymerized only with the monomer are −100. ° C. to 0 °C. Table 9 shows the β/α of the porous films obtained in Comparative Examples 1 to 7, the occupancy β of the inorganic particles in the porous surface layer, and the arithmetic of the surface of the porous film on the side where the porous layer is provided. Average height (Sa), surface free energy, glass transition temperature (° C.) and film thickness of porous layer are shown. Table 10 shows the thermal dimensional stability, peel strength, dry adhesion to electrodes, wet adhesion to electrodes, rate characteristics, and life of the porous films obtained in Comparative Examples 1 to 7 and the batteries using them. The measurement results of the characteristics are shown.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 (参考例1)
 実施例1で得られた多孔性フィルムについて、電極との接着性の熱プレス条件を75℃の加熱環境下、2MPaの圧力で10秒間として電極とのドライ接着性、電解液注液性、レート特性、寿命特性を測定した。参考例1、2で得られた測定結果を表11に示す。
(Reference example 1)
For the porous film obtained in Example 1, the dry adhesion to the electrode, the electrolyte pourability, and the rate were determined by setting the hot press conditions for adhesion to the electrode in a heating environment of 75° C. under a pressure of 2 MPa for 10 seconds. Characteristics and life characteristics were measured. Table 11 shows the measurement results obtained in Reference Examples 1 and 2.
 (参考例2)
 実施例3で得られた多孔性フィルムについて、電極との接着性の熱プレス条件を75℃の加熱環境下、2MPaの圧力で10秒間として電極とのドライ接着性、電解液注液性、レート特性、寿命特性を測定した。
(Reference example 2)
For the porous film obtained in Example 3, the dry adhesion to the electrode, the electrolyte pourability, and the rate were determined by setting the hot press conditions for adhesion to the electrode in a heating environment of 75° C. under a pressure of 2 MPa for 10 seconds. Characteristics and life characteristics were measured.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1~7から、実施例1~51は、いずれも、多孔質基材と、該多孔質基材の少なくとも一方の面に、無機粒子と有機樹脂粒子を含む多孔質層とを有する多孔性フィルムであって、前記多孔質基材は、前記多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)が0.09μm以上0.3μm以下であり、多孔質層の全構成成分の体積を100体積%としたとき無機粒子の体積含有率α(体積%)と多孔質層の表面部での無機粒子の占有率β(質量%)がβ/α<1である、多孔性フィルムであり、優れた電極とのドライ接着性を有し、レート特性、電池寿命も良好である。また実施例42~45および48~51は有機樹脂粒子の組成を好適に選択することで、さらに電極との優れたウェット接着性も有する。 From Tables 1 to 7, Examples 1 to 51 all have a porous substrate and a porous layer containing inorganic particles and organic resin particles on at least one surface of the porous substrate. In the film, the porous substrate has an arithmetic mean height (Sa) of 0.09 μm or more and 0.3 μm or less in a 2200 μm square on the surface of the porous substrate on the side in contact with the porous layer. When the volume of all constituent components of the layer is 100% by volume, the volume content α (% by volume) of the inorganic particles and the occupation ratio β (% by mass) of the inorganic particles at the surface of the porous layer are β/α<1. It is a porous film, has excellent dry adhesion to electrodes, and has good rate characteristics and battery life. Examples 42 to 45 and 48 to 51 also have excellent wet adhesion to the electrode by appropriately selecting the composition of the organic resin particles.
 一方、比較例1、6は、多孔質層と接する側の多孔質基材表面の算術平均高さ(Sa)を0.09μm未満となるため、電極との接着性が劣る。比較例2は塗工液の粘度、固形分濃度が好適範囲を外れているため、有機樹脂粒子の表面偏在が阻害されており、β/α=1となるため、十分な電極との接着性が得られない。比較例3は塗工液の乾燥温度が100℃を超えているため、乾燥の過程で有機樹脂粒子が粒子形状を保持できておらず造膜することで有機樹脂粒子の表面偏在が阻害されており、β/α=1となるため、十分な電極との接着性が得られない。比較例4は有機樹脂粒子を含有していないため、有機樹脂粒子の表面偏在が起こらないため、β/α=1となり、十分な電極との接着性が得られない。比較例5、7は多孔質層と接する側の多孔質基材表面の算術平均高さ(Sa)0.3μmよりも大きいため、電極との接着性が強固に成りすぎることでイオン輸送を阻害し、高抵抗となり、電池特性が低下した。 On the other hand, in Comparative Examples 1 and 6, the arithmetic mean height (Sa) of the surface of the porous substrate on the side in contact with the porous layer is less than 0.09 μm, so the adhesiveness to the electrode is poor. In Comparative Example 2, since the viscosity and solid content concentration of the coating liquid are out of the preferred range, uneven distribution of the organic resin particles on the surface is hindered, and β/α = 1, so sufficient adhesion to the electrode. is not obtained. In Comparative Example 3, since the drying temperature of the coating liquid exceeded 100° C., the organic resin particles could not retain their particle shape during the drying process, and film formation hindered uneven distribution of the organic resin particles on the surface. , and β/α=1, so sufficient adhesion to the electrode cannot be obtained. Since Comparative Example 4 does not contain organic resin particles, uneven distribution of the organic resin particles on the surface does not occur. In Comparative Examples 5 and 7, since the arithmetic mean height (Sa) of the surface of the porous substrate on the side in contact with the porous layer is larger than 0.3 μm, the adhesion to the electrode becomes too strong, thereby inhibiting ion transport. However, the resistance became high and the battery characteristics deteriorated.
 なお、参考例1、2は、実施例1と実施例3にて得た多孔性フィルムと電極との接着性について熱プレス条件の圧力を5MPaから2MPaへ変更して実施したときには、実施例1、3とは異なり、多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)が大きいほど電極とのドライ接着性が低下した例を示すものである。 In Reference Examples 1 and 2, when the pressure of the hot press conditions was changed from 5 MPa to 2 MPa for the adhesion between the porous films obtained in Examples 1 and 3 and the electrodes, the pressure in Example 1 was reduced. 3 shows an example in which the dry adhesion to the electrode decreased as the arithmetic mean height (Sa) of the surface of the porous substrate on the side in contact with the porous layer in a 2200 μm square area increased.

Claims (24)

  1.  多孔質基材と、該多孔質基材の少なくとも一方の面に無機粒子と有機樹脂粒子とを含む多孔質層とを有する多孔性フィルムであって、前記多孔質基材は前記多孔質層と接する側の表面の2200μm四方における算術平均高さ(Sa)が0.09μm以上0.3μm以下であり、多孔質層の全構成成分の体積を100体積%としたときの無機粒子の体積含有率α(体積%)と、多孔質層の表面部での無機粒子の占有率β(面積%)がβ/α<1を満たす、多孔性フィルム。 A porous film having a porous substrate and a porous layer containing inorganic particles and organic resin particles on at least one surface of the porous substrate, wherein the porous substrate and the porous layer Arithmetic mean height (Sa) in 2200 μm square of the surface of the contact side is 0.09 μm or more and 0.3 μm or less, and the volume content of inorganic particles when the volume of all constituent components of the porous layer is 100% by volume. A porous film in which α (% by volume) and β (% by area) of inorganic particles occupying the surface of the porous layer satisfy β/α<1.
  2.  前記多孔性フィルムは、多孔質層を有する側の表面の多孔性フィルムの2200μm四方における算術平均高さ(Sa)が0.085μm以上0.3μm以下である、請求項1に記載の多孔性フィルム。 2. The porous film according to claim 1, wherein the porous film has an arithmetic mean height (Sa) of 0.085 μm or more and 0.3 μm or less in a 2200 μm square of the surface of the porous film on the side having the porous layer. .
  3.  前記無機粒子の体積含有率αが、多孔質層の全構成成分の体積を100体積%としたとき、30体積%以上80体積%以下である、請求項1または2に記載の多孔性フィルム。 The porous film according to claim 1 or 2, wherein the volume content α of the inorganic particles is 30% by volume or more and 80% by volume or less when the volume of all constituent components of the porous layer is 100% by volume.
  4.  前記多孔質層の表面部での無機粒子の占有率βが0%よりも大きい、請求項1から3のいずれかに記載の多孔性フィルム。 The porous film according to any one of claims 1 to 3, wherein the occupancy β of the inorganic particles in the surface portion of the porous layer is greater than 0%.
  5.  前記多孔質基材は、多孔質層と接する側の表面の12nm四方における算術平均粗さ(Ra)が40nm以上300nm以下である、請求項1から4のいずれかに記載の多孔性フィルム。 5. The porous film according to any one of claims 1 to 4, wherein the porous substrate has an arithmetic mean roughness (Ra) of 40 nm or more and 300 nm or less on a 12 nm square surface on the side in contact with the porous layer.
  6.  前記多孔質基材は、多孔質層と接する側の表面の2200μm四方における突出山部高さ(Spk)が0.10μm以上0.40μm以下である、請求項1から5のいずれかに記載の多孔性フィルム。 6. The porous substrate according to any one of claims 1 to 5, wherein the height (Spk) of protruding peaks in a 2200 μm square of the surface on the side in contact with the porous layer is 0.10 μm or more and 0.40 μm or less. porous film.
  7.  前記多孔質層の表面自由エネルギーが10mN/m以上80mN/m以下である、請求項1から6のいずれかに記載の多孔性フィルム。 The porous film according to any one of claims 1 to 6, wherein the porous layer has a surface free energy of 10 mN/m or more and 80 mN/m or less.
  8.  前記多孔質基材がポリオレフィン微多孔膜である、請求項1から7のいずれかに記載の多孔性フィルム。 The porous film according to any one of claims 1 to 7, wherein the porous substrate is a polyolefin microporous membrane.
  9.  前記無機粒子が無機水酸化物、無機酸化物および無機硫酸化物からなる群から選ばれる少なくとも1種によって構成された粒子である、請求項1から8のいずれかに記載の多孔性フィルム。 The porous film according to any one of claims 1 to 8, wherein the inorganic particles are particles composed of at least one selected from the group consisting of inorganic hydroxides, inorganic oxides and inorganic sulfates.
  10.  前記有機樹脂粒子がフッ素含有(メタ)アクリレート単量体、不飽和カルボン酸単量体、(メタ)アクリル酸エステル単量体、スチレン系単量体、オレフィン系単量体、ジエン系単量体、アクリルアミド系単量体、フッ化ビニリデン単量体からなる群から選ばれる少なくとも1つの単量体が用いられて重合された重合体を有する、請求項1から9のいずれかに記載の多孔性フィルム。 The organic resin particles are composed of a fluorine-containing (meth)acrylate monomer, an unsaturated carboxylic acid monomer, a (meth)acrylic acid ester monomer, a styrene monomer, an olefin monomer, and a diene monomer. 10. The porous polymer according to any one of claims 1 to 9, comprising a polymer polymerized using at least one monomer selected from the group consisting of , an acrylamide-based monomer, and a vinylidene fluoride monomer. the film.
  11.  前記有機樹脂粒子について有機樹脂粒子の全構成単量体成分を100質量%としたとき、フッ素含有(メタ)アクリレート単量体の割合が20質量%以上80質量%以下である、請求項10に記載の多孔性フィルム。 11. The method according to claim 10, wherein the ratio of the fluorine-containing (meth)acrylate monomer is 20% by mass or more and 80% by mass or less when the total constituent monomer components of the organic resin particles of the organic resin particles are 100% by mass. A porous film as described.
  12.  前記有機樹脂粒子がフッ素含有(メタ)アクリレート単量体のみで重合された重合体を含む、請求項10に記載の多孔性フィルム。 The porous film according to claim 10, wherein the organic resin particles contain a polymer polymerized only with a fluorine-containing (meth)acrylate monomer.
  13.  前記フッ素含有(メタ)アクリレート単量体一分子に含有されるフッ素原子数が3以上13以下である、請求項10から12のいずれかに記載の多孔性フィルム。 The porous film according to any one of claims 10 to 12, wherein the number of fluorine atoms contained in one molecule of the fluorine-containing (meth)acrylate monomer is 3 or more and 13 or less.
  14.  前記有機樹脂粒子が、さらに水酸基を有する(メタ)アクリレート単量体を用いて重合された重合体または共重合体を含む、請求項12または請求項13に記載の多孔性フィルム。 The porous film according to claim 12 or 13, wherein the organic resin particles further contain a polymer or copolymer polymerized using a (meth)acrylate monomer having a hydroxyl group.
  15.  前記有機樹脂粒子について、有機樹脂粒子の全構成単量体成分を100質量%としたとき、水酸基を有する(メタ)アクリレート単量体の割合が0質量%より大きく7.0質量%以下である請求項14に記載の多孔性フィルム。 Regarding the organic resin particles, the ratio of the (meth)acrylate monomer having a hydroxyl group is more than 0% by mass and 7.0% by mass or less when the total constituent monomer components of the organic resin particles are 100% by mass. 15. The porous film of claim 14.
  16.  前記有機樹脂粒子に含まれる重合体について、該重合体の原材料である単量体のうち少なくとも1つの単量体が、その単量体のみで重合がされたときの重合体のガラス転移温度が-100℃以上0℃以下となる単量体であることを特徴とする、請求項10から15のいずれかに記載の多孔性フィルム。 Regarding the polymer contained in the organic resin particles, the glass transition temperature of the polymer when at least one of the monomers that are the raw materials of the polymer is polymerized only with that monomer is 16. The porous film according to any one of claims 10 to 15, which is a monomer having a temperature of -100°C or higher and 0°C or lower.
  17.  前記その単量体のみで重合がされたときの重合体のガラス転移温度が-100℃以上0℃以下である単量体が、有機樹脂粒子の全構成単量体成分を100質量%としたとき、0質量%より大きく、10.0質量%以下である、請求項16に記載の多孔性フィルム。 The monomer having a glass transition temperature of −100° C. or higher and 0° C. or lower when polymerized only by the monomer alone accounts for 100% by mass of the total constituent monomer components of the organic resin particles. 17. The porous film according to claim 16, which is greater than 0% by weight and 10.0% by weight or less.
  18.  前記多孔質層が少なくとも2種類の有機樹脂粒子を含む、請求項1から17のいずれかに記載の多孔性フィルム。 The porous film according to any one of claims 1 to 17, wherein the porous layer contains at least two types of organic resin particles.
  19.  前記有機樹脂粒子の平均粒径が100nm以上500nm以下である、請求項1から18のいずれかに記載の多孔性フィルム。 The porous film according to any one of claims 1 to 18, wherein the organic resin particles have an average particle size of 100 nm or more and 500 nm or less.
  20.  前記多孔質基材の膜厚が3μm以上15μm以下である、請求項1から請求項19のいずれかに記載の多孔性フィルム。 The porous film according to any one of claims 1 to 19, wherein the film thickness of the porous substrate is 3 µm or more and 15 µm or less.
  21.  前記多孔質層の膜厚が2μm以上8μm以下である、請求項1から請求項20のいずれかに記載の多孔性フィルム。 The porous film according to any one of claims 1 to 20, wherein the film thickness of the porous layer is 2 µm or more and 8 µm or less.
  22.  請求項1から21のいずれかに記載の多孔性フィルムを用いてなる二次電池用セパレータ。 A secondary battery separator using the porous film according to any one of claims 1 to 21.
  23.  請求項22に記載の二次電池用セパレータを用いてなる二次電池。 A secondary battery using the secondary battery separator according to claim 22.
  24.  多孔質基材と、該多孔質基材の少なくとも一方の面に、無機粒子と有機樹脂粒子とを含む多孔質層とを有する多孔性フィルムであって、
    前記多孔質基材は、前記多孔質層と接する側の表面の2200μm四方における算術平均高さ(Sa)が0.09μm以上であるポリオレフィン微多孔膜からなり、
    前記無機粒子が、無機水酸化物、無機酸化物および無機硫酸化物からなる群から選ばれる少なくとも1種によって構成された粒子であり、
    前記有機樹脂粒子が、フッ素含有(メタ)アクリレート単量体、不飽和カルボン酸単量体、(メタ)アクリル酸エステル単量体、スチレン系単量体、オレフィン系単量体、ジエン系単量体、アクリルアミド系単量体、フッ化ビニリデン単量体からなる群から選ばれる少なくとも1つの単量体が用いられて重合された重合体であり、
    前記多孔質層の全構成成分の体積を100体積%としたとき無機粒子の体積含有率αが30体積%以上80体積%以下であり、
    該無機粒子の体積含有率α(体積%)と前記多孔質層の表面部での無機粒子の占有率β(面積%)との関係が、β>0かつβ/α<1を満たす、電池用セパレータ。
    A porous film having a porous substrate and a porous layer containing inorganic particles and organic resin particles on at least one surface of the porous substrate,
    The porous substrate is made of a polyolefin microporous membrane whose surface in contact with the porous layer has an arithmetic mean height (Sa) of 0.09 μm or more in a 2200 μm square,
    The inorganic particles are particles composed of at least one selected from the group consisting of inorganic hydroxides, inorganic oxides and inorganic sulfates,
    The organic resin particles contain a fluorine-containing (meth)acrylate monomer, an unsaturated carboxylic acid monomer, a (meth)acrylic acid ester monomer, a styrene monomer, an olefin monomer, and a diene monomer. is a polymer polymerized using at least one monomer selected from the group consisting of a polymer, an acrylamide-based monomer, and a vinylidene fluoride monomer,
    When the volume of all constituent components of the porous layer is 100% by volume, the volume content ratio α of the inorganic particles is 30% by volume or more and 80% by volume or less,
    The battery, wherein the relationship between the volume content α (volume %) of the inorganic particles and the occupation ratio β (area %) of the inorganic particles in the surface portion of the porous layer satisfies β>0 and β/α<1. separator for
PCT/JP2022/015369 2021-05-10 2022-03-29 Porous film, separator for secondary battery, and secondary battery WO2022239547A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280030526.7A CN117203846A (en) 2021-05-10 2022-03-29 Porous film, separator for secondary battery, and secondary battery
KR1020237028341A KR20240006493A (en) 2021-05-10 2022-03-29 Porous films, separators for secondary batteries and secondary batteries
JP2022521274A JPWO2022239547A1 (en) 2021-05-10 2022-03-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-079536 2021-05-10
JP2021079536 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022239547A1 true WO2022239547A1 (en) 2022-11-17

Family

ID=84028224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015369 WO2022239547A1 (en) 2021-05-10 2022-03-29 Porous film, separator for secondary battery, and secondary battery

Country Status (4)

Country Link
JP (1) JPWO2022239547A1 (en)
KR (1) KR20240006493A (en)
CN (1) CN117203846A (en)
WO (1) WO2022239547A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198534A1 (en) * 2014-06-27 2015-12-30 日本ゼオン株式会社 Composition for nonaqueous secondary cell functional layer, functional layer for nonaqueous secondary cell, and nonaqueous secondary cell
JP2016072162A (en) * 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 Separator for power storage device
JP2019087422A (en) * 2017-11-07 2019-06-06 トヨタ自動車株式会社 Nonaqueous secondary battery
WO2020091061A1 (en) * 2018-11-01 2020-05-07 住友化学株式会社 Non-aqueous electrolyte secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2835844T3 (en) 2012-04-05 2019-04-30 Zeon Corp Separator for secondary cell
CN104521030B (en) 2012-07-30 2016-04-06 帝人株式会社 Separator for non-aqueous electrolyte battery and nonaqueous electrolyte battery
JP6054001B2 (en) 2014-12-15 2016-12-27 帝人株式会社 Non-aqueous electrolyte battery separator, non-aqueous electrolyte battery, and non-aqueous electrolyte battery manufacturing method
CN109565016B (en) 2016-08-17 2022-09-16 日本瑞翁株式会社 Composition for non-aqueous secondary battery porous membrane, and non-aqueous secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198534A1 (en) * 2014-06-27 2015-12-30 日本ゼオン株式会社 Composition for nonaqueous secondary cell functional layer, functional layer for nonaqueous secondary cell, and nonaqueous secondary cell
JP2016072162A (en) * 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 Separator for power storage device
JP2019087422A (en) * 2017-11-07 2019-06-06 トヨタ自動車株式会社 Nonaqueous secondary battery
WO2020091061A1 (en) * 2018-11-01 2020-05-07 住友化学株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPWO2022239547A1 (en) 2022-11-17
KR20240006493A (en) 2024-01-15
CN117203846A (en) 2023-12-08

Similar Documents

Publication Publication Date Title
JP7207328B2 (en) Porous film, secondary battery separator and secondary battery
JP6431621B2 (en) Electric storage device separator, electrode body using the same, and electric storage device
WO2019107219A1 (en) Porous film, separator for secondary cell, and secondary cell
JP2017084754A (en) Laminated separator for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery member, and nonaqueous electrolyte secondary battery
JP7327044B2 (en) Porous film, secondary battery separator and secondary battery
JP7234941B2 (en) Porous film, secondary battery separator and secondary battery
JP7115319B2 (en) Porous film, secondary battery separator and secondary battery
JP2019008884A (en) Slurry for pattern coating
JP7052924B1 (en) Porous film, separator for secondary battery and secondary battery
WO2022239547A1 (en) Porous film, separator for secondary battery, and secondary battery
WO2021200648A1 (en) Porous film, separator for secondary battery, and secondary battery
WO2022239548A1 (en) Porous film, separator for secondary batteries, and secondary battery
JP7331692B2 (en) Porous film, secondary battery separator and secondary battery
JP2021184378A (en) Porous film, separator for secondary battery, and secondary battery
WO2023053821A1 (en) Porous film, separator for secondary battery, and secondary battery
WO2021200649A1 (en) Porous film, separator for secondary battery, and secondary battery
JP7176249B2 (en) Porous film, secondary battery separator and secondary battery
JP2024072806A (en) Separator for power storage device, manufacturing method thereof, and power storage device
JP2021057338A (en) Method for manufacturing separator for electrochemical element
JP2022037886A (en) Porous film, separator for secondary battery and secondary battery
JP2022037399A (en) Manufacturing method for separator for electrochemical element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022521274

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807252

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280030526.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807252

Country of ref document: EP

Kind code of ref document: A1