WO2020090939A1 - Square steel pipe and method of welding square steel pipe - Google Patents

Square steel pipe and method of welding square steel pipe Download PDF

Info

Publication number
WO2020090939A1
WO2020090939A1 PCT/JP2019/042691 JP2019042691W WO2020090939A1 WO 2020090939 A1 WO2020090939 A1 WO 2020090939A1 JP 2019042691 W JP2019042691 W JP 2019042691W WO 2020090939 A1 WO2020090939 A1 WO 2020090939A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
material layer
welding
rectangular steel
yield point
Prior art date
Application number
PCT/JP2019/042691
Other languages
French (fr)
Japanese (ja)
Inventor
毅 萩野
前嶋 匡
佐藤 誠
Original Assignee
旭化成建材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成建材株式会社 filed Critical 旭化成建材株式会社
Priority to KR1020217012479A priority Critical patent/KR102485533B1/en
Priority to JP2020554009A priority patent/JP7252249B2/en
Publication of WO2020090939A1 publication Critical patent/WO2020090939A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/06Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for positioning the molten material, e.g. confining it to a desired area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • B23K9/186Submerged-arc welding making use of a consumable electrodes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/32Columns; Pillars; Struts of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles

Definitions

  • the present invention relates to a square steel pipe and a method for welding a square steel pipe.
  • the diaphragm type for example, through diaphragm type, inner diaphragm type, outer diaphragm type, etc.
  • a non-diaphragm type column-beam joint structure has been adopted in which a H-shaped steel can be directly welded to the pipe wall surface by using a column-beam joint core made of a short, thick rectangular steel pipe without providing this diaphragm.
  • Patent Document 1 As the thick-walled rectangular steel pipe applied to the above non-diaphragm type beam-column joint structure, for example, it is known that cast steel or shaped steel is welded.
  • Patent Document 1 four rectangular steel plates are combined in a box shape, and side edge portions of the steel plates are welded to each other to form a thick-walled rectangular steel pipe having a quadrangular shape in cross section.
  • four steel plates with the groove formed on both side edges are arranged in a box shape, the side edges of the respective steel sheets are adjacent to each other, and a welding torch is arranged between the side edges, respectively.
  • Patent Document 1 describes a method in which a torch is moved upward from below the steel sheet and the side edges of the steel sheet are welded at the same time.
  • the thick-walled square steel pipe applied to the non-diaphragm type beam-column joint structure has a structure in which the H-section steel is directly joined to the side surface thereof as described above, and therefore has a strength capable of withstanding such a structure. Desired.
  • a thick-walled rectangular steel pipe is constructed by welding the side edge portions of the steel sheets to each other as in Patent Document 1, stress is likely to concentrate particularly on the joint portion, and the strength as designed can be obtained. Sometimes there is not.
  • Patent Document 1 describes that the work efficiency is improved by simultaneously welding the side edge portions of each steel sheet, it is possible to improve the strength of the thick-walled rectangular steel pipe formed by welding. Was not considered and needed improvement.
  • an object of the present invention is to provide a technique capable of improving the strength of a square steel pipe used for a beam-column joint structure.
  • a square steel pipe is a square steel pipe used for a column-beam joint portion between a column and a beam, and is a welded joint formed by welding a plurality of steel plates and side edges of the steel plates. It is a steel pipe having a quadrangular cross-sectional view and a welded part has a multilayer structure in which different kinds of materials are laminated, and the yield point of the material forming the inner material layer located inside the multilayer is It is higher than the yield point of the material forming the outer material layer located on the outer side.
  • FIG. 1 shows a main part of a steel frame structure that adopts this non-diaphragm type beam-column joint structure.
  • FIG. 1 shows a main part of a steel frame structure that adopts a non-diaphragm type beam-column joint structure, but the beam-column joint structure in the present embodiment is not limited to this mode, and for example, a thick-walled prism A mode in which a hole is opened in the steel pipe 30 and the beam 20 is bolted is also included.
  • a column-beam joint structure 1 includes upper and lower rectangular steel pipe columns 10a and 10b extending in the vertical direction and a thick-walled rectangular steel pipe disposed between the upper and lower square steel pipe columns 10a and 10b. 30 (square steel pipe), and a beam 20 whose one end is fixed to the side surface of the thick-walled square steel pipe 30 and which is extended in the horizontal direction.
  • the beam 20 is made of H-shaped steel, and is composed of two flat plate-like flanges 20a facing each other and a web 20b formed between the facing flanges 20a.
  • the beam 20 is welded to the thick-walled rectangular steel pipe 30 such that the flanges 20a are vertically opposed to each other and one end surface of the web 20b is in contact with the side surface of the thick-walled rectangular steel pipe 30.
  • the square steel pipe pillars 10a and 10b are long pillar steel pipes that are pillars of the steel frame structure and have a substantially square cross section.
  • the lower end of the thick-walled rectangular steel pipe 30 is joined to the upper end of the rectangular steel pipe column 10b (lower floor column) extending to the lower side, and the thick-walled prism is attached to the lower end of the rectangular steel pipe column 10a (upper column) extending to the upper side.
  • the upper end of the steel pipe 30 is joined.
  • square steel pipe columns 10a and 10b are not individually distinguished and are collectively expressed, they are simply referred to as "square steel pipe columns 10".
  • the thick-walled rectangular steel pipe 30 is a short rectangular steel pipe having a substantially quadrangular shape in cross section, which is disposed at a connecting portion (column-beam joint portion) between the upper and lower rectangular steel pipe columns 10 and the beam 20.
  • the upper and lower rectangular steel pipe columns 10 and the thick-walled rectangular steel pipe 30 are arranged so as to be linearly positioned. Since the non-diaphragm type thick square steel pipe 30 capable of directly joining the beam 20 made of H-shaped steel to the side surface is used in the beam-column joint structure 1 in the present embodiment, the plate thickness of the thick square steel pipe 30 The t c is formed to be thicker than the plate thickness t p of the square steel tubular column 10.
  • the plate thickness t c is, for example, 22 to 50 mm, and the plate thickness t p is, for example, 6 to 25 mm.
  • the length of the thick-walled rectangular steel pipe 30 in the longitudinal direction is longer than the height of the beam 20 joined to the side surface of the thick-walled rectangular steel pipe 30 (the height between the flanges 20a).
  • FIG. 2 is a perspective view showing a schematic configuration of the thick-walled rectangular steel pipe 30.
  • FIG. 3 is a side view showing a schematic configuration of the thick-walled rectangular steel pipe 30.
  • FIG. 4 is a plan view showing a schematic configuration of the thick-walled rectangular steel pipe 30.
  • FIG. 5 is an enlarged view for explaining the weld metal 32 (weld portion) formed at the corner of the thick-walled rectangular steel pipe 30.
  • the thick-walled rectangular steel pipe 30 is formed by welding four rectangular steel plates 31a, 31a, 31b, 31b thicker than the steel pipes constituting the square steel pipe column 10 to each other by welding. It is molded by.
  • a process of welding the edges of the steel plates 31a, 31a, 31b, 31b to each other to form the weld metal 32 will be described.
  • the steel plates 31a, 31a, 31b, 31b are not individually distinguished but are collectively expressed, they are simply referred to as "steel plates 31".
  • a groove G having an inclination of a predetermined angle is formed on the side edges of the steel plates 31 arranged in a box shape adjacent to each other.
  • a groove G having an inclination of a predetermined angle is formed at both widthwise edges of the steel plates 31b, 31b arranged to face each other.
  • a predetermined welding device for example, a welding torch (not shown)
  • the steel plates 31 are arranged along the vertical direction (the vertical direction in FIG. 3) of the steel plates 31.
  • the adjacent steel plates 31 are joined by welding from one end to the other end (as shown in FIG.
  • the weld metal 32 is formed on the side edge portions (inside the corner portions of the steel plates 31) of the adjacent steel plates 31 to join the steel plates 31 to each other to manufacture a steel pipe having a substantially rectangular cross section.
  • the weld metal 32 obtained by multi-layer welding is formed in the groove G formed between the adjacent steel plates 31.
  • FIG. 5 is an enlarged view showing the periphery of the weld metal 32 in an enlarged manner.
  • the weld metal 32 is formed at the corners (near the four corners of the substantially square cross section) of the thick-walled rectangular steel pipe 30 and has a multilayer structure in which a plurality of types of materials are laminated.
  • the backing metal is provided on the groove G backside (the inner surface side of the steel sheet 31) formed between the adjacent steel sheets 31. 35 is applied and welding is performed by CO 2 semi-automatic welding to form the inner material layer 321.
  • welding is performed by submerged arc welding to form the outer material layer 322.
  • the multi-layered weld metal 32 including the inner material layer 321 and the outer material layer 322 is formed.
  • welding is performed by CO 2 semi-automatic welding to form one inner material layer 321
  • welding is performed by submerged arc welding and the outer material layer 322.
  • the material layer located on the inner side is the inner material layer.
  • the material layer located on the outer side is referred to as an outer material layer 322.
  • a high-strength material is used for the inner material layer 321 formed by welding the first layer.
  • the yield point measured according to the tensile test specified in JIS Z 2241 of the material used for the inner material layer 321 is the tensile test specified in JIS Z 2241 of the material used for the steel plate 31.
  • the yield point is higher than the yield point measured according to JIS standard and is higher than the yield point measured according to the tensile test specified in JIS Z 2241 of the material forming outer material layer 322.
  • the inner material layer 321 is a yield point is measured according to the tensile test defined in JIS Z 2241 is 460N / mm 2 or more and a tensile strength of 550 N / mm 2 or more numbers It is formed using a range of materials. Furthermore, in addition to satisfying the numerical values of the yield point and the tensile strength measured according to the tensile test specified in JIS Z 2241, the shock absorption energy in the Charpy impact test specified in JIS Z 2242 It is preferable to form the inner material layer 321 using a material of 70 J or more at 0 ° C. As the welding material used for the inner material layer 321, for example, YGW18 or the like can be adopted.
  • the welding material in the first layer should have a strength (yield point, tensile strength) higher than that of the base material, and in order to ensure that the welding material has a lower limit value higher than the upper limit value of the base material standard.
  • a strength yield point, tensile strength
  • the outer material layer 322 has a yield point of 390 N / mm 2 or more measured according to the tensile test specified in JIS Z 2241 and is compliant with the tensile test specified in JIS Z 2241 of the inner material layer 321.
  • a material having a tensile strength lower than the yield point measured and a tensile strength in the numerical range of 490 N / mm 2 or more is used.
  • As a welding material for the outer material layer 322 satisfying such a condition for example, EH12K, EH14, S502-H or the like can be adopted.
  • the yield point measured according to the tensile test specified in JIS Z 2241 is in the numerical range of 325 to 445 N / mm 2
  • the tensile strength is in the range of 490 to 610 N / mm 2 .
  • a range of steel materials is used.
  • a steel material for example, rolled steel material SN490B for building structure, TMCP steel plate TMCP325B for building structure, etc. can be adopted.
  • the inner material layer 321 formed by welding the first layer has a high-strength material (steel sheet 31, measured according to the tensile test stipulated in JIS Z 2241 of the material used for the outer material layer 322).
  • a material having a yield point higher than the yield point the joint strength of the inner side (the inner surface side of the thick rectangular steel tube 30) of the weld metal 32 formed by welding the side edge portions of the steel plate 31 can be improved.
  • the inner material layer 321 is formed to improve the inner joint strength of the weld metal 32, it is possible to enhance the proof stress against the stress concentration. Further, by using a material (for example, YGW18 or the like) whose impact absorption energy is 70 J or more at 0 ° C. in the Charpy impact test specified in JIS Z2242 described above for the inner material layer 321, the toughness can be improved. Even if the tensile stress acts, the possibility of fracture in the weld metal 32 can be suppressed. As one of preferable combinations, the inner material layer 321 can be composed of YGW18, the outer material layer 322 of S502-H, and the steel plate 31 of SN490B.
  • the inner material layer 321 made of a material having a higher yield point than the yield point measured according to the tensile test of JIS 2241 of the material used for the steel plate 31 is formed.
  • an outer material layer 322 made of a material having a lower yield point measured in accordance with a tensile test specified in JIS Z 2241 of the material of the inner material layer 321 is formed.
  • a step of performing is performed.
  • the welding voltage value and the welding current in the welding operation in the submerged arc welding are adjusted. That is, in the step of forming the outer material layer 322, only in the step of welding the outermost layer of the outer material layer 322, the welding voltage value, the welding current value, and the welding current value when welding the layers other than the outermost layer of the outer material layer 322 are welded. It is preferable to weld at different speed values.
  • the column-beam joint structure 1 or the welding method as in the present embodiment reduces the excess by suppressing the height of the excess within a predetermined value. It is possible to join a beam to a square steel pipe without any problem.
  • stress concentration occurs when a force that deforms the tube wall (steel plate) of the thick-walled rectangular steel pipe outward is transmitted from the beam at the time of an earthquake, etc.
  • the post-joining portion is designed to have higher strength than the base metal in consideration of defects due to welding (“base metal strength ⁇ welding strength”).
  • base metal strength ⁇ welding strength the strength at the post-joined portion by welding is set to “inner material layer ⁇ outer material layer” and further “inner material layer ⁇ outer material layer”.
  • the thick-walled rectangular steel pipe 30 manufactured through the above-described welding process has a backing metal 35 having a rectangular shape in plan view arranged inside the corner of the thick-walled rectangular steel pipe 30 and formed outside the backing metal 35.
  • the inclined groove G thus formed is welded to form the weld metal 32.
  • the backing metal 35 has a prismatic shape extending along the inside of the corner of the thick-walled rectangular steel tube 30, but is not limited to this shape and various other shapes. Can be changed to.
  • the backing metal 35B arranged inside the corner portion of the thick-walled rectangular steel pipe 30 into an L-shape in plan view.
  • the backing metal 35B having an L-shape in plan view shown in FIG. 6A extends from the upper end to the lower end of the thick-walled rectangular steel pipe 30 along the inside of the corner of the thick-walled rectangular steel pipe 30.
  • the backing metal 35C arranged inside the corner of the thick-walled rectangular steel tube 30 can be formed in a triangular shape in plan view.
  • the backing metal 35C having a triangular shape in plan view also extends from the upper end to the lower end of the thick-walled rectangular steel pipe 30 along the inside of the corner of the thick-walled rectangular steel pipe 30.
  • a direction in which the steel plate 31 opens due to tensile stress from the beam 20 (FIG. 1) welded to the outer side of the thick-walled rectangular steel tube 30 (broken line arrow F in FIG. 6).
  • the backing plates 35B and 35C can be easily followed. It is possible to relieve the stress concentration generated at the inner corner of the thick-walled rectangular steel pipe 30 and at the end of the gap between the backing metal 35 and the steel plate 31 on the side of the weld metal 32.
  • the groove G shape between the adjacent steel plates 31 in which the weld metal 32 is formed has a shape that widens from the inside to the outside of the thick rectangular steel tube 30.
  • the inclination angle ⁇ (FIG. 5) of the groove G shape is set in the range of 20 ° to 40 °, for example. If the inclination angle ⁇ is 40 ° or more, the welding amount increases, so that the economical efficiency decreases, and if it is 20 ° or less, it becomes difficult to secure the quality.
  • the amount of material used for the inner material layer 321 in the weld metal 32. can be suppressed.
  • the shape of the groove G formed between the adjacent steel plates 31 is the shape that widens from the inside to the outside of the thick-walled square steel pipe 30 is shown.
  • the groove shape is not limited to such a groove shape, and the groove shape can be transformed into various other shapes.
  • the side edges of four flat steel plates 31 are welded and joined to each other to manufacture the thick-walled rectangular steel pipe 30 having a substantially quadrangular cross-sectional shape. It is not limited to manufacturing the thick-walled rectangular steel pipe 30 using the flat plate-shaped steel plate 31.
  • FIG. 7 (A) a cross section in which two steel plates 31d having a substantially L-shape in plan view are used and the groove Gd between the edges of the steel plate 31d is welded to be welded metal 32d. It is also possible to manufacture the thick-walled rectangular steel pipe 30D having a substantially rectangular shape as viewed. Further, as shown in FIG. 7B, two steel plates 31e having a substantially U-shape in plan view are used, and the groove Ge between the edges of the steel plate 31e is welded to be welded metal 32e. It is also possible to manufacture the thick-walled rectangular steel pipe 30E having a substantially square cross section. Further, as shown in FIG.
  • a thick rectangular steel tube 30F may be formed by combining an H-shaped steel 31f and two flat steel plates 31g. Specifically, first, an H-section steel 31f including two flat plate-shaped flanges 31f1 facing each other and a web 31f2 formed between the facing flanges 31f1 is prepared. In the H-shaped steel 31f, a flat plate-shaped steel plate 31g having grooves Gf formed at both widthwise edges is arranged so as to connect between the facing flanges 31f1. The groove Gf formed at both edges of the steel plate 31g is welded to form a weld metal 32f, and the flange 31f1 of the H-shaped steel 31f and the steel plate 31g are joined. In this way, it is also possible to manufacture the thick-walled rectangular steel pipe 30F (that is, a rectangular steel pipe having a quadrangular cross-section) by combining the H-shaped steel 31f and the steel plate 31g with each other.
  • the thick-walled rectangular steel pipe 30F that is, a
  • the inner material layer 321 is composed of a single layer
  • the outer material layer 322 is composed of a plurality of layers made of the same material.
  • 321 may be formed in two or more layers.
  • more layers of the inner material layer 321 may be formed than layers of the outer material layer 322.
  • SYMBOLS 1 Column-beam connection structure, 10 ... Square steel pipe column, 20 ... Beam (H-shaped steel beam), 30 ... Thick wall square steel pipe (square steel pipe), 31 ... Steel plate, 32 ... Weld metal (welded part), 35 ... Back Gold, 321 ... Inner material layer, 322 ... Outer material layer

Abstract

Provided is a square steel pipe having a rectangular cross section and comprising: a plurality of steel sheets thicker than a plate thickness of a steel pipe constituting a rectangular steel pipe column; and a welded metal (32) bonded by welding side edges of the steel sheets. The welded metal (32) is formed at a corner of the square steel pipe, and comprises a multilayer structure in which different types of material are stacked. The yield point of a material forming an inner material layer (321) located on the inside of multiple layers is higher than the yield point of a material forming an outer material layer (322) located on the outside of the multiple layers.

Description

角形鋼管及び角形鋼管の溶接方法Welding method for square steel pipe and square steel pipe
 本発明は、角形鋼管及び角形鋼管の溶接方法に関する。 The present invention relates to a square steel pipe and a method for welding a square steel pipe.
 鉄骨構造物の柱部材に用いられる角形鋼管柱と、梁部材に用いられるH形鋼との接合部分においては、従来、ダイアフラム形式(例えば、通しダイアフラム形式、内ダイアフラム形式、外ダイアフラム形式等)が採用されている。近年では、このダイアフラムを設けずに短尺の厚肉角形鋼管からなる柱梁接合部コアを用いてその管壁面にH形鋼を直接溶接可能にしたノンダイアフラム形式の柱梁接合構造も採用されている(例えば特許文献1)。 Conventionally, in the joint portion of the rectangular steel pipe column used for the column member of the steel structure and the H-shaped steel used for the beam member, the diaphragm type (for example, through diaphragm type, inner diaphragm type, outer diaphragm type, etc.) is used. Has been adopted. In recent years, a non-diaphragm type column-beam joint structure has been adopted in which a H-shaped steel can be directly welded to the pipe wall surface by using a column-beam joint core made of a short, thick rectangular steel pipe without providing this diaphragm. (For example, Patent Document 1).
 上記ノンダイアフラム形式の柱梁接合構造に適用される厚肉角形鋼管は、例えば鋳鋼製や形鋼を溶接で接合したものが知られている。特許文献1では、4枚の矩形状鋼板を箱形に組合せ、各鋼板の側縁部同士を溶接することにより断面視四角形の厚肉角形鋼管を形成している。詳細には、開先を両側縁部に形成した4枚の鋼板を箱形に配置して各鋼板の側縁部を隣接させ、当該側縁部間に溶接トーチをそれぞれ配置し、これらの溶接トーチを鋼板の下方から上方に移動させて鋼板の側縁部を同時に溶接する方法が特許文献1に記載されている。 As the thick-walled rectangular steel pipe applied to the above non-diaphragm type beam-column joint structure, for example, it is known that cast steel or shaped steel is welded. In Patent Document 1, four rectangular steel plates are combined in a box shape, and side edge portions of the steel plates are welded to each other to form a thick-walled rectangular steel pipe having a quadrangular shape in cross section. In detail, four steel plates with the groove formed on both side edges are arranged in a box shape, the side edges of the respective steel sheets are adjacent to each other, and a welding torch is arranged between the side edges, respectively. Patent Document 1 describes a method in which a torch is moved upward from below the steel sheet and the side edges of the steel sheet are welded at the same time.
特開2014-024092号公報JP, 2014-024092, A
 ところで、ノンダイアフラム形式の柱梁接合構造に適用される厚肉角形鋼管には、前述したようにその側面にH形鋼が直接接合される構造であるため、そのような構造に耐え得る強度が求められる。このような厚肉角形鋼管を、特許文献1のように各鋼板の側縁部同士を溶接にて接合した構成とした場合、特に接合部分に応力が集中しやすく、設計通りの強度が得られないことがある。特許文献1には、各鋼板の側縁部同士を同時に溶接することで、作業能率を向上させることは記載されているものの、溶接により接合して形成した厚肉角形鋼管の強度を向上させることの検討はされていなく、改善する必要があった。 By the way, the thick-walled square steel pipe applied to the non-diaphragm type beam-column joint structure has a structure in which the H-section steel is directly joined to the side surface thereof as described above, and therefore has a strength capable of withstanding such a structure. Desired. When such a thick-walled rectangular steel pipe is constructed by welding the side edge portions of the steel sheets to each other as in Patent Document 1, stress is likely to concentrate particularly on the joint portion, and the strength as designed can be obtained. Sometimes there is not. Although Patent Document 1 describes that the work efficiency is improved by simultaneously welding the side edge portions of each steel sheet, it is possible to improve the strength of the thick-walled rectangular steel pipe formed by welding. Was not considered and needed improvement.
 そこで、本発明は、柱梁接合構造に用いられる角形鋼管の強度を向上させることができる技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a technique capable of improving the strength of a square steel pipe used for a beam-column joint structure.
 本発明の一態様に係る角形鋼管は、柱と梁との柱梁接合部に用いられる角形鋼管であって、複数枚の鋼板と、該鋼板の側縁部同士を溶接して接合された溶接部とから成る断面視四角形の鋼管であり、溶接部は、異なる種類の材料が積層された多層構造から成り、多層のうち内側に位置する内側材料層を形成する材料の降伏点は、多層のうち外側に位置する外側材料層を形成する材料の降伏点よりも高い。 A square steel pipe according to one aspect of the present invention is a square steel pipe used for a column-beam joint portion between a column and a beam, and is a welded joint formed by welding a plurality of steel plates and side edges of the steel plates. It is a steel pipe having a quadrangular cross-sectional view and a welded part has a multilayer structure in which different kinds of materials are laminated, and the yield point of the material forming the inner material layer located inside the multilayer is It is higher than the yield point of the material forming the outer material layer located on the outer side.
 本発明によれば、柱梁接合構造に用いられる角形鋼管の強度を向上させることができる技術を提供することができる。 According to the present invention, it is possible to provide a technology capable of improving the strength of a rectangular steel pipe used in a beam-column joint structure.
鉄骨構造物の要部を説明するための斜視図である。It is a perspective view for explaining the important section of a steel frame structure. 本実施形態に係る厚肉角形鋼管の概略構成を示す斜視図である。It is a perspective view showing a schematic structure of a thick square steel tube concerning this embodiment. 本実施形態に係る厚肉角形鋼管の概略構成を示す側面図である。It is a side view which shows schematic structure of the thick-walled square steel pipe which concerns on this embodiment. 本実施形態に係る厚肉角形鋼管の概略構成を示す平面図である。It is a top view showing a schematic structure of a thick-walled square steel pipe concerning this embodiment. 隣接する鋼板の間に形成される溶接金属を拡大して示す拡大図である。It is an enlarged view which expands and shows the weld metal formed between the adjacent steel plates. 厚肉角形鋼管に適用される裏当金の変形例を説明するための図である。It is a figure for demonstrating the modification of the backing metal applied to a thick-walled square steel pipe. 厚肉角形鋼管における鋼板の変形例を説明するための図である。It is a figure for demonstrating the modification of the steel plate in a thick-walled square steel pipe.
 添付図面を参照して、本発明の好適な実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。 A preferred embodiment of the present invention will be described with reference to the accompanying drawings. In addition, in each of the drawings, components denoted by the same reference numerals have the same or similar configurations.
 まず、本実施形態に係る角形鋼管が適用される柱梁接合構造の構成について説明する。四角形鋼管柱とH形鋼梁とを用いた鉄骨構造物を建造する場合には、四角形鋼管柱を立てて、当該角形鋼管柱にH形鋼梁を取り付ける構造が採用される。四角形鋼管柱にH形鋼梁を接続するにあたっては、その柱梁仕口部の構造(柱梁接合構造)として、ノンダイアフラム形式が採用される。このノンダイアフラム形式の柱梁接合構造を採用した鉄骨構造物の要部を図1に示す。図1では、柱梁接合構造1における厚肉角形鋼管30の上方側に接合する四角形鋼管柱10aを、厚肉角形鋼管30から分離した状態を示している。尚、以下で説明する図1~7において、図示の便宜上、断面ではない部分にもハッチングを附している場合がある。図1には、ノンダイアフラム形式の柱梁接合構造を採用した鉄骨構造物の要部を示しているが、本実施形態における柱梁接合構造は、この態様に限定されず、例えば、厚肉角形鋼管30に孔を開けて梁20をボルト接合する態様も含まれる。 First, the configuration of the beam-column joint structure to which the rectangular steel pipe according to the present embodiment is applied will be described. When constructing a steel frame structure using a rectangular steel tube column and an H-shaped steel beam, a structure is used in which a rectangular steel tube column is erected and the H-shaped steel beam is attached to the rectangular steel tube column. When connecting the H-shaped steel beam to the rectangular steel tube column, a non-diaphragm type is adopted as the structure of the column-beam joint portion (column-beam joint structure). FIG. 1 shows a main part of a steel frame structure that adopts this non-diaphragm type beam-column joint structure. In FIG. 1, a rectangular steel pipe column 10 a joined to the upper side of the thick-walled rectangular steel pipe 30 in the beam-column joining structure 1 is shown separated from the thick-walled rectangular steel pipe 30. In addition, in FIGS. 1 to 7 described below, for convenience of illustration, a portion that is not a cross section may be hatched. FIG. 1 shows a main part of a steel frame structure that adopts a non-diaphragm type beam-column joint structure, but the beam-column joint structure in the present embodiment is not limited to this mode, and for example, a thick-walled prism A mode in which a hole is opened in the steel pipe 30 and the beam 20 is bolted is also included.
 図1に示すように、柱梁接合構造1は、上下方向に延設される上下の四角形鋼管柱10a、10bと、上下の四角形鋼管柱10a、10bの間に配設される厚肉角形鋼管30(角形鋼管)と、厚肉角形鋼管30の側面にその一端部が固定され、水平方向に延設される梁20と、から構成される。 As shown in FIG. 1, a column-beam joint structure 1 includes upper and lower rectangular steel pipe columns 10a and 10b extending in the vertical direction and a thick-walled rectangular steel pipe disposed between the upper and lower square steel pipe columns 10a and 10b. 30 (square steel pipe), and a beam 20 whose one end is fixed to the side surface of the thick-walled square steel pipe 30 and which is extended in the horizontal direction.
 梁20は、H形鋼から成り、対向する2枚の平板状のフランジ20aと、対向するフランジ20aの間に形成されるウェブ20bと、から構成される。梁20は、フランジ20aが上下方向に対向した位置となり、且つウェブ20bの一端面が厚肉角形鋼管30の側面に当接するように、厚肉角形鋼管30に溶接接合される。 The beam 20 is made of H-shaped steel, and is composed of two flat plate-like flanges 20a facing each other and a web 20b formed between the facing flanges 20a. The beam 20 is welded to the thick-walled rectangular steel pipe 30 such that the flanges 20a are vertically opposed to each other and one end surface of the web 20b is in contact with the side surface of the thick-walled rectangular steel pipe 30.
 四角形鋼管柱10a、10bは、鉄骨構造物の柱となる部材であって、断面略四角形状を呈する長尺の角形鋼管である。下方側に延在する四角形鋼管柱10b(下階柱)の上端に厚肉角形鋼管30の下端が接合され、上方側に延在する四角形鋼管柱10a(上階柱)の下端に厚肉角形鋼管30の上端が接合される。以下、各四角形鋼管柱10a、10bを個別に区別せず、まとめて表現する場合は、単に「四角形鋼管柱10」と表記する。 The square steel pipe pillars 10a and 10b are long pillar steel pipes that are pillars of the steel frame structure and have a substantially square cross section. The lower end of the thick-walled rectangular steel pipe 30 is joined to the upper end of the rectangular steel pipe column 10b (lower floor column) extending to the lower side, and the thick-walled prism is attached to the lower end of the rectangular steel pipe column 10a (upper column) extending to the upper side. The upper end of the steel pipe 30 is joined. Hereinafter, when the respective square steel pipe columns 10a and 10b are not individually distinguished and are collectively expressed, they are simply referred to as "square steel pipe columns 10".
 厚肉角形鋼管30は、上下の四角形鋼管柱10と梁20との接続部(柱梁仕口部)に配設される、断面視略四角形状を呈した短尺の角形鋼管である。柱梁接合構造1においては、上下の四角形鋼管柱10と、厚肉角形鋼管30と、が直線状に位置するように配設される。本実施形態における柱梁接合構造1には、H形鋼から成る梁20を直接、側面に接合可能なノンダイアフラム形式の厚肉角形鋼管30が用いられるため、この厚肉角形鋼管30の板厚tは、四角形鋼管柱10の板厚tより厚く形成されている。板厚tは、例えば22~50mm、板厚tは、例えば6~25mmである。尚、厚肉角形鋼管30は、その長手方向の長さが、厚肉角形鋼管30の側面に接合される梁20の高さ(フランジ20a間の高さ)より長くなっている。 The thick-walled rectangular steel pipe 30 is a short rectangular steel pipe having a substantially quadrangular shape in cross section, which is disposed at a connecting portion (column-beam joint portion) between the upper and lower rectangular steel pipe columns 10 and the beam 20. In the beam-column joint structure 1, the upper and lower rectangular steel pipe columns 10 and the thick-walled rectangular steel pipe 30 are arranged so as to be linearly positioned. Since the non-diaphragm type thick square steel pipe 30 capable of directly joining the beam 20 made of H-shaped steel to the side surface is used in the beam-column joint structure 1 in the present embodiment, the plate thickness of the thick square steel pipe 30 The t c is formed to be thicker than the plate thickness t p of the square steel tubular column 10. The plate thickness t c is, for example, 22 to 50 mm, and the plate thickness t p is, for example, 6 to 25 mm. The length of the thick-walled rectangular steel pipe 30 in the longitudinal direction is longer than the height of the beam 20 joined to the side surface of the thick-walled rectangular steel pipe 30 (the height between the flanges 20a).
 図2乃至図5を参照しながら厚肉角形鋼管30の構成について更に説明する。図2は、厚肉角形鋼管30の概略構成を示す斜視図である。図3は、厚肉角形鋼管30の概略構成を示す側面図である。図4は、厚肉角形鋼管30の概略構成を示す平面図である。図5は、厚肉角形鋼管30の角部に形成される溶接金属32(溶接部)を説明するための拡大図である。 The configuration of the thick-walled rectangular steel pipe 30 will be further described with reference to FIGS. 2 to 5. FIG. 2 is a perspective view showing a schematic configuration of the thick-walled rectangular steel pipe 30. FIG. 3 is a side view showing a schematic configuration of the thick-walled rectangular steel pipe 30. FIG. 4 is a plan view showing a schematic configuration of the thick-walled rectangular steel pipe 30. FIG. 5 is an enlarged view for explaining the weld metal 32 (weld portion) formed at the corner of the thick-walled rectangular steel pipe 30.
 図2に示すように、厚肉角形鋼管30は、四角形鋼管柱10を構成する鋼管の板厚よりも厚い4枚の矩形状の鋼板31a、31a、31b、31bを、互いに溶接して接合することにより成形される。以下、各鋼板31a、31a、31b、31bの端縁を互いに溶接して溶接金属32を形成する工程について説明する。尚、本明細書において、各鋼板31a、31a、31b、31bを個別に区別せず、まとめて表現する場合は、単に「鋼板31」と表記する。 As shown in FIG. 2, the thick-walled rectangular steel pipe 30 is formed by welding four rectangular steel plates 31a, 31a, 31b, 31b thicker than the steel pipes constituting the square steel pipe column 10 to each other by welding. It is molded by. Hereinafter, a process of welding the edges of the steel plates 31a, 31a, 31b, 31b to each other to form the weld metal 32 will be described. In the present specification, when the steel plates 31a, 31a, 31b, 31b are not individually distinguished but are collectively expressed, they are simply referred to as "steel plates 31".
 まず、4枚の鋼板31を互いに対向させて箱形に配置する。これら箱形に配置した鋼板31の互いに隣接する側縁部には、所定角度の傾斜をもつ開先Gが形成されている。本実施形態では、互いに対向して配置される鋼板31b、31bの幅方向両端縁に、所定角度の傾斜をもつ開先Gが形成されている。そして、隣接する鋼板31同士の開先Gに、所定の溶接装置(例えば溶接トーチ(図示略))を配置して、鋼板31の上下方向(図3における上下方向)に沿って、鋼板31の一端から他端(図3に示すように、鋼板の上端から下端)まで溶接して隣接する鋼板31同士を接合する。このように、隣り合う鋼板31の側縁部(鋼板31の角部内側)に溶接金属32を形成して鋼板31同士を接合し、断面視略四角形の鋼管を製造する。 First of all, four steel plates 31 are arranged in a box shape so as to face each other. A groove G having an inclination of a predetermined angle is formed on the side edges of the steel plates 31 arranged in a box shape adjacent to each other. In this embodiment, a groove G having an inclination of a predetermined angle is formed at both widthwise edges of the steel plates 31b, 31b arranged to face each other. Then, a predetermined welding device (for example, a welding torch (not shown)) is arranged in the groove G between the adjacent steel plates 31, and the steel plates 31 are arranged along the vertical direction (the vertical direction in FIG. 3) of the steel plates 31. The adjacent steel plates 31 are joined by welding from one end to the other end (as shown in FIG. 3, from the upper end to the lower end of the steel plate). In this way, the weld metal 32 is formed on the side edge portions (inside the corner portions of the steel plates 31) of the adjacent steel plates 31 to join the steel plates 31 to each other to manufacture a steel pipe having a substantially rectangular cross section.
 本実施形態では、隣接する鋼板31間に形成される開先Gに、多層盛溶接した溶接金属32が形成される。図5は、溶接金属32周辺を拡大して示す拡大図である。この溶接金属32は、厚肉角形鋼管30の角部(断面略四角形の四隅近傍)に形成されており、複数種類の材料が積層された多層構造を有する。 In the present embodiment, the weld metal 32 obtained by multi-layer welding is formed in the groove G formed between the adjacent steel plates 31. FIG. 5 is an enlarged view showing the periphery of the weld metal 32 in an enlarged manner. The weld metal 32 is formed at the corners (near the four corners of the substantially square cross section) of the thick-walled rectangular steel pipe 30 and has a multilayer structure in which a plurality of types of materials are laminated.
 図5に示す、多層構造から成る溶接金属32を形成する工程において、初層の溶接形成工程では、隣り合う鋼板31間に形成される開先G裏(鋼板31の内面側)に裏当金35を当てて、CO半自動溶接により溶接を行い、内側材料層321を形成する。 In the step of forming the weld metal 32 having the multilayer structure shown in FIG. 5, in the welding forming step of the first layer, the backing metal is provided on the groove G backside (the inner surface side of the steel sheet 31) formed between the adjacent steel sheets 31. 35 is applied and welding is performed by CO 2 semi-automatic welding to form the inner material layer 321.
 内側材料層321を形成した後、サブマージアーク溶接により溶接を実施して、外側材料層322を形成する。このようにして内側材料層321と外側材料層322とから成る多層構造の溶接金属32を形成する。本実施形態では、初層の溶接において、CO半自動溶接により溶接を施して内側材料層321を1層形成し、2層目以降の溶接において、サブマージアーク溶接により溶接を施して外側材料層322を複数層形成する。サブマージアーク溶接によれば、長尺部材など溶接領域が比較的長い鋼材の溶接を人手をかけずに連続して行うことができるという面がある一方で、一度に大きな入熱があるため母材が靭性を損なうことがあるなど熱影響が大きい面もある。この点、本実施形態のごとく、人手をかけず長い領域の溶接を連続して行いたい柱状四面箱型断面の溶接を多層で行うこととすれば、一度の入熱量を低く抑え、母材への熱影響を軽減することができる。尚、本明細書において、多層構造から成る溶接金属32のうち、内側(厚肉角形鋼管30の内面側(図5では溶接金属32のうちの下側))に位置する材料層を内側材料層321と称し、外側(厚肉角形鋼管30の外面側(図5では溶接金属32のうちの上側))に位置する材料層を外側材料層322と称する。 After forming the inner material layer 321, welding is performed by submerged arc welding to form the outer material layer 322. In this way, the multi-layered weld metal 32 including the inner material layer 321 and the outer material layer 322 is formed. In the present embodiment, in the welding of the first layer, welding is performed by CO 2 semi-automatic welding to form one inner material layer 321, and in the welding of the second and subsequent layers, welding is performed by submerged arc welding and the outer material layer 322. Are formed in multiple layers. With submerged arc welding, there is the aspect that welding of steel materials with relatively long welding areas, such as long members, can be performed continuously without human intervention, but since there is a large heat input at one time, the base metal However, there are some aspects that have a large thermal effect, such as impairing toughness. In this respect, as in the present embodiment, if the welding of the columnar four-sided box-shaped cross section that is desired to be continuously welded in a long area without manpower is performed in multiple layers, the heat input once is suppressed to a low level, and The heat effect of can be reduced. In the present specification, of the weld metal 32 having a multi-layer structure, the material layer located on the inner side (the inner surface side of the thick-walled rectangular steel pipe 30 (the lower side of the weld metal 32 in FIG. 5)) is the inner material layer. The material layer located on the outer side (the outer surface side of the thick-walled rectangular steel tube 30 (the upper side of the weld metal 32 in FIG. 5)) is referred to as an outer material layer 322.
 以上のように多層構造から成る溶接金属32のうち、初層の溶接で形成される内側材料層321には高強度の材料が用いられる。具体的には、内側材料層321に用いられる材料のJIS  Z  2241に規定される引張試験に準拠して測定される降伏点は、鋼板31に用いられる材料のJIS  Z  2241に規定される引張試験に準拠して測定される降伏点よりも高く、且つ、外側材料層322を形成する材料のJIS  Z  2241に規定される引張試験に準拠して測定される降伏点よりも高い。 Of the weld metal 32 having a multilayer structure as described above, a high-strength material is used for the inner material layer 321 formed by welding the first layer. Specifically, the yield point measured according to the tensile test specified in JIS Z 2241 of the material used for the inner material layer 321 is the tensile test specified in JIS Z 2241 of the material used for the steel plate 31. The yield point is higher than the yield point measured according to JIS standard and is higher than the yield point measured according to the tensile test specified in JIS Z 2241 of the material forming outer material layer 322.
 詳述すると、内側材料層321は、JIS  Z  2241に規定される引張試験に準拠して測定される降伏点が460N/mm以上であり、且つ、引張強さが550N/mm以上の数値範囲である材料を用いて形成される。更に、このようなJIS  Z  2241に規定される引張試験に準拠して測定される降伏点及び引張強さの数値を満たすことに加えて、JIS  Z  2242に規定されるシャルピー衝撃試験において衝撃吸収エネルギーが0℃で70J以上の材料を用いて内側材料層321を形成することが好適である。この内側材料層321に用いられる溶接材料として、例えばYGW18等を採用することができる。初層の溶接材料は母材以上の強度(降伏点、引張強度)を有するものであればよく、確実なものとするためには母材規格の上限値を上回る下限値を規格にもつ溶接材料が好ましいが、コストの面から確率的に母材規格の上下限中央値を上回る下限値を規格にもつ溶接材料がより好ましい。 More specifically, the inner material layer 321 is a yield point is measured according to the tensile test defined in JIS Z 2241 is 460N / mm 2 or more and a tensile strength of 550 N / mm 2 or more numbers It is formed using a range of materials. Furthermore, in addition to satisfying the numerical values of the yield point and the tensile strength measured according to the tensile test specified in JIS Z 2241, the shock absorption energy in the Charpy impact test specified in JIS Z 2242 It is preferable to form the inner material layer 321 using a material of 70 J or more at 0 ° C. As the welding material used for the inner material layer 321, for example, YGW18 or the like can be adopted. The welding material in the first layer should have a strength (yield point, tensile strength) higher than that of the base material, and in order to ensure that the welding material has a lower limit value higher than the upper limit value of the base material standard. However, from the viewpoint of cost, it is more preferable to use a welding material having a standard lower limit value that stochastically exceeds the upper and lower median values of the base material standard.
 外側材料層322は、JIS  Z  2241に規定される引張試験に準拠して測定される降伏点が390N/mm以上であって内側材料層321のJIS  Z  2241に規定される引張試験に準拠して測定される降伏点より低く、且つ、引張強さが490N/mm以上の数値範囲である材料が用いられる。このような条件を満たす外側材料層322の溶接材料として、例えば、EH12K、EH14、S502-H等を採用することができる。 The outer material layer 322 has a yield point of 390 N / mm 2 or more measured according to the tensile test specified in JIS Z 2241 and is compliant with the tensile test specified in JIS Z 2241 of the inner material layer 321. A material having a tensile strength lower than the yield point measured and a tensile strength in the numerical range of 490 N / mm 2 or more is used. As a welding material for the outer material layer 322 satisfying such a condition, for example, EH12K, EH14, S502-H or the like can be adopted.
 尚、鋼板31には、JIS  Z  2241に規定される引張試験に準拠して測定される降伏点が325~445N/mmの数値範囲であり、引張強さが490~610N/mmの数値範囲である鋼材が用いられる。このような鋼材として、例えば建築構造用圧延鋼材SN490B、建築構造用TMCP鋼板TMCP325B等を採用することができる。 For the steel plate 31, the yield point measured according to the tensile test specified in JIS Z 2241 is in the numerical range of 325 to 445 N / mm 2 , and the tensile strength is in the range of 490 to 610 N / mm 2 . A range of steel materials is used. As such a steel material, for example, rolled steel material SN490B for building structure, TMCP steel plate TMCP325B for building structure, etc. can be adopted.
 前述したように、初層の溶接で形成される内側材料層321に高強度の材料(鋼板31、外側材料層322に用いられる材料のJIS  Z  2241に規定される引張試験に準拠して測定される降伏点よりも高い降伏点の材料)を用いることにより、鋼板31の側縁部を溶接して形成される溶接金属32のうちの内側(厚肉角形鋼管30の内面側)の接合強度を向上させることができる。厚肉角形鋼管30の側面には、図1に示したように梁20が直接接合されるため、この梁20から引張応力を受けて厚肉角形鋼管30の内隅部が開く方向(図5の破線矢印Fに示す方向)に力が働き、厚肉角形鋼管30の内隅部、特に裏当金35と鋼板31の隙間の溶接金属32側終端に応力集中を起こすが、本実施形態では内側材料層321を形成して溶接金属32における内側の接合強度を向上させているため、上記応力集中に対する耐力を高めることができる。更に、前述したJIS  Z  2242に規定されるシャルピー衝撃試験において衝撃吸収エネルギーが0℃で70J以上である材料(例えばYGW18等)を内側材料層321に用いることにより、靭性を向上させることができるので、上記引張応力が作用した場合でも溶接金属32において破断する可能性を抑制することができる。好ましい組合せの1つとして、内側材料層321をYGW18、外側材料層322をS502-H、鋼板31をSN490B、で構成することができる。 As described above, the inner material layer 321 formed by welding the first layer has a high-strength material (steel sheet 31, measured according to the tensile test stipulated in JIS Z 2241 of the material used for the outer material layer 322). By using a material having a yield point higher than the yield point), the joint strength of the inner side (the inner surface side of the thick rectangular steel tube 30) of the weld metal 32 formed by welding the side edge portions of the steel plate 31 can be improved. Can be improved. Since the beam 20 is directly joined to the side surface of the thick-walled rectangular steel pipe 30 as shown in FIG. 1, a direction in which the inner corner of the thick-walled rectangular steel pipe 30 opens due to tensile stress from the beam 20 (see FIG. 5). Force acts on the inner corner of the thick-walled rectangular steel tube 30, especially at the end of the gap between the backing metal 35 and the steel plate 31 on the side of the weld metal 32, in the present embodiment. Since the inner material layer 321 is formed to improve the inner joint strength of the weld metal 32, it is possible to enhance the proof stress against the stress concentration. Further, by using a material (for example, YGW18 or the like) whose impact absorption energy is 70 J or more at 0 ° C. in the Charpy impact test specified in JIS Z2242 described above for the inner material layer 321, the toughness can be improved. Even if the tensile stress acts, the possibility of fracture in the weld metal 32 can be suppressed. As one of preferable combinations, the inner material layer 321 can be composed of YGW18, the outer material layer 322 of S502-H, and the steel plate 31 of SN490B.
 以上説明したように、溶接金属32形成工程は、鋼板31に用いられる材料のJIS  Z  2241に規定される引張試験に準拠して測定される降伏点よりも高い材料から成る内側材料層321を形成する工程と、内側材料層321を形成した後に、内側材料層321の材料のJIS  Z  2241に規定される引張試験に準拠して測定される降伏点よりも低い材料から成る外側材料層322を形成する工程とを有する。この溶接金属32形成工程における最外層を形成する段階(すなわち、複数の層から成る外側材料層322の最後の層を形成する段階)において、サブマージアーク溶接での溶接施工における溶接電圧値や溶接電流値、溶接速度値を調整することが好ましい。すなわち、外側材料層322の形成する工程において、外側材料層322における最外層を溶接する段階のみ、外側材料層322における最外層以外の層を溶接施工する際の溶接電圧値や溶接電流値、溶接速度値とは異ならせて溶接することが好ましい。このように最外層を溶接する段階のみ調整して溶接することにより、溶接金属32形成時に生じる余盛を抑制することができる。好適には、この余盛の高さh(図5)が鋼板31の外面から0~1mm以内の範囲に収まるように、溶接金属32の最外層を形成する段階における溶接電圧値や溶接電流値、溶接速度値を調整することが好ましい。このように余盛を抑制することにより、余盛を平滑にするために機械によって表面を削るという工程を不要とすることができ、製造コストを低減させることができる。 As described above, in the step of forming the weld metal 32, the inner material layer 321 made of a material having a higher yield point than the yield point measured according to the tensile test of JIS 2241 of the material used for the steel plate 31 is formed. And after forming the inner material layer 321, an outer material layer 322 made of a material having a lower yield point measured in accordance with a tensile test specified in JIS Z 2241 of the material of the inner material layer 321 is formed. And a step of performing. In the step of forming the outermost layer in the weld metal 32 forming step (that is, the step of forming the last layer of the outer material layer 322 including a plurality of layers), the welding voltage value and the welding current in the welding operation in the submerged arc welding. It is preferable to adjust the value and the welding speed value. That is, in the step of forming the outer material layer 322, only in the step of welding the outermost layer of the outer material layer 322, the welding voltage value, the welding current value, and the welding current value when welding the layers other than the outermost layer of the outer material layer 322 are welded. It is preferable to weld at different speed values. By adjusting and welding only the stage of welding the outermost layer in this way, it is possible to suppress the extra metal generated when the weld metal 32 is formed. Preferably, the welding voltage value and welding current value at the stage of forming the outermost layer of the weld metal 32 so that the height h of the extra metal (FIG. 5) falls within the range of 0 to 1 mm from the outer surface of the steel plate 31. It is preferable to adjust the welding speed value. By suppressing the surplus as described above, it is possible to eliminate the step of mechanically scraping the surface in order to smooth the surplus, and it is possible to reduce the manufacturing cost.
 また、溶接余盛がある角形鋼管に梁を接合する場合について考えてみると、接合面が平滑でない場合はそのまま梁を接合することは難しいことから、従前であれば施工者が余盛を削ってから梁を接合していたが、これに対し、本実施形態のごとき柱梁接合構造1ないし溶接方法は、余盛の高さを所定値以内の範囲に抑えることで、当該余盛を削らずとも角型鋼管に梁を接合することを可能とする。しかも、地震時等に梁から厚肉角型鋼管の管壁(鋼板)を外側に変形させる力が伝わった時に応力集中が起こる厚肉角形鋼管30の内隅部において、本実施形態では降伏点が比較的高い材料で内側材料層321を形成して溶接金属32における内側の接合強度を向上させ、応力集中に対する耐力を高めていることから、溶接余盛の高さを低減させたとしても、別言すれば溶接部断面を減らしたとしても、所定程度を超える強度を確保することが可能である。 In addition, considering the case of joining a beam to a rectangular steel pipe with a weld surplus, it is difficult to join the beam as it is if the joint surface is not smooth. Although the beam has been joined since then, the column-beam joint structure 1 or the welding method as in the present embodiment reduces the excess by suppressing the height of the excess within a predetermined value. It is possible to join a beam to a square steel pipe without any problem. Moreover, at the inner corner of the thick-walled rectangular steel pipe 30, stress concentration occurs when a force that deforms the tube wall (steel plate) of the thick-walled rectangular steel pipe outward is transmitted from the beam at the time of an earthquake, etc. Of the relatively high material to form the inner material layer 321 to improve the inner joint strength of the weld metal 32 and increase the proof stress against stress concentration. Therefore, even if the height of the welding excess is reduced, In other words, even if the cross section of the welded part is reduced, it is possible to secure strength exceeding a predetermined level.
 そもそも、後接合する場合において、当該後接合箇所は溶接による欠陥を加味して母材よりも高い強度で設計されること(「母材強度≦溶接強度」とすること)が一般的である。この点、本実施形態の柱梁接合構造1ないし溶接方法では、そうしたうえで、溶接による後接合箇所における強度を「内側材料層≧外側材料層」とし、更には「内側材料層≧外側材料層≧母材」とし、応力集中箇所(内側材料層)を比較的高い強度で設計することにより、余盛で担保する断面拡張分を低減する、つまり余盛を低減することを可能としている。 In the first place, in the case of post-joining, it is general that the post-joining portion is designed to have higher strength than the base metal in consideration of defects due to welding (“base metal strength ≦ welding strength”). In this respect, in the beam-column joint structure 1 or the welding method of the present embodiment, after that, the strength at the post-joined portion by welding is set to “inner material layer ≧ outer material layer” and further “inner material layer ≧ outer material layer”. By designing the stress concentration portion (inner material layer) with a relatively high strength by setting “≧ base material”, it is possible to reduce the cross-sectional expansion that is secured by the reinforcement, that is, the reinforcement.
 以上のような溶接工程を経て製造される厚肉角形鋼管30は、厚肉角形鋼管30の角部の内側に平面視矩形の裏当金35を配置し、当該裏当金35の外側に形成された傾斜状開先Gを溶接して溶接金属32を形成した構成としたものである。図2に示すように、裏当金35は、厚肉角形鋼管30の角部の内側に沿って延在する角柱形状を成しているが、この形状に限定されず、他の様々な形状に変更することが可能である。 The thick-walled rectangular steel pipe 30 manufactured through the above-described welding process has a backing metal 35 having a rectangular shape in plan view arranged inside the corner of the thick-walled rectangular steel pipe 30 and formed outside the backing metal 35. The inclined groove G thus formed is welded to form the weld metal 32. As shown in FIG. 2, the backing metal 35 has a prismatic shape extending along the inside of the corner of the thick-walled rectangular steel tube 30, but is not limited to this shape and various other shapes. Can be changed to.
 例えば、図6(A)に示すように、厚肉角形鋼管30の角部の内側に配置する裏当金35Bを、平面視L字状に形成することも可能である。図6(A)に示す平面視L字状を呈する裏当金35Bは、厚肉角形鋼管30の角部の内側に沿って厚肉角形鋼管30の上端から下端まで延在している。その他の変形例として、図6(B)に示すように、厚肉角形鋼管30の角部の内側に配置する裏当金35Cを、平面視三角形状に形成することも可能である。この平面視三角形状を呈する裏当金35Cも、厚肉角形鋼管30の角部の内側に沿って厚肉角形鋼管30の上端から下端まで延在している。このような裏当金35B、35Cを配置することにより、厚肉角形鋼管30の外側に溶接接合した梁20(図1)から引張応力を受けて鋼板31が開く方向(図6に破線矢印Fに示す方向)に力が作用した場合に、裏当金35B、35Cを追従し易くすることができる。上述した厚肉角形鋼管30の内隅部、裏当金35と鋼板31の隙間の溶接金属32側終端に生じる応力集中を緩和することが出来る。 For example, as shown in FIG. 6 (A), it is possible to form the backing metal 35B arranged inside the corner portion of the thick-walled rectangular steel pipe 30 into an L-shape in plan view. The backing metal 35B having an L-shape in plan view shown in FIG. 6A extends from the upper end to the lower end of the thick-walled rectangular steel pipe 30 along the inside of the corner of the thick-walled rectangular steel pipe 30. As another modified example, as shown in FIG. 6 (B), the backing metal 35C arranged inside the corner of the thick-walled rectangular steel tube 30 can be formed in a triangular shape in plan view. The backing metal 35C having a triangular shape in plan view also extends from the upper end to the lower end of the thick-walled rectangular steel pipe 30 along the inside of the corner of the thick-walled rectangular steel pipe 30. By arranging such backing plates 35B and 35C, a direction in which the steel plate 31 opens due to tensile stress from the beam 20 (FIG. 1) welded to the outer side of the thick-walled rectangular steel tube 30 (broken line arrow F in FIG. 6). When a force is applied in the direction (shown in FIG. 3), the backing plates 35B and 35C can be easily followed. It is possible to relieve the stress concentration generated at the inner corner of the thick-walled rectangular steel pipe 30 and at the end of the gap between the backing metal 35 and the steel plate 31 on the side of the weld metal 32.
 以上説明した実施形態において、溶接金属32が形成される、隣り合う鋼板31同士の開先G形状は、厚肉角形鋼管30の内側から外側に向かって拡開する形状を呈している。この開先G形状の傾斜角度θ(図5)は例えば20°~40°の範囲に設定される。傾斜角度θが40°以上だと溶接量が増えるので経済性が低下し、20°以下だと品質確保が難しくなる。このように、隣り合う鋼板31同士の開先形状を、厚肉角形鋼管30の内側から外側に向かって拡開する形状とすることにより、溶接金属32における内側材料層321に使用する材料の量を抑えることができる。以上説明したように、内側材料層321には高強度、高靭性の材料を用いることが好適であるが、このような特性を有する材料の使用量を抑えることにより、材料コストを低減させることができる。 In the embodiment described above, the groove G shape between the adjacent steel plates 31 in which the weld metal 32 is formed has a shape that widens from the inside to the outside of the thick rectangular steel tube 30. The inclination angle θ (FIG. 5) of the groove G shape is set in the range of 20 ° to 40 °, for example. If the inclination angle θ is 40 ° or more, the welding amount increases, so that the economical efficiency decreases, and if it is 20 ° or less, it becomes difficult to secure the quality. In this way, by forming the groove shape of the adjacent steel plates 31 into a shape that widens from the inner side to the outer side of the thick-walled rectangular steel pipe 30, the amount of material used for the inner material layer 321 in the weld metal 32. Can be suppressed. As described above, it is preferable to use a material having high strength and high toughness for the inner material layer 321, but it is possible to reduce the material cost by suppressing the usage amount of the material having such characteristics. it can.
 尚、本実施形態では、隣り合う鋼板31の間に形成される開先Gの形状を、厚肉角形鋼管30の内側から外側に向かって拡開する形状とした例を示しているが、このような開先形状に限定されず、他の様々な形状に開先形状を変形することが可能である。 In addition, in the present embodiment, an example in which the shape of the groove G formed between the adjacent steel plates 31 is the shape that widens from the inside to the outside of the thick-walled square steel pipe 30 is shown. The groove shape is not limited to such a groove shape, and the groove shape can be transformed into various other shapes.
 また以上説明した実施形態では、4枚の平板状の鋼板31の側縁部同士を溶接接合して断面視略四角形状の厚肉角形鋼管30を製造しているが、このような4枚の平板状の鋼板31を用いて厚肉角形鋼管30を製造することに限定されない。 Further, in the embodiment described above, the side edges of four flat steel plates 31 are welded and joined to each other to manufacture the thick-walled rectangular steel pipe 30 having a substantially quadrangular cross-sectional shape. It is not limited to manufacturing the thick-walled rectangular steel pipe 30 using the flat plate-shaped steel plate 31.
 例えば、図7(A)に示すように、平面視略L字状の鋼板31dを2枚用い、当該鋼板31dの端縁同士の間の開先Gdを溶接して溶接金属32dとして接合した断面視略四角形状の厚肉角形鋼管30Dを製造することも可能である。また、図7(B)に示すように、平面視略コ字状を成す鋼板31eを2枚用い、当該鋼板31eの端縁同士の間の開先Geを溶接して溶接金属32eとして接合した断面視略四角形状の厚肉角形鋼管30Eを製造することも可能である。また、図7(C)に示すように、H形鋼31fと2枚の平板状の鋼板31gとを組み合わせた厚肉角形鋼管30Fとしてもよい。詳細には、まず、対向する2枚の平板状のフランジ31f1と、対向するフランジ31f1の間に形成されるウェブ31f2と、から構成されるH形鋼31fを用意する。このH形鋼31fにおいて対向するフランジ31f1の間を接続するように、幅方向両端縁に開先Gfを形成した平板状の鋼板31gを配置する。鋼板31gの両端縁に形成された開先Gfを溶接して溶接金属32fを形成し、H形鋼31fのフランジ31f1と鋼板31gとを接合する。このようにH形鋼31fと鋼板31gと組み合わせて外形が四角形状を呈する厚肉角形鋼管30F(すなわち断面視四角形の角形鋼管)を製造することも可能である。 For example, as shown in FIG. 7 (A), a cross section in which two steel plates 31d having a substantially L-shape in plan view are used and the groove Gd between the edges of the steel plate 31d is welded to be welded metal 32d. It is also possible to manufacture the thick-walled rectangular steel pipe 30D having a substantially rectangular shape as viewed. Further, as shown in FIG. 7B, two steel plates 31e having a substantially U-shape in plan view are used, and the groove Ge between the edges of the steel plate 31e is welded to be welded metal 32e. It is also possible to manufacture the thick-walled rectangular steel pipe 30E having a substantially square cross section. Further, as shown in FIG. 7C, a thick rectangular steel tube 30F may be formed by combining an H-shaped steel 31f and two flat steel plates 31g. Specifically, first, an H-section steel 31f including two flat plate-shaped flanges 31f1 facing each other and a web 31f2 formed between the facing flanges 31f1 is prepared. In the H-shaped steel 31f, a flat plate-shaped steel plate 31g having grooves Gf formed at both widthwise edges is arranged so as to connect between the facing flanges 31f1. The groove Gf formed at both edges of the steel plate 31g is welded to form a weld metal 32f, and the flange 31f1 of the H-shaped steel 31f and the steel plate 31g are joined. In this way, it is also possible to manufacture the thick-walled rectangular steel pipe 30F (that is, a rectangular steel pipe having a quadrangular cross-section) by combining the H-shaped steel 31f and the steel plate 31g with each other.
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。 The embodiments described above are for facilitating the understanding of the present invention and are not for limiting the interpretation of the present invention.
 例えば、以上説明した実施形態では、内側材料層321は単層で構成され、外側材料層322は、同一の材料から成る複数の層で構成されている例を説明したが、例えば、内側材料層321を2層以上形成してもよい。また、内側材料層321の層を外側材料層322の層よりも多く形成してもよい。実施形態で説明した工程、実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。 For example, in the embodiment described above, the inner material layer 321 is composed of a single layer, and the outer material layer 322 is composed of a plurality of layers made of the same material. 321 may be formed in two or more layers. In addition, more layers of the inner material layer 321 may be formed than layers of the outer material layer 322. The steps described in the embodiment, each element included in the embodiment, and the arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be appropriately changed. Further, the configurations shown in different embodiments can be partially replaced or combined.
 1…柱梁接合構造、10…四角形鋼管柱、20…梁(H形鋼梁)、30…厚肉角形鋼管(角形鋼管)、31…鋼板、32…溶接金属(溶接部)、35…裏当金、321…内側材料層、322…外側材料層 DESCRIPTION OF SYMBOLS 1 ... Column-beam connection structure, 10 ... Square steel pipe column, 20 ... Beam (H-shaped steel beam), 30 ... Thick wall square steel pipe (square steel pipe), 31 ... Steel plate, 32 ... Weld metal (welded part), 35 ... Back Gold, 321 ... Inner material layer, 322 ... Outer material layer

Claims (11)

  1.  柱と梁との柱梁接合部に用いられる角形鋼管であって、
     前記角形鋼管は、
     複数枚の鋼板と、該鋼板の側縁部同士を溶接して接合された溶接部とから成る断面視四角形の鋼管であり、
     前記溶接部は、異なる種類の材料が積層された多層構造から成り、
     前記多層のうち内側に位置する内側材料層を形成する材料の降伏点は、前記多層のうち外側に位置する外側材料層を形成する材料の降伏点よりも高いことを特徴とする角形鋼管。
    A rectangular steel pipe used for a column-beam joint between a column and a beam,
    The square steel pipe is
    A steel pipe having a quadrangular cross-section, comprising a plurality of steel plates and a welded part formed by welding the side edges of the steel plates to each other,
    The weld comprises a multi-layer structure in which different kinds of materials are laminated,
    The rectangular steel pipe, wherein a yield point of a material forming an inner material layer located inside of the multilayer is higher than a yield point of a material forming an outer material layer located outside of the multilayer.
  2.  前記外側材料層を形成する材料の降伏点は、前記鋼板を形成する材料の降伏点と同等あるいはそれよりも高いことを特徴とする請求項1に記載の角形鋼管。 The rectangular steel pipe according to claim 1, wherein the yield point of the material forming the outer material layer is equal to or higher than the yield point of the material forming the steel sheet.
  3.  前記角形鋼管は、4枚の平板状の鋼板を含み、
     前記平板状の鋼板の側縁部に形成された開先は、前記角形鋼管の内側から外側に向かって拡開する形状を呈し、
     前記内側材料層は、前記開先箇所を溶接して形成される前記溶接部の最内側に位置する層である、
     請求項1または2に記載の角形鋼管。
    The rectangular steel pipe includes four flat steel plates,
    The groove formed in the side edge portion of the flat plate-shaped steel plate has a shape that expands from the inside to the outside of the square steel pipe,
    The inner material layer is a layer located on the innermost side of the weld formed by welding the groove portion,
    The rectangular steel pipe according to claim 1 or 2.
  4.  前記内側材料層を構成する材料は、シャルピー衝撃試験において衝撃吸収エネルギーが0℃で70J以上である、
     請求項1乃至3のいずれか一項に記載の角形鋼管。
    The material forming the inner material layer has a shock absorption energy of 70 J or more at 0 ° C. in a Charpy impact test,
    The rectangular steel pipe according to any one of claims 1 to 3.
  5.  前記内側材料層は、単層で構成され、
     前記外側材料層は、同一の材料から成る複数の層で構成されている、
     請求項1乃至4のいずれか一項に記載の角形鋼管。
    The inner material layer is composed of a single layer,
    The outer material layer is composed of a plurality of layers made of the same material,
    The rectangular steel pipe according to any one of claims 1 to 4.
  6.  前記内側材料層を構成する材料は、降伏点が460N/mm以上、及び、引張強さが550N/mm以上であり、
     前記外側材料層を構成する材料は、降伏点が390N/mm以上、及び、引張強さが490N/mm以上である、
     請求項1乃至5のいずれか一項に記載の角形鋼管。
    The material constituting the inner material layer, yield point 460N / mm 2 or more, and the tensile strength is at 550 N / mm 2 or more,
    The material constituting the outer material layer, yield point 390 N / mm 2 or more, and is the tensile strength of 490 N / mm 2 or more,
    The rectangular steel pipe according to any one of claims 1 to 5.
  7.  前記角形鋼管の角部における内面側には裏当金が配設され、
     前記裏当金は、断面視略L字形状又は断面視略三角形状を呈している、
     請求項1乃至6のいずれか一項に記載の角形鋼管。
    A backing metal is arranged on the inner surface side of the corner portion of the square steel pipe,
    The backing metal has a substantially L shape in cross section or a substantially triangular shape in cross section,
    The rectangular steel pipe according to any one of claims 1 to 6.
  8.  請求項1乃至7のいずれか一項に記載の角形鋼管の下端に、下階柱の上端が接合され、
     前記角形鋼管の上端に、上階柱の下端が接合され、
     前記角形鋼管の側面に、梁が接合されている、柱梁接合部構造。
    An upper end of a lower floor pillar is joined to a lower end of the rectangular steel pipe according to any one of claims 1 to 7,
    The lower end of the upper floor pillar is joined to the upper end of the rectangular steel pipe,
    A beam-column joint structure in which a beam is joined to a side surface of the rectangular steel pipe.
  9.  柱と梁との柱梁接合部に用いられる断面視四角形の角形鋼管の溶接方法であって、
     複数枚の鋼板を準備する工程と、
     前記鋼板の端縁部同士を溶接する溶接工程と、を有し、
     前記溶接工程は、
     前記角形鋼管に用いられる材料の降伏点よりも高い材料から成る内側材料層を形成する内側材料層形成工程と、
     前記内側材料層形成工程の後に、前記内側材料層の材料の降伏点よりも低い材料から成る外側材料層を形成する外側材料層形成工程と、を含む角形鋼管の溶接方法。
    A welding method for a rectangular steel pipe having a rectangular cross section used for a column-beam joint between a column and a beam,
    A step of preparing a plurality of steel plates,
    A welding step of welding the edge portions of the steel sheet to each other,
    The welding process is
    An inner material layer forming step of forming an inner material layer made of a material higher than the yield point of the material used for the rectangular steel pipe;
    An outer material layer forming step of forming an outer material layer made of a material having a material lower than a yield point of the inner material layer after the inner material layer forming step, the welding method for a rectangular steel pipe.
  10.  前記内側材料層形成工程では、CO半自動溶接により前記内側材料層を1層形成する、
     請求項9に記載の角形鋼管の溶接方法。
    In the inner material layer forming step, one inner material layer is formed by CO 2 semi-automatic welding.
    The method for welding a rectangular steel pipe according to claim 9.
  11.  前記外側材料層形成工程では、サブマージアーク溶接により前記外側材料層を複数層形成する、
     請求項9または10に記載の角形鋼管の溶接方法。
    In the outer material layer forming step, a plurality of outer material layers are formed by submerged arc welding,
    The method for welding a rectangular steel pipe according to claim 9 or 10.
PCT/JP2019/042691 2018-10-31 2019-10-30 Square steel pipe and method of welding square steel pipe WO2020090939A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217012479A KR102485533B1 (en) 2018-10-31 2019-10-30 Rectangular Steel Pipe and Welding Method of Rectangular Steel Pipe
JP2020554009A JP7252249B2 (en) 2018-10-31 2019-10-30 Square steel pipe and welding method for square steel pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-205789 2018-10-31
JP2018205789 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020090939A1 true WO2020090939A1 (en) 2020-05-07

Family

ID=70462280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042691 WO2020090939A1 (en) 2018-10-31 2019-10-30 Square steel pipe and method of welding square steel pipe

Country Status (3)

Country Link
JP (1) JP7252249B2 (en)
KR (1) KR102485533B1 (en)
WO (1) WO2020090939A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11277227A (en) * 1998-03-27 1999-10-12 Takenaka Komuten Co Ltd Welded structure of steel structure and method for welding steel structure
JP2005271045A (en) * 2004-03-25 2005-10-06 Nippon Steel & Sumikin Welding Co Ltd Two electrode type heavy heat input submerged arc welding method
JP2009228241A (en) * 2008-03-19 2009-10-08 Sumitomo Metal Ind Ltd Manufacturing method for box column, and box column
JP2014024092A (en) * 2012-07-26 2014-02-06 Komaihaltec Inc Welding method
JP2017179723A (en) * 2016-03-28 2017-10-05 新日鐵住金株式会社 Member with box-shaped cross-section, and design method thereof
JP2018065152A (en) * 2016-10-18 2018-04-26 Jfeスチール株式会社 Multilayer submerged arc welding method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194396U (en) * 1983-06-09 1984-12-24 日鉄溶接工業株式会社 Backing device for single-sided welding of corner joints of box-shaped structures
JPH0677989U (en) * 1993-03-29 1994-11-01 住友金属工業株式会社 Backing material for welding four-sided box columns
JP4041433B2 (en) * 2003-06-27 2008-01-30 岡部株式会社 Exposed steel column base
JP4469226B2 (en) * 2004-06-15 2010-05-26 新日本製鐵株式会社 Solid wire for gas shielded arc welding for underlay welding.
JP5127424B2 (en) 2007-12-17 2013-01-23 株式会社神戸製鋼所 Positioner face plate and core connection jig

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11277227A (en) * 1998-03-27 1999-10-12 Takenaka Komuten Co Ltd Welded structure of steel structure and method for welding steel structure
JP2005271045A (en) * 2004-03-25 2005-10-06 Nippon Steel & Sumikin Welding Co Ltd Two electrode type heavy heat input submerged arc welding method
JP2009228241A (en) * 2008-03-19 2009-10-08 Sumitomo Metal Ind Ltd Manufacturing method for box column, and box column
JP2014024092A (en) * 2012-07-26 2014-02-06 Komaihaltec Inc Welding method
JP2017179723A (en) * 2016-03-28 2017-10-05 新日鐵住金株式会社 Member with box-shaped cross-section, and design method thereof
JP2018065152A (en) * 2016-10-18 2018-04-26 Jfeスチール株式会社 Multilayer submerged arc welding method

Also Published As

Publication number Publication date
JP7252249B2 (en) 2023-04-04
KR102485533B1 (en) 2023-01-05
KR20210066877A (en) 2021-06-07
JPWO2020090939A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP5401018B2 (en) Steel structure truss frame
JP6423565B1 (en) Beam joining equipment for square steel pipe columns
JP3483203B2 (en) Steel pipe structure
JP4793023B2 (en) Welded BOX column
JP4691210B2 (en) Seismic steel structure and its design method
WO2020090939A1 (en) Square steel pipe and method of welding square steel pipe
JP2019214899A (en) Beam-column joint structure
JP2011132745A (en) Steel structure
JP5978187B2 (en) Column beam welded joint and manufacturing method thereof
JP6645328B2 (en) Joint structure of H-section steel and H-section steel used therefor
JP5973968B2 (en) Column beam welded joint and manufacturing method thereof
JP6179757B2 (en) Column-to-column connection structure for different diameter column connections in buildings
JP2019163632A (en) Joint structure of square steel pipe column and h-shaped steel beam
JP2018172859A (en) Box section column and column-beam connection structure
JP2008284575A (en) Welded column having box shape cross section
JP3956744B2 (en) STRUCTURE CONTAINING JOIN OF PILLAR AND BEAM, ITS JOINING METHOD, AND STRUCTURE MANUFACTURING METHOD
JP7047856B2 (en) Assembling method of four-sided welded box-shaped cross-section columns, skin plate members, four-sided welded box-shaped cross-section columns, and concrete-filled steel pipe columns
JP2010106515A (en) Square steel pipe column
JP2023089358A (en) Weld joint of box type cross-sectional member and weld method of the same
KR102372361B1 (en) Concrete filled steel tube column and manufacturing method thereof
JP4657967B2 (en) Column / beam joint structure of H-shaped steel column
JP7438094B2 (en) Joint structure between steel pipe column and seismic isolation device, and seismic isolation building
JP2004308168A (en) Beam-column connection core and beam-column connecting structure
JP2023130673A (en) Different-diameter column joining structure
JP2010053563A (en) Structure and method for joining column and beam together

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554009

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217012479

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880202

Country of ref document: EP

Kind code of ref document: A1