JPWO2020090939A1 - Welding method of square steel pipe and square steel pipe - Google Patents

Welding method of square steel pipe and square steel pipe Download PDF

Info

Publication number
JPWO2020090939A1
JPWO2020090939A1 JP2020554009A JP2020554009A JPWO2020090939A1 JP WO2020090939 A1 JPWO2020090939 A1 JP WO2020090939A1 JP 2020554009 A JP2020554009 A JP 2020554009A JP 2020554009 A JP2020554009 A JP 2020554009A JP WO2020090939 A1 JPWO2020090939 A1 JP WO2020090939A1
Authority
JP
Japan
Prior art keywords
steel pipe
square steel
material layer
welding
yield point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020554009A
Other languages
Japanese (ja)
Other versions
JP7252249B2 (en
Inventor
毅 萩野
毅 萩野
前嶋 匡
匡 前嶋
佐藤 誠
佐藤  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp filed Critical Asahi Kasei Construction Materials Corp
Publication of JPWO2020090939A1 publication Critical patent/JPWO2020090939A1/en
Application granted granted Critical
Publication of JP7252249B2 publication Critical patent/JP7252249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/06Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for positioning the molten material, e.g. confining it to a desired area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • B23K9/186Submerged-arc welding making use of a consumable electrodes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/32Columns; Pillars; Struts of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Arc Welding In General (AREA)

Abstract

角形鋼管は、四角形鋼管柱を構成する鋼管の板厚よりも厚い複数枚の鋼板と、鋼板の側縁部同士を溶接して接合された溶接金属(32)とから成る断面視四角形の鋼管であり、溶接金属(32)は、角形鋼管の角部に形成されると共に、異なる種類の材料が積層された多層構造から成り、多層のうち内側に位置する内側材料層(321)を形成する材料の降伏点は、多層のうち外側に位置する外側材料層(322)を形成する材料の降伏点よりも高い。A square steel pipe is a steel pipe having a square cross-sectional view consisting of a plurality of steel plates thicker than the thickness of the steel pipes constituting the square steel pipe column and a welded metal (32) joined by welding the side edges of the steel plates. Welded metal (32) is a material that is formed at the corners of a square steel pipe and has a multi-layer structure in which different types of materials are laminated to form an inner material layer (321) located inside the multi-layer. The yield point of is higher than the yield point of the material forming the outer material layer (322) located on the outer side of the multilayer.

Description

本発明は、角形鋼管及び角形鋼管の溶接方法に関する。 The present invention relates to a square steel pipe and a method for welding a square steel pipe.

鉄骨構造物の柱部材に用いられる角形鋼管柱と、梁部材に用いられるH形鋼との接合部分においては、従来、ダイアフラム形式(例えば、通しダイアフラム形式、内ダイアフラム形式、外ダイアフラム形式等)が採用されている。近年では、このダイアフラムを設けずに短尺の厚肉角形鋼管からなる柱梁接合部コアを用いてその管壁面にH形鋼を直接溶接可能にしたノンダイアフラム形式の柱梁接合構造も採用されている(例えば特許文献1)。 Conventionally, a diaphragm type (for example, a through diaphragm type, an inner diaphragm type, an outer diaphragm type, etc.) has been used at a joint portion between a square steel pipe column used for a column member of a steel structure and an H-shaped steel used for a beam member. It has been adopted. In recent years, a non-diaphragm type beam-column joint structure has also been adopted in which H-shaped steel can be directly welded to the pipe wall surface using a beam-column joint core made of a short thick-walled square steel pipe without providing this diaphragm. (For example, Patent Document 1).

上記ノンダイアフラム形式の柱梁接合構造に適用される厚肉角形鋼管は、例えば鋳鋼製や形鋼を溶接で接合したものが知られている。特許文献1では、4枚の矩形状鋼板を箱形に組合せ、各鋼板の側縁部同士を溶接することにより断面視四角形の厚肉角形鋼管を形成している。詳細には、開先を両側縁部に形成した4枚の鋼板を箱形に配置して各鋼板の側縁部を隣接させ、当該側縁部間に溶接トーチをそれぞれ配置し、これらの溶接トーチを鋼板の下方から上方に移動させて鋼板の側縁部を同時に溶接する方法が特許文献1に記載されている。 As the thick-walled square steel pipe applied to the non-diaphragm type column-beam joint structure, for example, one made of cast steel or shaped steel is known to be joined by welding. In Patent Document 1, four rectangular steel plates are combined in a box shape, and the side edges of the steel plates are welded to each other to form a thick-walled square steel pipe having a quadrangular cross-sectional view. Specifically, four steel plates having grooves formed on both side edges are arranged in a box shape, side edges of each steel plate are adjacent to each other, and welding torches are arranged between the side edges, and welding of these steel plates is performed. Patent Document 1 describes a method of moving the torch from the lower side to the upper side of the steel plate and welding the side edges of the steel plate at the same time.

特開2014−024092号公報Japanese Unexamined Patent Publication No. 2014-024092

ところで、ノンダイアフラム形式の柱梁接合構造に適用される厚肉角形鋼管には、前述したようにその側面にH形鋼が直接接合される構造であるため、そのような構造に耐え得る強度が求められる。このような厚肉角形鋼管を、特許文献1のように各鋼板の側縁部同士を溶接にて接合した構成とした場合、特に接合部分に応力が集中しやすく、設計通りの強度が得られないことがある。特許文献1には、各鋼板の側縁部同士を同時に溶接することで、作業能率を向上させることは記載されているものの、溶接により接合して形成した厚肉角形鋼管の強度を向上させることの検討はされていなく、改善する必要があった。 By the way, since the thick-walled square steel pipe applied to the non-diaphragm type beam-column joint structure has a structure in which H-shaped steel is directly joined to the side surface as described above, the strength that can withstand such a structure is high. Desired. When such a thick-walled square steel pipe is configured by welding the side edges of each steel plate as in Patent Document 1, stress is particularly likely to be concentrated on the joint portion, and the strength as designed can be obtained. Sometimes not. Although Patent Document 1 describes that the work efficiency is improved by welding the side edges of each steel plate at the same time, the strength of the thick-walled square steel pipe formed by joining by welding is improved. Was not considered and needed to be improved.

そこで、本発明は、柱梁接合構造に用いられる角形鋼管の強度を向上させることができる技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a technique capable of improving the strength of a square steel pipe used for a beam-column joint structure.

本発明の一態様に係る角形鋼管は、柱と梁との柱梁接合部に用いられる角形鋼管であって、複数枚の鋼板と、該鋼板の側縁部同士を溶接して接合された溶接部とから成る断面視四角形の鋼管であり、溶接部は、異なる種類の材料が積層された多層構造から成り、多層のうち内側に位置する内側材料層を形成する材料の降伏点は、多層のうち外側に位置する外側材料層を形成する材料の降伏点よりも高い。 The square steel pipe according to one aspect of the present invention is a square steel pipe used for a beam-column joint between a column and a beam, and is welded by welding a plurality of steel plates and side edges of the steel plates. It is a steel pipe with a square cross-sectional view consisting of parts, and the welded part consists of a multi-layer structure in which different types of materials are laminated, and the yield point of the material forming the inner material layer located inside the multi-layer is multi-layer. It is higher than the yield point of the material forming the outer material layer located on the outer side.

本発明によれば、柱梁接合構造に用いられる角形鋼管の強度を向上させることができる技術を提供することができる。 According to the present invention, it is possible to provide a technique capable of improving the strength of a square steel pipe used for a beam-column joint structure.

鉄骨構造物の要部を説明するための斜視図である。It is a perspective view for demonstrating the main part of a steel structure. 本実施形態に係る厚肉角形鋼管の概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of the thick-walled square steel pipe which concerns on this embodiment. 本実施形態に係る厚肉角形鋼管の概略構成を示す側面図である。It is a side view which shows the schematic structure of the thick-walled square steel pipe which concerns on this embodiment. 本実施形態に係る厚肉角形鋼管の概略構成を示す平面図である。It is a top view which shows the schematic structure of the thick-walled square steel pipe which concerns on this embodiment. 隣接する鋼板の間に形成される溶接金属を拡大して示す拡大図である。It is an enlarged view which shows the weld metal formed between adjacent steel plates in an enlarged manner. 厚肉角形鋼管に適用される裏当金の変形例を説明するための図である。It is a figure for demonstrating the modification of the backing metal applied to a thick-walled square steel pipe. 厚肉角形鋼管における鋼板の変形例を説明するための図である。It is a figure for demonstrating the deformation example of the steel plate in a thick-walled square steel pipe.

添付図面を参照して、本発明の好適な実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。 Preferred embodiments of the present invention will be described with reference to the accompanying drawings. In each figure, those having the same reference numerals have the same or similar configurations.

まず、本実施形態に係る角形鋼管が適用される柱梁接合構造の構成について説明する。四角形鋼管柱とH形鋼梁とを用いた鉄骨構造物を建造する場合には、四角形鋼管柱を立てて、当該角形鋼管柱にH形鋼梁を取り付ける構造が採用される。四角形鋼管柱にH形鋼梁を接続するにあたっては、その柱梁仕口部の構造(柱梁接合構造)として、ノンダイアフラム形式が採用される。このノンダイアフラム形式の柱梁接合構造を採用した鉄骨構造物の要部を図1に示す。図1では、柱梁接合構造1における厚肉角形鋼管30の上方側に接合する四角形鋼管柱10aを、厚肉角形鋼管30から分離した状態を示している。尚、以下で説明する図1〜7において、図示の便宜上、断面ではない部分にもハッチングを附している場合がある。図1には、ノンダイアフラム形式の柱梁接合構造を採用した鉄骨構造物の要部を示しているが、本実施形態における柱梁接合構造は、この態様に限定されず、例えば、厚肉角形鋼管30に孔を開けて梁20をボルト接合する態様も含まれる。 First, the configuration of the beam-column joint structure to which the square steel pipe according to the present embodiment is applied will be described. When constructing a steel structure using a square steel pipe column and an H-shaped steel beam, a structure is adopted in which the square steel pipe column is erected and the H-shaped steel beam is attached to the square steel pipe column. When connecting an H-shaped steel beam to a square steel pipe column, a non-diaphragm type is adopted as the structure of the column-beam joint (column-beam joint structure). FIG. 1 shows a main part of a steel structure that employs this non-diaphragm type column-beam joint structure. FIG. 1 shows a state in which the quadrangular steel pipe column 10a joined to the upper side of the thick-walled square steel pipe 30 in the beam-column joining structure 1 is separated from the thick-walled square steel pipe 30. In FIGS. 1 to 7 described below, hatching may be added to a portion other than the cross section for convenience of illustration. FIG. 1 shows a main part of a steel frame structure adopting a non-diaphragm type beam-column joint structure, but the beam-column joint structure in the present embodiment is not limited to this aspect, and is, for example, a thick-walled square shape. A mode in which a hole is formed in the steel pipe 30 and the beam 20 is bolted is also included.

図1に示すように、柱梁接合構造1は、上下方向に延設される上下の四角形鋼管柱10a、10bと、上下の四角形鋼管柱10a、10bの間に配設される厚肉角形鋼管30(角形鋼管)と、厚肉角形鋼管30の側面にその一端部が固定され、水平方向に延設される梁20と、から構成される。 As shown in FIG. 1, the beam-column joint structure 1 is a thick-walled square steel pipe arranged between upper and lower square steel pipe columns 10a and 10b extending in the vertical direction and upper and lower square steel pipe columns 10a and 10b. It is composed of 30 (square steel pipe) and a beam 20 having one end fixed to the side surface of the thick-walled square steel pipe 30 and extending in the horizontal direction.

梁20は、H形鋼から成り、対向する2枚の平板状のフランジ20aと、対向するフランジ20aの間に形成されるウェブ20bと、から構成される。梁20は、フランジ20aが上下方向に対向した位置となり、且つウェブ20bの一端面が厚肉角形鋼管30の側面に当接するように、厚肉角形鋼管30に溶接接合される。 The beam 20 is made of H-shaped steel, and is composed of two flat plate-shaped flanges 20a facing each other and a web 20b formed between the flanges 20a facing each other. The beam 20 is welded to the thick-walled square steel pipe 30 so that the flange 20a faces in the vertical direction and one end surface of the web 20b abuts on the side surface of the thick-walled square steel pipe 30.

四角形鋼管柱10a、10bは、鉄骨構造物の柱となる部材であって、断面略四角形状を呈する長尺の角形鋼管である。下方側に延在する四角形鋼管柱10b(下階柱)の上端に厚肉角形鋼管30の下端が接合され、上方側に延在する四角形鋼管柱10a(上階柱)の下端に厚肉角形鋼管30の上端が接合される。以下、各四角形鋼管柱10a、10bを個別に区別せず、まとめて表現する場合は、単に「四角形鋼管柱10」と表記する。 The square steel pipe columns 10a and 10b are members that serve as columns of a steel frame structure, and are long square steel pipes having a substantially quadrangular cross section. The lower end of the thick-walled square steel pipe 30 is joined to the upper end of the square steel pipe column 10b (lower floor column) extending downward, and the thick-walled square shape is joined to the lower end of the square steel pipe column 10a (upper floor column) extending upward. The upper ends of the steel pipe 30 are joined. Hereinafter, when the square steel pipe columns 10a and 10b are not individually distinguished and are collectively expressed, they are simply referred to as "square steel pipe columns 10".

厚肉角形鋼管30は、上下の四角形鋼管柱10と梁20との接続部(柱梁仕口部)に配設される、断面視略四角形状を呈した短尺の角形鋼管である。柱梁接合構造1においては、上下の四角形鋼管柱10と、厚肉角形鋼管30と、が直線状に位置するように配設される。本実施形態における柱梁接合構造1には、H形鋼から成る梁20を直接、側面に接合可能なノンダイアフラム形式の厚肉角形鋼管30が用いられるため、この厚肉角形鋼管30の板厚tは、四角形鋼管柱10の板厚tより厚く形成されている。板厚tは、例えば22〜50mm、板厚tは、例えば6〜25mmである。尚、厚肉角形鋼管30は、その長手方向の長さが、厚肉角形鋼管30の側面に接合される梁20の高さ(フランジ20a間の高さ)より長くなっている。The thick-walled square steel pipe 30 is a short square steel pipe having a substantially square cross-sectional view, which is arranged at a connection portion (column-beam joint portion) between the upper and lower square steel pipe columns 10 and the beam 20. In the beam-column joint structure 1, the upper and lower quadrangular steel pipe columns 10 and the thick-walled square steel pipe 30 are arranged so as to be positioned linearly. Since the non-diaphragm type thick-walled square steel pipe 30 capable of directly joining the beam 20 made of H-shaped steel to the side surface is used for the beam-column joining structure 1 in the present embodiment, the plate thickness of the thick-walled square steel pipe 30 is used. t c is formed to be thicker than the plate thickness t p of the square steel pipe column 10. The plate thickness t c is, for example, 22 to 50 mm, and the plate thickness t p is, for example, 6 to 25 mm. The length of the thick-walled square steel pipe 30 in the longitudinal direction is longer than the height of the beam 20 (height between the flanges 20a) joined to the side surface of the thick-walled square steel pipe 30.

図2乃至図5を参照しながら厚肉角形鋼管30の構成について更に説明する。図2は、厚肉角形鋼管30の概略構成を示す斜視図である。図3は、厚肉角形鋼管30の概略構成を示す側面図である。図4は、厚肉角形鋼管30の概略構成を示す平面図である。図5は、厚肉角形鋼管30の角部に形成される溶接金属32(溶接部)を説明するための拡大図である。 The configuration of the thick-walled square steel pipe 30 will be further described with reference to FIGS. 2 to 5. FIG. 2 is a perspective view showing a schematic configuration of the thick-walled square steel pipe 30. FIG. 3 is a side view showing a schematic configuration of the thick-walled square steel pipe 30. FIG. 4 is a plan view showing a schematic configuration of the thick-walled square steel pipe 30. FIG. 5 is an enlarged view for explaining the weld metal 32 (welded portion) formed at the corner portion of the thick-walled square steel pipe 30.

図2に示すように、厚肉角形鋼管30は、四角形鋼管柱10を構成する鋼管の板厚よりも厚い4枚の矩形状の鋼板31a、31a、31b、31bを、互いに溶接して接合することにより成形される。以下、各鋼板31a、31a、31b、31bの端縁を互いに溶接して溶接金属32を形成する工程について説明する。尚、本明細書において、各鋼板31a、31a、31b、31bを個別に区別せず、まとめて表現する場合は、単に「鋼板31」と表記する。 As shown in FIG. 2, in the thick-walled square steel pipe 30, four rectangular steel plates 31a, 31a, 31b, and 31b, which are thicker than the thickness of the steel pipe constituting the square steel pipe column 10, are welded and joined to each other. It is molded by. Hereinafter, a step of welding the edges of the steel plates 31a, 31a, 31b, and 31b to each other to form the weld metal 32 will be described. In addition, in this specification, when each steel plate 31a, 31a, 31b, 31b is not distinguished individually and is expressed collectively, it is simply described as "steel plate 31".

まず、4枚の鋼板31を互いに対向させて箱形に配置する。これら箱形に配置した鋼板31の互いに隣接する側縁部には、所定角度の傾斜をもつ開先Gが形成されている。本実施形態では、互いに対向して配置される鋼板31b、31bの幅方向両端縁に、所定角度の傾斜をもつ開先Gが形成されている。そして、隣接する鋼板31同士の開先Gに、所定の溶接装置(例えば溶接トーチ(図示略))を配置して、鋼板31の上下方向(図3における上下方向)に沿って、鋼板31の一端から他端(図3に示すように、鋼板の上端から下端)まで溶接して隣接する鋼板31同士を接合する。このように、隣り合う鋼板31の側縁部(鋼板31の角部内側)に溶接金属32を形成して鋼板31同士を接合し、断面視略四角形の鋼管を製造する。 First, the four steel plates 31 are arranged in a box shape so as to face each other. Grooves G having an inclination of a predetermined angle are formed on the side edges of the steel plates 31 arranged in a box shape adjacent to each other. In the present embodiment, groove G having an inclination of a predetermined angle is formed on both end edges of the steel plates 31b and 31b arranged so as to face each other in the width direction. Then, a predetermined welding device (for example, a welding torch (not shown)) is arranged in the groove G between the adjacent steel plates 31, and the steel plate 31 is formed along the vertical direction (vertical direction in FIG. 3) of the steel plate 31. Weld from one end to the other end (from the upper end to the lower end of the steel plate as shown in FIG. 3) to join the adjacent steel plates 31 to each other. In this way, the weld metal 32 is formed on the side edges of the adjacent steel plates 31 (inside the corners of the steel plates 31) and the steel plates 31 are joined to each other to manufacture a steel pipe having a substantially quadrangular cross section.

本実施形態では、隣接する鋼板31間に形成される開先Gに、多層盛溶接した溶接金属32が形成される。図5は、溶接金属32周辺を拡大して示す拡大図である。この溶接金属32は、厚肉角形鋼管30の角部(断面略四角形の四隅近傍)に形成されており、複数種類の材料が積層された多層構造を有する。 In the present embodiment, the weld metal 32 that has been multi-layer welded is formed on the groove G formed between the adjacent steel plates 31. FIG. 5 is an enlarged view showing the periphery of the weld metal 32 in an enlarged manner. The weld metal 32 is formed at the corners of the thick-walled square steel pipe 30 (near the four corners of a substantially quadrangular cross section), and has a multilayer structure in which a plurality of types of materials are laminated.

図5に示す、多層構造から成る溶接金属32を形成する工程において、初層の溶接形成工程では、隣り合う鋼板31間に形成される開先G裏(鋼板31の内面側)に裏当金35を当てて、CO半自動溶接により溶接を行い、内側材料層321を形成する。In the step of forming the weld metal 32 having a multi-layer structure shown in FIG. 5, in the welding forming step of the first layer, a backing metal is placed on the back of the groove G (inner surface side of the steel plate 31) formed between the adjacent steel plates 31. 35 is applied and welding is performed by CO 2 semi-automatic welding to form an inner material layer 321.

内側材料層321を形成した後、サブマージアーク溶接により溶接を実施して、外側材料層322を形成する。このようにして内側材料層321と外側材料層322とから成る多層構造の溶接金属32を形成する。本実施形態では、初層の溶接において、CO半自動溶接により溶接を施して内側材料層321を1層形成し、2層目以降の溶接において、サブマージアーク溶接により溶接を施して外側材料層322を複数層形成する。サブマージアーク溶接によれば、長尺部材など溶接領域が比較的長い鋼材の溶接を人手をかけずに連続して行うことができるという面がある一方で、一度に大きな入熱があるため母材が靭性を損なうことがあるなど熱影響が大きい面もある。この点、本実施形態のごとく、人手をかけず長い領域の溶接を連続して行いたい柱状四面箱型断面の溶接を多層で行うこととすれば、一度の入熱量を低く抑え、母材への熱影響を軽減することができる。尚、本明細書において、多層構造から成る溶接金属32のうち、内側(厚肉角形鋼管30の内面側(図5では溶接金属32のうちの下側))に位置する材料層を内側材料層321と称し、外側(厚肉角形鋼管30の外面側(図5では溶接金属32のうちの上側))に位置する材料層を外側材料層322と称する。After forming the inner material layer 321, welding is performed by submerged arc welding to form the outer material layer 322. In this way, the weld metal 32 having a multi-layer structure composed of the inner material layer 321 and the outer material layer 322 is formed. In the present embodiment, in the first layer welding, the inner material layer 321 is formed by welding by CO 2 semi-automatic welding, and in the second and subsequent layers welding, the outer material layer 322 is welded by submerged arc welding. To form multiple layers. According to submerged arc welding, steel materials with a relatively long welding area, such as long members, can be welded continuously without human intervention, but because there is a large amount of heat input at one time, the base metal There is also a large effect of heat, such as the fact that the toughness may be impaired. In this regard, as in the present embodiment, if welding of a columnar four-sided box-shaped cross section in which a long area is to be continuously welded without manpower is performed in multiple layers, the amount of heat input at one time can be suppressed to a low level and the base metal can be welded. It is possible to reduce the heat effect of. In the present specification, the material layer located inside (the inner surface side of the thick-walled square steel pipe 30 (lower side of the weld metal 32 in FIG. 5)) of the weld metal 32 having a multi-layer structure is referred to as the inner material layer. It is referred to as 321 and the material layer located on the outside (the outer surface side of the thick-walled square steel pipe 30 (upper side of the weld metal 32 in FIG. 5)) is referred to as the outer material layer 322.

以上のように多層構造から成る溶接金属32のうち、初層の溶接で形成される内側材料層321には高強度の材料が用いられる。具体的には、内側材料層321に用いられる材料のJIS Z 2241に規定される引張試験に準拠して測定される降伏点は、鋼板31に用いられる材料のJIS Z 2241に規定される引張試験に準拠して測定される降伏点よりも高く、且つ、外側材料層322を形成する材料のJIS Z 2241に規定される引張試験に準拠して測定される降伏点よりも高い。 Among the weld metals 32 having a multi-layer structure as described above, a high-strength material is used for the inner material layer 321 formed by welding the first layer. Specifically, the yield point measured according to the tensile test specified in JIS Z 2241 of the material used for the inner material layer 321 is the tensile test specified in JIS Z 2241 of the material used for the steel plate 31. It is higher than the yield point measured according to JIS Z 2241 and higher than the yield point measured according to the tensile test specified in JIS Z 2241 of the material forming the outer material layer 322.

詳述すると、内側材料層321は、JIS Z 2241に規定される引張試験に準拠して測定される降伏点が460N/mm以上であり、且つ、引張強さが550N/mm以上の数値範囲である材料を用いて形成される。更に、このようなJIS Z 2241に規定される引張試験に準拠して測定される降伏点及び引張強さの数値を満たすことに加えて、JIS Z 2242に規定されるシャルピー衝撃試験において衝撃吸収エネルギーが0℃で70J以上の材料を用いて内側材料層321を形成することが好適である。この内側材料層321に用いられる溶接材料として、例えばYGW18等を採用することができる。初層の溶接材料は母材以上の強度(降伏点、引張強度)を有するものであればよく、確実なものとするためには母材規格の上限値を上回る下限値を規格にもつ溶接材料が好ましいが、コストの面から確率的に母材規格の上下限中央値を上回る下限値を規格にもつ溶接材料がより好ましい。More specifically, the inner material layer 321 is a yield point is measured according to the tensile test defined in JIS Z 2241 is 460N / mm 2 or more and a tensile strength of 550 N / mm 2 or more numbers Formed using a range of materials. Further, in addition to satisfying the numerical values of the yield point and the tensile strength measured in accordance with the tensile test specified in JIS Z 2241, the impact absorption energy in the Charpy impact test specified in JIS Z 2242 is obtained. It is preferable to form the inner material layer 321 using a material having a temperature of 70 J or more at 0 ° C. As the welding material used for the inner material layer 321, for example, YGW18 or the like can be adopted. The welding material of the first layer may be a welding material having a strength (yield point, tensile strength) higher than that of the base material, and in order to ensure reliability, the welding material has a lower limit value exceeding the upper limit value of the base material standard. However, from the viewpoint of cost, a welding material having a lower limit value that probabilistically exceeds the upper and lower middle values of the base material standard is more preferable.

外側材料層322は、JIS Z 2241に規定される引張試験に準拠して測定される降伏点が390N/mm以上であって内側材料層321のJIS Z 2241に規定される引張試験に準拠して測定される降伏点より低く、且つ、引張強さが490N/mm以上の数値範囲である材料が用いられる。このような条件を満たす外側材料層322の溶接材料として、例えば、EH12K、EH14、S502−H等を採用することができる。 The outer material layer 322 has a yield point of 390 N / mm 2 or more measured in accordance with the tensile test specified in JIS Z 2241 and conforms to the tensile test specified in JIS Z 2241 of the inner material layer 321. A material having a tensile strength in the numerical range of 490 N / mm 2 or more, which is lower than the yield point measured in the above, is used. As the welding material of the outer material layer 322 satisfying such conditions, for example, EH12K, EH14, S502-H and the like can be adopted.

尚、鋼板31には、JIS Z 2241に規定される引張試験に準拠して測定される降伏点が325〜445N/mmの数値範囲であり、引張強さが490〜610N/mmの数値範囲である鋼材が用いられる。このような鋼材として、例えば建築構造用圧延鋼材SN490B、建築構造用TMCP鋼板TMCP325B等を採用することができる。 The steel sheet 31 has a yield point in the numerical range of 325 to 445 N / mm 2 and a tensile strength of 490 to 610 N / mm 2 measured in accordance with the tensile test specified in JIS Z 2241. Steel materials in the range are used. As such a steel material, for example, a rolled steel material for building structure SN490B, a TMCP steel plate for building structure TMCP325B, or the like can be adopted.

前述したように、初層の溶接で形成される内側材料層321に高強度の材料(鋼板31、外側材料層322に用いられる材料のJIS Z 2241に規定される引張試験に準拠して測定される降伏点よりも高い降伏点の材料)を用いることにより、鋼板31の側縁部を溶接して形成される溶接金属32のうちの内側(厚肉角形鋼管30の内面側)の接合強度を向上させることができる。厚肉角形鋼管30の側面には、図1に示したように梁20が直接接合されるため、この梁20から引張応力を受けて厚肉角形鋼管30の内隅部が開く方向(図5の破線矢印Fに示す方向)に力が働き、厚肉角形鋼管30の内隅部、特に裏当金35と鋼板31の隙間の溶接金属32側終端に応力集中を起こすが、本実施形態では内側材料層321を形成して溶接金属32における内側の接合強度を向上させているため、上記応力集中に対する耐力を高めることができる。更に、前述したJIS Z 2242に規定されるシャルピー衝撃試験において衝撃吸収エネルギーが0℃で70J以上である材料(例えばYGW18等)を内側材料層321に用いることにより、靭性を向上させることができるので、上記引張応力が作用した場合でも溶接金属32において破断する可能性を抑制することができる。好ましい組合せの1つとして、内側材料層321をYGW18、外側材料層322をS502−H、鋼板31をSN490B、で構成することができる。 As described above, the inner material layer 321 formed by welding the first layer is measured in accordance with the tensile test specified in JIS Z 2241 of a high-strength material (steel plate 31, material used for the outer material layer 322). By using a material having a yield point higher than the yield point), the joint strength of the inside (inner surface side of the thick-walled square steel pipe 30) of the weld metal 32 formed by welding the side edges of the steel plate 31 can be increased. Can be improved. Since the beam 20 is directly joined to the side surface of the thick-walled square steel pipe 30 as shown in FIG. 1, the direction in which the inner corner portion of the thick-walled square steel pipe 30 is opened by receiving tensile stress from the beam 20 (FIG. 5). A force acts in the direction indicated by the broken line arrow F) to cause stress concentration at the inner corner of the thick-walled square steel pipe 30, particularly at the end of the gap between the backing metal 35 and the steel plate 31 on the weld metal 32 side. Since the inner material layer 321 is formed to improve the inner bonding strength of the weld metal 32, the proof stress against the stress concentration can be increased. Further, in the Charpy impact test specified in JIS Z 2242 described above, the toughness can be improved by using a material having an impact absorption energy of 70 J or more at 0 ° C. (for example, YGW18) for the inner material layer 321. Even when the above tensile stress acts, the possibility of breakage in the weld metal 32 can be suppressed. As one of the preferable combinations, the inner material layer 321 can be composed of YGW18, the outer material layer 322 can be composed of S502-H, and the steel plate 31 can be composed of SN490B.

以上説明したように、溶接金属32形成工程は、鋼板31に用いられる材料のJIS Z 2241に規定される引張試験に準拠して測定される降伏点よりも高い材料から成る内側材料層321を形成する工程と、内側材料層321を形成した後に、内側材料層321の材料のJIS Z 2241に規定される引張試験に準拠して測定される降伏点よりも低い材料から成る外側材料層322を形成する工程とを有する。この溶接金属32形成工程における最外層を形成する段階(すなわち、複数の層から成る外側材料層322の最後の層を形成する段階)において、サブマージアーク溶接での溶接施工における溶接電圧値や溶接電流値、溶接速度値を調整することが好ましい。すなわち、外側材料層322の形成する工程において、外側材料層322における最外層を溶接する段階のみ、外側材料層322における最外層以外の層を溶接施工する際の溶接電圧値や溶接電流値、溶接速度値とは異ならせて溶接することが好ましい。このように最外層を溶接する段階のみ調整して溶接することにより、溶接金属32形成時に生じる余盛を抑制することができる。好適には、この余盛の高さh(図5)が鋼板31の外面から0〜1mm以内の範囲に収まるように、溶接金属32の最外層を形成する段階における溶接電圧値や溶接電流値、溶接速度値を調整することが好ましい。このように余盛を抑制することにより、余盛を平滑にするために機械によって表面を削るという工程を不要とすることができ、製造コストを低減させることができる。 As described above, the weld metal 32 forming step forms an inner material layer 321 made of a material higher than the yield point measured in accordance with the tensile test specified in JIS Z 2241 of the material used for the steel plate 31. After forming the inner material layer 321, the outer material layer 322 made of a material having a yield point lower than the yield point measured according to the tensile test specified in JIS Z 2241 of the material of the inner material layer 321 is formed. It has a process of welding. At the stage of forming the outermost layer in the welding metal 32 forming step (that is, the stage of forming the last layer of the outer material layer 322 composed of a plurality of layers), the welding voltage value and the welding current in the welding work in submerged arc welding. It is preferable to adjust the value and the welding speed value. That is, in the process of forming the outer material layer 322, only the stage of welding the outermost layer of the outer material layer 322, the welding voltage value, the welding current value, and the welding when welding the layers other than the outermost layer of the outer material layer 322. It is preferable to weld at a different speed value. By adjusting and welding only the outermost layer at the stage of welding in this way, it is possible to suppress the surplus that occurs when the weld metal 32 is formed. Preferably, the welding voltage value and the welding current value at the stage of forming the outermost layer of the weld metal 32 so that the height h of the surplus (FIG. 5) falls within the range of 0 to 1 mm from the outer surface of the steel plate 31. , It is preferable to adjust the welding speed value. By suppressing the surplus in this way, it is possible to eliminate the step of scraping the surface by a machine in order to smooth the surplus, and it is possible to reduce the manufacturing cost.

また、溶接余盛がある角形鋼管に梁を接合する場合について考えてみると、接合面が平滑でない場合はそのまま梁を接合することは難しいことから、従前であれば施工者が余盛を削ってから梁を接合していたが、これに対し、本実施形態のごとき柱梁接合構造1ないし溶接方法は、余盛の高さを所定値以内の範囲に抑えることで、当該余盛を削らずとも角型鋼管に梁を接合することを可能とする。しかも、地震時等に梁から厚肉角型鋼管の管壁(鋼板)を外側に変形させる力が伝わった時に応力集中が起こる厚肉角形鋼管30の内隅部において、本実施形態では降伏点が比較的高い材料で内側材料層321を形成して溶接金属32における内側の接合強度を向上させ、応力集中に対する耐力を高めていることから、溶接余盛の高さを低減させたとしても、別言すれば溶接部断面を減らしたとしても、所定程度を超える強度を確保することが可能である。 Also, considering the case of joining a beam to a square steel pipe with a welding surplus, it is difficult to join the beam as it is if the joint surface is not smooth. However, in contrast to this, in the beam-column joining structure 1 or welding method as in this embodiment, the surplus is removed by keeping the height of the surplus within a predetermined value. It is possible to join a beam to a square steel pipe at least. Moreover, in the present embodiment, the yield point is at the inner corner of the thick-walled square steel pipe 30 where stress concentration occurs when a force for deforming the pipe wall (steel plate) of the thick-walled square steel pipe is transmitted from the beam during an earthquake or the like. Is formed from a relatively high material to form the inner material layer 321 to improve the inner joint strength of the weld metal 32 and to increase the resistance to stress concentration. Therefore, even if the height of the weld surplus is reduced, In other words, even if the cross section of the welded portion is reduced, it is possible to secure the strength exceeding a predetermined level.

そもそも、後接合する場合において、当該後接合箇所は溶接による欠陥を加味して母材よりも高い強度で設計されること(「母材強度≦溶接強度」とすること)が一般的である。この点、本実施形態の柱梁接合構造1ないし溶接方法では、そうしたうえで、溶接による後接合箇所における強度を「内側材料層≧外側材料層」とし、更には「内側材料層≧外側材料層≧母材」とし、応力集中箇所(内側材料層)を比較的高い強度で設計することにより、余盛で担保する断面拡張分を低減する、つまり余盛を低減することを可能としている。 In the first place, in the case of post-joining, the post-joining portion is generally designed to have a strength higher than that of the base metal in consideration of defects due to welding (“base metal strength ≤ welding strength”). In this regard, in the beam-column joining structure 1 to the welding method of the present embodiment, after that, the strength at the post-joining portion by welding is set to "inner material layer ≥ outer material layer", and further, "inner material layer ≥ outer material layer". By designing the stress concentration point (inner material layer) with relatively high strength, it is possible to reduce the cross-sectional expansion that is secured by the surplus, that is, to reduce the surplus.

以上のような溶接工程を経て製造される厚肉角形鋼管30は、厚肉角形鋼管30の角部の内側に平面視矩形の裏当金35を配置し、当該裏当金35の外側に形成された傾斜状開先Gを溶接して溶接金属32を形成した構成としたものである。図2に示すように、裏当金35は、厚肉角形鋼管30の角部の内側に沿って延在する角柱形状を成しているが、この形状に限定されず、他の様々な形状に変更することが可能である。 In the thick-walled square steel pipe 30 manufactured through the above welding steps, a rectangular backing metal 35 in a plan view is arranged inside the corners of the thick-walled square steel pipe 30 and formed outside the backing metal 35. The inclined groove G is welded to form the weld metal 32. As shown in FIG. 2, the backing metal 35 has a prismatic shape extending along the inside of the corner portion of the thick-walled square steel pipe 30, but is not limited to this shape and has various other shapes. It is possible to change to.

例えば、図6(A)に示すように、厚肉角形鋼管30の角部の内側に配置する裏当金35Bを、平面視L字状に形成することも可能である。図6(A)に示す平面視L字状を呈する裏当金35Bは、厚肉角形鋼管30の角部の内側に沿って厚肉角形鋼管30の上端から下端まで延在している。その他の変形例として、図6(B)に示すように、厚肉角形鋼管30の角部の内側に配置する裏当金35Cを、平面視三角形状に形成することも可能である。この平面視三角形状を呈する裏当金35Cも、厚肉角形鋼管30の角部の内側に沿って厚肉角形鋼管30の上端から下端まで延在している。このような裏当金35B、35Cを配置することにより、厚肉角形鋼管30の外側に溶接接合した梁20(図1)から引張応力を受けて鋼板31が開く方向(図6に破線矢印Fに示す方向)に力が作用した場合に、裏当金35B、35Cを追従し易くすることができる。上述した厚肉角形鋼管30の内隅部、裏当金35と鋼板31の隙間の溶接金属32側終端に生じる応力集中を緩和することが出来る。 For example, as shown in FIG. 6A, the backing metal 35B arranged inside the corner portion of the thick-walled square steel pipe 30 can be formed in an L shape in a plan view. The backing metal 35B having an L-shape in a plan view shown in FIG. 6A extends from the upper end to the lower end of the thick-walled square steel pipe 30 along the inside of the corner portion of the thick-walled square steel pipe 30. As another modification, as shown in FIG. 6B, the backing metal 35C arranged inside the corner portion of the thick-walled square steel pipe 30 can be formed in a triangular shape in a plan view. The backing metal 35C having a triangular shape in a plan view also extends from the upper end to the lower end of the thick-walled square steel pipe 30 along the inside of the corner portion of the thick-walled square steel pipe 30. By arranging such backing metal 35B and 35C, the direction in which the steel plate 31 is opened by receiving tensile stress from the beam 20 (FIG. 1) welded and joined to the outside of the thick-walled square steel pipe 30 (broken line arrow F in FIG. 6). When a force acts in the direction shown in (1), the backing metal 35B and 35C can be easily followed. It is possible to alleviate the stress concentration that occurs at the inner corner of the thick-walled square steel pipe 30 and at the end of the gap between the backing metal 35 and the steel plate 31 on the weld metal 32 side.

以上説明した実施形態において、溶接金属32が形成される、隣り合う鋼板31同士の開先G形状は、厚肉角形鋼管30の内側から外側に向かって拡開する形状を呈している。この開先G形状の傾斜角度θ(図5)は例えば20°〜40°の範囲に設定される。傾斜角度θが40°以上だと溶接量が増えるので経済性が低下し、20°以下だと品質確保が難しくなる。このように、隣り合う鋼板31同士の開先形状を、厚肉角形鋼管30の内側から外側に向かって拡開する形状とすることにより、溶接金属32における内側材料層321に使用する材料の量を抑えることができる。以上説明したように、内側材料層321には高強度、高靭性の材料を用いることが好適であるが、このような特性を有する材料の使用量を抑えることにより、材料コストを低減させることができる。 In the embodiment described above, the groove G shape between the adjacent steel plates 31 on which the weld metal 32 is formed has a shape that expands from the inside to the outside of the thick-walled square steel pipe 30. The inclination angle θ (FIG. 5) of the groove G shape is set in the range of, for example, 20 ° to 40 °. If the inclination angle θ is 40 ° or more, the amount of welding increases, which reduces economic efficiency, and if it is 20 ° or less, it becomes difficult to ensure quality. In this way, the groove shape of the adjacent steel plates 31 is formed to expand from the inside to the outside of the thick-walled square steel pipe 30, so that the amount of material used for the inner material layer 321 in the weld metal 32 is formed. Can be suppressed. As described above, it is preferable to use a material having high strength and high toughness for the inner material layer 321. However, the material cost can be reduced by suppressing the amount of the material having such characteristics. can.

尚、本実施形態では、隣り合う鋼板31の間に形成される開先Gの形状を、厚肉角形鋼管30の内側から外側に向かって拡開する形状とした例を示しているが、このような開先形状に限定されず、他の様々な形状に開先形状を変形することが可能である。 In this embodiment, an example is shown in which the shape of the groove G formed between the adjacent steel plates 31 is formed to expand from the inside to the outside of the thick-walled square steel pipe 30. It is possible to transform the groove shape into various other shapes without being limited to such a groove shape.

また以上説明した実施形態では、4枚の平板状の鋼板31の側縁部同士を溶接接合して断面視略四角形状の厚肉角形鋼管30を製造しているが、このような4枚の平板状の鋼板31を用いて厚肉角形鋼管30を製造することに限定されない。 Further, in the embodiment described above, the side edges of the four flat steel plates 31 are welded together to manufacture the thick-walled square steel pipe 30 having a substantially quadrangular cross section. It is not limited to manufacturing the thick-walled square steel pipe 30 by using the flat steel plate 31.

例えば、図7(A)に示すように、平面視略L字状の鋼板31dを2枚用い、当該鋼板31dの端縁同士の間の開先Gdを溶接して溶接金属32dとして接合した断面視略四角形状の厚肉角形鋼管30Dを製造することも可能である。また、図7(B)に示すように、平面視略コ字状を成す鋼板31eを2枚用い、当該鋼板31eの端縁同士の間の開先Geを溶接して溶接金属32eとして接合した断面視略四角形状の厚肉角形鋼管30Eを製造することも可能である。また、図7(C)に示すように、H形鋼31fと2枚の平板状の鋼板31gとを組み合わせた厚肉角形鋼管30Fとしてもよい。詳細には、まず、対向する2枚の平板状のフランジ31f1と、対向するフランジ31f1の間に形成されるウェブ31f2と、から構成されるH形鋼31fを用意する。このH形鋼31fにおいて対向するフランジ31f1の間を接続するように、幅方向両端縁に開先Gfを形成した平板状の鋼板31gを配置する。鋼板31gの両端縁に形成された開先Gfを溶接して溶接金属32fを形成し、H形鋼31fのフランジ31f1と鋼板31gとを接合する。このようにH形鋼31fと鋼板31gと組み合わせて外形が四角形状を呈する厚肉角形鋼管30F(すなわち断面視四角形の角形鋼管)を製造することも可能である。 For example, as shown in FIG. 7A, a cross section in which two steel plates 31d having a substantially L-shape in a plan view are used and the groove Gd between the edges of the steel plates 31d is welded and joined as a weld metal 32d. It is also possible to manufacture a thick-walled square steel pipe 30D having a substantially quadrangular shape. Further, as shown in FIG. 7B, two steel plates 31e having a substantially U-shaped plan view were used, and the groove Ge between the edges of the steel plates 31e was welded and joined as a weld metal 32e. It is also possible to manufacture a thick-walled square steel pipe 30E having a substantially quadrangular cross-sectional view. Further, as shown in FIG. 7C, a thick-walled square steel pipe 30F may be obtained by combining an H-shaped steel 31f and two flat steel plates 31g. Specifically, first, an H-shaped steel 31f composed of two flat plate-shaped flanges 31f1 facing each other and a web 31f2 formed between the facing flanges 31f1 is prepared. A flat plate-shaped steel plate 31g having groove Gf formed at both end edges in the width direction is arranged so as to connect between the flanges 31f1 facing each other in the H-shaped steel 31f. The groove Gf formed on both end edges of the steel plate 31g is welded to form a weld metal 32f, and the flange 31f1 of the H-shaped steel 31f and the steel plate 31g are joined. In this way, it is also possible to manufacture a thick-walled square steel pipe 30F (that is, a square steel pipe having a quadrangular cross-sectional view) having a quadrangular outer shape by combining the H-shaped steel 31f and the steel plate 31g.

以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。 The embodiments described above are for facilitating the understanding of the present invention, and are not for limiting and interpreting the present invention.

例えば、以上説明した実施形態では、内側材料層321は単層で構成され、外側材料層322は、同一の材料から成る複数の層で構成されている例を説明したが、例えば、内側材料層321を2層以上形成してもよい。また、内側材料層321の層を外側材料層322の層よりも多く形成してもよい。実施形態で説明した工程、実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。 For example, in the embodiment described above, the inner material layer 321 is composed of a single layer, and the outer material layer 322 is composed of a plurality of layers made of the same material. Two or more layers of 321 may be formed. Further, the inner material layer 321 may be formed in a larger number than the outer material layer 322. The process described in the embodiment, each element included in the embodiment, its arrangement, material, condition, shape, size, and the like are not limited to those exemplified, and can be appropriately changed. In addition, the configurations shown in different embodiments can be partially replaced or combined.

1…柱梁接合構造、10…四角形鋼管柱、20…梁(H形鋼梁)、30…厚肉角形鋼管(角形鋼管)、31…鋼板、32…溶接金属(溶接部)、35…裏当金、321…内側材料層、322…外側材料層 1 ... Beam-beam joint structure, 10 ... Square steel pipe column, 20 ... Beam (H-shaped steel beam), 30 ... Thick-walled square steel pipe (square steel pipe), 31 ... Steel plate, 32 ... Welded metal (welded part), 35 ... Back Weld, 321 ... Inner material layer, 322 ... Outer material layer

Claims (11)

柱と梁との柱梁接合部に用いられる角形鋼管であって、
前記角形鋼管は、
複数枚の鋼板と、該鋼板の側縁部同士を溶接して接合された溶接部とから成る断面視四角形の鋼管であり、
前記溶接部は、異なる種類の材料が積層された多層構造から成り、
前記多層のうち内側に位置する内側材料層を形成する材料の降伏点は、前記多層のうち外側に位置する外側材料層を形成する材料の降伏点よりも高いことを特徴とする角形鋼管。
A square steel pipe used for column-beam joints between columns and beams.
The square steel pipe
It is a steel pipe having a quadrangular cross-sectional view, which consists of a plurality of steel plates and welded portions joined by welding the side edges of the steel plates.
The weld has a multi-layer structure in which different types of materials are laminated.
A square steel pipe characterized in that the yield point of the material forming the inner material layer located inside the multilayer is higher than the yield point of the material forming the outer material layer located outside the multilayer.
前記外側材料層を形成する材料の降伏点は、前記鋼板を形成する材料の降伏点と同等あるいはそれよりも高いことを特徴とする請求項1に記載の角形鋼管。 The square steel pipe according to claim 1, wherein the yield point of the material forming the outer material layer is equal to or higher than the yield point of the material forming the steel plate. 前記角形鋼管は、4枚の平板状の鋼板を含み、
前記平板状の鋼板の側縁部に形成された開先は、前記角形鋼管の内側から外側に向かって拡開する形状を呈し、
前記内側材料層は、前記開先箇所を溶接して形成される前記溶接部の最内側に位置する層である、
請求項1または2に記載の角形鋼管。
The square steel pipe includes four flat steel plates, and includes four flat steel plates.
The groove formed on the side edge of the flat steel plate has a shape that expands from the inside to the outside of the square steel pipe.
The inner material layer is a layer located on the innermost side of the welded portion formed by welding the groove portion.
The square steel pipe according to claim 1 or 2.
前記内側材料層を構成する材料は、シャルピー衝撃試験において衝撃吸収エネルギーが0℃で70J以上である、
請求項1乃至3のいずれか一項に記載の角形鋼管。
The material constituting the inner material layer has an impact absorption energy of 70 J or more at 0 ° C. in the Charpy impact test.
The square steel pipe according to any one of claims 1 to 3.
前記内側材料層は、単層で構成され、
前記外側材料層は、同一の材料から成る複数の層で構成されている、
請求項1乃至4のいずれか一項に記載の角形鋼管。
The inner material layer is composed of a single layer.
The outer material layer is composed of a plurality of layers made of the same material.
The square steel pipe according to any one of claims 1 to 4.
前記内側材料層を構成する材料は、降伏点が460N/mm以上、及び、引張強さが550N/mm以上であり、
前記外側材料層を構成する材料は、降伏点が390N/mm以上、及び、引張強さが490N/mm以上である、
請求項1乃至5のいずれか一項に記載の角形鋼管。
The material constituting the inner material layer, yield point 460N / mm 2 or more, and the tensile strength is at 550 N / mm 2 or more,
The material constituting the outer material layer, yield point 390 N / mm 2 or more, and is the tensile strength of 490 N / mm 2 or more,
The square steel pipe according to any one of claims 1 to 5.
前記角形鋼管の角部における内面側には裏当金が配設され、
前記裏当金は、断面視略L字形状又は断面視略三角形状を呈している、
請求項1乃至6のいずれか一項に記載の角形鋼管。
A backing metal is arranged on the inner surface side of the corner of the square steel pipe.
The backing metal has a substantially L-shaped cross-sectional view or a substantially triangular cross-sectional view.
The square steel pipe according to any one of claims 1 to 6.
請求項1乃至7のいずれか一項に記載の角形鋼管の下端に、下階柱の上端が接合され、
前記角形鋼管の上端に、上階柱の下端が接合され、
前記角形鋼管の側面に、梁が接合されている、柱梁接合部構造。
The upper end of the lower floor column is joined to the lower end of the square steel pipe according to any one of claims 1 to 7.
The lower end of the upper floor column is joined to the upper end of the square steel pipe,
A beam-column joint structure in which a beam is joined to the side surface of the square steel pipe.
柱と梁との柱梁接合部に用いられる断面視四角形の角形鋼管の溶接方法であって、
複数枚の鋼板を準備する工程と、
前記鋼板の端縁部同士を溶接する溶接工程と、を有し、
前記溶接工程は、
前記角形鋼管に用いられる材料の降伏点よりも高い材料から成る内側材料層を形成する内側材料層形成工程と、
前記内側材料層形成工程の後に、前記内側材料層の材料の降伏点よりも低い材料から成る外側材料層を形成する外側材料層形成工程と、を含む角形鋼管の溶接方法。
This is a welding method for square steel pipes with a quadrangular cross-section used for column-beam joints between columns and beams.
The process of preparing multiple steel plates and
It has a welding process of welding the edge portions of the steel sheet to each other.
The welding process is
An inner material layer forming step of forming an inner material layer made of a material higher than the yield point of the material used for the square steel pipe, and
A method for welding a square steel pipe, comprising: after the inner material layer forming step, an outer material layer forming step of forming an outer material layer made of a material lower than the yield point of the material of the inner material layer.
前記内側材料層形成工程では、CO半自動溶接により前記内側材料層を1層形成する、
請求項9に記載の角形鋼管の溶接方法。
In the inner material layer forming step, one inner material layer is formed by CO 2 semi-automatic welding.
The method for welding a square steel pipe according to claim 9.
前記外側材料層形成工程では、サブマージアーク溶接により前記外側材料層を複数層形成する、
請求項9または10に記載の角形鋼管の溶接方法。
In the outer material layer forming step, a plurality of outer material layers are formed by submerged arc welding.
The method for welding a square steel pipe according to claim 9 or 10.
JP2020554009A 2018-10-31 2019-10-30 Square steel pipe and welding method for square steel pipe Active JP7252249B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018205789 2018-10-31
JP2018205789 2018-10-31
PCT/JP2019/042691 WO2020090939A1 (en) 2018-10-31 2019-10-30 Square steel pipe and method of welding square steel pipe

Publications (2)

Publication Number Publication Date
JPWO2020090939A1 true JPWO2020090939A1 (en) 2021-09-30
JP7252249B2 JP7252249B2 (en) 2023-04-04

Family

ID=70462280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020554009A Active JP7252249B2 (en) 2018-10-31 2019-10-30 Square steel pipe and welding method for square steel pipe

Country Status (3)

Country Link
JP (1) JP7252249B2 (en)
KR (1) KR102485533B1 (en)
WO (1) WO2020090939A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194396U (en) * 1983-06-09 1984-12-24 日鉄溶接工業株式会社 Backing device for single-sided welding of corner joints of box-shaped structures
JPH0677989U (en) * 1993-03-29 1994-11-01 住友金属工業株式会社 Backing material for welding four-sided box columns
JP2005016212A (en) * 2003-06-27 2005-01-20 Okabe Co Ltd Exposed-type steel-frame column base
JP2006000868A (en) * 2004-06-15 2006-01-05 Nippon Steel Corp Solid wire for gas shielded arc welding for primary build-up welding

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820493B2 (en) * 1998-03-27 2006-09-13 株式会社竹中工務店 Welding method for steel structures
JP4125688B2 (en) * 2004-03-25 2008-07-30 日鐵住金溶接工業株式会社 Two-electrode large heat input submerged arc welding method
JP5127424B2 (en) 2007-12-17 2013-01-23 株式会社神戸製鋼所 Positioner face plate and core connection jig
JP5157556B2 (en) 2008-03-19 2013-03-06 新日鐵住金株式会社 Box pillar manufacturing method and box pillar
JP2014024092A (en) 2012-07-26 2014-02-06 Komaihaltec Inc Welding method
JP6686612B2 (en) 2016-03-28 2020-04-22 日本製鉄株式会社 Box-shaped cross-section member and method of designing the same
JP6776798B2 (en) * 2016-10-18 2020-10-28 Jfeスチール株式会社 Multi-layer submerged arc welding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194396U (en) * 1983-06-09 1984-12-24 日鉄溶接工業株式会社 Backing device for single-sided welding of corner joints of box-shaped structures
JPH0677989U (en) * 1993-03-29 1994-11-01 住友金属工業株式会社 Backing material for welding four-sided box columns
JP2005016212A (en) * 2003-06-27 2005-01-20 Okabe Co Ltd Exposed-type steel-frame column base
JP2006000868A (en) * 2004-06-15 2006-01-05 Nippon Steel Corp Solid wire for gas shielded arc welding for primary build-up welding

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
横山幸夫 他: "建築構造用高性能60キロ鋼を用いた溶接組立箱形断面柱の溶接施工試験", 駒井技法, vol. 1995年、Vol.14, JPN6022020002, pages 57 - 64, ISSN: 0004965621 *
鈴木康正 他: "1000N/mm2級鋼を用いた溶接4面ボックス柱−梁接合の開発", 大林技術研究所報, vol. 2013年、No.77, JPN6022020003, JP, pages 1 - 8, ISSN: 0004965622 *

Also Published As

Publication number Publication date
KR102485533B1 (en) 2023-01-05
KR20210066877A (en) 2021-06-07
JP7252249B2 (en) 2023-04-04
WO2020090939A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
JP2008297701A (en) Trussed frame of steel structure
JP5157556B2 (en) Box pillar manufacturing method and box pillar
JP4793023B2 (en) Welded BOX column
JPWO2020090939A1 (en) Welding method of square steel pipe and square steel pipe
JP2011132745A (en) Steel structure
JP5973968B2 (en) Column beam welded joint and manufacturing method thereof
JP6984510B2 (en) Joint structure of square steel pipe columns and H-shaped steel beams
JP6152809B2 (en) Beam-column joint structure
JP6179757B2 (en) Column-to-column connection structure for different diameter column connections in buildings
KR102012499B1 (en) Boiler Spiral Wall Supporting Structure For Thermal Power Plants
JP2010106515A (en) Square steel pipe column
JP2008284575A (en) Welded column having box shape cross section
JP2018172859A (en) Box section column and column-beam connection structure
JP7047856B2 (en) Assembling method of four-sided welded box-shaped cross-section columns, skin plate members, four-sided welded box-shaped cross-section columns, and concrete-filled steel pipe columns
JP7295731B2 (en) Beam formation method and erection method
KR102372361B1 (en) Concrete filled steel tube column and manufacturing method thereof
JP6685571B1 (en) Beam-column joint structure
JP7435397B2 (en) Welded assembly box-shaped cross-section member
JP4812851B2 (en) Design method of non-diaphragm construction method
JP3801586B2 (en) Manufacturing method of square steel pipe column
JP4990317B2 (en) Steel structure
JP4734840B2 (en) Beam-column joint
JP2023089358A (en) Weld joint of box type cross-sectional member and weld method of the same
JP2004027741A (en) Joint structure of steel pipe for column member
JP2004027740A (en) Joint structure of steel pipe for column member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220523

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230323

R150 Certificate of patent or registration of utility model

Ref document number: 7252249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150