WO2020090906A1 - Laser machining device - Google Patents

Laser machining device Download PDF

Info

Publication number
WO2020090906A1
WO2020090906A1 PCT/JP2019/042613 JP2019042613W WO2020090906A1 WO 2020090906 A1 WO2020090906 A1 WO 2020090906A1 JP 2019042613 W JP2019042613 W JP 2019042613W WO 2020090906 A1 WO2020090906 A1 WO 2020090906A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser processing
wall portion
processing head
laser
housing
Prior art date
Application number
PCT/JP2019/042613
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 坂本
惇治 奥間
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to KR1020217015671A priority Critical patent/KR20210080511A/en
Priority to CN201980071694.9A priority patent/CN112955274B/en
Priority to JP2020553986A priority patent/JP7368373B2/en
Publication of WO2020090906A1 publication Critical patent/WO2020090906A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms

Definitions

  • the present disclosure relates to a laser processing device.
  • Patent Document 1 describes a laser processing apparatus that includes a holding mechanism that holds a work, and a laser irradiation mechanism that irradiates the work held by the holding mechanism with laser light.
  • a laser irradiation mechanism having a condenser lens is fixed to a base, and movement of a work along a direction perpendicular to the optical axis of the condenser lens is performed by a holding mechanism. Be implemented.
  • the present disclosure aims to provide a laser processing apparatus capable of improving throughput.
  • a laser processing apparatus is movable along a first direction, and a support portion for supporting an object along a first direction and a second direction intersecting the first direction, and a second direction.
  • a first laser processing head and a second laser processing head for irradiating the object supported by the support portion with laser light, and the first laser processing head are attached,
  • a first mounting portion, which is movable along a third direction and a second direction intersecting the first direction and the second direction, respectively, and a second laser processing head are mounted, and the second direction and the third direction are attached.
  • a second mounting portion that is movable along each of the above.
  • a first laser processing head and a second laser processing head are arranged so as to face each other on a support portion that supports an object.
  • the first laser processing head and the second laser processing head are independently movable in two directions that intersect each other via the first mounting portion and the second mounting portion, respectively. Therefore, it is possible to perform laser processing independently of each other at two locations of the object by scanning the laser light. Therefore, the throughput can be improved.
  • the first laser processing head is provided on the first housing and the wall portion on the support portion side of the first housing, and the laser is directed toward the target object supported by the support portion.
  • a second condensing unit for condensing light, and the second laser processing head is provided on the second casing and a wall portion on the supporting unit side of the second casing, and is supported by the supporting unit.
  • the first mounting part and the second mounting part are respectively the first mounting part and the second mounting part in the second housing.
  • the first light collecting part is arranged so as to be biased toward the facing wall part side of the first housing when viewed from the third direction.
  • the second condensing unit may be arranged so as to be biased toward the facing wall portion side of the second housing when viewed from the third direction.
  • the first mounting portion and the second mounting portion are not interposed between the first laser processing head and the second laser processing head. Therefore, the first laser processing head and the second laser processing head can be made closer to each other in the second direction. Further, the respective light converging portions of the first laser processing head and the second laser processing head are arranged so as to be biased toward the wall portions of the respective casings facing each other. Therefore, when the first laser processing head and the second laser processing head are brought close to each other, the distance between the condensing portions can be further reduced. As a result, it is possible to perform processing using both the first laser processing head and the second laser processing head up to a narrower area in the second direction. Therefore, the throughput can be surely improved.
  • the laser processing apparatus controls the movement of the support portion, the first mounting portion, and the second mounting portion, and the irradiation of laser light from the first laser processing head and the second laser processing head.
  • a plurality of lines, the plurality of lines extending in the first direction and arranged in the second direction are set on the object, and the control unit sets the plurality of lines to one line.
  • the second scan processing may be executed so as to overlap at least in part of the time.
  • the throughput is improved by at least partially overlapping the first scan process and the second scan process. By performing the first scan process and the second scan process at the same time, the throughput can be more reliably improved.
  • the control unit sequentially performs the first scan from a line located at one end of the object in the second direction of the plurality of lines toward an inner line in the second direction. While performing the process, a main processing process that sequentially performs the second scan process from the line located at the other end of the object in the second direction of the plurality of lines toward the inner line in the second direction is performed. You may execute. As described above, in the main processing, the first scan process and the second scan process are sequentially performed from the line at the position contrasting with the object in the second direction, so that Waste of relative movement along one direction is eliminated, and throughput is further improved.
  • the control unit causes the first light focusing on the object.
  • a part of the plurality of lines remains in the region between the portion and the second condensing unit, one of the first laser processing head and the second laser processing head A post-processing process may be performed in which the laser beam from the other one of the first laser processing head and the second laser processing head is scanned in the first direction with respect to a part of the lines while retracting from the area.
  • laser processing can be performed without leakage while improving throughput.
  • the control unit causes the first light collecting unit and the second light collecting unit to gradually approach each other in the second direction.
  • the distance D reaches twice the distance D
  • one of the first laser processing head and the second laser processing head is moved to the other side of the first laser processing head and the second laser processing head by the distance D, and A post-processing process that executes the first scan process and the second scan process may be executed while maintaining the distance between the first light collecting unit and the second light collecting unit.
  • the processing time in only one of the pair of laser processing heads is reduced as much as possible, and the throughput is further improved.
  • it is effective when the line interval in the second direction is sufficiently small with respect to the distance D (for example, when several hundred lines are present in the range of the distance D).
  • the first attachment portion is attached to the wall portion of the first housing opposite to the opposite wall portion
  • the second attachment portion is the opposite wall portion of the second housing. It may be attached to the wall part on the opposite side.
  • the first laser processing head and the second laser processing head can be easily and reliably arranged so that the first mounting portion and the second mounting portion are not interposed between the first laser processing head and the second laser processing head. It can be attached to.
  • the first laser processing head includes a first wall portion and a second wall portion that face each other in the first direction, and a third wall portion and a fourth wall that face each other in the second direction.
  • a second laser processing head having a first wall portion and a second wall portion facing each other in the first direction, and a third wall facing each other in the second direction.
  • a second housing including a first wall portion and a fourth wall portion, and a distance between the third wall portion and the fourth wall portion is smaller than a distance between the first wall portion and the second wall portion. Good.
  • the first housing and the second housing include a first wall portion and a second wall portion that face each other in the first direction, and a third wall portion that faces each other in the second direction.
  • the fourth wall portion, and the distance between the third wall portion and the fourth wall portion may be smaller than the distance between the first wall portion and the second wall portion.
  • the size of the housings of the two laser processing heads in the second direction is smaller than the size in the first direction. For this reason, it is possible to avoid an increase in the size of the entire device in the second direction (an increase in the footprint).
  • the first direction is the moving direction of the support and the target. Therefore, in the first direction, it is necessary to consider the amount of movement of the support portion and the target object when scanning the laser light, and there is little room for suppressing the increase in size. Therefore, it is effective to avoid increasing the size in the second direction, which does not require consideration of the movement amounts of the support portion and the object.
  • FIG. 4 It is a perspective view of the laser processing apparatus of one embodiment. It is a front view of a part of laser processing apparatus shown by FIG. It is a front view of the laser processing head of the laser processing apparatus shown by FIG. 4 is a side view of the laser processing head shown in FIG. 3.
  • FIG. It is a block diagram of the optical system of the laser processing head shown in FIG. It is a block diagram of the optical system of the laser processing head of a modification. It is a front view of a part of laser processing apparatus of a modification. It is a schematic top view which shows operation
  • the laser processing apparatus 1 includes a plurality of moving mechanisms 5 and 6, a supporting portion 7, and a pair of laser processing heads (first laser processing head, second laser processing head) 10A and 10B. And a light source unit 8 and a control unit 9.
  • the first direction will be referred to as the X direction
  • the second direction perpendicular to the first direction will be referred to as the Y direction
  • the third direction perpendicular to the first and second directions will be referred to as the Z direction.
  • the X direction and the Y direction are horizontal directions
  • the Z direction is a vertical direction.
  • the moving mechanism 5 has a fixed portion 51, a moving portion 53, and a mounting portion 55.
  • the fixed portion 51 is attached to the device frame 1a.
  • the moving unit 53 is attached to a rail provided on the fixed unit 51, and can move along the Y direction.
  • the attachment portion 55 is attached to a rail provided on the moving portion 53 and can move along the X direction.
  • the moving mechanism 6 includes a fixed part 61, a pair of moving parts (first moving part, second moving part) 63, 64, and a pair of mounting parts (first mounting part, second mounting part) 65, 66. And have.
  • the fixed portion 61 is attached to the device frame 1a.
  • Each of the pair of moving portions 63 and 64 is attached to a rail provided on the fixed portion 61, and each of them can move independently along the Y direction.
  • the attachment portion 65 is attached to a rail provided on the moving portion 63 and can move along the Z direction.
  • the attachment portion 66 is attached to a rail provided on the moving portion 64 and can move along the Z direction. That is, with respect to the device frame 1a, each of the pair of mounting portions 65 and 66 can move along the Y direction and the Z direction.
  • the support portion 7 is attached to a rotary shaft provided on the attachment portion 55 of the moving mechanism 5, and can rotate about an axis parallel to the Z direction as a center line. That is, the support part 7 can move along each of the X direction and the Y direction, and can rotate about the axis parallel to the Z direction as the center line.
  • the support unit 7 supports the object 100 along the X direction and the Y direction.
  • the object 100 is, for example, a wafer.
  • the laser processing head 10A (for example, the first laser processing head) is attached to the attachment portion 65 of the moving mechanism 6.
  • the laser processing head 10A is for irradiating the object 100 supported by the support 7 with laser light (first laser light) L1 while facing the support 7 in the Z direction.
  • the laser processing head 10B (for example, the second laser processing head) is attached to the attachment portion 66 of the moving mechanism 6.
  • the laser processing head 10B is for irradiating the object 100 supported by the support 7 with laser light (second laser light) L2 while facing the support 7 in the Z direction.
  • the light source unit 8 has a pair of light sources 81 and 82.
  • the light source 81 outputs laser light L1.
  • the laser light L1 is emitted from the emitting portion 81a of the light source 81 and guided to the laser processing head 10A by the optical fiber 2.
  • the light source 82 outputs laser light L2.
  • the laser light L2 is emitted from the emitting portion 82a of the light source 82, and is guided to the laser processing head 10B by another optical fiber 2.
  • the control unit 9 controls each unit of the laser processing apparatus 1 (a plurality of moving mechanisms 5, 6, a pair of laser processing heads 10A, 10B, a light source unit 8, etc.).
  • the control unit 9 is configured as a computer device including a processor, a memory, a storage, a communication device, and the like.
  • the software (program) read into the memory or the like is executed by the processor, and the reading and writing of data in the memory and the storage and the communication by the communication device are controlled by the processor. Thereby, the control unit 9 realizes various functions.
  • An example of processing by the laser processing apparatus 1 configured as above will be described.
  • An example of the processing is an example in which a modified region is formed inside the object 100 along each of a plurality of lines set in a grid pattern in order to cut the object 100, which is a wafer, into a plurality of chips. is there.
  • the moving mechanism 5 moves the supporting portion 7 along the X direction and the Y direction so that the supporting portion 7 supporting the object 100 faces the pair of laser processing heads 10A and 10B in the Z direction. To move. Then, the moving mechanism 5 rotates the support part 7 with the axis line parallel to the Z direction as the center line so that the plurality of lines extending in one direction on the object 100 are along the X direction.
  • the moving mechanism 6 moves the laser processing head 10A along the Y direction so that the focus point of the laser beam L1 is located on one line extending in one direction.
  • the moving mechanism 6 moves the laser processing head 10B along the Y direction so that the focal point of the laser light L2 is located on the other line extending in one direction.
  • the moving mechanism 6 moves the laser processing head 10A along the Z direction so that the focusing point of the laser beam L1 is located inside the object 100.
  • the moving mechanism 6 moves the laser processing head 10B along the Z direction so that the focal point of the laser beam L2 is located inside the object 100.
  • the light source 81 outputs the laser light L1 and the laser processing head 10A irradiates the object 100 with the laser light L1, and the light source 82 outputs the laser light L2 and the laser processing head 10B lasers the object 100.
  • the light L2 is emitted.
  • the condensing point of the laser light L1 relatively moves along one line extending in one direction (the laser light L1 is scanned), and the laser beam extends along another line extending in one direction.
  • the moving mechanism 5 moves the support portion 7 along the X direction so that the focal point of the light L2 moves relatively (the laser light L2 is scanned). In this way, the laser processing apparatus 1 forms the modified region inside the object 100 along each of the plurality of lines extending in one direction on the object 100.
  • the moving mechanism 5 rotates the support part 7 with the axis line parallel to the Z direction as the center line so that the plurality of lines extending in the other direction orthogonal to the one direction in the object 100 are along the X direction. ..
  • the moving mechanism 6 moves the laser processing head 10A along the Y direction so that the focus point of the laser light L1 is located on one line extending in the other direction.
  • the moving mechanism 6 moves the laser processing head 10B along the Y direction so that the focus point of the laser light L2 is located on another line extending in the other direction.
  • the moving mechanism 6 moves the laser processing head 10A along the Z direction so that the focusing point of the laser beam L1 is located inside the object 100.
  • the moving mechanism 6 moves the laser processing head 10B along the Z direction so that the focal point of the laser beam L2 is located inside the object 100.
  • the light source 81 outputs the laser light L1 and the laser processing head 10A irradiates the object 100 with the laser light L1, and the light source 82 outputs the laser light L2 and the laser processing head 10B lasers the object 100.
  • the light L2 is emitted.
  • the focal point of the laser light L1 relatively moves along one line extending in the other direction (the laser light L1 is scanned), and the laser beam extends along the other line extending in the other direction.
  • the moving mechanism 5 moves the support portion 7 along the X direction so that the focal point of the light L2 moves relatively (the laser light L2 is scanned). In this way, the laser processing apparatus 1 forms the modified region inside the object 100 along each of the plurality of lines extending in the other direction orthogonal to the one direction in the object 100.
  • the light source 81 outputs the laser light L1 that is transmissive to the target object 100, for example, by the pulse oscillation method, and the light source 82 outputs the laser light L1 to the target object 100, for example, by the pulse oscillation method.
  • the laser beam L2 having transparency is output.
  • the laser light is condensed inside the object 100, the laser light is particularly absorbed in a portion corresponding to the condensing point of the laser light, and a modified region is formed inside the object 100.
  • the modified region is a region where the density, refractive index, mechanical strength, and other physical properties are different from the surrounding unmodified region.
  • the modified region includes, for example, a melt-processed region, a crack region, a dielectric breakdown region, and a refractive index change region.
  • a plurality of modified spots are lined up. Are formed so as to be lined up in a row along the line.
  • One modified spot is formed by irradiation with one pulse of laser light.
  • the one-row reforming region is a set of a plurality of reforming spots arranged in one row. Adjacent modified spots may be connected to each other or may be separated from each other depending on the relative moving speed of the condensing point of the laser light with respect to the object 100 and the repetition frequency of the laser light.
  • the laser processing head 10A includes a casing (for example, a first casing) 11, an incident unit 12, an adjusting unit 13, and a condensing unit (for example, a first condensing unit). 14 and.
  • the housing 11 has a first wall portion 21 and a second wall portion 22, a third wall portion 23 and a fourth wall portion 24, and a fifth wall portion 25 and a sixth wall portion 26.
  • the first wall portion 21 and the second wall portion 22 face each other in the X direction.
  • the third wall portion 23 and the fourth wall portion 24 face each other in the Y direction.
  • the fifth wall portion 25 and the sixth wall portion 26 face each other in the Z direction.
  • the distance between the third wall portion 23 and the fourth wall portion 24 is smaller than the distance between the first wall portion 21 and the second wall portion 22.
  • the distance between the first wall portion 21 and the second wall portion 22 is smaller than the distance between the fifth wall portion 25 and the sixth wall portion 26.
  • the distance between the first wall portion 21 and the second wall portion 22 may be equal to the distance between the fifth wall portion 25 and the sixth wall portion 26, or alternatively, the fifth wall portion 25 and the sixth wall portion 26. It may be larger than the distance to the portion 26.
  • the first wall portion 21 is located on the fixed portion 61 side of the moving mechanism 6, and the second wall portion 22 is located on the opposite side to the fixed portion 61.
  • the third wall portion 23 is located on the mounting portion 65 side of the moving mechanism 6, and the fourth wall portion 24 is located on the side opposite to the mounting portion 65 and on the laser processing head 10B side (FIG. 2). That is, the fourth wall portion 24 is a facing wall portion that faces the housing (second housing) of the laser processing head 10B along the Y direction.
  • the fifth wall portion 25 is located on the side opposite to the support portion 7, and the sixth wall portion 26 is located on the support portion 7 side.
  • the housing 11 is configured such that the housing 11 is attached to the mounting portion 65 with the third wall portion 23 arranged on the mounting portion 65 side of the moving mechanism 6. Specifically, it is as follows.
  • the mounting portion 65 has a base plate 65a and a mounting plate 65b.
  • the base plate 65a is attached to a rail provided on the moving unit 63 (see FIG. 2).
  • the mounting plate 65b is erected on the end of the base plate 65a on the laser processing head 10B side (see FIG. 2).
  • the casing 11 is attached to the attachment portion 65 by screwing the bolt 28 to the attachment plate 65b via the pedestal 27 while the third wall portion 23 is in contact with the attachment plate 65b.
  • the pedestal 27 is provided on each of the first wall portion 21 and the second wall portion 22.
  • the housing 11 is attachable to and detachable from the mounting portion 65.
  • the incident part 12 is attached to the fifth wall part 25.
  • the incident unit 12 causes the laser light L1 to enter the housing 11.
  • the incident portion 12 is offset to the second wall portion 22 side (one wall portion side) in the X direction and is offset to the fourth wall portion 24 side in the Y direction. That is, the distance between the incident portion 12 and the second wall portion 22 in the X direction is smaller than the distance between the incident portion 12 and the first wall portion 21 in the X direction, and the incident portion 12 and the fourth wall portion 24 in the Y direction. Is smaller than the distance between the incident portion 12 and the third wall portion 23 in the X direction.
  • the incident portion 12 is configured so that the connection end portion 2a of the optical fiber 2 can be connected.
  • the connection end portion 2a of the optical fiber 2 is provided with a collimator lens that collimates the laser light L1 emitted from the emission end of the fiber, and is not provided with an isolator that suppresses return light.
  • the isolator is provided in the middle of the fiber on the light source 81 side with respect to the connection end portion 2a. As a result, the connection end portion 2a is downsized, and the incident portion 12 is downsized.
  • An isolator may be provided at the connection end 2a of the optical fiber 2.
  • the adjusting unit 13 is arranged in the housing 11.
  • the adjusting unit 13 adjusts the laser light L1 incident from the incident unit 12.
  • the adjustment unit 13 is arranged in the housing 11 on the fourth wall 24 side with respect to the partition wall 29.
  • the adjusting part 13 is attached to the partition wall part 29.
  • the partition wall portion 29 is provided inside the housing 11, and partitions the area inside the housing 11 into a region on the third wall portion 23 side and a region on the fourth wall portion 24 side.
  • the partition wall portion 29 is integrated with the housing 11.
  • the components included in the adjusting portion 13 are attached to the partition wall portion 29 on the fourth wall portion 24 side.
  • the partition wall portion 29 functions as an optical base that supports each component of the adjusting portion 13. Details of each configuration of the adjustment unit 13 will be described later.
  • the light collector 14 is arranged on the sixth wall 26. Specifically, the light collecting section 14 is arranged in the sixth wall section 26 in a state of being inserted into the hole 26 a formed in the sixth wall section 26.
  • the condensing unit 14 condenses the laser light L1 adjusted by the adjusting unit 13 and emits it to the outside of the housing 11.
  • the light collecting section 14 is offset to the second wall section 22 side (one wall section side) in the X direction and is biased to the fourth wall section 24 side in the Y direction. That is, the light condensing unit 14 is arranged so as to be biased toward the fourth wall portion (opposing wall portion) 24 side of the housing 11 when viewed from the Z direction.
  • the distance between the light collecting section 14 and the second wall section 22 in the X direction is smaller than the distance between the light collecting section 14 and the first wall section 21 in the X direction, and the light collecting section 14 and the fourth wall in the Y direction are fourth.
  • the distance from the wall portion 24 is smaller than the distance between the light collecting portion 14 and the third wall portion 23 in the X direction.
  • the adjusting unit 13 has an attenuator 31, a beam expander 32, and a mirror 33.
  • the incident unit 12, the attenuator 31, the beam expander 32, and the mirror 33 of the adjusting unit 13 are arranged on a straight line (first straight line) A1 extending along the Z direction.
  • the attenuator 31 and the beam expander 32 are arranged between the incident part 12 and the mirror 33 on the straight line A1.
  • the attenuator 31 adjusts the output of the laser light L1 incident from the incident unit 12.
  • the beam expander 32 expands the diameter of the laser light L1 whose output is adjusted by the attenuator 31.
  • the mirror 33 reflects the laser light L1 whose diameter has been expanded by the beam expander 32.
  • the adjusting unit 13 further includes a reflective spatial light modulator 34 and an image forming optical system 35.
  • the reflective spatial light modulator 34 of the adjustment unit 13, the imaging optical system 35, and the condensing unit 14 are arranged on a straight line (second straight line) A2 extending along the Z direction.
  • the reflective spatial light modulator 34 modulates the laser light L1 reflected by the mirror 33.
  • the reflective spatial light modulator 34 is, for example, a reflective liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator).
  • the image forming optical system 35 constitutes a double-sided telecentric optical system in which the reflecting surface 34a of the reflective spatial light modulator 34 and the entrance pupil surface 14a of the condensing unit 14 are in an image forming relationship.
  • the image forming optical system 35 is composed of three or more lenses.
  • the straight line A1 and the straight line A2 are located on a plane perpendicular to the Y direction.
  • the straight line A1 is located on the second wall portion 22 side (one wall portion side) with respect to the straight line A2.
  • the laser beam L1 enters the housing 11 from the incident part 12, travels on the straight line A1, is sequentially reflected by the mirror 33 and the reflective spatial light modulator 34, and then the straight line A2.
  • the light travels upward and is emitted from the light collecting unit 14 to the outside of the housing 11.
  • the order of arrangement of the attenuator 31 and the beam expander 32 may be reversed.
  • the attenuator 31 may be arranged between the mirror 33 and the reflective spatial light modulator 34.
  • the adjusting unit 13 may have other optical components (for example, a steering mirror arranged in front of the beam expander 32).
  • the laser processing head 10A further includes a dichroic mirror 15, a measurement unit 16, an observation unit 17, a drive unit 18, and a circuit unit 19.
  • the dichroic mirror 15 is arranged on the straight line A2 between the imaging optical system 35 and the condensing unit 14. That is, the dichroic mirror 15 is arranged in the housing 11 between the adjusting unit 13 and the light collecting unit 14. The dichroic mirror 15 is attached to the partition wall portion 29 on the side of the fourth wall portion 24. The dichroic mirror 15 transmits the laser light L1. From the viewpoint of suppressing astigmatism, the dichroic mirror 15 may be, for example, a cube type or two plate types arranged so as to have a twist relationship.
  • the measuring unit 16 is arranged inside the housing 11 with respect to the adjusting unit 13 on the first wall 21 side (the side opposite to the one wall side).
  • the measuring section 16 is attached to the partition wall section 29 on the fourth wall section 24 side.
  • the measurement unit 16 outputs measurement light L10 for measuring the distance between the surface of the object 100 (for example, the surface on the side on which the laser light L1 is incident) and the light condensing unit 14, and through the light condensing unit 14.
  • the measurement light L10 reflected by the surface of the object 100 is detected. That is, the measurement light L10 output from the measurement unit 16 is applied to the surface of the object 100 via the light condensing unit 14, and the measurement light L10 reflected on the surface of the object 100 passes through the light condensing unit 14. And is detected by the measuring unit 16.
  • the measurement light L10 output from the measurement unit 16 is sequentially reflected by the beam splitter 20 and the dichroic mirror 15 attached to the partition wall 29 on the side of the fourth wall 24, and the condensing unit 14 is provided. Is emitted from the housing 11.
  • the measurement light L10 reflected on the surface of the object 100 enters the housing 11 from the light condensing unit 14, is sequentially reflected by the dichroic mirror 15 and the beam splitter 20, enters the measuring unit 16, and then the measuring unit 16 Detected in.
  • the observing unit 17 is arranged in the housing 11 on the first wall 21 side (the side opposite to the one wall side) with respect to the adjusting unit 13.
  • the observation section 17 is attached to the partition wall section 29 on the fourth wall section 24 side.
  • the observation unit 17 outputs the observation light L20 for observing the surface of the object 100 (for example, the surface on the side where the laser light L1 is incident), and is reflected by the surface of the object 100 via the light condensing unit 14.
  • the observation light L20 thus generated is detected. That is, the observation light L20 output from the observation unit 17 is applied to the surface of the object 100 via the light condensing unit 14, and the observation light L20 reflected by the surface of the object 100 passes through the light condensing unit 14. And is detected by the observation unit 17.
  • the observation light L20 output from the observation unit 17 passes through the beam splitter 20, is reflected by the dichroic mirror 15, and is emitted from the condensing unit 14 to the outside of the housing 11.
  • the observation light L20 reflected on the surface of the object 100 enters the housing 11 from the light condensing unit 14, is reflected by the dichroic mirror 15, passes through the beam splitter 20, and enters the observation unit 17, Detected at 17.
  • the wavelengths of the laser light L1, the measurement light L10, and the observation light L20 are different from each other (at least the respective central wavelengths are deviated from each other).
  • the drive portion 18 is attached to the partition wall portion 29 on the side of the fourth wall portion 24.
  • the driving unit 18 moves the condensing unit 14 arranged on the sixth wall unit 26 along the Z direction by the driving force of the piezoelectric element, for example.
  • the circuit portion 19 is arranged in the housing 11 on the third wall portion 23 side with respect to the partition wall portion 29. That is, the circuit unit 19 is arranged on the third wall 23 side with respect to the adjustment unit 13, the measurement unit 16, and the observation unit 17 in the housing 11.
  • the circuit section 19 is separated from the partition wall section 29.
  • the circuit unit 19 is, for example, a plurality of circuit boards.
  • the circuit unit 19 processes the signal output from the measurement unit 16 and the signal input to the reflective spatial light modulator 34.
  • the circuit unit 19 controls the drive unit 18 based on the signal output from the measurement unit 16. As an example, the circuit unit 19 maintains the distance between the surface of the object 100 and the light condensing unit 14 constant based on the signal output from the measurement unit 16 (that is, the surface of the object 100).
  • the drive unit 18 is controlled so that the distance from the condensing point of the laser light L1 is kept constant).
  • the housing 11 is provided with a connector (not shown) to which wiring for electrically connecting the circuit unit 19 to the control unit 9 (see FIG. 1) and the like is connected.
  • the laser processing head 10B includes a housing (for example, a second housing) 11, an incident unit 12, an adjusting unit 13, and a light collecting unit (for example, a second light collecting unit) 14.
  • a dichroic mirror 15, a measurement unit 16, an observation unit 17, a drive unit 18, and a circuit unit 19 are provided.
  • each configuration of the laser processing head 10B is, as shown in FIG. 2, each configuration of the laser processing head 10A with respect to a virtual plane that passes through the midpoint between the pair of mounting portions 65 and 66 and is perpendicular to the Y direction. Are arranged so as to have a plane symmetry relationship with (this is an example as described later).
  • the fourth wall portion 24 is located on the laser processing head 10B side with respect to the third wall portion 23, and the sixth wall portion 26 is supported with respect to the fifth wall portion 25. It is attached to the attachment portion 65 so as to be located on the side of the portion 7.
  • the fourth wall portion 24 is located on the laser processing head 10A side with respect to the third wall portion 23, and the sixth wall portion 26 is with respect to the fifth wall portion 25. Is attached to the attachment portion 66 so as to be located on the support portion 7 side. That is, also in the laser processing head 10B, the fourth wall portion 24 is a facing wall portion that faces the housing of the laser processing head 10A along the Y direction.
  • the light converging portion 14 is arranged so as to be biased toward the fourth wall portion (opposing wall portion) 24 side of the housing 11 when viewed from the Z direction.
  • the housing 11 of the laser processing head 10B is configured such that the housing 11 is attached to the mounting portion 66 with the third wall portion 23 arranged on the mounting portion 66 side. Specifically, it is as follows.
  • the mounting portion 66 has a base plate 66a and a mounting plate 66b.
  • the base plate 66a is attached to a rail provided on the moving unit 63.
  • the mounting plate 66b is erected at the end of the base plate 66a on the laser processing head 10A side.
  • the housing 11 of the laser processing head 10B is attached to the attachment portion 66 with the third wall portion 23 in contact with the attachment plate 66b.
  • the housing 11 of the laser processing head 10B can be attached to and detached from the mounting portion 66. [Operation and effect of laser processing head]
  • the housing 11 since the light source that outputs the laser light L1 is not provided in the housing 11, the housing 11 can be downsized. Further, in the housing 11, the distance between the third wall portion 23 and the fourth wall portion 24 is smaller than the distance between the first wall portion 21 and the second wall portion 22, and the collection disposed on the sixth wall portion 26. The light portion 14 is biased toward the fourth wall portion 24 side in the Y direction. Thereby, when moving the housing 11 along the direction perpendicular to the optical axis of the light condensing unit 14, for example, it is assumed that another configuration (for example, the laser processing head 10B) is present on the fourth wall 24 side. Also, the condensing unit 14 can be brought close to the other configuration. Therefore, the laser processing head 10A may be suitable for moving the condensing unit 14 along the direction perpendicular to its optical axis.
  • the incident portion 12 is provided on the fifth wall portion 25 and is offset to the fourth wall portion 24 side in the Y direction.
  • the region such as disposing another configuration (for example, the circuit unit 19) in a region on the third wall 23 side with respect to the adjustment unit 13 in the region inside the housing 11. it can.
  • the condensing portion 14 is offset to the second wall portion 22 side in the X direction. Accordingly, when the housing 11 is moved along the direction perpendicular to the optical axis of the light condensing unit 14, for example, even if another configuration exists on the second wall 22 side, the other configuration is collected. The light unit 14 can be brought closer.
  • the incident portion 12 is provided on the fifth wall portion 25 and is offset toward the fourth wall portion 24 side in the Y direction and is offset toward the second wall portion 22 side in the X direction. ing.
  • the region such as disposing another configuration (for example, the circuit unit 19) in a region on the third wall 23 side with respect to the adjustment unit 13 in the region inside the housing 11. it can.
  • other regions for example, the measurement unit 16 and the observation unit 17 are arranged in the region of the housing 11 on the first wall 21 side with respect to the adjustment unit 13, and the region is effectively used. can do.
  • the measuring unit 16 and the observing unit 17 are arranged in the region on the first wall 21 side with respect to the adjusting unit 13 in the region inside the housing 11, and the circuit unit 19 is
  • the dichroic mirror 15 is arranged on the side of the third wall portion 23 with respect to the adjustment unit 13 in the area inside the housing 11, and the dichroic mirror 15 is arranged between the adjustment unit 13 and the light collection unit 14 in the housing 11. ing. Thereby, the area in the housing 11 can be effectively used.
  • the laser processing apparatus 1 can perform processing based on the measurement result of the distance between the surface of the object 100 and the light condensing unit 14. Further, the laser processing apparatus 1 can perform processing based on the observation result of the surface of the object 100.
  • the circuit section 19 controls the drive section 18 based on the signal output from the measuring section 16. Thereby, the position of the condensing point of the laser beam L1 can be adjusted based on the measurement result of the distance between the surface of the object 100 and the condensing unit 14.
  • the incident section 12, the attenuator 31, the beam expander 32, and the mirror 33 of the adjusting section 13 are arranged on the straight line A1 extending along the Z direction, and the adjusting section 13 is provided.
  • the reflective spatial light modulator 34, the imaging optical system 35, the condensing unit 14, and the condensing unit 14 are arranged on a straight line A2 extending along the Z direction. Accordingly, the adjusting unit 13 including the attenuator 31, the beam expander 32, the reflective spatial light modulator 34, and the imaging optical system 35 can be configured compactly.
  • the straight line A1 is located closer to the second wall portion 22 than the straight line A2.
  • another optical system for example, the measuring unit 16 and the observing unit 17
  • the light condensing unit 14 is provided in the region on the first wall 21 side with respect to the adjusting unit 13 in the region in the housing 11.
  • the incident section 12, the adjusting section 13, and the light collecting section 14 may be arranged on a straight line A extending along the Z direction.
  • the adjusting unit 13 can be configured compactly.
  • the adjusting unit 13 may not include the reflective spatial light modulator 34 and the imaging optical system 35.
  • the adjusting unit 13 may include an attenuator 31 and a beam expander 32.
  • the adjusting unit 13 including the attenuator 31 and the beam expander 32 can be configured compactly. The order of arrangement of the attenuator 31 and the beam expander 32 may be reversed.
  • FIG. 7 is a front view of a part of the laser processing apparatus 1 in which the laser light L1 is guided by the mirror.
  • the mirror 3 that reflects the laser light L1 moves so as to face the emitting portion 81a of the light source unit 8 in the Y direction and face the incident portion 12 of the laser processing head 10A in the Z direction. It is attached to the moving portion 63 of the mechanism 6.
  • the mirror 3 may be attached to the moving unit 63 of the moving mechanism 6 so that at least one of the angle adjustment and the position adjustment can be performed. According to this, the laser light L1 emitted from the emission portion 81a of the light source unit 8 can be more reliably incident on the incidence portion 12 of the laser processing head 10A.
  • the light source unit 8 may have one light source. In that case, the light source unit 8 may be configured so that a part of the laser light output from one light source is emitted from the emitting portion 81a and the rest of the laser light is emitted from the emitting portion 82a. [About operation of laser processing equipment]
  • FIG. 8 is a schematic top view showing the operation of the laser processing apparatus.
  • the schematic positions of the laser processing heads 10A and 10B are shown transparently while maintaining the relative positions of the respective parts in FIGS.
  • the object 100 is supported by the support portion 7.
  • the symbol S in the figure represents an optical system other than the optical system related to the irradiation of the laser beams L1 and L2 for forming the modified region, such as the measurement unit 16 and the observation unit 17 described above. ing.
  • the laser processing apparatus 1 also includes a pair of alignment cameras AC having different magnifications.
  • the alignment camera AC is attached to the attachment portion 65 together with the laser processing head 10A.
  • the alignment camera AC images, for example, a device pattern or the like using light transmitted through the object 100. The image obtained by this is used for alignment of the irradiation positions of the laser beams L1 and L2 with respect to the object 100.
  • the target object 100 has a plurality of lines C extending along the X direction and arranged along the Y direction.
  • the line C is a virtual line, but may be an actually drawn line.
  • a plurality of lines extending along the Y direction and arranged along the X direction are also set in the object 100, the illustration thereof is omitted.
  • the laser processing device 1 performs laser processing along each line C under the control of the control unit 9.
  • the control unit 9 controls the movement of the support unit 7, the mounting unit 65, and the mounting unit 66, and the irradiation of the laser beams L1 and L2 from the laser processing head 10A and the laser processing head 10B.
  • the control unit 9 executes the first scan process and the second scan process.
  • the first scan process is a process of scanning one line C of the plurality of lines C with the laser light L1 from the laser processing head 10A in the X direction.
  • the second scan process is a process of scanning another line C of the plurality of lines C with the laser light L2 from the laser processing head 10B in the X direction.
  • the control unit 9 scans the laser beams L1 and L2 in the X direction
  • the laser processing heads 10A and 10B are moved in the Y direction and the Z direction through the mounting units 65 and 66 to move the laser beams L1 and L2.
  • the light-condensing point is located at a position on each line C that is inside the object 100. Then, in that state, by moving the support portion 7 in the X direction, the focus points of the laser beams L1 and L2 are moved in the object 100 along the line C in the X direction.
  • the control unit 9 executes the first scan process and the second scan process so that they overlap at least in part of the time. That is, the control unit 9 realizes simultaneously a state in which the laser beam L1 is scanned along one line C and a state in which the laser beam L2 is scanned along another line C at the same time. To do. That is, the control unit 9 simultaneously operates the laser processing head 10A and the laser processing head 10B. Thereby, the throughput can be clearly improved as compared with the processing using one laser processing head.
  • the control unit 9 independently sets each of the laser processing heads 10A and 10B in the Y direction by the distance of the line C (Z if necessary). Direction), and the scanning of the laser beams L1 and L2 along the next line C (that is, the first scanning process and the second scanning process) is continued.
  • the control unit 9 continuously performs this operation for the number of the lines C to form the modified region along all the lines C.
  • the control unit 9 controls the line C, which is located at one end in the Y direction of the object 100 of the plurality of lines C, to be a line C inside the Y direction.
  • the first scan process is executed in order toward.
  • the control unit 9 sequentially performs the second scan process from the line C located at the other end in the Y direction of the object 100 among the plurality of lines C toward the inner line in the Y direction ( This is called main processing).
  • the line C located at one end in the Y direction and the line C located at the other end in the Y direction have the same length in the X direction.
  • the control unit 9 moves the laser processing head 10A via the mounting unit 65 to position the condensing point of the laser light L1 at one end of the object 100 in the Y direction. It is in a state of being positioned on the line C and inside the object 100.
  • the control unit 9 moves the laser processing head 10B through the mounting unit 66 so that the focal point of the laser beam L2 is on the line C located at the other end of the object 100 in the Y direction. It is in a state of being positioned inside the object 100.
  • the position of the focal point of the laser beam L1 in the X direction and the position of the focal point of the laser beam L2 in the X direction match.
  • control section 9 moves the support section 7 in the X direction to move the focus points of the laser beams L1 and L2 in the object 100 along the respective lines C in the X direction.
  • first scan process and the second scan process for each line C are simultaneously started and simultaneously completed. That is, here, the first scan process and the second scan process overlap in their entirety.
  • the modified region M is formed inside the object 100 along the line C.
  • the control unit 9 moves the laser processing head 10A through the mounting unit 65 to position the condensing point of the laser light L1 only one inward from one end of the object 100 in the Y direction. It is in a state of being positioned on the line C and inside the object 100.
  • the control unit 9 moves the laser processing head 10B through the mounting unit 66 to move the focus point of the laser light L2 only one line inside from the other end of the object 100 in the Y direction. It is assumed that the object 100 is located at a position on C and inside the object 100. At this time, the position of the focal point of the laser beam L1 in the X direction and the position of the focal point of the laser beam L2 in the X direction match.
  • the control unit 9 moves the support unit 7 in the X direction (opposite direction to the X direction in the case of reciprocating operation) to move the inside of the object 100 along each line C in the X direction (reciprocating direction).
  • the focus points of the laser beams L1 and L2 are moved in the direction opposite to the X direction).
  • the first scan process and the second scan process for the respective lines C are simultaneously started and simultaneously completed. That is, also here, the first scan process and the second scan process overlap in their entirety.
  • the laser processing head 10A and the laser processing head 10B can be simultaneously operated up to the line C on the inner side of the object 100 to perform laser processing without waste.
  • the modified region M is shown as a solid line for the sake of explanation, but it is not necessary that the modified region M is actually visible from the surface of the object 100. ..
  • the positional relationship between the laser processing head 10A and the laser processing head 10B in the region inside the object 100 is such that the mutual distance is in the Y direction.
  • the unprocessed line C remains in the region of the object 100 corresponding to the distance D between the respective light condensing units 14 and in a positional relationship that does not shrink further.
  • the control unit 9 executes the following post-processing processing.
  • the control section 9 causes the respective light condensing sections in the target object 100.
  • the laser beam L2 from the laser processing head 10B is removed from the region of the object 100 while the laser processing head 10A is retracted from the region. After that, the post-processing process of scanning in the X direction (performing the second scanning process) is performed.
  • the laser processing head 10A and the laser processing head 10B may be reversed. This completes the laser processing for all the lines C. Thereafter, if necessary, the support portion 7 is rotated to set a line intersecting the line C so as to be along the X direction, and the above operation can be repeated. [Operation and effect of laser processing apparatus]
  • the laser processing apparatus 1 is movable along the X direction, and the support portion 7 for supporting the object 100 along the Y direction intersecting the X direction and the X direction, and the Y direction.
  • Laser processing heads 10A and 10B for irradiating the object 100 supported by the supporting portion 7 with the laser beams L1 and L2, respectively.
  • the laser processing head 10A is mounted, and the laser processing head 10B and the mounting portion 65 that is movable along each of the Z direction and the Y direction intersecting the X direction and the Y direction.
  • a mounting portion 66 that is mounted and is movable in each of the Y direction and the Z direction.
  • the laser processing heads 10A and 10B are arranged on the support portion 7 supporting the object 100 so as to face each other.
  • the laser processing heads 10A and 10B are independently movable in two directions that intersect each other via the mounting portions 65 and 66, respectively. For this reason, it is possible to perform laser processing at two locations on the object 100 independently of each other by scanning the laser beams L1 and L2. Therefore, the throughput can be improved.
  • the laser processing head 10 ⁇ / b> A is provided on the housing 11 and the sixth wall portion 26 of the housing 11 on the side of the support portion 7 and is directed toward the object 100 supported by the support portion 7.
  • the laser processing head 10B is also provided on the housing 11 and the sixth wall portion 26 of the housing 11 on the side of the support portion 7 and focuses the laser light L2 toward the object 100 supported by the support portion 7.
  • the mounting portions 65 and 66 are not interposed between the laser processing head 10A and the laser processing head 10B. Therefore, the laser processing head 10A and the laser processing head 10B can be closer to each other in the Y direction. Further, the light converging portions 14 of the laser processing heads 10A and 10B are arranged so as to be biased toward the fourth wall portions 24 of the respective casings 11 facing each other. Therefore, when the laser processing head 10A and the laser processing head 10B are brought close to each other, the distance between the condensing sections 14 can be further reduced. As a result, it is possible to perform processing using both the laser processing heads 10A and 10B in a narrower area in the Y direction. Therefore, the throughput can be surely improved.
  • the laser processing apparatus 1 also includes a control unit 9 that controls the movement of the supporting unit 7 and the mounting units 65 and 66 and the irradiation of the laser beams L1 and L2 from the laser processing heads 10A and 10B.
  • a plurality of lines C extending along the X direction and arranged along the Y direction are set on the object 100.
  • the control unit 9 scans one line C of the plurality of lines C with the laser beam L1 from the laser processing head 10A in the X direction, and another line of the plurality of lines C.
  • the second scanning process of scanning the laser beam L2 from the laser processing head 10B in the X direction with respect to C is executed so as to overlap at least in part of the time.
  • the throughput is improved by at least partially overlapping the first scan process and the second scan process. By performing the first scan process and the second scan process at the same time, the throughput can be more reliably improved.
  • the control unit 9 sequentially shifts from the line C located at one end of the object 100 in the Y direction of the plurality of lines C toward the line C inward in the Y direction. While performing one scan process, the second scan process is performed in order from the line C located at the other end of the object 100 in the Y direction of the plurality of lines C toward the inner line in the Y direction. Perform processing. In this way, in the main processing, the first scan processing and the second scan processing are sequentially performed from the line C at the symmetrical position (and the same length) of the object 100 in the Y direction, whereby the laser light L1 is obtained. , L2 of the light condensing points relative to the object 100 along the X direction is not wasted, and the throughput is further improved.
  • the control unit 9 causes the laser processing head 10A and the laser processing head 10B to move between the light converging units 14 in the object 100 when the laser processing head 10A and the laser processing head 10B are closest to each other in the Y direction as a result of the main processing.
  • the lines C of the plurality of lines C remain in the area of 1)
  • one of the laser processing heads 10A and 10B is retracted from the area of the object 100 while the laser processing head 10A, 10B is retracted.
  • a post-processing process of scanning a part of the line C with the laser beam from the other of 10B in the X direction is performed. Therefore, it is possible to perform laser processing without leakage while improving throughput.
  • the mounting portion 65 is mounted on the third wall portion 23 on the opposite side of the fourth wall portion 24 in the housing 11 of the laser processing head 10A.
  • the mounting portion 66 is mounted on the third wall portion 23 on the opposite side of the fourth wall portion 24 in the housing 11 of the laser processing head 10B. Therefore, the mounting portion 65 and the mounting portion 66 can be easily and surely mounted on the laser processing head 10A and the laser processing head 10B without being interposed between the laser processing head 10A and the laser processing head 10B. is there.
  • the housing 11 includes a first wall portion 21 and a second wall portion 22 that face each other in the X direction, and a third wall portion 23 and a fourth wall portion that face each other in the Y direction. 24, and the distance between the third wall portion 23 and the fourth wall portion 24 is smaller than the distance between the first wall portion 21 and the second wall portion 22.
  • the size in the Y direction of the housing 11 of each of the laser processing heads 10A and 10B becomes smaller than the size in the X direction.
  • the X direction is the moving direction of the support 7 and the object 100. Therefore, in the X direction, it is necessary to consider the amount of movement of the support 7 and the target object 100 when scanning the laser beams L1 and L2, and there is little room for suppressing the size increase. Therefore, it is effective to avoid increasing the size in the Y direction, which does not require consideration of the movement amounts of the support portion 7 and the object 100 (during scanning).
  • the circuit portion 19 is arranged in the housing 11 on the third wall portion 23 side with respect to the adjustment portion 13. With this, it is possible to effectively use the region on the third wall portion 23 side with respect to the adjustment unit 13 in the region inside the housing 11.
  • the adjusting portion 13 is arranged inside the housing 11 on the side of the fourth wall portion 24 with respect to the partition wall portion 29, and the circuit portion 19 is arranged inside the housing 11 to divide the partition. It is arranged on the third wall portion 23 side with respect to the wall portion 29.
  • the circuit portion 19 can be efficiently cooled in the region inside the housing 11 on the side of the third wall portion 23.
  • the adjusting portion 13 is attached to the partition wall portion 29. As a result, the adjusting unit 13 can be reliably and stably supported in the housing 11.
  • the laser processing apparatus according to the present disclosure is not limited to the laser processing apparatus 1 described above, and can be arbitrarily modified.
  • FIG. 13 to 18 are views showing modified examples of the mounting portion and the laser processing head.
  • the mounting portion 65 is provided on the first wall portion 21 of the housing 11 of the laser processing head 10A
  • the mounting portion 66 is provided on the first wall of the housing 11 of the laser processing head 10B. You may provide in the part 21.
  • the mounting portion 65 is provided on the third wall portion 23 of the housing 11 of the laser processing head 10A
  • the mounting portion 66 is mounted on the housing 11 of the laser processing head 10B.
  • the positions of the moving portions 63 and 64 in the attachment portions 65 and 66 may be staggered in the X direction.
  • the mounting portion 65 is provided on the second wall portion 22 of the housing 11 of the laser processing head 10A
  • the mounting portion 66 is mounted on the second wall portion 22 of the housing 11 of the laser processing head 10B. You may provide in the 2 wall part 22.
  • the mounting portion 65 is provided on the fifth wall portion 25 of the housing 11 of the laser processing head 10A, while the mounting portion 66 is mounted on the housing 11 of the laser processing head 10B. It may be provided on the five wall portion 25.
  • the mounting portion 65 is provided on the sixth wall portion 26 of the housing 11 of the laser processing head 10A, while the mounting portion 66 is mounted on the sixth wall portion 26 of the housing 11 of the laser processing head 10B. It may be provided on the six wall portion 26.
  • the attachment portions 65 and 66 may be attached to the respective wall portions different from the fourth wall portion 24 facing each other along the Y direction.
  • the light condensing portion 14 is provided in the central portion of the housing 11 in the X direction while increasing the distance between the first wall portion 21 and the second wall portion 22. Good.
  • the laser processing apparatus 1 does not have to use the laser processing head 10A and the laser processing head 10B as the pair of laser processing heads. That is, in the laser processing apparatus 1, a pair (one type) of laser processing heads 10A is used as shown in FIG. 15 (a), or a pair of laser processing heads 10A is used as shown in FIG. 15 (b). A laser processing head 10B (another type) can be used. In these cases, the laser processing heads 10A and 10B on one side are rotated by 180 ° about the Z-axis direction with respect to the laser processing heads 10A and 10B on the other side, respectively. They are arranged so that their center positions coincide with each other. In these cases, it is not necessary to prepare two types of laser processing heads.
  • the wall portion provided with the mounting portions 65 and 66 can be variously changed.
  • the mounting portion 65 is provided on the first wall portion 21 of the housing 11 of one laser processing head 10A while the mounting portion 65 of the housing 11 of one laser processing head 10A is provided.
  • a mounting portion 66 can be provided on the two wall portion 22.
  • FIG. 16B while the mounting portion 65 is provided on the second wall portion 22 of the housing 11 of one laser processing head 10B, the mounting portion 65 of the housing 11 of one laser processing head 10B is provided.
  • the mounting portion 66 may be provided on the one wall portion 21. That is, even in these cases, the attachment portions 65 and 66 may be attached to the respective wall portions different from the fourth wall portion 24 facing each other along the Y direction.
  • the laser processing head 10A and the laser processing head 10B may be arranged in the Y direction at positions where they do not overlap each other in the X direction.
  • the light condensing unit 14 of the laser processing head 10A and the light condensing unit 14 of the laser processing head 10B can be overlapped in the X-axis direction. Therefore, it is possible to perform the laser processing by executing the first and second scan processings on all the lines C in the main processing. That is, post-processing is not required.
  • the movement distance of the support portion 7 in the X direction during the first and second scan processing is increased by the amount of shift in the X direction between the laser processing head 10A and the laser processing head 10B. .. As shown in FIG. 18, the same applies when only one type (here, the laser processing head 10A) is used.
  • the configuration shown in FIGS. 17 and 18 is, for example, when processing a wafer larger than a 12-inch wafer, such as when the object 100 is a large-sized glass wafer, the processing length per line C (support This can be adopted when the merit that the two laser processing heads can be machined to the end (post-processing is unnecessary) is outweighed by the demerit that the length of the moving distance of the portion 7 is increased.
  • FIGS. As another example of the post-processing processing of the laser processing apparatus 1, there is an example shown in FIGS. That is, here, first, as shown in (a) of FIG. 19, the control unit 9 moves the line C from the line C located at one end of the object 100 in the Y direction in the Y direction. The first scan processing is executed in order toward the line C inside. At the same time, the control unit 9 sequentially performs the second scan process from the line C located at the other end in the Y direction of the object 100 among the plurality of lines C toward the inner line in the Y direction ( That is, the main processing is executed).
  • FIGS. 10 and 11 an example in which the main processing is performed until the laser processing head 10A and the laser processing head 10B come closest to each other (for example, contact) is given. At this time, the distance between the light collecting units 14 was the distance D.
  • the control unit 9 advances the main processing so that the condensing unit 14 of the laser processing head 10A and the laser processing head 10B move.
  • the condensing unit 14 gradually approaches in the Y direction (at intervals of the line C) and the distance between the condensing units 14 reaches the distance E1 which is larger than (or about the same as) twice the distance D, The scanning of the laser beams L1 and L2 is stopped.
  • the control unit 9 controls one of the laser processing heads 10A and 10B (here, the laser processing head 10B) to the other of the laser processing heads 10A and 10B (here. Then, it is moved by the distance D toward the laser processing head 10A) side. As a result, the distance between the light collecting units 14 becomes a distance E2 smaller than the distance E1. When the distance E1 is approximately twice the distance D, the distance E2 is almost equal to the distance D.
  • the control unit 9 sequentially executes the first scan process and the second scan process in the Y direction while maintaining the distance between the light condensing units 14 at the distance E2.
  • the laser processing head 10A and the laser processing head 10B move in the same direction (Y direction) and repeat scanning of the laser beams L1 and L2 in the X direction.
  • only one of the laser processing heads 10A and 10B is moved to the line C only when the last unprocessed line C remains. Use to process.
  • the other of the laser processing heads 10A and 10B may be held at a position where the distance E2 is maintained, or may be moved to another position.
  • the processing time in only one of the pair of laser processing heads 10A and 10B is reduced as much as possible, and the throughput is further improved.
  • FIG. 8 and the like the control unit 9 sequentially moves the line C from the line C located at one end in the Y direction of the object 100 of the plurality of lines C toward the line C inward in the Y direction.
  • the control unit 9 sequentially performs the first scan process from the line C located at one end in the Y direction of the object 100 among the plurality of lines C toward the line C inside in the Y direction.
  • the second scan process may be sequentially performed from the line C at the center in the Y direction of the plurality of lines C toward the other end in the Y direction of the object 100.
  • the X-direction of the target object 100 in accordance with the scan of the relatively long line C is adjusted. Although movement is required, there may be a merit depending on the situation of the object 100. Furthermore, a scan mode different from the above example may be adopted.
  • the control unit 9 processes the object 100 at the wavelengths different from each other by the laser beam L1 from the laser processing head 10A and the laser beam L2 from the laser processing head 10B, and at the converging position in the Z direction. You may make it perform a process (multi-wavelength processing).
  • the multi-wavelength processing is performed, for example, when processing a wafer in which silicon (Si) and glass are bonded (first case) or when a part of the laser beams L1 and L2 incident from the back surface side is absorbed by the device. This can be used, for example, when processing a wafer in which circuit damage may occur (second case).
  • both the light with a wavelength for processing silicon (for example, 1064 nm) and the light with a wavelength for processing glass (for example, 532 nm) need to reach the target material, so processing is performed from the glass side.
  • the converging position of the laser beam L1 from the laser processing head 10A is aligned in the silicon through the glass, and the converging position of the laser beam L2 from the laser processing head 10B is aligned in the glass, and processing is performed at the corresponding wavelength.
  • the wavelength for processing the lower part of the wavelength is the wavelength that transmits the upper base material. Need to be Here, since the multi-wavelength processing is performed using the pair of laser processing heads 10A and 10B, the throughput can be improved.
  • the focus position of the laser beam L1 from the laser processing head 10A is set near the device, and the focus position of the laser beam L2 from the laser processing head 10B is set at a position away from the device.
  • the wavelength of the laser light L1 is set to a wavelength (for example, 1064 nm) at which the base material has more absorption so that the amount of light passing to the device side is reduced, and the wavelength of the laser light L2 is set to a value even if some light is emitted.
  • the wavelength (for example, 1342 nm) longer than the wavelength of the laser beam L1 suitable for processing the base material can be set.
  • the circuit unit 19 is not limited to one that processes the signal output from the measurement unit 16 and / or the signal that is input to the reflective spatial light modulator 34, but one that processes any signal in the laser processing head. If
  • a laser processing device that can improve throughput is provided.
  • SYMBOLS 1 Laser processing apparatus, 7 ... Support part, 9 ... Control part, 10A ... Laser processing head (1st laser processing head), 10B ... Laser processing head (2nd laser processing head), 11 ... Housing

Abstract

This laser machining device (laser machining device 1) comprises: a support section (support section 7) that can move along a first direction (X direction), and that supports an object (object 100) along the first direction and a second direction (Y direction) which intersects with the first direction; a first laser machining head (laser machining head 10a) and a second laser machining head (laser machining head 10b) that are disposed so as to oppose each other along the second direction, and that emit laser beams onto the object supported by the support section; a first attachment unit (attachment unit 65) to which the first laser machining head is attached, and that can move along a third direction (Z direction) which intersects with the first direction and the second direction, and that can move along the second direction; and a second attachment unit (attachment unit 66) to which the second laser machining head is attached, and that can move along the second direction and the third direction.

Description

レーザ加工装置Laser processing equipment
 本開示は、レーザ加工装置に関する。 The present disclosure relates to a laser processing device.
 特許文献1には、ワークを保持する保持機構と、保持機構に保持されたワークにレーザ光を照射するレーザ照射機構と、を備えるレーザ加工装置が記載されている。特許文献1に記載のレーザ加工装置では、集光レンズを有するレーザ照射機構が基台に対して固定されており、集光レンズの光軸に垂直な方向に沿ったワークの移動が保持機構によって実施される。 Patent Document 1 describes a laser processing apparatus that includes a holding mechanism that holds a work, and a laser irradiation mechanism that irradiates the work held by the holding mechanism with laser light. In the laser processing device described in Patent Document 1, a laser irradiation mechanism having a condenser lens is fixed to a base, and movement of a work along a direction perpendicular to the optical axis of the condenser lens is performed by a holding mechanism. Be implemented.
特許第5456510号公報Japanese Patent No. 5456510
 ところで、上述したようなレーザ加工装置にあっては、スループットの向上が望まれている。スループットの向上のためには、例えば、保持機構によるワークの移動速度を増大させることが考えられる。しかしながら、ワークの移動速度を増大させようとしても、ワークの移動が、目標の速度での等速移動に達するまでに要する加速時間も増大する。このため、ワークの移動速度の増大では、一定以上のスループットの向上が困難である。 By the way, in the laser processing device as described above, improvement in throughput is desired. In order to improve the throughput, for example, increasing the moving speed of the work by the holding mechanism can be considered. However, even if an attempt is made to increase the moving speed of the work, the acceleration time required for the movement of the work to reach the uniform speed movement at the target speed also increases. Therefore, it is difficult to improve the throughput above a certain level by increasing the moving speed of the work.
 本開示は、スループットを向上可能なレーザ加工装置を提供することを目的とする。 The present disclosure aims to provide a laser processing apparatus capable of improving throughput.
 本開示に係るレーザ加工装置は、第1方向に沿って移動可能とされ、第1方向及び第1方向に交差する第2方向に沿って対象物を支持するための支持部と、第2方向に沿って互いに対向するように配置され、支持部に支持された対象物にレーザ光を照射するための第1レーザ加工ヘッド及び第2レーザ加工ヘッドと、第1レーザ加工ヘッドが取り付けられ、第1方向及び第2方向に交差する第3方向と第2方向とのそれぞれに沿って移動可能とされた第1取付部と、第2レーザ加工ヘッドが取り付けられ、第2方向と第3方向とのそれぞれに沿って移動可能とされた第2取付部と、を備える。 A laser processing apparatus according to the present disclosure is movable along a first direction, and a support portion for supporting an object along a first direction and a second direction intersecting the first direction, and a second direction. A first laser processing head and a second laser processing head for irradiating the object supported by the support portion with laser light, and the first laser processing head are attached, A first mounting portion, which is movable along a third direction and a second direction intersecting the first direction and the second direction, respectively, and a second laser processing head are mounted, and the second direction and the third direction are attached. A second mounting portion that is movable along each of the above.
 この装置においては、対象物を支持する支持部上に、互に対向するように第1レーザ加工ヘッド及び第2レーザ加工ヘッドが配置されている。そして、第1レーザ加工ヘッド及び第2レーザ加工ヘッドは、それぞれ、第1取付部及び第2取付部を介して、互に交差する2方向に独立して移動可能とされている。このため、対象物の2つの箇所において、互に独立して、レーザ光のスキャンによりレーザ加工を行うことが可能となる。よって、スループットの向上が図られる。 In this device, a first laser processing head and a second laser processing head are arranged so as to face each other on a support portion that supports an object. The first laser processing head and the second laser processing head are independently movable in two directions that intersect each other via the first mounting portion and the second mounting portion, respectively. Therefore, it is possible to perform laser processing independently of each other at two locations of the object by scanning the laser light. Therefore, the throughput can be improved.
 本開示に係るレーザ加工装置においては、第1レーザ加工ヘッドは、第1筐体と、第1筐体における支持部側の壁部に設けられ、支持部に支持された対象物に向けてレーザ光を集光するための第1集光部と、を有し、第2レーザ加工ヘッドは、第2筐体と、第2筐体における支持部側の壁部に設けられ、支持部に支持された対象物に向けてレーザ光を集光するための第2集光部と、を有し、第1取付部及び第2取付部は、それぞれ、第1筐体及び第2筐体における第2方向に沿って互いに対向する対向壁部と異なる壁部に取り付けられており、第1集光部は、第3方向からみて、第1筐体における対向壁部側に偏って配置されており、第2集光部は、第3方向からみて、第2筐体における対向壁部側に偏って配置されていてもよい。 In the laser processing apparatus according to the present disclosure, the first laser processing head is provided on the first housing and the wall portion on the support portion side of the first housing, and the laser is directed toward the target object supported by the support portion. A second condensing unit for condensing light, and the second laser processing head is provided on the second casing and a wall portion on the supporting unit side of the second casing, and is supported by the supporting unit. And a second condensing part for condensing the laser light toward the target object. The first mounting part and the second mounting part are respectively the first mounting part and the second mounting part in the second housing. It is attached to a wall part different from the facing wall part facing each other along the two directions, and the first light collecting part is arranged so as to be biased toward the facing wall part side of the first housing when viewed from the third direction. The second condensing unit may be arranged so as to be biased toward the facing wall portion side of the second housing when viewed from the third direction.
 この場合、第1レーザ加工ヘッドと第2レーザ加工ヘッドとの間に、第1取付部及び第2取付部が介在しない。したがって、第2方向について第1レーザ加工ヘッドと第2レーザ加工ヘッドとをより接近させることができる。さらに、第1レーザ加工ヘッド及び第2レーザ加工ヘッドのそれぞれの集光部が、それぞれの筐体の互いに対向する壁部側に偏って配置されている。このため、第1レーザ加工ヘッドと第2レーザ加工ヘッドとを接近させたときに、互いの集光部同士の距離をより小さくできる。この結果、第2方向について、より狭い領域まで第1レーザ加工ヘッド及び第2レーザ加工ヘッドの両方を用いた加工が可能となる。したがって、スループットを確実に向上可能である。 In this case, the first mounting portion and the second mounting portion are not interposed between the first laser processing head and the second laser processing head. Therefore, the first laser processing head and the second laser processing head can be made closer to each other in the second direction. Further, the respective light converging portions of the first laser processing head and the second laser processing head are arranged so as to be biased toward the wall portions of the respective casings facing each other. Therefore, when the first laser processing head and the second laser processing head are brought close to each other, the distance between the condensing portions can be further reduced. As a result, it is possible to perform processing using both the first laser processing head and the second laser processing head up to a narrower area in the second direction. Therefore, the throughput can be surely improved.
 本開示に係るレーザ加工装置は、支持部、第1取付部、及び、第2取付部の移動と、第1レーザ加工ヘッド及び第2レーザ加工ヘッドからのレーザ光の照射と、を制御する制御部をさらに備え、対象物には、第1方向に沿って延びると共に第2方向に沿って配列された複数のラインが設定されており、制御部は、複数のラインの一のラインに対して第1レーザ加工ヘッドからのレーザ光を第1方向にスキャンする第1スキャン処理と、複数のラインのうちの別のラインに対して第2レーザ加工ヘッドからのレーザ光を第1方向にスキャンする第2スキャン処理とを、少なくとも一部の時間において重複するように実行してもよい。このように、第1スキャン処理と第2スキャン処理とを、少なくとも一部重複して実行することにより、スループットの向上が図られる。なお、第1スキャン処理と第2スキャン処理とを同時に行うことにより、より確実にスループットを向上できる。 The laser processing apparatus according to the present disclosure controls the movement of the support portion, the first mounting portion, and the second mounting portion, and the irradiation of laser light from the first laser processing head and the second laser processing head. A plurality of lines, the plurality of lines extending in the first direction and arranged in the second direction are set on the object, and the control unit sets the plurality of lines to one line. First scan processing of scanning the laser light from the first laser processing head in the first direction, and scanning the laser light from the second laser processing head in the first direction on another line of the plurality of lines. The second scan processing may be executed so as to overlap at least in part of the time. As described above, the throughput is improved by at least partially overlapping the first scan process and the second scan process. By performing the first scan process and the second scan process at the same time, the throughput can be more reliably improved.
 本開示に係るレーザ加工装置においては、制御部は、複数のラインのうちの対象物の第2方向の一方の端部に位置するラインから第2方向の内側のラインに向けて順に第1スキャン処理を実行しつつ、複数のラインのうちの対象物の第2方向の他方の端部に位置するラインから第2方向の内側のラインに向けて順に第2スキャン処理を実行する主加工処理を実行してもよい。このように、主加工処理において、第2方向における対象物の対照的な位置のラインから順に第1スキャン処理及び第2スキャン処理を実行することにより、レーザ光の集光点の対象物に対する第1方向に沿った相対移動の無駄が省かれ、スループットがより向上される。 In the laser processing apparatus according to the present disclosure, the control unit sequentially performs the first scan from a line located at one end of the object in the second direction of the plurality of lines toward an inner line in the second direction. While performing the process, a main processing process that sequentially performs the second scan process from the line located at the other end of the object in the second direction of the plurality of lines toward the inner line in the second direction is performed. You may execute. As described above, in the main processing, the first scan process and the second scan process are sequentially performed from the line at the position contrasting with the object in the second direction, so that Waste of relative movement along one direction is eliminated, and throughput is further improved.
 本開示に係るレーザ加工装置においては、制御部は、主加工処理の結果、第1レーザ加工ヘッドと第2レーザ加工ヘッドとが第2方向について最接近したときに、対象物における第1集光部と第2集光部との間の領域に複数のラインのうちの一部のラインが残存しているときには、第1レーザ加工ヘッド及び第2レーザ加工ヘッドのうちの一方を、対象物の当該領域から退避させつつ、第1レーザ加工ヘッド及び第2レーザ加工ヘッドのうちの他方からのレーザ光を一部のラインに対して第1方向にスキャンする後加工処理を実行してもよい。この場合、スループットを向上させつつ、漏れなくレーザ加工が可能である。 In the laser processing apparatus according to the present disclosure, when the first laser processing head and the second laser processing head come closest to each other in the second direction as a result of the main processing, the control unit causes the first light focusing on the object. When a part of the plurality of lines remains in the region between the portion and the second condensing unit, one of the first laser processing head and the second laser processing head A post-processing process may be performed in which the laser beam from the other one of the first laser processing head and the second laser processing head is scanned in the first direction with respect to a part of the lines while retracting from the area. In this case, laser processing can be performed without leakage while improving throughput.
 本開示に係るレーザ加工装置においては、前記第1レーザ加工ヘッドと前記第2レーザ加工ヘッドとが前記第2方向について最接近したときの前記第1集光部と前記第2集光部との前記第2方向の距離を距離Dとすると、前記制御部は、前記主加工処理の結果、前記第1集光部と前記第2集光部とが第2方向に徐々に近接して互いの距離が距離Dの2倍に至る前に、第1レーザ加工ヘッド及び第2レーザ加工ヘッドの一方を、第1レーザ加工ヘッド及び第2レーザ加工ヘッドの他方側に距離Dだけ移動させると共に、前記第1集光部と前記第2集光部との距離を維持しながら前記第1スキャン処理及び前記第2スキャン処理を実行する後加工処理を実行してもよい。この場合、一対のレーザ加工ヘッドのうちの一方のみでの加工時間を可能な限り減らしてスループットのさらなる向上が図られる。特に、第2方向におけるラインの間隔が、距離Dに対して十分に小さい場合(例えば、距離Dの範囲に数百のラインが存在する場合)に有効である。 In the laser processing apparatus according to the present disclosure, when the first laser processing head and the second laser processing head are closest to each other in the second direction, the first condensing unit and the second condensing unit are Assuming that the distance in the second direction is the distance D, as a result of the main processing, the control unit causes the first light collecting unit and the second light collecting unit to gradually approach each other in the second direction. Before the distance reaches twice the distance D, one of the first laser processing head and the second laser processing head is moved to the other side of the first laser processing head and the second laser processing head by the distance D, and A post-processing process that executes the first scan process and the second scan process may be executed while maintaining the distance between the first light collecting unit and the second light collecting unit. In this case, the processing time in only one of the pair of laser processing heads is reduced as much as possible, and the throughput is further improved. In particular, it is effective when the line interval in the second direction is sufficiently small with respect to the distance D (for example, when several hundred lines are present in the range of the distance D).
 本開示に係るレーザ加工装置においては、第1取付部は、第1筐体における対向壁部の反対側の壁部に取り付けられており、第2取付部は、第2筐体における対向壁部の反対側の壁部に取り付けられていてもよい。この場合、第1取付部及び第2取付部を、第1レーザ加工ヘッドと第2レーザ加工ヘッドとの間に介在しないように、容易且つ確実に、第1レーザ加工ヘッド及び第2レーザ加工ヘッドに取り付けることが可能である。 In the laser processing apparatus according to the present disclosure, the first attachment portion is attached to the wall portion of the first housing opposite to the opposite wall portion, and the second attachment portion is the opposite wall portion of the second housing. It may be attached to the wall part on the opposite side. In this case, the first laser processing head and the second laser processing head can be easily and reliably arranged so that the first mounting portion and the second mounting portion are not interposed between the first laser processing head and the second laser processing head. It can be attached to.
 本開示に係るレーザ加工装置においては、第1レーザ加工ヘッドは、第1方向において互いに対向する第1壁部及び第2壁部と、第2方向において互いに対向する第3壁部及び第4壁部と、を含む第1筐体を有しており、第2レーザ加工ヘッドは、第1方向において互いに対向する第1壁部及び第2壁部と、第2方向において互いに対向する第3壁部及び第4壁部と、を含む第2筐体を有しており、第3壁部と第4壁部との距離は、第1壁部と第2壁部との距離よりも小さくてもよい。 In the laser processing apparatus according to the present disclosure, the first laser processing head includes a first wall portion and a second wall portion that face each other in the first direction, and a third wall portion and a fourth wall that face each other in the second direction. And a second laser processing head having a first wall portion and a second wall portion facing each other in the first direction, and a third wall facing each other in the second direction. A second housing including a first wall portion and a fourth wall portion, and a distance between the third wall portion and the fourth wall portion is smaller than a distance between the first wall portion and the second wall portion. Good.
 本開示に係るレーザ加工装置においては、第1筐体及び第2筐体は、第1方向において互いに対向する第1壁部及び第2壁部と、第2方向において互いに対向する第3壁部及び第4壁部と、を含み、第3壁部と第4壁部との距離は、第1壁部と第2壁部との距離よりも小さくてもよい。 In the laser processing apparatus according to the present disclosure, the first housing and the second housing include a first wall portion and a second wall portion that face each other in the first direction, and a third wall portion that faces each other in the second direction. And the fourth wall portion, and the distance between the third wall portion and the fourth wall portion may be smaller than the distance between the first wall portion and the second wall portion.
 これらの場合、2つのレーザ加工ヘッドのそれぞれの筐体の第2方向のサイズが第1方向のサイズよりも小さくなる。このため、装置全体として第2方向に大型化される(フットプリントが大きくなる)ことが避けられる。なお、第1方向は、支持部及び対象物の移動方向である。このため、第1方向については、レーザ光のスキャンに際した支持部及び対象物の移動量を考慮する必要があり、大型化の抑制の余地が小さい。よって、支持部及び対象物の移動量を考慮する必要のない第2方向について大型化を避けることが有効である。 In these cases, the size of the housings of the two laser processing heads in the second direction is smaller than the size in the first direction. For this reason, it is possible to avoid an increase in the size of the entire device in the second direction (an increase in the footprint). The first direction is the moving direction of the support and the target. Therefore, in the first direction, it is necessary to consider the amount of movement of the support portion and the target object when scanning the laser light, and there is little room for suppressing the increase in size. Therefore, it is effective to avoid increasing the size in the second direction, which does not require consideration of the movement amounts of the support portion and the object.
 本開示によれば、スループットを向上可能なレーザ加工装置を提供できる。 According to the present disclosure, it is possible to provide a laser processing device capable of improving throughput.
一実施形態のレーザ加工装置の斜視図である。It is a perspective view of the laser processing apparatus of one embodiment. 図1に示されるレーザ加工装置の一部分の正面図である。It is a front view of a part of laser processing apparatus shown by FIG. 図1に示されるレーザ加工装置のレーザ加工ヘッドの正面図である。It is a front view of the laser processing head of the laser processing apparatus shown by FIG. 図3に示されるレーザ加工ヘッドの側面図である。4 is a side view of the laser processing head shown in FIG. 3. FIG. 図3に示されるレーザ加工ヘッドの光学系の構成図である。It is a block diagram of the optical system of the laser processing head shown in FIG. 変形例のレーザ加工ヘッドの光学系の構成図である。It is a block diagram of the optical system of the laser processing head of a modification. 変形例のレーザ加工装置の一部分の正面図である。It is a front view of a part of laser processing apparatus of a modification. レーザ加工装置の動作を示す模式的な上面図である。It is a schematic top view which shows operation | movement of a laser processing apparatus. レーザ加工装置の動作を示す模式的な上面図である。It is a schematic top view which shows operation | movement of a laser processing apparatus. レーザ加工装置の動作を示す模式的な上面図である。It is a schematic top view which shows operation | movement of a laser processing apparatus. レーザ加工装置の動作を示す模式的な上面図である。It is a schematic top view which shows operation | movement of a laser processing apparatus. レーザ加工装置の動作を示す模式的な上面図である。It is a schematic top view which shows operation | movement of a laser processing apparatus. 取付部及びレーザ加工ヘッドの変形例を示す図である。It is a figure which shows the modification of an attachment part and a laser processing head. 取付部及びレーザ加工ヘッドの変形例を示す図である。It is a figure which shows the modification of an attachment part and a laser processing head. 取付部及びレーザ加工ヘッドの変形例を示す図である。It is a figure which shows the modification of an attachment part and a laser processing head. 取付部及びレーザ加工ヘッドの変形例を示す図である。It is a figure which shows the modification of an attachment part and a laser processing head. 取付部及びレーザ加工ヘッドの変形例を示す図である。It is a figure which shows the modification of an attachment part and a laser processing head. 取付部及びレーザ加工ヘッドの変形例を示す図である。It is a figure which shows the modification of an attachment part and a laser processing head. 後加工処理の別の例を示す上面図である。It is a top view which shows another example of post-processing. 後加工処理の別の例を示す上面図である。It is a top view which shows another example of post-processing.
 以下、一実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[レーザ加工装置の構成]
Hereinafter, one embodiment will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts will be denoted by the same reference symbols and redundant description will be omitted.
[Configuration of laser processing equipment]
 図1に示されるように、レーザ加工装置1は、複数の移動機構5,6と、支持部7と、1対のレーザ加工ヘッド(第1レーザ加工ヘッド、第2レーザ加工ヘッド)10A,10Bと、光源ユニット8と、制御部9と、を備えている。以下、第1方向をX方向、第1方向に垂直な第2方向をY方向、第1方向及び第2方向に垂直な第3方向をZ方向という。本実施形態では、X方向及びY方向は水平方向であり、Z方向は鉛直方向である。 As shown in FIG. 1, the laser processing apparatus 1 includes a plurality of moving mechanisms 5 and 6, a supporting portion 7, and a pair of laser processing heads (first laser processing head, second laser processing head) 10A and 10B. And a light source unit 8 and a control unit 9. Hereinafter, the first direction will be referred to as the X direction, the second direction perpendicular to the first direction will be referred to as the Y direction, and the third direction perpendicular to the first and second directions will be referred to as the Z direction. In this embodiment, the X direction and the Y direction are horizontal directions, and the Z direction is a vertical direction.
 移動機構5は、固定部51と、移動部53と、取付部55と、を有している。固定部51は、装置フレーム1aに取り付けられている。移動部53は、固定部51に設けられたレールに取り付けられており、Y方向に沿って移動することができる。取付部55は、移動部53に設けられたレールに取り付けられており、X方向に沿って移動することができる。 The moving mechanism 5 has a fixed portion 51, a moving portion 53, and a mounting portion 55. The fixed portion 51 is attached to the device frame 1a. The moving unit 53 is attached to a rail provided on the fixed unit 51, and can move along the Y direction. The attachment portion 55 is attached to a rail provided on the moving portion 53 and can move along the X direction.
 移動機構6は、固定部61と、1対の移動部(第1移動部、第2移動部)63,64と、1対の取付部(第1取付部、第2取付部)65,66と、を有している。固定部61は、装置フレーム1aに取り付けられている。1対の移動部63,64のそれぞれは、固定部61に設けられたレールに取り付けられており、それぞれが独立して、Y方向に沿って移動することができる。取付部65は、移動部63に設けられたレールに取り付けられており、Z方向に沿って移動することができる。取付部66は、移動部64に設けられたレールに取り付けられており、Z方向に沿って移動することができる。つまり、装置フレーム1aに対しては、1対の取付部65,66のそれぞれが、Y方向及びZ方向のそれぞれに沿って移動することができる。 The moving mechanism 6 includes a fixed part 61, a pair of moving parts (first moving part, second moving part) 63, 64, and a pair of mounting parts (first mounting part, second mounting part) 65, 66. And have. The fixed portion 61 is attached to the device frame 1a. Each of the pair of moving portions 63 and 64 is attached to a rail provided on the fixed portion 61, and each of them can move independently along the Y direction. The attachment portion 65 is attached to a rail provided on the moving portion 63 and can move along the Z direction. The attachment portion 66 is attached to a rail provided on the moving portion 64 and can move along the Z direction. That is, with respect to the device frame 1a, each of the pair of mounting portions 65 and 66 can move along the Y direction and the Z direction.
 支持部7は、移動機構5の取付部55に設けられた回転軸に取り付けられており、Z方向に平行な軸線を中心線として回転することができる。つまり、支持部7は、X方向及びY方向のそれぞれに沿って移動することができ、Z方向に平行な軸線を中心線として回転することができる。支持部7は、X方向及びY方向に沿って対象物100を支持する。対象物100は、例えば、ウェハである。 The support portion 7 is attached to a rotary shaft provided on the attachment portion 55 of the moving mechanism 5, and can rotate about an axis parallel to the Z direction as a center line. That is, the support part 7 can move along each of the X direction and the Y direction, and can rotate about the axis parallel to the Z direction as the center line. The support unit 7 supports the object 100 along the X direction and the Y direction. The object 100 is, for example, a wafer.
 図1及び図2に示されるように、レーザ加工ヘッド10A(例えば第1レーザ加工ヘッド)は、移動機構6の取付部65に取り付けられている。レーザ加工ヘッド10Aは、Z方向において支持部7と対向した状態で、支持部7に支持された対象物100にレーザ光(第1レーザ光)L1を照射するためのものである。レーザ加工ヘッド10B(例えば第2レーザ加工ヘッド)は、移動機構6の取付部66に取り付けられている。レーザ加工ヘッド10Bは、Z方向において支持部7と対向した状態で、支持部7に支持された対象物100にレーザ光(第2レーザ光)L2を照射するためのものである。 As shown in FIGS. 1 and 2, the laser processing head 10A (for example, the first laser processing head) is attached to the attachment portion 65 of the moving mechanism 6. The laser processing head 10A is for irradiating the object 100 supported by the support 7 with laser light (first laser light) L1 while facing the support 7 in the Z direction. The laser processing head 10B (for example, the second laser processing head) is attached to the attachment portion 66 of the moving mechanism 6. The laser processing head 10B is for irradiating the object 100 supported by the support 7 with laser light (second laser light) L2 while facing the support 7 in the Z direction.
 光源ユニット8は、1対の光源81,82を有している。光源81は、レーザ光L1を出力する。レーザ光L1は、光源81の出射部81aから出射され、光ファイバ2によってレーザ加工ヘッド10Aに導光される。光源82は、レーザ光L2を出力する。レーザ光L2は、光源82の出射部82aから出射され、別の光ファイバ2によってレーザ加工ヘッド10Bに導光される。 The light source unit 8 has a pair of light sources 81 and 82. The light source 81 outputs laser light L1. The laser light L1 is emitted from the emitting portion 81a of the light source 81 and guided to the laser processing head 10A by the optical fiber 2. The light source 82 outputs laser light L2. The laser light L2 is emitted from the emitting portion 82a of the light source 82, and is guided to the laser processing head 10B by another optical fiber 2.
 制御部9は、レーザ加工装置1の各部(複数の移動機構5,6、1対のレーザ加工ヘッド10A,10B、及び光源ユニット8等)を制御する。制御部9は、プロセッサ、メモリ、ストレージ及び通信デバイス等を含むコンピュータ装置として構成されている。制御部9では、メモリ等に読み込まれたソフトウェア(プログラム)が、プロセッサによって実行され、メモリ及びストレージにおけるデータの読み出し及び書き込み、並びに、通信デバイスによる通信が、プロセッサによって制御される。これにより、制御部9は、各種機能を実現する。 The control unit 9 controls each unit of the laser processing apparatus 1 (a plurality of moving mechanisms 5, 6, a pair of laser processing heads 10A, 10B, a light source unit 8, etc.). The control unit 9 is configured as a computer device including a processor, a memory, a storage, a communication device, and the like. In the control unit 9, the software (program) read into the memory or the like is executed by the processor, and the reading and writing of data in the memory and the storage and the communication by the communication device are controlled by the processor. Thereby, the control unit 9 realizes various functions.
 以上のように構成されたレーザ加工装置1による加工の一例について説明する。当該加工の一例は、ウェハである対象物100を複数のチップに切断するために、格子状に設定された複数のラインのそれぞれに沿って対象物100の内部に改質領域を形成する例である。 An example of processing by the laser processing apparatus 1 configured as above will be described. An example of the processing is an example in which a modified region is formed inside the object 100 along each of a plurality of lines set in a grid pattern in order to cut the object 100, which is a wafer, into a plurality of chips. is there.
 まず、対象物100を支持している支持部7がZ方向において1対のレーザ加工ヘッド10A,10Bと対向するように、移動機構5が、X方向及びY方向のそれぞれに沿って支持部7を移動させる。続いて、対象物100において一方向に延在する複数のラインがX方向に沿うように、移動機構5が、Z方向に平行な軸線を中心線として支持部7を回転させる。 First, the moving mechanism 5 moves the supporting portion 7 along the X direction and the Y direction so that the supporting portion 7 supporting the object 100 faces the pair of laser processing heads 10A and 10B in the Z direction. To move. Then, the moving mechanism 5 rotates the support part 7 with the axis line parallel to the Z direction as the center line so that the plurality of lines extending in one direction on the object 100 are along the X direction.
 続いて、一方向に延在する一のライン上にレーザ光L1の集光点が位置するように、移動機構6が、Y方向に沿ってレーザ加工ヘッド10Aを移動させる。その一方で、一方向に延在する他のライン上にレーザ光L2の集光点が位置するように、移動機構6が、Y方向に沿ってレーザ加工ヘッド10Bを移動させる。続いて、対象物100の内部にレーザ光L1の集光点が位置するように、移動機構6が、Z方向に沿ってレーザ加工ヘッド10Aを移動させる。その一方で、対象物100の内部にレーザ光L2の集光点が位置するように、移動機構6が、Z方向に沿ってレーザ加工ヘッド10Bを移動させる。 Next, the moving mechanism 6 moves the laser processing head 10A along the Y direction so that the focus point of the laser beam L1 is located on one line extending in one direction. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Y direction so that the focal point of the laser light L2 is located on the other line extending in one direction. Then, the moving mechanism 6 moves the laser processing head 10A along the Z direction so that the focusing point of the laser beam L1 is located inside the object 100. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Z direction so that the focal point of the laser beam L2 is located inside the object 100.
 続いて、光源81がレーザ光L1を出力してレーザ加工ヘッド10Aが対象物100にレーザ光L1を照射すると共に、光源82がレーザ光L2を出力してレーザ加工ヘッド10Bが対象物100にレーザ光L2を照射する。それと同時に、一方向に延在する一のラインに沿ってレーザ光L1の集光点が相対的に移動し(レーザ光L1がスキャンされ)且つ一方向に延在する他のラインに沿ってレーザ光L2の集光点が相対的に移動する(レーザ光L2がスキャンされる)ように、移動機構5が、X方向に沿って支持部7を移動させる。このようにして、レーザ加工装置1は、対象物100において一方向に延在する複数のラインのそれぞれに沿って、対象物100の内部に改質領域を形成する。 Subsequently, the light source 81 outputs the laser light L1 and the laser processing head 10A irradiates the object 100 with the laser light L1, and the light source 82 outputs the laser light L2 and the laser processing head 10B lasers the object 100. The light L2 is emitted. At the same time, the condensing point of the laser light L1 relatively moves along one line extending in one direction (the laser light L1 is scanned), and the laser beam extends along another line extending in one direction. The moving mechanism 5 moves the support portion 7 along the X direction so that the focal point of the light L2 moves relatively (the laser light L2 is scanned). In this way, the laser processing apparatus 1 forms the modified region inside the object 100 along each of the plurality of lines extending in one direction on the object 100.
 続いて、対象物100において一方向と直交する他方向に延在する複数のラインがX方向に沿うように、移動機構5が、Z方向に平行な軸線を中心線として支持部7を回転させる。 Then, the moving mechanism 5 rotates the support part 7 with the axis line parallel to the Z direction as the center line so that the plurality of lines extending in the other direction orthogonal to the one direction in the object 100 are along the X direction. ..
 続いて、他方向に延在する一のライン上にレーザ光L1の集光点が位置するように、移動機構6が、Y方向に沿ってレーザ加工ヘッド10Aを移動させる。その一方で、他方向に延在する他のライン上にレーザ光L2の集光点が位置するように、移動機構6が、Y方向に沿ってレーザ加工ヘッド10Bを移動させる。続いて、対象物100の内部にレーザ光L1の集光点が位置するように、移動機構6が、Z方向に沿ってレーザ加工ヘッド10Aを移動させる。その一方で、対象物100の内部にレーザ光L2の集光点が位置するように、移動機構6が、Z方向に沿ってレーザ加工ヘッド10Bを移動させる。 Subsequently, the moving mechanism 6 moves the laser processing head 10A along the Y direction so that the focus point of the laser light L1 is located on one line extending in the other direction. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Y direction so that the focus point of the laser light L2 is located on another line extending in the other direction. Then, the moving mechanism 6 moves the laser processing head 10A along the Z direction so that the focusing point of the laser beam L1 is located inside the object 100. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Z direction so that the focal point of the laser beam L2 is located inside the object 100.
 続いて、光源81がレーザ光L1を出力してレーザ加工ヘッド10Aが対象物100にレーザ光L1を照射すると共に、光源82がレーザ光L2を出力してレーザ加工ヘッド10Bが対象物100にレーザ光L2を照射する。それと同時に、他方向に延在する一のラインに沿ってレーザ光L1の集光点が相対的に移動し(レーザ光L1がスキャンされ)且つ他方向に延在する他のラインに沿ってレーザ光L2の集光点が相対的に移動する(レーザ光L2がスキャンされる)ように、移動機構5が、X方向に沿って支持部7を移動させる。このようにして、レーザ加工装置1は、対象物100において一方向と直交する他方向に延在する複数のラインのそれぞれに沿って、対象物100の内部に改質領域を形成する。 Subsequently, the light source 81 outputs the laser light L1 and the laser processing head 10A irradiates the object 100 with the laser light L1, and the light source 82 outputs the laser light L2 and the laser processing head 10B lasers the object 100. The light L2 is emitted. At the same time, the focal point of the laser light L1 relatively moves along one line extending in the other direction (the laser light L1 is scanned), and the laser beam extends along the other line extending in the other direction. The moving mechanism 5 moves the support portion 7 along the X direction so that the focal point of the light L2 moves relatively (the laser light L2 is scanned). In this way, the laser processing apparatus 1 forms the modified region inside the object 100 along each of the plurality of lines extending in the other direction orthogonal to the one direction in the object 100.
 なお、上述した加工の一例では、光源81は、例えばパルス発振方式によって、対象物100に対して透過性を有するレーザ光L1を出力し、光源82は、例えばパルス発振方式によって、対象物100に対して透過性を有するレーザ光L2を出力する。そのようなレーザ光が対象物100の内部に集光されると、レーザ光の集光点に対応する部分においてレーザ光が特に吸収され、対象物100の内部に改質領域が形成される。改質領域は、密度、屈折率、機械的強度、その他の物理的特性が周囲の非改質領域とは異なる領域である。改質領域としては、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域等がある。 In the example of the above-described processing, the light source 81 outputs the laser light L1 that is transmissive to the target object 100, for example, by the pulse oscillation method, and the light source 82 outputs the laser light L1 to the target object 100, for example, by the pulse oscillation method. On the other hand, the laser beam L2 having transparency is output. When such laser light is condensed inside the object 100, the laser light is particularly absorbed in a portion corresponding to the condensing point of the laser light, and a modified region is formed inside the object 100. The modified region is a region where the density, refractive index, mechanical strength, and other physical properties are different from the surrounding unmodified region. The modified region includes, for example, a melt-processed region, a crack region, a dielectric breakdown region, and a refractive index change region.
 パルス発振方式によって出力されたレーザ光が対象物100に照射され、対象物100に設定されたラインに沿ってレーザ光の集光点が相対的に移動させられると、複数の改質スポットがラインに沿って1列に並ぶように形成される。1つの改質スポットは、1パルスのレーザ光の照射によって形成される。1列の改質領域は、1列に並んだ複数の改質スポットの集合である。隣り合う改質スポットは、対象物100に対するレーザ光の集光点の相対的な移動速度及びレーザ光の繰り返し周波数によって、互いに繋がる場合も、互いに離れる場合もある。
[レーザ加工ヘッドの構成]
When the object 100 is irradiated with the laser light output by the pulse oscillation method and the condensing point of the laser light is relatively moved along the line set on the object 100, a plurality of modified spots are lined up. Are formed so as to be lined up in a row along the line. One modified spot is formed by irradiation with one pulse of laser light. The one-row reforming region is a set of a plurality of reforming spots arranged in one row. Adjacent modified spots may be connected to each other or may be separated from each other depending on the relative moving speed of the condensing point of the laser light with respect to the object 100 and the repetition frequency of the laser light.
[Configuration of laser processing head]
 図3及び図4に示されるように、レーザ加工ヘッド10Aは、筐体(例えば第1筐体)11と、入射部12と、調整部13と、集光部(例えば第1集光部)14と、を備えている。 As shown in FIGS. 3 and 4, the laser processing head 10A includes a casing (for example, a first casing) 11, an incident unit 12, an adjusting unit 13, and a condensing unit (for example, a first condensing unit). 14 and.
 筐体11は、第1壁部21及び第2壁部22、第3壁部23及び第4壁部24、並びに、第5壁部25及び第6壁部26を有している。第1壁部21及び第2壁部22は、X方向において互いに対向している。第3壁部23及び第4壁部24は、Y方向において互いに対向している。第5壁部25及び第6壁部26は、Z方向において互いに対向している。 The housing 11 has a first wall portion 21 and a second wall portion 22, a third wall portion 23 and a fourth wall portion 24, and a fifth wall portion 25 and a sixth wall portion 26. The first wall portion 21 and the second wall portion 22 face each other in the X direction. The third wall portion 23 and the fourth wall portion 24 face each other in the Y direction. The fifth wall portion 25 and the sixth wall portion 26 face each other in the Z direction.
 第3壁部23と第4壁部24との距離は、第1壁部21と第2壁部22との距離よりも小さい。第1壁部21と第2壁部22との距離は、第5壁部25と第6壁部26との距離よりも小さい。なお、第1壁部21と第2壁部22との距離は、第5壁部25と第6壁部26との距離と等しくてもよいし、或いは、第5壁部25と第6壁部26との距離よりも大きくてもよい。 The distance between the third wall portion 23 and the fourth wall portion 24 is smaller than the distance between the first wall portion 21 and the second wall portion 22. The distance between the first wall portion 21 and the second wall portion 22 is smaller than the distance between the fifth wall portion 25 and the sixth wall portion 26. The distance between the first wall portion 21 and the second wall portion 22 may be equal to the distance between the fifth wall portion 25 and the sixth wall portion 26, or alternatively, the fifth wall portion 25 and the sixth wall portion 26. It may be larger than the distance to the portion 26.
 レーザ加工ヘッド10Aでは、第1壁部21は、移動機構6の固定部61側に位置しており、第2壁部22は、固定部61とは反対側に位置している。第3壁部23は、移動機構6の取付部65側に位置しており、第4壁部24は、取付部65とは反対側であってレーザ加工ヘッド10B側に位置している(図2参照)。すなわち、第4壁部24は、レーザ加工ヘッド10Bの筐体(第2筐体)にY方向に沿って対向する対向壁部である。第5壁部25は、支持部7とは反対側に位置しており、第6壁部26は、支持部7側に位置している。 In the laser processing head 10A, the first wall portion 21 is located on the fixed portion 61 side of the moving mechanism 6, and the second wall portion 22 is located on the opposite side to the fixed portion 61. The third wall portion 23 is located on the mounting portion 65 side of the moving mechanism 6, and the fourth wall portion 24 is located on the side opposite to the mounting portion 65 and on the laser processing head 10B side (FIG. 2). That is, the fourth wall portion 24 is a facing wall portion that faces the housing (second housing) of the laser processing head 10B along the Y direction. The fifth wall portion 25 is located on the side opposite to the support portion 7, and the sixth wall portion 26 is located on the support portion 7 side.
 筐体11は、第3壁部23が移動機構6の取付部65側に配置された状態で筐体11が取付部65に取り付けられるように、構成されている。具体的には、次のとおりである。取付部65は、ベースプレート65aと、取付プレート65bと、を有している。ベースプレート65aは、移動部63に設けられたレールに取り付けられている(図2参照)。取付プレート65bは、ベースプレート65aにおけるレーザ加工ヘッド10B側の端部に立設されている(図2参照)。筐体11は、第3壁部23が取付プレート65bに接触した状態で、台座27を介してボルト28が取付プレート65bに螺合されることで、取付部65に取り付けられている。台座27は、第1壁部21及び第2壁部22のそれぞれに設けられている。筐体11は、取付部65に対して着脱可能である。 The housing 11 is configured such that the housing 11 is attached to the mounting portion 65 with the third wall portion 23 arranged on the mounting portion 65 side of the moving mechanism 6. Specifically, it is as follows. The mounting portion 65 has a base plate 65a and a mounting plate 65b. The base plate 65a is attached to a rail provided on the moving unit 63 (see FIG. 2). The mounting plate 65b is erected on the end of the base plate 65a on the laser processing head 10B side (see FIG. 2). The casing 11 is attached to the attachment portion 65 by screwing the bolt 28 to the attachment plate 65b via the pedestal 27 while the third wall portion 23 is in contact with the attachment plate 65b. The pedestal 27 is provided on each of the first wall portion 21 and the second wall portion 22. The housing 11 is attachable to and detachable from the mounting portion 65.
 入射部12は、第5壁部25に取り付けられている。入射部12は、筐体11内にレーザ光L1を入射させる。入射部12は、X方向においては第2壁部22側(一方の壁部側)に片寄っており、Y方向においては第4壁部24側に片寄っている。つまり、X方向における入射部12と第2壁部22との距離は、X方向における入射部12と第1壁部21との距離よりも小さく、Y方向における入射部12と第4壁部24との距離は、X方向における入射部12と第3壁部23との距離よりも小さい。 The incident part 12 is attached to the fifth wall part 25. The incident unit 12 causes the laser light L1 to enter the housing 11. The incident portion 12 is offset to the second wall portion 22 side (one wall portion side) in the X direction and is offset to the fourth wall portion 24 side in the Y direction. That is, the distance between the incident portion 12 and the second wall portion 22 in the X direction is smaller than the distance between the incident portion 12 and the first wall portion 21 in the X direction, and the incident portion 12 and the fourth wall portion 24 in the Y direction. Is smaller than the distance between the incident portion 12 and the third wall portion 23 in the X direction.
 入射部12は、光ファイバ2の接続端部2aが接続可能となるように構成されている。光ファイバ2の接続端部2aには、ファイバの出射端から出射されたレーザ光L1をコリメートするコリメータレンズが設けられており、戻り光を抑制するアイソレータが設けられていない。当該アイソレータは、接続端部2aよりも光源81側であるファイバの途中に設けられている。これにより、接続端部2aの小型化、延いては、入射部12の小型化が図られている。なお、光ファイバ2の接続端部2aにアイソレータが設けられていてもよい。 The incident portion 12 is configured so that the connection end portion 2a of the optical fiber 2 can be connected. The connection end portion 2a of the optical fiber 2 is provided with a collimator lens that collimates the laser light L1 emitted from the emission end of the fiber, and is not provided with an isolator that suppresses return light. The isolator is provided in the middle of the fiber on the light source 81 side with respect to the connection end portion 2a. As a result, the connection end portion 2a is downsized, and the incident portion 12 is downsized. An isolator may be provided at the connection end 2a of the optical fiber 2.
 調整部13は、筐体11内に配置されている。調整部13は、入射部12から入射したレーザ光L1を調整する。調整部13は、筐体11内において、仕切壁部29に対して第4壁部24側に配置されている。調整部13は、仕切壁部29に取り付けられている。仕切壁部29は、筐体11内に設けられており、筐体11内の領域を第3壁部23側の領域と第4壁部24側の領域とに仕切っている。仕切壁部29は、筐体11と一体となっている。調整部13が有する各構成は、第4壁部24側において仕切壁部29に取り付けられている。仕切壁部29は、調整部13が有する各構成を支持する光学ベースとして機能している。調整部13が有する各構成の詳細については後述する。 The adjusting unit 13 is arranged in the housing 11. The adjusting unit 13 adjusts the laser light L1 incident from the incident unit 12. The adjustment unit 13 is arranged in the housing 11 on the fourth wall 24 side with respect to the partition wall 29. The adjusting part 13 is attached to the partition wall part 29. The partition wall portion 29 is provided inside the housing 11, and partitions the area inside the housing 11 into a region on the third wall portion 23 side and a region on the fourth wall portion 24 side. The partition wall portion 29 is integrated with the housing 11. The components included in the adjusting portion 13 are attached to the partition wall portion 29 on the fourth wall portion 24 side. The partition wall portion 29 functions as an optical base that supports each component of the adjusting portion 13. Details of each configuration of the adjustment unit 13 will be described later.
 集光部14は、第6壁部26に配置されている。具体的には、集光部14は、第6壁部26に形成された孔26aに挿通された状態で、第6壁部26に配置されている。集光部14は、調整部13によって調整されたレーザ光L1を集光しつつ筐体11外に出射させる。集光部14は、X方向においては第2壁部22側(一方の壁部側)に片寄っており、Y方向においては第4壁部24側に片寄っている。すなわち、集光部14は、Z方向からみて、筐体11における第4壁部(対向壁部)24側に偏って配置されている。つまり、X方向における集光部14と第2壁部22との距離は、X方向における集光部14と第1壁部21との距離よりも小さく、Y方向における集光部14と第4壁部24との距離は、X方向における集光部14と第3壁部23との距離よりも小さい。 The light collector 14 is arranged on the sixth wall 26. Specifically, the light collecting section 14 is arranged in the sixth wall section 26 in a state of being inserted into the hole 26 a formed in the sixth wall section 26. The condensing unit 14 condenses the laser light L1 adjusted by the adjusting unit 13 and emits it to the outside of the housing 11. The light collecting section 14 is offset to the second wall section 22 side (one wall section side) in the X direction and is biased to the fourth wall section 24 side in the Y direction. That is, the light condensing unit 14 is arranged so as to be biased toward the fourth wall portion (opposing wall portion) 24 side of the housing 11 when viewed from the Z direction. That is, the distance between the light collecting section 14 and the second wall section 22 in the X direction is smaller than the distance between the light collecting section 14 and the first wall section 21 in the X direction, and the light collecting section 14 and the fourth wall in the Y direction are fourth. The distance from the wall portion 24 is smaller than the distance between the light collecting portion 14 and the third wall portion 23 in the X direction.
 図5に示されるように、調整部13は、アッテネータ31と、ビームエキスパンダ32と、ミラー33と、を有している。入射部12、並びに、調整部13のアッテネータ31、ビームエキスパンダ32及びミラー33は、Z方向に沿って延在する直線(第1直線)A1上に配置されている。アッテネータ31及びビームエキスパンダ32は、直線A1上において、入射部12とミラー33との間に配置されている。アッテネータ31は、入射部12から入射したレーザ光L1の出力を調整する。ビームエキスパンダ32は、アッテネータ31で出力が調整されたレーザ光L1の径を拡大する。ミラー33は、ビームエキスパンダ32で径が拡大されたレーザ光L1を反射する。 As shown in FIG. 5, the adjusting unit 13 has an attenuator 31, a beam expander 32, and a mirror 33. The incident unit 12, the attenuator 31, the beam expander 32, and the mirror 33 of the adjusting unit 13 are arranged on a straight line (first straight line) A1 extending along the Z direction. The attenuator 31 and the beam expander 32 are arranged between the incident part 12 and the mirror 33 on the straight line A1. The attenuator 31 adjusts the output of the laser light L1 incident from the incident unit 12. The beam expander 32 expands the diameter of the laser light L1 whose output is adjusted by the attenuator 31. The mirror 33 reflects the laser light L1 whose diameter has been expanded by the beam expander 32.
 調整部13は、反射型空間光変調器34と、結像光学系35と、を更に有している。調整部13の反射型空間光変調器34及び結像光学系35、並びに、集光部14は、Z方向に沿って延在する直線(第2直線)A2上に配置されている。反射型空間光変調器34は、ミラー33で反射されたレーザ光L1を変調する。反射型空間光変調器34は、例えば、反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)である。結像光学系35は、反射型空間光変調器34の反射面34aと集光部14の入射瞳面14aとが結像関係にある両側テレセントリック光学系を構成している。結像光学系35は、3つ以上のレンズによって構成されている。 The adjusting unit 13 further includes a reflective spatial light modulator 34 and an image forming optical system 35. The reflective spatial light modulator 34 of the adjustment unit 13, the imaging optical system 35, and the condensing unit 14 are arranged on a straight line (second straight line) A2 extending along the Z direction. The reflective spatial light modulator 34 modulates the laser light L1 reflected by the mirror 33. The reflective spatial light modulator 34 is, for example, a reflective liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator). The image forming optical system 35 constitutes a double-sided telecentric optical system in which the reflecting surface 34a of the reflective spatial light modulator 34 and the entrance pupil surface 14a of the condensing unit 14 are in an image forming relationship. The image forming optical system 35 is composed of three or more lenses.
 直線A1及び直線A2は、Y方向に垂直な平面上に位置している。直線A1は、直線A2に対して第2壁部22側(一方の壁部側)に位置している。レーザ加工ヘッド10Aでは、レーザ光L1は、入射部12から筐体11内に入射して直線A1上を進行し、ミラー33及び反射型空間光変調器34で順次に反射された後、直線A2上を進行して集光部14から筐体11外に出射する。なお、アッテネータ31及びビームエキスパンダ32の配列の順序は、逆であってもよい。また、アッテネータ31は、ミラー33と反射型空間光変調器34との間に配置されていてもよい。また、調整部13は、他の光学部品(例えば、ビームエキスパンダ32の前に配置されるステアリングミラー等)を有していてもよい。 The straight line A1 and the straight line A2 are located on a plane perpendicular to the Y direction. The straight line A1 is located on the second wall portion 22 side (one wall portion side) with respect to the straight line A2. In the laser processing head 10A, the laser beam L1 enters the housing 11 from the incident part 12, travels on the straight line A1, is sequentially reflected by the mirror 33 and the reflective spatial light modulator 34, and then the straight line A2. The light travels upward and is emitted from the light collecting unit 14 to the outside of the housing 11. The order of arrangement of the attenuator 31 and the beam expander 32 may be reversed. Further, the attenuator 31 may be arranged between the mirror 33 and the reflective spatial light modulator 34. Further, the adjusting unit 13 may have other optical components (for example, a steering mirror arranged in front of the beam expander 32).
 レーザ加工ヘッド10Aは、ダイクロイックミラー15と、測定部16と、観察部17と、駆動部18と、回路部19と、を更に備えている。 The laser processing head 10A further includes a dichroic mirror 15, a measurement unit 16, an observation unit 17, a drive unit 18, and a circuit unit 19.
 ダイクロイックミラー15は、直線A2上において、結像光学系35と集光部14との間に配置されている。つまり、ダイクロイックミラー15は、筐体11内において、調整部13と集光部14との間に配置されている。ダイクロイックミラー15は、第4壁部24側において仕切壁部29に取り付けられている。ダイクロイックミラー15は、レーザ光L1を透過させる。ダイクロイックミラー15は、非点収差を抑制する観点では、例えば、キューブ型、又は、ねじれの関係を有するように配置された2枚のプレート型とすることができる。 The dichroic mirror 15 is arranged on the straight line A2 between the imaging optical system 35 and the condensing unit 14. That is, the dichroic mirror 15 is arranged in the housing 11 between the adjusting unit 13 and the light collecting unit 14. The dichroic mirror 15 is attached to the partition wall portion 29 on the side of the fourth wall portion 24. The dichroic mirror 15 transmits the laser light L1. From the viewpoint of suppressing astigmatism, the dichroic mirror 15 may be, for example, a cube type or two plate types arranged so as to have a twist relationship.
 測定部16は、筐体11内において、調整部13に対して第1壁部21側(一方の壁部側とは反対側)に配置されている。測定部16は、第4壁部24側において仕切壁部29に取り付けられている。測定部16は、対象物100の表面(例えば、レーザ光L1が入射する側の表面)と集光部14との距離を測定するための測定光L10を出力し、集光部14を介して、対象物100の表面で反射された測定光L10を検出する。つまり、測定部16から出力された測定光L10は、集光部14を介して対象物100の表面に照射され、対象物100の表面で反射された測定光L10は、集光部14を介して測定部16で検出される。 The measuring unit 16 is arranged inside the housing 11 with respect to the adjusting unit 13 on the first wall 21 side (the side opposite to the one wall side). The measuring section 16 is attached to the partition wall section 29 on the fourth wall section 24 side. The measurement unit 16 outputs measurement light L10 for measuring the distance between the surface of the object 100 (for example, the surface on the side on which the laser light L1 is incident) and the light condensing unit 14, and through the light condensing unit 14. The measurement light L10 reflected by the surface of the object 100 is detected. That is, the measurement light L10 output from the measurement unit 16 is applied to the surface of the object 100 via the light condensing unit 14, and the measurement light L10 reflected on the surface of the object 100 passes through the light condensing unit 14. And is detected by the measuring unit 16.
 より具体的には、測定部16から出力された測定光L10は、第4壁部24側において仕切壁部29に取り付けられたビームスプリッタ20及びダイクロイックミラー15で順次に反射され、集光部14から筐体11外に出射する。対象物100の表面で反射された測定光L10は、集光部14から筐体11内に入射してダイクロイックミラー15及びビームスプリッタ20で順次に反射され、測定部16に入射し、測定部16で検出される。 More specifically, the measurement light L10 output from the measurement unit 16 is sequentially reflected by the beam splitter 20 and the dichroic mirror 15 attached to the partition wall 29 on the side of the fourth wall 24, and the condensing unit 14 is provided. Is emitted from the housing 11. The measurement light L10 reflected on the surface of the object 100 enters the housing 11 from the light condensing unit 14, is sequentially reflected by the dichroic mirror 15 and the beam splitter 20, enters the measuring unit 16, and then the measuring unit 16 Detected in.
 観察部17は、筐体11内において、調整部13に対して第1壁部21側(一方の壁部側とは反対側)に配置されている。観察部17は、第4壁部24側において仕切壁部29に取り付けられている。観察部17は、対象物100の表面(例えば、レーザ光L1が入射する側の表面)を観察するための観察光L20を出力し、集光部14を介して、対象物100の表面で反射された観察光L20を検出する。つまり、観察部17から出力された観察光L20は、集光部14を介して対象物100の表面に照射され、対象物100の表面で反射された観察光L20は、集光部14を介して観察部17で検出される。 The observing unit 17 is arranged in the housing 11 on the first wall 21 side (the side opposite to the one wall side) with respect to the adjusting unit 13. The observation section 17 is attached to the partition wall section 29 on the fourth wall section 24 side. The observation unit 17 outputs the observation light L20 for observing the surface of the object 100 (for example, the surface on the side where the laser light L1 is incident), and is reflected by the surface of the object 100 via the light condensing unit 14. The observation light L20 thus generated is detected. That is, the observation light L20 output from the observation unit 17 is applied to the surface of the object 100 via the light condensing unit 14, and the observation light L20 reflected by the surface of the object 100 passes through the light condensing unit 14. And is detected by the observation unit 17.
 より具体的には、観察部17から出力された観察光L20は、ビームスプリッタ20を透過してダイクロイックミラー15で反射され、集光部14から筐体11外に出射する。対象物100の表面で反射された観察光L20は、集光部14から筐体11内に入射してダイクロイックミラー15で反射され、ビームスプリッタ20を透過して観察部17に入射し、観察部17で検出される。なお、レーザ光L1、測定光L10及び観察光L20のそれぞれの波長は、互いに異なっている(少なくともそれぞれの中心波長が互いにずれている)。 More specifically, the observation light L20 output from the observation unit 17 passes through the beam splitter 20, is reflected by the dichroic mirror 15, and is emitted from the condensing unit 14 to the outside of the housing 11. The observation light L20 reflected on the surface of the object 100 enters the housing 11 from the light condensing unit 14, is reflected by the dichroic mirror 15, passes through the beam splitter 20, and enters the observation unit 17, Detected at 17. The wavelengths of the laser light L1, the measurement light L10, and the observation light L20 are different from each other (at least the respective central wavelengths are deviated from each other).
 駆動部18は、第4壁部24側において仕切壁部29に取り付けられている。駆動部18は、例えば圧電素子の駆動力によって、第6壁部26に配置された集光部14をZ方向に沿って移動させる。 The drive portion 18 is attached to the partition wall portion 29 on the side of the fourth wall portion 24. The driving unit 18 moves the condensing unit 14 arranged on the sixth wall unit 26 along the Z direction by the driving force of the piezoelectric element, for example.
 回路部19は、筐体11内において、仕切壁部29に対して第3壁部23側に配置されている。つまり、回路部19は、筐体11内において、調整部13、測定部16及び観察部17に対して第3壁部23側に配置されている。回路部19は、仕切壁部29から離間している。回路部19は、例えば、複数の回路基板である。回路部19は、測定部16から出力された信号、及び反射型空間光変調器34に入力する信号を処理する。回路部19は、測定部16から出力された信号に基づいて駆動部18を制御する。一例として、回路部19は、測定部16から出力された信号に基づいて、対象物100の表面と集光部14との距離が一定に維持されるように(すなわち、対象物100の表面とレーザ光L1の集光点との距離が一定に維持されるように)、駆動部18を制御する。なお、筐体11には、回路部19を制御部9(図1参照)等に電気的に接続するための配線が接続されるコネクタ(図示省略)が設けられている。 The circuit portion 19 is arranged in the housing 11 on the third wall portion 23 side with respect to the partition wall portion 29. That is, the circuit unit 19 is arranged on the third wall 23 side with respect to the adjustment unit 13, the measurement unit 16, and the observation unit 17 in the housing 11. The circuit section 19 is separated from the partition wall section 29. The circuit unit 19 is, for example, a plurality of circuit boards. The circuit unit 19 processes the signal output from the measurement unit 16 and the signal input to the reflective spatial light modulator 34. The circuit unit 19 controls the drive unit 18 based on the signal output from the measurement unit 16. As an example, the circuit unit 19 maintains the distance between the surface of the object 100 and the light condensing unit 14 constant based on the signal output from the measurement unit 16 (that is, the surface of the object 100). The drive unit 18 is controlled so that the distance from the condensing point of the laser light L1 is kept constant). The housing 11 is provided with a connector (not shown) to which wiring for electrically connecting the circuit unit 19 to the control unit 9 (see FIG. 1) and the like is connected.
 レーザ加工ヘッド10Bは、レーザ加工ヘッド10Aと同様に、筐体(例えば第2筐体)11と、入射部12と、調整部13と、集光部(例えば第2集光部)14と、ダイクロイックミラー15と、測定部16と、観察部17と、駆動部18と、回路部19と、を備えている。ただし、レーザ加工ヘッド10Bの各構成は、図2に示されるように、1対の取付部65,66間の中点を通り且つY方向に垂直な仮想平面に関して、レーザ加工ヘッド10Aの各構成と面対称の関係を有するように、配置されている(なお、後述するように一例である)。 Similar to the laser processing head 10A, the laser processing head 10B includes a housing (for example, a second housing) 11, an incident unit 12, an adjusting unit 13, and a light collecting unit (for example, a second light collecting unit) 14. A dichroic mirror 15, a measurement unit 16, an observation unit 17, a drive unit 18, and a circuit unit 19 are provided. However, each configuration of the laser processing head 10B is, as shown in FIG. 2, each configuration of the laser processing head 10A with respect to a virtual plane that passes through the midpoint between the pair of mounting portions 65 and 66 and is perpendicular to the Y direction. Are arranged so as to have a plane symmetry relationship with (this is an example as described later).
 例えば、レーザ加工ヘッド10Aの筐体11は、第4壁部24が第3壁部23に対してレーザ加工ヘッド10B側に位置し且つ第6壁部26が第5壁部25に対して支持部7側に位置するように、取付部65に取り付けられている。これに対し、レーザ加工ヘッド10Bの筐体11は、第4壁部24が第3壁部23に対してレーザ加工ヘッド10A側に位置し且つ第6壁部26が第5壁部25に対して支持部7側に位置するように、取付部66に取り付けられている。すなわち、レーザ加工ヘッド10Bにおいても、第4壁部24は、レーザ加工ヘッド10Aの筐体にY方向に沿って対向する対向壁部である。またレーザ加工ヘッド10Bにおいても、集光部14は、Z方向からみて、その筐体11における第4壁部(対向壁部)24側に偏って配置されている。 For example, in the housing 11 of the laser processing head 10A, the fourth wall portion 24 is located on the laser processing head 10B side with respect to the third wall portion 23, and the sixth wall portion 26 is supported with respect to the fifth wall portion 25. It is attached to the attachment portion 65 so as to be located on the side of the portion 7. On the other hand, in the housing 11 of the laser processing head 10B, the fourth wall portion 24 is located on the laser processing head 10A side with respect to the third wall portion 23, and the sixth wall portion 26 is with respect to the fifth wall portion 25. Is attached to the attachment portion 66 so as to be located on the support portion 7 side. That is, also in the laser processing head 10B, the fourth wall portion 24 is a facing wall portion that faces the housing of the laser processing head 10A along the Y direction. Also in the laser processing head 10B, the light converging portion 14 is arranged so as to be biased toward the fourth wall portion (opposing wall portion) 24 side of the housing 11 when viewed from the Z direction.
 レーザ加工ヘッド10Bの筐体11は、第3壁部23が取付部66側に配置された状態で筐体11が取付部66に取り付けられるように、構成されている。具体的には、次のとおりである。取付部66は、ベースプレート66aと、取付プレート66bと、を有している。ベースプレート66aは、移動部63に設けられたレールに取り付けられている。取付プレート66bは、ベースプレート66aにおけるレーザ加工ヘッド10A側の端部に立設されている。レーザ加工ヘッド10Bの筐体11は、第3壁部23が取付プレート66bに接触した状態で、取付部66に取り付けられている。レーザ加工ヘッド10Bの筐体11は、取付部66に対して着脱可能である。
[レーザ加工ヘッドの作用及び効果]
The housing 11 of the laser processing head 10B is configured such that the housing 11 is attached to the mounting portion 66 with the third wall portion 23 arranged on the mounting portion 66 side. Specifically, it is as follows. The mounting portion 66 has a base plate 66a and a mounting plate 66b. The base plate 66a is attached to a rail provided on the moving unit 63. The mounting plate 66b is erected at the end of the base plate 66a on the laser processing head 10A side. The housing 11 of the laser processing head 10B is attached to the attachment portion 66 with the third wall portion 23 in contact with the attachment plate 66b. The housing 11 of the laser processing head 10B can be attached to and detached from the mounting portion 66.
[Operation and effect of laser processing head]
 レーザ加工ヘッド10Aでは、レーザ光L1を出力する光源が筐体11内に設けられていないため、筐体11の小型化を図ることができる。更に、筐体11において、第3壁部23と第4壁部24との距離が第1壁部21と第2壁部22との距離よりも小さく、第6壁部26に配置された集光部14がY方向において第4壁部24側に片寄っている。これにより、集光部14の光軸に垂直な方向に沿って筐体11を移動させる場合に、例えば、第4壁部24側に他の構成(例えば、レーザ加工ヘッド10B)が存在したとしても、当該他の構成に集光部14を近付けることができる。よって、レーザ加工ヘッド10Aは、集光部14をその光軸に垂直な方向に沿って移動させるのに適し得る。 In the laser processing head 10A, since the light source that outputs the laser light L1 is not provided in the housing 11, the housing 11 can be downsized. Further, in the housing 11, the distance between the third wall portion 23 and the fourth wall portion 24 is smaller than the distance between the first wall portion 21 and the second wall portion 22, and the collection disposed on the sixth wall portion 26. The light portion 14 is biased toward the fourth wall portion 24 side in the Y direction. Thereby, when moving the housing 11 along the direction perpendicular to the optical axis of the light condensing unit 14, for example, it is assumed that another configuration (for example, the laser processing head 10B) is present on the fourth wall 24 side. Also, the condensing unit 14 can be brought close to the other configuration. Therefore, the laser processing head 10A may be suitable for moving the condensing unit 14 along the direction perpendicular to its optical axis.
 また、レーザ加工ヘッド10Aでは、入射部12が、第5壁部25に設けられており、Y方向において第4壁部24側に片寄っている。これにより、筐体11内の領域のうち調整部13に対して第3壁部23側の領域に他の構成(例えば、回路部19)を配置する等、当該領域を有効に利用することができる。 Further, in the laser processing head 10A, the incident portion 12 is provided on the fifth wall portion 25 and is offset to the fourth wall portion 24 side in the Y direction. As a result, it is possible to effectively use the region such as disposing another configuration (for example, the circuit unit 19) in a region on the third wall 23 side with respect to the adjustment unit 13 in the region inside the housing 11. it can.
 また、レーザ加工ヘッド10Aでは、集光部14が、X方向において第2壁部22側に片寄っている。これにより、集光部14の光軸に垂直な方向に沿って筐体11を移動させる場合に、例えば、第2壁部22側に他の構成が存在したとしても、当該他の構成に集光部14を近付けることができる。 Further, in the laser processing head 10A, the condensing portion 14 is offset to the second wall portion 22 side in the X direction. Accordingly, when the housing 11 is moved along the direction perpendicular to the optical axis of the light condensing unit 14, for example, even if another configuration exists on the second wall 22 side, the other configuration is collected. The light unit 14 can be brought closer.
 また、レーザ加工ヘッド10Aでは、入射部12が、第5壁部25に設けられており、Y方向において第4壁部24側に片寄っていると共に、X方向において第2壁部22側に片寄っている。これにより、筐体11内の領域のうち調整部13に対して第3壁部23側の領域に他の構成(例えば、回路部19)を配置する等、当該領域を有効に利用することができる。更に、筐体11内の領域のうち調整部13に対して第1壁部21側の領域に他の構成(例えば、測定部16及び観察部17)を配置する等、当該領域を有効に利用することができる。 Further, in the laser processing head 10A, the incident portion 12 is provided on the fifth wall portion 25 and is offset toward the fourth wall portion 24 side in the Y direction and is offset toward the second wall portion 22 side in the X direction. ing. As a result, it is possible to effectively use the region such as disposing another configuration (for example, the circuit unit 19) in a region on the third wall 23 side with respect to the adjustment unit 13 in the region inside the housing 11. it can. Furthermore, other regions (for example, the measurement unit 16 and the observation unit 17) are arranged in the region of the housing 11 on the first wall 21 side with respect to the adjustment unit 13, and the region is effectively used. can do.
 また、レーザ加工ヘッド10Aでは、測定部16及び観察部17が、筐体11内の領域のうち調整部13に対して第1壁部21側の領域に配置されており、回路部19が、筐体11内の領域のうち調整部13に対して第3壁部23側に配置されており、ダイクロイックミラー15が、筐体11内において調整部13と集光部14との間に配置されている。これにより、筐体11内の領域を有効に利用することができる。更に、レーザ加工装置1において、対象物100の表面と集光部14との距離の測定結果に基づいた加工が可能となる。また、レーザ加工装置1において、対象物100の表面の観察結果に基づいた加工が可能となる。 Further, in the laser processing head 10A, the measuring unit 16 and the observing unit 17 are arranged in the region on the first wall 21 side with respect to the adjusting unit 13 in the region inside the housing 11, and the circuit unit 19 is The dichroic mirror 15 is arranged on the side of the third wall portion 23 with respect to the adjustment unit 13 in the area inside the housing 11, and the dichroic mirror 15 is arranged between the adjustment unit 13 and the light collection unit 14 in the housing 11. ing. Thereby, the area in the housing 11 can be effectively used. Further, the laser processing apparatus 1 can perform processing based on the measurement result of the distance between the surface of the object 100 and the light condensing unit 14. Further, the laser processing apparatus 1 can perform processing based on the observation result of the surface of the object 100.
 また、レーザ加工ヘッド10Aでは、回路部19が、測定部16から出力された信号に基づいて駆動部18を制御する。これにより、対象物100の表面と集光部14との距離の測定結果に基づいてレーザ光L1の集光点の位置を調整することができる。 In the laser processing head 10A, the circuit section 19 controls the drive section 18 based on the signal output from the measuring section 16. Thereby, the position of the condensing point of the laser beam L1 can be adjusted based on the measurement result of the distance between the surface of the object 100 and the condensing unit 14.
 また、レーザ加工ヘッド10Aでは、入射部12、並びに、調整部13のアッテネータ31、ビームエキスパンダ32及びミラー33が、Z方向に沿って延在する直線A1上に配置されており、調整部13の反射型空間光変調器34、結像光学系35及び集光部14、並びに、集光部14が、Z方向に沿って延在する直線A2上に配置されている。これにより、アッテネータ31、ビームエキスパンダ32、反射型空間光変調器34及び結像光学系35を有する調整部13をコンパクトに構成することができる。 Further, in the laser processing head 10A, the incident section 12, the attenuator 31, the beam expander 32, and the mirror 33 of the adjusting section 13 are arranged on the straight line A1 extending along the Z direction, and the adjusting section 13 is provided. The reflective spatial light modulator 34, the imaging optical system 35, the condensing unit 14, and the condensing unit 14 are arranged on a straight line A2 extending along the Z direction. Accordingly, the adjusting unit 13 including the attenuator 31, the beam expander 32, the reflective spatial light modulator 34, and the imaging optical system 35 can be configured compactly.
 また、レーザ加工ヘッド10Aでは、直線A1が、直線A2に対して第2壁部22側に位置している。これにより、筐体11内の領域のうち調整部13に対して第1壁部21側の領域において、集光部14を用いた他の光学系(例えば、測定部16及び観察部17)を構成する場合に、当該他の光学系の構成の自由度を向上させることができる。 Further, in the laser processing head 10A, the straight line A1 is located closer to the second wall portion 22 than the straight line A2. As a result, another optical system (for example, the measuring unit 16 and the observing unit 17) using the light condensing unit 14 is provided in the region on the first wall 21 side with respect to the adjusting unit 13 in the region in the housing 11. When configured, the degree of freedom in the configuration of the other optical system can be improved.
 以上の作用及び効果は、レーザ加工ヘッド10Bによっても同様に奏される。
[レーザ加工ヘッドの変形例]
The above-described actions and effects are similarly exhibited by the laser processing head 10B.
[Modification of laser processing head]
 図6に示されるように、入射部12、調整部13及び集光部14は、Z方向に沿って延在する直線A上に配置されていてもよい。これによれば、調整部13をコンパクトに構成することができる。その場合、調整部13は、反射型空間光変調器34及び結像光学系35を有していなくてもよい。また、調整部13は、アッテネータ31及びビームエキスパンダ32を有していてもよい。これによれば、アッテネータ31及びビームエキスパンダ32を有する調整部13をコンパクトに構成することができる。なお、アッテネータ31及びビームエキスパンダ32の配列の順序は、逆であってもよい。 As shown in FIG. 6, the incident section 12, the adjusting section 13, and the light collecting section 14 may be arranged on a straight line A extending along the Z direction. According to this, the adjusting unit 13 can be configured compactly. In that case, the adjusting unit 13 may not include the reflective spatial light modulator 34 and the imaging optical system 35. Further, the adjusting unit 13 may include an attenuator 31 and a beam expander 32. According to this, the adjusting unit 13 including the attenuator 31 and the beam expander 32 can be configured compactly. The order of arrangement of the attenuator 31 and the beam expander 32 may be reversed.
 また、光源ユニット8の出射部81aからレーザ加工ヘッド10Aの入射部12へのレーザ光L1の導光、及び光源ユニット8の出射部82aからレーザ加工ヘッド10Bの入射部12へのレーザ光L2の導光の少なくとも1つは、ミラーによって実施されてもよい。図7は、レーザ光L1がミラーによって導光されるレーザ加工装置1の一部分の正面図である。図7に示される構成では、レーザ光L1を反射するミラー3が、Y方向において光源ユニット8の出射部81aと対向し且つZ方向においてレーザ加工ヘッド10Aの入射部12と対向するように、移動機構6の移動部63に取り付けられている。 Further, the laser light L1 is guided from the emitting portion 81a of the light source unit 8 to the incident portion 12 of the laser processing head 10A, and the laser light L2 from the emitting portion 82a of the light source unit 8 to the incident portion 12 of the laser processing head 10B. At least one of the light guides may be implemented by a mirror. FIG. 7 is a front view of a part of the laser processing apparatus 1 in which the laser light L1 is guided by the mirror. In the configuration shown in FIG. 7, the mirror 3 that reflects the laser light L1 moves so as to face the emitting portion 81a of the light source unit 8 in the Y direction and face the incident portion 12 of the laser processing head 10A in the Z direction. It is attached to the moving portion 63 of the mechanism 6.
 図7に示される構成では、移動機構6の移動部63をY方向に沿って移動させても、Y方向においてミラー3が光源ユニット8の出射部81aと対向する状態が維持される。また、移動機構6の取付部65をZ方向に沿って移動させても、Z方向においてミラー3がレーザ加工ヘッド10Aの入射部12と対向する状態が維持される。したがって、レーザ加工ヘッド10Aの位置によらず、光源ユニット8の出射部81aから出射されたレーザ光L1を、レーザ加工ヘッド10Aの入射部12に確実に入射させることができる。しかも、光ファイバ2による導光が困難な高出力長短パルスレーザ等の光源を利用することもできる。 In the configuration shown in FIG. 7, even if the moving unit 63 of the moving mechanism 6 is moved along the Y direction, the state in which the mirror 3 faces the emitting unit 81a of the light source unit 8 in the Y direction is maintained. Further, even if the mounting portion 65 of the moving mechanism 6 is moved along the Z direction, the state in which the mirror 3 faces the incident portion 12 of the laser processing head 10A in the Z direction is maintained. Therefore, regardless of the position of the laser processing head 10A, the laser light L1 emitted from the emitting portion 81a of the light source unit 8 can be reliably incident on the incident portion 12 of the laser processing head 10A. Moreover, it is possible to use a light source such as a high output long / short pulse laser, which is difficult to be guided by the optical fiber 2.
 また、図7に示される構成では、ミラー3は、角度調整及び位置調整の少なくとも1つが可能となるように、移動機構6の移動部63に取り付けられていてもよい。これによれば、光源ユニット8の出射部81aから出射されたレーザ光L1を、レーザ加工ヘッド10Aの入射部12に、より確実に入射させることができる。 Further, in the configuration shown in FIG. 7, the mirror 3 may be attached to the moving unit 63 of the moving mechanism 6 so that at least one of the angle adjustment and the position adjustment can be performed. According to this, the laser light L1 emitted from the emission portion 81a of the light source unit 8 can be more reliably incident on the incidence portion 12 of the laser processing head 10A.
 また、光源ユニット8は、1つの光源を有するものであってもよい。その場合、光源ユニット8は、1つの光源から出力されたレーザ光の一部を出射部81aから出射させ且つ当該レーザ光の残部を出射部82aから出射させるように、構成されていればよい。
[レーザ加工装置の動作等について]
The light source unit 8 may have one light source. In that case, the light source unit 8 may be configured so that a part of the laser light output from one light source is emitted from the emitting portion 81a and the rest of the laser light is emitted from the emitting portion 82a.
[About operation of laser processing equipment]
 引き続いて、レーザ加工装置1の動作について説明する。図8は、レーザ加工装置の動作を示す模式的な上面図である。以降の図においては、図1~7の各部の相対位置を維持しつつ、レーザ加工ヘッド10A,10Bの模式化された内部を透過して示す。図8に示されるように、支持部7には、対象物100が支持されている。なお、図中の符号Sは、上述した測定部16や観察部17といったように、改質領域を形成するためのレーザ光L1,L2の照射に係る光学系以外の光学系を代表して示している。 Next, the operation of the laser processing apparatus 1 will be described. FIG. 8 is a schematic top view showing the operation of the laser processing apparatus. In the following figures, the schematic positions of the laser processing heads 10A and 10B are shown transparently while maintaining the relative positions of the respective parts in FIGS. As shown in FIG. 8, the object 100 is supported by the support portion 7. The symbol S in the figure represents an optical system other than the optical system related to the irradiation of the laser beams L1 and L2 for forming the modified region, such as the measurement unit 16 and the observation unit 17 described above. ing.
 また、レーザ加工装置1は、倍率の異なる一対のアライメントカメラACを備えている。アライメントカメラACは、レーザ加工ヘッド10Aと共に取付部65に取り付けられている。アライメントカメラACは、例えば、対象物100を透過する光を用いたデバイスパターン等を撮像する。これにより得られる画像は、対象物100に対するレーザ光L1,L2の照射位置のアライメントに供される。 The laser processing apparatus 1 also includes a pair of alignment cameras AC having different magnifications. The alignment camera AC is attached to the attachment portion 65 together with the laser processing head 10A. The alignment camera AC images, for example, a device pattern or the like using light transmitted through the object 100. The image obtained by this is used for alignment of the irradiation positions of the laser beams L1 and L2 with respect to the object 100.
 対象物100には、X方向に沿って延びると共にY方向に沿って配列された複数のラインCが設定されている。ラインCは、仮想的な線であるが、実際に描かれた線であってもよい。なお、対象物100には、Y方向に沿って延びると共にX方向に沿って配列された複数のラインも設定されているが、その図示が省略されている。 The target object 100 has a plurality of lines C extending along the X direction and arranged along the Y direction. The line C is a virtual line, but may be an actually drawn line. Although a plurality of lines extending along the Y direction and arranged along the X direction are also set in the object 100, the illustration thereof is omitted.
 レーザ加工装置1は、制御部9の制御のもとで各ラインCに沿ったレーザ加工を実施する。制御部9は、ここでは、支持部7、取付部65、及び、取付部66の移動と、レーザ加工ヘッド10A及びレーザ加工ヘッド10Bからのレーザ光L1,L2の照射と、を制御する。レーザ加工装置1にあっては、制御部9は、第1スキャン処理と第2スキャン処理とを実行する。第1スキャン処理は、複数のラインCの一のラインCに対してレーザ加工ヘッド10Aからのレーザ光L1をX方向にスキャンする処理である。第2スキャン処理は、複数のラインCのうちの別のラインCに対してレーザ加工ヘッド10Bからのレーザ光L2をX方向にスキャンする処理である。 The laser processing device 1 performs laser processing along each line C under the control of the control unit 9. Here, the control unit 9 controls the movement of the support unit 7, the mounting unit 65, and the mounting unit 66, and the irradiation of the laser beams L1 and L2 from the laser processing head 10A and the laser processing head 10B. In the laser processing device 1, the control unit 9 executes the first scan process and the second scan process. The first scan process is a process of scanning one line C of the plurality of lines C with the laser light L1 from the laser processing head 10A in the X direction. The second scan process is a process of scanning another line C of the plurality of lines C with the laser light L2 from the laser processing head 10B in the X direction.
 制御部9がレーザ光L1,L2をX方向にスキャンするとは、まず、取付部65,66を介してレーザ加工ヘッド10A,10BをY方向及びZ方向に移動させて、レーザ光L1,L2の集光点を、それぞれのラインC上であって対象物100の内部となる位置に位置させた状態とする。そして、その状態において、支持部7をX方向に移動させることにより、対象物100内をラインCに沿ってX方向にレーザ光L1,L2の集光点を移動させることである。 When the control unit 9 scans the laser beams L1 and L2 in the X direction, first, the laser processing heads 10A and 10B are moved in the Y direction and the Z direction through the mounting units 65 and 66 to move the laser beams L1 and L2. The light-condensing point is located at a position on each line C that is inside the object 100. Then, in that state, by moving the support portion 7 in the X direction, the focus points of the laser beams L1 and L2 are moved in the object 100 along the line C in the X direction.
 特に、ここでは、制御部9は、第1スキャン処理と第2スキャン処理とを、少なくとも一部の時間において重複するように実行する。すなわち、制御部9は、一のラインCに沿ってレーザ光L1がスキャンされている状態と、別のラインCに沿ってレーザ光L2がスキャンされている状態とが、同時に実現されるようにする。つまり、制御部9は、レーザ加工ヘッド10Aとレーザ加工ヘッド10Bとを同時に稼働する。これにより、1つのレーザ加工ヘッドを用いた加工に比べて明確にスループットの向上が図られる。 Particularly, here, the control unit 9 executes the first scan process and the second scan process so that they overlap at least in part of the time. That is, the control unit 9 realizes simultaneously a state in which the laser beam L1 is scanned along one line C and a state in which the laser beam L2 is scanned along another line C at the same time. To do. That is, the control unit 9 simultaneously operates the laser processing head 10A and the laser processing head 10B. Thereby, the throughput can be clearly improved as compared with the processing using one laser processing head.
 制御部9は、1つのラインCに沿ったレーザ光L1,L2のスキャンが完了すると、レーザ加工ヘッド10A,10Bのそれぞれを独立してラインCの間隔の分だけY方向(必要に応じてZ方向)に移動させて、次のラインCに沿ったレーザ光L1,L2のスキャン(すなわち第1スキャン処理及び第2スキャン処理)を続ける。制御部9は、概ねラインCの本数分だけこの動作を続けて行うことにより、全てのラインCに沿って改質領域を形成する。 When the scanning of the laser beams L1 and L2 along one line C is completed, the control unit 9 independently sets each of the laser processing heads 10A and 10B in the Y direction by the distance of the line C (Z if necessary). Direction), and the scanning of the laser beams L1 and L2 along the next line C (that is, the first scanning process and the second scanning process) is continued. The control unit 9 continuously performs this operation for the number of the lines C to form the modified region along all the lines C.
 図9及び図10に示されるように、ここでは、制御部9は、複数のラインCのうちの対象物100のY方向の一方の端部に位置するラインCからY方向の内側のラインCに向けて順に第1スキャン処理を実行する。これと共に、制御部9は、複数のラインCのうちの対象物100のY方向の他方の端部に位置するラインCからY方向の内側のラインに向けて順に第2スキャン処理を実行する(これを主加工処理と称する)。Y方向の一方の端部に位置するラインCと、Y方向の他方の端部に位置するラインCとは、X方向について互いに同一の長さを有している。 As shown in FIGS. 9 and 10, here, the control unit 9 controls the line C, which is located at one end in the Y direction of the object 100 of the plurality of lines C, to be a line C inside the Y direction. The first scan process is executed in order toward. At the same time, the control unit 9 sequentially performs the second scan process from the line C located at the other end in the Y direction of the object 100 among the plurality of lines C toward the inner line in the Y direction ( This is called main processing). The line C located at one end in the Y direction and the line C located at the other end in the Y direction have the same length in the X direction.
 この点についてより詳細に説明する。主加工処理においては、まず、制御部9は、取付部65を介したレーザ加工ヘッド10Aの移動により、レーザ光L1の集光点を、対象物100のY方向の一方の端部に位置するラインC上であって対象物100の内部となる位置に位置させた状態とする。同時に、制御部9は、取付部66を介したレーザ加工ヘッド10Bの移動により、レーザ光L2の集光点を、対象物100のY方向の他方の端部に位置するラインC上であって対象物100の内部となる位置に位置させた状態とする。このとき、レーザ光L1の集光点のX方向の位置とレーザ光L2の集光点のX方向の位置とは一致している。 I will explain this point in more detail. In the main processing, first, the control unit 9 moves the laser processing head 10A via the mounting unit 65 to position the condensing point of the laser light L1 at one end of the object 100 in the Y direction. It is in a state of being positioned on the line C and inside the object 100. At the same time, the control unit 9 moves the laser processing head 10B through the mounting unit 66 so that the focal point of the laser beam L2 is on the line C located at the other end of the object 100 in the Y direction. It is in a state of being positioned inside the object 100. At this time, the position of the focal point of the laser beam L1 in the X direction and the position of the focal point of the laser beam L2 in the X direction match.
 その状態において、制御部9は、支持部7をX方向に移動させることにより、対象物100内をそれぞれのラインCに沿ってX方向にレーザ光L1,L2の集光点を移動させる。これにより、それぞれのラインCに対する第1スキャン処理と第2スキャン処理とが、同時に開始されると共に同時に完了する。すなわち、ここでは、第1スキャン処理と第2スキャン処理とがその全体において重複している。これにより、ラインCに沿って対象物100の内部に改質領域Mが形成される。 In that state, the control section 9 moves the support section 7 in the X direction to move the focus points of the laser beams L1 and L2 in the object 100 along the respective lines C in the X direction. As a result, the first scan process and the second scan process for each line C are simultaneously started and simultaneously completed. That is, here, the first scan process and the second scan process overlap in their entirety. As a result, the modified region M is formed inside the object 100 along the line C.
 続いて、制御部9は、取付部65を介したレーザ加工ヘッド10Aの移動により、レーザ光L1の集光点を、対象物100のY方向の一方の端部から1つだけ内側に位置するラインC上であって対象物100の内部となる位置に位置させた状態とする。同時に、制御部9は、取付部66を介したレーザ加工ヘッド10Bの移動により、レーザ光L2の集光点を、対象物100のY方向の他方の端部から1つだけ内側に位置するラインC上であって対象物100の内部となる位置に位置させた状態とする。このとき、レーザ光L1の集光点のX方向の位置とレーザ光L2の集光点のX方向の位置とは一致している。 Subsequently, the control unit 9 moves the laser processing head 10A through the mounting unit 65 to position the condensing point of the laser light L1 only one inward from one end of the object 100 in the Y direction. It is in a state of being positioned on the line C and inside the object 100. At the same time, the control unit 9 moves the laser processing head 10B through the mounting unit 66 to move the focus point of the laser light L2 only one line inside from the other end of the object 100 in the Y direction. It is assumed that the object 100 is located at a position on C and inside the object 100. At this time, the position of the focal point of the laser beam L1 in the X direction and the position of the focal point of the laser beam L2 in the X direction match.
 その状態において、制御部9は、支持部7をX方向(往復動作の場合にはX方向の反対方向)に移動させることにより、対象物100内をそれぞれのラインCに沿ってX方向(往復動作の場合にはX方向の反対方向)にレーザ光L1,L2の集光点を移動させる。これにより、ここでも、それぞれのラインCに対する第1スキャン処理と第2スキャン処理とが、同時に開始されると共に同時に完了する。すなわち、ここでも、第1スキャン処理と第2スキャン処理とがその全体において重複している。この制御部9の動作を繰り返し行うことにより、対象物100のより内側のラインCに至るまで、レーザ加工ヘッド10Aとレーザ加工ヘッド10Bとを同時に稼働させて無駄なくレーザ加工ができる。 In that state, the control unit 9 moves the support unit 7 in the X direction (opposite direction to the X direction in the case of reciprocating operation) to move the inside of the object 100 along each line C in the X direction (reciprocating direction). In the case of operation, the focus points of the laser beams L1 and L2 are moved in the direction opposite to the X direction). As a result, here again, the first scan process and the second scan process for the respective lines C are simultaneously started and simultaneously completed. That is, also here, the first scan process and the second scan process overlap in their entirety. By repeating the operation of the control unit 9, the laser processing head 10A and the laser processing head 10B can be simultaneously operated up to the line C on the inner side of the object 100 to perform laser processing without waste.
 なお、図9以降の上面図においては、説明の必要上から、改質領域Mを実線として示しているが、対象物100の表面から実際に改質領域Mが見えていることを要さない。 In addition, in the top view after FIG. 9, the modified region M is shown as a solid line for the sake of explanation, but it is not necessary that the modified region M is actually visible from the surface of the object 100. ..
 ここで、図11に示されるように、上記の動作を繰り返すうちに、より対象物100の内側の領域において、レーザ加工ヘッド10Aとレーザ加工ヘッド10Bとの位置関係が、互いの距離がY方向にこれ以上縮まらない位置関係(例えば互いに接触している状態)となり、且つ、それぞれの集光部14の間の距離Dに相当する対象物100の領域に、未加工のラインCが残存している場合がある。この場合には、上記のように第1スキャン処理と第2スキャン処理とを同時に実行することが困難となる。したがって、制御部9は、この場合には、次のような後加工処理を実行する。 Here, as shown in FIG. 11, while the above operation is repeated, the positional relationship between the laser processing head 10A and the laser processing head 10B in the region inside the object 100 is such that the mutual distance is in the Y direction. And the unprocessed line C remains in the region of the object 100 corresponding to the distance D between the respective light condensing units 14 and in a positional relationship that does not shrink further. There is a case. In this case, it becomes difficult to simultaneously execute the first scan process and the second scan process as described above. Therefore, in this case, the control unit 9 executes the following post-processing processing.
 すなわち、図12に示されるように、制御部9は、主加工処理の結果、レーザ加工ヘッド10Aとレーザ加工ヘッド10BとがY方向について最接近したときに、対象物100におけるそれぞれの集光部14の間の領域に一部のラインCが残存しているときには、レーザ加工ヘッド10Aを対象物100の当該領域から退避させつつ、レーザ加工ヘッド10Bからのレーザ光L2を当該一部のラインCに対してX方向にスキャンする(第2スキャン処理を実行する)後加工処理を実行する。 That is, as shown in FIG. 12, when the laser processing head 10A and the laser processing head 10B come closest to each other in the Y direction as a result of the main processing, the control section 9 causes the respective light condensing sections in the target object 100. When a part of the line C remains in the region between 14, the laser beam L2 from the laser processing head 10B is removed from the region of the object 100 while the laser processing head 10A is retracted from the region. After that, the post-processing process of scanning in the X direction (performing the second scanning process) is performed.
 なお、レーザ加工ヘッド10Aとレーザ加工ヘッド10Bとは逆でもよい。これにより、全てのラインCに対してレーザ加工が完了する。その後、必要に応じて、支持部7を回転させることによりラインCに交差するラインをX方向に沿うように設定し、上記の動作を繰り返すことができる。
[レーザ加工装置の作用及び効果]
The laser processing head 10A and the laser processing head 10B may be reversed. This completes the laser processing for all the lines C. Thereafter, if necessary, the support portion 7 is rotated to set a line intersecting the line C so as to be along the X direction, and the above operation can be repeated.
[Operation and effect of laser processing apparatus]
 以上説明した様に、レーザ加工装置1は、X方向に沿って移動可能とされ、X方向及びX方向に交差するY方向に沿って対象物100を支持するための支持部7と、Y方向に沿って互いに対向するように配置され、支持部7に支持された対象物100にレーザ光L1,L2を照射するためのレーザ加工ヘッド10A,10Bと、を備える。また、レーザ加工装置1は、レーザ加工ヘッド10Aが取り付けられ、X方向及びY方向に交差するZ方向とY方向とのそれぞれに沿って移動可能とされた取付部65と、レーザ加工ヘッド10Bが取り付けられ、Y方向とZ方向とのそれぞれに沿って移動可能とされた取付部66と、を備える。 As described above, the laser processing apparatus 1 is movable along the X direction, and the support portion 7 for supporting the object 100 along the Y direction intersecting the X direction and the X direction, and the Y direction. Laser processing heads 10A and 10B for irradiating the object 100 supported by the supporting portion 7 with the laser beams L1 and L2, respectively. Further, in the laser processing apparatus 1, the laser processing head 10A is mounted, and the laser processing head 10B and the mounting portion 65 that is movable along each of the Z direction and the Y direction intersecting the X direction and the Y direction. And a mounting portion 66 that is mounted and is movable in each of the Y direction and the Z direction.
 レーザ加工装置1においては、対象物100を支持する支持部7上に、互に対向するようにレーザ加工ヘッド10A,10Bが配置されている。そして、レーザ加工ヘッド10A,10Bは、それぞれ、取付部65,66を介して、互に交差する2方向に独立して移動可能とされている。このため、対象物100の2つの箇所において、互に独立して、レーザ光L1,L2のスキャンによりレーザ加工を行うことが可能となる。よって、スループットの向上が図られる。 In the laser processing apparatus 1, the laser processing heads 10A and 10B are arranged on the support portion 7 supporting the object 100 so as to face each other. The laser processing heads 10A and 10B are independently movable in two directions that intersect each other via the mounting portions 65 and 66, respectively. For this reason, it is possible to perform laser processing at two locations on the object 100 independently of each other by scanning the laser beams L1 and L2. Therefore, the throughput can be improved.
 レーザ加工装置1においては、レーザ加工ヘッド10Aは、筐体11と、筐体11における支持部7側の第6壁部26に設けられ、支持部7に支持された対象物100に向けてレーザ光L1を集光するための集光部14と、を有する。また、レーザ加工ヘッド10Bも、筐体11と、筐体11における支持部7側の第6壁部26に設けられ、支持部7に支持された対象物100に向けてレーザ光L2を集光するための集光部14と、を有する。さらに、取付部65,66は、それぞれ、筐体11におけるY方向に沿って互いに対向する第4壁部24(対向壁部)と異なる壁部(ここでは、第3壁部23)に取り付けられている。そして、集光部14は、それぞれ、Z方向からみて、筐体11における第4壁部24側に偏って配置されている。 In the laser processing apparatus 1, the laser processing head 10 </ b> A is provided on the housing 11 and the sixth wall portion 26 of the housing 11 on the side of the support portion 7 and is directed toward the object 100 supported by the support portion 7. The light condensing unit 14 for condensing the light L1. Further, the laser processing head 10B is also provided on the housing 11 and the sixth wall portion 26 of the housing 11 on the side of the support portion 7 and focuses the laser light L2 toward the object 100 supported by the support portion 7. And a light condensing unit 14 for Further, the attachment portions 65 and 66 are attached to wall portions (here, the third wall portion 23) different from the fourth wall portion 24 (opposing wall portion) facing each other along the Y direction in the housing 11. ing. Then, the light collecting units 14 are arranged so as to be biased toward the fourth wall portion 24 side of the housing 11 when viewed from the Z direction.
 このため、レーザ加工ヘッド10Aとレーザ加工ヘッド10Bとの間に、取付部65,66が介在しない。したがって、Y方向についてレーザ加工ヘッド10Aとレーザ加工ヘッド10Bとをより接近させることができる。さらに、レーザ加工ヘッド10A,10Bのそれぞれの集光部14が、それぞれの筐体11の互いに対向する第4壁部24側に偏って配置されている。このため、レーザ加工ヘッド10Aとレーザ加工ヘッド10Bとを接近させたときに、互いの集光部14同士の距離をより小さくできる。この結果、Y方向について、より狭い領域までレーザ加工ヘッド10A,10Bの両方を用いた加工が可能となる。したがって、スループットを確実に向上可能である。 Therefore, the mounting portions 65 and 66 are not interposed between the laser processing head 10A and the laser processing head 10B. Therefore, the laser processing head 10A and the laser processing head 10B can be closer to each other in the Y direction. Further, the light converging portions 14 of the laser processing heads 10A and 10B are arranged so as to be biased toward the fourth wall portions 24 of the respective casings 11 facing each other. Therefore, when the laser processing head 10A and the laser processing head 10B are brought close to each other, the distance between the condensing sections 14 can be further reduced. As a result, it is possible to perform processing using both the laser processing heads 10A and 10B in a narrower area in the Y direction. Therefore, the throughput can be surely improved.
 また、レーザ加工装置1は、支持部7及び取付部65,66の移動と、レーザ加工ヘッド10A,10Bからのレーザ光L1,L2の照射と、を制御する制御部9を備えている。また、対象物100には、X方向に沿って延びると共にY方向に沿って配列された複数のラインCが設定されている。そして、制御部9は、複数のラインCの一のラインCに対してレーザ加工ヘッド10Aからのレーザ光L1をX方向にスキャンする第1スキャン処理と、複数のラインCのうちの別のラインCに対してレーザ加工ヘッド10Bからのレーザ光L2をX方向にスキャンする第2スキャン処理とを、少なくとも一部の時間において重複するように実行する。このように、第1スキャン処理と第2スキャン処理とを、少なくとも一部重複して実行することにより、スループットの向上が図られる。なお、第1スキャン処理と第2スキャン処理とを同時に行うことにより、より確実にスループットを向上できる。 The laser processing apparatus 1 also includes a control unit 9 that controls the movement of the supporting unit 7 and the mounting units 65 and 66 and the irradiation of the laser beams L1 and L2 from the laser processing heads 10A and 10B. In addition, a plurality of lines C extending along the X direction and arranged along the Y direction are set on the object 100. Then, the control unit 9 scans one line C of the plurality of lines C with the laser beam L1 from the laser processing head 10A in the X direction, and another line of the plurality of lines C. The second scanning process of scanning the laser beam L2 from the laser processing head 10B in the X direction with respect to C is executed so as to overlap at least in part of the time. As described above, the throughput is improved by at least partially overlapping the first scan process and the second scan process. By performing the first scan process and the second scan process at the same time, the throughput can be more reliably improved.
 また、レーザ加工装置1においては、制御部9は、複数のラインCのうちの対象物100のY方向の一方の端部に位置するラインCからY方向の内側のラインCに向けて順に第1スキャン処理を実行しつつ、複数のラインCのうちの対象物100のY方向の他方の端部に位置するラインCからY方向の内側のラインに向けて順に第2スキャン処理を実行する主加工処理を実行する。このように、主加工処理において、Y方向における対象物100の対照的な位置(且つ同一の長さ)のラインCから順に第1スキャン処理及び第2スキャン処理を実行することにより、レーザ光L1,L2の集光点の対象物100に対するX方向に沿った相対移動の無駄が省かれ、スループットがより向上される。 Further, in the laser processing apparatus 1, the control unit 9 sequentially shifts from the line C located at one end of the object 100 in the Y direction of the plurality of lines C toward the line C inward in the Y direction. While performing one scan process, the second scan process is performed in order from the line C located at the other end of the object 100 in the Y direction of the plurality of lines C toward the inner line in the Y direction. Perform processing. In this way, in the main processing, the first scan processing and the second scan processing are sequentially performed from the line C at the symmetrical position (and the same length) of the object 100 in the Y direction, whereby the laser light L1 is obtained. , L2 of the light condensing points relative to the object 100 along the X direction is not wasted, and the throughput is further improved.
 また、レーザ加工装置1においては、制御部9は、主加工処理の結果、レーザ加工ヘッド10Aとレーザ加工ヘッド10BとがY方向について最接近したときに、対象物100における集光部14の間の領域に複数のラインCのうちの一部のラインCが残存しているときには、レーザ加工ヘッド10A,10Bのうちの一方を、対象物100の当該領域から退避させつつ、レーザ加工ヘッド10A,10Bのうちの他方からのレーザ光を一部のラインCに対してX方向にスキャンする後加工処理を実行する。このため、スループットを向上させつつ、漏れなくレーザ加工が可能である。 In addition, in the laser processing apparatus 1, the control unit 9 causes the laser processing head 10A and the laser processing head 10B to move between the light converging units 14 in the object 100 when the laser processing head 10A and the laser processing head 10B are closest to each other in the Y direction as a result of the main processing. When some of the lines C of the plurality of lines C remain in the area of 1), one of the laser processing heads 10A and 10B is retracted from the area of the object 100 while the laser processing head 10A, 10B is retracted. A post-processing process of scanning a part of the line C with the laser beam from the other of 10B in the X direction is performed. Therefore, it is possible to perform laser processing without leakage while improving throughput.
 さらに、レーザ加工装置1においては、一例として、取付部65は、レーザ加工ヘッド10Aの筐体11における第4壁部24の反対側の第3壁部23に取り付けられている。また、取付部66は、レーザ加工ヘッド10Bの筐体11における第4壁部24の反対側の第3壁部23に取り付けられている。このため、取付部65及び取付部66を、レーザ加工ヘッド10Aとレーザ加工ヘッド10Bとの間に介在しないように、容易且つ確実に、レーザ加工ヘッド10A及びレーザ加工ヘッド10Bに取り付けることが可能である。 Further, in the laser processing apparatus 1, as an example, the mounting portion 65 is mounted on the third wall portion 23 on the opposite side of the fourth wall portion 24 in the housing 11 of the laser processing head 10A. The mounting portion 66 is mounted on the third wall portion 23 on the opposite side of the fourth wall portion 24 in the housing 11 of the laser processing head 10B. Therefore, the mounting portion 65 and the mounting portion 66 can be easily and surely mounted on the laser processing head 10A and the laser processing head 10B without being interposed between the laser processing head 10A and the laser processing head 10B. is there.
 ここで、レーザ加工装置1においては、筐体11は、X方向において互いに対向する第1壁部21及び第2壁部22と、Y方向において互いに対向する第3壁部23及び第4壁部24と、を含み、第3壁部23と第4壁部24との距離は、第1壁部21と第2壁部22との距離よりも小さい。 Here, in the laser processing apparatus 1, the housing 11 includes a first wall portion 21 and a second wall portion 22 that face each other in the X direction, and a third wall portion 23 and a fourth wall portion that face each other in the Y direction. 24, and the distance between the third wall portion 23 and the fourth wall portion 24 is smaller than the distance between the first wall portion 21 and the second wall portion 22.
 このため、レーザ加工ヘッド10A,10Bのそれぞれの筐体11のY方向のサイズがX方向のサイズよりも小さくなる。この結果、装置全体としてY方向に大型化される(フットプリントが大きくなる)ことが避けられる。なお、X方向は、支持部7及び対象物100の移動方向である。このため、X方向については、レーザ光L1,L2のスキャンに際した支持部7及び対象物100の移動量を考慮する必要があり、大型化の抑制の余地が小さい。よって、(スキャンの際の)支持部7及び対象物100の移動量を考慮する必要のないY方向について大型化を避けることが有効である。 Therefore, the size in the Y direction of the housing 11 of each of the laser processing heads 10A and 10B becomes smaller than the size in the X direction. As a result, it is possible to prevent the apparatus as a whole from becoming large in the Y direction (increasing the footprint). The X direction is the moving direction of the support 7 and the object 100. Therefore, in the X direction, it is necessary to consider the amount of movement of the support 7 and the target object 100 when scanning the laser beams L1 and L2, and there is little room for suppressing the size increase. Therefore, it is effective to avoid increasing the size in the Y direction, which does not require consideration of the movement amounts of the support portion 7 and the object 100 (during scanning).
 また、レーザ加工ヘッド10Aでは、回路部19が、筐体11内において、調整部13に対して第3壁部23側に配置されている。これにより、筐体11内の領域のうち調整部13に対して第3壁部23側の領域を有効に利用することができる。 Further, in the laser processing head 10A, the circuit portion 19 is arranged in the housing 11 on the third wall portion 23 side with respect to the adjustment portion 13. With this, it is possible to effectively use the region on the third wall portion 23 side with respect to the adjustment unit 13 in the region inside the housing 11.
 また、レーザ加工ヘッド10Aでは、調整部13が、筐体11内において、仕切壁部29に対して第4壁部24側に配置されており、回路部19が、筐体11内において、仕切壁部29に対して第3壁部23側に配置されている。これにより、回路部19で発生する熱が調整部13に伝わり難くなるため、回路部19で発生する熱によって調整部13に歪みが生じるのを抑制することができ、レーザ光L1を適切に調整することができる。更に、例えば空冷又は水冷等によって、筐体11内の領域のうち第3壁部23側の領域において回路部19を効率良く冷却することができる。 Further, in the laser processing head 10A, the adjusting portion 13 is arranged inside the housing 11 on the side of the fourth wall portion 24 with respect to the partition wall portion 29, and the circuit portion 19 is arranged inside the housing 11 to divide the partition. It is arranged on the third wall portion 23 side with respect to the wall portion 29. This makes it difficult for the heat generated in the circuit section 19 to be transmitted to the adjustment section 13, and thus it is possible to prevent the adjustment section 13 from being distorted by the heat generated in the circuit section 19, and to appropriately adjust the laser beam L1. can do. Further, for example, by air cooling or water cooling, the circuit portion 19 can be efficiently cooled in the region inside the housing 11 on the side of the third wall portion 23.
 また、レーザ加工ヘッド10Aでは、調整部13が仕切壁部29に取り付けられている。これにより、調整部13を筐体11内において確実に且つ安定的に支持することができる。
[変形例]
Further, in the laser processing head 10A, the adjusting portion 13 is attached to the partition wall portion 29. As a result, the adjusting unit 13 can be reliably and stably supported in the housing 11.
[Modification]
 以上の実施形態は、レーザ加工装置の一実施形態を例示したものである。したがって、本開示に係るレーザ加工装置は、上記のレーザ加工装置1に限定されず、任意に変形され得る。 The above embodiment illustrates one embodiment of the laser processing apparatus. Therefore, the laser processing apparatus according to the present disclosure is not limited to the laser processing apparatus 1 described above, and can be arbitrarily modified.
 図13~図18は、取付部及びレーザ加工ヘッドの変形例を示す図である。図13の(a)に示されるように、取付部65をレーザ加工ヘッド10Aの筐体11の第1壁部21に設けつつ、取付部66をレーザ加工ヘッド10Bの筐体11の第1壁部21に設けてもよい。また、図13の(b)に示されるように、取付部65をレーザ加工ヘッド10Aの筐体11の第3壁部23に設けつつ、取付部66を、レーザ加工ヘッド10Bの筐体11の第3壁部23に設ける態様において、取付部65,66における移動部63,64の位置をX方向に互い違いにしてもよい。さらに、図13の(c)に示されるように、取付部65をレーザ加工ヘッド10Aの筐体11の第2壁部22に設けつつ、取付部66をレーザ加工ヘッド10Bの筐体11の第2壁部22に設けてもよい。 13 to 18 are views showing modified examples of the mounting portion and the laser processing head. As shown in (a) of FIG. 13, while the mounting portion 65 is provided on the first wall portion 21 of the housing 11 of the laser processing head 10A, the mounting portion 66 is provided on the first wall of the housing 11 of the laser processing head 10B. You may provide in the part 21. Further, as shown in FIG. 13B, the mounting portion 65 is provided on the third wall portion 23 of the housing 11 of the laser processing head 10A, while the mounting portion 66 is mounted on the housing 11 of the laser processing head 10B. In the aspect provided in the third wall portion 23, the positions of the moving portions 63 and 64 in the attachment portions 65 and 66 may be staggered in the X direction. Further, as shown in (c) of FIG. 13, while the mounting portion 65 is provided on the second wall portion 22 of the housing 11 of the laser processing head 10A, the mounting portion 66 is mounted on the second wall portion 22 of the housing 11 of the laser processing head 10B. You may provide in the 2 wall part 22.
 また、図14の(a)に示されるように、取付部65をレーザ加工ヘッド10Aの筐体11の第5壁部25に設けつつ、取付部66をレーザ加工ヘッド10Bの筐体11の第5壁部25に設けてもよい。また、図14の(b)に示されるように、取付部65をレーザ加工ヘッド10Aの筐体11の第6壁部26に設けつつ、取付部66をレーザ加工ヘッド10Bの筐体11の第6壁部26に設けてもよい。以上のように、取付部65,66は、それぞれ、Y方向に沿って互いに対向する第4壁部24と異なる壁部に取り付けられていればよい。さらに、図14の(c)に示されるように、第1壁部21と第2壁部22との間隔を拡大しつつ、X方向について筐体11の中央部に集光部14を設けてもよい。 Further, as shown in FIG. 14A, the mounting portion 65 is provided on the fifth wall portion 25 of the housing 11 of the laser processing head 10A, while the mounting portion 66 is mounted on the housing 11 of the laser processing head 10B. It may be provided on the five wall portion 25. Moreover, as shown in FIG. 14B, the mounting portion 65 is provided on the sixth wall portion 26 of the housing 11 of the laser processing head 10A, while the mounting portion 66 is mounted on the sixth wall portion 26 of the housing 11 of the laser processing head 10B. It may be provided on the six wall portion 26. As described above, the attachment portions 65 and 66 may be attached to the respective wall portions different from the fourth wall portion 24 facing each other along the Y direction. Further, as shown in FIG. 14C, the light condensing portion 14 is provided in the central portion of the housing 11 in the X direction while increasing the distance between the first wall portion 21 and the second wall portion 22. Good.
 また、以上の例のように、レーザ加工装置1においては、一対のレーザ加工ヘッドとして、レーザ加工ヘッド10Aとレーザ加工ヘッド10Bとを用いなくてもよい。すなわち、レーザ加工装置1においては、図15の(a)に示されるように、一対の(1種類の)レーザ加工ヘッド10Aを用いたり、図15の(b)に示されるように、一対の(別の1種類の)レーザ加工ヘッド10Bを用いたりすることができる。これらの場合には、一方のレーザ加工ヘッド10A,10Bに対して他方のレーザ加工ヘッド10A,10BをZ軸方向を中心に180°回転させた状態において、それぞれの集光部14のX方向の中心位置が一致するように配置される。これらの場合には、2種類のレーザ加工ヘッドを用意する必要がない。 Further, as in the above example, the laser processing apparatus 1 does not have to use the laser processing head 10A and the laser processing head 10B as the pair of laser processing heads. That is, in the laser processing apparatus 1, a pair (one type) of laser processing heads 10A is used as shown in FIG. 15 (a), or a pair of laser processing heads 10A is used as shown in FIG. 15 (b). A laser processing head 10B (another type) can be used. In these cases, the laser processing heads 10A and 10B on one side are rotated by 180 ° about the Z-axis direction with respect to the laser processing heads 10A and 10B on the other side, respectively. They are arranged so that their center positions coincide with each other. In these cases, it is not necessary to prepare two types of laser processing heads.
 これらのように、レーザ加工ヘッド10Aのみ(或いはレーザ加工ヘッド10Bのみ)を用いる場合であっても、取付部65,66を設ける壁部はさまざまに変更できる。例えば、図16の(a)に示されるように、1つのレーザ加工ヘッド10Aの筐体11の第1壁部21に取付部65を設けつつ、1つのレーザ加工ヘッド10Aの筐体11の第2壁部22に取付部66を設けることができる。また、図16の(b)に示されるように、1つのレーザ加工ヘッド10Bの筐体11の第2壁部22に取付部65を設けつつ、1つのレーザ加工ヘッド10Bの筐体11の第1壁部21に取付部66を設けてもよい。すなわち、これらの場合であっても、取付部65,66は、それぞれ、Y方向に沿って互いに対向する第4壁部24と異なる壁部に取り付けられていればよい。 Like this, even when only the laser processing head 10A (or only the laser processing head 10B) is used, the wall portion provided with the mounting portions 65 and 66 can be variously changed. For example, as shown in (a) of FIG. 16, the mounting portion 65 is provided on the first wall portion 21 of the housing 11 of one laser processing head 10A while the mounting portion 65 of the housing 11 of one laser processing head 10A is provided. A mounting portion 66 can be provided on the two wall portion 22. Further, as shown in FIG. 16B, while the mounting portion 65 is provided on the second wall portion 22 of the housing 11 of one laser processing head 10B, the mounting portion 65 of the housing 11 of one laser processing head 10B is provided. The mounting portion 66 may be provided on the one wall portion 21. That is, even in these cases, the attachment portions 65 and 66 may be attached to the respective wall portions different from the fourth wall portion 24 facing each other along the Y direction.
 ここで、図17の(a)に示されるように、レーザ加工ヘッド10Aとレーザ加工ヘッド10Bとを、互いがX方向に重複しない位置において、Y方向に配列してもよい。この場合、図17の(b)に示されるように、レーザ加工ヘッド10Aの集光部14と、レーザ加工ヘッド10Bの集光部14とを、X軸方向に重複させることが可能となる。よって、主加工処理において全てのラインCに対して第1及び第2スキャン処理を実行してレーザ加工を施すことが可能となる。すなわち、後加工処理が不要となる。ただし、この場合、には、レーザ加工ヘッド10Aとレーザ加工ヘッド10BとのX方向のシフト量の分だけ、第1及び第2スキャン処理の際の支持部7のX方向の移動距離が長くなる。図18に示されるように、1種類(ここでは、レーザ加工ヘッド10A)のみを用いた場合でも同様である。 Here, as shown in FIG. 17A, the laser processing head 10A and the laser processing head 10B may be arranged in the Y direction at positions where they do not overlap each other in the X direction. In this case, as shown in FIG. 17B, the light condensing unit 14 of the laser processing head 10A and the light condensing unit 14 of the laser processing head 10B can be overlapped in the X-axis direction. Therefore, it is possible to perform the laser processing by executing the first and second scan processings on all the lines C in the main processing. That is, post-processing is not required. However, in this case, the movement distance of the support portion 7 in the X direction during the first and second scan processing is increased by the amount of shift in the X direction between the laser processing head 10A and the laser processing head 10B. .. As shown in FIG. 18, the same applies when only one type (here, the laser processing head 10A) is used.
 図17,18に示される構成は、例えば、対象物100が大判のガラスウェハである場合等、12インチウェハよりもさらに大きいウエハを加工する場合に、1つのラインCあたりの加工長さ(支持部7の移動距離の長さ)が伸びるデメリットよりも、最後まで2つのレーザ加工ヘッドで加工できる(後加工処理が不要となる)メリットが上回る場合に採用し得る。 The configuration shown in FIGS. 17 and 18 is, for example, when processing a wafer larger than a 12-inch wafer, such as when the object 100 is a large-sized glass wafer, the processing length per line C (support This can be adopted when the merit that the two laser processing heads can be machined to the end (post-processing is unnecessary) is outweighed by the demerit that the length of the moving distance of the portion 7 is increased.
 ここで、レーザ加工装置1の後加工処理の別の例として、図19,20に示される例が挙げられる。すなわち、ここでは、まず、図19の(a)に示されるように、制御部9が、複数のラインCのうちの対象物100のY方向の一方の端部に位置するラインCからY方向の内側のラインCに向けて順に第1スキャン処理を実行する。これと共に、制御部9は、複数のラインCのうちの対象物100のY方向の他方の端部に位置するラインCからY方向の内側のラインに向けて順に第2スキャン処理を実行する(すなわち、主加工処理を実行する)。 Here, as another example of the post-processing processing of the laser processing apparatus 1, there is an example shown in FIGS. That is, here, first, as shown in (a) of FIG. 19, the control unit 9 moves the line C from the line C located at one end of the object 100 in the Y direction in the Y direction. The first scan processing is executed in order toward the line C inside. At the same time, the control unit 9 sequentially performs the second scan process from the line C located at the other end in the Y direction of the object 100 among the plurality of lines C toward the inner line in the Y direction ( That is, the main processing is executed).
 図10,11においては、レーザ加工ヘッド10Aとレーザ加工ヘッド10Bとが最接近(例えば接触)するまで主加工処理を行う例を挙げた。このとき、集光部14同士の距離が距離Dであった。これに対して、この例においては、図19の(b)に示されるように、制御部9は、主加工処理を進めることによって、レーザ加工ヘッド10Aの集光部14とレーザ加工ヘッド10Bの集光部14とがY方向に徐々(ラインCの間隔ごと)に近接して、集光部14同士の距離が距離Dの2倍より大きな(或いは同程度の)距離E1に至ったとき、レーザ光L1,L2のスキャンを停止する。これと共に、図20の(a)に示されるように、制御部9は、レーザ加工ヘッド10A,10Bのうちの一方(ここではレーザ加工ヘッド10B)を、レーザ加工ヘッド10A,10Bの他方(ここではレーザ加工ヘッド10A)側に距離Dだけ移動させる。これにより、集光部14同士の距離は距離E1よりも小さな距離E2となる。距離E1が距離Dの概ね2倍であった場合には、距離E2は距離Dとほぼ同等である。 In FIGS. 10 and 11, an example in which the main processing is performed until the laser processing head 10A and the laser processing head 10B come closest to each other (for example, contact) is given. At this time, the distance between the light collecting units 14 was the distance D. On the other hand, in this example, as shown in (b) of FIG. 19, the control unit 9 advances the main processing so that the condensing unit 14 of the laser processing head 10A and the laser processing head 10B move. When the condensing unit 14 gradually approaches in the Y direction (at intervals of the line C) and the distance between the condensing units 14 reaches the distance E1 which is larger than (or about the same as) twice the distance D, The scanning of the laser beams L1 and L2 is stopped. At the same time, as shown in (a) of FIG. 20, the control unit 9 controls one of the laser processing heads 10A and 10B (here, the laser processing head 10B) to the other of the laser processing heads 10A and 10B (here. Then, it is moved by the distance D toward the laser processing head 10A) side. As a result, the distance between the light collecting units 14 becomes a distance E2 smaller than the distance E1. When the distance E1 is approximately twice the distance D, the distance E2 is almost equal to the distance D.
 制御部9は、その状態において、集光部14同士の距離を距離E2に維持しながら、Y方向に順に第1スキャン処理及び第2スキャン処理を実行する。このとき、レーザ加工ヘッド10Aとレーザ加工ヘッド10Bとは、同一方向(Y方向)に移動しながら、X方向へのレーザ光L1,L2のスキャン繰り返すこととなる。そして、第1スキャン処理及び第2スキャン処理を同時に続けていったときに、最後に未加工のラインCが残存した場合にのみ、当該ラインCに対して、レーザ加工ヘッド10A,10Bの一方を用いて加工を行う。このとき、レーザ加工ヘッド10A,10Bのうちの他方は、距離E2が維持される位置に保持されていてもよいし、別の位置に移動させられてもよい。以上が、この例での後加工処理である。これによれば、一対のレーザ加工ヘッド10A,10Bのうちの一方のみでの加工時間を可能な限り減らしてスループットのさらなる向上が図られる。特に、Y方向におけるラインCの間隔が、距離Dに対して十分に小さい場合(例えば、距離Dの範囲に数百のラインCが存在する場合)に有効である。 In that state, the control unit 9 sequentially executes the first scan process and the second scan process in the Y direction while maintaining the distance between the light condensing units 14 at the distance E2. At this time, the laser processing head 10A and the laser processing head 10B move in the same direction (Y direction) and repeat scanning of the laser beams L1 and L2 in the X direction. Then, when the first scan process and the second scan process are continued at the same time, only one of the laser processing heads 10A and 10B is moved to the line C only when the last unprocessed line C remains. Use to process. At this time, the other of the laser processing heads 10A and 10B may be held at a position where the distance E2 is maintained, or may be moved to another position. The above is the post-processing process in this example. According to this, the processing time in only one of the pair of laser processing heads 10A and 10B is reduced as much as possible, and the throughput is further improved. Particularly, it is effective when the interval between the lines C in the Y direction is sufficiently small with respect to the distance D (for example, when several hundreds of lines C exist in the range of the distance D).
 また、レーザ加工装置1の主加工処理の別の例を挙げることもできる。すなわち、図8等においては、制御部9が、複数のラインCのうちの対象物100のY方向の一方の端部に位置するラインCからY方向の内側のラインCに向けて順に第1スキャン処理を実行すると共に、複数のラインCのうちの対象物100のY方向の他方の端部に位置するラインCからY方向の内側のラインに向けて順に第2スキャン処理を実行する主加工処理を例示した。 Also, another example of the main processing of the laser processing apparatus 1 can be given. That is, in FIG. 8 and the like, the control unit 9 sequentially moves the line C from the line C located at one end in the Y direction of the object 100 of the plurality of lines C toward the line C inward in the Y direction. Main processing for executing the scan processing and sequentially performing the second scan processing from the line C located at the other end in the Y direction of the object 100 among the plurality of lines C toward the inner line in the Y direction. The process is illustrated.
 しかしながら、レーザ加工装置1においては、第1スキャン処理と第2スキャン処理とを少なくとも一部の時間において重複するように実行すれば、スループットの向上が図られるため、主加工処理の例は上記の例に限定されない。例えば、制御部9は、複数のラインCのうちの対象物100のY方向の一方の端部に位置するラインCからY方向の内側のラインCに向けて順に第1スキャン処理を実行すると共に、複数のラインCのうちのY方向の中央部のラインCから対象物100のY方向の他方の端部側に向けて順に第2スキャン処理を実行するようにしてもよい。この場合には、同時に実行される第1スキャン処理と第2スキャン処理との間においてラインCの長さが異なることから、相対的に長いラインCのスキャンに合わせた対象物100のX方向の移動が必要となるが、対象物100の状況に応じてメリットが生じる可能性もある。さらには、以上の例と異なるスキャンの態様であってもよい。 However, in the laser processing apparatus 1, if the first scan processing and the second scan processing are performed so as to overlap at least in part of the time, the throughput can be improved. It is not limited to the example. For example, the control unit 9 sequentially performs the first scan process from the line C located at one end in the Y direction of the object 100 among the plurality of lines C toward the line C inside in the Y direction. The second scan process may be sequentially performed from the line C at the center in the Y direction of the plurality of lines C toward the other end in the Y direction of the object 100. In this case, since the length of the line C is different between the first scan process and the second scan process that are executed at the same time, the X-direction of the target object 100 in accordance with the scan of the relatively long line C is adjusted. Although movement is required, there may be a merit depending on the situation of the object 100. Furthermore, a scan mode different from the above example may be adopted.
 なお、制御部9は、レーザ加工ヘッド10Aからのレーザ光L1と、レーザ加工ヘッド10Bからのレーザ光L2とで、互に異なる波長、及びZ方向の集光位置において、対象物100を加工する処理(多波長加工)を実行するようにしてもよい。多波長加工は、例えば、シリコン(Si)とガラスとを貼り合わせたウェハを加工する場合(第1の場合)や、裏面側から入射したレーザ光L1,L2の一部がデバイスに吸収されることにより回路の破損が生じ得るウェハを加工する場合(第2の場合)等に使用できる。 The control unit 9 processes the object 100 at the wavelengths different from each other by the laser beam L1 from the laser processing head 10A and the laser beam L2 from the laser processing head 10B, and at the converging position in the Z direction. You may make it perform a process (multi-wavelength processing). The multi-wavelength processing is performed, for example, when processing a wafer in which silicon (Si) and glass are bonded (first case) or when a part of the laser beams L1 and L2 incident from the back surface side is absorbed by the device. This can be used, for example, when processing a wafer in which circuit damage may occur (second case).
 第1の場合、シリコンを加工する波長(例えば1064nm)の光とガラスを加工する波長(例えば532nm)の光とがいずれも対象材料に届く必要があるため、ガラス側から加工を実施する。レーザ加工ヘッド10Aからのレーザ光L1の集光位置をガラス越しにシリコン内に合わせ、レーザ加工ヘッド10Bからのレーザ光L2の集光位置をガラス内に併せて、対応する波長にて加工を実施する。このように異なる2種類の基材が貼り合されたウェハを多波長加工で加工するためには、その波長のうち、下側の記載を加工する波長は、上側の基材を透過する波長である必要がある。ここでは、一対のレーザ加工ヘッド10A,10Bを用いて多波長加工を行うためスループットの向上が図られる。 In the first case, both the light with a wavelength for processing silicon (for example, 1064 nm) and the light with a wavelength for processing glass (for example, 532 nm) need to reach the target material, so processing is performed from the glass side. The converging position of the laser beam L1 from the laser processing head 10A is aligned in the silicon through the glass, and the converging position of the laser beam L2 from the laser processing head 10B is aligned in the glass, and processing is performed at the corresponding wavelength. To do. In order to process a wafer in which two different kinds of base materials are bonded together by multi-wavelength processing, the wavelength for processing the lower part of the wavelength is the wavelength that transmits the upper base material. Need to be Here, since the multi-wavelength processing is performed using the pair of laser processing heads 10A and 10B, the throughput can be improved.
 一方、第2の場合、レーザ加工ヘッド10Aからのレーザ光L1の集光位置をデバイス近傍に設定し、且つ、レーザ加工ヘッド10Bからのレーザ光L2の集光位置をデバイスから離れた位置に設定する。レーザ光L1の波長は、デバイス側への抜け光が少なくなるように、より基材に吸収がある波長(例えば1064nm)とし、レーザ光L2の波長は、多少の抜け光が生じるとしても、より基材の加工に適したレーザ光L1の波長よりも長い波長(例えば1342nm)とすることができる。 On the other hand, in the second case, the focus position of the laser beam L1 from the laser processing head 10A is set near the device, and the focus position of the laser beam L2 from the laser processing head 10B is set at a position away from the device. To do. The wavelength of the laser light L1 is set to a wavelength (for example, 1064 nm) at which the base material has more absorption so that the amount of light passing to the device side is reduced, and the wavelength of the laser light L2 is set to a value even if some light is emitted. The wavelength (for example, 1342 nm) longer than the wavelength of the laser beam L1 suitable for processing the base material can be set.
 なお、回路部19は、測定部16から出力された信号、及び/又は、反射型空間光変調器34に入力する信号を処理するものに限定されず、レーザ加工ヘッドにおいて何らかの信号を処理するものであればよい。 The circuit unit 19 is not limited to one that processes the signal output from the measurement unit 16 and / or the signal that is input to the reflective spatial light modulator 34, but one that processes any signal in the laser processing head. If
 スループットを向上可能なレーザ加工装置が提供される。 A laser processing device that can improve throughput is provided.
1…レーザ加工装置、7…支持部、9…制御部、10A…レーザ加工ヘッド(第1レーザ加工ヘッド)、10B…レーザ加工ヘッド(第2レーザ加工ヘッド)、11…筐体(第1筐体、第2筐体)、14…集光部(第1集光部、第2集光部)、24…第4壁部(対向壁部)、65…取付部(第1取付部)、66…取付部(第2取付部)、100…対象物、C…ライン、L1,L2…レーザ光。 DESCRIPTION OF SYMBOLS 1 ... Laser processing apparatus, 7 ... Support part, 9 ... Control part, 10A ... Laser processing head (1st laser processing head), 10B ... Laser processing head (2nd laser processing head), 11 ... Housing | casing (1st housing) Body, second housing), 14 ... Light collecting part (first light collecting part, second light collecting part), 24 ... Fourth wall part (opposing wall part), 65 ... Mounting part (first mounting part), 66 ... Mounting part (second mounting part), 100 ... Object, C ... Line, L1, L2 ... Laser light.

Claims (9)

  1.  第1方向に沿って移動可能とされ、前記第1方向及び前記第1方向に交差する第2方向に沿って対象物を支持するための支持部と、
     前記第2方向に沿って互いに対向するように配置され、前記支持部に支持された前記対象物にレーザ光を照射するための第1レーザ加工ヘッド及び第2レーザ加工ヘッドと、
     前記第1レーザ加工ヘッドが取り付けられ、前記第1方向及び前記第2方向に交差する第3方向と前記第2方向とのそれぞれに沿って移動可能とされた第1取付部と、
     前記第2レーザ加工ヘッドが取り付けられ、前記第2方向と前記第3方向とのそれぞれに沿って移動可能とされた第2取付部と、
     を備える、
     レーザ加工装置。
    A support unit configured to be movable along a first direction and supporting an object along the first direction and a second direction intersecting the first direction;
    A first laser processing head and a second laser processing head, which are arranged so as to face each other along the second direction and irradiate the object supported by the support portion with laser light;
    A first mounting portion to which the first laser processing head is mounted, and which is movable along each of a third direction intersecting the first direction and the second direction and the second direction;
    A second mounting portion to which the second laser processing head is attached and which is movable along each of the second direction and the third direction;
    With
    Laser processing equipment.
  2.  前記第1レーザ加工ヘッドは、第1筐体と、前記第1筐体における前記支持部側の壁部に設けられ、前記支持部に支持された前記対象物に向けて前記レーザ光を集光するための第1集光部と、を有し、
     前記第2レーザ加工ヘッドは、第2筐体と、前記第2筐体における前記支持部側の壁部に設けられ、前記支持部に支持された前記対象物に向けて前記レーザ光を集光するための第2集光部と、を有し、
     前記第1取付部及び前記第2取付部は、それぞれ、前記第1筐体及び前記第2筐体における前記第2方向に沿って互いに対向する対向壁部と異なる壁部に取り付けられており、
     前記第1集光部は、前記第3方向からみて、前記第1筐体における前記対向壁部側に偏って配置されており、
     前記第2集光部は、前記第3方向からみて、前記第2筐体における前記対向壁部側に偏って配置されている、
     請求項1に記載のレーザ加工装置。
    The first laser processing head is provided on a first housing and a wall portion of the first housing on the side of the support portion, and focuses the laser light toward the target object supported by the support portion. A first light collecting portion for
    The second laser processing head is provided on a second housing and a wall portion of the second housing on the side of the support portion, and focuses the laser light toward the target object supported by the support portion. A second light collecting portion for
    The first mounting portion and the second mounting portion are respectively mounted on different wall portions of the first housing and the second housing that face each other along the second direction and that face each other.
    The first light condensing unit is arranged so as to be biased toward the facing wall portion side of the first housing when viewed from the third direction,
    The second light condensing unit is arranged so as to be biased toward the facing wall portion side of the second housing when viewed from the third direction.
    The laser processing apparatus according to claim 1.
  3.  前記支持部、前記第1取付部、及び、前記第2取付部の移動と、前記第1レーザ加工ヘッド及び前記第2レーザ加工ヘッドからの前記レーザ光の照射と、を制御する制御部をさらに備え、
     前記対象物には、前記第1方向に沿って延びると共に前記第2方向に沿って配列された複数のラインが設定されており、
     前記制御部は、前記複数のラインの一のラインに対して前記第1レーザ加工ヘッドからの前記レーザ光を前記第1方向にスキャンする第1スキャン処理と、前記複数のラインのうちの別のラインに対して前記第2レーザ加工ヘッドからの前記レーザ光を前記第1方向にスキャンする第2スキャン処理とを、少なくとも一部の時間において重複するように実行する、
     請求項2に記載のレーザ加工装置。
    A control unit that controls the movement of the support unit, the first mounting unit, and the second mounting unit and the irradiation of the laser light from the first laser processing head and the second laser processing head is further included. Prepare,
    In the object, a plurality of lines extending along the first direction and arranged along the second direction are set,
    The control unit scans one of the plurality of lines with the laser beam from the first laser processing head in the first direction, and another one of the plurality of lines. A second scanning process of scanning the line with the laser light from the second laser processing head in the first direction is performed so as to overlap at least in part of the time;
    The laser processing apparatus according to claim 2.
  4.  前記制御部は、前記複数のラインのうちの前記対象物の前記第2方向の一方の端部に位置するラインから前記第2方向の内側のラインに向けて順に前記第1スキャン処理を実行しつつ、前記複数のラインのうちの前記対象物の前記第2方向の他方の端部に位置するラインから前記第2方向の内側のラインに向けて順に前記第2スキャン処理を実行する主加工処理を実行する、
     請求項3に記載のレーザ加工装置。
    The control unit sequentially performs the first scan processing from a line located at one end of the object in the second direction of the plurality of lines toward an inner line in the second direction. Meanwhile, a main processing process that sequentially executes the second scan process from a line of the plurality of lines located at the other end of the object in the second direction toward an inner line in the second direction. To run the
    The laser processing apparatus according to claim 3.
  5.  前記制御部は、前記主加工処理の結果、前記第1レーザ加工ヘッドと前記第2レーザ加工ヘッドとが前記第2方向について最接近したときに、前記対象物における前記第1集光部と前記第2集光部との間の領域に前記複数のラインのうちの一部のラインが残存しているときには、前記第1レーザ加工ヘッド及び前記第2レーザ加工ヘッドのうちの一方を、前記対象物の当該領域から退避させつつ、前記第1レーザ加工ヘッド及び前記第2レーザ加工ヘッドのうちの他方からの前記レーザ光を前記一部のラインに対して前記第1方向にスキャンする後加工処理を実行する、
     請求項4に記載のレーザ加工装置。
    When the first laser processing head and the second laser processing head are closest to each other in the second direction as a result of the main processing, the control section and the first condensing section in the object are When a part of the plurality of lines remains in the area between the second condensing unit, one of the first laser processing head and the second laser processing head is used as the target. Post-processing for scanning the laser beam from the other one of the first laser processing head and the second laser processing head in the first direction with respect to the part of the line while evacuating the object from the area. To run the
    The laser processing apparatus according to claim 4.
  6.  前記第1レーザ加工ヘッドと前記第2レーザ加工ヘッドとが前記第2方向について最接近したときの前記第1集光部と前記第2集光部との前記第2方向の距離を距離Dとすると、前記制御部は、前記主加工処理の結果、前記第1集光部と前記第2集光部とが第2方向に徐々に近接して互いの距離が距離Dの2倍に至る前に、第1レーザ加工ヘッド及び第2レーザ加工ヘッドの一方を、第1レーザ加工ヘッド及び第2レーザ加工ヘッドの他方側に距離Dだけ移動させると共に、前記第1集光部と前記第2集光部との距離を維持しながら前記第1スキャン処理及び前記第2スキャン処理を実行する後加工処理を実行する、
     請求項4に記載のレーザ加工装置。
    A distance D in the second direction between the first condensing part and the second condensing part when the first laser machining head and the second laser machining head are closest to each other in the second direction is defined as a distance D. Then, as a result of the main processing, the control unit causes the first light condensing unit and the second light condensing unit to gradually approach each other in the second direction before the distance between them reaches twice the distance D. And moving one of the first laser processing head and the second laser processing head to the other side of the first laser processing head and the second laser processing head by a distance D, and at the same time, Performing a post-processing process that executes the first scan process and the second scan process while maintaining a distance from the light section,
    The laser processing apparatus according to claim 4.
  7.  前記第1取付部は、前記第1筐体における前記対向壁部の反対側の壁部に取り付けられており、
     前記第2取付部は、前記第2筐体における前記対向壁部の反対側の壁部に取り付けられている、
     請求項2~5のいずれか一項に記載のレーザ加工装置。
    The first mounting portion is mounted on a wall portion of the first housing opposite to the facing wall portion,
    The second mounting portion is mounted on a wall portion of the second housing opposite to the facing wall portion,
    The laser processing apparatus according to any one of claims 2 to 5.
  8.  前記第1レーザ加工ヘッドは、前記第1方向において互いに対向する第1壁部及び第2壁部と、前記第2方向において互いに対向する第3壁部及び第4壁部と、を含む第1筐体を有しており、
     前記第2レーザ加工ヘッドは、前記第1方向において互いに対向する第1壁部及び第2壁部と、前記第2方向において互いに対向する第3壁部及び第4壁部と、を含む第2筐体を有しており、
     前記第3壁部と前記第4壁部との距離は、前記第1壁部と前記第2壁部との距離よりも小さい、
     請求項1に記載のレーザ加工装置。
    The first laser processing head includes a first wall portion and a second wall portion facing each other in the first direction, and a third wall portion and a fourth wall portion facing each other in the second direction. Has a housing,
    The second laser processing head includes a first wall portion and a second wall portion facing each other in the first direction, and a third wall portion and a fourth wall portion facing each other in the second direction. Has a housing,
    A distance between the third wall portion and the fourth wall portion is smaller than a distance between the first wall portion and the second wall portion,
    The laser processing apparatus according to claim 1.
  9.  前記第1筐体及び前記第2筐体は、前記第1方向において互いに対向する第1壁部及び第2壁部と、前記第2方向において互いに対向する第3壁部及び第4壁部と、を含み、
     前記第3壁部と前記第4壁部との距離は、前記第1壁部と前記第2壁部との距離よりも小さい、
     請求項2~7のいずれか一項に記載のレーザ加工装置。
    The first housing and the second housing include a first wall portion and a second wall portion facing each other in the first direction, and a third wall portion and a fourth wall portion facing each other in the second direction. Including,
    A distance between the third wall portion and the fourth wall portion is smaller than a distance between the first wall portion and the second wall portion,
    The laser processing apparatus according to any one of claims 2 to 7.
PCT/JP2019/042613 2018-10-30 2019-10-30 Laser machining device WO2020090906A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217015671A KR20210080511A (en) 2018-10-30 2019-10-30 laser processing equipment
CN201980071694.9A CN112955274B (en) 2018-10-30 2019-10-30 Laser processing device
JP2020553986A JP7368373B2 (en) 2018-10-30 2019-10-30 laser processing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018203670 2018-10-30
JP2018-203670 2018-10-30

Publications (1)

Publication Number Publication Date
WO2020090906A1 true WO2020090906A1 (en) 2020-05-07

Family

ID=70464106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042613 WO2020090906A1 (en) 2018-10-30 2019-10-30 Laser machining device

Country Status (4)

Country Link
JP (1) JP7368373B2 (en)
KR (1) KR20210080511A (en)
CN (1) CN112955274B (en)
WO (1) WO2020090906A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214359A (en) * 1994-01-27 1995-08-15 Amada Co Ltd Method and device for laser beam machining
JP2008066751A (en) * 2001-04-30 2008-03-21 Advanced Dicing Technologies Ltd Device and method for individually dividing semiconductor wafer
JP2013536080A (en) * 2010-07-01 2013-09-19 サンパワー コーポレイション High throughput solar cell ablation system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI395630B (en) * 2009-06-30 2013-05-11 Mitsuboshi Diamond Ind Co Ltd Apparatus for processing glass substrate by laser beam
JP2011161491A (en) * 2010-02-10 2011-08-25 Disco Abrasive Syst Ltd Laser beam machining apparatus
JP5456510B2 (en) 2010-02-23 2014-04-02 株式会社ディスコ Laser processing equipment
JP6689646B2 (en) 2016-04-01 2020-04-28 浜松ホトニクス株式会社 Laser processing equipment
US10350153B2 (en) * 2017-03-31 2019-07-16 Johnson & Johnson Consumer Inc. Topical compositions comprising retinoids and low irritation polymeric cleansing agents
CN207563932U (en) * 2017-12-11 2018-07-03 东莞镭亚光电科技有限公司 A kind of precise laser cutting equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214359A (en) * 1994-01-27 1995-08-15 Amada Co Ltd Method and device for laser beam machining
JP2008066751A (en) * 2001-04-30 2008-03-21 Advanced Dicing Technologies Ltd Device and method for individually dividing semiconductor wafer
JP2013536080A (en) * 2010-07-01 2013-09-19 サンパワー コーポレイション High throughput solar cell ablation system

Also Published As

Publication number Publication date
JP7368373B2 (en) 2023-10-24
KR20210080511A (en) 2021-06-30
CN112955274A (en) 2021-06-11
CN112955274B (en) 2023-11-07
JPWO2020090906A1 (en) 2021-09-24
TW202026082A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
WO2020090918A1 (en) Laser machining device
WO2020090906A1 (en) Laser machining device
TWI834747B (en) Laser processing equipment
JP2010051983A (en) Manufacturing apparatus of microwave circuit substrate and manufacturing method of the same
WO2020090907A1 (en) Laser machining device
JP7219590B2 (en) Laser processing equipment
JP7402814B2 (en) Laser processing head and laser processing equipment
JP7438009B2 (en) laser processing equipment
WO2021221061A1 (en) Laser processing head and laser processing device
WO2020090915A1 (en) Laser machining device
JP7475952B2 (en) Laser processing head and laser processing device
JP7430570B2 (en) laser processing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217015671

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19878668

Country of ref document: EP

Kind code of ref document: A1