WO2020090706A1 - Braking control device - Google Patents

Braking control device Download PDF

Info

Publication number
WO2020090706A1
WO2020090706A1 PCT/JP2019/042112 JP2019042112W WO2020090706A1 WO 2020090706 A1 WO2020090706 A1 WO 2020090706A1 JP 2019042112 W JP2019042112 W JP 2019042112W WO 2020090706 A1 WO2020090706 A1 WO 2020090706A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking
braking force
control
control unit
drum
Prior art date
Application number
PCT/JP2019/042112
Other languages
French (fr)
Japanese (ja)
Inventor
弘隆 武谷
啓太 中野
賢太郎 湯浅
善隆 石丸
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2020090706A1 publication Critical patent/WO2020090706A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature

Definitions

  • the present invention relates to a braking control device.
  • An electric drum brake device is one of the brake devices provided for the wheels of a vehicle.
  • the control for the electric drum brake device is roughly divided into lock control in which the braking member is brought into contact with the inner peripheral surface of the member to be braked by positively rotating the motor to generate braking force, and reverse rotation of the motor is performed.
  • the brake drum may temporarily have a large diameter due to thermal expansion. Then, if the lock control is executed in that state to generate a predetermined braking force, an excessive braking force (clamping force) will be generated when the brake drum subsequently cools and contracts in the radial direction. There is.
  • an object of the present invention is to perform cooling control on an electric drum brake device in which the brake drum temporarily has a large diameter due to thermal expansion, and then the brake drum cools and contracts in the radial direction.
  • Another object of the present invention is to provide a braking control device capable of preventing an excessive braking force from being generated.
  • a braking control device is a braking control device for controlling an electric drum brake device provided for a plurality of wheels of a vehicle, wherein a braking member is braked by rotating a motor in the electric drum brake device.
  • the braking by the electric drum brake device is controlled by executing the lock control for increasing the braking force by making contact with the inner peripheral surface of the member and the release control for decreasing the braking force by rotating the motor.
  • a control unit for controlling.
  • the control unit acquires or estimates the temperature of the brake drum, and based on the temperature, when the brake drum subsequently cools and contracts in the radial direction.
  • a braking force adjustment control for adjusting the braking force by at least one of the lock control and the release control is executed so that the braking force does not exceed a predetermined upper limit braking force.
  • FIG. 1 is a schematic configuration diagram of a brake device that is a control target of the braking control device of the first embodiment.
  • FIG. 2 is a side view from the outside in the vehicle width direction of the brake device provided on the right rear wheel in the first embodiment.
  • FIG. 3 is a block diagram showing a functional configuration of the braking control device in the first embodiment.
  • FIG. 4 is a time chart showing changes over time of the components and the like in the first embodiment.
  • FIG. 5 is a flowchart showing a series of processes executed by the braking control device in the first embodiment.
  • FIG. 6 is a time chart showing changes over time of the components and the like in the second embodiment.
  • FIG. 7 is a graph showing the relationship between the drum temperature and the clamping force in the third embodiment.
  • FIG. 8 is a graph showing how the EPB current value changes with time during lock control and release control in the fourth embodiment.
  • FIG. 1 is a schematic configuration diagram of a brake device 100 that is a control target of the braking control device 200 (FIG. 3) of the first embodiment.
  • the brake device 100 is provided, for example, in a general four-wheel vehicle.
  • the brake device 100 is a hydraulic brake 1 configured to be able to apply a braking force (friction braking torque) to both the front wheels 2FL and 2FR and the rear wheels 2RL and 2RR.
  • the electric parking brake 2 configured to be able to apply the braking force only to the wheels 2RL and 2RR that are rear wheels.
  • the braking force generated by the hydraulic brake 1 is controlled.
  • the braking force generated by the electric parking brake 2 will be referred to as power, and will be referred to as parking braking force.
  • the hydraulic brake 1 includes a pressure generating unit 32, wheel cylinders 38FL, 38FR, 38RL and 38RR, pressure adjusting units 34FL, 34FR, 34RL and 34RR, and a return mechanism 37.
  • the pressure generator 32 is a mechanism that generates a pressure (fluid pressure) according to the operation of the brake pedal 31 by the driver of the vehicle.
  • the wheel cylinders 38FL, 38FR, 38RL, and 38RR are mechanisms that apply braking force to the wheels 2FL, 2FR, 2RL, and 2RR by pressurizing a braking member, respectively.
  • the pressure adjusting units 34FL, 34FR, 34RL and 34RR are mechanisms for adjusting the hydraulic pressure applied to the wheel cylinders 38FL, 38FR, 38RL and 38RR, respectively.
  • the reflux mechanism 37 is a mechanism that returns fluid (working fluid) as a medium for generating hydraulic pressure to the upstream side.
  • the pressure generating unit 32 includes a master cylinder 32a and a reservoir tank 32b.
  • the master cylinder 32a is pushed along with the operation (depression) of the brake pedal 31 to discharge the fluid replenished from the reservoir tank 32b to the two discharge ports.
  • These two discharge ports are respectively connected to the front side pressure adjusting section 34FR and the rear side pressure adjusting section 34RL and the front side pressure via an electromagnetic valve 33 capable of electrically switching between an open state and a closed state.
  • the adjusting portion 34FL and the rear pressure adjusting portion 34RR are connected.
  • the pressure adjusting units 34FL, 34FR, 34RL, and 34RR have electromagnetic valves 35 and 36 that can electrically switch between an open state and a closed state, respectively.
  • the solenoid valves 35 and 36 are provided between the solenoid valve 33 and the reservoir 41.
  • the solenoid valve 35 is connected to the solenoid valve 33, and the solenoid valve 36 is connected to the reservoir 41.
  • the solenoid valves 35 and 36 are opened and closed under the control of the braking control device 200 (see FIG. 3) to increase, maintain, or reduce the pressure generated in the wheel cylinders 38FL, 38FR, 38RL, and 38RR. It is possible to The wheel cylinder 38FL is connected between the solenoid valves 35 and 36 of the pressure adjusting unit 34FL, and the wheel cylinder 38FR is connected between the solenoid valves 35 and 36 of the pressure adjusting unit 34FR.
  • the wheel cylinder 38RL is connected between the solenoid valves 35 and 36 of the pressure adjusting unit 34RL, and the wheel cylinder 38RR is connected between the solenoid valves 35 and 36 of the pressure adjusting unit 34RR.
  • the reflux mechanism 37 includes a reservoir 41 and a pump 39, and a pump motor 40 that rotates the front and rear pumps 39 to transport the fluid to the upstream side.
  • One reservoir 41 and one pump 39 are provided corresponding to the combination of the pressure adjusting units 34FR and 34RL and the combination of the pressure adjusting units 34FL and 34RR.
  • the hydraulic brake 1 includes a stroke sensor 51 that can detect the operation amount (stroke) of the brake pedal 31, a pressure sensor (not shown in FIG. 1) that can detect the pressure generated in the master cylinder 32a, and the like. It is provided.
  • An EPB (Electric Parking Brake) motor 60 that is driven under the control of the braking control device 200 (see FIG. 3) is connected to each of the rear side wheel cylinders 38RL and 38RR.
  • the braking members of the wheel cylinders 38RL and 38RR on the rear side are pressurized in response to the driving of the EPB motor 60, so that the braking force is applied to the rear wheels 2RL and 2RR.
  • the rear wheel cylinders 38RL and 38RR and the two EPB motors 60 connected to these two wheel cylinders 38RL and 38RR provide a parking braking force different from the hydraulic braking force of the hydraulic brake 1. It functions as an electric parking brake 2 that can be generated.
  • the driver operates the hydraulic brake 1 to generate a hydraulic braking force (hydraulic brake operation) and the electric parking brake 2 It is possible to generate an appropriate braking force in the vehicle depending on the situation by appropriately using the operation for generating the parking braking force (the parking brake operation). For example, in the situation where the vehicle is stopped only by the hydraulic brake operation, if sufficient parking braking force is obtained by the subsequent parking brake operation, the hydraulic brake operation is released and the hydraulic braking force becomes zero. Even if it happens, the parking condition will be maintained.
  • the brake device 3RL and the brake device 3RR configured as the electric parking brake 2 will be described.
  • the brake device 3RR provided on the right rear wheel 2RR will be described as an example.
  • FIG. 2 is a side view from the outside in the vehicle width direction of the braking device 3RR provided on the right rear wheel in the first embodiment.
  • the brake device 3RR is configured as an electric drum brake device, and is housed inside a peripheral wall (not shown) of a cylindrical wheel of the right rear wheel 2RR.
  • the brake device 3RR includes two brake shoes 13L and 13T (braking members) that are separated from each other in the front and rear.
  • the two brake shoes 13L and 13T extend in an arc shape along the inner peripheral surface 12a of the cylindrical drum 12 (member to be braked. Brake drum).
  • the drum 12 rotates integrally with the right rear wheel 2RR around the rotation center C along the vehicle width direction. Then, the brake device 3RR moves the two brake shoes 13L and 13T so as to contact the inner peripheral surface 12a of the cylindrical drum 12, and the friction between the brake shoes 13L and 13T and the drum 12 causes the drum 12 and thus the right side. Braking the rear wheels 2RR.
  • the right brake shoe 13L in FIG. 2 is an example of a leading shoe
  • the left brake shoe 13T is an example of a trailing shoe.
  • the brake device 3RR includes a wheel cylinder 38RR operated by hydraulic pressure and an EPB motor 60 (see FIG. 1) operated by energization as actuators for moving the brake shoes 13L, 13T.
  • the wheel cylinder 38RR and the EPB motor 60 can move the two brake shoes 3L and 3T, respectively.
  • the wheel cylinder 38RR is used, for example, for braking during traveling
  • the EPB motor 60 is used, for example, for braking during parking.
  • the EPB motor 60 may be used for braking during traveling.
  • the brake device 3RR includes a disk-shaped back plate 14.
  • the back plate 14 is provided in a posture intersecting with the rotation center C. That is, the back plate 14 extends substantially along a direction intersecting the rotation center C, specifically, substantially along a direction orthogonal to the rotation center C.
  • the back plate 14 directly or indirectly supports each component of the brake device 3RR.
  • the back plate 14 supports components that are located outward of the back plate 14 as shown in FIG. 2 in the vehicle width direction. Further, the back plate 14 supports a component (not shown) that is located inward of the back plate 14 in the vehicle width direction.
  • the part that is supported by the back plate 14 and that is located inward in the vehicle width direction is, for example, the EPB motor 60 or a motion conversion mechanism (not (Illustration) and the like.
  • the back plate 4 is an example of a support member.
  • the cable 62 may also be referred to as an actuating member.
  • the back plate 14 is connected to a connecting member (not shown) for connecting to the vehicle body.
  • the connection member is, for example, a part of the suspension (for example, an arm, a link, a mounting member, etc.).
  • the opening 14a provided in the back plate 14 is used for coupling with the connecting member.
  • the brake device 3RR in FIG. 2 can be used for both driving wheels and non-driving wheels.
  • an axle (not shown) penetrates the opening 14b provided at the substantially center of the back plate 14.
  • the rotation center C1 is substantially parallel to the rotation center C of the right rear wheel 2RR.
  • the rotation center C1 is also referred to as a rotation support point.
  • the wheel cylinder 38RR is supported on the upper portion of the back plate 14.
  • the wheel cylinder 38RR has two pressing portions 21L and 21T that can project in the vehicle front-rear direction (left-right direction in FIG. 1).
  • the wheel cylinder 38RR causes the two pressing portions 1L and 21T to project in accordance with the pressurization of the internal pressure chamber.
  • the two protruding pressing parts 21L and 21T press the upper portions 13b of the brake shoes 13L and 13T, respectively. Due to the protrusion of the two pressing portions 21L and 21T, the two brake shoes 13L and 13T respectively rotate around the rotation center C1 and move so that the upper portions 13b are separated from each other in the vehicle front-rear direction. As a result, the two brake shoes 13L and 13T move radially outward of the center of rotation C of the right rear wheel 2RR.
  • a strip-shaped lining 13c is provided along the cylindrical surface on the outer periphery of each brake shoe 13L, 13T.
  • the two brake shoes 13L and 13T move radially outward of the center of rotation C, so that the lining 13c and the inner peripheral surface 12a of the drum 12 come into contact with each other, and the friction between the lining 13c and the inner peripheral surface 12a.
  • the drum 12 and thus the right rear wheel 2RR are braked.
  • the stroke between the non-braking position and the braking position of the brake shoes 13L, 13T is very small, for example, 1 mm or less.
  • the brake device 3RR includes a return member 15.
  • the return member 15 connects the two brake shoes 13L, 13T to the drum 12
  • the inner peripheral surface 12a of the drum 12 (braking position) is returned to a position (non-braking position) where the inner peripheral surface 12a of the drum 12 does not contact.
  • the return member 15 is, for example, an elastic member such as a coil spring, and gives a force in a direction in which the brake shoe 13L approaches the brake shoe 13T and a force in a direction in which the brake shoe 13T approaches the brake shoe 13L. That is, the return member 15 gives a force in a direction in which the two brake shoes 13L and 13T move away from the inner peripheral surface 12a of the drum 12.
  • the return member 15 is also called an urging member or an elastic member.
  • the brake device 3RR includes a moving mechanism 16 as the electric parking brake 2.
  • the movement mechanism 16 moves the two brake shoes 13L and 13T from the non-braking position to the braking position based on the operation of the driving mechanism (not shown) including the EPB motor 60 and the motion converting mechanism.
  • the moving mechanism 16 is provided outside the back plate 14 in the vehicle width direction.
  • the moving mechanism 16 includes a pressing lever 61, a cable 62, and a wheel cylinder 38RR.
  • the pressing lever 61 is provided between one of the two brake shoes 13L and 13T, for example, the left brake shoe 13T in FIG. 2 and the back plate 14, and rotates around the rotation center C2 on the brake shoe 13T. It is movably supported.
  • the rotation center C2 is located at the end of the brake shoe 13L on the opposite side (upper side in FIG. 2) of the rotation center C1 and is substantially parallel to the rotation center C1.
  • the cable 62 moves substantially along the back plate 14 so that the lower end portion 61a of the pressing lever 61 on the side far from the rotation center C2 approaches the other side, for example, in FIG. 2, the brake shoe 3L on the right side. It will be moved.
  • the operating position PL1 in which the pressing lever 61 is moved by the cable 62 is shown by a chain double-dashed line in FIG.
  • the pressing lever 61 has a protrusion 61b that comes into contact with the inner peripheral surface of the brake shoe 13T.
  • the projection 61b defines the initial position PL0 of the pressing lever 61 before it is moved by the cable 62.
  • the protrusion 61b is also referred to as an initial position setting unit.
  • the pressing portions 21L and 21T which are movable parts housed movably in the wheel cylinder 38RR, are different from the pressing lever 61 that is moved by the cable 62 and the brake shoe 13T that is connected to the pressing lever 61. It can be stretched by interposing between 13L and.
  • the connection position P1 between the pressing lever 61 and the pressing portion 21T which is a movable part is set between the rotation center C2 and the connection position P2 between the cable 62 and the pressing lever 61.
  • the brake shoe 13L rotates from the non-braking position around the rotation center C1 (arrow c) and moves to the braking position where it contacts the inner peripheral surface 12a of the drum 12.
  • the connection position P2 between the cable 62 and the pressing lever 61 corresponds to the force point
  • the rotation center C2 corresponds to the fulcrum
  • the connection position P1 between the pressing lever 61 and the pressing portions 21L and 21T that are movable parts corresponds to the action point.
  • the brake shoe 13T rotates from the non-braking position around the rotation center C1 and moves to the braking position where it contacts the inner peripheral surface 12a of the drum 12.
  • the operation of the moving mechanism 16 causes the brake shoes 13L and 13T to move from the non-braking position to the braking position.
  • the connection position P1 between the pressing lever 61 and the movable component 110 serves as a fulcrum.
  • the protrusion 61b of the pressing lever 61 contacts the inner peripheral surface of the brake shoe 13T, and the pressing lever 61 returns to the initial position.
  • the pressing portions 21L and 21T that are movable parts of the wheel cylinder 38RR are interposed between the pressing lever 61 and the brake shoes 13L and 13T when the brake device 3RR operates as the electric parking brake 2. Functions as a strut.
  • FIG. 3 is a block diagram showing a functional configuration of the braking control device 200 according to the first embodiment.
  • the braking control device 200 constitutes, for example, a part of a brake ECU (Electronic Control Unit) including hardware similar to an ordinary computer such as a processor and a memory.
  • the braking control device 200 may be integrated with other parts of the brake ECU, or may be configured separately from the other parts.
  • the braking control device 200 is configured to control the hydraulic brake 1 and the electric parking brake 2.
  • the braking control device 200 includes a detection unit 201 and a control unit 202 as a functional configuration.
  • the control unit 202 includes a hydraulic brake control unit 203 and an EPB control unit 204 (control unit).
  • These functional configurations are realized, for example, as a result of the processor of the braking control device 200 executing various programs stored in the memory. Note that part or all of these functional configurations may be realized by a dedicated circuit or the like.
  • the braking control device 200 also has a function of operating based on the output of the gradient detection sensor 3 configured as an acceleration sensor, a gyro sensor, or the like that detects the gradient of the road surface (the inclination of the vehicle in the front-rear direction).
  • the gradient detection sensor 3 configured as an acceleration sensor, a gyro sensor, or the like that detects the gradient of the road surface (the inclination of the vehicle in the front-rear direction).
  • the detection unit 201 is a driver who performs an operation (a hydraulic brake operation) for generating a hydraulic braking force on the hydraulic brake 1 or an operation (a parking brake operation) for setting a state in which the parking braking force can be generated.
  • the braking operation by is detected.
  • the hydraulic brake operation is, for example, an operation of the brake pedal 31 by the driver.
  • the parking brake operation is, for example, an operation of an EPB switch or a lever (not shown in FIG. 1) provided near the driver's seat. That is, the detection unit 201 detects the hydraulic brake operation based on the detection result of the stroke sensor 51 and the like, and detects the parking brake operation based on the electric signal output according to the operation of the EPB switch and the lever. ..
  • the hydraulic brake control unit 203 is configured to control the hydraulic braking force generated in the hydraulic brake 1. Further, the EPB control unit 204 is configured to be able to control the parking braking force generated in the electric parking brake 2.
  • the EPB control unit 204 locks the brake shoes 13L and 13T to the inner peripheral surface 12a of the drum 12 by positively rotating the EPB motor 60 to increase the braking force, and the EPB motor.
  • the braking by the electric parking brake 2 is controlled by executing the release control that reduces the braking force by rotating the 60 in the reverse direction.
  • the drum 12 may temporarily have a large diameter due to thermal expansion. Then, if the lock control is executed in that state to generate a predetermined braking force, an excessive braking force (clamping force) will be generated when the drum 12 subsequently cools and contracts in the radial direction. There is.
  • the EPB control unit 204 acquires or estimates the temperature of the drum 12 when controlling the braking by the electric parking brake 2, and based on the temperature, controls the EPB control unit when the drum 12 cools and contracts in the radial direction.
  • the braking force adjustment control for adjusting the braking force by at least one of the lock control and the release control is executed so that the power does not exceed the predetermined upper limit braking force.
  • the EPB control unit 204 can acquire the temperature information of the drum 12 from the temperature sensor.
  • the EPB control unit 204 may estimate the temperature of the drum 12 based on, for example, vehicle speed and history information of brake operation. it can. For example, it is considered that the degree of temperature rise of the drum 12 changes depending on the degree and frequency of the braking operation, and the EPB control unit 204 stores the function and map information indicating this in advance by the drum. Twelve temperatures can be estimated.
  • the braking operation is not limited to, for example, a hydraulic braking operation based on the driver's operation of the brake pedal 31 and an electric parking brake operation based on the operation of the EPB switch or lever by the driver, but also ABS (Antilock Brake System). Also includes hydraulic brake operation based on ESC (Electronic Stability Control). Further, in order to estimate the temperature of the drum 12, other information such as information on the outside air temperature obtained from an outside air temperature sensor (not shown) may be further used.
  • the EPB control unit 204 also stores drum temperature change information, which is information about the time change of the temperature of the drum 12. That is, when the temperature of the drum 12 is high, the EPB control unit 204 can estimate the temperature of the drum 12 for each subsequent elapsed time by referring to the drum temperature change information.
  • the EPB control unit 204 also stores drum thermal expansion coefficient information, which is information indicating the relationship between the temperature of the drum 12 and the thermal expansion coefficient.
  • FIG. 4 is a time chart showing changes over time of the components and the like in the first embodiment.
  • the EPB control unit 204 determines, based on the temperature of the drum 12, that the braking force is a predetermined upper limit braking force when the drum 12 subsequently cools and contracts in the radial direction. (For example, the lock control and the release control are repeatedly executed so as not to exceed the maximum clamp force at which the release operation is possible.)
  • the temperature of the drum 12 EPB state (state of the electric parking brake 2, lock, hold, release), and clamping force (braking force) are shown in chronological order from top to bottom.
  • the temperature of the drum 12 is significantly high at time t0, and then gradually decreases.
  • the EPB control unit 204 first performs lock control from time t0 to t1 to increase the clamping force to an appropriate clamping force. Next, from time t1 to t2, the EPB control unit 204 maintains the EPB state, but the clamping force increases due to the diameter contraction accompanying the temperature decrease of the drum 12. Next, the EPB control unit 204 performs release control from time t2 to time t3 to reduce the clamping force to zero.
  • the EPB control unit 204 performs lock control from time t3 to t4 to increase the clamping force to the proper clamping force.
  • the EPB control unit 204 keeps the EPB state, but the clamping force increases due to the diameter contraction accompanying the temperature decrease of the drum 12.
  • the EPB control unit 204 performs release control from time t5 to time t6 to reduce the clamping force to zero.
  • the EPB control unit 204 performs lock control from time t6 to time t7 to raise the clamping force to the proper clamping force.
  • the EPB control unit 204 maintains the EPB state, but the clamping force increases due to the diameter contraction accompanying the temperature decrease of the drum 12.
  • the EPB control unit 204 performs release control from time t8 to time t9 to reduce the clamping force to zero.
  • the EPB control unit 204 performs lock control from time t9 to t10 to increase the clamping force to the proper clamping force. After time t10, the amount of decrease in temperature of the drum 12 is small, the diameter of the drum 12 is hardly contracted, and the proper clamping force is maintained.
  • FIG. 5 is a flowchart showing a series of processes executed by the braking control device 200 in the first embodiment.
  • step S1 the EPB control unit 204 determines whether or not to start the braking control for the electric parking brake 2. If Yes, the process proceeds to step S2, and if No, the process returns to step S1. In this step S1, for example, when there is a parking brake operation by an EPB switch or lever provided near the driver's seat, the EPB control unit 204 determines Yes.
  • step S2 the EPB control unit 204 executes lock control.
  • step S3 the EPB control unit 204 specifies (acquires or estimates) the temperature of the drum 12.
  • step S4 the EPB control unit 204 determines whether or not release control is necessary based on the temperature of the drum 12, the drum temperature change information, the drum thermal expansion coefficient information, and the like identified in step S3, and Yes. If No, the process proceeds to step S5, and if No, the process ends. In step S4, the EPB control unit 204 determines that release control is necessary if the clamp force exceeds the maximum clamp force at which the release operation can be performed unless release control is performed.
  • step S5 the EPB control unit 204 executes release control, and returns to step S2.
  • an excessive braking force is generated even when the drum 12 temporarily has a large diameter due to thermal expansion and then cools and contracts in diameter. You can choose not to.
  • the EPB control unit 204 repeatedly executes the lock control and the release control, so that it is possible to avoid the generation of an excessive braking force (clamping force) due to the diameter contraction accompanying the temperature decrease of the drum 12. Therefore, it is possible to reliably avoid a situation in which the release control cannot be executed due to insufficient starting torque of the EPB motor 60 due to an excessive clamping force.
  • lock control and the release control may be repeated for two wheels at the same time, or the timing may be shifted for each wheel. For example, if the vehicle is on a flat road surface or a road surface having a gentle slope and it is determined that the vehicle does not move even if all the braking forces of the two wheels are absent based on the output from the gradient detection sensor 3, etc. Just go.
  • the timing is shifted one wheel at a time.
  • the lock control and the release control may be repeated (while avoiding a state where all the two wheels have no braking force), or the two wheels may be simultaneously performed while the vehicle is stopped by the hydraulic braking force or the P range. Good.
  • the EPB control unit 204 does not generate the target braking force necessary for the EPB control unit 204 to maintain the stopped state of the vehicle, but the holding means (for example, the hydraulic pressure) different from the electric parking brake 2. Even if the braking force adjustment control is executed when it is determined that the vehicle stop state can be maintained by the brake 1, the drive device (transmission, etc.), the drive torque, the regenerative braking force, etc. Good.
  • the EPB control unit 204 holds the vehicle in a stopped state by a holding means different from the electric parking brake 2 even if the EPB control unit 204 does not generate the target braking force required to hold the stopped state of the vehicle.
  • the braking force adjustment control may be executed after the enabling.
  • the EPB control unit 204 determines that it is possible to maintain the stopped state of the vehicle by the braking force generated on only one of the plurality of wheels provided with the electric parking brake 2, or The braking force adjustment control may be executed for the wheels other than the one wheel after the braking force is increased so that the stopped state of the vehicle can be maintained with only one wheel.
  • the EPB control unit 204 performs release control before executing the braking force adjustment control, and estimates the heat shrinkage amount when the brake drum cools and contracts in the radial direction from the current value of the EPB motor 60. At least one of the braking force adjustment amount by the braking force adjustment control and the timing of executing the braking force adjustment control may be determined.
  • the second embodiment is the same as the first embodiment in that lock control and release control are repeated, but is different in that the clamping force is not reduced to 0 during release control.
  • FIG. 6 is a time chart showing changes over time of the components and the like in the second embodiment. Each item in FIG. 6 is the same as that in FIG. Further, as in the case of FIG. 4, the temperature of the drum 12 is significantly high at the time t20 and thereafter gradually decreases.
  • the EPB control unit 204 first performs lock control from time t20 to t21 to increase the clamping force to the proper clamping force. Next, from time t21 to t22, the EPB control unit 204 maintains the EPB state, but the clamping force increases due to the diameter contraction accompanying the temperature decrease of the drum 12. Next, the EPB control unit 204 performs release control from time t22 to time t23 to reduce the clamping force.
  • the EPB control unit 204 maintains the EPB state, but the clamping force increases due to the diameter contraction accompanying the temperature decrease of the drum 12.
  • the EPB control unit 204 performs release control from time t24 to time t25 to reduce the clamping force.
  • the EPB control unit 204 maintains the EPB state, but the clamping force increases due to the diameter contraction accompanying the temperature decrease of the drum 12.
  • the EPB control unit 204 performs release control from time t26 to time t27 to reduce the clamping force.
  • the EPB control unit 204 maintains the EPB state, but the clamping force increases due to the diameter contraction accompanying the temperature decrease of the drum 12.
  • the EPB control unit 204 performs release control from time t28 to time t29 to reduce the clamping force to the proper clamping force.
  • the EPB control unit 204 repeatedly executes the lock control and the release control, and unlike the first embodiment, the clamping force is set to 0 by the release control. It is possible to avoid the generation of an excessive braking force (clamping force) due to the diameter contraction due to the temperature decrease of the drum 12 without decreasing the temperature.
  • the release control does not need to reduce the clamp force to 0 so that the clamp force does not exceed the maximum clamp force at which the release operation is possible.
  • the braking force adjustment control can be executed while the vehicle stop state is reliably maintained.
  • the EPB control unit 204 determines the braking force when the drum 12 cools and contracts in the radial direction based on the temperature of the drum 12 thereafter.
  • the lock control is executed so that the target braking force required to maintain the stopped state is obtained. This will be described with reference to FIG.
  • FIG. 7 is a graph showing the relationship between the drum temperature and the clamping force in the third embodiment.
  • the vertical axis represents the clamping force (braking force) and the horizontal axis represents the drum temperature.
  • the braking force applied by the lock control may be a normal target braking force.
  • the drum temperature is DT1 or higher, the thermal expansion of the drum 12 occurs significantly, so the braking force applied by the lock control is set to be smaller than the normal target braking force as the drum temperature increases.
  • the braking force at the time of lock control is set to P1, and the braking force when the drum 12 subsequently cools and contracts in the radial direction becomes the target braking force (P2).
  • the braking force applied by the EPB control unit 204 at the time of lock control is set to be smaller as the drum temperature is higher. Generation of excessive braking force (clamping force) due to contraction can be avoided.
  • this method for example, when the vehicle is on a flat road surface or a road surface having a gentle slope, and it is determined that the vehicle does not move based on the output from the slope detection sensor 3 even if all the braking forces of the two wheels are not present. It is especially effective for
  • the EPB control unit 204 compares the EPB current value during lock control (drive current value of the EPB motor 60) with the EPB current value during release control to determine the degree of thermal expansion of the drum 12. presume. This will be described with reference to FIG.
  • FIG. 8 is a graph showing how the EPB current value changes with time during lock control and release control in the fourth embodiment.
  • the EPB control unit 204 shown in FIG. 8 shows the last EPB current value I1 (time t31) in the lock control and the EPB current value I2 (time t32) when the decrease degree becomes gentle immediately after the first inrush current in the release control.
  • the degree of thermal expansion of the drum 12 can be estimated by comparing Therefore, the EPB control unit 204 may previously store, for example, the comparison result of the EPB current value I1 and the EPB current value I2 and the information about the degree of thermal expansion of the drum 12 corresponding thereto.
  • the EPB control unit 204 first performs the lock control and then executes the release control before the possibility that the clamp force exceeds the maximum clamp force at which the release operation can be performed. Then, after that, the EPB control unit 204 estimates the degree of thermal expansion of the drum 12 by comparing the EPB current value I1 and the EPB current value I2. By doing so, the EPB control unit 204 can appropriately execute release control for weakening the clamping force according to the degree of thermal expansion of the drum 12. According to this method, in order to estimate the degree of thermal expansion of the drum 12, the vehicle speed and the history information of the brake operation are unnecessary.

Abstract

A braking control device according to an embodiment, wherein when controlling braking by an electric drum brake device, a control unit obtains or estimates the temperature of the brake drum, and performs, on the basis of the temperature, braking force adjustment control for adjusting the braking force by lock control and/or release control so that the braking force does not exceed a predetermined upper limit braking force when the brake drum cools afterwards and contracts in the radial direction.

Description

制動制御装置Braking control device
 本発明は、制動制御装置に関する。 The present invention relates to a braking control device.
 車両の車輪に対して設けられるブレーキ装置の1つに、電動ドラムブレーキ装置がある。電動ドラムブレーキ装置に対する制御には、大きく分けて、モータを正回転させることによって制動部材を被制動部材の内周面に当接させて制動力を発生させるロック制御と、モータを逆回転させることによって制動力を解除するリリース制御の2つがある。 An electric drum brake device is one of the brake devices provided for the wheels of a vehicle. The control for the electric drum brake device is roughly divided into lock control in which the braking member is brought into contact with the inner peripheral surface of the member to be braked by positively rotating the motor to generate braking force, and reverse rotation of the motor is performed. There are two release controls that release the braking force.
特開2016-176574号公報JP, 2016-176574, A
 電動ドラムブレーキ装置では、例えば、短時間に多くのブレーキ動作が実行されると、ブレーキドラムが熱膨張によって一時的に大径となる場合がある。そして、その状態でロック制御を実行して所定の制動力を発生させると、その後にブレーキドラムが冷却して径方向に収縮したときに、過大な制動力(クランプ力)が発生してしまうことがある。 In an electric drum brake device, for example, when many braking operations are executed in a short time, the brake drum may temporarily have a large diameter due to thermal expansion. Then, if the lock control is executed in that state to generate a predetermined braking force, an excessive braking force (clamping force) will be generated when the brake drum subsequently cools and contracts in the radial direction. There is.
 そこで、本発明の課題は、ブレーキドラムが熱膨張によって一時的に大径となった電動ドラムブレーキ装置に対して制動制御を行う場合に、その後にブレーキドラムが冷却して径方向に収縮しても過大な制動力が発生しないようにすることができる制動制御装置を提供することである。 Therefore, an object of the present invention is to perform cooling control on an electric drum brake device in which the brake drum temporarily has a large diameter due to thermal expansion, and then the brake drum cools and contracts in the radial direction. Another object of the present invention is to provide a braking control device capable of preventing an excessive braking force from being generated.
 本発明による制動制御装置は、車両の複数の車輪に対して設けられた電動ドラムブレーキ装置を制御する制動制御装置であって、前記電動ドラムブレーキ装置におけるモータを回転させることによって制動部材を被制動部材の内周面に当接させて制動力を増加させるロック制御、および、前記モータを回転させることによって前記制動力を減少させるリリース制御を実行することで、前記電動ドラムブレーキ装置による制動を制御する制御部を備える。前記制御部は、前記電動ドラムブレーキ装置による制動を制御する場合に、ブレーキドラムの温度を取得または推定し、前記温度に基いて、その後に前記ブレーキドラムが冷却して径方向に収縮したときに制動力が所定の上限制動力を超えないように、前記ロック制御、および、前記リリース制御の少なくともいずれかにより前記制動力を調整する制動力調整制御を実行する。 A braking control device according to the present invention is a braking control device for controlling an electric drum brake device provided for a plurality of wheels of a vehicle, wherein a braking member is braked by rotating a motor in the electric drum brake device. The braking by the electric drum brake device is controlled by executing the lock control for increasing the braking force by making contact with the inner peripheral surface of the member and the release control for decreasing the braking force by rotating the motor. And a control unit for controlling. When controlling the braking by the electric drum brake device, the control unit acquires or estimates the temperature of the brake drum, and based on the temperature, when the brake drum subsequently cools and contracts in the radial direction. A braking force adjustment control for adjusting the braking force by at least one of the lock control and the release control is executed so that the braking force does not exceed a predetermined upper limit braking force.
図1は、第1実施形態の制動制御装置の制御対象であるブレーキ装置の概要構成図である。FIG. 1 is a schematic configuration diagram of a brake device that is a control target of the braking control device of the first embodiment. 図2は、第1実施形態における右後輪に設けられたブレーキ装置の車幅方向外方からの側面図である。FIG. 2 is a side view from the outside in the vehicle width direction of the brake device provided on the right rear wheel in the first embodiment. 図3は、第1実施形態における制動制御装置の機能的構成を示すブロック図である。FIG. 3 is a block diagram showing a functional configuration of the braking control device in the first embodiment. 図4は、第1実施形態における各構成等の経時的変化の様子を示すタイムチャートである。FIG. 4 is a time chart showing changes over time of the components and the like in the first embodiment. 図5は、第1実施形態における制動制御装置が実行する一連の処理を示すフローチャートである。FIG. 5 is a flowchart showing a series of processes executed by the braking control device in the first embodiment. 図6は、第2実施形態における各構成等の経時的変化の様子を示すタイムチャートである。FIG. 6 is a time chart showing changes over time of the components and the like in the second embodiment. 図7は、第3実施形態におけるドラム温度とクランプ力の関係を示すグラフである。FIG. 7 is a graph showing the relationship between the drum temperature and the clamping force in the third embodiment. 図8は、第4実施形態におけるロック制御時とリリース制御時のEPB電流値の経時的変化の様子を示すグラフである。FIG. 8 is a graph showing how the EPB current value changes with time during lock control and release control in the fourth embodiment.
 以下、図面を参照して、本発明の実施形態について説明する。なお、以下に記載する実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、あくまで一例であって、本発明は以下の記載内容に限定されるものではない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The configurations of the embodiments described below, and the actions and results (effects) provided by the configurations are merely examples, and the present invention is not limited to the contents described below.
 図1は、第1実施形態の制動制御装置200(図3)の制御対象であるブレーキ装置100の概要構成図である。ブレーキ装置100は、例えば、四輪の一般的な車両に設けられる。 FIG. 1 is a schematic configuration diagram of a brake device 100 that is a control target of the braking control device 200 (FIG. 3) of the first embodiment. The brake device 100 is provided, for example, in a general four-wheel vehicle.
 ブレーキ装置100は、前輪である車輪2FL、2FRと、後輪である車輪2RL、2RRと、の両方に制動力(摩擦制動トルク)を付与することが可能に構成された液圧ブレーキ1と、後輪である車輪2RL、2RRのみに制動力を付与することが可能に構成された電動駐車ブレーキ2と、を備える。 The brake device 100 is a hydraulic brake 1 configured to be able to apply a braking force (friction braking torque) to both the front wheels 2FL and 2FR and the rear wheels 2RL and 2RR. The electric parking brake 2 configured to be able to apply the braking force only to the wheels 2RL and 2RR that are rear wheels.
 以下の説明においては、液圧ブレーキ1が発生する制動力と、電動駐車ブレーキ2が発生する制動力と、を区別する必要がある場合には、液圧ブレーキ1が発生する制動力を液圧制動力と表記し、電動駐車ブレーキ2が発生する制動力を駐車制動力と表記する。 In the following description, when it is necessary to distinguish between the braking force generated by the hydraulic brake 1 and the braking force generated by the electric parking brake 2, the braking force generated by the hydraulic brake 1 is controlled. The braking force generated by the electric parking brake 2 will be referred to as power, and will be referred to as parking braking force.
 液圧ブレーキ1は、圧力発生部32と、ホイールシリンダ38FL、38FR、38RLおよび38RRと、圧力調整部34FL、34FR、34RLおよび34RRと、還流機構37と、を備える。 The hydraulic brake 1 includes a pressure generating unit 32, wheel cylinders 38FL, 38FR, 38RL and 38RR, pressure adjusting units 34FL, 34FR, 34RL and 34RR, and a return mechanism 37.
 圧力発生部32は、車両の運転者によるブレーキペダル31の操作に応じた圧力(液圧)を発生させる機構である。 The pressure generator 32 is a mechanism that generates a pressure (fluid pressure) according to the operation of the brake pedal 31 by the driver of the vehicle.
 ホイールシリンダ38FL、38FR、38RLおよび38RRは、それぞれ、制動部材を加圧することで車輪2FL、2FR、2RL、および2RRに制動力を付与する機構である。 The wheel cylinders 38FL, 38FR, 38RL, and 38RR are mechanisms that apply braking force to the wheels 2FL, 2FR, 2RL, and 2RR by pressurizing a braking member, respectively.
 圧力調整部34FL、34FR、34RLおよび34RRは、それぞれ、ホイールシリンダ38FL、38FR、38RLおよび38RRに与えられる液圧を調整する機構である。還流機構37は、液圧を発生させる媒体としてのフルード(作動流体)を上流側へ戻す機構である。 The pressure adjusting units 34FL, 34FR, 34RL and 34RR are mechanisms for adjusting the hydraulic pressure applied to the wheel cylinders 38FL, 38FR, 38RL and 38RR, respectively. The reflux mechanism 37 is a mechanism that returns fluid (working fluid) as a medium for generating hydraulic pressure to the upstream side.
 上記構成において、圧力発生部32は、マスタシリンダ32aと、リザーバタンク32bと、を備える。マスタシリンダ32aは、ブレーキペダル31の操作(踏み込み)に伴って押し込まれることで、リザーバタンク32bから補充されるフルードを2つの吐出ポートに吐出する。これら2つの吐出ポートは、それぞれ、開状態と閉状態とを電気的に切り替え可能な電磁弁33を介して、フロント側の圧力調整部34FRおよびリヤ側の圧力調整部34RLと、フロント側の圧力調整部34FLおよびリヤ側の圧力調整部34RRと、に接続される。 In the above configuration, the pressure generating unit 32 includes a master cylinder 32a and a reservoir tank 32b. The master cylinder 32a is pushed along with the operation (depression) of the brake pedal 31 to discharge the fluid replenished from the reservoir tank 32b to the two discharge ports. These two discharge ports are respectively connected to the front side pressure adjusting section 34FR and the rear side pressure adjusting section 34RL and the front side pressure via an electromagnetic valve 33 capable of electrically switching between an open state and a closed state. The adjusting portion 34FL and the rear pressure adjusting portion 34RR are connected.
 また、圧力調整部34FL、34FR、34RL、および34RRは、それぞれ、開状態と閉状態とを電気的に切り替え可能な電磁弁35および36を有している。電磁弁35および36は、電磁弁33と、リザーバ41と、の間に設けられている。電磁弁35は、電磁弁33に接続され、電磁弁36は、リザーバ41に接続されている。 The pressure adjusting units 34FL, 34FR, 34RL, and 34RR have electromagnetic valves 35 and 36 that can electrically switch between an open state and a closed state, respectively. The solenoid valves 35 and 36 are provided between the solenoid valve 33 and the reservoir 41. The solenoid valve 35 is connected to the solenoid valve 33, and the solenoid valve 36 is connected to the reservoir 41.
 電磁弁35および36は、制動制御装置200(図3参照)の制御に基いて開閉することで、ホイールシリンダ38FL、38FR、38RLおよび38RRで発生する圧力を、昇圧したり、維持したり、減圧したりすることが可能である。なお、ホイールシリンダ38FLは、圧力調整部34FLの電磁弁35および36の間に接続され、ホイールシリンダ38FRは、圧力調整部34FRの電磁弁35および36の間に接続されている。また、ホイールシリンダ38RLは、圧力調整部34RLの電磁弁35および36の間に接続され、ホイールシリンダ38RRは、圧力調整部34RRの電磁弁35および36の間に接続されている。 The solenoid valves 35 and 36 are opened and closed under the control of the braking control device 200 (see FIG. 3) to increase, maintain, or reduce the pressure generated in the wheel cylinders 38FL, 38FR, 38RL, and 38RR. It is possible to The wheel cylinder 38FL is connected between the solenoid valves 35 and 36 of the pressure adjusting unit 34FL, and the wheel cylinder 38FR is connected between the solenoid valves 35 and 36 of the pressure adjusting unit 34FR. The wheel cylinder 38RL is connected between the solenoid valves 35 and 36 of the pressure adjusting unit 34RL, and the wheel cylinder 38RR is connected between the solenoid valves 35 and 36 of the pressure adjusting unit 34RR.
 還流機構37は、リザーバ41およびポンプ39と、フロント側およびリヤ側のポンプ39を回転してフルードを上流側に輸送するポンプモータ40と、を備える。リザーバ41およびポンプ39は、圧力調整部34FRおよび34RLの組み合わせと、圧力調整部34FLおよび34RRの組み合わせと、に対応してそれぞれ1つずつ設けられる。 The reflux mechanism 37 includes a reservoir 41 and a pump 39, and a pump motor 40 that rotates the front and rear pumps 39 to transport the fluid to the upstream side. One reservoir 41 and one pump 39 are provided corresponding to the combination of the pressure adjusting units 34FR and 34RL and the combination of the pressure adjusting units 34FL and 34RR.
 なお、液圧ブレーキ1には、ブレーキペダル31の操作量(ストローク)を検出可能なストロークセンサ51や、マスタシリンダ32aで発生する圧力を検出可能な圧力センサ(図1には不図示)などが設けられている。 The hydraulic brake 1 includes a stroke sensor 51 that can detect the operation amount (stroke) of the brake pedal 31, a pressure sensor (not shown in FIG. 1) that can detect the pressure generated in the master cylinder 32a, and the like. It is provided.
 リヤ側のホイールシリンダ38RLおよび38RRの各々には、制動制御装置200(図3参照)の制御に基いて駆動するEPB(Electric Parking Brake)モータ60が接続されている。これにより、リヤ側のホイールシリンダ38RLおよび38RRの制動部材がEPBモータ60の駆動に応じて加圧されることで、後輪である車輪2RLおよび2RRに制動力が付与される。 An EPB (Electric Parking Brake) motor 60 that is driven under the control of the braking control device 200 (see FIG. 3) is connected to each of the rear side wheel cylinders 38RL and 38RR. As a result, the braking members of the wheel cylinders 38RL and 38RR on the rear side are pressurized in response to the driving of the EPB motor 60, so that the braking force is applied to the rear wheels 2RL and 2RR.
 したがって、リヤ側のホイールシリンダ38RLおよび38RRと、これら2個のホイールシリンダ38RLおよび38RRに接続された2個のEPBモータ60とが、液圧ブレーキ1による液圧制動力とは別個の駐車制動力を発生可能な電動駐車ブレーキ2として機能する。 Therefore, the rear wheel cylinders 38RL and 38RR and the two EPB motors 60 connected to these two wheel cylinders 38RL and 38RR provide a parking braking force different from the hydraulic braking force of the hydraulic brake 1. It functions as an electric parking brake 2 that can be generated.
 なお、上記のような液圧ブレーキ1および電動駐車ブレーキ2が設けられた車両では、運転者は、液圧ブレーキ1に液圧制動力を発生させる操作(液圧ブレーキ操作)と、電動駐車ブレーキ2に駐車制動力を発生させる操作(駐車ブレーキ操作)と、を適宜使い分けることで、状況に応じて適切な制動力を車両に発生させることが可能である。例えば、液圧ブレーキ操作のみによって車両が停車状態になっている状況では、その後の駐車ブレーキ操作によって十分な駐車制動力が得られた場合、液圧ブレーキ操作が解除されて液圧制動力がゼロになったとしても、駐車状態がそのまま維持される。 In a vehicle provided with the hydraulic brake 1 and the electric parking brake 2 as described above, the driver operates the hydraulic brake 1 to generate a hydraulic braking force (hydraulic brake operation) and the electric parking brake 2 It is possible to generate an appropriate braking force in the vehicle depending on the situation by appropriately using the operation for generating the parking braking force (the parking brake operation). For example, in the situation where the vehicle is stopped only by the hydraulic brake operation, if sufficient parking braking force is obtained by the subsequent parking brake operation, the hydraulic brake operation is released and the hydraulic braking force becomes zero. Even if it happens, the parking condition will be maintained.
 ここで、電動駐車ブレーキ2として構成されたブレーキ装置3RLおよびブレーキ装置3RRについて説明する。この場合において、ブレーキ装置3RLおよびブレーキ装置3RRは、同様の構成であるので、右後輪2RRに設けられたブレーキ装置3RRを例として説明する。 Here, the brake device 3RL and the brake device 3RR configured as the electric parking brake 2 will be described. In this case, since the brake device 3RL and the brake device 3RR have the same configuration, the brake device 3RR provided on the right rear wheel 2RR will be described as an example.
 図2は、第1実施形態における右後輪に設けられたブレーキ装置3RRの車幅方向外方からの側面図である。ブレーキ装置3RRは、電動ドラムブレーキ装置として構成されており、右後輪2RRの円筒状のホイールの周壁(不図示)の内側に収容されている。 FIG. 2 is a side view from the outside in the vehicle width direction of the braking device 3RR provided on the right rear wheel in the first embodiment. The brake device 3RR is configured as an electric drum brake device, and is housed inside a peripheral wall (not shown) of a cylindrical wheel of the right rear wheel 2RR.
 ブレーキ装置3RRは、前後に離間した二つのブレーキシュー13L、13T(制動部材)を備える。二つのブレーキシュー13L、13Tは、円筒状のドラム12(被制動部材。ブレーキドラム)の内周面12aに沿って円弧状に伸びている。 The brake device 3RR includes two brake shoes 13L and 13T (braking members) that are separated from each other in the front and rear. The two brake shoes 13L and 13T extend in an arc shape along the inner peripheral surface 12a of the cylindrical drum 12 (member to be braked. Brake drum).
 ドラム12は、車幅方向に沿う回転中心C回りに、右後輪2RRのホイールと一体に回転する。そして、ブレーキ装置3RRは、二つのブレーキシュー13L、13Tを、円筒状のドラム12の内周面12aに接触するよう移動させ、ブレーキシュー13L、13Tとドラム12との摩擦によって、ドラム12ひいては右後輪2RRのホイールを制動する。 The drum 12 rotates integrally with the right rear wheel 2RR around the rotation center C along the vehicle width direction. Then, the brake device 3RR moves the two brake shoes 13L and 13T so as to contact the inner peripheral surface 12a of the cylindrical drum 12, and the friction between the brake shoes 13L and 13T and the drum 12 causes the drum 12 and thus the right side. Braking the rear wheels 2RR.
 なお、車両の前進時における右後輪2RRのホイールの回転方向Rwが図2における時計回り方向である場合、図2の右側のブレーキシュー13Lが、リーディングシューの一例であり、左側のブレーキシュー13Tが、トレーリングシューの一例である。 When the wheel rotation direction Rw of the right rear wheel 2RR when the vehicle is moving forward is the clockwise direction in FIG. 2, the right brake shoe 13L in FIG. 2 is an example of a leading shoe, and the left brake shoe 13T. Is an example of a trailing shoe.
 ブレーキ装置3RRは、ブレーキシュー13L、13Tを動かすアクチュエータとして、油圧によって作動するホイールシリンダ38RRと、通電によって作動するEPBモータ60(図1参照)と、を備える。ホイールシリンダ38RRおよびEPBモータ60は、それぞれ、二つのブレーキシュー3L,3Tを動かすことができる。ホイールシリンダ38RRは、例えば、走行中の制動に用いられ、EPBモータ60は、例えば、駐車時の制動に用いられる。なお、EPBモータ60は、走行中の制動に用いられてもよい。 The brake device 3RR includes a wheel cylinder 38RR operated by hydraulic pressure and an EPB motor 60 (see FIG. 1) operated by energization as actuators for moving the brake shoes 13L, 13T. The wheel cylinder 38RR and the EPB motor 60 can move the two brake shoes 3L and 3T, respectively. The wheel cylinder 38RR is used, for example, for braking during traveling, and the EPB motor 60 is used, for example, for braking during parking. The EPB motor 60 may be used for braking during traveling.
 ブレーキ装置3RRは、円盤状のバックプレート14を備える。バックプレート14は、回転中心Cと交差した姿勢で設けられている。すなわち、バックプレート14は、回転中心Cと交差する方向に略沿って、具体的には回転中心Cと直交する方向に略沿って、広がっている。 The brake device 3RR includes a disk-shaped back plate 14. The back plate 14 is provided in a posture intersecting with the rotation center C. That is, the back plate 14 extends substantially along a direction intersecting the rotation center C, specifically, substantially along a direction orthogonal to the rotation center C.
 バックプレート14は、ブレーキ装置3RRの各構成部品を直接的または間接的に支持する。バックプレート14は、図2に示されるような当該バックプレート14よりも車幅方向外方に位置される部品を支持する。また、バックプレート14は、当該バックプレート14よりも車幅方向内方に位置される部品(不図示)を支持する。バックプレート14に支持される車幅方向内方に位置される部品は、例えば、EPBモータ60や、EPBモータ60の回動をケーブル62(あるいはロッド)の直動に変換する運動変換機構(不図示)等である。バックプレート4は、支持部材の一例である。また、ケーブル62は、作動部材とも称されうる。 The back plate 14 directly or indirectly supports each component of the brake device 3RR. The back plate 14 supports components that are located outward of the back plate 14 as shown in FIG. 2 in the vehicle width direction. Further, the back plate 14 supports a component (not shown) that is located inward of the back plate 14 in the vehicle width direction. The part that is supported by the back plate 14 and that is located inward in the vehicle width direction is, for example, the EPB motor 60 or a motion conversion mechanism (not (Illustration) and the like. The back plate 4 is an example of a support member. The cable 62 may also be referred to as an actuating member.
 また、バックプレート14は、車体との接続部材(不図示)に結合されている。接続部材は、例えば、サスペンションの一部(例えば、アーム、リンク、取付部材等)である。バックプレート14に設けられた開口部14aは、接続部材との結合に用いられる。 Also, the back plate 14 is connected to a connecting member (not shown) for connecting to the vehicle body. The connection member is, for example, a part of the suspension (for example, an arm, a link, a mounting member, etc.). The opening 14a provided in the back plate 14 is used for coupling with the connecting member.
 図2のブレーキ装置3RRは、駆動輪および非駆動輪のいずれにも用いることができる。ブレーキ装置3RRが駆動輪に用いられる場合、バックプレート14の略中央に設けられた開口部14bを不図示の車軸が貫通することとなる。 The brake device 3RR in FIG. 2 can be used for both driving wheels and non-driving wheels. When the brake device 3RR is used for the driving wheels, an axle (not shown) penetrates the opening 14b provided at the substantially center of the back plate 14.
(ホイールシリンダによるブレーキシューの作動)
 図2に示されるように、ブレーキシュー13L,13Tの下端部13aは、回動中心C1回りに回動可能に、バックプレート14に支持されている。回動中心C1は、右後輪2RRのホイールの回転中心Cと略平行である。回動中心C1は、回動支持点とも称される。
(Brake shoe operation by wheel cylinder)
As shown in FIG. 2, the lower ends 13a of the brake shoes 13L and 13T are supported by the back plate 14 so as to be rotatable around the rotation center C1. The rotation center C1 is substantially parallel to the rotation center C of the right rear wheel 2RR. The rotation center C1 is also referred to as a rotation support point.
 ホイールシリンダ38RRは、バックプレート14の上部に支持されている。ホイールシリンダ38RRは、車両前後方向(図1の左右方向)に突出可能な二つの押圧部21L、21Tを有する。ホイールシリンダ38RRは、内部の圧力室の与圧に応じて、二つの押圧部1L、21Tを突出させる。 The wheel cylinder 38RR is supported on the upper portion of the back plate 14. The wheel cylinder 38RR has two pressing portions 21L and 21T that can project in the vehicle front-rear direction (left-right direction in FIG. 1). The wheel cylinder 38RR causes the two pressing portions 1L and 21T to project in accordance with the pressurization of the internal pressure chamber.
 突出した二つの押圧部21L、21Tは、それぞれ、ブレーキシュー13L,13Tの上部13bを押す。二つの押圧部21L、21Tの突出により、二つのブレーキシュー13L,13Tは、それぞれ、回動中心C1回りに回動し、上部13b同士が車両前後方向に互いに離間するように移動する。これにより、二つのブレーキシュー13L,13Tは、右後輪2RRのホイールの回転中心Cの径方向外方に移動する。 The two protruding pressing parts 21L and 21T press the upper portions 13b of the brake shoes 13L and 13T, respectively. Due to the protrusion of the two pressing portions 21L and 21T, the two brake shoes 13L and 13T respectively rotate around the rotation center C1 and move so that the upper portions 13b are separated from each other in the vehicle front-rear direction. As a result, the two brake shoes 13L and 13T move radially outward of the center of rotation C of the right rear wheel 2RR.
 各ブレーキシュー13L、13Tの外周部には、円筒面に沿う帯状のライニング13cが設けられている。これにより、二つのブレーキシュー13L、13Tの、回転中心Cの径方向外方への移動により、ライニング13cとドラム12の内周面12aとが接触し、ライニング13cと内周面12aとの摩擦により、ドラム12ひいては、右後輪2RRのホイールが制動される。なお、ブレーキシュー13L,13Tの非制動位置と制動位置との間のストロークは微少であり、例えば1mm以下である。 A strip-shaped lining 13c is provided along the cylindrical surface on the outer periphery of each brake shoe 13L, 13T. As a result, the two brake shoes 13L and 13T move radially outward of the center of rotation C, so that the lining 13c and the inner peripheral surface 12a of the drum 12 come into contact with each other, and the friction between the lining 13c and the inner peripheral surface 12a. As a result, the drum 12 and thus the right rear wheel 2RR are braked. The stroke between the non-braking position and the braking position of the brake shoes 13L, 13T is very small, for example, 1 mm or less.
 また、ブレーキ装置3RRは、復帰部材15を備える。復帰部材15は、ホイールシリンダ38RR内の圧力室が除圧され、押圧部21L、21Tによる二つのブレーキシュー13L、13Tの押圧が解除された場合に、二つのブレーキシュー13L、13Tを、ドラム12の内周面12aと接触する位置(制動位置)からドラム12の内周面12aとは接触しない位置(非制動位置)へ戻すように作用する。 Also, the brake device 3RR includes a return member 15. When the pressure chamber in the wheel cylinder 38RR is depressurized and the pressing of the two brake shoes 13L, 13T by the pressing portions 21L, 21T is released, the return member 15 connects the two brake shoes 13L, 13T to the drum 12 The inner peripheral surface 12a of the drum 12 (braking position) is returned to a position (non-braking position) where the inner peripheral surface 12a of the drum 12 does not contact.
 復帰部材15は、例えば、コイルスプリング等の弾性部材であり、ブレーキシュー13Lがブレーキシュー13Tに近づく方向の力およびブレーキシュー13Tがブレーキシュー13Lに近付く方向の力を与える。すなわち、復帰部材15は、二つのブレーキシュー13L、13Tがドラム12の内周面12aから離れる方向の力を与えている。復帰部材15は、付勢部材や弾性部材とも称される。 The return member 15 is, for example, an elastic member such as a coil spring, and gives a force in a direction in which the brake shoe 13L approaches the brake shoe 13T and a force in a direction in which the brake shoe 13T approaches the brake shoe 13L. That is, the return member 15 gives a force in a direction in which the two brake shoes 13L and 13T move away from the inner peripheral surface 12a of the drum 12. The return member 15 is also called an urging member or an elastic member.
 また、ブレーキ装置3RRは、電動駐車ブレーキ2として、移動機構16を備える。EPBモータ60および運動変換機構を含む駆動機構(不図示)の作動に基いて、移動機構16は、二つのブレーキシュー13L、13Tを非制動位置から制動位置に移動させる。 Further, the brake device 3RR includes a moving mechanism 16 as the electric parking brake 2. The movement mechanism 16 moves the two brake shoes 13L and 13T from the non-braking position to the braking position based on the operation of the driving mechanism (not shown) including the EPB motor 60 and the motion converting mechanism.
 移動機構16は、バックプレート14の車幅方向外方に設けられている。移動機構16は、押圧レバー61と、ケーブル62と、ホイールシリンダ38RRと、を含む。 The moving mechanism 16 is provided outside the back plate 14 in the vehicle width direction. The moving mechanism 16 includes a pressing lever 61, a cable 62, and a wheel cylinder 38RR.
 押圧レバー61は、二つのブレーキシュー13L、13Tのうち一方、例えば図2において、左側のブレーキシュー13Tと、バックプレート14との間に設けられ、当該ブレーキシュー13Tに回動中心C2回りに回動可能に支持されている。ここで、回動中心C2は、ブレーキシュー13Lの、回動中心C1とは反対側(図2では上側)の端部に位置され、回動中心C1と略平行である。 The pressing lever 61 is provided between one of the two brake shoes 13L and 13T, for example, the left brake shoe 13T in FIG. 2 and the back plate 14, and rotates around the rotation center C2 on the brake shoe 13T. It is movably supported. Here, the rotation center C2 is located at the end of the brake shoe 13L on the opposite side (upper side in FIG. 2) of the rotation center C1 and is substantially parallel to the rotation center C1.
 ケーブル62は、バックプレート14に略沿って移動し、押圧レバー61の、回動中心C2から遠い側の下端部61aを、他方、例えば、図2においては、右側のブレーキシュー3Lに近付く方向に動かすこととなる。押圧レバー61がケーブル62によって動かされた作動位置PL1は、図2中に二点鎖線で示されている。 The cable 62 moves substantially along the back plate 14 so that the lower end portion 61a of the pressing lever 61 on the side far from the rotation center C2 approaches the other side, for example, in FIG. 2, the brake shoe 3L on the right side. It will be moved. The operating position PL1 in which the pressing lever 61 is moved by the cable 62 is shown by a chain double-dashed line in FIG.
 押圧レバー61は、ブレーキシュー13Tの内周面に当接する突起61bを有している。この突起61bにより、押圧レバー61のケーブル62によって動かされる前の状態での初期位置PL0が定まっている。突起61bは、初期位置設定部とも称される。 The pressing lever 61 has a protrusion 61b that comes into contact with the inner peripheral surface of the brake shoe 13T. The projection 61b defines the initial position PL0 of the pressing lever 61 before it is moved by the cable 62. The protrusion 61b is also referred to as an initial position setting unit.
 そして、ホイールシリンダ38RRに移動可能に収容された可動部品である押圧部21L、21Tが、ケーブル62によって動かされる押圧レバー61と、当該押圧レバー61と連結されたブレーキシュー13Tとは別のブレーキシュー13Lと、の間に介在して突っ張ることができる。ここで、押圧レバー61と可動部品である押圧部21Tとの接続位置P1は、回動中心C2と、ケーブル62と押圧レバー61との接続位置P2と、の間に設定されている。 The pressing portions 21L and 21T, which are movable parts housed movably in the wheel cylinder 38RR, are different from the pressing lever 61 that is moved by the cable 62 and the brake shoe 13T that is connected to the pressing lever 61. It can be stretched by interposing between 13L and. Here, the connection position P1 between the pressing lever 61 and the pressing portion 21T which is a movable part is set between the rotation center C2 and the connection position P2 between the cable 62 and the pressing lever 61.
 このような構成において、EPBモータ60の作動によりケーブル62が引かれて図2の右方へ動くことにより、押圧レバー61が、初期位置PL0からブレーキシュー13Lに近付く方向へ動くと(矢印a、作動位置PL1)、押圧レバー61はホイールシリンダ38RRの可動部品である押圧部21Lを介してブレーキシュー13Lを押す(矢印b)。 In such a configuration, when the EPB motor 60 is actuated to pull the cable 62 and move it to the right in FIG. 2, the pressing lever 61 moves from the initial position PL0 toward the brake shoe 13L (arrow a, In the operating position PL1), the pressing lever 61 presses the brake shoe 13L via the pressing portion 21L that is a movable part of the wheel cylinder 38RR (arrow b).
 これにより、ブレーキシュー13Lは、非制動位置から回動中心C1回りに回動し(矢印c)、ドラム12の内周面12aと接触する制動位置へ動く。この状態では、ケーブル62と押圧レバー61との接続位置P2は力点、回動中心C2は支点、押圧レバー61と可動部品である押圧部21L、21Tとの接続位置P1は作用点に相当する。さらに、ブレーキシュー3Lが、内周面12aに接触した状態で、押圧レバー61が図1の右方、すなわち、可動部品110がブレーキシュー3Lを押す方向へ動くと(矢印b)、可動部品110が突っ張ることにより、押圧レバー61は可動部品110との接続位置P1を支点として、押圧レバー61の動く方向とは逆方向、すなわち、図2における反時計回りに回動する(矢印d)。 As a result, the brake shoe 13L rotates from the non-braking position around the rotation center C1 (arrow c) and moves to the braking position where it contacts the inner peripheral surface 12a of the drum 12. In this state, the connection position P2 between the cable 62 and the pressing lever 61 corresponds to the force point, the rotation center C2 corresponds to the fulcrum, and the connection position P1 between the pressing lever 61 and the pressing portions 21L and 21T that are movable parts corresponds to the action point. When the brake shoe 3L is in contact with the inner peripheral surface 12a, the pressing lever 61 moves to the right in FIG. 1, that is, when the movable part 110 moves in the direction of pushing the brake shoe 3L (arrow b), the movable part 110. When the pressing lever 61 is stretched, the pressing lever 61 rotates in a direction opposite to the moving direction of the pressing lever 61, that is, counterclockwise in FIG. 2 (arrow d) with the connection position P1 with the movable component 110 as a fulcrum.
 これにより、ブレーキシュー13Tは、非制動位置から回動中心C1回りに回動し、ドラム12の内周面12aと接触する制動位置へ動く。上述したように、移動機構16の作動により、ブレーキシュー13L、13Tは、いずれも非制動位置から制動位置へ動くこととなる。なお、ブレーキシュー13Lがドラム12の内周面12aに接触した以降の状態では、押圧レバー61と可動部品110との接続位置P1が支点となる。 As a result, the brake shoe 13T rotates from the non-braking position around the rotation center C1 and moves to the braking position where it contacts the inner peripheral surface 12a of the drum 12. As described above, the operation of the moving mechanism 16 causes the brake shoes 13L and 13T to move from the non-braking position to the braking position. In the state after the brake shoe 13L contacts the inner peripheral surface 12a of the drum 12, the connection position P1 between the pressing lever 61 and the movable component 110 serves as a fulcrum.
 また、ブレーキシュー13Lが非制動位置に戻ると同時に押圧レバー61の突起61bがブレーキシュー13Tの内周面に当接し、押圧レバー61が初期位置に戻る。このように、本実施形態では、ホイールシリンダ38RRの可動部品である押圧部21L、21Tが、ブレーキ装置3RRが電動駐車ブレーキ2として作動する際に、押圧レバー61とともにブレーキシュー13L、13T間に介在するストラットとして機能する。 Also, at the same time when the brake shoe 13L returns to the non-braking position, the protrusion 61b of the pressing lever 61 contacts the inner peripheral surface of the brake shoe 13T, and the pressing lever 61 returns to the initial position. As described above, in the present embodiment, the pressing portions 21L and 21T that are movable parts of the wheel cylinder 38RR are interposed between the pressing lever 61 and the brake shoes 13L and 13T when the brake device 3RR operates as the electric parking brake 2. Functions as a strut.
 次に、図3を参照して、制動制御装置200の機能的構成について説明する。図3は、第1実施形態における制動制御装置200の機能的構成を示すブロック図である。制動制御装置200は、例えば、プロセッサやメモリなどの通常のコンピュータと同様のハードウェアを備えたブレーキECU(Electronic Control Unit)の一部を構成する。なお、制動制御装置200は、ブレーキECUの他の部分と一体化されてもよいし、当該他の部分とは別個に構成されてもよい。 Next, the functional configuration of the braking control device 200 will be described with reference to FIG. FIG. 3 is a block diagram showing a functional configuration of the braking control device 200 according to the first embodiment. The braking control device 200 constitutes, for example, a part of a brake ECU (Electronic Control Unit) including hardware similar to an ordinary computer such as a processor and a memory. The braking control device 200 may be integrated with other parts of the brake ECU, or may be configured separately from the other parts.
 制動制御装置200は、液圧ブレーキ1と電動駐車ブレーキ2とを制御可能に構成されている。制動制御装置200は、機能的構成として、検出部201と、制御部202と、を備える。制御部202は、液圧ブレーキ制御部203と、EPB制御部204(制御部)と、を備える。これらの機能的構成は、例えば、制動制御装置200のプロセッサがメモリに格納された種々のプログラムを実行した結果として実現される。なお、これらの機能的構成の一部または全部が専用の回路などによって実現されてもよい。 The braking control device 200 is configured to control the hydraulic brake 1 and the electric parking brake 2. The braking control device 200 includes a detection unit 201 and a control unit 202 as a functional configuration. The control unit 202 includes a hydraulic brake control unit 203 and an EPB control unit 204 (control unit). These functional configurations are realized, for example, as a result of the processor of the braking control device 200 executing various programs stored in the memory. Note that part or all of these functional configurations may be realized by a dedicated circuit or the like.
 また、制動制御装置200は、路面の勾配(車両の前後方向の傾き)を検出する加速度センサ、ジャイロセンサ等として構成された勾配検知センサ3の出力に基いて動作する機能を有する。 The braking control device 200 also has a function of operating based on the output of the gradient detection sensor 3 configured as an acceleration sensor, a gyro sensor, or the like that detects the gradient of the road surface (the inclination of the vehicle in the front-rear direction).
 検出部201は、液圧ブレーキ1に液圧制動力を発生させるための操作(液圧ブレーキ操作)や、駐車制動力を発生可能な状態に設定するための操作(駐車ブレーキ操作)などの運転者による制動操作を検出する。ここで、液圧ブレーキ操作とは、例えば、運転者によるブレーキペダル31の操作である。一方、駐車ブレーキ操作とは、例えば、運転席付近に設けられるEPBスイッチやレバー(図1には不図示)などの操作である。すなわち、検出部201は、ストロークセンサ51などの検出結果に基いて液圧ブレーキ操作を検出し、EPBスイッチやレバーなどの操作に応じて出力される電気信号などに基いて駐車ブレーキ操作を検出する。 The detection unit 201 is a driver who performs an operation (a hydraulic brake operation) for generating a hydraulic braking force on the hydraulic brake 1 or an operation (a parking brake operation) for setting a state in which the parking braking force can be generated. The braking operation by is detected. Here, the hydraulic brake operation is, for example, an operation of the brake pedal 31 by the driver. On the other hand, the parking brake operation is, for example, an operation of an EPB switch or a lever (not shown in FIG. 1) provided near the driver's seat. That is, the detection unit 201 detects the hydraulic brake operation based on the detection result of the stroke sensor 51 and the like, and detects the parking brake operation based on the electric signal output according to the operation of the EPB switch and the lever. ..
 液圧ブレーキ制御部203は、液圧ブレーキ1に発生させる液圧制動力を制御可能に構成されている。また、EPB制御部204は、電動駐車ブレーキ2に発生させる駐車制動力を制御可能に構成されている。 The hydraulic brake control unit 203 is configured to control the hydraulic braking force generated in the hydraulic brake 1. Further, the EPB control unit 204 is configured to be able to control the parking braking force generated in the electric parking brake 2.
 EPB制御部204は、具体的には、EPBモータ60を正回転させることによってブレーキシュー13L、13Tをドラム12の内周面12aに当接させて制動力を増加させるロック制御、および、EPBモータ60を逆回転させることによって制動力を減少させるリリース制御を実行することで、電動駐車ブレーキ2による制動を制御する。 Specifically, the EPB control unit 204 locks the brake shoes 13L and 13T to the inner peripheral surface 12a of the drum 12 by positively rotating the EPB motor 60 to increase the braking force, and the EPB motor. The braking by the electric parking brake 2 is controlled by executing the release control that reduces the braking force by rotating the 60 in the reverse direction.
 ところで、例えば、短時間に多くのブレーキ動作が実行されると、ドラム12が熱膨張によって一時的に大径となる場合がある。そして、その状態でロック制御を実行して所定の制動力を発生させると、その後にドラム12が冷却して径方向に収縮したときに、過大な制動力(クランプ力)が発生してしまうことがある。 However, for example, if many braking operations are performed in a short time, the drum 12 may temporarily have a large diameter due to thermal expansion. Then, if the lock control is executed in that state to generate a predetermined braking force, an excessive braking force (clamping force) will be generated when the drum 12 subsequently cools and contracts in the radial direction. There is.
 そこで、以下では、ドラム12が熱膨張によって一時的に大径となった電動駐車ブレーキ2に対して制動制御を行う場合に、その後にドラム12が冷却して径方向に収縮しても過大な制動力が発生しないようにすることができる制動制御装置200について説明する。 Therefore, in the following description, when the braking control is performed on the electric parking brake 2 whose diameter has temporarily increased due to thermal expansion, even if the drum 12 cools and contracts in the radial direction after that, it is excessive. A braking control device 200 capable of preventing a braking force from being generated will be described.
 EPB制御部204は、電動駐車ブレーキ2による制動を制御する場合に、ドラム12の温度を取得または推定し、当該温度に基いて、その後にドラム12が冷却して径方向に収縮したときに制動力が所定の上限制動力を超えないように、ロック制御、および、リリース制御の少なくともいずれかにより制動力を調整する制動力調整制御を実行する。 The EPB control unit 204 acquires or estimates the temperature of the drum 12 when controlling the braking by the electric parking brake 2, and based on the temperature, controls the EPB control unit when the drum 12 cools and contracts in the radial direction. The braking force adjustment control for adjusting the braking force by at least one of the lock control and the release control is executed so that the power does not exceed the predetermined upper limit braking force.
 ドラム12の温度を計測する温度センサ(不図示)が設けられている場合、EPB制御部204は、その温度センサからドラム12の温度の情報を取得することができる。 When a temperature sensor (not shown) that measures the temperature of the drum 12 is provided, the EPB control unit 204 can acquire the temperature information of the drum 12 from the temperature sensor.
 また、ドラム12の温度を計測する温度センサ(不図示)が設けられていない場合、EPB制御部204は、例えば、車速やブレーキ動作の履歴情報に基いて、ドラム12の温度を推定することができる。例えば、ブレーキ動作の強さの度合いや頻度によってドラム12の温度上昇の度合いが変わると考えられ、EPB制御部204は、そのことを示す関数やマップの情報等を予め記憶しておくことによってドラム12の温度を推定することができる。 If a temperature sensor (not shown) that measures the temperature of the drum 12 is not provided, the EPB control unit 204 may estimate the temperature of the drum 12 based on, for example, vehicle speed and history information of brake operation. it can. For example, it is considered that the degree of temperature rise of the drum 12 changes depending on the degree and frequency of the braking operation, and the EPB control unit 204 stores the function and map information indicating this in advance by the drum. Twelve temperatures can be estimated.
 なお、ブレーキ動作は、例えば、運転者によるブレーキペダル31の操作に基く液圧ブレーキ動作や、運転者によるEPBスイッチやレバーなどの操作に基く電動駐車ブレーキ動作だけでなく、ABS(Antilock Brake System)やESC(Electronic Stability Control:横滑り防止装置)に基く液圧ブレーキ動作等も含む。また、ドラム12の温度を推定するのに、外気温センサ(不図示)からの得られる外気温の情報等の他の情報をさらに用いてもよい。 The braking operation is not limited to, for example, a hydraulic braking operation based on the driver's operation of the brake pedal 31 and an electric parking brake operation based on the operation of the EPB switch or lever by the driver, but also ABS (Antilock Brake System). Also includes hydraulic brake operation based on ESC (Electronic Stability Control). Further, in order to estimate the temperature of the drum 12, other information such as information on the outside air temperature obtained from an outside air temperature sensor (not shown) may be further used.
 また、EPB制御部204は、ドラム12の温度の時間変化の情報であるドラム温度変化情報を記憶している。つまり、EPB制御部204は、ドラム12の温度が高くなっている場合に、そのドラム温度変化情報を参照することで、その後の経過時間ごとのドラム12の温度を推定することができる。また、EPB制御部204は、ドラム12の温度と熱膨張率の関係を示す情報であるドラム熱膨張率情報を記憶している。 The EPB control unit 204 also stores drum temperature change information, which is information about the time change of the temperature of the drum 12. That is, when the temperature of the drum 12 is high, the EPB control unit 204 can estimate the temperature of the drum 12 for each subsequent elapsed time by referring to the drum temperature change information. The EPB control unit 204 also stores drum thermal expansion coefficient information, which is information indicating the relationship between the temperature of the drum 12 and the thermal expansion coefficient.
 次に、図4を参照して、第1実施形態における各構成等の経時的変化の様子について説明する。図4は、第1実施形態における各構成等の経時的変化の様子を示すタイムチャートである。ここでは、EPB制御部204は、制動力調整制御を実行する場合に、ドラム12の温度に基いて、その後にドラム12が冷却して径方向に収縮したときに制動力が所定の上限制動力(例えば、リリース動作可能な最大クランプ力)を超えないように、ロック制御とリリース制御を繰り返し実行する。 Next, with reference to FIG. 4, the state of changes over time of the components and the like in the first embodiment will be described. FIG. 4 is a time chart showing changes over time of the components and the like in the first embodiment. Here, when executing the braking force adjustment control, the EPB control unit 204 determines, based on the temperature of the drum 12, that the braking force is a predetermined upper limit braking force when the drum 12 subsequently cools and contracts in the radial direction. (For example, the lock control and the release control are repeatedly executed so as not to exceed the maximum clamp force at which the release operation is possible.)
 図4では、上から順に、ドラム12の温度、EPB状態(電動駐車ブレーキ2の状態。ロック、保持、リリース)、クランプ力(制動力)の経時的変化の概要を示している。ドラム12の温度は、時刻t0で有意に高く、以降、次第に低下する。 In FIG. 4, the temperature of the drum 12, EPB state (state of the electric parking brake 2, lock, hold, release), and clamping force (braking force) are shown in chronological order from top to bottom. The temperature of the drum 12 is significantly high at time t0, and then gradually decreases.
 その場合、EPB制御部204は、まず、時刻t0~t1の間、ロック制御を行い、クランプ力を適正クランプ力まで上昇させる。次に、時刻t1~t2の間、EPB制御部204はEPB状態を保持とするが、ドラム12の温度低下にともなう径収縮によって、クランプ力は上昇する。次に、EPB制御部204は、時刻t2~t3の間、リリース制御を行い、クランプ力を0まで低下させる。 In that case, the EPB control unit 204 first performs lock control from time t0 to t1 to increase the clamping force to an appropriate clamping force. Next, from time t1 to t2, the EPB control unit 204 maintains the EPB state, but the clamping force increases due to the diameter contraction accompanying the temperature decrease of the drum 12. Next, the EPB control unit 204 performs release control from time t2 to time t3 to reduce the clamping force to zero.
 次に、EPB制御部204は、時刻t3~t4の間、ロック制御を行い、クランプ力を適正クランプ力まで上昇させる。次に、時刻t4~t5の間、EPB制御部204はEPB状態を保持とするが、ドラム12の温度低下にともなう径収縮によって、クランプ力は上昇する。次に、EPB制御部204は、時刻t5~t6の間、リリース制御を行い、クランプ力を0まで低下させる。 Next, the EPB control unit 204 performs lock control from time t3 to t4 to increase the clamping force to the proper clamping force. Next, from time t4 to t5, the EPB control unit 204 keeps the EPB state, but the clamping force increases due to the diameter contraction accompanying the temperature decrease of the drum 12. Next, the EPB control unit 204 performs release control from time t5 to time t6 to reduce the clamping force to zero.
 次に、EPB制御部204は、時刻t6~t7の間、ロック制御を行い、クランプ力を適正クランプ力まで上昇させる。次に、時刻t7~t8の間、EPB制御部204はEPB状態を保持とするが、ドラム12の温度低下にともなう径収縮によって、クランプ力は上昇する。次に、EPB制御部204は、時刻t8~t9の間、リリース制御を行い、クランプ力を0まで低下させる。 Next, the EPB control unit 204 performs lock control from time t6 to time t7 to raise the clamping force to the proper clamping force. Next, from time t7 to t8, the EPB control unit 204 maintains the EPB state, but the clamping force increases due to the diameter contraction accompanying the temperature decrease of the drum 12. Next, the EPB control unit 204 performs release control from time t8 to time t9 to reduce the clamping force to zero.
 次に、EPB制御部204は、時刻t9~t10の間、ロック制御を行い、クランプ力を適正クランプ力まで上昇させる。時刻t10以降、ドラム12の温度低下量が小さく、ドラム12の径収縮はほとんど起きず、適正クランプ力が維持される。 Next, the EPB control unit 204 performs lock control from time t9 to t10 to increase the clamping force to the proper clamping force. After time t10, the amount of decrease in temperature of the drum 12 is small, the diameter of the drum 12 is hardly contracted, and the proper clamping force is maintained.
 このようにして、EPB制御部204がロック制御とリリース制御を繰り返し実行することで、ドラム12の温度低下にともなう径収縮による過大な制動力(クランプ力)の発生を回避できる。一方、図4において破線Bに示すように、最初に(時刻t0~t1の間)ロック制御を行って、その後放置すると、クランプ力がリリース動作可能な最大クランプ力を超えてしまう。したがって、過大なクランプ力によって、EPBモータ60の起動トルクが不足し、リリース制御を実行できない事態等が発生してしまう。 By thus repeatedly performing the lock control and the release control by the EPB control unit 204, it is possible to avoid the generation of an excessive braking force (clamping force) due to the diameter contraction accompanying the temperature decrease of the drum 12. On the other hand, as shown by the broken line B in FIG. 4, if the lock control is first performed (between times t0 and t1) and then left as it is, the clamping force exceeds the maximum clamping force capable of releasing operation. Therefore, due to the excessive clamping force, the starting torque of the EPB motor 60 becomes insufficient, and the situation in which the release control cannot be executed occurs.
 次に、図5を参照して、制動制御装置200が実行する一連の処理について説明する。図5は、第1実施形態における制動制御装置200が実行する一連の処理を示すフローチャートである。 Next, a series of processing executed by the braking control device 200 will be described with reference to FIG. FIG. 5 is a flowchart showing a series of processes executed by the braking control device 200 in the first embodiment.
 まず、ステップS1において、EPB制御部204は、電動駐車ブレーキ2に対する制動制御を開始するか否かを判定し、Yesの場合はステップS2に進み、Noの場合はステップS1に戻る。このステップS1では、例えば、運転席付近に設けられるEPBスイッチやレバーなどによる駐車ブレーキ操作があった場合、EPB制御部204はYesと判定する。 First, in step S1, the EPB control unit 204 determines whether or not to start the braking control for the electric parking brake 2. If Yes, the process proceeds to step S2, and if No, the process returns to step S1. In this step S1, for example, when there is a parking brake operation by an EPB switch or lever provided near the driver's seat, the EPB control unit 204 determines Yes.
 ステップS2において、EPB制御部204は、ロック制御を実行する。次に、ステップS3において、EPB制御部204は、ドラム12の温度を特定(取得または推定)する。 In step S2, the EPB control unit 204 executes lock control. Next, in step S3, the EPB control unit 204 specifies (acquires or estimates) the temperature of the drum 12.
 次に、ステップS4において、EPB制御部204は、ステップS3で特定したドラム12の温度、ドラム温度変化情報、ドラム熱膨張率情報等に基いて、リリース制御が必要か否かを判定し、Yesの場合はステップS5に進み、Noの場合は処理を終了する。このステップS4では、EPB制御部204は、例えば、リリース制御を行わないと、クランプ力がリリース動作可能な最大クランプ力を超えてしまう場合、リリース制御が必要であると判定する。 Next, in step S4, the EPB control unit 204 determines whether or not release control is necessary based on the temperature of the drum 12, the drum temperature change information, the drum thermal expansion coefficient information, and the like identified in step S3, and Yes. If No, the process proceeds to step S5, and if No, the process ends. In step S4, the EPB control unit 204 determines that release control is necessary if the clamp force exceeds the maximum clamp force at which the release operation can be performed unless release control is performed.
 ステップS5において、EPB制御部204は、リリース制御を実行し、ステップS2に戻る。 In step S5, the EPB control unit 204 executes release control, and returns to step S2.
 このようにして、第1実施形態の制動制御装置200によれば、ドラム12が熱膨張によって一時的に大径となっていてその後に冷却して径収縮する場合でも、過大な制動力が発生しないようにすることができる。具体的には、EPB制御部204がロック制御とリリース制御を繰り返し実行することで、ドラム12の温度低下にともなう径収縮による過大な制動力(クランプ力)の発生を回避することができる。したがって、過大なクランプ力によってEPBモータ60の起動トルクが不足してリリース制御を実行できない事態等を確実に回避できる。 In this way, according to the braking control device 200 of the first embodiment, an excessive braking force is generated even when the drum 12 temporarily has a large diameter due to thermal expansion and then cools and contracts in diameter. You can choose not to. Specifically, the EPB control unit 204 repeatedly executes the lock control and the release control, so that it is possible to avoid the generation of an excessive braking force (clamping force) due to the diameter contraction accompanying the temperature decrease of the drum 12. Therefore, it is possible to reliably avoid a situation in which the release control cannot be executed due to insufficient starting torque of the EPB motor 60 due to an excessive clamping force.
 また、過大なクランプ力を長時間保持することによるクランプ力保持機構への過大な負荷の発生を回避することができる。 Also, it is possible to avoid the occurrence of an excessive load on the clamping force holding mechanism due to holding an excessive clamping force for a long time.
 なお、このロック制御とリリース制御の繰り返しは、二輪同時に行ってもよいし、あるいは、一輪ずつタイミングをずらして行ってもよい。例えば、車両が平坦な路面上や傾斜の緩い路面上にいて、勾配検知センサ3による出力等に基いて、二輪のすべての制動力が無くても車両が動かないと判定した場合は、二輪同時に行えばよい。 Note that the lock control and the release control may be repeated for two wheels at the same time, or the timing may be shifted for each wheel. For example, if the vehicle is on a flat road surface or a road surface having a gentle slope and it is determined that the vehicle does not move even if all the braking forces of the two wheels are absent based on the output from the gradient detection sensor 3, etc. Just go.
 また、車両が傾斜の急な路面上にいて、勾配検知センサ3による出力等に基いて、二輪のすべての制動力が無いと車両が動いてしまうと判定した場合は、一輪ずつタイミングをずらして(二輪のすべての制動力が無い状態を回避しながら)ロック制御とリリース制御の繰り返しを行ってもよいし、あるいは、液圧制動力やPレンジ等によって停車状態を保持しながら二輪同時に行ってもよい。 Further, if the vehicle is on a road surface having a steep slope and it is determined that the vehicle will move unless all braking forces of the two wheels are present, based on the output from the gradient detection sensor 3, etc., the timing is shifted one wheel at a time. The lock control and the release control may be repeated (while avoiding a state where all the two wheels have no braking force), or the two wheels may be simultaneously performed while the vehicle is stopped by the hydraulic braking force or the P range. Good.
 つまり、例えば、EPB制御部204は、EPB制御部204が車両の停車状態を保持するために必要な目標制動力を発生させなくても、電動駐車ブレーキ2とは異なる保持手段(例えば、液圧ブレーキ1、駆動装置(トランスミッション等)、駆動トルク、回生制動力等。以下同様)により車両の停車状態を保持可能な状態にあると判断した場合に、制動力調整制御を実行するようにしてもよい。 That is, for example, the EPB control unit 204 does not generate the target braking force necessary for the EPB control unit 204 to maintain the stopped state of the vehicle, but the holding means (for example, the hydraulic pressure) different from the electric parking brake 2. Even if the braking force adjustment control is executed when it is determined that the vehicle stop state can be maintained by the brake 1, the drive device (transmission, etc.), the drive torque, the regenerative braking force, etc. Good.
 また、EPB制御部204は、EPB制御部204が車両の停車状態を保持するために必要な目標制動力を発生させなくても、電動駐車ブレーキ2とは異なる保持手段により車両を停車状態に保持可能にした後に、制動力調整制御を実行するようにしてもよい。 Further, the EPB control unit 204 holds the vehicle in a stopped state by a holding means different from the electric parking brake 2 even if the EPB control unit 204 does not generate the target braking force required to hold the stopped state of the vehicle. The braking force adjustment control may be executed after the enabling.
 また、EPB制御部204は、電動駐車ブレーキ2が設けられている複数の車輪のうちのいずれか一輪のみに発生している制動力で車両の停車状態を保持できると判断した後、または、その一輪のみで車両の停車状態を保持できるように制動力を増加させた後、その一輪以外の車輪に対して制動力調整制御を実行するようにしてもよい。 Further, the EPB control unit 204 determines that it is possible to maintain the stopped state of the vehicle by the braking force generated on only one of the plurality of wheels provided with the electric parking brake 2, or The braking force adjustment control may be executed for the wheels other than the one wheel after the braking force is increased so that the stopped state of the vehicle can be maintained with only one wheel.
 また、EPB制御部204は、制動力調整制御を実行する前に、リリース制御を実施し、EPBモータ60の電流値からブレーキドラムが冷却して径方向に収縮したときの熱収縮量を推定し、制動力調整制御による制動力の調整量、および、制動力調整制御を実行するタイミングの少なくともいずれかを決定するようにしてもよい。 Further, the EPB control unit 204 performs release control before executing the braking force adjustment control, and estimates the heat shrinkage amount when the brake drum cools and contracts in the radial direction from the current value of the EPB motor 60. At least one of the braking force adjustment amount by the braking force adjustment control and the timing of executing the braking force adjustment control may be determined.
(第2実施形態)
 次に、第2実施形態について説明する。第1実施形態と同様の事項については重複する説明を適宜省略する。第2実施形態は、第1実施形態と比較して、ロック制御とリリース制御を繰り返す点では同じであるが、リリース制御のときにクランプ力を0にまで低下させない点で異なっている。
(Second embodiment)
Next, a second embodiment will be described. For items similar to those in the first embodiment, redundant description will be appropriately omitted. The second embodiment is the same as the first embodiment in that lock control and release control are repeated, but is different in that the clamping force is not reduced to 0 during release control.
 図6は、第2実施形態における各構成等の経時的変化の様子を示すタイムチャートである。図6における各項目は図4と同様である。また、図4の場合と同様、ドラム12の温度は、時刻t20で有意に高く、以降、次第に低下する。 FIG. 6 is a time chart showing changes over time of the components and the like in the second embodiment. Each item in FIG. 6 is the same as that in FIG. Further, as in the case of FIG. 4, the temperature of the drum 12 is significantly high at the time t20 and thereafter gradually decreases.
 EPB制御部204は、まず、時刻t20~t21の間、ロック制御を行い、クランプ力を適正クランプ力まで上昇させる。次に、時刻t21~t22の間、EPB制御部204はEPB状態を保持とするが、ドラム12の温度低下にともなう径収縮によって、クランプ力は上昇する。次に、EPB制御部204は、時刻t22~t23の間、リリース制御を行い、クランプ力を低下させる。 The EPB control unit 204 first performs lock control from time t20 to t21 to increase the clamping force to the proper clamping force. Next, from time t21 to t22, the EPB control unit 204 maintains the EPB state, but the clamping force increases due to the diameter contraction accompanying the temperature decrease of the drum 12. Next, the EPB control unit 204 performs release control from time t22 to time t23 to reduce the clamping force.
 次に、時刻t23~t24の間、EPB制御部204はEPB状態を保持とするが、ドラム12の温度低下にともなう径収縮によって、クランプ力は上昇する。次に、EPB制御部204は、時刻t24~t25の間、リリース制御を行い、クランプ力を低下させる。 Next, from time t23 to t24, the EPB control unit 204 maintains the EPB state, but the clamping force increases due to the diameter contraction accompanying the temperature decrease of the drum 12. Next, the EPB control unit 204 performs release control from time t24 to time t25 to reduce the clamping force.
 次に、時刻t25~t26の間、EPB制御部204はEPB状態を保持とするが、ドラム12の温度低下にともなう径収縮によって、クランプ力は上昇する。次に、EPB制御部204は、時刻t26~t27の間、リリース制御を行い、クランプ力を低下させる。 Next, from time t25 to t26, the EPB control unit 204 maintains the EPB state, but the clamping force increases due to the diameter contraction accompanying the temperature decrease of the drum 12. Next, the EPB control unit 204 performs release control from time t26 to time t27 to reduce the clamping force.
 次に、時刻t27~t28の間、EPB制御部204はEPB状態を保持とするが、ドラム12の温度低下にともなう径収縮によって、クランプ力は上昇する。次に、EPB制御部204は、時刻t28~t29の間、リリース制御を行い、クランプ力を適正クランプ力まで低下させる。 Next, from time t27 to t28, the EPB control unit 204 maintains the EPB state, but the clamping force increases due to the diameter contraction accompanying the temperature decrease of the drum 12. Next, the EPB control unit 204 performs release control from time t28 to time t29 to reduce the clamping force to the proper clamping force.
 時刻t29以降、ドラム12の温度低下量が小さく、ドラム12の径収縮はほとんど起きず、適正クランプ力が維持される。 After time t29, the amount of temperature decrease of the drum 12 is small, the diameter of the drum 12 is hardly contracted, and the proper clamping force is maintained.
 このようにして、第2実施形態の制動制御装置200によれば、EPB制御部204がロック制御とリリース制御を繰り返し実行し、また、第1実施形態と異なってリリース制御でクランプ力を0にまで低下させなくても、ドラム12の温度低下にともなう径収縮による過大な制動力(クランプ力)の発生を回避できる。 As described above, according to the braking control device 200 of the second embodiment, the EPB control unit 204 repeatedly executes the lock control and the release control, and unlike the first embodiment, the clamping force is set to 0 by the release control. It is possible to avoid the generation of an excessive braking force (clamping force) due to the diameter contraction due to the temperature decrease of the drum 12 without decreasing the temperature.
 つまり、この第2実施形態では、リリース制御で、クランプ力を0にまで低下させなくても、クランプ力がリリース動作可能な最大クランプ力を超えることがないようにすればよい。これにより、確実に車両の停車状態を保持しつつ、制動力調整制御を実施することができる。 That is, in the second embodiment, the release control does not need to reduce the clamp force to 0 so that the clamp force does not exceed the maximum clamp force at which the release operation is possible. As a result, the braking force adjustment control can be executed while the vehicle stop state is reliably maintained.
(第3実施形態)
 次に、第3実施形態について説明する。第1実施形態と同様の事項については重複する説明を適宜省略する。第3実施形態では、EPB制御部204は、制動力調整制御を実行する場合に、ドラム12の温度に基いて、その後にドラム12が冷却して径方向に収縮したときの制動力が車両の停車状態を保持するために必要な目標制動力となるように、ロック制御を実行する。これについて、図7を参照して説明する。
(Third Embodiment)
Next, a third embodiment will be described. For items similar to those in the first embodiment, redundant description will be appropriately omitted. In the third embodiment, when executing the braking force adjustment control, the EPB control unit 204 determines the braking force when the drum 12 cools and contracts in the radial direction based on the temperature of the drum 12 thereafter. The lock control is executed so that the target braking force required to maintain the stopped state is obtained. This will be described with reference to FIG.
 図7は、第3実施形態におけるドラム温度とクランプ力の関係を示すグラフである。図7のグラフにおいて、縦軸はクランプ力(制動力)であり、横軸はドラム温度である。図7に示すように、ドラム温度がDT1未満の場合はドラム12の熱膨張が起きないので(あるいは起きても微小なので)、ロック制御で与える制動力は通常の目標制動力とすればよい。しかし、ドラム温度がDT1以上の場合はドラム12の熱膨張が有意に起きるので、ロック制御で与える制動力は、ドラム温度が高いほど、通常の目標制動力よりも小さいものとする。例えば、ドラム温度がDT2のとき、ロック制御時の制動力をP1とすることで、その後にドラム12が冷却して径方向に収縮したときの制動力が目標制動力(P2)となる。 FIG. 7 is a graph showing the relationship between the drum temperature and the clamping force in the third embodiment. In the graph of FIG. 7, the vertical axis represents the clamping force (braking force) and the horizontal axis represents the drum temperature. As shown in FIG. 7, when the drum temperature is lower than DT1, thermal expansion of the drum 12 does not occur (or is small even if it occurs), so the braking force applied by the lock control may be a normal target braking force. However, when the drum temperature is DT1 or higher, the thermal expansion of the drum 12 occurs significantly, so the braking force applied by the lock control is set to be smaller than the normal target braking force as the drum temperature increases. For example, when the drum temperature is DT2, the braking force at the time of lock control is set to P1, and the braking force when the drum 12 subsequently cools and contracts in the radial direction becomes the target braking force (P2).
 このようにして、第3実施形態の制動制御装置200によれば、EPB制御部204がロック制御時に与える制動力をドラム温度が高いほど小さいものとすることで、ドラム12の温度低下にともなう径収縮による過大な制動力(クランプ力)の発生を回避できる。この方法は、例えば、車両が平坦な路面上や傾斜の緩い路面上にいて、勾配検知センサ3による出力等に基いて、二輪のすべての制動力が無くても車両が動かないと判定した場合に、特に有効である。 As described above, according to the braking control device 200 of the third embodiment, the braking force applied by the EPB control unit 204 at the time of lock control is set to be smaller as the drum temperature is higher. Generation of excessive braking force (clamping force) due to contraction can be avoided. In this method, for example, when the vehicle is on a flat road surface or a road surface having a gentle slope, and it is determined that the vehicle does not move based on the output from the slope detection sensor 3 even if all the braking forces of the two wheels are not present. It is especially effective for
(第4実施形態)
 次に、第4実施形態について説明する。第1実施形態と同様の事項については重複する説明を適宜省略する。第4実施形態では、EPB制御部204は、ロック制御時のEPB電流値(EPBモータ60の駆動電流値)とリリース制御時のEPB電流値を比較することで、ドラム12の熱膨張の度合いを推定する。これについて、図8を参照して説明する。
(Fourth Embodiment)
Next, a fourth embodiment will be described. For items similar to those in the first embodiment, redundant description will be appropriately omitted. In the fourth embodiment, the EPB control unit 204 compares the EPB current value during lock control (drive current value of the EPB motor 60) with the EPB current value during release control to determine the degree of thermal expansion of the drum 12. presume. This will be described with reference to FIG.
 図8は、第4実施形態におけるロック制御時とリリース制御時のEPB電流値の経時的変化の様子を示すグラフである。EPB制御部204は、図8に示す、ロック制御における最後のEPB電流値I1(時刻t31)と、リリース制御における最初の突入電流直後に減少度合が緩くなるときのEPB電流値I2(時刻t32)を比較することで、ドラム12の熱膨張の度合いを推定することができる。そのために、EPB制御部204は、例えば、EPB電流値I1とEPB電流値I2の比較結果とそれに対応するドラム12の熱膨張の度合いに関する情報を予め記憶しておけばよい。 FIG. 8 is a graph showing how the EPB current value changes with time during lock control and release control in the fourth embodiment. The EPB control unit 204 shown in FIG. 8 shows the last EPB current value I1 (time t31) in the lock control and the EPB current value I2 (time t32) when the decrease degree becomes gentle immediately after the first inrush current in the release control. The degree of thermal expansion of the drum 12 can be estimated by comparing Therefore, the EPB control unit 204 may previously store, for example, the comparison result of the EPB current value I1 and the EPB current value I2 and the information about the degree of thermal expansion of the drum 12 corresponding thereto.
 したがって、EPB制御部204は、まず、ロック制御を行った後、クランプ力がリリース動作可能な最大クランプ力を超える可能性が発生するときより前にリリース制御を実行する。そして、その後、EPB制御部204は、EPB電流値I1とEPB電流値I2を比較してドラム12の熱膨張の度合いを推定する。そうすることで、EPB制御部204は、そのドラム12の熱膨張の度合いに応じてクランプ力を弱めるためのリリース制御を適宜実行することができる。この方法によれば、ドラム12の熱膨張の度合いを推定するために、車速やブレーキ動作の履歴情報が不要となる。 Therefore, the EPB control unit 204 first performs the lock control and then executes the release control before the possibility that the clamp force exceeds the maximum clamp force at which the release operation can be performed. Then, after that, the EPB control unit 204 estimates the degree of thermal expansion of the drum 12 by comparing the EPB current value I1 and the EPB current value I2. By doing so, the EPB control unit 204 can appropriately execute release control for weakening the clamping force according to the degree of thermal expansion of the drum 12. According to this method, in order to estimate the degree of thermal expansion of the drum 12, the vehicle speed and the history information of the brake operation are unnecessary.
 以上、本発明の実施形態を説明したが、上述した実施形態はあくまで一例であって、発明の範囲を限定することは意図していない。上述した新規な実施形態は、様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、または変更を行うことができる。また、上述した実施形態およびその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 The embodiments of the present invention have been described above, but the above-described embodiments are merely examples, and are not intended to limit the scope of the invention. The novel embodiment described above can be implemented in various forms, and various omissions, replacements, or changes can be made without departing from the spirit of the invention. Further, the above-described embodiments and modifications thereof are included in the scope and the gist of the invention, and are also included in the invention described in the claims and its equivalent scope.

Claims (7)

  1.  車両の複数の車輪に対して設けられた電動ドラムブレーキ装置を制御する制動制御装置であって、
     前記電動ドラムブレーキ装置におけるモータを回転させることによって制動部材を被制動部材の内周面に当接させて制動力を増加させるロック制御、および、前記モータを回転させることによって前記制動力を減少させるリリース制御を実行することで、前記電動ドラムブレーキ装置による制動を制御する制御部を備え、
     前記制御部は、前記電動ドラムブレーキ装置による制動を制御する場合に、ブレーキドラムの温度を取得または推定し、前記温度に基いて、その後に前記ブレーキドラムが冷却して径方向に収縮したときに制動力が所定の上限制動力を超えないように、前記ロック制御、および、前記リリース制御の少なくともいずれかにより前記制動力を調整する制動力調整制御を実行する、制動制御装置。
    A braking control device for controlling an electric drum brake device provided for a plurality of wheels of a vehicle,
    Lock control for increasing the braking force by bringing the braking member into contact with the inner peripheral surface of the member to be braked by rotating the motor in the electric drum brake device, and reducing the braking force by rotating the motor By performing a release control, a control unit for controlling braking by the electric drum brake device is provided,
    When controlling the braking by the electric drum brake device, the control unit acquires or estimates the temperature of the brake drum, and based on the temperature, when the brake drum subsequently cools and contracts in the radial direction. A braking control device that executes a braking force adjustment control that adjusts the braking force by at least one of the lock control and the release control so that the braking force does not exceed a predetermined upper limit braking force.
  2.  前記制御部は、前記制動力調整制御を繰り返し実行する、請求項1に記載の制動制御装置。 The braking control device according to claim 1, wherein the control unit repeatedly executes the braking force adjustment control.
  3.  前記制御部は、前記制動力調整制御を実行する場合に、前記温度に基いて、その後に前記ブレーキドラムが冷却して径方向に収縮したときの制動力が前記車両の停車状態を保持するために必要な目標制動力となるように、前記ロック制御を実行する、請求項1または請求項2に記載の制動制御装置。 When the control unit executes the braking force adjustment control, based on the temperature, the braking force when the brake drum cools and contracts in the radial direction thereafter holds the stopped state of the vehicle. The braking control device according to claim 1 or 2, wherein the lock control is executed so that a target braking force required for the above is obtained.
  4.  前記制御部は、前記制御部が前記車両の停車状態を保持するために必要な目標制動力を発生させなくても、前記電動ドラムブレーキ装置とは異なる保持手段により前記車両の停車状態を保持可能な状態にあると判断した場合に、前記制動力調整制御を実行する、請求項1から請求項3のいずれか一項に記載の制動制御装置。 Even if the control unit does not generate the target braking force required to maintain the stopped state of the vehicle, the control unit can hold the stopped state of the vehicle by a holding unit different from the electric drum brake device. The braking control device according to any one of claims 1 to 3, which executes the braking force adjustment control when it is determined that the braking control device is in such a state.
  5.  前記制御部は、前記制御部が前記車両の停車状態を保持するために必要な目標制動力を発生させなくても、前記電動ドラムブレーキ装置とは異なる保持手段により前記車両を停車状態に保持可能にした後に、前記制動力調整制御を実行する、請求項1から請求項3のいずれか一項に記載の制動制御装置。 The control unit can hold the vehicle in the stopped state by a holding unit different from the electric drum brake device, even if the control unit does not generate the target braking force required to maintain the stopped state of the vehicle. The braking control device according to claim 1, wherein the braking force adjustment control is executed after the setting.
  6.  前記制御部は、前記電動ドラムブレーキ装置が設けられている前記複数の車輪のうちのいずれか一輪のみに発生している前記制動力で前記車両の停車状態を保持できると判断した後、または、前記一輪のみで前記車両の停車状態を保持できるように前記制動力を増加させた後、前記一輪以外の前記車輪に対して前記制動力調整制御を実行する、請求項1または請求項2に記載の制動制御装置。 After the controller determines that it is possible to maintain the stopped state of the vehicle by the braking force generated only on one of the plurality of wheels provided with the electric drum brake device, or The braking force adjustment control is executed for the wheels other than the one wheel after increasing the braking force so that the vehicle can be held in a stopped state by only the one wheel. Braking control device.
  7.  前記制御部は、前記制動力調整制御を実行する前に、前記リリース制御を実施し、前記モータの電流値から前記ブレーキドラムが冷却して径方向に収縮したときの熱収縮量を推定し、前記制動力調整制御による前記制動力の調整量、および、前記制動力調整制御を実行するタイミングの少なくともいずれかを決定する、請求項1から請求項3のいずれか一項に記載の制動制御装置。
     
    The control unit performs the release control before executing the braking force adjustment control, and estimates the heat shrinkage amount when the brake drum cools and contracts in the radial direction from the current value of the motor, The braking control device according to any one of claims 1 to 3, wherein at least one of an amount of adjustment of the braking force by the braking force adjustment control and a timing of executing the braking force adjustment control is determined. ..
PCT/JP2019/042112 2018-10-29 2019-10-28 Braking control device WO2020090706A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018203007A JP7155876B2 (en) 2018-10-29 2018-10-29 Braking control device
JP2018-203007 2018-10-29

Publications (1)

Publication Number Publication Date
WO2020090706A1 true WO2020090706A1 (en) 2020-05-07

Family

ID=70462061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042112 WO2020090706A1 (en) 2018-10-29 2019-10-28 Braking control device

Country Status (2)

Country Link
JP (1) JP7155876B2 (en)
WO (1) WO2020090706A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220084689A (en) * 2020-12-14 2022-06-21 주식회사 만도 Motor-driven drum brake system and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009509867A (en) * 2005-10-05 2009-03-12 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for compensating for cooling of an automatic parking brake and system using this method
JP2016089903A (en) * 2014-10-31 2016-05-23 日立オートモティブシステムズ株式会社 Brake device
JP2017501357A (en) * 2013-12-30 2017-01-12 シャシー ブレイクス インターナショナル ベー.フェー.Chassis Brakes International B.V. Drum brake device including parking brake operating in duo servo mode, vehicle and assembly method related thereto
JP2017502228A (en) * 2013-12-30 2017-01-19 シャシー ブレイクス インターナショナル ベー.フェー.Chassis Brakes International B.V. Actuator having irreversible screw nut system, drum brake, and brake device including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009509867A (en) * 2005-10-05 2009-03-12 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for compensating for cooling of an automatic parking brake and system using this method
JP2017501357A (en) * 2013-12-30 2017-01-12 シャシー ブレイクス インターナショナル ベー.フェー.Chassis Brakes International B.V. Drum brake device including parking brake operating in duo servo mode, vehicle and assembly method related thereto
JP2017502228A (en) * 2013-12-30 2017-01-19 シャシー ブレイクス インターナショナル ベー.フェー.Chassis Brakes International B.V. Actuator having irreversible screw nut system, drum brake, and brake device including the same
JP2016089903A (en) * 2014-10-31 2016-05-23 日立オートモティブシステムズ株式会社 Brake device

Also Published As

Publication number Publication date
JP2020069828A (en) 2020-05-07
JP7155876B2 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
KR101960114B1 (en) Actuator system and operating method for an actuator system
JP6622796B2 (en) Method for implementing parking brake operation, control unit, and automated parking brake
US10259439B2 (en) Electric parking brake control and method
KR102113933B1 (en) Brake system and method for operating a brake system
JP7072087B2 (en) Electric brake device
KR102307032B1 (en) Sensor device for a brake system equipped with an electromechanical brake booster and method for determining a braking request specification to a brake system equipped with an electromechanical brake booster
US8991943B2 (en) Automatic parking brake having a slip controller
WO2020090706A1 (en) Braking control device
JP6737733B2 (en) Vehicle braking control device
JP2011042187A (en) Brake control device of motorcycle
JP6531740B2 (en) Brake control device
CN110614986B (en) Method for operating a brake system of a motor vehicle, and control device and brake system
JP6677205B2 (en) Vehicle braking system
JP6540643B2 (en) Brake control device
JP6594002B2 (en) Brake device for vehicle
WO2020004525A1 (en) Brake control device
US9340185B1 (en) Methods and apparatus for braking
JP7218487B2 (en) electric parking brake system
JP6886011B2 (en) How to operate a hydraulic braking system, hydraulic braking system
JP2006137382A (en) Brake fluid pressure control device
JP7327154B2 (en) Braking control device
JP2006027453A (en) Solenoid control valve controlling device and braking liquid pressure controlling device
US11958453B2 (en) Method for operating a brake system, and brake system
CN110091845B (en) Method and device for operating an automated parking brake
WO2024029316A1 (en) Brake device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19877711

Country of ref document: EP

Kind code of ref document: A1