WO2020090589A1 - Travel route generating system, travel route generating method, travel route generating program, and drone - Google Patents

Travel route generating system, travel route generating method, travel route generating program, and drone Download PDF

Info

Publication number
WO2020090589A1
WO2020090589A1 PCT/JP2019/041549 JP2019041549W WO2020090589A1 WO 2020090589 A1 WO2020090589 A1 WO 2020090589A1 JP 2019041549 W JP2019041549 W JP 2019041549W WO 2020090589 A1 WO2020090589 A1 WO 2020090589A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
area
reciprocating
drone
route generation
Prior art date
Application number
PCT/JP2019/041549
Other languages
French (fr)
Japanese (ja)
Inventor
千大 和氣
洋 柳下
泰 村雲
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2020505301A priority Critical patent/JP6851106B2/en
Priority to CN201980067873.5A priority patent/CN112867395B/en
Publication of WO2020090589A1 publication Critical patent/WO2020090589A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]

Definitions

  • the present invention relates to a driving route generation system, a driving route generation method, a driving route generation program, and a drone.
  • drones multicopters
  • spraying chemicals such as pesticides and liquid fertilizers on agricultural land (field) (for example, Patent Document 1).
  • field for example, Patent Document 1
  • drones are more suitable than manned planes and helicopters.
  • Patent Document 3 discloses a traveling route generation system that generates a reciprocating traveling route for traveling back and forth in a field and a traveling traveling route for traveling along an outer peripheral shape. This system is assumed to be a ground-running machine such as a seedling planting device.
  • Patent Document 4 discloses a traveling route generation device that generates a route when a contour line of a field has a concave portion that locally enters inside.
  • Patent Document 5 discloses an autonomous traveling route generation system that generates a traveling route that bypasses an obstacle existing in the traveling region.
  • a driving route generation system that generates a driving route for autonomous driving that can move efficiently.
  • a driving route generation system is a route generation unit that generates a driving route in which a mobile device moves to the target area based on the acquired information of the target area.
  • the route generation unit reciprocates a plurality of times in the target area and scans a reciprocating operation route such that adjacent reciprocating routes or adjoining outward routes and return routes expand or narrow from the outward route starting point side to the outward route ending point side. To generate.
  • the route generation unit reciprocates a plurality of times in an inner peripheral area inside the outer peripheral area and an outer peripheral route generation unit that generates a circular operation route that circulates an annular outer peripheral area that forms the outer edge of the target area It is also possible to further include an inner path generation unit that generates the reciprocating operation path that reciprocally scans such that the paths are adjacent to each other or the advancing path and the returning path are expanded or narrowed from the outward path start side to the outward path end side.
  • the inner path generation unit divides the inner area into a plurality of reciprocating areas, generates an operation path that reciprocates and scans each of the reciprocating areas, and connects the plurality of operation paths to the inner area.
  • the reciprocating operation route may be generated.
  • the round-trip area may be divided into a triangular shape or a quadrangular shape.
  • the reciprocating operation route is configured by one or a plurality of pairs of reciprocating routes forming a pair of an outward route and a returning route, and in the target area, one or a plurality of overlapping effective widths of the moving devices in the reciprocating routes adjacent to each other. And the one or more gap regions that are not scanned by any of the reciprocating paths that are adjacent to each other may be arranged.
  • the widths of the plurality of overlapping areas may be equal to each other, and the widths of the plurality of gap areas may be equal to each other.
  • the inner path generation unit stores in advance maximum allowable widths of the overlapping area and the gap area, and determines that the entire inner area cannot be scanned even if the overlapping area and the gap area having the maximum allowable widths are allowed. At this time, the inner area may be divided into a plurality of reciprocating areas.
  • the inner path generation unit moves along the longest long side of the edges that define the outer edge of the inner area, and changes the direction on the path along the shortest short side to reciprocate the inner area.
  • a reciprocating operation route for scanning the inner area may be generated by sequentially moving in a direction different from the reciprocating direction.
  • the inner route generation unit may be able to determine the number of round trips of the driving route based on the length of the short side among the end sides that partition the outer edge of the inner area.
  • the inner route generation unit decelerates when entering the return region from the forward route in a turn region that connects the forward route and the return route of the reciprocating operation route, and accelerates when entering the return route from the return region.
  • a movement plan may be generated.
  • the inner route generation unit may generate the reciprocating operation route such that at least a part of the turn-back region connecting the forward and return routes of the reciprocating operation route overlaps the outer peripheral area.
  • the outer peripheral path generation unit moves the movement of the first movement in which the movement apparatus is moved forward and backward to bend the outer edge of the outer circumferential area, and the second movement including the movement in which the movement apparatus is rotated while moving backward. It is also possible to be able to generate a driving route to be performed by the device.
  • the route generation unit may be capable of generating a sub-scanning route that continuously scans a turn-back region in the reciprocating operation route that returns from a forward route to a return route in a direction intersecting with the forward or return route of the reciprocating operation route.
  • the route generation unit may generate the reciprocating operation route such that at least a part of the turn-back area of the reciprocating operation route that returns from the outward route to the return route overlaps the sub-scanning route.
  • a driving route generation method is a route generation for generating a driving route in which a mobile device moves to the target area based on the acquired coordinate information of the target area.
  • the step includes a step of generating a reciprocating path that scans the target area by reciprocating radially.
  • a driving route generation program is a route for generating a driving route in which a mobile device moves to the target area based on the acquired coordinate information of the target area.
  • a generation command is executed by a computer, and the route generation command generates a reciprocating route that scans the target area by reciprocating radially.
  • the computer program can be provided by being downloaded via a network such as the Internet, or can be provided by being recorded in various computer-readable recording media such as a CD-ROM.
  • a drone is a drone capable of receiving a driving route generated by a driving route generation system and flying along the driving route.
  • the route generation system is the driving route generation device described in any of the above.
  • a drone is a drone including a route generation unit and a flight control unit, and the route generation unit is the route according to any one of the above. It is a generator.
  • FIG. 1 is a plan view showing an embodiment of a drone according to the present invention. It is a front view of the said drone. It is a right view of the said drone. It is a rear view of the drone. It is a perspective view of the drone. It is the whole conceptual diagram of the medicine spraying system which the drone has. It is a schematic diagram showing the control function of the said drone.
  • FIG. 1 is an overall conceptual diagram of a driving route generation system according to the present invention, showing a state of a driving route generation device, a drone, a base station, a manipulator, and a coordinate surveying device connected via a network.
  • FIG. 3 is a functional block diagram of the driving route generation device.
  • FIG. 1 is an overall conceptual diagram of a driving route generation system according to the present invention, showing a state of a driving route generation device, a drone, a base station, a manipulator, and a coordinate surveying device connected via a network.
  • FIG. 3 is a functional block diagram of the driving route generation device
  • FIG. 6 is a schematic diagram showing an example of a farm field in which the driving route generation device generates a driving route, an inaccessible area determined in the vicinity of the farm field, and a movable area generated in the farm field.
  • FIG. 6 is a schematic diagram showing how the movable area is divided into an irregular area, an outer peripheral area, and an inner area.
  • the area division necessity determination unit included in the driving route generation device is an example of a moving area that performs a process of dividing an area, and (a) an example of a moving area having a concave portion with two sides, (b) three sides It is an example of a moving area having a concave portion composed of.
  • 6 is a flowchart showing a process in which the area division necessity determination unit divides a moving area.
  • FIG. 7 is a flowchart showing a step of dividing the inside area into a plurality of round-trip areas and generating a path by the inside path generation unit. It is a figure which shows the 1st example of the driving route produced
  • FIG. 8 is a diagram showing a fourth example of driving routes generated in the route generation target area.
  • the drone regardless of power means (electric power, prime mover, etc.), control system (whether wireless or wired, and whether it is an autonomous flight type or a manual control type), It refers to all aircraft with multiple rotors.
  • the drone is an example of a mobile device, and can appropriately receive information on a driving route generated by the driving route generation device according to the present invention and fly along the driving route.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are It is a means to fly the drone 100, and in consideration of the stability of flight, the size of the aircraft, and the balance of battery consumption, eight aircraft (four sets of two-stage rotary blades) are provided.
  • the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotor blades 101-1a, 101-1b, 101-2a, 101-. 2b, 101-3a, 101-3b, 101-4a, 101-4b is a means for rotating (typically an electric motor, but may be an engine, etc.), one for each rotor Has been.
  • the motor 102 is an example of a propulsion device.
  • the upper and lower rotor blades (eg 101-1a and 101-1b) and their corresponding motors (eg 102-1a and 102-1b) in one set are for drone flight stability etc.
  • the axes are collinear and rotate in opposite directions.
  • the radial member for supporting the propeller guard which is provided so that the rotor does not interfere with foreign matter, is not horizontal but has a tower-like structure. This is to promote the buckling of the member to the outside of the rotor blade at the time of collision and prevent the member from interfering with the rotor.
  • the drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward and are provided in four units.
  • the term "chemicals” generally refers to pesticides, herbicides, liquid fertilizers, insecticides, seeds, and liquids or powders applied to fields such as water.
  • the medicine tank 104 is a tank for storing the medicine to be sprayed, and is provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance.
  • the drug hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the drug tank 104 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve to support the chemical nozzle.
  • the pump 106 is a means for discharging the medicine from the nozzle.
  • FIG. 6 shows an overall conceptual diagram of a system using an example of a drug spraying application of the drone 100 according to the present invention.
  • the operation unit 401 is a means for transmitting a command to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, drug amount, battery level, camera image, etc.). Yes, and may be realized by a portable information device such as a general tablet terminal that runs a computer program.
  • the drone 100 according to the present invention is controlled to perform autonomous flight, it may be configured so that it can be manually operated during basic operations such as takeoff and return, and during emergencies.
  • an emergency operating device (not shown) that has a function dedicated to emergency stop (a large emergency stop button, etc. is provided so that the emergency operating device can respond quickly in an emergency). It may be a dedicated device with).
  • the operation unit 401 and the drone 100 perform wireless communication by Wi-Fi or the like.
  • the field 403 is a rice field, a field, or the like to which the drug is sprayed by the drone 100.
  • the topography of the farm field 403 is complicated, and there are cases where the topographic map cannot be obtained in advance, or the topographic map and the situation at the site are inconsistent.
  • the farm field 403 is adjacent to a house, a hospital, a school, another crop farm field, a road, a railroad, and the like.
  • the base station 404 is a device that provides a master device function of Wi-Fi communication, etc., and may also function as an RTK-GPS base station to provide an accurate position of the drone 100 (Wi- The base unit function of Fi communication and RTK-GPS base station may be independent devices).
  • the farm cloud 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the operation unit 401 via a mobile phone line or the like.
  • the farming cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growing condition of the crop, and perform a process for determining a flight route. Further, the drone 100 may be provided with the stored topographical information of the field 403 and the like. In addition, the history of the flight of the drone 100 and captured images may be accumulated and various analysis processes may be performed.
  • the drone 100 takes off from a departure / arrival point 406 outside the field 403, and returns to the departure / arrival point 406 after spraying a drug on the field 403 or when it becomes necessary to replenish or charge the drug.
  • the flight route (intrusion route) from the landing point 406 to the target field 403 may be saved in advance in the farm cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
  • FIG. 7 is a block diagram showing the control function of the embodiment of the drug spraying drone according to the present invention.
  • the flight controller 501 is a component that controls the entire drone, and specifically may be an embedded computer including a CPU, a memory, related software, and the like.
  • the flight controller 501 based on the input information received from the operation unit 401 and the input information obtained from various sensors described later, via the control means such as ESC (Electronic Speed Control), the motor 102-1a, 102-1b , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are controlled to control the flight of the drone 100.
  • ESC Electronic Speed Control
  • the actual rotation speed of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b is fed back to the flight controller 501 to perform normal rotation. It is configured so that it can be monitored. Alternatively, the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
  • the flight controller 501 is an example of a flight controller.
  • the software used by the flight controller 501 can be rewritten through a storage medium or the like for function expansion / change, problem correction, or the like, or through communication means such as Wi-Fi communication or USB.
  • encryption, checksum, electronic signature, virus check software, etc. are used to protect the software from being rewritten by unauthorized software.
  • a part of the calculation process used by the flight controller 501 for control may be executed by another computer existing on the operation unit 401, the farm cloud 405, or another place. Since the flight controller 501 is highly important, some or all of its constituent elements may be duplicated.
  • the battery 502 is a means of supplying power to the flight controller 501 and other components of the drone and may be rechargeable.
  • the battery 502 is connected to the flight controller 501 via a power supply unit including a fuse or a circuit breaker.
  • the battery 502 may be a smart battery having a function of transmitting its internal state (amount of stored electricity, accumulated use time, etc.) to the flight controller 501 in addition to the power supply function.
  • the flight controller 501 exchanges with the operation unit 401 via the Wi-Fi slave unit function 503 and further via the base station 404, receives a necessary command from the operation unit 401, and outputs necessary information to the operation unit. Can be sent to 401.
  • the communication may be encrypted so as to prevent illegal acts such as interception, spoofing, and hijacking of equipment.
  • the base station 404 has a function of an RTK-GPS base station in addition to a communication function by Wi-Fi.
  • the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is highly important, it may be duplicated / multiplexed, and each redundant GPS module 504 should use a different satellite to cope with the failure of a specific GPS satellite. It may be controlled.
  • the 6-axis gyro sensor 505 is means for measuring accelerations of the drone body in three directions orthogonal to each other (further, means for calculating velocity by integration of accelerations).
  • the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone body in the three directions described above, that is, the angular velocity.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism.
  • the atmospheric pressure sensor 507 is a means for measuring the atmospheric pressure, and can indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of laser light, and may be an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone body and the ground surface by using the reflection of sound waves such as ultrasonic waves.
  • These sensors may be selected depending on the drone's cost goals and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the tilt of the machine body, a wind force sensor for measuring wind force, and the like may be added. Further, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them, and if it fails, it may switch to another sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
  • the flow rate sensor 510 is a means for measuring the flow rate of the medicine, and is provided at a plurality of places on the path from the medicine tank 104 to the medicine nozzle 103.
  • the liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become equal to or less than a predetermined amount.
  • the multi-spectral camera 512 is a means for photographing the field 403 and acquiring data for image analysis.
  • the obstacle detection camera 513 is a camera for detecting a drone obstacle and is a device different from the multispectral camera 512 because the image characteristics and the lens orientation are different from those of the multispectral camera 512.
  • the switch 514 is a means for the user 402 of the drone 100 to make various settings.
  • the obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard portion has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone. ..
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are open.
  • the drug injection port sensor 517 is a sensor that detects that the injection port of the drug tank 104 is open. These sensors may be selected according to the drone's cost targets and performance requirements, and may be duplicated or multiplexed.
  • a sensor may be provided at the base station 404 outside the drone 100, the operation device 401, or at another place, and the read information may be transmitted to the drone.
  • a wind sensor may be provided in the base station 404, and information regarding wind force / wind direction may be transmitted to the drone 100 via Wi-Fi communication.
  • the flight controller 501 sends a control signal to the pump 106 to adjust the medicine ejection amount and stop the medicine ejection.
  • the current status of the pump 106 (for example, the number of rotations) is fed back to the flight controller 501.
  • the LED 107 is a display means for informing the drone operator of the status of the drone.
  • a display means such as a liquid crystal display may be used instead of the LED or in addition to the LED.
  • the buzzer 518 is an output means for notifying a drone state (especially an error state) by a voice signal.
  • the Wi-Fi slave device function 503 is an optional component for communicating with an external computer or the like, for example, for software transfer, in addition to the operation unit 401.
  • other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used.
  • the speaker 520 is an output means for notifying the drone state (particularly an error state) by the recorded human voice, synthesized voice or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight, and in such a case, it is effective to communicate the situation by voice.
  • the warning light 521 is a display means such as a strobe light for notifying the state of the drone (in particular, an error state). These input / output means may be selected according to the cost target and performance requirements of the drone, or may be duplicated / multiplexed.
  • the drone 100 needs an operation route for efficiently moving in fields of various shapes. That is, the drone 100 needs to fly all over the field when spraying a drug in a field or when monitoring the field. In that case, it is possible to reduce battery consumption and flight time by avoiding the same route. Further, in spraying a drug, if the drug is sprayed on the same route, the concentration of the drug under the route may increase. Therefore, the driving route generation system generates a driving route for the moving device such as the drone 100 to efficiently move based on the coordinate information of the field.
  • the driving route generation device 1 is connected to the drone 100, the base station 404, and the coordinate survey device 2 via the network NW.
  • the function of the driving route generation device 1 may be on the farm cloud 405 or may be a separate device. Further, the driving route generation device 1 may be included in the drone 100.
  • the farm field is an example of the target area.
  • Drone 100 is an example of a mobile device.
  • the driving route generation device 1, the drone 100, the base station 404, and the coordinate survey device 2 constitute a driving route generation system 1000.
  • the coordinate surveying device 2 is a device having the function of a mobile station of RTK-GPS, and can measure the coordinate information of the field.
  • the coordinate surveying device 2 is a small device that can be held and walked by a user, and is, for example, a rod-shaped device.
  • the coordinate surveying device 2 may be a device such as a cane having a length such that the user can stand upright and hold the upper end with the lower end attached to the ground.
  • the number of coordinate surveying devices 2 that can be used to read the coordinate information of a certain field may be one or more. According to the configuration in which the coordinate information about one farm field can be measured by the plurality of coordinate surveying devices 2, a plurality of users can hold the coordinate surveying device 2 and walk in the farm field. It can be completed in a short time.
  • the coordinate surveying device 2 can measure information on obstacles in the field.
  • the obstacles include walls, slopes, electric poles, electric wires, and the like at which the drone 100 may collide, and various objects that do not require drug spraying or monitoring.
  • the coordinate survey device 2 includes an input unit 201, a coordinate detection unit 202, and a transmission unit 203.
  • the input unit 201 is provided at the upper end of the coordinate surveying device 2, and is, for example, a button that receives a user's press. The user presses the button of the input unit 201 when measuring the coordinates of the lower end of the coordinate surveying device 2.
  • the input unit 201 is configured to be able to input by discriminating whether the input information is the coordinates relating to the outer circumference of the field or the coordinates of the outer circumference of the obstacle. Furthermore, the input unit 201 can input the coordinates of the outer circumference of the obstacle in association with the type of the obstacle.
  • the coordinate detection unit 202 is a functional unit that can appropriately communicate with the base station 404 and detect the three-dimensional coordinates of the lower end of the coordinate surveying device 2.
  • the transmission unit 203 is a functional unit that transmits the three-dimensional coordinates of the lower end of the coordinate surveying device 2 at the time of the input to the operation unit 401 or the driving route generation device 1 via the network NW based on the input to the input unit 201. is there.
  • the transmitting unit 203 transmits the three-dimensional coordinates together with the pointing order.
  • the user moves the field with the coordinate surveying device 2.
  • the three-dimensional coordinates of the field are acquired.
  • the user performs pointing with the input unit 201 on the end point or the end side of the field.
  • the user performs pointing with the input unit 201 on the end point or the end side of the obstacle.
  • 3D coordinates on the endpoints or edges of the field that are pointed and transmitted are received by the driving route generation device 1 by distinguishing between the 3D coordinates of the field periphery and the 3D coordinates of obstacles.
  • the three-dimensional coordinates to be pointed may be received by the receiving unit 4011 of the operation device 401 and displayed by the display unit 4012.
  • the operation unit 401 determines whether the received three-dimensional coordinates are suitable as the three-dimensional coordinates of the field outer circumference or the obstacle, and if it is determined that the re-measurement is necessary, the operation unit 401 prompts the user through the display unit 4012. You may encourage surveying.
  • the driving route generation device 1 includes a target area information acquisition unit 10, a movement permitted area generation unit 20, an area planning unit 30, a route generation unit 40, and a route selection unit 50.
  • the target area information acquisition unit 10 is a functional unit that acquires information on the three-dimensional coordinates transmitted from the coordinate surveying device 2.
  • the movement-permitted area generation unit 20 specifies the movement-permitted area 80i to which the drone 100 moves in the field 80 based on the three-dimensional coordinates acquired by the target area information acquisition unit 10.
  • the movement permission area generation unit 20 has an entry prohibition area determination unit 21 and a movement permission area determination unit 22.
  • the prohibited area determining unit 21 determines the prohibited area 81b of the drone 100 based on the three-dimensional coordinates of the obstacles 81a, 82a, 83a, 84a, 85a acquired by the target area information acquisition unit 10 and the type of the obstacle.
  • , 82b, 83b, 84b, 85b is a functional unit for determining.
  • the prohibited areas 81b-85b are areas including the obstacles 81a-85a and the areas around the obstacles.
  • the no-entry areas 81b-85b are areas that are defined in the horizontal direction and the height direction and have a three-dimensional spread, and are, for example, rectangular parallelepiped areas drawn around the obstacles 81a-85a.
  • the prohibited area may be a cylindrical or spherical area centered around an obstacle. Since the drone 100 flies over the air, it is possible to fly over the obstacle depending on the size of the obstacle in the height direction. According to the configuration in which the size of the obstacle in the height direction does not consider the sky above the obstacle as an inaccessible area, it is possible to efficiently fly in the field without circumventing the obstacle excessively.
  • the distance from the outer edge of the obstacle to the outer edge of the no-entry area 81b-85b is determined by the type of the obstacle 81a-85a.
  • the greater the risk of collision of the drone 100 the greater the distance from the outer edge of the obstacle to the outer edge of the no-entry area 81b-85b.
  • a range of 50 cm from the outer edge of the house is the entry prohibited area, while a range of 80 cm from the outer edge of the electric wire is the entry prohibited area.
  • the no-entry area determination unit 21 stores in advance an obstacle table in which the type of obstacle and the size of the no-entry area are associated with each other, and determines the size of the no-entry area according to the type of obstacle acquired. To do.
  • the movement permission area determining unit 22 is a functional unit that determines the movement permission area 80i. Regarding the plane direction of the movement permitted area 80i, it is assumed that the coordinates on the plane acquired by the target area information acquisition unit 10 of the field 80 are at the outer peripheral position of the field 80.
  • the height-wise range of the movement permitted area 80i is determined by summing the safety margins when controlling flight.
  • the movement-permitted area determining unit 22 determines the movement-permitted area 80i by removing the entry-prohibited areas 81b-85b from the inner area surrounded by the three-dimensional coordinates.
  • the area planning unit 30 is a functional unit that divides the migration permission area 80i determined by the migration permission area generation unit 20 into regions that fly in mutually different route patterns to formulate.
  • the area planning unit 30 can divide the inside of the movement permission area 80i into one or a plurality of shaping areas 81i and one or a plurality of irregular areas 82i, 83) each having a smaller area than the shaping area 81i. ..
  • route pattern is a rule for automatically generating a route according to the shape of a certain area in order to fly comprehensively.
  • Route patterns are roughly classified into route patterns for shaped areas and route patterns for irregular areas.
  • the route pattern for the shaping area 81i includes an outer peripheral pattern that circulates around the outer periphery of the shaping area 81i and an inner pattern that reciprocates inside the circular route.
  • an area flying by the outer peripheral pattern is called an outer peripheral area 811i
  • an area flying by the inner pattern is called an inner area 812i.
  • the area planning unit 30 includes an area division necessity determination unit 31, a shaping area generation unit 32, and a variant area generation unit 33.
  • the area division necessity determination unit 31 is a functional unit that determines the necessity of dividing the movement permission area into a plurality of shaping areas.
  • the area division necessity determination unit 31 divides the movement permission area particularly when the movement permission area has a concave polygonal shape when viewed from above.
  • the concave polygon is a polygon in which at least one of the inner angles of the polygon is an angle exceeding 180 °, in other words, a polygon having a concave shape.
  • a process for the area division necessity determination unit 31 to determine the necessity of division of the movement permitted area 90i and perform area division will be described with reference to FIGS. 12 (a), 12 (b), and 13.
  • the movement-permitted area 90i shown in FIG. 12 (a) has a recess 93i composed of two sides 91i and 92i when viewed from above. Therefore, as shown in FIG. 13, when the area division necessity determination unit 31 determines that there is a recess 93i composed of two sides (S11), the longer side 91i of the two sides 91i, 92i is the determination target side. As, the length is calculated (S12). The area division necessity determination unit 31 does not perform area division when a recess cannot be found in the movement permitted area 90i.
  • the area division necessity determination unit 31 determines that the area including the side 91i needs to be divided (S13), The movement permitted area 90i is divided into two areas 901i and 902i (S14). Next, it is determined whether or not there is a recess in the area after division (S15). When the concave portion is found, the process returns to step S12. If no recess is found, it is determined that no further division is necessary, and the process ends.
  • the dividing line 94i is a side that constitutes an edge of the smaller area after division, and is determined to be parallel to the edge 95i that faces the dividing line 94i. According to this configuration, when the drone 100 flies back and forth in the area after the division, it is possible to fly more comprehensively in the area.
  • At least one shaping area can be generated for each of the plurality of areas generated by being divided by the area division necessity determination unit 31.
  • the shaping area 81i has such a shape and area that an outer peripheral area 811i and an inner area 812i can be generated.
  • the outer peripheral area 811i is, for example, an annular area having the effective width of the drone 100, and the inner area 812i needs to have a width excluding the overlap allowable width from the effective width of the drone 100. Therefore, the area division necessity determination unit 31 divides the area when the length of the side (91i) is equal to or larger than three times the effective width of the drone 100 minus the allowable overlap width.
  • the effective width of the drone 100 is, for example, a drug spraying width in the case of a drug spraying drone. Further, the effective width of the drone 100 is the monitorable width in the case of the monitoring drone.
  • the movement permission area 100i shown in FIG. 12 (b) has a recess 110i formed by adjoining three sides of a side 111i, a side 112i, and a side 113i in this order when viewed from above. Therefore, as shown in FIG. 13, when the area division necessity determination unit 31 determines that there is a recess 110i composed of three sides 111i to 113i (S11), the longer side of the opposing sides 111i, 113i of the recess 110i is determined. The length is calculated by using the side 111i of (1) as a determination target side (S12).
  • the area division necessity determination unit 31 determines that the area including the side 111i needs to be divided (S13), The movement permitted area 100i is divided into two areas 1001i and 1002i by the dividing line (121i) (S14).
  • step S15 it is judged whether or not there is a recess in the area after division (S15).
  • the process returns to step S12.
  • the area division necessity determination unit 31 determines that the area after division needs to be further divided (S13), and the area 1001i is further divided into two areas 1003i and 1004i by the division line 122i. Divide (S14).
  • Dividing lines 121i and 122i are defined from both ends of the bottom edge 113i of the recess 110i toward the left and right edges 101i and 102i of the movement permitted area 100i.
  • the division lines 121i and 122i are sides that form the end sides of the smaller area after division, and are determined to be parallel to the opposite end sides 103i and 104i. According to this configuration, when the drone 100 flies back and forth in the area after the division, it is possible to fly more comprehensively in the area.
  • the area division necessity determination unit 31 may be configured to determine whether or not the target area is divided instead of the movement permission area.
  • the shaping area generation unit 32 is a functional unit that generates a shaping area for each of one or a plurality of areas generated by the area division necessity determination unit 31.
  • the shaping area generation unit 32 generates, as the shaping area 81i, the convex polygon having the largest area inside the movement permission area 80i.
  • a convex polygon is a polygon whose interior angles are all less than 180 °.
  • the shaping area generating unit 32 has an outer peripheral area generating unit 321 and an inner area generating unit 322.
  • the outer peripheral area generation unit 321 sets the annular area having the effective width of the drone 100, which forms the outer edge of the shaping area 81i, as the outer peripheral area 811i.
  • the inner area generation unit 322 sets the inner side of the outer peripheral area 811i as the inner area 812i.
  • the outer peripheral area 811i may have a width equal to or larger than the effective width of the drone 100.
  • the outer peripheral route generated by the outer peripheral route generating unit 41 which will be described later, may be a route that circles the outer peripheral area 811i multiple times.
  • the variant area generation unit 33 is a functional unit that generates a variant area for each of the one or more areas generated by the area division necessity determination unit 31.
  • the odd-shaped areas 82i and 83i are areas each having a smaller area than the shaping area 81i, and cannot define the outer peripheral area and the inner area. More specifically, in the irregular areas 82i and 83i, the length of the shortest side of the area is less than 3 times the effective width of the drone 100 minus the allowable overlap width. In the example of FIG. 11, two variant areas 82i and 83i are defined.
  • the route generation target area determination unit 34 is a functional unit that determines whether or not each of the areas 811i, 812i, 82i, and 83i to be created is a route generation area, and determines the route generation target area. is there. This is because the shaping area 81i and the odd-shaped areas 82i and 83i may not be able to be driven due to their shapes.
  • the route generation target area determination unit 34 determines whether or not the route generation is possible based on a predetermined value determined based on the driving performance of the drone 100.
  • the driving performance of the drone 100 includes an approach distance required for the drone 100 to reach uniform speed operation and a stopping distance required for the drone 100 to stop. In addition, the driving performance of the drone 100 includes the effective width in drug spraying and monitoring.
  • the route generation target area determination unit 34 determines the outer periphery. It is decided not to generate a route in the area 811i. For example, when the long side of the outer peripheral area 811i is less than the sum of the approach distance and the stop distance, it is determined that the route is not generated. Further, when the shortest side of the outer peripheral area 811i is less than the predetermined value determined based on the effective width of the drone 100, the route is not generated. More specifically, when the shortest side of the outer peripheral area 811i is less than the effective width of the drone 100, the route is not generated. This is because a route that goes around the outer peripheral area 811i cannot be generated when the value is less than the predetermined value.
  • the route generation target area determination unit 34 determines that the long side of the inner area 812i is less than a predetermined value determined based on the approach distance required for the drone 100 to reach uniform speed operation and the stop distance required for stopping. , Decide not to generate the route. For example, when the long side of the inner area 812i is less than the sum of the approach distance and the stop distance, it is determined that the route is not generated. When the shortest side of the inner area 812i is less than the predetermined value determined based on the effective width of the drone 100, it is determined that the route is not generated. More specifically, when the shortest side of the inner area 812i is less than twice the effective width of the drone 100 minus the allowable overlap value, no route is generated.
  • the route generation target area determination unit 34 determines whether or not the drone 100 can be driven for each of the irregular areas 82i and 83i to be created.
  • the route pattern for the odd-shaped areas 82i and 83i is a route that travels in one direction in the long side direction or a route that makes one round trip. Therefore, when the shortest side of the variant areas 82i, 83i is less than the predetermined value determined based on the effective width of drone 100, route generation target area determination unit 34 does not allow drone 100 to drive in the variant area. Make a decision. More specifically, when the shortest sides of the irregular areas 82i and 83i are less than the overlap tolerance, it is determined that the operation is not performed.
  • the overlap tolerance may be, for example, 10% of the effective width of the drone 100.
  • the drone 100 will not drive.
  • Make a decision For example, when the long sides of the odd-shaped areas 82i and 83i are less than the sum of the approach distance and the stop distance, driving is not performed.
  • the area planning unit 30 may send information on the area to be defined to the operation unit 401 and display it on the operation unit 401. Further, if there is an area in which driving is not possible, a warning may be displayed to that effect.
  • the outer peripheral area 811i, the inner area 812i, and the irregular area 83i are operable areas, and the irregular area 82i is an inoperable area.
  • the target area information acquisition unit 10 acquires coordinate information about the field (S21). In addition, the target area information acquisition unit 10 acquires coordinate information regarding the obstacle (S22). Note that steps S21 to S22 may be performed in any order and may be performed simultaneously.
  • the movement permission area generation unit 20 generates a movement permission area based on the coordinate information on the field and the obstacle (S23).
  • the area division necessity determination unit 31 determines whether or not the movement permission area needs to be divided based on the shape and size of the movement permission area (S24). When the division is necessary, the area division necessity determination unit 31 divides the movement permitted area into a plurality of areas (S25).
  • the shaping area generation unit 32 generates a shaping area in each of the movement permitted area or the plurality of areas divided by the area division necessity determination unit 31, and further generates an outer peripheral area and an inside area in each shaping area (S26). ).
  • the variant area generation unit 33 sets the areas other than the shaping area in the movement permitted area as variant areas (S27).
  • the route generation target area determination unit 34 determines whether or not the drone 100 can be operated for each of the specified areas (S28). When it is determined that the drone 100 cannot be driven, the route generation target area determination unit 34 removes the area from the movement permitted area (S29). Finally, the route generation target area determination unit 34 determines the drivable area as the route generation target area (S30).
  • the route generation unit 40 shown in FIG. 9 is a functional unit that generates a driving route in the route generation target area based on the route pattern.
  • the route generating unit 40 includes an outer peripheral route generating unit 41, an inner route generating unit 42, a variant area route generating unit 43, and a route connecting unit 44.
  • the outer peripheral route generation unit 41 is a functional unit that generates a circular driving route 811r in the outer peripheral area 811i.
  • the circular operation route 811r is a route that makes one or more rounds on the outer peripheral area 811i. Although it is counterclockwise in the present embodiment, it may be clockwise.
  • the outer peripheral route generation unit 41 performs different bending patterns on the drone 100 depending on whether the inner angle defined inside the outer peripheral area 811i is equal to or greater than a predetermined angle or less than the predetermined angle. It may be allowed to.
  • the drone 100 makes a forward turn that bends along the inner angle while moving forward and turning. More specifically, the drone 100 advances to the turning point 410p, turns at an angle corresponding to the interior angle at the turning point 410p, and then moves forward.
  • the forward turn is an example of the first turn.
  • the drone 100 advances to the turning point 411p located near the boundary line of the area, and then retreats along the route 412r.
  • the direction is changed by moving to the turning point 413p so that the rear part of the drone 100 is along another adjacent boundary line. That is, the drone 100 makes a four-figure turn to draw a "4".
  • the four-shaped turning is an example of the second turning.
  • the inner route generation unit 42 is a functional unit that generates a reciprocating operation route 812r in the inner area 812i.
  • the reciprocating operation route 812r is a route for reciprocatingly scanning the inner area 812i.
  • the reciprocating operation route 812r is continuously generated along the longest long side 813i direction of each side of the inner area 812i, and follows the shortest side 814i direction of the sides adjacent to the long side 813i. It is designed to make turns on the path.
  • the reciprocating operation route 812r is configured by connecting one or a plurality of pairs of reciprocating routes to each other.
  • the driving route along the long side 813i direction may or may not be parallel to the long side 813i. Further, the driving routes along the long side 813i direction may be parallel to each other or may not be parallel to each other.
  • the movement permitted area is divided into the outer area and the inner area, and the inner route generation unit generates the driving route that reciprocates and scans the inner area.
  • the route generation unit may generate the driving route that scans the entire movement permitted area without defining the outer area.
  • the inner route generation unit 42 further divides the inner area into one or a plurality of round-trip areas, generates a round-trip route that scans by reciprocating each, and connects these.
  • the polygon that defines the reciprocating area is triangular or quadrangular.
  • the inner path generation unit 42 uses the longest side as a reference side among the end sides that define the outer edge of the inner area, and makes one round trip based on the length of the shorter short side of the sides adjacent to the reference side. Determine the shape of the area.
  • the reference side is the long side 803i.
  • the inner path generation unit 42 starts from the end of the short side 804i which is the shorter one of the sides adjacent to the long side 813i, moves along the long side 813i, and on the opposite side 805i facing the short side 814i.
  • the first round-trip path 71r forming a pair of an outward path and a return path is generated.
  • the route width in the figure indicates the effective width of the drone 100.
  • the effective width of the drone 100 is, for example, a width with which the drug spraying drone 100 can spray the drug by moving in one direction. Further, the effective width of the drone 100 is a width that the drone 100 flying for monitoring can monitor by moving in one direction.
  • the inner path generation unit 42 generates second to fifth round-trip paths 72r-75r that are connected to the first round-trip path 71r and scan back and forth in the direction of the long side 803i, respectively, in this order.
  • the pair of round trip paths are parallel to each other.
  • the route generation unit 40 generates a reciprocating operation route that makes a round trip a plurality of times in the route generation target area and scans so that adjacent reciprocating routes or adjacent forward and backward routes spread or narrow from the outward route start side to the outward route end side. ..
  • the inner route generation unit 42 generates the reciprocating operation route in the inner area 802i. That is, the first to fifth reciprocating routes 71r-75r are radially generated so that the distances from the short side 804i to the facing side 805i gradually increase. In FIG.
  • the outward route start point is on the short side 804i
  • the outward route end point is on the opposite side 805i
  • adjacent first to fifth reciprocating routes 71r-75r are scanned so as to spread from the short side 804i to the opposite side 805i. ..
  • the first reciprocating route 71r and the second reciprocating route 72r have an overlapping area 81c where the effective widths overlap near the short side 804i. Further, the first reciprocating route 71r and the second reciprocating route 72r have a gap region 91c which is not scanned near the opposite side 805i.
  • the second to fifth reciprocating routes 72r to 75r also have overlapping regions 82c, 83c, and 84c between adjacent reciprocating routes and near the short side 804i. Gap regions 92c, 93c, 94c are provided between the second to fifth reciprocating routes 72r to 75r, which are adjacent to each other, and in the vicinity of the opposite side 805i.
  • Widths 81d-84d of overlapping areas 81c-84c are equal to each other.
  • the widths 91d-94d of the gap areas 91d-94d are equal to each other. With this configuration, the width of each of the overlapping regions 81c-84c and the gap regions 91c-94c can be made as narrow as possible.
  • the widths 81d-84d of the overlapping areas 81c-84c are obtained by calculating the width on a straight line that passes through the intersection of the long side 803i and the short side 804i and is orthogonal to the long side 803i.
  • the widths 91d-94d of the gap regions 91c-94c are obtained, for example, by calculating the width on a straight line that passes through the intersection of the long side 803i and the opposite side 805i and is orthogonal to the long side 803i.
  • Widths 81d-84d of overlapping areas 81c-84c are narrower than a predetermined width determined based on the effective width.
  • the predetermined width is, for example, about 1/10 of the effective width. If the widths 81d-84d are wider than this, the area for overlapping movement becomes large, resulting in excessive drug application. Further, the working time increases in the surveillance drone 100.
  • the widths 91d-94d of the gap areas 91c-94c are narrower than the predetermined width determined based on the effective width.
  • the predetermined width is, for example, about 1/10 of the effective width. If the widths 91d-94d are wider than this, the area where the drug is not spread increases.
  • the inner-path generating unit 42 uses the reciprocating paths 71r-75r so that the overlapping areas 81c-84c having the same width and the gap areas 91c-94c having the same width are formed between the reciprocating paths 71r-75r. 71r-75r are formed radially.
  • the inner area 802i can be scanned almost comprehensively by arranging the overlapping area and the gap area of the allowable width in various places. Therefore, the inner path generating unit 42 divides the inner area 802i. No, one driving route is generated.
  • the inner path generation unit 42 stores the maximum allowable widths of the overlapping area and the gap area in advance, and divides the inner area into a plurality of reciprocating areas when it is determined that the entire inner area cannot be scanned even if the maximum allowable width is allowed. To do.
  • a long side 813i that is a reference side, a short side 814i arranged at both ends of the long side 813i, and a facing side 815i that faces the short side 814i are respectively defined.
  • the inner path generation unit 42 determines the area surrounded by the long side 813i, the short side 814i, the opposite side 815i, and the end side 816i as the first reciprocating area 813a, and divides it from other areas of the inner area 812i to reciprocate. Generate a route.
  • the inner route generation unit 42 generates a round-trip route for the other area by using the end side 816i as the second reference side and separately from the first round-trip area 813a.
  • a second short side 817i continuous with the short side 815i and a second opposite side 818i facing the second short side 817i are newly defined.
  • the inner path generation unit 42 generates a reciprocating path that scans between the second short side 817i and the second opposing side 818i.
  • the edge of the effective width of the drone 100 on this round-trip path is the edge 819i.
  • the inner path generation unit 42 determines the area surrounded by the second long side 816i, the second short side 817i, the second opposite side 818i, and the second end side 819i as the second reciprocating area 816a, and determines the area of the inner area 812i.
  • One round-trip area 813a and other areas are divided to generate a round-trip path.
  • the area 819a of the inner area 812i other than the first and second round trip areas 813a and 816a has a triangular shape.
  • the inner path generation unit 42 uses the second end side 819i as the third reference side and generates a reciprocating path parallel to the third reference side in the region 819a.
  • the inner route generation unit 42 divides the inner area 812i into a plurality of round-trip areas 813a, 816a, 819a, generates routes for each, and connects these. With this configuration, the total area of the overlapping area and the gap area can be reduced, and the drone 100 can efficiently fly in the inner area.
  • the inner route generation unit 42 generates a flight plan related to acceleration / deceleration and turning of the drone 100, in addition to the flight route including position information in the three-dimensional direction.
  • the inner route generation unit 42 accelerates after departure and when entering the return region from the outward route in the turning region that connects the outward route and the return route of the reciprocating operation route 812r, before stopping and when entering the return route from the returning region.
  • the flight plan may be generated to slow down.
  • the turn-back area is a connecting portion of the forward and return paths, and refers to an area in which the drone 100 flies at a speed different from the speed during constant-speed straight flight on the forward and return paths, particularly at a speed slower than the constant-speed straight flight.
  • the flight plan may include information for turning the drone 100 in a turn-back area that connects the round-trip routes.
  • the inner route generation unit 42 may generate the reciprocating operation route 812r such that at least a part of the turn-back region overlaps the outer peripheral area 811i. Since the vehicle moves at a low speed in the turn-back area, it may not be possible to monitor or spray the medicine in the same manner as in the forward and return paths. For example, since it is difficult to maintain a predetermined density of the drug to be sprayed when moving at low speed, the drug spraying may be stopped. Therefore, by overlapping at least a part of the turn-back area with the outer peripheral area 811i, it is possible to ensure effective monitoring of the turn-back area or chemical spraying by the flight of the circular operation route 811r.
  • the inner route generating unit 42 sets the turn-back region in the reciprocating operation route 812r that is folded back from the forward route to the returning route.
  • the sub-scanning paths 101r and 102r that continuously scan in a direction intersecting the main scanning direction of the 812r may be generated.
  • the drone 100 When the drone 100 flies for the purpose of growth monitoring, the drone 100 causes a descending air flow toward the crops growing in the field 80 by the rotor blades 101, so that the crops are laid down to capture the image of the root and the tip. To do. Therefore, in the area where the drone 100 turns the nose, the descending air flow 601 is generated in a radial arc shape centering on the drone 100 toward the rear in the traveling direction. Then, the crops in the area to be photographed are not destroyed as intended, and it is difficult to properly photograph. Therefore, in the turn-back region of the reciprocating operation route 812r, the sub-scanning routes 101r and 102r for performing constant-velocity linear flight are generated separately from the reciprocating operation route 812r.
  • the crop that is swept down by the downdraft 601 returns to a substantially upright state when the influence of the downdraft 601 disappears.Therefore, when flying along the sub-scanning paths 101r and 102r, the descending airflow generated during constant speed operation causes It is possible to obtain an image that allows the crops to be laid down and the growth status can be grasped.
  • the drone 100 flies for the purpose of spraying a drug
  • the drug is sprayed to the root or the tip of the crop or the soil.
  • the downdraft of the rotor blade 101 causes the crop to fall over. Therefore, depending on the lodging state of the crop, it is difficult to allow the drug to reach the target as intended.
  • the inner path generation unit 42 generates the sub-scanning paths 101r and 102r separately from the reciprocating operation path 812r, the crops are laid down as intended to more effectively spray the medicine to the inner area 812i. It is possible to
  • the sub-scanning paths 101r and 102r may be in the same direction or in opposite directions.
  • the sub-scanning paths 101r and 102r may be in the same direction as the direction in which the reciprocating operation path 812r flies when returning from the outward path to the inward path, or may be the opposite direction.
  • the sub-scanning paths 101r and 102r are paired, but either one may be used.
  • the sub-scanning path 102r that is generated so as to cross the gap regions 91d-94d, it is possible to effectively supplement the region in which drug spraying or growth monitoring is effectively performed.
  • the variant area route generation unit 43 is a functional unit that generates the variant area driving route 83r in the variant area 83i.
  • the variant area driving route 83r is a route that flies to one side in the long side direction of the variant area 83i or a route that makes one round trip.
  • the route connecting unit 44 is a functional unit that connects the orbiting operation route 811r, the reciprocating operation route 812r, and the variant area operation route 83r. According to this configuration, even when the route is generated by being divided into a plurality of areas, it is possible to minimize the duplication of the route and generate an efficient driving route.
  • the outer peripheral route generation unit 41 generates a circular operation route 811r that circles the outer peripheral area 811i (S41).
  • the inner route generation unit 42 generates a reciprocating operation route 812r that reciprocates in the inner area 812i (S42).
  • the variant area route generation unit 43 generates a variant area operation route 83r that flies in one direction in the variant area 83i or makes one round trip (S43). Note that steps S41 to S43 are in no particular order and may be performed at the same time.
  • the route connecting unit 44 connects the revolving operation route 811r, the reciprocating operation route 812r, and the variant area operation route 83r (S44).
  • the inner area can also be generated as a convex polygon similar to the outer periphery of the shaping area. Therefore, the reciprocating operation can be performed by minimizing the overlapping routes. Therefore, the target area can be comprehensively driven in a short time. That is, it is possible to generate an efficient driving route in terms of working time, drone battery consumption, and drug consumption. Further, in the drug spraying drone, the risk of spraying the drug in duplicate is reduced, and high safety can be maintained.
  • the route generation unit 40 shown in FIG. 9 may be capable of generating a plurality of types of driving routes in the route generation target area.
  • the route selection unit 50 can select which driving route to determine.
  • the user may visually determine the plurality of generated driving routes to determine the driving route.
  • the route selection unit 50 may be capable of inputting priority information by the user. For example, the user inputs into the operation device 401 which of the working time, the battery consumption of the drone 100, and the medicine consumption is to be given the highest priority. In addition, the operation unit 401 may be able to input the second priority index together. The route selection unit 50 selects a driving route that most matches the input priority order from the plurality of driving routes. According to this configuration, it is possible to efficiently generate a route according to the policy of the user.
  • the inner route generation unit 42 determines the longest long side 813i of the sides defining the outer periphery of the inner area 812i. Is determined as the reference side (S51). In addition, the inner path generation unit 42 determines whether the inner area 812i (see FIG. 18) is a polygon having a quadrangle or more (S52). When the inner area 812i is a triangle, a round-trip path parallel to the longest side is generated in the entire inner area 812i (S53).
  • the inner area 812i is a polygon with a rectangular shape or more
  • the short side adjacent to the long side 813i is determined as the first short side 814i
  • the long side is determined as the first opposite side 815i (S54).
  • the inner route generation unit 42 determines the number of round trips of the drone 100 based on the first short side 814i (S55).
  • the inner path generation unit 42 determines whether or not the length can be scanned by the reciprocating path having the above-described number of reciprocations (S56). ..
  • the inner path generating unit 42 determines the positions and widths of the overlapping area and the gap area so that the drone 100 scans to both ends of the first opposing side 815i.
  • the reciprocating route is determined, and the reciprocating route is generated in parallel or radially according to the number of reciprocations (S57).
  • the inner path generating unit 42 causes the reciprocating path having the overlapping area and the gap area as the maximum width in the reciprocating area 813a. Are generated radially (S58).
  • the inside route generation unit 42 sets the end side 816i of the effective width of the drone 100 in the generated reciprocating route as a new reference side (S58), and returns to step S51.
  • the inner route generation unit 42 connects the reciprocating routes generated in one or more reciprocating areas 813a, 816a, 819a (step S60).
  • the inner path generation unit 42 generates a sub-scanning path for each of the one or more reciprocating areas 813a, 816a, 819a, the sub-scanning path is connected in addition to each reciprocating path.
  • Fig. 22 shows an example of a field 80-1 that is divided into a substantially rectangular shape when viewed from above.
  • a departure / arrival point 406-1 is arranged at a certain point around the farm field 80-1. Since there is no obstacle on the outer edge of the field 80-1, a movement permission area 80i-1 is defined inside the field 80-1 in a substantially rectangular shape which is a substantially similar shape to the field 80-1. Inside the movement permission area 80i-1, one outer area 811i-1 and one inner area 812i-1 are defined.
  • a circular driving route 811r-1 is generated in the outer peripheral area 811i-1, and a reciprocating driving route 812r-1 is generated in the inner area 812i-1.
  • the orbiting operation path 811r-1 and the reciprocating operation path 812r-1 are connected to each other, and an operation start point S and an operation end point G are defined.
  • a four-figure turn is planned for the turn of the circular operation route 811r-1.
  • the inner area 812i-1 has a substantially rectangular shape, and the short sides facing each other have the same length and are substantially parallel to each other, so that the reciprocating operation paths 812r-1 are generated to be substantially parallel.
  • the reciprocating operation route 812r-1 projects to the outer peripheral area 811i-1 in the turnback area. In other words, at least a part of the folding area overlaps with the outer peripheral area 811i-1.
  • Drone 100 slows as it flies toward the turn area and accelerates as it flies away from the turn area. When the flight speed of the drone 100 is lower than a predetermined value, it may be difficult to spray the medicine with the intended spray density and monitor the growth. Therefore, the folded region is projected to the outer peripheral area 811i-1, and the flight speed in the inner area 812i-1 is maintained as much as possible, so that the effective area for drug spraying and growth monitoring in the inner area 812i-1 is secured.
  • Fig. 23 shows an example of a field 80-2 that is divided into a substantially rectangular shape when viewed from above.
  • a landing point 406-2 is arranged at a certain point around the farm field 80-2.
  • An obstacle 81a-2 is arranged near one side of the field 80-2. Therefore, the movement permission area 80i-2 is defined so as to avoid the entry prohibition area 81b-2 around the obstacle 81a-1, and a part of the outer edge of the movement permission area 80i-2 is defined around the obstacle 81a-1. It shares the edge with the prohibited area 81b-2.
  • one outer peripheral area 811i-2 and one inner area 812i-2 are defined.
  • a circular driving route 811r-2 is generated in the outer peripheral area 811i-2, and a reciprocating driving route 812r-2 is generated in the inner area 812i-2.
  • the orbiting operation path 811r-2 and the reciprocating operation path 812r-2 are connected to each other, and an operation start point S and an operation end point G are defined.
  • a four-figure turn is planned for the turn of the circular operation route 811r-1.
  • the inner area 812i-2 has a substantially rectangular shape, and the short sides facing each other have the same length and are substantially parallel to each other, so that the reciprocating operation paths 812r-2 are generated to be substantially parallel.
  • Fig. 24 shows an example of a field 80-3 which is divided into a substantially polygonal shape when viewed from above.
  • a departure / arrival point 406-3 is arranged around the field 80-3.
  • Plural obstacles 81a-3 are arranged on the left and right sides and below in the figure of the field 80-3.
  • the movement permission area 80i-3 is defined so as to avoid the entry prohibition area 81b-3 around the obstacle 81a-3.
  • a circular operation route 811r-3 is generated in the outer peripheral area 811i-3.
  • the inner area 812i-3 is divided into three round-trip or square-shaped reciprocating areas 813a-3, 814a-3, 815a-3, and reciprocating operation routes 813r-3, 814r-3, 815r-3 are generated in each. ..
  • the three round-trip areas 813a-3, 814a-3, 815a-3 are shaded differently for convenience. Since the short sides facing the reciprocating areas 813a-3, 814a-3 have different lengths, the reciprocating operation paths 813r-3, 814r-3 are generated slightly radially.
  • the reciprocating operation routes 813r-3 and 814r-3 project to the outer peripheral area 811i-3 in the turn-back region. That is, at least a part of the folding area overlaps the outer peripheral area 811i-3.
  • Fig. 25 is an example of a field 80-4 that is divided into a concave polygon having a depression when viewed from above.
  • a landing point 406-4 is arranged at the upper left of the field 80-4 in the figure.
  • An obstacle 81a-4 is arranged at the lower left of the field 80-4 in the figure.
  • the field 80-4 is largely divided into shaping areas 81i-4 and 82i-4, and an outer area 811i-4 and an inner area 812i-4 are defined in the shaping area 81i-4, and the shaping area 82i-4 is formed.
  • Circular operation routes 811r-4 and 821r-4 are generated in the outer peripheral areas 811i-4 and 821i-4, respectively.
  • the inner area 812i-4 is divided into three reciprocating areas 813a-4, 814a-4, 815a-4 having a triangular shape or a quadrangular shape, and the reciprocating operation paths 813r-4, 814r-4, 815r are divided into respective areas. -4 has been generated.
  • the reciprocating areas 813a-4, 814a-4, 815a-4 and the inner area 822i-4 are shaded differently for convenience. Since the lengths of the opposite short sides of the reciprocating areas 813a-4, 814a-4, 815a-4 are different, the reciprocating operation routes 813r-4, 814r-4, 815r-4 are generated in a slightly radial pattern. Further, the reciprocating operation paths 813r-4, 814r-4, 815r-4 project to the outer peripheral area 811i-4 in the turn-back area. That is, at least part of the folded area overlaps the outer peripheral area 811i-4.
  • the agricultural drug spray drone has been described as an example, but the technical idea of the present invention is not limited to this, and is applicable to all machines that operate autonomously. It can be applied to drones other than agricultural ones that fly autonomously. It can also be applied to a machine that runs autonomously on the ground.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Insects & Arthropods (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Catching Or Destruction (AREA)
  • Traffic Control Systems (AREA)

Abstract

[Problem] To generate a travel route on which a moving apparatus can move efficiently. [Solution] A travel route generating system 1000, which is provided with a route-generating unit 40 that generates a travel route for a moving apparatus 100 to move in a target area 80i on the basis of information acquired on the target area. The route-generating unit travels back and forth multiple times within the target area and generates reciprocating routes 71r-75r, which run so that adjacent reciprocating routes or adjacent outgoing routes and return routes diverge or converge with respect to each other from the outgoing route origin-side to the outgoing route terminus-side. The route-generating unit may also comprise: a peripheral route-generating section 41 for generating a circling travel route 811r for circling a ring-shaped peripheral area 811i that forms the outer margin of a regularly shaped area 81i; and an inner route-generating section 42 that travels back and forth multiple times within an inner area 812i on the inside of a peripheral area and generates reciprocating travel routes 812r that run back and forth so that adjacent reciprocating routes or adjacent outgoing routes and return routes diverge or converge with respect to each other from the outgoing route origin-side to the outgoing route terminus-side.

Description

運転経路生成システム、運転経路生成方法、および運転経路生成プログラム、ならびにドローンDriving route generation system, driving route generation method, driving route generation program, and drone
本願発明は、運転経路生成システム、運転経路生成方法、および運転経路生成プログラム、ならびにドローンに関する。 The present invention relates to a driving route generation system, a driving route generation method, a driving route generation program, and a drone.
一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。比較的狭い農地においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。 The application of small helicopters (multicopters) generally called drones is progressing. One of the important fields of application thereof is spraying chemicals such as pesticides and liquid fertilizers on agricultural land (field) (for example, Patent Document 1). In relatively small farmlands, it is often the case that drones are more suitable than manned planes and helicopters.
準天頂衛星システムやRTK-GPS(Real Time Kinematic - Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。 Technologies such as the Quasi-Zenith Satellite System and RTK-GPS (Real Time Kinematic-Global Positioning System) have made it possible for the drone to accurately know its absolute position in centimeters during flight. Even in a farmland with a narrow and complicated terrain typical of the above, it is possible to autonomously fly with minimal manual operation, and to efficiently and accurately apply a drug.
その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2)、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。 On the other hand, there were cases in which it was difficult to say that safety considerations were sufficient for autonomous flight drones for agricultural drug spraying. A drone loaded with medicines weighs several tens of kilograms, which could have serious consequences in the event of an accident such as falling onto a person. In addition, the drone operator is usually not an expert, so a fool-proof mechanism is necessary, but the consideration for this was insufficient. Until now, there has been a drone safety technology that is premised on human control (for example, Patent Document 2), but in particular, it addresses the safety issues peculiar to an autonomous flight drone for drug spraying for agriculture. There was no technology to do this.
また、ドローンが自律飛行を行う運転経路を自動で生成する方法が必要とされている。特許文献3には、圃場において、往復走行させる往復走行経路と、外周形状に沿って周回させる周回走行経路とを生成する走行経路生成システムが開示されている。このシステムは、苗植付装置等の地上走行型の機械が想定されている。 There is also a need for a method of automatically generating a driving route for a drone to fly autonomously. Patent Document 3 discloses a traveling route generation system that generates a reciprocating traveling route for traveling back and forth in a field and a traveling traveling route for traveling along an outer peripheral shape. This system is assumed to be a ground-running machine such as a seedling planting device.
特許文献4には、圃場の外形線が内側に局部的に入り込んだ凹部を有する場合の経路生成を行う走行経路生成装置が開示されている。特許文献5には、走行領域内に存在する障害物を迂回する走行経路を生成する自律走行経路生成システムが開示されている。 Patent Document 4 discloses a traveling route generation device that generates a route when a contour line of a field has a concave portion that locally enters inside. Patent Document 5 discloses an autonomous traveling route generation system that generates a traveling route that bypasses an obstacle existing in the traveling region.
特許公開公報 特開2001-120151Patent publication gazette JP 2001-120151 特許公開公報 特開2017-163265Patent publication gazette JP 2017-163265 特許公開公報 特開2018-117566Patent publication gazette JP2018-117566 特許公開公報 特開2018-116614Japanese Patent Laid-Open Publication No. 2018-116614 特許公開公報 特開2017-204061Patent publication gazette JP 2017-204061
効率よく移動できる自律運転の運転経路を生成する運転経路生成システムを提供する。 Provided is a driving route generation system that generates a driving route for autonomous driving that can move efficiently.
 上記目的を達成するため、本発明の一の観点に係る運転経路生成システムは、取得される対象エリアの情報に基づいて、前記対象エリアに移動装置が移動する運転経路の生成を行う経路生成部を備え、前記経路生成部は、前記対象エリア内を複数回往復し、隣接する往復路同士又は隣接する往路と復路が往路起点側から往路終点側へ広がる又は狭まるように走査する往復運転経路を生成する。 In order to achieve the above-mentioned object, a driving route generation system according to one aspect of the present invention is a route generation unit that generates a driving route in which a mobile device moves to the target area based on the acquired information of the target area. The route generation unit reciprocates a plurality of times in the target area and scans a reciprocating operation route such that adjacent reciprocating routes or adjoining outward routes and return routes expand or narrow from the outward route starting point side to the outward route ending point side. To generate.
 前記経路生成部は、前記対象エリアの外縁を成す環状の外周エリアを周回する周回運転経路を生成する外周経路生成部と、前記外周エリアの内側の内側エリア内を複数回往復し、隣接する往復路同士又は隣接する往路と復路が往路起点側から往路終点側へ広がる又は狭まるように往復して走査する前記往復運転経路を生成する内側経路生成部と、をさらに備えるものとしてもよい。 The route generation unit reciprocates a plurality of times in an inner peripheral area inside the outer peripheral area and an outer peripheral route generation unit that generates a circular operation route that circulates an annular outer peripheral area that forms the outer edge of the target area It is also possible to further include an inner path generation unit that generates the reciprocating operation path that reciprocally scans such that the paths are adjacent to each other or the advancing path and the returning path are expanded or narrowed from the outward path start side to the outward path end side.
 前記内側経路生成部は、前記内側エリアを複数の往復エリアに分割し、それぞれの前記往復エリアを往復して走査する運転経路を生成し、複数の前記運転経路を連結することで、前記内側エリアの前記往復運転経路を生成するものとしてもよい。 The inner path generation unit divides the inner area into a plurality of reciprocating areas, generates an operation path that reciprocates and scans each of the reciprocating areas, and connects the plurality of operation paths to the inner area. The reciprocating operation route may be generated.
 前記往復エリアは、三角形状又は四角形状に区画されているものとしてもよい。 -The round-trip area may be divided into a triangular shape or a quadrangular shape.
 前記往復運転経路は、往路および復路の対を成す1又は複数対の往復経路によって構成され、前記対象エリア内には、互いに隣接する前記往復経路において前記移動装置の有効幅が重複する1又は複数の重複領域と、互いに隣接する前記往復経路のいずれによっても走査されない1又は複数の隙間領域と、が配置されるものとしてもよい。 The reciprocating operation route is configured by one or a plurality of pairs of reciprocating routes forming a pair of an outward route and a returning route, and in the target area, one or a plurality of overlapping effective widths of the moving devices in the reciprocating routes adjacent to each other. And the one or more gap regions that are not scanned by any of the reciprocating paths that are adjacent to each other may be arranged.
 前記複数の重複領域の幅は互いに等しく、前記複数の隙間領域の幅は互いに等しいものとしてもよい。 The widths of the plurality of overlapping areas may be equal to each other, and the widths of the plurality of gap areas may be equal to each other.
 前記内側経路生成部は、前記重複領域および前記隙間領域の最大許容幅をあらかじめ記憶し、最大許容幅の前記重複領域および前記隙間領域を許容しても前記内側エリア全体を走査できないと判定されるとき、前記内側エリアを複数の往復エリアに分割するものとしてもよい。 The inner path generation unit stores in advance maximum allowable widths of the overlapping area and the gap area, and determines that the entire inner area cannot be scanned even if the overlapping area and the gap area having the maximum allowable widths are allowed. At this time, the inner area may be divided into a plurality of reciprocating areas.
 前記内側経路生成部は、前記内側エリアの外縁を区画する端辺のうち、最長の長辺に沿って移動し、最短の短辺に沿う経路上において方向転換することにより、前記内側エリアを往復しながら往復方向とは異なる方向に順次移動して、前記内側エリアを走査する往復運転経路を生成可能であるものとしてもよい。 The inner path generation unit moves along the longest long side of the edges that define the outer edge of the inner area, and changes the direction on the path along the shortest short side to reciprocate the inner area. However, a reciprocating operation route for scanning the inner area may be generated by sequentially moving in a direction different from the reciprocating direction.
 前記内側経路生成部は、前記内側エリアの外縁を区画する端辺のうち、前記短辺の長さに基づいて運転経路の往復回数を決定可能であるものとしてもよい。 The inner route generation unit may be able to determine the number of round trips of the driving route based on the length of the short side among the end sides that partition the outer edge of the inner area.
 前記内側経路生成部は、前記往復運転経路の往路と復路とを連結する折返領域において、前記往路から前記折返領域への進入時に減速し、前記折返領域から前記復路への進入時に加速するような移動計画を生成するものとしてもよい。 The inner route generation unit decelerates when entering the return region from the forward route in a turn region that connects the forward route and the return route of the reciprocating operation route, and accelerates when entering the return route from the return region. A movement plan may be generated.
 前記内側経路生成部は、前記往復運転経路の往路と復路とを連結する折返領域の少なくとも一部が前記外周エリアに重複するように、前記往復運転経路を生成するものとしてもよい。 The inner route generation unit may generate the reciprocating operation route such that at least a part of the turn-back region connecting the forward and return routes of the reciprocating operation route overlaps the outer peripheral area.
 前記外周経路生成部は、前記移動装置を前進および旋回させて前記外周エリアの外縁を曲がる第1旋回と、前記移動装置を後退させながら旋回させる動作を含む第2旋回と、の動作を前記移動装置に行わせる運転経路を生成可能であるものとしてもよい。 The outer peripheral path generation unit moves the movement of the first movement in which the movement apparatus is moved forward and backward to bend the outer edge of the outer circumferential area, and the second movement including the movement in which the movement apparatus is rotated while moving backward. It is also possible to be able to generate a driving route to be performed by the device.
 前記経路生成部は、前記往復運転経路において往路から復路に折り返す折返領域を、前記往復運転経路の往路又は復路と交わる方向に連続して走査する副走査経路を生成可能であるものとしてもよい。 The route generation unit may be capable of generating a sub-scanning route that continuously scans a turn-back region in the reciprocating operation route that returns from a forward route to a return route in a direction intersecting with the forward or return route of the reciprocating operation route.
 前記経路生成部は、前記往復運転経路の往路から復路に折り返す折返領域の少なくとも一部が前記副走査経路に重複するように、前記往復運転経路を生成するものとしてもよい。 The route generation unit may generate the reciprocating operation route such that at least a part of the turn-back area of the reciprocating operation route that returns from the outward route to the return route overlaps the sub-scanning route.
 上記目的を達成するため、本発明の別の観点に係る運転経路生成方法は、取得される対象エリアの座標情報に基づいて、前記対象エリアに移動装置が移動する運転経路の生成を行う経路生成ステップを含み、前記経路生成ステップは、前記対象エリア内を放射状に往復して走査する往復経路を生成する。 In order to achieve the above object, a driving route generation method according to another aspect of the present invention is a route generation for generating a driving route in which a mobile device moves to the target area based on the acquired coordinate information of the target area. The step includes a step of generating a reciprocating path that scans the target area by reciprocating radially.
 上記目的を達成するため、本発明のさらに別の観点に係る運転経路生成プログラムは、取得される対象エリアの座標情報に基づいて、前記対象エリアに移動装置が移動する運転経路の生成を行う経路生成命令をコンピュータに実行させ、前記経路生成命令は、前記対象エリア内を放射状に往復して走査する往復経路を生成する。
 なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。
In order to achieve the above object, a driving route generation program according to yet another aspect of the present invention is a route for generating a driving route in which a mobile device moves to the target area based on the acquired coordinate information of the target area. A generation command is executed by a computer, and the route generation command generates a reciprocating route that scans the target area by reciprocating radially.
The computer program can be provided by being downloaded via a network such as the Internet, or can be provided by being recorded in various computer-readable recording media such as a CD-ROM.
 上記目的を達成するため、本発明のさらに別の観点に係るドローンは、運転経路生成システムにより生成される運転経路を受信して、前記運転経路に沿って飛行可能なドローンであって、前記運転経路生成システムは、上述のいずれかに記載の運転経路生成装置である。 In order to achieve the above object, a drone according to still another aspect of the present invention is a drone capable of receiving a driving route generated by a driving route generation system and flying along the driving route. The route generation system is the driving route generation device described in any of the above.
 上記目的を達成するため、本発明のさらに別の観点に係るドローンは、経路生成部と、飛行制御部と、を備えるドローンであって、前記経路生成部は、上述のいずれかに記載の経路生成部である。
 
To achieve the above object, a drone according to yet another aspect of the present invention is a drone including a route generation unit and a flight control unit, and the route generation unit is the route according to any one of the above. It is a generator.
 効率よく移動できる自律運転の運転経路を生成することができる。 It is possible to generate an autonomous driving route that allows efficient movement.
本願発明に係るドローンの実施形態を示す平面図である。1 is a plan view showing an embodiment of a drone according to the present invention. 上記ドローンの正面図である。It is a front view of the said drone. 上記ドローンの右側面図である。It is a right view of the said drone. 上記ドローンの背面図である。It is a rear view of the drone. 上記ドローンの斜視図である。It is a perspective view of the drone. 上記ドローンが有する薬剤散布システムの全体概念図である。It is the whole conceptual diagram of the medicine spraying system which the drone has. 上記ドローンの制御機能を表した模式図である。It is a schematic diagram showing the control function of the said drone. 本願発明に係る運転経路生成システムの全体概念図であって、ネットワークを介して接続される運転経路生成装置、ドローン、基地局、操縦器、および座標測量装置の様子を示す図である。FIG. 1 is an overall conceptual diagram of a driving route generation system according to the present invention, showing a state of a driving route generation device, a drone, a base station, a manipulator, and a coordinate surveying device connected via a network. 上記運転経路生成装置の機能ブロック図である。FIG. 3 is a functional block diagram of the driving route generation device. 上記運転経路生成装置が運転経路を生成する圃場、上記圃場近辺に決定される進入禁止エリア、および上記圃場内に生成される移動可能エリアの例を示す概略図である。FIG. 6 is a schematic diagram showing an example of a farm field in which the driving route generation device generates a driving route, an inaccessible area determined in the vicinity of the farm field, and a movable area generated in the farm field. 上記移動可能エリアを、異形エリア、外周エリア、および内側エリアに分割する様子を示す概略図である。FIG. 6 is a schematic diagram showing how the movable area is divided into an irregular area, an outer peripheral area, and an inner area. 上記運転経路生成装置が有するエリア分割要否判定部が、エリアを分割する処理を行う移動エリアの例であって、(a)2辺から成る凹部を有する移動エリアの例、(b)3辺からなる凹部を有する移動エリアの例である。The area division necessity determination unit included in the driving route generation device is an example of a moving area that performs a process of dividing an area, and (a) an example of a moving area having a concave portion with two sides, (b) three sides It is an example of a moving area having a concave portion composed of. 上記エリア分割要否判定部が、移動エリアを分割する工程を示すフローチャートである。6 is a flowchart showing a process in which the area division necessity determination unit divides a moving area. 上記運転経路生成装置が有するエリア策定部が、外周エリア、内側エリア、および異形エリアを生成し、経路生成対象エリアを確定する工程を示すフローチャートである。It is a flowchart which shows the process in which the area formulation part which the said driving | running route production | generation apparatus produces | generates an outer peripheral area, an inside area, and a variant area, and determines a route generation object area. 上記運転経路生成装置が有する経路生成部により上記経路生成対象エリアに生成される経路の例を示す概略図である。It is a schematic diagram showing an example of a route generated in the above-mentioned route generation object area by a route generation part which the above-mentioned driving route generation device has. 上記運転経路生成装置が有する外周経路生成部により上記外周エリアに生成される経路の例であり、(a)前進旋回の様子、(b)4の字旋回の様子を示す概略図である。It is an example of a route generated in the above-mentioned peripheral area by the peripheral route generation part which the above-mentioned driving route generating device has, and is a schematic view showing a state of (a) forward turning, and a state of (b) 4 turn. 上記運転経路生成装置が有する内側経路生成部により上記内側エリアに生成される経路の例を示す概略図である。It is a schematic diagram showing an example of a course generated in the above-mentioned inside area by the inside course generating part which the above-mentioned driving course generating device has. 上記運転経路生成装置が有する内側経路生成部により上記内側エリアに生成される経路の別の例を示す概略図である。It is a schematic diagram showing another example of a course generated in the above-mentioned inside area by the inside course generating part which the above-mentioned driving course generating device has. 上記運転経路生成装置が有する内側経路生成部により上記内側エリアに生成される経路の別の例を示す概略図である。It is a schematic diagram showing another example of a course generated in the above-mentioned inside area by the inside course generating part which the above-mentioned driving course generating device has. 上記経路生成部が、上記経路生成対象エリアに運転経路を生成する工程を示すフローチャートである。It is a flowchart which shows the process in which the said route production | generation part produces | generates the driving | running route in the said route generation object area. 上記内側経路生成部により上記内側エリアを複数の往復エリアに分割して経路生成する工程を示すフローチャートである。7 is a flowchart showing a step of dividing the inside area into a plurality of round-trip areas and generating a path by the inside path generation unit. 上記運転経路生成装置が有する経路生成部により上記経路生成対象エリアに生成される運転経路の第1例を示す図である。It is a figure which shows the 1st example of the driving route produced | generated in the said route production | generation area by the route production | generation part which the said driving route production | generation apparatus has. 上記経路生成対象エリアに生成される運転経路の第2例を示す図である。It is a figure which shows the 2nd example of the driving | running route produced | generated in the said route production | generation area. 上記経路生成対象エリアに生成される運転経路の第3例を示す図である。It is a figure which shows the 3rd example of the driving | running route produced | generated in the said route production | generation area. 上記経路生成対象エリアに生成される運転経路の第4例を示す図である。FIG. 8 is a diagram showing a fourth example of driving routes generated in the route generation target area.
以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings. The figures are all examples. In the following detailed description, for purposes of explanation, certain specific details are set forth in order to facilitate a thorough understanding of the disclosed embodiments. However, embodiments are not limited to these particular details. Also, well-known structures and devices are schematically shown in order to simplify the drawing.
本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。ドローンは移動装置の例であり、本願発明に係る運転経路生成装置により生成される運転経路の情報を適宜受信し、当該運転経路に沿って飛行することが可能である。 In the present specification, the drone, regardless of power means (electric power, prime mover, etc.), control system (whether wireless or wired, and whether it is an autonomous flight type or a manual control type), It refers to all aircraft with multiple rotors. The drone is an example of a mobile device, and can appropriately receive information on a driving route generated by the driving route generation device according to the present invention and fly along the driving route.
図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、バッテリー消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。 As shown in FIGS. 1 to 5, the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also referred to as rotors) are It is a means to fly the drone 100, and in consideration of the stability of flight, the size of the aircraft, and the balance of battery consumption, eight aircraft (four sets of two-stage rotary blades) are provided.
モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。なお、一部の回転翼101-3b、および、モーター102-3bが図示されていないが、その位置は自明であり、もし左側面図があったならば示される位置にある。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。 The motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotor blades 101-1a, 101-1b, 101-2a, 101-. 2b, 101-3a, 101-3b, 101-4a, 101-4b is a means for rotating (typically an electric motor, but may be an engine, etc.), one for each rotor Has been. The motor 102 is an example of a propulsion device. The upper and lower rotor blades (eg 101-1a and 101-1b) and their corresponding motors (eg 102-1a and 102-1b) in one set are for drone flight stability etc. The axes are collinear and rotate in opposite directions. Although some rotor blades 101-3b and the motor 102-3b are not shown, their positions are self-explanatory, and if there is a left side view, they are at the positions shown. As shown in FIGS. 2 and 3, the radial member for supporting the propeller guard, which is provided so that the rotor does not interfere with foreign matter, is not horizontal but has a tower-like structure. This is to promote the buckling of the member to the outside of the rotor blade at the time of collision and prevent the member from interfering with the rotor.
薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。 The drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward and are provided in four units. In the specification of the present application, the term "chemicals" generally refers to pesticides, herbicides, liquid fertilizers, insecticides, seeds, and liquids or powders applied to fields such as water.
薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。 The medicine tank 104 is a tank for storing the medicine to be sprayed, and is provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance. The drug hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the drug tank 104 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve to support the chemical nozzle. The pump 106 is a means for discharging the medicine from the nozzle.
図6に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。操作器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作機(図示していない)を使用してもよい(非常用操作機は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい)。操作器401とドローン100はWi-Fi等による無線通信を行う。 FIG. 6 shows an overall conceptual diagram of a system using an example of a drug spraying application of the drone 100 according to the present invention. This figure is a schematic diagram and the scale is not accurate. The operation unit 401 is a means for transmitting a command to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, drug amount, battery level, camera image, etc.). Yes, and may be realized by a portable information device such as a general tablet terminal that runs a computer program. Although the drone 100 according to the present invention is controlled to perform autonomous flight, it may be configured so that it can be manually operated during basic operations such as takeoff and return, and during emergencies. In addition to the portable information device, you may use an emergency operating device (not shown) that has a function dedicated to emergency stop (a large emergency stop button, etc. is provided so that the emergency operating device can respond quickly in an emergency). It may be a dedicated device with). The operation unit 401 and the drone 100 perform wireless communication by Wi-Fi or the like.
圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の障害物が存在する場合もある。 The field 403 is a rice field, a field, or the like to which the drug is sprayed by the drone 100. Actually, the topography of the farm field 403 is complicated, and there are cases where the topographic map cannot be obtained in advance, or the topographic map and the situation at the site are inconsistent. Normally, the farm field 403 is adjacent to a house, a hospital, a school, another crop farm field, a road, a railroad, and the like. In addition, there may be obstacles such as buildings and electric wires in the field 403.
基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようになっていてもよい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。 The base station 404 is a device that provides a master device function of Wi-Fi communication, etc., and may also function as an RTK-GPS base station to provide an accurate position of the drone 100 (Wi- The base unit function of Fi communication and RTK-GPS base station may be independent devices). The farm cloud 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the operation unit 401 via a mobile phone line or the like. The farming cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growing condition of the crop, and perform a process for determining a flight route. Further, the drone 100 may be provided with the stored topographical information of the field 403 and the like. In addition, the history of the flight of the drone 100 and captured images may be accumulated and various analysis processes may be performed.
通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。 Usually, the drone 100 takes off from a departure / arrival point 406 outside the field 403, and returns to the departure / arrival point 406 after spraying a drug on the field 403 or when it becomes necessary to replenish or charge the drug. The flight route (intrusion route) from the landing point 406 to the target field 403 may be saved in advance in the farm cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
図7に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。フライトコントローラー501は、飛行制御部の例である。 FIG. 7 is a block diagram showing the control function of the embodiment of the drug spraying drone according to the present invention. The flight controller 501 is a component that controls the entire drone, and specifically may be an embedded computer including a CPU, a memory, related software, and the like. The flight controller 501, based on the input information received from the operation unit 401 and the input information obtained from various sensors described later, via the control means such as ESC (Electronic Speed Control), the motor 102-1a, 102-1b , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are controlled to control the flight of the drone 100. The actual rotation speed of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b is fed back to the flight controller 501 to perform normal rotation. It is configured so that it can be monitored. Alternatively, the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501. The flight controller 501 is an example of a flight controller.
フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、営農クラウド405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。 The software used by the flight controller 501 can be rewritten through a storage medium or the like for function expansion / change, problem correction, or the like, or through communication means such as Wi-Fi communication or USB. In this case, encryption, checksum, electronic signature, virus check software, etc. are used to protect the software from being rewritten by unauthorized software. Further, a part of the calculation process used by the flight controller 501 for control may be executed by another computer existing on the operation unit 401, the farm cloud 405, or another place. Since the flight controller 501 is highly important, some or all of its constituent elements may be duplicated.
バッテリー502は、フライトコントローラー501、および、ドローンのその他の構成要素に電力を供給する手段であり、充電式であってもよい。バッテリー502はヒューズ、または、サーキットブレーカー等を含む電源ユニットを介してフライトコントローラー501に接続されている。バッテリー502は電力供給機能に加えて、その内部状態(蓄電量、積算使用時間等)をフライトコントローラー501に伝達する機能を有するスマートバッテリーであってもよい。 The battery 502 is a means of supplying power to the flight controller 501 and other components of the drone and may be rechargeable. The battery 502 is connected to the flight controller 501 via a power supply unit including a fuse or a circuit breaker. The battery 502 may be a smart battery having a function of transmitting its internal state (amount of stored electricity, accumulated use time, etc.) to the flight controller 501 in addition to the power supply function.
フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えている。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、GPSモジュール504により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。GPSモジュール504は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのGPSモジュール504は別の衛星を使用するよう制御されていてもよい。 The flight controller 501 exchanges with the operation unit 401 via the Wi-Fi slave unit function 503 and further via the base station 404, receives a necessary command from the operation unit 401, and outputs necessary information to the operation unit. Can be sent to 401. In this case, the communication may be encrypted so as to prevent illegal acts such as interception, spoofing, and hijacking of equipment. The base station 404 has a function of an RTK-GPS base station in addition to a communication function by Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is highly important, it may be duplicated / multiplexed, and each redundant GPS module 504 should use a different satellite to cope with the failure of a specific GPS satellite. It may be controlled.
6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段(さらに、加速度の積分により速度を計算する手段)である。6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。 The 6-axis gyro sensor 505 is means for measuring accelerations of the drone body in three directions orthogonal to each other (further, means for calculating velocity by integration of accelerations). The 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone body in the three directions described above, that is, the angular velocity. The geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism. The atmospheric pressure sensor 507 is a means for measuring the atmospheric pressure, and can indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of laser light, and may be an IR (infrared) laser. The sonar 509 is a means for measuring the distance between the drone body and the ground surface by using the reflection of sound waves such as ultrasonic waves. These sensors may be selected depending on the drone's cost goals and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the tilt of the machine body, a wind force sensor for measuring wind force, and the like may be added. Further, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them, and if it fails, it may switch to another sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。障害物検知カメラ513はドローン障害物を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の障害物に接触したことを検知するためのセンサーである。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。 The flow rate sensor 510 is a means for measuring the flow rate of the medicine, and is provided at a plurality of places on the path from the medicine tank 104 to the medicine nozzle 103. The liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become equal to or less than a predetermined amount. The multi-spectral camera 512 is a means for photographing the field 403 and acquiring data for image analysis. The obstacle detection camera 513 is a camera for detecting a drone obstacle and is a device different from the multispectral camera 512 because the image characteristics and the lens orientation are different from those of the multispectral camera 512. The switch 514 is a means for the user 402 of the drone 100 to make various settings. The obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard portion has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone. .. The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are open. The drug injection port sensor 517 is a sensor that detects that the injection port of the drug tank 104 is open. These sensors may be selected according to the drone's cost targets and performance requirements, and may be duplicated or multiplexed. Further, a sensor may be provided at the base station 404 outside the drone 100, the operation device 401, or at another place, and the read information may be transmitted to the drone. For example, a wind sensor may be provided in the base station 404, and information regarding wind force / wind direction may be transmitted to the drone 100 via Wi-Fi communication.
フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。 The flight controller 501 sends a control signal to the pump 106 to adjust the medicine ejection amount and stop the medicine ejection. The current status of the pump 106 (for example, the number of rotations) is fed back to the flight controller 501.
LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。表示手段は、LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能503は操作器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。 The LED 107 is a display means for informing the drone operator of the status of the drone. As the display means, a display means such as a liquid crystal display may be used instead of the LED or in addition to the LED. The buzzer 518 is an output means for notifying a drone state (especially an error state) by a voice signal. The Wi-Fi slave device function 503 is an optional component for communicating with an external computer or the like, for example, for software transfer, in addition to the operation unit 401. In addition to or in addition to the Wi-Fi cordless handset function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used. The speaker 520 is an output means for notifying the drone state (particularly an error state) by the recorded human voice, synthesized voice or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight, and in such a case, it is effective to communicate the situation by voice. The warning light 521 is a display means such as a strobe light for notifying the state of the drone (in particular, an error state). These input / output means may be selected according to the cost target and performance requirements of the drone, or may be duplicated / multiplexed.
ドローン100は、様々な形状の圃場に対し、効率よく移動するための運転経路が必要である。すなわち、ドローン100は、ある圃場内に薬剤を散布する場合や、ある圃場内を監視する場合において、当該圃場の上空をくまなく飛行する必要がある。その際、なるべく同じ経路を飛行しないことで、バッテリーの消費や飛行時間を短くすることができる。また、薬剤散布においては、同じ経路に薬剤を散布すると当該経路下の薬剤濃度が高くなってしまう恐れがある。そこで、運転経路生成システムは、ドローン100を始めとする移動装置が圃場の座標情報に基づいて効率よく移動するための運転経路の生成を行う。 The drone 100 needs an operation route for efficiently moving in fields of various shapes. That is, the drone 100 needs to fly all over the field when spraying a drug in a field or when monitoring the field. In that case, it is possible to reduce battery consumption and flight time by avoiding the same route. Further, in spraying a drug, if the drug is sprayed on the same route, the concentration of the drug under the route may increase. Therefore, the driving route generation system generates a driving route for the moving device such as the drone 100 to efficiently move based on the coordinate information of the field.
 図8に示すように、運転経路生成装置1は、ネットワークNWを介してドローン100、基地局404および座標測量装置2に接続されている。運転経路生成装置1は、その機能が営農クラウド405上にあってもよいし、別途の装置であってもよい。また、運転経路生成装置1は、ドローン100が有する構成であってもよい。圃場は、対象エリアの例である。ドローン100は、移動装置の例である。運転経路生成装置1、ドローン100、基地局404および座標測量装置2は、運転経路生成システム1000を構成する。 As shown in FIG. 8, the driving route generation device 1 is connected to the drone 100, the base station 404, and the coordinate survey device 2 via the network NW. The function of the driving route generation device 1 may be on the farm cloud 405 or may be a separate device. Further, the driving route generation device 1 may be included in the drone 100. The farm field is an example of the target area. Drone 100 is an example of a mobile device. The driving route generation device 1, the drone 100, the base station 404, and the coordinate survey device 2 constitute a driving route generation system 1000.
 座標測量装置2は、RTK-GPSの移動局の機能を有する装置であり、圃場の座標情報を測量することができる。座標測量装置2は、使用者により保持して歩行することが可能な小型の装置であり、例えば棒状の装置である。座標測量装置2は、下端を地面についた状態で、使用者が直立して上端部を保持できる程度の長さの、杖のような装置であってもよい。ある圃場の座標情報を読み取るために使用可能な座標測量装置2の個数は、1個であっても複数であってもよい。複数の座標測量装置2により1か所の圃場に関する座標情報を測量可能な構成によれば、複数の使用者がそれぞれ座標測量装置2を保持して圃場を歩行することができるため、測量作業を短時間で完了することができる。 The coordinate surveying device 2 is a device having the function of a mobile station of RTK-GPS, and can measure the coordinate information of the field. The coordinate surveying device 2 is a small device that can be held and walked by a user, and is, for example, a rod-shaped device. The coordinate surveying device 2 may be a device such as a cane having a length such that the user can stand upright and hold the upper end with the lower end attached to the ground. The number of coordinate surveying devices 2 that can be used to read the coordinate information of a certain field may be one or more. According to the configuration in which the coordinate information about one farm field can be measured by the plurality of coordinate surveying devices 2, a plurality of users can hold the coordinate surveying device 2 and walk in the farm field. It can be completed in a short time.
 また、座標測量装置2は、圃場における障害物の情報を測量することができる。障害物は、ドローン100が衝突する危険のある壁や法面、電柱、電線などや、薬剤散布又は監視を要さない各種物体を含む。 Also, the coordinate surveying device 2 can measure information on obstacles in the field. The obstacles include walls, slopes, electric poles, electric wires, and the like at which the drone 100 may collide, and various objects that do not require drug spraying or monitoring.
 座標測量装置2は、入力部201、座標検出部202および送信部203を備える。 The coordinate survey device 2 includes an input unit 201, a coordinate detection unit 202, and a transmission unit 203.
 入力部201は、座標測量装置2の上端部に設けられる構成であり、例えば使用者の押下を受け付けるボタンである。使用者は、座標測量装置2の下端の座標を測量する際に、入力部201のボタンを押下する。 The input unit 201 is provided at the upper end of the coordinate surveying device 2, and is, for example, a button that receives a user's press. The user presses the button of the input unit 201 when measuring the coordinates of the lower end of the coordinate surveying device 2.
 また、入力部201は、入力される情報が圃場の外周に関する座標であるか、障害物の外周の座標であるかを区別して入力可能に構成されている。さらに、入力部201は、障害物の外周の座標を、障害物の種類と関連付けて入力可能である。 Further, the input unit 201 is configured to be able to input by discriminating whether the input information is the coordinates relating to the outer circumference of the field or the coordinates of the outer circumference of the obstacle. Furthermore, the input unit 201 can input the coordinates of the outer circumference of the obstacle in association with the type of the obstacle.
 座標検出部202は、基地局404と適宜通信を行って座標測量装置2の下端の3次元座標を検出可能な機能部である。 The coordinate detection unit 202 is a functional unit that can appropriately communicate with the base station 404 and detect the three-dimensional coordinates of the lower end of the coordinate surveying device 2.
 送信部203は、入力部201への入力に基づいて、当該入力時の座標測量装置2下端の3次元座標を、ネットワークNWを介して操作器401又は運転経路生成装置1に送信する機能部である。送信部203は、当該3次元座標を、ポインティングされた順番とともに送信する。 The transmission unit 203 is a functional unit that transmits the three-dimensional coordinates of the lower end of the coordinate surveying device 2 at the time of the input to the operation unit 401 or the driving route generation device 1 via the network NW based on the input to the input unit 201. is there. The transmitting unit 203 transmits the three-dimensional coordinates together with the pointing order.
 圃場の座標情報を読み取る工程において、使用者は、座標測量装置2を持って圃場を移動する。まず、当該圃場の3次元座標を取得する。使用者は、圃場の端点又は端辺上において入力部201によるポインティングを行う。次いで、使用者は、障害物の端点又は端辺上において入力部201によるポインティングを行う。 In the process of reading the coordinate information of the field, the user moves the field with the coordinate surveying device 2. First, the three-dimensional coordinates of the field are acquired. The user performs pointing with the input unit 201 on the end point or the end side of the field. Next, the user performs pointing with the input unit 201 on the end point or the end side of the obstacle.
 ポインティングされて送信される圃場の端点又は端辺上の3次元座標は、圃場外周の3次元座標および障害物の3次元座標を区別して、運転経路生成装置1により受信される。また、ポインティングされる3次元座標は、操作器401の受信部4011により受信され、表示部4012により表示されてもよい。また、操作器401は、受信される3次元座標が圃場外周又は障害物の3次元座標として適しているかを判定し、再測量が必要と判定される場合は、表示部4012を通じて使用者に再測量を促してもよい。 3D coordinates on the endpoints or edges of the field that are pointed and transmitted are received by the driving route generation device 1 by distinguishing between the 3D coordinates of the field periphery and the 3D coordinates of obstacles. Further, the three-dimensional coordinates to be pointed may be received by the receiving unit 4011 of the operation device 401 and displayed by the display unit 4012. In addition, the operation unit 401 determines whether the received three-dimensional coordinates are suitable as the three-dimensional coordinates of the field outer circumference or the obstacle, and if it is determined that the re-measurement is necessary, the operation unit 401 prompts the user through the display unit 4012. You may encourage surveying.
 図9に示すように、運転経路生成装置1は、対象エリア情報取得部10、移動許可エリア生成部20、エリア策定部30、経路生成部40、および経路選択部50を備える。 As shown in FIG. 9, the driving route generation device 1 includes a target area information acquisition unit 10, a movement permitted area generation unit 20, an area planning unit 30, a route generation unit 40, and a route selection unit 50.
 対象エリア情報取得部10は、座標測量装置2から送信される3次元座標の情報を取得する機能部である。 The target area information acquisition unit 10 is a functional unit that acquires information on the three-dimensional coordinates transmitted from the coordinate surveying device 2.
 図10に示すように、移動許可エリア生成部20は、対象エリア情報取得部10により取得される3次元座標に基づいて、圃場80内においてドローン100が移動する移動許可エリア80iを指定する。移動許可エリア生成部20は、進入禁止エリア決定部21、および移動許可エリア決定部22を有する。 As shown in FIG. 10, the movement-permitted area generation unit 20 specifies the movement-permitted area 80i to which the drone 100 moves in the field 80 based on the three-dimensional coordinates acquired by the target area information acquisition unit 10. The movement permission area generation unit 20 has an entry prohibition area determination unit 21 and a movement permission area determination unit 22.
 進入禁止エリア決定部21は、対象エリア情報取得部10により取得される障害物81a,82a,83a,84a,85aの3次元座標および当該障害物の種類に基づいて、ドローン100の進入禁止エリア81b,82b,83b,84b,85bを決定する機能部である。進入禁止エリア81b-85bは、障害物81a-85aおよび障害物周辺のエリアを含む領域である。進入禁止エリア81b-85bは、水平方向および高さ方向に規定される、3次元方向に広がりを有する領域であり、例えば障害物81a-85aを中心にして描かれる直方体状の領域である。なお、進入禁止エリアは、障害物を中心に描かれる円筒状又は球状の領域であってもよい。ドローン100は空中を飛行するため、障害物の高さ方向の大きさによっては障害物の上空を飛行することが可能である。障害物の高さ方向の大きさにより、障害物の上空を進入禁止エリアとはみなさない構成によれば、障害物を過剰に迂回することなく圃場内を効率的に飛行することができる。 The prohibited area determining unit 21 determines the prohibited area 81b of the drone 100 based on the three-dimensional coordinates of the obstacles 81a, 82a, 83a, 84a, 85a acquired by the target area information acquisition unit 10 and the type of the obstacle. , 82b, 83b, 84b, 85b is a functional unit for determining. The prohibited areas 81b-85b are areas including the obstacles 81a-85a and the areas around the obstacles. The no-entry areas 81b-85b are areas that are defined in the horizontal direction and the height direction and have a three-dimensional spread, and are, for example, rectangular parallelepiped areas drawn around the obstacles 81a-85a. The prohibited area may be a cylindrical or spherical area centered around an obstacle. Since the drone 100 flies over the air, it is possible to fly over the obstacle depending on the size of the obstacle in the height direction. According to the configuration in which the size of the obstacle in the height direction does not consider the sky above the obstacle as an inaccessible area, it is possible to efficiently fly in the field without circumventing the obstacle excessively.
 障害物外縁から進入禁止エリア81b-85bの外縁に至る距離は、障害物81a-85aの種類により決定される。ドローン100が衝突した場合の危険度が大きい障害物ほど、障害物外縁から進入禁止エリア81b-85bの外縁に至る距離は大きい。例えば、家屋の場合、家屋の外縁から50cmの範囲を進入禁止エリアとする一方、電線の外縁から80cmの範囲を進入禁止エリアとする。電線の場合は衝突時にドローン100の故障に加えて送電不良や電線の破壊等の事象が起こり得るため、衝突時の危険度がより高いと考えられるためである。進入禁止エリア決定部21は、障害物の種類と進入禁止エリアの大きさとが関連付けられる障害物テーブルをあらかじめ記憶していて、取得される障害物の種類に応じて進入禁止エリアの大きさを決定する。 The distance from the outer edge of the obstacle to the outer edge of the no-entry area 81b-85b is determined by the type of the obstacle 81a-85a. The greater the risk of collision of the drone 100, the greater the distance from the outer edge of the obstacle to the outer edge of the no-entry area 81b-85b. For example, in the case of a house, a range of 50 cm from the outer edge of the house is the entry prohibited area, while a range of 80 cm from the outer edge of the electric wire is the entry prohibited area. This is because, in the case of an electric wire, in addition to the failure of the drone 100 at the time of a collision, an event such as a power transmission failure or a breakage of the electric wire may occur, so that the risk at the time of the collision is considered to be higher. The no-entry area determination unit 21 stores in advance an obstacle table in which the type of obstacle and the size of the no-entry area are associated with each other, and determines the size of the no-entry area according to the type of obstacle acquired. To do.
 移動許可エリア決定部22は、移動許可エリア80iを決定する機能部である。移動許可エリア80iの平面方向に関しては、圃場80の対象エリア情報取得部10により取得される平面上の座標が圃場80の外周位置にあるものとする。移動許可エリア決定部22は、移動許可エリア80iの高さ方向に関しては、対象エリア情報取得部10により取得される高さ方向の座標、すなわち圃場80の地面の高さに、作物の高さや、飛行を制御する際に安全が担保できるマージンを合計して、移動許可エリア80iの高さ方向の範囲を決定する。当該移動許可エリア決定部22は、当該3次元座標に囲まれている内側の領域から進入禁止エリア81b-85bを除くことで移動許可エリア80iを決定する。 The movement permission area determining unit 22 is a functional unit that determines the movement permission area 80i. Regarding the plane direction of the movement permitted area 80i, it is assumed that the coordinates on the plane acquired by the target area information acquisition unit 10 of the field 80 are at the outer peripheral position of the field 80. The movement-permitted area determination unit 22, with respect to the height direction of the movement-permitted area 80i, the coordinates in the height direction acquired by the target area information acquisition unit 10, that is, the height of the ground of the field 80, the height of the crop, The height-wise range of the movement permitted area 80i is determined by summing the safety margins when controlling flight. The movement-permitted area determining unit 22 determines the movement-permitted area 80i by removing the entry-prohibited areas 81b-85b from the inner area surrounded by the three-dimensional coordinates.
 図11に示すように、エリア策定部30は、移動許可エリア生成部20により決定される移動許可エリア80iを、互いに異なる経路パターンで飛行する領域ごとに分割して策定する機能部である。エリア策定部30は、移動許可エリア80i内を、1又は複数の整形エリア81iと、整形エリア81iよりも面積の小さい1又は複数の異形エリア82i,83)と、に分割して策定可能である。 As shown in FIG. 11, the area planning unit 30 is a functional unit that divides the migration permission area 80i determined by the migration permission area generation unit 20 into regions that fly in mutually different route patterns to formulate. The area planning unit 30 can divide the inside of the movement permission area 80i into one or a plurality of shaping areas 81i and one or a plurality of irregular areas 82i, 83) each having a smaller area than the shaping area 81i. ..
 経路パターンとは、ある領域に対し網羅的に飛行するために、当該領域の形状に応じて自動的に経路を生成するための規則である。経路パターンは、整形エリアに対する経路パターンと、異形エリアに対する経路パターンに大別される。 -A route pattern is a rule for automatically generating a route according to the shape of a certain area in order to fly comprehensively. Route patterns are roughly classified into route patterns for shaped areas and route patterns for irregular areas.
 また、整形エリア81iに対する経路パターンは、当該整形エリア81iの外周を周回する外周パターンと、周回経路の内側を往復する内側パターンと、を含む。整形エリア81iにおいて、外周パターンにより飛行するエリアを外周エリア811i、内側パターンにより飛行するエリアを内側エリア812iと呼ぶ。異形エリア、外周エリア、および内側エリアの特徴に関しては、後述する。 The route pattern for the shaping area 81i includes an outer peripheral pattern that circulates around the outer periphery of the shaping area 81i and an inner pattern that reciprocates inside the circular route. In the shaping area 81i, an area flying by the outer peripheral pattern is called an outer peripheral area 811i, and an area flying by the inner pattern is called an inner area 812i. The features of the irregular area, the outer peripheral area, and the inner area will be described later.
 エリア策定部30は、エリア分割要否判定部31、整形エリア生成部32、および異形エリア生成部33を有する。 The area planning unit 30 includes an area division necessity determination unit 31, a shaping area generation unit 32, and a variant area generation unit 33.
 エリア分割要否判定部31は、移動許可エリアを複数の整形エリアに分割する要否を判定する機能部である。エリア分割要否判定部31は、特に移動許可エリアを上空から俯瞰した際に凹多角形状である場合、移動許可エリアを分割する。凹多角形は、多角形の内角の少なくとも1個が180°を超える角である多角形であり、言い換えれば凹部形状を有する多角形である、 The area division necessity determination unit 31 is a functional unit that determines the necessity of dividing the movement permission area into a plurality of shaping areas. The area division necessity determination unit 31 divides the movement permission area particularly when the movement permission area has a concave polygonal shape when viewed from above. The concave polygon is a polygon in which at least one of the inner angles of the polygon is an angle exceeding 180 °, in other words, a polygon having a concave shape.
 図12(a)、(b)、および図13を用いて、エリア分割要否判定部31が移動許可エリア90iの分割要否を判定し、エリア分割を行う工程を説明する。 A process for the area division necessity determination unit 31 to determine the necessity of division of the movement permitted area 90i and perform area division will be described with reference to FIGS. 12 (a), 12 (b), and 13.
 図12(a)に示す移動許可エリア90iは、上空から俯瞰すると、辺91iおよび辺92iの2辺から構成される凹部93iがある。そこで、図13に示すように、エリア分割要否判定部31は、2辺から成る凹部93iがあることを判定すると(S11)、2辺91i,92iのうち長い方の辺91iを判定対象辺として、長さを算出する(S12)。エリア分割要否判定部31は、移動許可エリア90iに凹部が発見できないとき、エリア分割を行わない。 The movement-permitted area 90i shown in FIG. 12 (a) has a recess 93i composed of two sides 91i and 92i when viewed from above. Therefore, as shown in FIG. 13, when the area division necessity determination unit 31 determines that there is a recess 93i composed of two sides (S11), the longer side 91i of the two sides 91i, 92i is the determination target side. As, the length is calculated (S12). The area division necessity determination unit 31 does not perform area division when a recess cannot be found in the movement permitted area 90i.
 エリア分割要否判定部31は、当該辺91iの長さがドローン100の有効幅に基づいて決定される所定値以上の場合、当該辺91iを含むエリアの分割が必要と判定し(S13)、移動許可エリア90iを2個のエリア901i,902iに分割する(S14)。次いで、分割後のエリア内に凹部があるか否かを判定する(S15)。凹部が発見された場合、ステップS12に戻る。凹部が発見されない場合、これ以上の分割は不要と判定し、処理を終了する。 If the length of the side 91i is greater than or equal to a predetermined value determined based on the effective width of the drone 100, the area division necessity determination unit 31 determines that the area including the side 91i needs to be divided (S13), The movement permitted area 90i is divided into two areas 901i and 902i (S14). Next, it is determined whether or not there is a recess in the area after division (S15). When the concave portion is found, the process returns to step S12. If no recess is found, it is determined that no further division is necessary, and the process ends.
 分割線94iは、分割後において小さい方のエリアの端辺を構成する辺であって、分割線94iに対向する端辺95iと平行になるように決定される。この構成によれば、分割後のエリアをドローン100が往復飛行する際に、当該エリア内をより網羅的に飛行することができる。 The dividing line 94i is a side that constitutes an edge of the smaller area after division, and is determined to be parallel to the edge 95i that faces the dividing line 94i. According to this configuration, when the drone 100 flies back and forth in the area after the division, it is possible to fly more comprehensively in the area.
 エリア分割要否判定部31により分割されて生成される複数のエリアには、それぞれ少なくとも1個の整形エリアが生成可能である。整形エリア81iは、そのエリアを外周エリア811iおよび内側エリア812iを生成可能な形状および面積である。外周エリア811iは、例えばドローン100の有効幅を有する環状のエリアであり、内側エリア812iはドローン100の有効幅から重複許容幅を除く幅が必要である。したがって、エリア分割要否判定部31は、当該辺(91i)の長さが、ドローン100の有効幅の3倍から重複許容幅を除いた値以上であるとき、エリアを分割する。なお、ドローン100の有効幅は、例えば薬剤散布用ドローンである場合は薬剤の散布幅である。また、ドローン100の有効幅は、監視用ドローンである場合は、監視可能幅である。 At least one shaping area can be generated for each of the plurality of areas generated by being divided by the area division necessity determination unit 31. The shaping area 81i has such a shape and area that an outer peripheral area 811i and an inner area 812i can be generated. The outer peripheral area 811i is, for example, an annular area having the effective width of the drone 100, and the inner area 812i needs to have a width excluding the overlap allowable width from the effective width of the drone 100. Therefore, the area division necessity determination unit 31 divides the area when the length of the side (91i) is equal to or larger than three times the effective width of the drone 100 minus the allowable overlap width. Note that the effective width of the drone 100 is, for example, a drug spraying width in the case of a drug spraying drone. Further, the effective width of the drone 100 is the monitorable width in the case of the monitoring drone.
 図12(b)に示す移動許可エリア100iは、上空から俯瞰すると、辺111i、辺112i、および辺113iの3辺がこの順に隣接して構成される凹部110iがある。そこで、図13に示すように、エリア分割要否判定部31は、3辺111i乃至113iから成る凹部110iがあることを判定すると(S11)、凹部110iの対向する辺111i,113iのうち長い方の辺111iを判定対象辺として、長さを算出する(S12)。エリア分割要否判定部31は、当該辺111iの長さがドローン100の有効幅に基づいて決定される所定値以上の場合、当該辺111iを含むエリアの分割が必要と判定し(S13)、分割線(121i)により移動許可エリア100iを2個のエリア1001i,1002iに分割する(S14)。 The movement permission area 100i shown in FIG. 12 (b) has a recess 110i formed by adjoining three sides of a side 111i, a side 112i, and a side 113i in this order when viewed from above. Therefore, as shown in FIG. 13, when the area division necessity determination unit 31 determines that there is a recess 110i composed of three sides 111i to 113i (S11), the longer side of the opposing sides 111i, 113i of the recess 110i is determined. The length is calculated by using the side 111i of (1) as a determination target side (S12). If the length of the side 111i is equal to or greater than a predetermined value determined based on the effective width of the drone 100, the area division necessity determination unit 31 determines that the area including the side 111i needs to be divided (S13), The movement permitted area 100i is divided into two areas 1001i and 1002i by the dividing line (121i) (S14).
 次いで、分割後のエリア内に凹部があるか否かを判定する(S15)。凹部が発見された場合、ステップS12に戻る。移動許可エリア100iの例においては、エリア分割要否判定部31は、分割後のエリアにさらに分割が必要と判定し(S13)、分割線122iによりエリア1001iをさらに2個のエリア1003i,1004iに分割する(S14)。 Next, it is judged whether or not there is a recess in the area after division (S15). When the concave portion is found, the process returns to step S12. In the example of the movement permitted area 100i, the area division necessity determination unit 31 determines that the area after division needs to be further divided (S13), and the area 1001i is further divided into two areas 1003i and 1004i by the division line 122i. Divide (S14).
 凹部110iの底辺113iの両端から移動許可エリア100iの左右端辺101i,102iに向かって分割線121i,122iが規定される。分割線121i,122iは、分割後において小さい方の領域の端辺を構成する辺であって、対向する端辺103i,104iと平行になるように決定される。この構成によれば、分割後のエリアをドローン100が往復飛行する際に、当該エリア内をより網羅的に飛行することができる。 Dividing lines 121i and 122i are defined from both ends of the bottom edge 113i of the recess 110i toward the left and right edges 101i and 102i of the movement permitted area 100i. The division lines 121i and 122i are sides that form the end sides of the smaller area after division, and are determined to be parallel to the opposite end sides 103i and 104i. According to this configuration, when the drone 100 flies back and forth in the area after the division, it is possible to fly more comprehensively in the area.
 なお、エリア分割要否判定部31は、移動許可エリアに代えて、対象エリアを分割か否かを判定するように構成されていてもよい。 The area division necessity determination unit 31 may be configured to determine whether or not the target area is divided instead of the movement permission area.
 整形エリア生成部32はエリア分割要否判定部31により生成された1又は複数のエリアのそれぞれに、整形エリアを生成する機能部である。 The shaping area generation unit 32 is a functional unit that generates a shaping area for each of one or a plurality of areas generated by the area division necessity determination unit 31.
 図11に示すように、整形エリア生成部32は、移動許可エリア80iの内部において最大面積の凸多角形を、整形エリア81iとして生成する。凸多角形は、多角形の内角がいずれも180°未満である多角形である。 As shown in FIG. 11, the shaping area generation unit 32 generates, as the shaping area 81i, the convex polygon having the largest area inside the movement permission area 80i. A convex polygon is a polygon whose interior angles are all less than 180 °.
 図9に示すように、整形エリア生成部32は、外周エリア生成部321および内側エリア生成部322を有する。図11の例においては、外周エリア生成部321は、整形エリア81iの外縁を成す、ドローン100の有効幅を有する環状の領域を、外周エリア811iとする。また、内側エリア生成部322は、外周エリア811iの内側を、内側エリア812iとする。なお、外周エリア811iは、ドローン100の有効幅以上の幅を有していてもよい。この場合、後述する外周経路生成部41により生成される外周経路は、外周エリア811iを複数回周回する経路であってもよい。 As shown in FIG. 9, the shaping area generating unit 32 has an outer peripheral area generating unit 321 and an inner area generating unit 322. In the example of FIG. 11, the outer peripheral area generation unit 321 sets the annular area having the effective width of the drone 100, which forms the outer edge of the shaping area 81i, as the outer peripheral area 811i. Further, the inner area generation unit 322 sets the inner side of the outer peripheral area 811i as the inner area 812i. The outer peripheral area 811i may have a width equal to or larger than the effective width of the drone 100. In this case, the outer peripheral route generated by the outer peripheral route generating unit 41, which will be described later, may be a route that circles the outer peripheral area 811i multiple times.
 異形エリア生成部33は、エリア分割要否判定部31により生成された1又は複数のエリアのそれぞれに、異形エリアを生成する機能部である。 The variant area generation unit 33 is a functional unit that generates a variant area for each of the one or more areas generated by the area division necessity determination unit 31.
 異形エリア82i,83iは、整形エリア81iよりも1個当たりの面積が小さいエリアであり、外周エリアおよび内側エリアを規定することができないエリアである。より具体的には、異形エリア82i,83iは、当該エリアの最短辺の長さが、ドローン100の有効幅の3倍から重複許容幅を除いた値未満である。図11の例においては、2か所の異形エリア82i,83iが策定されている。 The odd-shaped areas 82i and 83i are areas each having a smaller area than the shaping area 81i, and cannot define the outer peripheral area and the inner area. More specifically, in the irregular areas 82i and 83i, the length of the shortest side of the area is less than 3 times the effective width of the drone 100 minus the allowable overlap width. In the example of FIG. 11, two variant areas 82i and 83i are defined.
 経路生成対象エリア確定部34は、策定される各エリア811i,812i,82i,83iに対し、経路生成が可能なエリアか否かを判定し、経路生成の対象となるエリアを確定する機能部である。整形エリア81iおよび異形エリア82i,83iは、その形状により、運転が不可能な場合があるためである。経路生成対象エリア確定部34は、ドローン100の運転性能に基づいて定められる所定値に基づいて、経路生成が可能なエリアか否かを判定する。ドローン100の運転性能とは、ドローン100が等速運転に至るまでに要する助走距離、および等速運転から停止までに要する停止距離を含む。また、ドローン100の運転性能とは、薬剤散布や監視における有効幅を含む。 The route generation target area determination unit 34 is a functional unit that determines whether or not each of the areas 811i, 812i, 82i, and 83i to be created is a route generation area, and determines the route generation target area. is there. This is because the shaping area 81i and the odd-shaped areas 82i and 83i may not be able to be driven due to their shapes. The route generation target area determination unit 34 determines whether or not the route generation is possible based on a predetermined value determined based on the driving performance of the drone 100. The driving performance of the drone 100 includes an approach distance required for the drone 100 to reach uniform speed operation and a stopping distance required for the drone 100 to stop. In addition, the driving performance of the drone 100 includes the effective width in drug spraying and monitoring.
 経路生成対象エリア確定部34は、外周エリア811iの長辺が、ドローン100が等速運転に至るまでに要する助走距離および停止に要する停止距離に基づいて定められる所定値未満である場合、当該外周エリア811iに経路生成を行わない旨の決定をする。例えば、外周エリア811iの長辺が、助走距離および停止距離を合計した値未満であるとき、経路生成を行わない旨の決定をする。また、外周エリア811iの最短辺がドローン100の有効幅に基づいて決定される所定値未満であるとき、経路生成を行わない。より具体的には、外周エリア811iの最短辺がドローン100の有効幅未満であるとき、経路生成を行わない。当該所定値未満である場合、外周エリア811iを周回する経路が生成できないためである。 If the long side of the outer peripheral area 811i is less than a predetermined value determined based on the approach distance required for the drone 100 to reach uniform speed operation and the stop distance required for stopping, the route generation target area determination unit 34 determines the outer periphery. It is decided not to generate a route in the area 811i. For example, when the long side of the outer peripheral area 811i is less than the sum of the approach distance and the stop distance, it is determined that the route is not generated. Further, when the shortest side of the outer peripheral area 811i is less than the predetermined value determined based on the effective width of the drone 100, the route is not generated. More specifically, when the shortest side of the outer peripheral area 811i is less than the effective width of the drone 100, the route is not generated. This is because a route that goes around the outer peripheral area 811i cannot be generated when the value is less than the predetermined value.
 同様に、経路生成対象エリア確定部34は、内側エリア812iの長辺が、ドローン100が等速運転に至るまでに要する助走距離および停止に要する停止距離に基づいて定められる所定値未満である場合、経路生成を行わない旨の決定をする。例えば、内側エリア812iの長辺が、助走距離および停止距離を合計した値未満であるとき、経路生成を行わない旨の決定をする。内側エリア812iの最短辺がドローン100の有効幅に基づいて決定される所定値未満であるとき、経路生成を行わない旨の決定をする。より具体的には、内側エリア812iの最短辺がドローン100の有効幅の2倍から重複許容値を除いた値未満であるとき、経路を生成しない。 Similarly, the route generation target area determination unit 34 determines that the long side of the inner area 812i is less than a predetermined value determined based on the approach distance required for the drone 100 to reach uniform speed operation and the stop distance required for stopping. , Decide not to generate the route. For example, when the long side of the inner area 812i is less than the sum of the approach distance and the stop distance, it is determined that the route is not generated. When the shortest side of the inner area 812i is less than the predetermined value determined based on the effective width of the drone 100, it is determined that the route is not generated. More specifically, when the shortest side of the inner area 812i is less than twice the effective width of the drone 100 minus the allowable overlap value, no route is generated.
 また、経路生成対象エリア確定部34は、策定される異形エリア82i,83iそれぞれに対し、ドローン100の運転が可能か否かを判定する。異形エリア82i,83iに対する経路パターンは、長辺方向に向かって一方に飛行する経路、又は一往復する経路である。そこで、異形エリア82i,83iの最短辺がドローン100の有効幅に基づいて決定される所定値未満であるとき、経路生成対象エリア確定部34は、ドローン100が当該異形エリア内の運転を行わない旨の決定をする。より具体的には、異形エリア82i,83iの最短辺が重複許容未満であるとき、運転を行わない旨の決定をする。重複許容値は、例えばドローン100の有効幅の10%であってもよい。 Also, the route generation target area determination unit 34 determines whether or not the drone 100 can be driven for each of the irregular areas 82i and 83i to be created. The route pattern for the odd-shaped areas 82i and 83i is a route that travels in one direction in the long side direction or a route that makes one round trip. Therefore, when the shortest side of the variant areas 82i, 83i is less than the predetermined value determined based on the effective width of drone 100, route generation target area determination unit 34 does not allow drone 100 to drive in the variant area. Make a decision. More specifically, when the shortest sides of the irregular areas 82i and 83i are less than the overlap tolerance, it is determined that the operation is not performed. The overlap tolerance may be, for example, 10% of the effective width of the drone 100.
 また、異形エリア82i,83iの長辺が、ドローン100が等速運転に至るまでに要する助走距離および停止に要する停止距離に基づいて定められる所定値未満である場合も、運転を行わない旨の決定をする。例えば、異形エリア82i,83iの長辺が、助走距離および停止距離を合計した値未満であるとき、運転を行わない。 Also, even if the long sides of the irregular areas 82i, 83i are less than the predetermined value determined based on the approach distance required for the drone 100 to reach uniform speed operation and the stop distance required for stopping, it is said that the drone 100 will not drive. Make a decision. For example, when the long sides of the odd-shaped areas 82i and 83i are less than the sum of the approach distance and the stop distance, driving is not performed.
 エリア策定部30は、策定されるエリアの情報を操作器401に送信し、操作器401で表示してもよい。また、運転不可のエリアがある場合には、その旨を警告する表示を行ってもよい。 The area planning unit 30 may send information on the area to be defined to the operation unit 401 and display it on the operation unit 401. Further, if there is an area in which driving is not possible, a warning may be displayed to that effect.
 なお、本例においては、外周エリア811i、内側エリア812i、および異形エリア83iは運転可能なエリアであり、異形エリア82iは運転不可のエリアである。 In this example, the outer peripheral area 811i, the inner area 812i, and the irregular area 83i are operable areas, and the irregular area 82i is an inoperable area.
 図14を用いて、ここまでに説明した、対象エリア情報を取得して経路生成対象エリアを確定するまでの工程を説明する。 The process of acquiring the target area information and confirming the route generation target area described above will be described with reference to FIG.
 まず、対象エリア情報取得部10は、圃場に関する座標情報を取得する(S21)。また、対象エリア情報取得部10は、障害物に関する座標情報を取得する(S22)。なお、ステップS21乃至S22は、順不同であり、同時であってもよい。 First, the target area information acquisition unit 10 acquires coordinate information about the field (S21). In addition, the target area information acquisition unit 10 acquires coordinate information regarding the obstacle (S22). Note that steps S21 to S22 may be performed in any order and may be performed simultaneously.
 次いで、移動許可エリア生成部20は、圃場および障害物に関する座標情報に基づいて、移動許可エリアを生成する(S23)。 Next, the movement permission area generation unit 20 generates a movement permission area based on the coordinate information on the field and the obstacle (S23).
 エリア分割要否判定部31は、移動許可エリアの形状および大きさに基づいて、移動許可エリアを分割する必要があるか否かを判定する(S24)。分割が必要である場合、エリア分割要否判定部31は、移動許可エリアを複数のエリアに分割する(S25)。 The area division necessity determination unit 31 determines whether or not the movement permission area needs to be divided based on the shape and size of the movement permission area (S24). When the division is necessary, the area division necessity determination unit 31 divides the movement permitted area into a plurality of areas (S25).
 整形エリア生成部32は、移動許可エリア、又はエリア分割要否判定部31により分割される複数のエリアのそれぞれに整形エリアを生成し、さらに各整形エリアに外周エリアおよび内側エリアを生成する(S26)。 The shaping area generation unit 32 generates a shaping area in each of the movement permitted area or the plurality of areas divided by the area division necessity determination unit 31, and further generates an outer peripheral area and an inside area in each shaping area (S26). ).
 異形エリア生成部33は、移動許可エリアのうち整形エリア以外のエリアを、異形エリアとする(S27)。 The variant area generation unit 33 sets the areas other than the shaping area in the movement permitted area as variant areas (S27).
 次いで、経路生成対象エリア確定部34は、規定されるエリアそれぞれに対し、ドローン100の運転可否を判定する(S28)。ドローン100の運転が不可と判定される場合、経路生成対象エリア確定部34は、当該エリアを移動許可エリアから除去する(S29)。最後に、経路生成対象エリア確定部34は、運転可能なエリアを、経路生成対象エリアとして確定する(S30)。 Next, the route generation target area determination unit 34 determines whether or not the drone 100 can be operated for each of the specified areas (S28). When it is determined that the drone 100 cannot be driven, the route generation target area determination unit 34 removes the area from the movement permitted area (S29). Finally, the route generation target area determination unit 34 determines the drivable area as the route generation target area (S30).
 図9に示す経路生成部40は、経路生成対象エリアに、経路パターンに基づいて運転経路を生成する機能部である。経路生成部40は、外周経路生成部41と、内側経路生成部42と、異形エリア経路生成部43と、経路連結部44と、を有する。 The route generation unit 40 shown in FIG. 9 is a functional unit that generates a driving route in the route generation target area based on the route pattern. The route generating unit 40 includes an outer peripheral route generating unit 41, an inner route generating unit 42, a variant area route generating unit 43, and a route connecting unit 44.
 図9および図15に示すように、外周経路生成部41は、外周エリア811iにおける周回運転経路811rを生成する機能部である。周回運転経路811rは、外周エリア811i上を1回又は複数回周回する経路である。本実施形態においては左回りであるが、右回りであってもよい。 As shown in FIGS. 9 and 15, the outer peripheral route generation unit 41 is a functional unit that generates a circular driving route 811r in the outer peripheral area 811i. The circular operation route 811r is a route that makes one or more rounds on the outer peripheral area 811i. Although it is counterclockwise in the present embodiment, it may be clockwise.
 図16に示すように、外周経路生成部41は、外周エリア811iの内側に規定される内角が所定角以上であるか、所定角未満であるかに応じて、ドローン100に異なる曲がりパターンを実行させるようにしてもよい。例えば、図16(a)に示すように、外周エリア811iの内角が所定角以上である場合、ドローン100は前進および旋回を行いながら内角に沿って曲がる前進旋回を行う。より具体的には、ドローン100は、旋回点410pまで前進し、旋回点410pで内角に対応する角度だけ旋回し、その後前進する。前進旋回は、第1旋回の例である。 As shown in FIG. 16, the outer peripheral route generation unit 41 performs different bending patterns on the drone 100 depending on whether the inner angle defined inside the outer peripheral area 811i is equal to or greater than a predetermined angle or less than the predetermined angle. It may be allowed to. For example, as shown in FIG. 16 (a), when the inner angle of the outer peripheral area 811i is equal to or larger than the predetermined angle, the drone 100 makes a forward turn that bends along the inner angle while moving forward and turning. More specifically, the drone 100 advances to the turning point 410p, turns at an angle corresponding to the interior angle at the turning point 410p, and then moves forward. The forward turn is an example of the first turn.
 図16(b)に示すように、外周エリア811iの内角が所定角未満の場合、ドローン100は、エリアの境界線付近に位置する旋回点411pまで前進した後、経路412rに沿って後退しながら、隣接する別の境界線にドローン100の後部が沿うように旋回点413pまで移動することで方向転換する。すなわち、ドローン100は、「4」の字を描くような4の字旋回を行う。4の字旋回は、第2旋回の例である。この構成により、外周エリア811iの角部においても、ドローン100の機体が外周エリア811iの外側に逸脱することなく、広い領域にドローン100の有効領域を担保することが可能である。 As shown in FIG. 16B, when the inner angle of the outer peripheral area 811i is less than the predetermined angle, the drone 100 advances to the turning point 411p located near the boundary line of the area, and then retreats along the route 412r. , The direction is changed by moving to the turning point 413p so that the rear part of the drone 100 is along another adjacent boundary line. That is, the drone 100 makes a four-figure turn to draw a "4". The four-shaped turning is an example of the second turning. With this configuration, it is possible to secure the effective area of the drone 100 in a large area even at the corners of the outer peripheral area 811i without the body of the drone 100 deviating to the outside of the outer peripheral area 811i.
 内側経路生成部42は、内側エリア812iにおける往復運転経路812rを生成する機能部である。往復運転経路812rは、内側エリア812iを往復して走査する経路である。往復運転経路812rは、内側エリア812iの各辺のうち、最も長い長辺813i方向に沿って連続して生成され、当該長辺813iに隣接する辺のうち短い方である短辺814i方向に沿う経路上で方向転換を行うように生成されている。言い換えれば、往復運転経路812rは、1又は複数対の往復経路が互いに連結されて構成されている。長辺813i方向に沿う運転経路は、長辺813iに平行であってもよいし、平行でなくてもよい。また、長辺813i方向に沿う運転経路のそれぞれは、互いに平行であってもよいし、平行でなくてもよい。 The inner route generation unit 42 is a functional unit that generates a reciprocating operation route 812r in the inner area 812i. The reciprocating operation route 812r is a route for reciprocatingly scanning the inner area 812i. The reciprocating operation route 812r is continuously generated along the longest long side 813i direction of each side of the inner area 812i, and follows the shortest side 814i direction of the sides adjacent to the long side 813i. It is designed to make turns on the path. In other words, the reciprocating operation route 812r is configured by connecting one or a plurality of pairs of reciprocating routes to each other. The driving route along the long side 813i direction may or may not be parallel to the long side 813i. Further, the driving routes along the long side 813i direction may be parallel to each other or may not be parallel to each other.
 なお、本実施形態においては、移動許可エリアを外側エリアと内側エリアに分けた上で、内側経路生成部が内側エリア内を往復して走査する運転経路を生成するものとした。しかし、外側エリアを規定せず、経路生成部が移動許可エリア全体を走査する運転経路を生成してもよい。 In the present embodiment, the movement permitted area is divided into the outer area and the inner area, and the inner route generation unit generates the driving route that reciprocates and scans the inner area. However, the route generation unit may generate the driving route that scans the entire movement permitted area without defining the outer area.
 内側経路生成部42は、内側エリアをさらに1又は複数の往復エリアに分割し、それぞれを往復して走査する往復経路を生成し、これらを連結する。往復エリアを区画する多角形は、三角形状又は四角形状である。内側経路生成部42は、内側エリアの外縁を区画する端辺のうち、最長辺を基準辺として、基準辺に隣接する辺のうち短い方の短辺の長さに基づいて、1個の往復エリアの形状を決定する。 The inner route generation unit 42 further divides the inner area into one or a plurality of round-trip areas, generates a round-trip route that scans by reciprocating each, and connects these. The polygon that defines the reciprocating area is triangular or quadrangular. The inner path generation unit 42 uses the longest side as a reference side among the end sides that define the outer edge of the inner area, and makes one round trip based on the length of the shorter short side of the sides adjacent to the reference side. Determine the shape of the area.
 図17に例示する形状の内側エリア802iにおいて、基準辺は長辺803iである。内側経路生成部42は、長辺813iに隣接する辺のうち短い方である短辺804iの端部を出発し、長辺813iに沿って移動し、短辺814iに対向する対向辺805i上で方向転換をして、短辺804iに戻ってくることにより、往路および復路の対を成す第1往復経路71rを生成する。図中の経路幅は、ドローン100の有効幅を示す。ドローン100の有効幅とは、例えば薬剤散布用ドローン100が1方向の移動で薬剤散布可能な幅である。また、ドローン100の有効幅は、監視用に飛行するドローン100が1方向の移動で監視可能な幅である。 In the inner area 802i having the shape illustrated in FIG. 17, the reference side is the long side 803i. The inner path generation unit 42 starts from the end of the short side 804i which is the shorter one of the sides adjacent to the long side 813i, moves along the long side 813i, and on the opposite side 805i facing the short side 814i. By changing the direction and returning to the short side 804i, the first round-trip path 71r forming a pair of an outward path and a return path is generated. The route width in the figure indicates the effective width of the drone 100. The effective width of the drone 100 is, for example, a width with which the drug spraying drone 100 can spray the drug by moving in one direction. Further, the effective width of the drone 100 is a width that the drone 100 flying for monitoring can monitor by moving in one direction.
 内側経路生成部42は、第1往復経路71rに連結する、長辺803i方向に往復して走査する第2乃至第5往復経路72r-75rをそれぞれこの順に隣接して生成する。対になる各往復経路は互いに平行である。 The inner path generation unit 42 generates second to fifth round-trip paths 72r-75r that are connected to the first round-trip path 71r and scan back and forth in the direction of the long side 803i, respectively, in this order. The pair of round trip paths are parallel to each other.
 経路生成部40は、経路生成対象エリア内を複数回往復し、隣接する往復路同士又は隣接する往路と復路が往路起点側から往路終点側へ広がる又は狭まるように走査する往復運転経路を生成する。本実施形態においては、内側経路生成部42は、内側エリア802i内に当該往復運転経路を生成する。すなわち、第1乃至第5往復経路71r-75rは、短辺804iから対向辺805iに向かって互いの距離が次第に離れるように、放射状に生成されている。図17においては、往路起点は短辺804i、往路終点は対向辺805iにあり、隣接する第1乃至第5往復経路71r-75r同士は短辺804iから対向辺805iへ広がるように走査している。この構成により、向かい合う辺の長さが互いに異なる領域においても、効率的にドローン100を飛行させることができる。 The route generation unit 40 generates a reciprocating operation route that makes a round trip a plurality of times in the route generation target area and scans so that adjacent reciprocating routes or adjacent forward and backward routes spread or narrow from the outward route start side to the outward route end side. .. In the present embodiment, the inner route generation unit 42 generates the reciprocating operation route in the inner area 802i. That is, the first to fifth reciprocating routes 71r-75r are radially generated so that the distances from the short side 804i to the facing side 805i gradually increase. In FIG. 17, the outward route start point is on the short side 804i, the outward route end point is on the opposite side 805i, and adjacent first to fifth reciprocating routes 71r-75r are scanned so as to spread from the short side 804i to the opposite side 805i. .. With this configuration, the drone 100 can be efficiently flown even in areas where the sides facing each other have different lengths.
 第1往復経路71rと第2往復経路72rは、短辺804i付近において有効幅が重複する重複領域81cを有する。また、第1往復経路71rと第2往復経路72rは、対向辺805i付近において走査されない隙間領域91cを有する。第2乃至第5往復経路72r乃至75rにおいても、それぞれ隣接する往復経路間であって短辺804i付近に、重複領域82c,83c,84cを有する。第2乃至第5往復経路72r乃至75rの、それぞれ隣接する往復経路間であって対向辺805i付近に、隙間領域92c,93c,94cを有する。 The first reciprocating route 71r and the second reciprocating route 72r have an overlapping area 81c where the effective widths overlap near the short side 804i. Further, the first reciprocating route 71r and the second reciprocating route 72r have a gap region 91c which is not scanned near the opposite side 805i. The second to fifth reciprocating routes 72r to 75r also have overlapping regions 82c, 83c, and 84c between adjacent reciprocating routes and near the short side 804i. Gap regions 92c, 93c, 94c are provided between the second to fifth reciprocating routes 72r to 75r, which are adjacent to each other, and in the vicinity of the opposite side 805i.
 重複領域81c-84cの幅81d-84dは、互いに等しい。また、隙間領域91d-94dの幅91d-94dは、互いに等しい。この構成によれば、重複領域81c-84cおよび隙間領域91c-94cの1個当たりの幅を可能な限り狭くすることができる。重複領域81c-84cの幅81d-84dは、例えば長辺803iと短辺804iの交点を通り長辺803iに直交する直線上における幅を計算することで求められる。隙間領域91c-94cの幅91d-94dは、例えば長辺803iと対向辺805iの交点を通り長辺803iに直交する直線上における幅を計算することで求められる。 Widths 81d-84d of overlapping areas 81c-84c are equal to each other. The widths 91d-94d of the gap areas 91d-94d are equal to each other. With this configuration, the width of each of the overlapping regions 81c-84c and the gap regions 91c-94c can be made as narrow as possible. The widths 81d-84d of the overlapping areas 81c-84c are obtained by calculating the width on a straight line that passes through the intersection of the long side 803i and the short side 804i and is orthogonal to the long side 803i. The widths 91d-94d of the gap regions 91c-94c are obtained, for example, by calculating the width on a straight line that passes through the intersection of the long side 803i and the opposite side 805i and is orthogonal to the long side 803i.
 重複領域81c-84cの幅81d-84dは、有効幅に基づいて定められる所定幅よりも狭い。この所定幅は、例えば有効幅の約10分の1の幅である。幅81d-84dがこれより広いと、重複して移動する領域が大きくなり、薬剤を過剰に散布することになる。また、監視用ドローン100においては作業時間が増大する。 Widths 81d-84d of overlapping areas 81c-84c are narrower than a predetermined width determined based on the effective width. The predetermined width is, for example, about 1/10 of the effective width. If the widths 81d-84d are wider than this, the area for overlapping movement becomes large, resulting in excessive drug application. Further, the working time increases in the surveillance drone 100.
 同様に、隙間領域91c-94cの幅91d-94dは、有効幅に基づいて定められる所定幅よりも狭い。この所定幅は、例えば有効幅の約10分の1の幅である。幅91d-94dがこれより広いと、薬剤が散布されない領域が増大する。 Similarly, the widths 91d-94d of the gap areas 91c-94c are narrower than the predetermined width determined based on the effective width. The predetermined width is, for example, about 1/10 of the effective width. If the widths 91d-94d are wider than this, the area where the drug is not spread increases.
 このように、内側経路生成部42は、各往復経路71r-75rの間に互いに等しい幅の重複領域81c-84c、および互いに等しい幅の隙間領域91c-94cが形成されるように、各往復経路71r-75rを放射状に形成する。内側エリア802iにおいては、許容される幅の重複領域および隙間領域を各所に配置することで内側エリア802iをほぼ網羅的に走査することができるため、内側経路生成部42は、内側エリア802iを分割せずに、1個の運転経路を生成する。 In this way, the inner-path generating unit 42 uses the reciprocating paths 71r-75r so that the overlapping areas 81c-84c having the same width and the gap areas 91c-94c having the same width are formed between the reciprocating paths 71r-75r. 71r-75r are formed radially. In the inner area 802i, the inner area 802i can be scanned almost comprehensively by arranging the overlapping area and the gap area of the allowable width in various places. Therefore, the inner path generating unit 42 divides the inner area 802i. No, one driving route is generated.
 内側経路生成部42は、重複領域および隙間領域の最大許容幅をあらかじめ記憶し、最大許容幅を許容しても内側エリア全体を走査できないと判定されるとき、内側エリアを複数の往復エリアに分割する。
 図18に例示する内側エリア812iにおいては、基準辺である長辺813iと、長辺813iの両端に配置される短辺814iおよび短辺814iに対向する対向辺815iが、それぞれ規定されている。短辺814iから対向辺815iに向かって、許容される最大の重複領域および隙間領域を含んで走査する放射状の往復経路を生成すると、ドローン100の有効幅の端辺は、端辺816iとなる。内側経路生成部42は、長辺813i、短辺814i、対向辺815i、および端辺816iに囲まれる領域を第1往復エリア813aに決定し、内側エリア812iの他の領域とは分割して往復経路を生成する。
The inner path generation unit 42 stores the maximum allowable widths of the overlapping area and the gap area in advance, and divides the inner area into a plurality of reciprocating areas when it is determined that the entire inner area cannot be scanned even if the maximum allowable width is allowed. To do.
In the inner area 812i illustrated in FIG. 18, a long side 813i that is a reference side, a short side 814i arranged at both ends of the long side 813i, and a facing side 815i that faces the short side 814i are respectively defined. When a radial reciprocating path that scans including the maximum allowable overlapping region and gap region from the short side 814i toward the facing side 815i is generated, the end side of the effective width of the drone 100 becomes the end side 816i. The inner path generation unit 42 determines the area surrounded by the long side 813i, the short side 814i, the opposite side 815i, and the end side 816i as the first reciprocating area 813a, and divides it from other areas of the inner area 812i to reciprocate. Generate a route.
 内側経路生成部42は、当該他の領域に対して、端辺816iを第2基準辺とし、第1往復エリア813aとは別に往復経路を生成する。図18の例では、短辺815iに連続する第2短辺817iと、第2短辺817iに対向する第2対向辺818iが新たに規定される。内側経路生成部42は、第2短辺817iと第2対向辺818iとの間を走査する往復経路を生成する。この往復経路におけるドローン100の有効幅の端辺は、端辺819iとなる。内側経路生成部42は、第2長辺816i、第2短辺817i、第2対向辺818i、および第2端辺819iに囲まれる領域を第2往復エリア816aに決定し、内側エリア812iの第1往復エリア813aおよび他の領域とは分割して往復経路を生成する。 The inner route generation unit 42 generates a round-trip route for the other area by using the end side 816i as the second reference side and separately from the first round-trip area 813a. In the example of FIG. 18, a second short side 817i continuous with the short side 815i and a second opposite side 818i facing the second short side 817i are newly defined. The inner path generation unit 42 generates a reciprocating path that scans between the second short side 817i and the second opposing side 818i. The edge of the effective width of the drone 100 on this round-trip path is the edge 819i. The inner path generation unit 42 determines the area surrounded by the second long side 816i, the second short side 817i, the second opposite side 818i, and the second end side 819i as the second reciprocating area 816a, and determines the area of the inner area 812i. One round-trip area 813a and other areas are divided to generate a round-trip path.
 内側エリア812iの第1、第2往復エリア813a,816a以外の領域819aは、三角形状である。内側経路生成部42は、第2端辺819iを第3基準辺とし、第3基準辺に平行な往復経路を領域819aに生成する。 The area 819a of the inner area 812i other than the first and second round trip areas 813a and 816a has a triangular shape. The inner path generation unit 42 uses the second end side 819i as the third reference side and generates a reciprocating path parallel to the third reference side in the region 819a.
 このように、内側経路生成部42は、内側エリア812iを複数の往復エリア813a,816a,819aに分割してそれぞれに経路を生成し、これらを連結する。この構成によれば、重複領域および隙間領域の総面積を小さくし、内側エリア内でドローン100を効率よく飛行させることができる。 In this way, the inner route generation unit 42 divides the inner area 812i into a plurality of round- trip areas 813a, 816a, 819a, generates routes for each, and connects these. With this configuration, the total area of the overlapping area and the gap area can be reduced, and the drone 100 can efficiently fly in the inner area.
 なお、内側経路生成部42は、3次元方向の位置情報を含む飛行経路に加えて、ドローン100の加減速および旋回に関する飛行計画を生成する。内側経路生成部42は、往復運転経路812rの往路と復路とを連結する折返領域において、出発後および、往路から折返領域への進入時に加速し、停止前および折返領域から前記復路への進入時に減速するように飛行計画を生成してもよい。折返領域とは、往路および復路の連結部分であって、往路および復路の等速直線飛行時の速度とは異なる速度、特に等速直線飛行よりも遅い速度でドローン100を飛行させる領域を指す。ドローン100は急発進および急停止することが困難であるため、あらかじめ加速および減速を開始する地点を飛行計画に含めておくことにより、効率よく飛行することができる。また、ドローン100が移動許可エリアを逸脱することを防止できる。また、往復経路を連結する折返領域においてドローン100を旋回させる情報も飛行計画に包含されていてもよい。 The inner route generation unit 42 generates a flight plan related to acceleration / deceleration and turning of the drone 100, in addition to the flight route including position information in the three-dimensional direction. The inner route generation unit 42 accelerates after departure and when entering the return region from the outward route in the turning region that connects the outward route and the return route of the reciprocating operation route 812r, before stopping and when entering the return route from the returning region. The flight plan may be generated to slow down. The turn-back area is a connecting portion of the forward and return paths, and refers to an area in which the drone 100 flies at a speed different from the speed during constant-speed straight flight on the forward and return paths, particularly at a speed slower than the constant-speed straight flight. Since it is difficult for the drone 100 to suddenly start and stop suddenly, it is possible to efficiently fly by including the points where acceleration and deceleration are started in advance in the flight plan. Further, it is possible to prevent the drone 100 from departing from the movement permission area. Further, the flight plan may include information for turning the drone 100 in a turn-back area that connects the round-trip routes.
 また、内側経路生成部42は、折返領域の少なくとも一部が外周エリア811iに重複するように、往復運転経路812rを生成してもよい。折返領域においては低速で移動するため、監視や薬剤散布が往路および復路と同様には行えないおそれがある。例えば、低速での移動時に散布する薬剤を所定密度に維持することが困難であるため、薬剤散布を停止することがある。そこで、折返領域の少なくとも一部が外周エリア811iに重複することで、周回運転経路811rの飛行により折返領域の効果的な監視又は薬剤散布を担保することができる。 Further, the inner route generation unit 42 may generate the reciprocating operation route 812r such that at least a part of the turn-back region overlaps the outer peripheral area 811i. Since the vehicle moves at a low speed in the turn-back area, it may not be possible to monitor or spray the medicine in the same manner as in the forward and return paths. For example, since it is difficult to maintain a predetermined density of the drug to be sprayed when moving at low speed, the drug spraying may be stopped. Therefore, by overlapping at least a part of the turn-back area with the outer peripheral area 811i, it is possible to ensure effective monitoring of the turn-back area or chemical spraying by the flight of the circular operation route 811r.
 図19に示すように、往復運転経路812rにおいて往路および復路の運転方向を主走査方向とするとき、内側経路生成部42は、往復運転経路812rにおいて往路から復路に折り返す折返領域を、往復運転経路812rの主走査方向と交わる方向に連続して走査する副走査経路101r,102rを生成してもよい。 As shown in FIG. 19, when the forward and backward driving directions in the reciprocating operation route 812r are the main scanning directions, the inner route generating unit 42 sets the turn-back region in the reciprocating operation route 812r that is folded back from the forward route to the returning route. The sub-scanning paths 101r and 102r that continuously scan in a direction intersecting the main scanning direction of the 812r may be generated.
 ドローン100が生育監視を目的に飛行する場合において、ドローン100は、圃場80に生育する作物に向かう下降気流を回転翼101により生じさせることにより、作物を倒伏させることで株元および穂先の撮影を行う。そのため、ドローン100が機首を旋回させる領域においては、下降気流601は、進行方向後方に向かってドローン100を中心とする放射円弧状に発生する。すると、撮影する領域の作物は意図通りに倒されず、適切な撮影が困難である。そこで、往復運転経路812rにおける折返領域においては、往復運転経路812rとは別に、等速直線飛行を行う副走査経路101r,102rを生成する。下降気流601によりなぎ倒される作物は、下降気流601の影響がなくなると略直立の状態に戻ることから、副走査経路101r,102rを飛行する際には、等速運転において生じる下降気流により、意図通りに作物を倒伏させ、生育状況を把握可能な画像を取得することができる。 When the drone 100 flies for the purpose of growth monitoring, the drone 100 causes a descending air flow toward the crops growing in the field 80 by the rotor blades 101, so that the crops are laid down to capture the image of the root and the tip. To do. Therefore, in the area where the drone 100 turns the nose, the descending air flow 601 is generated in a radial arc shape centering on the drone 100 toward the rear in the traveling direction. Then, the crops in the area to be photographed are not destroyed as intended, and it is difficult to properly photograph. Therefore, in the turn-back region of the reciprocating operation route 812r, the sub-scanning routes 101r and 102r for performing constant-velocity linear flight are generated separately from the reciprocating operation route 812r. The crop that is swept down by the downdraft 601 returns to a substantially upright state when the influence of the downdraft 601 disappears.Therefore, when flying along the sub-scanning paths 101r and 102r, the descending airflow generated during constant speed operation causes It is possible to obtain an image that allows the crops to be laid down and the growth status can be grasped.
 また、ドローン100が薬剤散布を目的に飛行する場合においては、作物の株元又は穂先、もしくは土壌を目標に薬剤を散布する。この場合にも、回転翼101の下降気流により、作物は倒伏する。したがって、作物の倒伏状態によっては、目標に意図通り薬剤を到達させることが困難である。内側経路生成部42が往復運転経路812rとは別に副走査経路101r、102rを生成する構成によれば、意図通りに作物を倒伏させることにより、内側エリア812iに対してより効果的に薬剤を散布することが可能である。 In addition, when the drone 100 flies for the purpose of spraying a drug, the drug is sprayed to the root or the tip of the crop or the soil. In this case as well, the downdraft of the rotor blade 101 causes the crop to fall over. Therefore, depending on the lodging state of the crop, it is difficult to allow the drug to reach the target as intended. According to the configuration in which the inner path generation unit 42 generates the sub-scanning paths 101r and 102r separately from the reciprocating operation path 812r, the crops are laid down as intended to more effectively spray the medicine to the inner area 812i. It is possible to
 副走査経路101r,102rは、互いに同方向であってもよいし、逆方向であってもよい。また、副走査経路101r,102rは、往復運転経路812rにおいて往路から復路に折り返す際に飛行する方向と同じ方向であってもよいし、逆方向であってもよい。 The sub-scanning paths 101r and 102r may be in the same direction or in opposite directions. The sub-scanning paths 101r and 102r may be in the same direction as the direction in which the reciprocating operation path 812r flies when returning from the outward path to the inward path, or may be the opposite direction.
 本実施形態においては、副走査経路101r、102rは1対であったが、いずれか一方であってもよい。特に隙間領域91d-94dを横断するように生成される副走査経路102rを生成することで、薬剤散布又は生育監視を実効たらしめる領域を、効果的に補完することができる。 In the present embodiment, the sub-scanning paths 101r and 102r are paired, but either one may be used. In particular, by generating the sub-scanning path 102r that is generated so as to cross the gap regions 91d-94d, it is possible to effectively supplement the region in which drug spraying or growth monitoring is effectively performed.
 異形エリア経路生成部43は、異形エリア83iにおける異形エリア運転経路83rを生成する機能部である。異形エリア運転経路83rは、異形エリア83iの長辺方向に向かって一方に飛行する経路、又は一往復する経路である。 The variant area route generation unit 43 is a functional unit that generates the variant area driving route 83r in the variant area 83i. The variant area driving route 83r is a route that flies to one side in the long side direction of the variant area 83i or a route that makes one round trip.
 経路連結部44は、周回運転経路811r、往復運転経路812r、および異形エリア運転経路83rを連結する機能部である。この構成によれば、複数のエリアに分割して経路が生成される場合にも、経路の重複を最小限にして、効率のよい運転経路を生成することができる。 The route connecting unit 44 is a functional unit that connects the orbiting operation route 811r, the reciprocating operation route 812r, and the variant area operation route 83r. According to this configuration, even when the route is generated by being divided into a plurality of areas, it is possible to minimize the duplication of the route and generate an efficient driving route.
●経路生成部が経路生成を行う概略フローチャート
 図20に示すように、まず、外周経路生成部41は、外周エリア811iを周回する周回運転経路811rを生成する(S41)。次いで、内側経路生成部42は、内側エリア812iを往復する往復運転経路812rを生成する(S42)。異形エリア経路生成部43は、異形エリア83iを一方に飛行する、又は一往復する異形エリア運転経路83rを生成する(S43)。なお、ステップS41乃至S43は順不同であり、同時に行ってもよい。経路連結部44は、周回運転経路811r、往復運転経路812r、および異形エリア運転経路83rを連結する(S44)。
● Schematic Flowchart of Route Generation by Route Generation Unit As shown in FIG. 20, first, the outer peripheral route generation unit 41 generates a circular operation route 811r that circles the outer peripheral area 811i (S41). Next, the inner route generation unit 42 generates a reciprocating operation route 812r that reciprocates in the inner area 812i (S42). The variant area route generation unit 43 generates a variant area operation route 83r that flies in one direction in the variant area 83i or makes one round trip (S43). Note that steps S41 to S43 are in no particular order and may be performed at the same time. The route connecting unit 44 connects the revolving operation route 811r, the reciprocating operation route 812r, and the variant area operation route 83r (S44).
 凸多角形の整形エリアを生成し、整形エリアと異形エリアとを分けてそれぞれ運転経路を生成する構成によれば、内側エリアも整形エリアの外周と相似形の凸多角形に生成することができるので、重複する経路を最小限にして往復運転することができる。したがって、対象エリアを短時間で網羅的に運転することができる。すなわち、作業時間、ドローンのバッテリー消費、および薬剤消費の面で、効率のよい運転経路を生成可能である。また、薬剤散布用ドローンにおいては、重複して薬剤を散布するおそれが少なくなり、高い安全性を維持できる。 According to the configuration in which the shaping area of the convex polygon is generated, and the driving area is divided into the shaping area and the irregular area, the inner area can also be generated as a convex polygon similar to the outer periphery of the shaping area. Therefore, the reciprocating operation can be performed by minimizing the overlapping routes. Therefore, the target area can be comprehensively driven in a short time. That is, it is possible to generate an efficient driving route in terms of working time, drone battery consumption, and drug consumption. Further, in the drug spraying drone, the risk of spraying the drug in duplicate is reduced, and high safety can be maintained.
 図9に示す経路生成部40は、経路生成対象エリアに複数種類の運転経路を生成可能であってもよい。経路選択部50は、いずれの運転経路に決定するかを選択可能である。使用者は、生成される複数の運転経路を目視して、運転経路を決定してもよい。 The route generation unit 40 shown in FIG. 9 may be capable of generating a plurality of types of driving routes in the route generation target area. The route selection unit 50 can select which driving route to determine. The user may visually determine the plurality of generated driving routes to determine the driving route.
 また、経路選択部50は、使用者により優先順位の情報が入力可能であってもよい。例えば、使用者は、作業時間、ドローン100のバッテリー消費量、および薬剤消費量のうち、いずれを最優先するかを操作器401に入力する。また、操作器401は、2番目に優先すべき指標を合わせて入力可能であってもよい。経路選択部50は、複数の運転経路のうち、入力される優先順位に最も合致する運転経路を選択する。この構成によれば、使用者の方針に合わせた、効率の良い経路生成が可能である。 Also, the route selection unit 50 may be capable of inputting priority information by the user. For example, the user inputs into the operation device 401 which of the working time, the battery consumption of the drone 100, and the medicine consumption is to be given the highest priority. In addition, the operation unit 401 may be able to input the second priority index together. The route selection unit 50 selects a driving route that most matches the input priority order from the plurality of driving routes. According to this configuration, it is possible to efficiently generate a route according to the policy of the user.
●内側経路生成部が内側エリアに経路を生成する工程を示すフローチャート
 図21に示すように、まず、内側経路生成部42は、内側エリア812iの外周を規定する各辺のうち最も長い長辺813iを基準辺に決定する(S51)。また、内側経路生成部42は、内側エリア812i(図18参照)が四角形以上の多角形か否かを判定する(S52)。内側エリア812iが三角形の場合、内側エリア812i全体に、最長辺に平行な往復経路を生成する(S53)。
● Flowchart showing a process in which the inner route generation unit generates a route in the inner area As shown in FIG. 21, first, the inner route generation unit 42 determines the longest long side 813i of the sides defining the outer periphery of the inner area 812i. Is determined as the reference side (S51). In addition, the inner path generation unit 42 determines whether the inner area 812i (see FIG. 18) is a polygon having a quadrangle or more (S52). When the inner area 812i is a triangle, a round-trip path parallel to the longest side is generated in the entire inner area 812i (S53).
 内側エリア812iが四角形以上の多角形の場合、長辺813iに隣接する短い方の辺を第1短辺814i、長い方の辺を第1対向辺815iに決定する(S54)。 If the inner area 812i is a polygon with a rectangular shape or more, the short side adjacent to the long side 813i is determined as the first short side 814i, and the long side is determined as the first opposite side 815i (S54).
 内側経路生成部42は、第1短辺814iに基づいてドローン100の往復回数を決定する(S55)。 The inner route generation unit 42 determines the number of round trips of the drone 100 based on the first short side 814i (S55).
 内側経路生成部42は、第1対向辺815iの長さが、最大幅の重複領域および隙間領域を許容する場合、上記往復回数の往復経路により走査しうる長さか否かを判定する(S56)。第1対向辺815iが上記往復回数の往復経路により走査できる場合、内側経路生成部42は、第1対向辺815iの両端までドローン100が走査するように、重複領域および隙間領域の位置および幅を決定し、往復回数に応じた往復経路を平行又は放射状に生成する(S57)。 When the length of the first facing side 815i allows the overlap region and the gap region having the maximum width, the inner path generation unit 42 determines whether or not the length can be scanned by the reciprocating path having the above-described number of reciprocations (S56). .. When the first opposing side 815i can be scanned by the reciprocating path having the above-described number of reciprocations, the inner path generating unit 42 determines the positions and widths of the overlapping area and the gap area so that the drone 100 scans to both ends of the first opposing side 815i. The reciprocating route is determined, and the reciprocating route is generated in parallel or radially according to the number of reciprocations (S57).
 第1対向辺815iの長さが上記往復回数の往復経路により走査可能な最大幅より長い場合、内側経路生成部42は、往復エリア813a内に、重複領域および隙間領域を最大幅とする往復経路を放射状に生成する(S58)。 When the length of the first facing side 815i is longer than the maximum width that can be scanned by the reciprocating path having the above-described number of reciprocating times, the inner path generating unit 42 causes the reciprocating path having the overlapping area and the gap area as the maximum width in the reciprocating area 813a. Are generated radially (S58).
 内側経路生成部42は、生成する往復経路におけるドローン100の有効幅の端辺816iを新たな基準辺とし(S58)、ステップS51に戻る。 The inside route generation unit 42 sets the end side 816i of the effective width of the drone 100 in the generated reciprocating route as a new reference side (S58), and returns to step S51.
 内側経路生成部42は、1又は複数の往復エリア813a,816a,819aに生成される各往復経路を連結する(ステップS60)。また、内側経路生成部42が、1又は複数の往復エリア813a,816a,819aのそれぞれに副走査経路を生成する場合は、各往復経路に加えて各副走査経路を連結する。 The inner route generation unit 42 connects the reciprocating routes generated in one or more reciprocating areas 813a, 816a, 819a (step S60). When the inner path generation unit 42 generates a sub-scanning path for each of the one or more reciprocating areas 813a, 816a, 819a, the sub-scanning path is connected in addition to each reciprocating path.
 図22乃至図25を用いて、エリア策定部30が策定する外周エリアおよび内周エリア、ならびに経路生成部40が生成する周回運転経路および往復運転経路の実施例を説明する。 22 to 25, examples of the outer peripheral area and the inner peripheral area created by the area creating unit 30 and the circular operation route and the reciprocating operation route generated by the route generation unit 40 will be described.
 図22は、上方から見て略長方形に区画されている圃場80-1の例である。圃場80-1の周辺のある地点には、発着地点406-1が配置されている。圃場80-1の外縁には障害物がないため、圃場80-1の内側には、移動許可エリア80i-1が圃場80-1の略相似形である略長方形に規定されている。移動許可エリア80i-1の内側には、1個の外周エリア811i-1、および1個の内側エリア812i-1が規定されている。外周エリア811i-1には周回運転経路811r-1が生成され、内側エリア812i-1には往復運転経路812r-1が生成されている。周回運転経路811r-1および往復運転経路812r-1は、連結され、運転開始点Sと、運転終了点Gが規定されている。周回運転経路811r-1の旋回においては、4の字旋回が計画されている。本例においては内側エリア812i-1が略長方形であり、向かい合う短辺の長さが同等且つ略平行であるので、往復運転経路812r-1は略平行に生成されている。 Fig. 22 shows an example of a field 80-1 that is divided into a substantially rectangular shape when viewed from above. A departure / arrival point 406-1 is arranged at a certain point around the farm field 80-1. Since there is no obstacle on the outer edge of the field 80-1, a movement permission area 80i-1 is defined inside the field 80-1 in a substantially rectangular shape which is a substantially similar shape to the field 80-1. Inside the movement permission area 80i-1, one outer area 811i-1 and one inner area 812i-1 are defined. A circular driving route 811r-1 is generated in the outer peripheral area 811i-1, and a reciprocating driving route 812r-1 is generated in the inner area 812i-1. The orbiting operation path 811r-1 and the reciprocating operation path 812r-1 are connected to each other, and an operation start point S and an operation end point G are defined. A four-figure turn is planned for the turn of the circular operation route 811r-1. In this example, the inner area 812i-1 has a substantially rectangular shape, and the short sides facing each other have the same length and are substantially parallel to each other, so that the reciprocating operation paths 812r-1 are generated to be substantially parallel.
 往復運転経路812r-1は、折返領域において外周エリア811i-1に突出している。言い換えれば、折返領域の少なくとも一部は外周エリア811i-1と重複している。ドローン100は折返領域に向かって飛行する際に減速し、折返領域から離れる方向に向かって飛行する際に加速する。ドローン100の飛行速度が所定以下であるときには意図通りの散布密度による薬剤散布、および生育監視が困難なおそれがある。そこで、折返領域を外周エリア811i-1に突出させ、内側エリア812i-1内での飛行速度を出来る限り保つことで、内側エリア812i-1における薬剤散布や生育監視の有効領域を担保する。 -The reciprocating operation route 812r-1 projects to the outer peripheral area 811i-1 in the turnback area. In other words, at least a part of the folding area overlaps with the outer peripheral area 811i-1. Drone 100 slows as it flies toward the turn area and accelerates as it flies away from the turn area. When the flight speed of the drone 100 is lower than a predetermined value, it may be difficult to spray the medicine with the intended spray density and monitor the growth. Therefore, the folded region is projected to the outer peripheral area 811i-1, and the flight speed in the inner area 812i-1 is maintained as much as possible, so that the effective area for drug spraying and growth monitoring in the inner area 812i-1 is secured.
 図23は、上方から見て略長方形に区画されている圃場80-2の例である。圃場80-2の周辺のある地点には、発着地点406-2が配置されている。圃場80-2のうち一辺の近傍には、障害物81a-2が配置されている。そこで、移動許可エリア80i-2は障害物81a-1周辺の進入禁止エリア81b-2を避けて規定され、移動許可エリア80i-2の外縁の一部は、障害物81a-1周辺に規定される進入禁止エリア81b-2と端辺を共有している。移動許可エリア80i-2の内側には、1個の外周エリア811i-2、および1個の内側エリア812i-2が規定されている。外周エリア811i-2には周回運転経路811r-2が生成され、内側エリア812i-2には往復運転経路812r-2が生成されている。周回運転経路811r-2および往復運転経路812r-2は、連結され、運転開始点Sと、運転終了点Gが規定されている。周回運転経路811r-1の旋回においては、4の字旋回が計画されている。本例においては内側エリア812i-2が略長方形であり、向かい合う短辺の長さが同等且つ略平行であるので、往復運転経路812r-2は略平行に生成されている。 Fig. 23 shows an example of a field 80-2 that is divided into a substantially rectangular shape when viewed from above. A landing point 406-2 is arranged at a certain point around the farm field 80-2. An obstacle 81a-2 is arranged near one side of the field 80-2. Therefore, the movement permission area 80i-2 is defined so as to avoid the entry prohibition area 81b-2 around the obstacle 81a-1, and a part of the outer edge of the movement permission area 80i-2 is defined around the obstacle 81a-1. It shares the edge with the prohibited area 81b-2. Inside the movement permission area 80i-2, one outer peripheral area 811i-2 and one inner area 812i-2 are defined. A circular driving route 811r-2 is generated in the outer peripheral area 811i-2, and a reciprocating driving route 812r-2 is generated in the inner area 812i-2. The orbiting operation path 811r-2 and the reciprocating operation path 812r-2 are connected to each other, and an operation start point S and an operation end point G are defined. A four-figure turn is planned for the turn of the circular operation route 811r-1. In this example, the inner area 812i-2 has a substantially rectangular shape, and the short sides facing each other have the same length and are substantially parallel to each other, so that the reciprocating operation paths 812r-2 are generated to be substantially parallel.
 図24は、上方から見て略多角形に区画されている圃場80-3の例である。圃場80-3の周辺であって、図中左下には、発着地点406-3が配置されている。圃場80-3の図中左右隣および下方には、複数の障害物81a-3が配置されている。移動許可エリア80i-3は、障害物81a-3周辺の進入禁止エリア81b-3を避けて策定される。 Fig. 24 shows an example of a field 80-3 which is divided into a substantially polygonal shape when viewed from above. Around the field 80-3, in the lower left of the figure, a departure / arrival point 406-3 is arranged. Plural obstacles 81a-3 are arranged on the left and right sides and below in the figure of the field 80-3. The movement permission area 80i-3 is defined so as to avoid the entry prohibition area 81b-3 around the obstacle 81a-3.
 移動許可エリア80i-3の内側には、1個の外周エリア811i-3および1個の内側エリア812i-3が規定されている。外周エリア811i-3には周回運転経路811r-3が生成される。内側エリア812i-3は、三角形状又は四角形状の3個の往復エリア813a-3,814a-3,815a-3に分割され、それぞれに往復運転経路813r-3,814r-3,815r-3が生成されている。本図においては、3個の往復エリア813a-3,814a-3,815a-3は便宜上それぞれ異なる網掛けが施されている。往復エリア813a-3,814a-3の向かい合う短辺の長さは異なるため、往復運転経路813r-3,814r-3はやや放射状に生成されている。また、往復運転経路813r-3,814r-3は、折返領域において外周エリア811i-3に突出している。すなわち、折返領域の少なくとも一部は、外周エリア811i-3に重なっている。 Inside the movement permission area 80i-3, one outer area 811i-3 and one inner area 812i-3 are defined. A circular operation route 811r-3 is generated in the outer peripheral area 811i-3. The inner area 812i-3 is divided into three round-trip or square-shaped reciprocating areas 813a-3, 814a-3, 815a-3, and reciprocating operation routes 813r-3, 814r-3, 815r-3 are generated in each. .. In the figure, the three round-trip areas 813a-3, 814a-3, 815a-3 are shaded differently for convenience. Since the short sides facing the reciprocating areas 813a-3, 814a-3 have different lengths, the reciprocating operation paths 813r-3, 814r-3 are generated slightly radially. In addition, the reciprocating operation routes 813r-3 and 814r-3 project to the outer peripheral area 811i-3 in the turn-back region. That is, at least a part of the folding area overlaps the outer peripheral area 811i-3.
 図25は、上方から見て窪みを有する凹多角形に区画されている圃場80-4の例である。圃場80-4の図中左上には、発着地点406-4が配置されている。圃場80-4の図中左下方には、障害物81a-4が配置されている。圃場80-4は、整形エリア81i-4、82i-4に大きく分割され、整形エリア81i-4内には外周エリア811i-4および内側エリア812i-4が策定され、整形エリア82i-4内には外周エリア821i-4および内側エリア822i-4が策定されている。外周エリア811i-4,821i-4には周回運転経路811r-4,821r-4がそれぞれ生成される。内側エリア812i-4は、内側エリア812i-4は、三角形状又は四角形状の3個の往復エリア813a-4,814a-4,815a-4に分割され、それぞれに往復運転経路813r-4,814r-4,815r-4が生成されている。本図においては、往復エリア813a-4,814a-4,815a-4および内側エリア822i-4は便宜上それぞれ異なる網掛けが施されている。往復エリア813a-4,814a-4,815a-4の向かい合う短辺の長さは異なるため、往復運転経路813r-4,814r-4,815r-4はやや放射状に生成されている。また、往復運転経路813r-4,814r-4,815r-4は、折返領域において外周エリア811i-4に突出している。すなわち、折返領域の少なくとも一部は、外周エリア811i-4に重なっている。 Fig. 25 is an example of a field 80-4 that is divided into a concave polygon having a depression when viewed from above. A landing point 406-4 is arranged at the upper left of the field 80-4 in the figure. An obstacle 81a-4 is arranged at the lower left of the field 80-4 in the figure. The field 80-4 is largely divided into shaping areas 81i-4 and 82i-4, and an outer area 811i-4 and an inner area 812i-4 are defined in the shaping area 81i-4, and the shaping area 82i-4 is formed. Has an outer area 821i-4 and an inner area 822i-4. Circular operation routes 811r-4 and 821r-4 are generated in the outer peripheral areas 811i-4 and 821i-4, respectively. The inner area 812i-4 is divided into three reciprocating areas 813a-4, 814a-4, 815a-4 having a triangular shape or a quadrangular shape, and the reciprocating operation paths 813r-4, 814r-4, 815r are divided into respective areas. -4 has been generated. In the figure, the reciprocating areas 813a-4, 814a-4, 815a-4 and the inner area 822i-4 are shaded differently for convenience. Since the lengths of the opposite short sides of the reciprocating areas 813a-4, 814a-4, 815a-4 are different, the reciprocating operation routes 813r-4, 814r-4, 815r-4 are generated in a slightly radial pattern. Further, the reciprocating operation paths 813r-4, 814r-4, 815r-4 project to the outer peripheral area 811i-4 in the turn-back area. That is, at least part of the folded area overlaps the outer peripheral area 811i-4.
 本構成によれば、効率よく移動できる自律運転の運転経路を生成することができる。 According to this configuration, it is possible to generate a driving route for autonomous driving that enables efficient movement.
 なお、本説明においては、農業用薬剤散布ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、自律的に動作する機械全般に適用可能である。農業用以外の、自律飛行を行うドローンにも適用可能である。また、自律的に動作する、地面を自走する機械にも適用可能である。 In this description, the agricultural drug spray drone has been described as an example, but the technical idea of the present invention is not limited to this, and is applicable to all machines that operate autonomously. It can be applied to drones other than agricultural ones that fly autonomously. It can also be applied to a machine that runs autonomously on the ground.
(本願発明による技術的に顕著な効果)
 本発明に係る運転経路生成システムにおいては、効率よく移動できる自律運転の運転経路を生成する。

 
(Technically remarkable effect of the present invention)
In the driving route generation system according to the present invention, a driving route for autonomous driving that can move efficiently is generated.

Claims (18)

  1.  取得される対象エリアの情報に基づいて、前記対象エリアに移動装置が移動する運転経路の生成を行う経路生成部を備え、
     前記経路生成部は、前記対象エリア内を複数回往復し、隣接する往復路同士又は隣接する往路と復路が往路起点側から往路終点側へ広がる又は狭まるように走査する往復運転経路を生成する、
    運転経路生成システム。
     
    A route generation unit that generates a driving route in which the mobile device moves to the target area based on the acquired information on the target area;
    The route generation unit reciprocates a plurality of times in the target area, and generates a reciprocating operation route in which adjacent reciprocating routes or adjacent forward and return routes are scanned so as to spread or narrow from the forward route starting point side to the forward route ending point side,
    Driving route generation system.
  2.  前記経路生成部は、
      前記対象エリアの外縁を成す環状の外周エリアを周回する周回運転経路を生成する外周経路生成部と、
      前記外周エリアの内側の内側エリア内を複数回往復し、隣接する往復路同士又は隣接する往路と復路が往路起点側から往路終点側へ広がる又は狭まるように往復して走査する前記往復運転経路を生成する内側経路生成部と、
    をさらに備える、
    請求項1記載の運転経路生成システム。
     
    The route generation unit,
    An outer peripheral route generation unit that generates a circular driving route that circles an annular outer peripheral area that forms the outer edge of the target area,
    The reciprocating operation route that reciprocates a plurality of times in the inner area inside the outer peripheral area and reciprocally scans so that adjacent reciprocating paths or adjoining forward and backward paths spread or narrow from the outward path starting point side to the outward path ending point side. An inner path generation unit to generate,
    Further comprising,
    The driving route generation system according to claim 1.
  3.  前記内側経路生成部は、前記内側エリアを複数の往復エリアに分割し、それぞれの前記往復エリアを往復して走査する運転経路を生成し、複数の前記運転経路を連結することで、前記内側エリアの前記往復運転経路を生成する、
    請求項2記載の運転経路生成システム。
     
    The inner path generation unit divides the inner area into a plurality of reciprocating areas, generates an operation path that reciprocates and scans each of the reciprocating areas, and connects the plurality of operation paths to the inner area. Generating the reciprocating driving route of
    The driving route generation system according to claim 2.
  4.  前記往復エリアは、三角形状又は四角形状に区画されている、
    請求項3記載の運転経路生成システム。
     
    The reciprocating area is divided into a triangular shape or a quadrangular shape,
    The driving route generation system according to claim 3.
  5.  前記往復運転経路は、往路および復路の対を成す1又は複数対の往復経路によって構成され、
     前記対象エリア内には、
      互いに隣接する前記往復経路において前記移動装置の有効幅が重複する1又は複数の重複領域と、
      互いに隣接する前記往復経路のいずれによっても走査されない1又は複数の隙間領域と、
     が配置される、
    請求項2乃至4のいずれかに記載の運転経路生成システム。
     
    The reciprocating operation route is configured by one or a plurality of pairs of reciprocating routes forming a pair of a forward route and a return route,
    In the target area,
    One or a plurality of overlapping regions in which the effective widths of the moving devices overlap in the reciprocating paths adjacent to each other;
    One or more gap regions that are not scanned by any of the reciprocating paths that are adjacent to each other;
    Is placed,
    The driving route generation system according to any one of claims 2 to 4.
  6.  前記複数の重複領域の幅は互いに等しく、前記複数の隙間領域の幅は互いに等しい、
    請求項5記載の運転経路生成システム。
     
    The widths of the plurality of overlapping regions are equal to each other, and the widths of the plurality of gap regions are equal to each other,
    The driving route generation system according to claim 5.
  7.  前記内側経路生成部は、前記重複領域および前記隙間領域の最大許容幅をあらかじめ記憶し、最大許容幅の前記重複領域および前記隙間領域を許容しても前記内側エリア全体を走査できないと判定されるとき、前記内側エリアを複数の往復エリアに分割する、
    請求項5又は6記載の運転経路生成システム。
     
    The inner path generation unit stores in advance maximum allowable widths of the overlapping area and the gap area, and determines that the entire inner area cannot be scanned even if the overlapping area and the gap area having the maximum allowable widths are allowed. At this time, the inner area is divided into a plurality of reciprocating areas,
    The driving route generation system according to claim 5.
  8.  前記内側経路生成部は、前記内側エリアの外縁を区画する端辺のうち、最長の長辺に沿って移動し、最短の短辺に沿う経路上において方向転換することにより、前記内側エリアを往復しながら往復方向とは異なる方向に順次移動して、前記内側エリアを走査する往復運転経路を生成可能である、
    請求項2乃至7のいずれかに記載の運転経路生成システム。
     
    The inner path generation unit moves along the longest long side of the edges that define the outer edge of the inner area, and changes the direction on the path along the shortest short side to reciprocate the inner area. However, it is possible to sequentially move in a direction different from the reciprocating direction to generate a reciprocating operation route for scanning the inner area.
    The driving route generation system according to any one of claims 2 to 7.
  9.  前記内側経路生成部は、前記内側エリアの外縁を区画する端辺のうち、前記短辺の長さに基づいて運転経路の往復回数を決定可能である、
    請求項8記載の運転経路生成システム。
     
    The inner route generation unit can determine the number of round trips of the driving route based on the length of the short side among the end sides that define the outer edge of the inner area.
    The driving route generation system according to claim 8.
  10.  前記内側経路生成部は、前記往復運転経路の往路と復路とを連結する折返領域において、前記往路から前記折返領域への進入時に減速し、前記折返領域から前記復路への進入時に加速するような移動計画を生成する、
    請求項2乃至9のいずれかに記載の運転経路生成システム。
     
    The inner route generation unit decelerates when entering the return region from the forward route in a turn region that connects the forward route and the return route of the reciprocating operation route, and accelerates when entering the return route from the return region. Generate a travel plan,
    The driving route generation system according to any one of claims 2 to 9.
  11.  前記内側経路生成部は、前記往復運転経路の往路と復路とを連結する折返領域の少なくとも一部が前記外周エリアに重複するように、前記往復運転経路を生成する、
    請求項2乃至10のいずれかに記載の運転経路生成システム。
     
    The inner path generation unit generates the reciprocating operation path such that at least a part of a turn-back region that connects an outward path and a return path of the reciprocating operation path overlaps with the outer peripheral area,
    The driving route generation system according to any one of claims 2 to 10.
  12.  前記外周経路生成部は、前記移動装置を前進および旋回させて前記外周エリアの外縁を曲がる第1旋回と、前記移動装置を後退させながら旋回させる動作を含む第2旋回と、の動作を前記移動装置に行わせる運転経路を生成可能である、
    請求項2乃至11のいずれかに記載の運転経路生成システム。
     
    The outer peripheral route generation unit moves the movement of the first rotation that causes the movement device to move forward and backward to bend the outer edge of the outer peripheral area, and the second rotation that includes the movement of turning the movement device while retracting the movement device. It is possible to generate a driving route that the device will perform,
    The driving route generation system according to any one of claims 2 to 11.
  13.  前記経路生成部は、前記往復運転経路において往路から復路に折り返す折返領域を、前記往復運転経路の往路又は復路と交わる方向に連続して走査する副走査経路を生成可能である、
    請求項1記載の運転経路生成システム。
     
    The route generation unit is capable of generating a sub-scanning route that continuously scans a turn-back region that returns from a forward route to a return route in the reciprocating operation route in a direction intersecting with the forward route or the return route of the reciprocating operation route.
    The driving route generation system according to claim 1.
  14.  前記経路生成部は、前記往復運転経路の往路から復路に折り返す折返領域の少なくとも一部が前記副走査経路に重複するように、前記往復運転経路を生成する、
    請求項13記載の運転経路生成システム。
     
    The route generation unit generates the reciprocating operation route such that at least a part of a turn-back region of the reciprocating operation route that is turned back from the forward route overlaps the sub-scanning route.
    The driving route generation system according to claim 13.
  15.  取得される対象エリアの座標情報に基づいて、前記対象エリアに移動装置が移動する運転経路の生成を行う経路生成ステップを含み、
     前記経路生成ステップは、前記対象エリア内を放射状に往復して走査する往復経路を生成する、運転経路生成方法。
     
    A route generation step of generating a driving route in which the mobile device moves to the target area based on the acquired coordinate information of the target area;
    The said route generation step is a driving route generation method which produces | generates the reciprocating route which reciprocates and scans in the said target area radially.
  16.  取得される対象エリアの座標情報に基づいて、前記対象エリアに移動装置が移動する運転経路の生成を行う経路生成命令をコンピュータに実行させ、
     前記経路生成命令は、前記対象エリア内を放射状に往復して走査する往復経路を生成する、運転経路生成プログラム。
     
    Based on the acquired coordinate information of the target area, the computer is caused to execute a route generation instruction for generating a driving route in which the mobile device moves to the target area,
    The route generation command is a driving route generation program that generates a reciprocating route that scans the target area by reciprocating radially.
  17.  運転経路生成システムにより生成される運転経路を受信して、前記運転経路に沿って飛行可能なドローンであって、
     前記運転経路生成システムは、請求項1乃至14のいずれかに記載の運転経路生成システムである、ドローン。
     
    A drone capable of receiving a driving route generated by a driving route generation system and flying along the driving route,
    The drone, wherein the driving route generation system is the driving route generation system according to any one of claims 1 to 14.
  18.  経路生成部と、
     飛行制御部と、
    を備えるドローンであって、
     前記経路生成部は、請求項1乃至14のいずれかに記載の経路生成部である、ドローン。

     
    A route generator,
    A flight controller,
    A drone comprising
    The drone, wherein the route generation unit is the route generation unit according to any one of claims 1 to 14.

PCT/JP2019/041549 2018-10-30 2019-10-23 Travel route generating system, travel route generating method, travel route generating program, and drone WO2020090589A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020505301A JP6851106B2 (en) 2018-10-30 2019-10-23 Driving route generation system, driving route generation method, and driving route generation program, and drone
CN201980067873.5A CN112867395B (en) 2018-10-30 2019-10-23 Travel route generation system, travel route generation method, computer-readable recording medium, and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-203512 2018-10-30
JP2018203512 2018-10-30

Publications (1)

Publication Number Publication Date
WO2020090589A1 true WO2020090589A1 (en) 2020-05-07

Family

ID=70463154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041549 WO2020090589A1 (en) 2018-10-30 2019-10-23 Travel route generating system, travel route generating method, travel route generating program, and drone

Country Status (3)

Country Link
JP (1) JP6851106B2 (en)
CN (1) CN112867395B (en)
WO (1) WO2020090589A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022032711A (en) * 2020-08-13 2022-02-25 株式会社東芝 Inspection system and inspection method
CN114253286A (en) * 2020-09-24 2022-03-29 乐天集团股份有限公司 Flight system, flight path determination method, and flight path determination device
WO2024171294A1 (en) * 2023-02-14 2024-08-22 株式会社クボタ Unmanned aircraft

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115039561A (en) * 2022-06-30 2022-09-13 松灵机器人(深圳)有限公司 Mowing method, mowing device, mowing robot and storage medium
CN118032063B (en) * 2024-04-12 2024-06-14 中国电建集团江西省水电工程局有限公司 Wind power equipment transportation topography measurement system and method based on unmanned aerial vehicle oblique photography

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176741A (en) * 2003-12-19 2005-07-07 Yanmar Co Ltd Agricultural working vehicle
JP2014113864A (en) * 2012-12-07 2014-06-26 Hitachi Solutions Ltd Spray support device
CN104503464A (en) * 2014-12-30 2015-04-08 中南大学 Computer-based convex polygon field unmanned aerial vehicle spraying operation route planning method
WO2018123062A1 (en) * 2016-12-28 2018-07-05 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Flight path display method, mobile platform, flight system, recording medium, and program

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252510A (en) * 2007-03-30 2008-10-16 Toa Corp Echo canceller
CN203827812U (en) * 2013-09-10 2014-09-17 中国兵器科学研究院 Unmanned aerial vehicle system for weather modification detection operation
KR20150136641A (en) * 2014-05-27 2015-12-08 (주)지이에스 Vertical takeoff and landing aircraft for agricultural chemicals spraying
CN204368415U (en) * 2014-12-25 2015-06-03 武汉智能鸟无人机有限公司 A kind of tilting four rotor wing unmanned aerial vehicle
US10441965B2 (en) * 2015-06-22 2019-10-15 Deere & Company Spray pattern of nozzle systems
CN205353771U (en) * 2015-09-23 2016-06-29 杨珊珊 Unmanned aerial vehicle take photo by plane device and equipment of taking photo by plane
CN105794758A (en) * 2016-05-13 2016-07-27 谭圆圆 Mooring-type unmanned aerial vehicle used for spraying continuously and continuous spraying method thereof
WO2017219200A1 (en) * 2016-06-20 2017-12-28 李珂悦 Unmanned aerial vehicle
KR20180039477A (en) * 2016-10-10 2018-04-18 한화테크윈 주식회사 Method and apparatus for planning path
KR20180057021A (en) * 2016-11-21 2018-05-30 한화에어로스페이스 주식회사 Method to control UAV and UAV controlling apparatus using the same
CN106719551A (en) * 2016-12-30 2017-05-31 浙江科技学院 A kind of automatic path planning pesticide spraying UAS and its control method
JP6802076B2 (en) * 2017-01-24 2020-12-16 株式会社クボタ Travel route generation system
JP6832719B2 (en) * 2017-01-24 2021-02-24 株式会社クボタ Work vehicle
JP6638683B2 (en) * 2017-03-28 2020-01-29 井関農機株式会社 Farm work support system
CN107161346B (en) * 2017-05-18 2020-10-20 浙江大学 Unmanned aerial vehicle pesticide spraying system and pesticide spraying method based on traversal waypoints
CN107980751A (en) * 2017-11-24 2018-05-04 辽宁世达通用航空股份有限公司 A kind of method and monitoring system of aerial sprays Pesticide administration and supervision
CN108569401A (en) * 2018-05-30 2018-09-25 郑州方达电子技术有限公司 A kind of automatic method of forestation of unmanned plane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176741A (en) * 2003-12-19 2005-07-07 Yanmar Co Ltd Agricultural working vehicle
JP2014113864A (en) * 2012-12-07 2014-06-26 Hitachi Solutions Ltd Spray support device
CN104503464A (en) * 2014-12-30 2015-04-08 中南大学 Computer-based convex polygon field unmanned aerial vehicle spraying operation route planning method
WO2018123062A1 (en) * 2016-12-28 2018-07-05 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Flight path display method, mobile platform, flight system, recording medium, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022032711A (en) * 2020-08-13 2022-02-25 株式会社東芝 Inspection system and inspection method
JP7471953B2 (en) 2020-08-13 2024-04-22 株式会社東芝 Inspection system and inspection method
CN114253286A (en) * 2020-09-24 2022-03-29 乐天集团股份有限公司 Flight system, flight path determination method, and flight path determination device
JP2022053235A (en) * 2020-09-24 2022-04-05 楽天グループ株式会社 Flight system, flight route determination method, and flight route determination device
JP7165703B2 (en) 2020-09-24 2022-11-04 楽天グループ株式会社 Flight system, flight path determination method, and flight path determination device
US11990051B2 (en) 2020-09-24 2024-05-21 Rakuten Group, Inc. Flight system, flight route determination method, and flight route determination device
WO2024171294A1 (en) * 2023-02-14 2024-08-22 株式会社クボタ Unmanned aircraft

Also Published As

Publication number Publication date
CN112867395A (en) 2021-05-28
JP6851106B2 (en) 2021-03-31
JPWO2020090589A1 (en) 2021-02-15
CN112867395B (en) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2020090589A1 (en) Travel route generating system, travel route generating method, travel route generating program, and drone
JP7008999B2 (en) Driving route generation system, driving route generation method, and driving route generation program, and drone
JP7270265B2 (en) Driving route generation device, driving route generation method, driving route generation program, and drone
JP6982908B2 (en) Driving route generator, driving route generation method, and driving route generation program, and drone
JP6994798B2 (en) Drone system, drone, control device, drone system control method, and drone system control program
JP2022084735A (en) Drone, drone control method, and drone control program
JP7037235B2 (en) Industrial machinery system, industrial machinery, control device, control method of industrial machinery system, and control program of industrial machinery system.
WO2021140657A1 (en) Drone system, flight management device, and drone
WO2021205559A1 (en) Display device, drone flight propriety determination device, drone, drone flight propriety determination method, and computer program
JP7079547B1 (en) Field evaluation device, field evaluation method and field evaluation program
JP7285557B2 (en) Driving route generation system, driving route generation method, driving route generation program, and drone
US20210254980A1 (en) Traveling route generating system, traveling route generating method, traveling route generating program, coordinate measuring system, and drone
JP7411280B2 (en) Drone system, drone and obstacle detection method
WO2021166175A1 (en) Drone system, controller, and method for defining work area
JP7412038B2 (en) Re-survey necessity determination device, survey system, drone system, and re-survey necessity determination method
JP7490208B2 (en) Drone system, drone, control device, drone system control method, and drone system control program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020505301

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879271

Country of ref document: EP

Kind code of ref document: A1