WO2020090269A1 - Reader/writer, reader/writer control method, and program - Google Patents

Reader/writer, reader/writer control method, and program Download PDF

Info

Publication number
WO2020090269A1
WO2020090269A1 PCT/JP2019/036539 JP2019036539W WO2020090269A1 WO 2020090269 A1 WO2020090269 A1 WO 2020090269A1 JP 2019036539 W JP2019036539 W JP 2019036539W WO 2020090269 A1 WO2020090269 A1 WO 2020090269A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
tags
target
reader
memory
Prior art date
Application number
PCT/JP2019/036539
Other languages
French (fr)
Japanese (ja)
Inventor
八尋 肥塚
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN201980057264.1A priority Critical patent/CN112639716B/en
Priority to DE112019005456.2T priority patent/DE112019005456T5/en
Publication of WO2020090269A1 publication Critical patent/WO2020090269A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0608Saving storage space on storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0662Virtualisation aspects
    • G06F3/0665Virtualisation aspects at area level, e.g. provisioning of virtual or logical volumes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • G06F3/0679Non-volatile semiconductor memory device, e.g. flash memory, one time programmable memory [OTP]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • G06K19/0725Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs the arrangement being a circuit for emulating a plurality of record carriers, e.g. a single RFID tag capable of representing itself to a reader as a cloud of RFID tags

Definitions

  • the present invention relates to a reader / writer that reads and / or writes data from / to an RF tag, a control method for the reader / writer, and a program.
  • CRC Cyclic Redundancy Code
  • An aspect of the present invention is to realize a technology capable of suppressing an increase in cost and increasing the amount of information that can be managed by an RF tag.
  • a reader / writer is a reader / writer that performs at least one of reading and writing of data by wireless communication with an RF tag, and a predetermined plurality of reader / writers are provided.
  • the RF tag identification unit that identifies the RF tag as the target RF tag and the memories included in the plurality of target RF tags are integrated to perform at least one memory processing of reading and writing as one virtual memory space.
  • a memory processing unit a memory processing unit.
  • a control method of a reader / writer includes a step of specifying a predetermined plurality of RF tags as target RF tags, and the plurality of target RF tags. Integrating the memories to perform at least one memory processing of reading and writing as one virtual memory space.
  • a program according to an aspect of the present invention is a program for operating the reader / writer, which causes a computer to function as the RF tag specifying unit and the memory processing unit. is there.
  • FIG. 3 is a block diagram showing a main configuration of a reader / writer according to the embodiment. It is a figure which shows typically the system environment using a reader / writer.
  • (A) And (b) is a block diagram which shows the structure of the system using a reader / writer. It is a figure which shows an example of the flow of the data between a reader / writer and an RF tag.
  • 9 is a flowchart showing a specific example 1 of the flow of the reading process of the reader / writer.
  • 9 is a flowchart showing a specific example 2 of the flow of the reading process of the reader / writer.
  • this embodiment an embodiment according to one aspect of the present invention (hereinafter, also referred to as “this embodiment”) will be described with reference to the drawings.
  • FIG. 1 is a block diagram showing a main configuration of a reader / writer 10 according to this embodiment.
  • FIG. 2 is a diagram schematically showing a system environment in which the reader / writer 10 according to the present embodiment is used.
  • an RF tag 40 is used for individual management of articles such as parts and products at a production site, for example.
  • a plurality of RF tags 40 (a predetermined number, three in this embodiment (RF tags 40A, 40B, 40C)) are attached to one pallet 100 on which a work 101 such as a part or a product is placed, and used.
  • the reader / writer 10 is provided with an antenna 35 that realizes wireless communication with each of the plurality of RF tags 40 (40A, 40B, 40C), and within the communication area via the antenna 35. At least one of reading and writing of data is performed with respect to a predetermined plurality of RF tags 40 (40A, 40B, 40C).
  • the reader / writer 10 reads and / or writes data from / to a predetermined plurality of RF tags 40
  • the reader / writer 10 integrates memories included in the predetermined plurality of RF tags 40 to form one Memory processing is performed as a virtual memory space.
  • the reader / writer 10 integrates the memories of the predetermined plurality of RF tags 40 and performs the memory processing as one virtual memory space, so that the memory capacity of each of the RF tags 40 is small, for example, 2 KB. Also, the memory capacity can be virtually increased. Therefore, even if the amount of information required for individual management of articles such as parts and products increases, it is possible to disperse the information in a plurality of predetermined RF tags 40 and perform at least one of reading and writing. it can.
  • FIG. 1 is a block diagram showing a main configuration of the reader / writer 10.
  • FIG. 2 is a diagram schematically showing a system environment using the reader / writer 10.
  • 3A and 3B are block diagrams showing the configuration of a system using the reader / writer 10.
  • the reader / writer 10 performs at least one of reading and writing of data by wireless communication with the RF tag 40. Further, the reader / writer 10 is used as an input device of a PLC (Programmable Logic Controller) 50 that is a higher-level device.
  • PLC Protein Logic Controller
  • the reader / writer 10 includes a host communication control unit 11, an RF communication control unit 20, a storage unit 30, and an antenna 35.
  • the upper communication control unit 11 controls communication with the PLC 50.
  • the upper communication control unit 11 performs wireless communication with the PLC 50 or wired communication via a bus or a network.
  • the higher-level communication control unit 11 can exchange data with the PLC 50 at a high speed of several microseconds to several milliseconds per byte.
  • the reader / writer 10 communicates with the PLC 50 under the control of the host communication control unit 11, and at least one of reading and writing of data from the PLC 50 to the RF tag 40 via the host communication control unit 11. Receive a command to do one.
  • the antenna 35 realizes wireless communication with a plurality of predetermined RF tags 40. Under the control of the RF communication control unit 20, the antenna 35 sends out an electromagnetic wave including a command signal to a predetermined plurality of RF tags 40 and receives response signals from the predetermined plurality of RF tags 40 to the command. ..
  • the RF communication control unit 20 performs at least one of reading and writing of data with a predetermined plurality of RF tags 40 via the antenna 35.
  • the RF communication control unit 20 may be an arithmetic device having a function of integrally controlling each unit of the reader / writer 10.
  • the RF communication control unit 20 controls each unit of the reader / writer 10 by executing a program stored in one or more memories (such as RAM and ROM) by one or more processors (such as CPU), for example. You may.
  • the RF communication control unit 20 decodes the command received from the PLC 50 by the function of the host communication control unit 11.
  • the commands received from the PLC 50 include a write command that specifies writing of data with the RF tag 40 and a read command that specifies reading of data with the RF tag 40.
  • the write command and the read command include data regarding the data exchange size between the PLC 50 and the reader / writer 10.
  • the PLC 50 does not need to recognize the number of RF tags 40 that the reader / writer 10 communicates with in order to read or write data according to one command. Although details will be described later, the RF communication control unit 20 executes a read or write process on each memory of a predetermined plurality of RF tags 40 according to the amount of data to be read or written.
  • the RF communication control unit 20 converts the data included in the write command received from the PLC 50 into data writable in the RF tag 40.
  • the RF communication control unit 20 converts, for example, data such as an octal code, a hexadecimal code, and a hexadecimal code included in the write command received from the PLC 50 into ASCII code data.
  • the RF communication control unit 20 also converts the data read with the RF tag 40 into data that can be transferred to the PLC 50 as a response to the read command received from the PLC 50.
  • the RF communication control unit 20 for example, converts the digit string data read with the RF tag 40 into data such as an octal code, a hexadecimal code, and a hexadecimal code.
  • the RF communication control unit 20 sends a command signal to a predetermined plurality of RF tags 40 and receives response signals via the antenna 35. Further, the RF communication control unit 20 may be configured to be able to execute the decoding process of the response signal received from the RF tag 40.
  • the wireless communication with the RF tag 40 via the antenna 35 is a communication at a speed of several milliseconds to several tens of milliseconds per byte.
  • the reader / writer 10 may be composed of a plurality of separate units.
  • the reader / writer 10 includes a control unit 120 having the function of the higher-level communication control unit 11 and a part of the function of the RF communication control unit 20, an amplifier unit 130 for amplifying a signal, and an antenna 35, which are separate units.
  • the configuration may be
  • the reader / writer 10 may be configured such that the host communication control unit 11, the RF communication control unit 20, and the antenna 35 are integrally formed.
  • the RF communication control unit 20 includes an RF tag identification unit 21 and a memory processing unit 22.
  • the RF tag identification unit 21 identifies a plurality of predetermined RF tags as target RF tags.
  • the RF tag identification unit 21 reads, via the antenna 35, the identification information stored in the memory of the RF tag 40 from each of the plurality of communicable RF tags 40 existing in the communicable area of the antenna 35.
  • the RF tag identification unit 21 performs anti-collision processing to identify the communicable RF tags 40A, 40B, 40C corresponding to the read identification information as the target RF tags 40A, 40B, 40C.
  • the identification information of the RF tags 40 includes a set of a plurality of predetermined RF tags 40 that holds individual information of one work 101 (see FIG. 1) in addition to information for identifying the individual of each RF tag 40.
  • the identification information of the other RF tag 40 included in the above may be included.
  • the RF tag identification unit 21 refers to the identification information of each of the plurality of communicable RF tags 40 and stores the individual information of one work 101 (see FIG. 1). By specifying the set, the target RF tags 40A, 40B, 40C are specified.
  • the RF communication control unit 20 causes the storage unit 30 to store the identification information read by the RF communication control unit 20 from each of the target RF tags 40A, 40B, and 40C via the antenna 35.
  • the RF tag identification unit 21 manages the identification information of the target RF tags 40A, 40B, 40C stored in the storage unit 30 as an index, so that the respective target RF tags 40A, 40B, 40C in the virtual memory space are provided. Set the memory address.
  • the RF tag identifying unit 21 manages the identification information as an index, and stores the memory blocks of the target RF tags 40A, 40B, and 40C in the virtual memory space according to the order in which the index is sorted. Set the address as if it were the third address.
  • the identification information of the RF tag 40 is, for example, an identification number set individually for each RF tag 40. These identification numbers are a combination of alphabets and numbers, and the RF tag identification unit 21 sorts the identification numbers in at least one of an alphabetical order and a numerical order to read or write data. Determine the order of.
  • the reader / writer 10 performs reading and / or writing of data with the memories included in the plurality of target RF tags 40A, 40B, and 40C, respectively.
  • the order of reading when 40B and 40C are detected is predetermined as the order of sorting using the identification number as an index.
  • the reader / writer 10 records information relating to the order of reading the plurality of target RF tags 40 or the order of writing to the plurality of target RF tags 40 in association with, for example, the identification number of each RF tag 40. No processing is required. Therefore, the reader / writer 10 can efficiently integrate the data to be read or written with the plurality of target RF tags 40A, 40B, 40C.
  • the PLC 50 may be configured to recognize the number of target RF tags that issue instructions to the reader / writer 10 to read or write data. In this case, the PLC 50 transmits to the reader / writer 10 a command to read or write data including information related to the number of target RF tags.
  • the RF tag identification unit 21 acquires the number information indicating the number of target RF tags received from the PLC 50 via the upper communication control unit 11. When the acquired solid-state information matches the number of communicable RF tags 40 existing in the communicable area, the RF tag identifying unit 21 targets the communicable RF tags 40 to the target RF tags 40A, 40B, 40C. May be specified as
  • the PLC 50 may be capable of transmitting a command including identification information for identifying the target RF tag that issues a data read or write command to the reader / writer 10.
  • the RF tag identification unit 21 determines whether or not to identify the target RF tag received from the PLC 50 via the upper communication control unit 11 and the identification information read from each of the communicable RF tags 40. You may perform a collision process.
  • the memory processing unit 22 integrates the memories included in the target RF tags 40A, 40B, and 40C identified by the RF tag identifying unit 21 into one virtual memory space. For example, when the target RF tags 40A, 40B, and 40C each have a memory capacity of 2 KB, the memory processing unit 22 integrates these memories to virtually generate one virtual memory having a memory capacity of 6 KB. At least one of read and write memory processing is performed as the memory space.
  • the user uses a plurality of general off-the-shelf RF tags 40 each having a small memory capacity, so that the information of the capacity that cannot be stored in the memory of one RF tag 40 is stored in the memory of the plurality of RF tags 40. Can be stored in one integrated virtual memory space. Therefore, since it is not necessary to use an expensive RF tag having a large memory capacity, it is possible to suppress an increase in cost and increase the capacity of information that can be managed by the RF tag 40.
  • the RF tag identification unit 21 calculates the total memory capacity of the communicable RF tags 40 existing in the communicable area, and the amount of data required for the memory processing by the memory processing unit 22 is equal to or less than the total memory capacity.
  • the communicable RF tag 40 may be specified as the target RF tags 40A, 40B, 40C.
  • the storage unit 30 may previously store identification information of a plurality of RF tags 40 that may communicate with the reader / writer 10 and the memory capacity of each RF tag 40.
  • the RF tag identification unit 21 calculates the total memory capacity of the RF tags 40 to which the identification information stored in the storage unit 30 corresponds, based on the identification information read from the plurality of communicable RF tags 40. The total memory capacity of the communicable RF tag 40 is calculated.
  • FIG. 4 is a diagram showing an example of the flow of data between the reader / writer 10 and the target RF tags 40A, 40B, 40C.
  • FIG. 4 shows a data flow when the reader / writer 10 reads data from the target RF tags 40A, 40B, and 40C in response to a command from the PLC 50 that reads 4000 bytes of data from address 1000 of the virtual memory space of 6 KB. ing.
  • the RF communication control unit 20 of the reader / writer 10 stores in the memory of the RF tag 40 from each of the plurality of communicable RF tags 40 existing in the communicable area of the antenna 35 by the function of the RF tag specifying unit 21.
  • the stored identification information is read out via the antenna 35.
  • the RF tag identification unit 21 refers to the identification information read from each of the communicable RF tags 40, performs anti-collision processing, and identifies the target RF tags 40A, 40B, 40C.
  • the RF tag identification unit 21 sets an address in the virtual memory space in each of the identified memories of the target RF tags 40A, 40B, and 40C.
  • the RF communication control unit 20 uses the function of the memory processing unit 22 to send to the first RF tag 40A a read command requesting reading of 1000 bytes of data from address 1000 of the memory.
  • the memory processing unit 22 acquires 1000 bytes of data transferred from the RF tag 40A as a response to the transmitted read command.
  • the memory processing unit 22 sends a read command requesting reading of 2000 bytes of data from the address 0000 of the memory to the second RF tag 40B.
  • the memory processing unit 22 acquires 2000 bytes of data transferred from the RF tag 40B as a response to the transmitted read command.
  • the memory processing unit 22 transmits to the third RF tag 40C a read command requesting reading of 1000 bytes of data from the address 0000 of the memory.
  • the memory processing unit 22 acquires 1000 bytes of data transferred from the RF tag 40C as a response to the transmitted read command.
  • the memory processing unit 22 writes data by wireless communication with a predetermined plurality of target RF tags 40. It is possible to perform writing as one virtual memory space by integrating the memories respectively provided in the target RF tags.
  • the reader / writer 10 responds to a command from the PLC 50 that writes 4000 bytes of data from the 1000th address of the virtual memory space of 6 KB, in a flow reverse to the process of reading the data to the target RF tags 40A, 40B, 40C. Data can be written.
  • the RF communication control unit 20 When writing data with a predetermined plurality of target RF tags 40, the RF communication control unit 20 specifies the target RF tags 40A, 40B, 40C by the function of the RF tag specifying unit 21 and specifies the specified target.
  • An address in the virtual memory space is set in each of the memories of the RF tags 40A, 40B, 40C.
  • the RF communication control unit 20 first transmits a write command for writing 1000 bytes of data from the address 1000 of the memory to the RF tag 40A that is the first processing target, and then the RF tag 40A. Write 1000 bytes of data.
  • the memory processing unit 22 sends a write command for writing 2000 bytes of data from the address 0000 of the memory to the RF tag 40B that is the second processing target, and writes 2000 bytes of data to the RF tag 40B.
  • the memory processing unit 22 sends a write command for writing 1000 bytes of data from the address 0000 of the memory to the RF tag 40C that is the third processing target, and writes 1000 bytes of data to the RF tag 40C.
  • the reader / writer 10 can increase the capacity of information that can be managed by the RF tag 40 by integrating the memories included in the plurality of target RF tags 40 into one virtual memory space.
  • FIG. 5 is a flowchart showing a specific example 1 of the flow of the data reading process of the reader / writer 10.
  • the function of the RF tag identification unit 21 executes the anti-collision process (step S1). ).
  • the RF communication control unit 20 determines whether or not the anti-collision process has been normally completed (step S2). The RF communication control unit 20 determines that the anti-collision process has been normally completed when the predetermined plurality of target RF tags 40A, 40B, 40C can be identified by the RF tag identification unit 21 (YES in step S2). , And proceeds to step S3. The RF communication control unit 20 determines that the anti-collision process has not ended normally when the predetermined plurality of target RF tags 40A, 40B, 40C cannot be specified by the RF tag specifying unit 21 (at step S2). NO), the fact that the process corresponding to the command has ended abnormally is transmitted to the PLC 50.
  • the RF communication control unit 20 uses the address of the memory included in each of the target RF tags 40A, 40B, and 40C in the virtual memory space set by the RF tag identification unit 21 and performs the read memory process by the function of the memory processing unit 22. I do.
  • the memory processing unit 22 first transmits a read command to the first RF tag 40A to be processed among the target RF tags 40A, 40B, and 40C (step S3).
  • the RF communication control unit 20 determines whether or not the read command has been successfully passed by wireless communication with the first RF tag 40A to be processed (step S4). For example, when the target RF tag 40A is out of the communicable area of the antenna 35, the read command cannot be delivered, and it is determined that there is an abnormality. When the RF communication control unit 20 determines that the read command has been successfully delivered to the RF tag 40A (YES in step S4), the process proceeds to step S5. When the RF communication control unit 20 determines that the read command cannot be normally delivered to the RF tag 40A (NO in step S4), it transmits to the PLC 50 that the process corresponding to the command has ended abnormally.
  • the RF communication control unit 20 reads data from the first RF tag 40A to be processed by the function of the memory processing unit 22 (step S5).
  • the memory processing unit 22 returns 1000 bytes of data from the address 1000 of the RF tag 40A as a response. To receive.
  • the memory processing unit 22 transmits a read command to the second RF tag 40B to be processed among the target RF tags 40A, 40B, and 40C (step S6).
  • the RF communication control unit 20 determines whether or not the read command has been successfully delivered by wireless communication with the RF tag 40B that is the second processing target (step S7). For example, when the target RF tag 40B is out of the communicable area of the antenna 35, the read command cannot be delivered, and it is determined that there is an abnormality.
  • the RF communication control unit 20 determines that the read command has been successfully delivered to the RF tag 40B (YES in step S7), the process proceeds to step S8.
  • the RF communication control unit 20 determines that the read command cannot be normally delivered to the RF tag 40B (NO in step S7), the RF communication control unit 20 transmits to the PLC 50 a message indicating that the process corresponding to the command has ended abnormally.
  • the RF communication control unit 20 reads data from the second processing target RF tag 40B by the function of the memory processing unit 22 (step S8).
  • the memory processing unit 22 returns 2000 bytes of data from address 0000 of the RF tag 40B as a response. To receive.
  • the memory processing unit 22 sends a read command to the third RF tag 40C to be processed among the target RF tags 40A, 40B, and 40C (step S9).
  • the RF communication control unit 20 determines whether or not the read command has been successfully delivered by wireless communication with the RF tag 40C that is the third processing target (step S10). For example, when the target RF tag 40C is out of the communicable area of the antenna 35, the read command cannot be delivered, and it is determined that there is an abnormality.
  • the RF communication control unit 20 determines that the read command has been successfully delivered to the RF tag 40C (YES in step S10), the process proceeds to step S11.
  • the RF communication control unit 20 determines that the read command cannot be normally delivered to the RF tag 40C (NO in step S10), the RF communication control unit 20 transmits to the PLC 50 a message indicating that the process corresponding to the command has ended abnormally.
  • the RF communication control unit 20 uses the function of the memory processing unit 22 to read data from the third processing target RF tag 40C (step S11).
  • the memory processing unit 22 returns 1000 bytes of data from address 0000 of the RF tag 40C as a response. It receives and transmits to the PLC 50 the fact that the process corresponding to the command has ended normally.
  • the RF communication control unit 20 integrates the 4000-byte data received from the target RF tags 40A, 40B, and 40C by the function of the memory processing unit 22, and transmits the data to the PLC 50.
  • the memory processing unit 22 has all the target RF tags 40A, 40B, 40C in the communicable area of the antenna 35 at the time of performing the memory processing, and all the target RF tags 40A, 40B, 40C are When it is specified by the RF tag specification unit 21, memory processing is sequentially performed on all the target RF tags 40A, 40B, 40C.
  • FIG. 6 is a flowchart showing a specific example 2 of the flow of the data read processing by the reader / writer 10.
  • the RF communication control unit 20 of the reader / writer 10 acquires the data read command received from the PLC 50 via the higher-level communication control unit 11, the function of the RF tag identification unit 21 performs anti-collision processing. While executing, the target RF tag set is confirmed (step S21).
  • the RF tag identification unit 21 writes the identification information of each of the plurality of target RF tags included in one set, which is written in the memory of at least one of the plurality of target RF tags existing in the communicable area of the antenna 35. May be read to confirm the target RF tag set. For example, in the memory of the RF tag 40A, the identification information of the RF tag 40A and the identification information of the RF tag 40B and the RF tag 40C are written in advance. The RF tag identification unit 21 confirms that the target RF tag set is composed of the RF tags 40A, 40B, 40C based on the identification information of the RF tags 40A, 40B, 40C read from the memory of the RF tag 40A. can do.
  • the RF tag identification unit 21 confirms that the target RF tag set is composed of the RF tags 40A, 40B, 40C based on the information of the target RF tag set included in the data read command received from the PLC 50. You may be able to.
  • the command from the PLC 50 includes information indicating that the RF tag set from which data is to be read is composed of the RF tags 40A, 40B, 40C.
  • the command from the PLC 50 may include the identification information of each of the RF tags 40A, 40B, and 40C included in the RF tag set.
  • the data read command received from the PLC 50 may include information indicating the read order of each target RF tag. In this case, the sorting process using the identification number as the index can be omitted.
  • the RF communication control unit 20 performs the anti-collision process and the confirmation of the target RF tag set in step S21 by the function of the RF tag identification unit 21, and then executes the processes of steps S22 to S31. Since the processing of steps S22 to S31 is the same as the processing of steps S2 to S11 described above, the description thereof will be omitted.
  • FIG. 7 shows the flow of data between the PLC 50, the reader / writer 10, and the RF tags 40A, 40B, and 40C when all the target RF tags 40A, 40B, and 40C do not exist within the communicable area of the antenna 35.
  • FIG. 7 shows the flow of data between the PLC 50, the reader / writer 10, and the RF tags 40A, 40B, and 40C when all the target RF tags 40A, 40B, and 40C do not exist within the communicable area of the antenna 35.
  • the RF communication control unit 20 of the reader / writer 10 acquires the read command received from the PLC 50 via the upper communication control unit 11.
  • the RF communication control unit 20 uses the function of the RF tag identification unit 21 to identify a plurality of predetermined target RF tags 40.
  • the RF tag identification unit 21 may identify the plurality of target RF tags 40 by referring to the content of the instruction from the PLC 50.
  • the RF tag identification unit 21 may identify the plurality of target RF tags 40 by referring to the identification information read from the RF tag 40A existing in the communicable area of the antenna 35.
  • the RF tag identification unit 21 refers to the identification information of the predetermined plurality of target RF tags 40 included in the identification information read from the RF tag 40 existing in the communicable area of the antenna 35, and the target RF tag 40A. , 40B, 40C are specified.
  • the RF tag identifying unit 21 waits until the RF tag 40 arrives within the communicable area of the antenna 35, and within the communicable area of the antenna 35. After confirming that the RF tag 40 has arrived at, the identification information may be read from the RF tag 40.
  • the memory processing unit 22 has a function of confirming whether or not each of the predetermined plurality of target RF tags 40A, 40B, 40C specified by the RF tag specifying unit 21 exists within the communicable area of the antenna 35. .. In addition, the memory processing unit 22 determines that if the plurality of target RF tags 40A, 40B, and 40C specified by the RF tag specifying unit 21 do not exist within the communicable area of the antenna 35, the memory processing unit 22 operates as follows. It has a function to confirm whether or not it has arrived within the communicable area. The memory processing unit 22 executes the data reading process in order from the target RF tag 40 that is present within the communicable area of the antenna 35 or has arrived.
  • the target RF tag existing in the communicable area of the antenna 35.
  • data is read from 40A.
  • the memory processing unit 22 first reads 1000 bytes of data from the address 1000 of the memory of the target RF tag 40A.
  • the memory processing unit 22 confirms that the target RF tag 40B has arrived within the communicable area of the antenna 35, and reads 2000 bytes of data from the address 0000 of the memory of the target RF tag 40B. After that, the memory processing unit 22 confirms that the target RF tag 40C has arrived within the communicable area of the antenna 35, and reads 1000 bytes of data from the address 0000 of the memory of the target RF tag 40C.
  • the reader / writer 10 can extend the read range of the target RF tag 40 outside the communicable area of the antenna 35 and sequentially read data from a plurality of target RF tags 40.
  • the reader / writer 10 can extend the read range of the target RF tag 40 outside the communicable area of the antenna 35 and sequentially read data from a plurality of target RF tags 40.
  • the memory processing unit 22 also integrates the memories included in the target RF tags in the same manner even when data is written by wireless communication with a predetermined plurality of target RF tags 40, thereby creating one virtual memory space. As a result, data can be written in a plurality of target RF tags 40.
  • the reader / writer 10 can write data in the target RF tags 40A, 40B, and 40C in a flow reverse to the data reading process in response to a command from the PLC 50. That is, the memory processing unit 22 can confirm that the target RF tag 40 has arrived within the communicable area of the antenna 35, and can write a predetermined amount of data in a predetermined position in the memory of the target RF tag 40.
  • FIG. 8 is a flowchart showing an example of the flow of data reading processing by the memory processing unit 22 when all target RF tags 40A, 40B, and 40C do not exist within the communicable area of the antenna 35.
  • the RF communication control unit 20 sets the target RF tag 40A from which the data is read first among the target RF tags 40A, 40B, and 40C specified by the function of the RF tag specifying unit 21 within the communicable area of the antenna 35. Waiting for the arrival, the function of the memory processing unit 22 reads a predetermined amount of data from a predetermined position of the memory of the target RF tag 40A (step S41).
  • the RF communication control unit 20 determines whether the memory processing unit 22 has successfully read the data from the target RF tag 40A (step S42). When the RF communication control unit 20 determines that the memory processing unit 22 has successfully read the data from the target RF tag 40A (YES in step S42), the process proceeds to step S43. When the RF communication control unit 20 determines that the memory processing unit 22 has not normally read the data from the target RF tag 40A (NO in step S42), it notifies the PLC 50 that the data reading has abnormally ended, and executes the processing. To finish.
  • the RF communication control unit 20 notifies the PLC that the response has been received from the target RF tag 40A (step S43).
  • the RF communication control unit 20 waits for the second target RF tag 40B from which data is read to arrive within the communicable area of the antenna 35, and the function of the memory processing unit 22 causes the target RF tag 40B to move from a predetermined position in the memory of the target RF tag 40B. , A predetermined amount of data is read (step S44).
  • the RF communication control unit 20 determines whether the memory processing unit 22 has successfully read the data from the target RF tag 40B (step S45). When the RF communication control unit 20 determines that the memory processing unit 22 has successfully read the data from the target RF tag 40B (YES in step S45), the process proceeds to step S46. When the RF communication control unit 20 determines that the memory processing unit 22 has not successfully read the data from the target RF tag 40B (NO in step S45), the RF communication control unit 20 notifies the PLC 50 that the data reading has abnormally ended, and executes the processing. To finish.
  • the RF communication control unit 20 notifies the PLC that the response has been received from the target RF tag 40B (step S46).
  • the RF communication control unit 20 waits for arrival of the target RF tag 40C from which data is read out third within the communicable area of the antenna 35, and the function of the memory processing unit 22 causes the target RF tag 40C to read from a predetermined position in the memory of the target RF tag 40C. , A predetermined amount of data is read (step S47).
  • the RF communication control unit 20 determines whether the memory processing unit 22 has successfully read the data from the target RF tag 40C (step S48). When the RF communication control unit 20 determines that the memory processing unit 22 has successfully read the data from the target RF tag 40C (YES in step S48), the process proceeds to step S49. When the RF communication control unit 20 determines that the memory processing unit 22 has not successfully read the data from the target RF tag 40C (NO in step S48), the RF communication control unit 20 notifies the PLC 50 that the data reading has abnormally ended, and executes the processing. To finish.
  • the RF communication control unit 20 notifies the PLC that the response has been received from the target RF tag 40C, integrates the data read from each of the target RF tags 40A, 40B, 40C, and transmits all the data to the PLC 50. As a result (step S49), the PLC 50 is notified that the processing corresponding to the command has normally ended, and the processing ends.
  • the control block of the reader / writer 10 (in particular, the higher-level communication control unit 11 and the RF communication control unit 20) may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or by software. May be realized.
  • the reader / writer 10 includes a computer that executes the instructions of a program that is software that realizes each function.
  • the computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes the program to achieve the object of the present invention.
  • a processor for example, a CPU (Central Processing Unit) can be used.
  • the recording medium a “non-transitory tangible medium”, for example, a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (Random Access Memory) for expanding the program may be further provided.
  • the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, or the like) capable of transmitting the program.
  • any transmission medium communication network, broadcast wave, or the like
  • one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • a reader / writer is a reader / writer that performs at least one of reading and writing of data by wireless communication with an RF tag, and specifies a plurality of predetermined RF tags as target RF tags. And a memory processing unit that integrates memories included in each of the plurality of target RF tags to perform at least one memory processing of reading and writing as one virtual memory space. is there.
  • the RF tag identification unit manages the identification information of the target RF tag as an index, so that each of the target RF tags in the virtual memory space is provided.
  • the memory address may be set.
  • the order of reading when the plurality of target RF tags is detected is set to:
  • the order can be determined in advance according to the identification number managed as an index.
  • the RF tag identification unit receives the number information indicating the number of the target RF tags from an external higher-level device and exists in the communication range with the number information.
  • the communicable RF tag may be specified as the target RF tag.
  • the reader / writer can appropriately identify the number of communicable RF tags according to the instruction from the host device as the target RF tags.
  • the RF tag identification unit calculates a total memory capacity of the communicable RF tags existing in the communicable area, and the data amount required for the memory processing is calculated.
  • the communicable RF tag may be specified as the target RF tag.
  • the reader / writer confirms that the total memory capacity of the plurality of target RF tags has reached the capacity required for memory processing, and then performs at least one of reading and writing of data. It can be carried out.
  • the readers / writer can efficiently perform at least one of reading and writing of data on a plurality of target RF tags.
  • the RF tag specifying unit is capable of performing communication in which identification information of a plurality of the target RF tags among the communicable RF tags existing in the communicable area is recorded.
  • the identification information may be read from the RF tag, and the communicable RF tag corresponding to the read identification information may be specified as the target RF tag.
  • a plurality of target RF tags can be identified by referring to the identification information read from the communicable RF tag, and the target RF tag can be efficiently specified.
  • the memory processing unit when all the target RF tags exist in a communicable area at the time of performing the memory processing, all the target RF tags. While the memory processing is sequentially performed on the tags, if all the target RF tags do not exist in the communicable area at the time of performing the memory processing, the target RF tag existing in the communicable area. May be sequentially subjected to memory processing, and when the remaining target RF tags enter the communicable area, the memory processing may be sequentially performed.
  • the identifiable area of the plurality of target RF tags can be expanded to the outside of the communicable area, and the memories of the plurality of RF tags that cannot fit in the communicable area are also regarded as one virtual memory space. At least one of reading and writing of data can be performed by using the data.
  • a control method of a reader / writer includes a step of specifying a predetermined plurality of RF tags as target RF tags, and a plurality of the target RF tags. Integrating the memories to perform at least one memory processing of reading and writing as one virtual memory space.
  • a program according to an aspect of the present invention is a program for operating the reader / writer, which causes a computer to function as the RF tag specifying unit and the memory processing unit. is there.
  • Reader / Writer 11 Upper Communication Control Section 20 RF Communication Control Section 21 RF Tag Specification Section 22 Memory Processing Section 30 Storage Section 50 PLC (Upper Device) 40 (40A, 40B, 40C) RF tag

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

According to the present invention, an increase in cost is suppressed, and the amount of information that can be managed by an RF tag is increased. The present invention comprises: an RF tag specifying unit (21) which specifies a plurality of predetermined RF tags (40) as target RF tags (40); and a memory processing unit (22) which integrates memories included in a plurality of the target RF tags (40), and performs at least one memory process among reading and writing by using the integrated memories as one virtual memory space.

Description

リーダライタ、リーダライタの制御方法、およびプログラムReader / writer, reader / writer control method, and program
 本発明は、RFタグとの間でデータの読み出しおよび書き込みの少なくともいずれかを行うリーダライタ、リーダライタの制御方法、およびプログラムに関する。 The present invention relates to a reader / writer that reads and / or writes data from / to an RF tag, a control method for the reader / writer, and a program.
 従来、製造現場や物流現場で固体管理のために、個体に取り付けたRFタグからデータを読み書きし、プログラマブルコントローラ(Programmable Logic Controller、以下「PLC」と略記)等の産業用制御装置との間でデータ交換を行うリーダライタが知られている。 Conventionally, for solid-state management at manufacturing sites and logistics sites, data is read from and written to RF tags that are attached to individual objects, and it is used with industrial control devices such as programmable controllers (Programmable Logic Controllers, hereinafter abbreviated as “PLC”). A reader / writer that exchanges data is known.
 これらのリーダライタでは、RFタグとの間の通信は、無線通信を介して行うのが一般的であり、無線通信の信頼性を高めるために、RFタグからのデータに、CRC(Cyclic Redundancy Code)を付加することで、異常検知を行う技術がある(例えば、特許文献1参照)。 In these reader / writers, communication with the RF tag is generally performed via wireless communication, and in order to improve the reliability of wireless communication, CRC (Cyclic Redundancy Code) is added to the data from the RF tag. ) Is added to detect an abnormality (see, for example, Patent Document 1).
日本国特許公報「特許第3007926号(1999年12月3日登録)」Japanese Patent Gazette "Patent No. 3007926 (registered December 3, 1999)"
 ところで近年、生産現場において、個体管理のために用いる情報の容量が増加している。しかしながら、一般的な既製品のRFタグのメモリ容量は小さく、RFタグのメモリ容量が、必要なデータ容量に対して不足するという問題がある。一方で、メモリ容量の大きいRFタグは単価が高く、コストの増大を招くという問題がある。 By the way, in recent years, the amount of information used for individual management at the production site is increasing. However, there is a problem that the memory capacity of a general off-the-shelf RF tag is small and the memory capacity of the RF tag is insufficient for the required data capacity. On the other hand, an RF tag with a large memory capacity has a high unit price, which leads to an increase in cost.
 本発明の一態様は、コストの増大を抑制して、RFタグによって管理できる情報の容量を増大させることができる技術を実現することを目的とする。 An aspect of the present invention is to realize a technology capable of suppressing an increase in cost and increasing the amount of information that can be managed by an RF tag.
 前記の課題を解決するために、本発明の一態様に係るリーダライタは、RFタグとの間で無線通信によりデータの読み出しおよび書き込みの少なくともいずれか一方を行うリーダライタであって、所定の複数のRFタグを対象RFタグとして特定するRFタグ特定部と、複数の前記対象RFタグがそれぞれ備えるメモリを統合して、1つの仮想メモリ空間として読み出しおよび書き込みの少なくともいずれか一方のメモリ処理を行うメモリ処理部と、を備える構成である。 In order to solve the above problems, a reader / writer according to one embodiment of the present invention is a reader / writer that performs at least one of reading and writing of data by wireless communication with an RF tag, and a predetermined plurality of reader / writers are provided. The RF tag identification unit that identifies the RF tag as the target RF tag and the memories included in the plurality of target RF tags are integrated to perform at least one memory processing of reading and writing as one virtual memory space. And a memory processing unit.
 また、前記の課題を解決するために、本発明の一態様に係るリーダライタの制御方法は、所定の複数のRFタグを対象RFタグとして特定するステップと、複数の前記対象RFタグがそれぞれ備えるメモリを統合して、1つの仮想メモリ空間として読み出しおよび書き込みの少なくともいずれか一方のメモリ処理を行うステップと、を含む方法である。 Further, in order to solve the above-mentioned problems, a control method of a reader / writer according to an aspect of the present invention includes a step of specifying a predetermined plurality of RF tags as target RF tags, and the plurality of target RF tags. Integrating the memories to perform at least one memory processing of reading and writing as one virtual memory space.
 また、前記の課題を解決するために、本発明の一態様に係るプログラムは、前記リーダライタを動作させるプログラムであって、コンピュータを前記RFタグ特定部、および前記メモリ処理部として機能させるプログラムである。 In order to solve the above problems, a program according to an aspect of the present invention is a program for operating the reader / writer, which causes a computer to function as the RF tag specifying unit and the memory processing unit. is there.
 本発明の一態様によれば、コストの増大を抑制して、RFタグによって管理できる情報の容量を増大させることができる。 According to one aspect of the present invention, it is possible to suppress an increase in cost and increase the amount of information that can be managed by the RF tag.
実施形態に係るリーダライタの要部構成を示すブロック図である。FIG. 3 is a block diagram showing a main configuration of a reader / writer according to the embodiment. リーダライタを用いたシステム環境を模式的に示す図である。It is a figure which shows typically the system environment using a reader / writer. (a)および(b)はリーダライタを用いたシステムの構成を示すブロック図である。(A) And (b) is a block diagram which shows the structure of the system using a reader / writer. リーダライタと、RFタグとの間のデータの流れの一例を示す図である。It is a figure which shows an example of the flow of the data between a reader / writer and an RF tag. リーダライタの読み出し処理の流れの具体例1を示すフローチャートである。9 is a flowchart showing a specific example 1 of the flow of the reading process of the reader / writer. リーダライタの読み出し処理の流れの具体例2を示すフローチャートである。9 is a flowchart showing a specific example 2 of the flow of the reading process of the reader / writer. PLCと、リーダライタと、RFタグとの間のデータの流れの一例を示す図である。It is a figure which shows an example of the flow of data among PLC, a reader / writer, and an RF tag. リーダライタの読み出し処理の流れの応用例を示すフローチャートである。It is a flowchart which shows the application example of the flow of the reading process of a reader / writer.
 以下、本発明の一側面に係る実施形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。 Hereinafter, an embodiment according to one aspect of the present invention (hereinafter, also referred to as “this embodiment”) will be described with reference to the drawings.
 §1 適用例
 まず、図1、及び図2を用いて、本発明が適用される場面の一例について説明する。図1は、本実施形態に係るリーダライタ10の要部構成を示すブロック図である。図2は、本実施形態に係るリーダライタ10が用いられるシステム環境を模式的に示す図である。
§1 Application Example First, an example of a scene to which the present invention is applied will be described with reference to FIGS. 1 and 2. FIG. 1 is a block diagram showing a main configuration of a reader / writer 10 according to this embodiment. FIG. 2 is a diagram schematically showing a system environment in which the reader / writer 10 according to the present embodiment is used.
 図2に示すように、例えば生産現場において、部品や製品などの物品の個体管理のために、RFタグ40が用いられる。RFタグ40は、部品や製品などのワーク101を乗せた1つのパレット100に所定の複数、本実施形態では3枚(RFタグ40A,40B,40C)、取り付けられて用いられる。 As shown in FIG. 2, an RF tag 40 is used for individual management of articles such as parts and products at a production site, for example. A plurality of RF tags 40 (a predetermined number, three in this embodiment ( RF tags 40A, 40B, 40C)) are attached to one pallet 100 on which a work 101 such as a part or a product is placed, and used.
 図1に示すように、リーダライタ10は、複数のRFタグ40(40A,40B,40C)のそれぞれとの間で無線通信を実現するアンテナ35を備え、アンテナ35を介して、交信領域内にある所定の複数のRFタグ40(40A,40B,40C)との間で、データの読み出しおよび書き込みの少なくともいずれか一方を行う。リーダライタ10は、所定の複数のRFタグ40との間でデータの読み出しおよび書き込みの少なくともいずれか一方を行う際には、所定の複数のRFタグ40がそれぞれ備えるメモリを統合して、1つの仮想メモリ空間としてメモリ処理を行う。 As shown in FIG. 1, the reader / writer 10 is provided with an antenna 35 that realizes wireless communication with each of the plurality of RF tags 40 (40A, 40B, 40C), and within the communication area via the antenna 35. At least one of reading and writing of data is performed with respect to a predetermined plurality of RF tags 40 (40A, 40B, 40C). When the reader / writer 10 reads and / or writes data from / to a predetermined plurality of RF tags 40, the reader / writer 10 integrates memories included in the predetermined plurality of RF tags 40 to form one Memory processing is performed as a virtual memory space.
 このようにリーダライタ10は、所定の複数のRFタグ40のそれぞれのメモリを統合して、1つの仮想メモリ空間としてメモリ処理を行うため、RFタグ40のそれぞれのメモリ容量が例えば2KBと少なくても、仮想的にメモリ容量を大容量化させることができる。よって、部品や製品などの物品の個体管理のために必要な情報量が増えても、所定の複数のRFタグ40にこれらの情報を分散させて読み出しおよび書き込みの少なくともいずれか一方を行うことができる。 As described above, the reader / writer 10 integrates the memories of the predetermined plurality of RF tags 40 and performs the memory processing as one virtual memory space, so that the memory capacity of each of the RF tags 40 is small, for example, 2 KB. Also, the memory capacity can be virtually increased. Therefore, even if the amount of information required for individual management of articles such as parts and products increases, it is possible to disperse the information in a plurality of predetermined RF tags 40 and perform at least one of reading and writing. it can.
 §2 構成例
 以下、本発明の実施形態に係るリーダライタ10の構成について、図1から図3に基づいて詳細に説明する。図1は、リーダライタ10の要部構成を示すブロック図である。図2は、リーダライタ10を用いたシステム環境を模式的に示す図である。図3の(a)および(b)はリーダライタ10を用いたシステムの構成を示すブロック図である。
§2 Configuration Example The configuration of the reader / writer 10 according to the embodiment of the present invention will be described in detail below with reference to FIGS. 1 to 3. FIG. 1 is a block diagram showing a main configuration of the reader / writer 10. FIG. 2 is a diagram schematically showing a system environment using the reader / writer 10. 3A and 3B are block diagrams showing the configuration of a system using the reader / writer 10.
 〔リーダライタ10の構成〕
 図1に示すように、リーダライタ10は、RFタグ40との間で無線通信によりデータの読み出しおよび書き込みの少なくともいずれか一方を行う。また、リーダライタ10は、上位機器であるPLC(Programmable Logic Controller)50の入力機器として用いられる。
[Configuration of reader / writer 10]
As shown in FIG. 1, the reader / writer 10 performs at least one of reading and writing of data by wireless communication with the RF tag 40. Further, the reader / writer 10 is used as an input device of a PLC (Programmable Logic Controller) 50 that is a higher-level device.
 リーダライタ10は、上位通信制御部11、RF通信制御部20、記憶部30、およびアンテナ35を含んでいる。 The reader / writer 10 includes a host communication control unit 11, an RF communication control unit 20, a storage unit 30, and an antenna 35.
 上位通信制御部11は、PLC50との間の通信を制御する。上位通信制御部11は、PLC50との間で、無線通信、またはバスやネットワークを介した有線通信を実行する。上位通信制御部11は、PLC50との間で、1バイトあたり数マイクロ秒~数ミリ秒という高速でデータ交換を行うことができる。 The upper communication control unit 11 controls communication with the PLC 50. The upper communication control unit 11 performs wireless communication with the PLC 50 or wired communication via a bus or a network. The higher-level communication control unit 11 can exchange data with the PLC 50 at a high speed of several microseconds to several milliseconds per byte.
 リーダライタ10は、上位通信制御部11による制御により、PLC50との間で通信を行い、上位通信制御部11を介してPLC50から、RFタグ40との間でデータの読み出しおよび書き込みの少なくともいずれか一方を行う指令を受信する。 The reader / writer 10 communicates with the PLC 50 under the control of the host communication control unit 11, and at least one of reading and writing of data from the PLC 50 to the RF tag 40 via the host communication control unit 11. Receive a command to do one.
 アンテナ35は、所定の複数のRFタグ40との間の無線通信を実現する。アンテナ35は、RF通信制御部20の制御に基づいて、所定の複数のRFタグ40に対してコマンド信号を含む電磁波を送出するとともに、コマンドに対する所定の複数のRFタグ40からの応答信号を受け付ける。 The antenna 35 realizes wireless communication with a plurality of predetermined RF tags 40. Under the control of the RF communication control unit 20, the antenna 35 sends out an electromagnetic wave including a command signal to a predetermined plurality of RF tags 40 and receives response signals from the predetermined plurality of RF tags 40 to the command. ..
 RF通信制御部20は、アンテナ35を介して、所定の複数のRFタグ40との間でデータの読み出しおよび書き込みの少なくともいずれか一方を行う。なお、RF通信制御部20は、リーダライタ10の各部を統括的に制御する機能を備えている演算装置であってもよい。RF通信制御部20は、例えば1つ以上のプロセッサ(例えばCPUなど)が、1つ以上のメモリ(例えばRAMやROMなど)に記憶されているプログラムを実行することでリーダライタ10の各部を制御してもよい。 The RF communication control unit 20 performs at least one of reading and writing of data with a predetermined plurality of RF tags 40 via the antenna 35. Note that the RF communication control unit 20 may be an arithmetic device having a function of integrally controlling each unit of the reader / writer 10. The RF communication control unit 20 controls each unit of the reader / writer 10 by executing a program stored in one or more memories (such as RAM and ROM) by one or more processors (such as CPU), for example. You may.
 RF通信制御部20は、上位通信制御部11の機能によりPLC50から受信した指令を解読する。PLC50から受信する指令には、RFタグ40との間でのデータの書き込みを指定するライトコマンドと、RFタグ40との間でのデータの読み出しを指定するリードコマンドとがある。ライトコマンド、およびリードコマンドには、PLC50とリーダライタ10との間でのデータ交換サイズに関するデータが含まれている。 The RF communication control unit 20 decodes the command received from the PLC 50 by the function of the host communication control unit 11. The commands received from the PLC 50 include a write command that specifies writing of data with the RF tag 40 and a read command that specifies reading of data with the RF tag 40. The write command and the read command include data regarding the data exchange size between the PLC 50 and the reader / writer 10.
 PLC50は、リーダライタ10が1つの指令に応じて、データの読み出しまたは書き込みを行うために通信するRFタグ40の枚数を認識している必要はない。詳細については後述するが、RF通信制御部20は、読み出しまたは書き込みを行うデータの容量に応じて、所定の複数のRFタグ40のそれぞれのメモリに対して読み出しまたは書き込みの処理を実行する。 The PLC 50 does not need to recognize the number of RF tags 40 that the reader / writer 10 communicates with in order to read or write data according to one command. Although details will be described later, the RF communication control unit 20 executes a read or write process on each memory of a predetermined plurality of RF tags 40 according to the amount of data to be read or written.
 また、RF通信制御部20は、PLC50から受信したライトコマンドに含まれるデータを、RFタグ40に書き込み可能なデータに変換する。RF通信制御部20は、例えば、PLC50から受信したライトコマンドに含まれる8進コード、16進コード、64進コード等のデータをアスキーコードのデータに変換する。 Also, the RF communication control unit 20 converts the data included in the write command received from the PLC 50 into data writable in the RF tag 40. The RF communication control unit 20 converts, for example, data such as an octal code, a hexadecimal code, and a hexadecimal code included in the write command received from the PLC 50 into ASCII code data.
 また、RF通信制御部20は、PLC50から受信したリードコマンドに対する応答として、RFタグ40との間で読み出したデータを、PLC50に転送可能なデータに変換する。RF通信制御部20は、例えば、RFタグ40との間で読み出した数字列データを、8進コード、16進コード、64進コード等のデータに変換する。 The RF communication control unit 20 also converts the data read with the RF tag 40 into data that can be transferred to the PLC 50 as a response to the read command received from the PLC 50. The RF communication control unit 20, for example, converts the digit string data read with the RF tag 40 into data such as an octal code, a hexadecimal code, and a hexadecimal code.
 RF通信制御部20は、アンテナ35を介して、所定の複数のRFタグ40に対するコマンド信号の送出と、応答信号の受信とを実行する。また、RF通信制御部20は、RFタグ40から受信した応答信号の復号化処理を実行することができる構成であってもよい。なお、アンテナ35を介した、RFタグ40との間の無線通信は、1バイトあたり数ミリ~数十ミリ秒という速さの通信である。 The RF communication control unit 20 sends a command signal to a predetermined plurality of RF tags 40 and receives response signals via the antenna 35. Further, the RF communication control unit 20 may be configured to be able to execute the decoding process of the response signal received from the RF tag 40. The wireless communication with the RF tag 40 via the antenna 35 is a communication at a speed of several milliseconds to several tens of milliseconds per byte.
 図3の(a)に示すように、リーダライタ10は、それぞれ別体の複数のユニットによって構成されていてもよい。例えば、リーダライタ10は、上位通信制御部11の機能と、RF通信制御部20の機能の一部とを備えた制御ユニット120、信号の増幅を行うアンプユニット130、およびアンテナ35がそれぞれ別体である構成であってもよい。 As shown in FIG. 3A, the reader / writer 10 may be composed of a plurality of separate units. For example, the reader / writer 10 includes a control unit 120 having the function of the higher-level communication control unit 11 and a part of the function of the RF communication control unit 20, an amplifier unit 130 for amplifying a signal, and an antenna 35, which are separate units. The configuration may be
 また、図3の(b)に示すように、リーダライタ10は、上位通信制御部11と、RF通信制御部20と、アンテナ35とが一体に構成されていてもよい。 Further, as shown in FIG. 3B, the reader / writer 10 may be configured such that the host communication control unit 11, the RF communication control unit 20, and the antenna 35 are integrally formed.
 図1に示すように、RF通信制御部20は、RFタグ特定部21と、メモリ処理部22とを含んでいる。 As shown in FIG. 1, the RF communication control unit 20 includes an RF tag identification unit 21 and a memory processing unit 22.
 RFタグ特定部21は、所定の複数のRFタグを対象RFタグとして特定する。RFタグ特定部21は、アンテナ35の通信可能領域内に存在する複数の通信可能RFタグ40のそれぞれから、RFタグ40のメモリに記憶されている識別情報をアンテナ35を介して読み出す。RFタグ特定部21は、読み出した識別情報に対応する通信可能RFタグ40A,40B,40Cを対象RFタグ40A,40B,40Cとして特定するアンチコリジョン処理を行う。 The RF tag identification unit 21 identifies a plurality of predetermined RF tags as target RF tags. The RF tag identification unit 21 reads, via the antenna 35, the identification information stored in the memory of the RF tag 40 from each of the plurality of communicable RF tags 40 existing in the communicable area of the antenna 35. The RF tag identification unit 21 performs anti-collision processing to identify the communicable RF tags 40A, 40B, 40C corresponding to the read identification information as the target RF tags 40A, 40B, 40C.
 RFタグ40の識別情報には、それぞれのRFタグ40の個体を識別するための情報に加えて、1つのワーク101(図1参照)の個体情報を保持する所定の複数のRFタグ40のセットに含まれる他のRFタグ40の識別情報が含まれていてもよい。アンチコリジョン処理において、RFタグ特定部21は、複数の通信可能RFタグ40のそれぞれの識別情報を参照して、1つのワーク101(図1参照)の個体情報を保持する複数のRFタグ40のセットを特定することで、対象RFタグ40A,40B,40Cを特定する。 The identification information of the RF tags 40 includes a set of a plurality of predetermined RF tags 40 that holds individual information of one work 101 (see FIG. 1) in addition to information for identifying the individual of each RF tag 40. The identification information of the other RF tag 40 included in the above may be included. In the anti-collision process, the RF tag identification unit 21 refers to the identification information of each of the plurality of communicable RF tags 40 and stores the individual information of one work 101 (see FIG. 1). By specifying the set, the target RF tags 40A, 40B, 40C are specified.
 RF通信制御部20は、RF通信制御部20がアンテナ35を介して対象RFタグ40A,40B,40Cのそれぞれから読み出した識別情報を記憶部30に記憶させる。RFタグ特定部21は、記憶部30に記憶した、対象RFタグ40A,40B,40Cの識別情報をインデックスとして管理することによって、仮想メモリ空間における、それぞれの対象RFタグ40A,40B,40Cが備えるメモリのアドレスを設定する。RFタグ特定部21は、例えば、識別情報をインデックスとして管理し、当該インデックスをソートした順序に応じて、対象RFタグ40A,40B,40Cのメモリブロックを、仮想メモリ空間における1番目、2番目、3番目と見立てて、アドレスを設定する。 The RF communication control unit 20 causes the storage unit 30 to store the identification information read by the RF communication control unit 20 from each of the target RF tags 40A, 40B, and 40C via the antenna 35. The RF tag identification unit 21 manages the identification information of the target RF tags 40A, 40B, 40C stored in the storage unit 30 as an index, so that the respective target RF tags 40A, 40B, 40C in the virtual memory space are provided. Set the memory address. The RF tag identifying unit 21 manages the identification information as an index, and stores the memory blocks of the target RF tags 40A, 40B, and 40C in the virtual memory space according to the order in which the index is sorted. Set the address as if it were the third address.
 RFタグ40の識別情報は、例えば、各RFタグ40に個別に設定されている識別番号である。これらの識別番号は、アルファベットと数字とを組み合わせたものであり、RFタグ特定部21は、識別番号をアルファベット順、および数字順の少なくともいずれか一方でソートすることで、データの読み出し、または書き込みの順序を決定する。 The identification information of the RF tag 40 is, for example, an identification number set individually for each RF tag 40. These identification numbers are a combination of alphabets and numbers, and the RF tag identification unit 21 sorts the identification numbers in at least one of an alphabetical order and a numerical order to read or write data. Determine the order of.
 このように、リーダライタ10は、複数の対象RFタグ40A,40B,40Cがそれぞれ備えるメモリとの間でのデータの読み出しおよび書き込みの少なくともいずれか一方を行う際に、複数の対象RFタグ40A,40B,40Cを検出した際の読み出す順番を、識別番号をインデックスとして用いてソートした順番と予め決めておく。これにより、リーダライタ10は、複数の対象RFタグ40を読み出す順番、または複数の対象RFタグ40に書き込む順番に関する情報を、例えば各RFタグ40の識別番号と対応付けて記録しておくなどの処理が不要となる。よって、リーダライタ10は、複数の対象RFタグ40A,40B,40Cとの間で読出しまたは書き込みを行うデータの統合を効率良く行うことができる。 As described above, the reader / writer 10 performs reading and / or writing of data with the memories included in the plurality of target RF tags 40A, 40B, and 40C, respectively. The order of reading when 40B and 40C are detected is predetermined as the order of sorting using the identification number as an index. As a result, the reader / writer 10 records information relating to the order of reading the plurality of target RF tags 40 or the order of writing to the plurality of target RF tags 40 in association with, for example, the identification number of each RF tag 40. No processing is required. Therefore, the reader / writer 10 can efficiently integrate the data to be read or written with the plurality of target RF tags 40A, 40B, 40C.
 なお、PLC50は、リーダライタ10に対してデータの読み出しまたは書き込みの指令を行う対象RFタグの数を認識している構成であってもよい。この場合、PLC50は、対象RFタグの数に係る情報を含むデータの読み出しまたは書き込みの指令をリーダライタ10に送信する。RFタグ特定部21は、PLC50から上位通信制御部11を介して受信した対象RFタグの数を示す個数情報を取得する。RFタグ特定部21は、取得した当該固体情報と、通信可能領域内に存在する通信可能RFタグ40の数とが一致した場合に、該通信可能RFタグ40を対象RFタグ40A,40B,40Cとして特定してもよい。 Note that the PLC 50 may be configured to recognize the number of target RF tags that issue instructions to the reader / writer 10 to read or write data. In this case, the PLC 50 transmits to the reader / writer 10 a command to read or write data including information related to the number of target RF tags. The RF tag identification unit 21 acquires the number information indicating the number of target RF tags received from the PLC 50 via the upper communication control unit 11. When the acquired solid-state information matches the number of communicable RF tags 40 existing in the communicable area, the RF tag identifying unit 21 targets the communicable RF tags 40 to the target RF tags 40A, 40B, 40C. May be specified as
 また、PLC50は、リーダライタ10に対してデータの読み出しまたは書き込みの指令を行う対象RFタグを識別するための識別情報を含む指令を送信することができてもよい。RFタグ特定部21は、PLC50から上位通信制御部11を介して受信した対象RFタグを識別するための識別情報と、通信可能RFタグ40のそれぞれから読み出した識別情報と、に基づいて、アンチコリジョン処理を行ってもよい。 Also, the PLC 50 may be capable of transmitting a command including identification information for identifying the target RF tag that issues a data read or write command to the reader / writer 10. The RF tag identification unit 21 determines whether or not to identify the target RF tag received from the PLC 50 via the upper communication control unit 11 and the identification information read from each of the communicable RF tags 40. You may perform a collision process.
 メモリ処理部22は、RFタグ特定部21によって特定された対象RFタグ40A,40B,40Cがそれぞれ備えるメモリを統合して、1つの仮想メモリ空間とする。例えば、各対象のRFタグ40A,40B,40Cが2KBのメモリ容量を有している場合、メモリ処理部22は、これらのメモリを統合して、仮想的に6KBのメモリ容量を有する1つの仮想メモリ空間として読み出しおよび書き込みの少なくともいずれか一方のメモリ処理を行う。 The memory processing unit 22 integrates the memories included in the target RF tags 40A, 40B, and 40C identified by the RF tag identifying unit 21 into one virtual memory space. For example, when the target RF tags 40A, 40B, and 40C each have a memory capacity of 2 KB, the memory processing unit 22 integrates these memories to virtually generate one virtual memory having a memory capacity of 6 KB. At least one of read and write memory processing is performed as the memory space.
 これにより、ユーザは、メモリ容量の小さい一般的な既製品のRFタグ40を複数用いることで、1つのRFタグ40のメモリには記憶しきれない容量の情報を、複数のRFタグ40のメモリを統合した1つの仮想メモリ空間に記憶させることができる。よって、メモリ容量の大きな高価なRFタグを用いる必要がないため、コストの増大を抑制することができ、且つ、RFタグ40によって管理できる情報の容量を増大させることができる。 As a result, the user uses a plurality of general off-the-shelf RF tags 40 each having a small memory capacity, so that the information of the capacity that cannot be stored in the memory of one RF tag 40 is stored in the memory of the plurality of RF tags 40. Can be stored in one integrated virtual memory space. Therefore, since it is not necessary to use an expensive RF tag having a large memory capacity, it is possible to suppress an increase in cost and increase the capacity of information that can be managed by the RF tag 40.
 なお、RFタグ特定部21は、通信可能領域内に存在する通信可能RFタグ40の総メモリ容量を算出し、メモリ処理部22によるメモリ処理に必要とされるデータ量が総メモリ容量以下である場合に、該通信可能RFタグ40を対象RFタグ40A,40B,40Cとして特定してもよい。記憶部30には、リーダライタ10との間で通信を行う可能性のある複数のRFタグ40の識別情報と、各RFタグ40のメモリ容量とが予め記憶されていてもよい。RFタグ特定部21は、複数の通信可能RFタグ40から読み出した識別情報に基づいて、記憶部30に記憶されている識別情報が該当するRFタグ40のメモリ容量の合計を算出することで、通信可能RFタグ40の総メモリ容量を算出する。 The RF tag identification unit 21 calculates the total memory capacity of the communicable RF tags 40 existing in the communicable area, and the amount of data required for the memory processing by the memory processing unit 22 is equal to or less than the total memory capacity. In this case, the communicable RF tag 40 may be specified as the target RF tags 40A, 40B, 40C. The storage unit 30 may previously store identification information of a plurality of RF tags 40 that may communicate with the reader / writer 10 and the memory capacity of each RF tag 40. The RF tag identification unit 21 calculates the total memory capacity of the RF tags 40 to which the identification information stored in the storage unit 30 corresponds, based on the identification information read from the plurality of communicable RF tags 40. The total memory capacity of the communicable RF tag 40 is calculated.
 図4は、リーダライタ10と、対象RFタグ40A,40B,40Cとの間のデータの流れの例を示す図である。図4は、リーダライタ10が、6KBの仮想メモリ空間の1000番地から4000バイトのデータを読み出すPLC50からの指令に応じて対象RFタグ40A,40B,40Cからデータを読み出す際のデータの流れを示している。 FIG. 4 is a diagram showing an example of the flow of data between the reader / writer 10 and the target RF tags 40A, 40B, 40C. FIG. 4 shows a data flow when the reader / writer 10 reads data from the target RF tags 40A, 40B, and 40C in response to a command from the PLC 50 that reads 4000 bytes of data from address 1000 of the virtual memory space of 6 KB. ing.
 先ず、リーダライタ10のRF通信制御部20は、RFタグ特定部21の機能により、アンテナ35の通信可能領域内に存在する複数の通信可能RFタグ40のそれぞれから、RFタグ40のメモリに記憶されている識別情報をアンテナ35を介して読み出す。RFタグ特定部21は、通信可能RFタグ40のそれぞれから読み出した識別情報を参照して、アンチコリジョン処理を行い、対象RFタグ40A,40B,40Cを特定する。RFタグ特定部21は、特定した対象RFタグ40A,40B,40Cのメモリのそれぞれに、仮想メモリ空間におけるアドレスを設定する。 First, the RF communication control unit 20 of the reader / writer 10 stores in the memory of the RF tag 40 from each of the plurality of communicable RF tags 40 existing in the communicable area of the antenna 35 by the function of the RF tag specifying unit 21. The stored identification information is read out via the antenna 35. The RF tag identification unit 21 refers to the identification information read from each of the communicable RF tags 40, performs anti-collision processing, and identifies the target RF tags 40A, 40B, 40C. The RF tag identification unit 21 sets an address in the virtual memory space in each of the identified memories of the target RF tags 40A, 40B, and 40C.
 RF通信制御部20は、メモリ処理部22の機能により、まず1番目のRFタグ40Aに対して、メモリの1000番地から1000バイトのデータの読み出しを要求するリードコマンドを送信する。メモリ処理部22は、送信したリードコマンドに対する応答としてRFタグ40Aから転送される1000バイトのデータを取得する。 The RF communication control unit 20 uses the function of the memory processing unit 22 to send to the first RF tag 40A a read command requesting reading of 1000 bytes of data from address 1000 of the memory. The memory processing unit 22 acquires 1000 bytes of data transferred from the RF tag 40A as a response to the transmitted read command.
 続いて、メモリ処理部22は、2番目のRFタグ40Bに対して、メモリの0000番地から2000バイトのデータの読み出しを要求するリードコマンドを送信する。メモリ処理部22は、送信したリードコマンドに対する応答としてRFタグ40Bから転送される2000バイトのデータを取得する。 Subsequently, the memory processing unit 22 sends a read command requesting reading of 2000 bytes of data from the address 0000 of the memory to the second RF tag 40B. The memory processing unit 22 acquires 2000 bytes of data transferred from the RF tag 40B as a response to the transmitted read command.
 次に、メモリ処理部22は、3番目のRFタグ40Cに対して、メモリの0000番地から1000バイトのデータの読み出しを要求するリードコマンドを送信する。メモリ処理部22は、送信したリードコマンドに対する応答としてRFタグ40Cから転送される1000バイトのデータを取得する。 Next, the memory processing unit 22 transmits to the third RF tag 40C a read command requesting reading of 1000 bytes of data from the address 0000 of the memory. The memory processing unit 22 acquires 1000 bytes of data transferred from the RF tag 40C as a response to the transmitted read command.
 なお、図4に示した例は、データの読み出しを示すものであるが、メモリ処理部22は、所定の複数の対象RFタグ40との間で無線通信によりデータの書き込みを行う場合も、同様に対象RFタグがそれぞれ備えるメモリを統合して、1つの仮想メモリ空間として書き込みを行うことができる。リーダライタ10は、例えば、6KBの仮想メモリ空間の1000番地から4000バイトのデータを書き込むPLC50からの指令に応じて、データの読み出し処理とは逆の流れで、対象RFタグ40A,40B,40Cにデータの書き込みを行うことができる。 Although the example shown in FIG. 4 shows reading of data, the same applies to the case where the memory processing unit 22 writes data by wireless communication with a predetermined plurality of target RF tags 40. It is possible to perform writing as one virtual memory space by integrating the memories respectively provided in the target RF tags. The reader / writer 10, for example, responds to a command from the PLC 50 that writes 4000 bytes of data from the 1000th address of the virtual memory space of 6 KB, in a flow reverse to the process of reading the data to the target RF tags 40A, 40B, 40C. Data can be written.
 所定の複数の対象RFタグ40との間でデータの書き込みを行う場合、RF通信制御部20は、RFタグ特定部21の機能により、対象RFタグ40A,40B,40Cを特定し、特定した対象RFタグ40A,40B,40Cのメモリのそれぞれに、仮想メモリ空間におけるアドレスを設定する。 When writing data with a predetermined plurality of target RF tags 40, the RF communication control unit 20 specifies the target RF tags 40A, 40B, 40C by the function of the RF tag specifying unit 21 and specifies the specified target. An address in the virtual memory space is set in each of the memories of the RF tags 40A, 40B, 40C.
 RF通信制御部20は、メモリ処理部22の機能により、まず1番目の処理対象のRFタグ40Aに対して、メモリの1000番地から1000バイトのデータを書き込むライトコマンドを送信し、RFタグ40Aに1000バイトのデータを書き込む。 By the function of the memory processing unit 22, the RF communication control unit 20 first transmits a write command for writing 1000 bytes of data from the address 1000 of the memory to the RF tag 40A that is the first processing target, and then the RF tag 40A. Write 1000 bytes of data.
 続いて、メモリ処理部22は、2番目の処理対象のRFタグ40Bに対して、メモリの0000番地から2000バイトのデータを書き込むライトコマンドを送信し、RFタグ40Bに2000バイトのデータを書き込む。 Next, the memory processing unit 22 sends a write command for writing 2000 bytes of data from the address 0000 of the memory to the RF tag 40B that is the second processing target, and writes 2000 bytes of data to the RF tag 40B.
 次に、メモリ処理部22は、3番目の処理対象のRFタグ40Cに対して、メモリの0000番地から1000バイトのデータを書き込むライトコマンドを送信し、RFタグ40Cに1000バイトのデータを書き込む。 Next, the memory processing unit 22 sends a write command for writing 1000 bytes of data from the address 0000 of the memory to the RF tag 40C that is the third processing target, and writes 1000 bytes of data to the RF tag 40C.
 このように、リーダライタ10は、複数の対象RFタグ40がそれぞれ備えるメモリを統合して、1つの仮想メモリ空間とすることで、RFタグ40によって管理できる情報の容量を増大させることができる。 As described above, the reader / writer 10 can increase the capacity of information that can be managed by the RF tag 40 by integrating the memories included in the plurality of target RF tags 40 into one virtual memory space.
 〔リーダライタ10のデータ読み出し処理の流れの具体例1〕
 図5は、リーダライタ10のデータ読み出し処理の流れの具体例1を示すフローチャートである。
[Specific Example 1 of Flow of Data Reading Process of Reader / Writer 10]
FIG. 5 is a flowchart showing a specific example 1 of the flow of the data reading process of the reader / writer 10.
 リーダライタ10のRF通信制御部20は、上位通信制御部11を介してPLC50から受信したデータ読み出しの指令を取得すると、まず、RFタグ特定部21の機能によりアンチコリジョン処理を実行する(ステップS1)。 When the RF communication control unit 20 of the reader / writer 10 obtains the data read command received from the PLC 50 via the upper communication control unit 11, first, the function of the RF tag identification unit 21 executes the anti-collision process (step S1). ).
 RF通信制御部20は、アンチコリジョン処理が正常に終了したか否かを判定する(ステップS2)。RF通信制御部20は、RFタグ特定部21により所定の複数の対象RFタグ40A,40B,40Cが特定できた場合には、アンチコリジョン処理が正常に終了したと判定し(ステップS2でYES)、ステップS3に進む。RF通信制御部20は、RFタグ特定部21により所定の複数の対象RFタグ40A,40B,40Cが特定できなかった場合には、アンチコリジョン処理が正常に終了しなかったと判定し(ステップS2でNO)、指令に対する処理が異常終了した旨をPLC50に送信する。 The RF communication control unit 20 determines whether or not the anti-collision process has been normally completed (step S2). The RF communication control unit 20 determines that the anti-collision process has been normally completed when the predetermined plurality of target RF tags 40A, 40B, 40C can be identified by the RF tag identification unit 21 (YES in step S2). , And proceeds to step S3. The RF communication control unit 20 determines that the anti-collision process has not ended normally when the predetermined plurality of target RF tags 40A, 40B, 40C cannot be specified by the RF tag specifying unit 21 (at step S2). NO), the fact that the process corresponding to the command has ended abnormally is transmitted to the PLC 50.
 RF通信制御部20は、RFタグ特定部21によって設定された仮想メモリ空間における対象RFタグ40A,40B,40Cがそれぞれ備えるメモリのアドレスを用いて、メモリ処理部22の機能により、読み出しのメモリ処理を行う。メモリ処理部22は、まず、対象のRFタグ40A,40B,40Cのうち、一番目の処理対象のRFタグ40Aにリードコマンドを送信する(ステップS3)。 The RF communication control unit 20 uses the address of the memory included in each of the target RF tags 40A, 40B, and 40C in the virtual memory space set by the RF tag identification unit 21 and performs the read memory process by the function of the memory processing unit 22. I do. The memory processing unit 22 first transmits a read command to the first RF tag 40A to be processed among the target RF tags 40A, 40B, and 40C (step S3).
 RF通信制御部20は、一番目の処理対象のRFタグ40Aとの間で無線通信によりリードコマンドを正常に受け渡すことができたか否かを判定する(ステップS4)。例えば、対象のRFタグ40Aが、アンテナ35の通信可能領域から外れている場合には、リードコマンドを受け渡すことができず、異常と判定される。RF通信制御部20は、RFタグ40Aにリードコマンドを正常に受け渡すことができたと判定すると(ステップS4でYES)、ステップS5に進む。RF通信制御部20は、RFタグ40Aにリードコマンドを正常に受け渡すことができなかったと判定すると(ステップS4でNO)、指令に対する処理が異常終了した旨をPLC50に送信する。 The RF communication control unit 20 determines whether or not the read command has been successfully passed by wireless communication with the first RF tag 40A to be processed (step S4). For example, when the target RF tag 40A is out of the communicable area of the antenna 35, the read command cannot be delivered, and it is determined that there is an abnormality. When the RF communication control unit 20 determines that the read command has been successfully delivered to the RF tag 40A (YES in step S4), the process proceeds to step S5. When the RF communication control unit 20 determines that the read command cannot be normally delivered to the RF tag 40A (NO in step S4), it transmits to the PLC 50 that the process corresponding to the command has ended abnormally.
 RF通信制御部20は、メモリ処理部22の機能により、一番目の処理対象のRFタグ40Aからデータを読み出す(ステップS5)。PLC50から受信したデータ読み出しの指令が、6KBの仮想メモリ空間の1000番地から4000バイトのデータを読み出す指令である場合、メモリ処理部22は、RFタグ40Aの1000番地から1000バイトのデータを応答として受信する。 The RF communication control unit 20 reads data from the first RF tag 40A to be processed by the function of the memory processing unit 22 (step S5). When the data read command received from the PLC 50 is a command to read 4000 bytes of data from the address 1000 in the virtual memory space of 6 KB, the memory processing unit 22 returns 1000 bytes of data from the address 1000 of the RF tag 40A as a response. To receive.
 メモリ処理部22は、次に、対象のRFタグ40A,40B,40Cのうち、二番目の処理対象のRFタグ40Bにリードコマンドを送信する(ステップS6)。 Next, the memory processing unit 22 transmits a read command to the second RF tag 40B to be processed among the target RF tags 40A, 40B, and 40C (step S6).
 RF通信制御部20は、二番目の処理対象のRFタグ40Bとの間で無線通信によりリードコマンドを正常に受け渡すことができたか否かを判定する(ステップS7)。例えば、対象のRFタグ40Bが、アンテナ35の通信可能領域から外れている場合には、リードコマンドを受け渡すことができず、異常と判定される。RF通信制御部20は、RFタグ40Bにリードコマンドを正常に受け渡すことができたと判定すると(ステップS7でYES)、ステップS8に進む。RF通信制御部20は、RFタグ40Bにリードコマンドを正常に受け渡すことができなかったと判定すると(ステップS7でNO)、指令に対する処理が異常終了した旨をPLC50に送信する。 The RF communication control unit 20 determines whether or not the read command has been successfully delivered by wireless communication with the RF tag 40B that is the second processing target (step S7). For example, when the target RF tag 40B is out of the communicable area of the antenna 35, the read command cannot be delivered, and it is determined that there is an abnormality. When the RF communication control unit 20 determines that the read command has been successfully delivered to the RF tag 40B (YES in step S7), the process proceeds to step S8. When the RF communication control unit 20 determines that the read command cannot be normally delivered to the RF tag 40B (NO in step S7), the RF communication control unit 20 transmits to the PLC 50 a message indicating that the process corresponding to the command has ended abnormally.
 RF通信制御部20は、メモリ処理部22の機能により、二番目の処理対象のRFタグ40Bからデータを読み出す(ステップS8)。PLC50から受信したデータ読み出しの指令が、6KBの仮想メモリ空間の1000番地から4000バイトのデータを読み出す指令である場合、メモリ処理部22は、RFタグ40Bの0000番地から2000バイトのデータを応答として受信する。 The RF communication control unit 20 reads data from the second processing target RF tag 40B by the function of the memory processing unit 22 (step S8). When the data read command received from the PLC 50 is a command to read 4000 bytes of data from address 1000 of the virtual memory space of 6 KB, the memory processing unit 22 returns 2000 bytes of data from address 0000 of the RF tag 40B as a response. To receive.
 メモリ処理部22は、次に、対象のRFタグ40A,40B,40Cのうち、三番目の処理対象のRFタグ40Cにリードコマンドを送信する(ステップS9)。 Next, the memory processing unit 22 sends a read command to the third RF tag 40C to be processed among the target RF tags 40A, 40B, and 40C (step S9).
 RF通信制御部20は、三番目の処理対象のRFタグ40Cとの間で無線通信によりリードコマンドを正常に受け渡すことができたか否かを判定する(ステップS10)。例えば、対象のRFタグ40Cが、アンテナ35の通信可能領域から外れている場合には、リードコマンドを受け渡すことができず、異常と判定される。RF通信制御部20は、RFタグ40Cにリードコマンドを正常に受け渡すことができたと判定すると(ステップS10でYES)、ステップS11に進む。RF通信制御部20は、RFタグ40Cにリードコマンドを正常に受け渡すことができなかったと判定すると(ステップS10でNO)、指令に対する処理が異常終了した旨をPLC50に送信する。 The RF communication control unit 20 determines whether or not the read command has been successfully delivered by wireless communication with the RF tag 40C that is the third processing target (step S10). For example, when the target RF tag 40C is out of the communicable area of the antenna 35, the read command cannot be delivered, and it is determined that there is an abnormality. When the RF communication control unit 20 determines that the read command has been successfully delivered to the RF tag 40C (YES in step S10), the process proceeds to step S11. When the RF communication control unit 20 determines that the read command cannot be normally delivered to the RF tag 40C (NO in step S10), the RF communication control unit 20 transmits to the PLC 50 a message indicating that the process corresponding to the command has ended abnormally.
 RF通信制御部20は、メモリ処理部22の機能により、三番目の処理対象のRFタグ40Cからデータを読み出す(ステップS11)。PLC50から受信したデータ読み出しの指令が、6KBの仮想メモリ空間の1000番地から4000バイトのデータを読み出す指令である場合、メモリ処理部22は、RFタグ40Cの0000番地から1000バイトのデータを応答として受信して、指令に対する処理が正常終了した旨をPLC50に送信する。 The RF communication control unit 20 uses the function of the memory processing unit 22 to read data from the third processing target RF tag 40C (step S11). When the data read command received from the PLC 50 is a command to read 4000 bytes of data from address 1000 of the virtual memory space of 6 KB, the memory processing unit 22 returns 1000 bytes of data from address 0000 of the RF tag 40C as a response. It receives and transmits to the PLC 50 the fact that the process corresponding to the command has ended normally.
 RF通信制御部20は、メモリ処理部22の機能により対象RFタグ40A,40B,40Cから受信した4000バイトのデータを統合して、PLC50に送信する。 The RF communication control unit 20 integrates the 4000-byte data received from the target RF tags 40A, 40B, and 40C by the function of the memory processing unit 22, and transmits the data to the PLC 50.
 このように、メモリ処理部22は、メモリ処理を行う時点で、アンテナ35の通信可能領域内に全ての対象RFタグ40A,40B,40Cが存在し、全ての対象RFタグ40A,40B,40CがRFタグ特定部21によって特定されている場合には、全ての対象RFタグ40A,40B,40Cに対して順次メモリ処理を行う。 In this way, the memory processing unit 22 has all the target RF tags 40A, 40B, 40C in the communicable area of the antenna 35 at the time of performing the memory processing, and all the target RF tags 40A, 40B, 40C are When it is specified by the RF tag specification unit 21, memory processing is sequentially performed on all the target RF tags 40A, 40B, 40C.
 〔リーダライタ10のデータ読み出し処理の流れの具体例2〕
 図6は、リーダライタ10によるデータ読出し処理の流れの具体例2を示すフローチャートである。図6に示すように、リーダライタ10のRF通信制御部20は、上位通信制御部11を介してPLC50から受信したデータ読み出しの指令を取得すると、RFタグ特定部21の機能によりアンチコリジョン処理を実行するとともに、対象RFタグセットの確認を行う(ステップS21)。
[Specific Example 2 of Flow of Data Reading Process of Reader / Writer 10]
FIG. 6 is a flowchart showing a specific example 2 of the flow of the data read processing by the reader / writer 10. As shown in FIG. 6, when the RF communication control unit 20 of the reader / writer 10 acquires the data read command received from the PLC 50 via the higher-level communication control unit 11, the function of the RF tag identification unit 21 performs anti-collision processing. While executing, the target RF tag set is confirmed (step S21).
 RFタグ特定部21は、アンテナ35の通信可能領域内に存在する複数の対象RFタグの少なくともいずれか1枚のメモリに書き込まれた、1セットに含まれる複数の対象RFタグのそれぞれの識別情報を読み出して、対象RFタグセットの確認を行ってもよい。例えば、RFタグ40Aのメモリには、RFタグ40Aの識別情報とともに、RFタグ40BおよびRFタグ40Cの識別情報が予め書き込まれている。RFタグ特定部21は、RFタグ40Aのメモリから読み出した、RFタグ40A,40B,40Cの識別情報に基づいて、対象RFタグセットは、RFタグ40A,40B,40Cから構成されていると確認することができる。 The RF tag identification unit 21 writes the identification information of each of the plurality of target RF tags included in one set, which is written in the memory of at least one of the plurality of target RF tags existing in the communicable area of the antenna 35. May be read to confirm the target RF tag set. For example, in the memory of the RF tag 40A, the identification information of the RF tag 40A and the identification information of the RF tag 40B and the RF tag 40C are written in advance. The RF tag identification unit 21 confirms that the target RF tag set is composed of the RF tags 40A, 40B, 40C based on the identification information of the RF tags 40A, 40B, 40C read from the memory of the RF tag 40A. can do.
 なお、複数の対象RFタグの少なくともいずれか1枚のメモリに、1セットに含まれる複数の対象RFタグのそれぞれの識別情報とともに、各対象RFタグの読み出し順を示す情報が記録されていてもよい。この場合、上記した識別番号をインデックスとして用いてソートする処理を省略することができる。 Even if the information indicating the reading order of each target RF tag is recorded in the memory of at least one of the plurality of target RF tags together with the identification information of each of the plurality of target RF tags included in one set. Good. In this case, the sorting process using the above-mentioned identification number as an index can be omitted.
 また、RFタグ特定部21は、PLC50から受信したデータ読み出しの指令に含まれる対象RFタグセットの情報に基づいて、対象RFタグセットは、RFタグ40A,40B,40Cから構成されていると確認することができてもよい。この場合には、PLC50からの指令には、データの読み出し対象のRFタグセットがRFタグ40A,40B,40Cから構成されていることを示す情報が含まれている。例えば、PLC50からの指令には、RFタグセットを構成するRFタグ40A,40B,40Cのそれぞれの識別情報が含まれていてもよい。 Further, the RF tag identification unit 21 confirms that the target RF tag set is composed of the RF tags 40A, 40B, 40C based on the information of the target RF tag set included in the data read command received from the PLC 50. You may be able to. In this case, the command from the PLC 50 includes information indicating that the RF tag set from which data is to be read is composed of the RF tags 40A, 40B, 40C. For example, the command from the PLC 50 may include the identification information of each of the RF tags 40A, 40B, and 40C included in the RF tag set.
 なお、PLC50から受信したデータ読み出しの指令に、各対象RFタグの読み出し順を示す情報が含まれていてもよい。この場合、上記した識識別番号をインデックスとして用いてソートする処理を省略することができる。 Note that the data read command received from the PLC 50 may include information indicating the read order of each target RF tag. In this case, the sorting process using the identification number as the index can be omitted.
 RF通信制御部20は、RFタグ特定部21の機能によりステップS21においてアンチコリジョン処理と、対象RFタグセットの確認を行った後、ステップS22~S31の処理を実行する。なお、ステップS22~S31の処理は、上述したステップS2~ステップS11の処理と同一のため、その説明を省略する。 The RF communication control unit 20 performs the anti-collision process and the confirmation of the target RF tag set in step S21 by the function of the RF tag identification unit 21, and then executes the processes of steps S22 to S31. Since the processing of steps S22 to S31 is the same as the processing of steps S2 to S11 described above, the description thereof will be omitted.
 〔リーダライタ10のデータ読み出し処理の応用例〕
 ところで、メモリ処理部22によるメモリ処理が行われる時点では、アンテナ35の通信可能領域内に全ての対象RFタグ40A,40B,40Cが存在しない場合もある。このような場合には、メモリ処理部22は、アンテナ35の通信可能領域内に存在する対象RFタグに対して順次メモリ処理を行うとともに、残りの対象RFタグに関しては、アンテナ35の通信可能領域内に入ってきた時点で、順次メモリ処理を行ってもよい。例えば、RFタグ40が取り付けられているパレット100が、コンベアによって搬送される生産ラインにおいて、パレット100の搬送移動により、アンテナ35の通信可能領域内に順次RFタグ40が入ってくるようなケースが想定される。
[Application Example of Data Reading Process of Reader / Writer 10]
By the way, at the time when the memory processing is performed by the memory processing unit 22, all the target RF tags 40A, 40B, and 40C may not exist in the communicable area of the antenna 35. In such a case, the memory processing unit 22 sequentially performs the memory processing on the target RF tags existing in the communicable area of the antenna 35, and the communicable area of the antenna 35 for the remaining target RF tags. Memory processing may be sequentially performed at the time of entering. For example, in a production line in which the pallet 100 to which the RF tag 40 is attached is conveyed by a conveyor, there is a case where the RF tag 40 sequentially enters the communicable area of the antenna 35 due to the movement of the pallet 100. is assumed.
 図7は、アンテナ35の通信可能領域内に全ての対象RFタグ40A,40B,40Cが存在しない場合のPLC50と、リーダライタ10と、RFタグ40A,40B,40Cとの間でのデータの流れを示す図である。 FIG. 7 shows the flow of data between the PLC 50, the reader / writer 10, and the RF tags 40A, 40B, and 40C when all the target RF tags 40A, 40B, and 40C do not exist within the communicable area of the antenna 35. FIG.
 図7に示すように、リーダライタ10のRF通信制御部20は、上位通信制御部11を介してPLC50から受信した読み出し指令を取得する。RF通信制御部20は、RFタグ特定部21の機能により、所定の複数の対象RFタグ40を特定する。RFタグ特定部21は、PLC50からの指令の内容を参照して、複数の対象RFタグ40を特定してもよい。 As shown in FIG. 7, the RF communication control unit 20 of the reader / writer 10 acquires the read command received from the PLC 50 via the upper communication control unit 11. The RF communication control unit 20 uses the function of the RF tag identification unit 21 to identify a plurality of predetermined target RF tags 40. The RF tag identification unit 21 may identify the plurality of target RF tags 40 by referring to the content of the instruction from the PLC 50.
 また、RFタグ特定部21は、アンテナ35の通信可能領域内に存在するRFタグ40Aから読み出した識別情報参照して、複数の対象RFタグ40を特定してもよい。RFタグ特定部21は、アンテナ35の通信可能領域内に存在するRFタグ40から読み出した識別情報に含まれている所定の複数の対象RFタグ40の識別情報を参照して、対象RFタグ40A,40B,40Cを特定する。 The RF tag identification unit 21 may identify the plurality of target RF tags 40 by referring to the identification information read from the RF tag 40A existing in the communicable area of the antenna 35. The RF tag identification unit 21 refers to the identification information of the predetermined plurality of target RF tags 40 included in the identification information read from the RF tag 40 existing in the communicable area of the antenna 35, and the target RF tag 40A. , 40B, 40C are specified.
 RFタグ特定部21は、アンテナ35の通信可能領域内にRFタグ40が存在しない場合には、アンテナ35の通信可能領域内にRFタグ40が到着するまで待機し、アンテナ35の通信可能領域内にRFタグ40が到着したのを確認した後、当該RFタグ40から識別情報を読み出してもよい。 If the RF tag 40 does not exist within the communicable area of the antenna 35, the RF tag identifying unit 21 waits until the RF tag 40 arrives within the communicable area of the antenna 35, and within the communicable area of the antenna 35. After confirming that the RF tag 40 has arrived at, the identification information may be read from the RF tag 40.
 メモリ処理部22は、RFタグ特定部21によって特定された所定の複数の対象RFタグ40A,40B,40Cのそれぞれが、アンテナ35の通信可能領域内に存在するか否かを確認する機能を有する。また、メモリ処理部22は、RFタグ特定部21によって特定された所定の複数の対象RFタグ40A,40B,40Cのそれぞれが、アンテナ35の通信可能領域内に存在しない場合には、アンテナ35の通信可能領域内に到着したか否かを確認する機能を有する。メモリ処理部22は、アンテナ35の通信可能領域内に存在する、または到着した対象RFタグ40から順に、データの読み出し処理を実行する。 The memory processing unit 22 has a function of confirming whether or not each of the predetermined plurality of target RF tags 40A, 40B, 40C specified by the RF tag specifying unit 21 exists within the communicable area of the antenna 35. .. In addition, the memory processing unit 22 determines that if the plurality of target RF tags 40A, 40B, and 40C specified by the RF tag specifying unit 21 do not exist within the communicable area of the antenna 35, the memory processing unit 22 operates as follows. It has a function to confirm whether or not it has arrived within the communicable area. The memory processing unit 22 executes the data reading process in order from the target RF tag 40 that is present within the communicable area of the antenna 35 or has arrived.
 例えば、メモリ処理部22は、RF通信制御部20によってPLC50からの読み出し指令が取得され、対象RFタグ40A,40B,40Cが特定された後、アンテナ35の通信可能領域内に存在する対象RFタグ40Aからまずデータの読み出しを行う。PLC50から取得した読み出し指令が、メモリの1000番地から4000バイト読み出す指令である場合には、メモリ処理部22は、まず対象RFタグ40Aのメモリの1000番地から1000バイトのデータを読み出す。 For example, in the memory processing unit 22, after the read instruction from the PLC 50 is acquired by the RF communication control unit 20 and the target RF tags 40A, 40B, 40C are identified, the target RF tag existing in the communicable area of the antenna 35. First, data is read from 40A. When the read command acquired from the PLC 50 is a command to read 4000 bytes from the address 1000 of the memory, the memory processing unit 22 first reads 1000 bytes of data from the address 1000 of the memory of the target RF tag 40A.
 メモリ処理部22は、続いて、アンテナ35の通信可能領域内に対象RFタグ40Bが到着したことを確認し、対象RFタグ40Bのメモリの0000番地から2000バイトのデータを読み出す。その後、メモリ処理部22は、アンテナ35の通信可能領域内に対象RFタグ40Cが到着したことを確認し、対象RFタグ40Cのメモリの0000番地から1000バイトのデータを読み出す。 Next, the memory processing unit 22 confirms that the target RF tag 40B has arrived within the communicable area of the antenna 35, and reads 2000 bytes of data from the address 0000 of the memory of the target RF tag 40B. After that, the memory processing unit 22 confirms that the target RF tag 40C has arrived within the communicable area of the antenna 35, and reads 1000 bytes of data from the address 0000 of the memory of the target RF tag 40C.
 このように、リーダライタ10は、アンテナ35の通信可能領域外にも、対象RFタグ40の読み出し範囲を拡張して、複数の対象RFタグ40から順にデータを読み出すことができる。これにより、複数の対象RFタグ40がそれぞれ備えるメモリを統合して、1つの仮想メモリ空間として用いることにより、RFタグ40によって管理できる情報の容量を増大させることができる。 In this way, the reader / writer 10 can extend the read range of the target RF tag 40 outside the communicable area of the antenna 35 and sequentially read data from a plurality of target RF tags 40. As a result, by integrating the memories included in the plurality of target RF tags 40 and using them as one virtual memory space, it is possible to increase the amount of information that can be managed by the RF tag 40.
 なお、メモリ処理部22は、所定の複数の対象RFタグ40との間で無線通信によりデータの書き込みを行う場合も、同様に対象RFタグがそれぞれ備えるメモリを統合して、1つの仮想メモリ空間として複数の対象RFタグ40にデータの書き込みを行うことができる。リーダライタ10は、PLC50からの指令に応じて、データの読み出し処理とは逆の流れで、対象RFタグ40A,40B,40Cにデータの書き込みを行うことができる。つまり、メモリ処理部22は、アンテナ35の通信可能領域内に対象RFタグ40が到着したことを確認し、対象RFタグ40のメモリの所定位置に所定容量のデータを書き込むことができる。 Note that the memory processing unit 22 also integrates the memories included in the target RF tags in the same manner even when data is written by wireless communication with a predetermined plurality of target RF tags 40, thereby creating one virtual memory space. As a result, data can be written in a plurality of target RF tags 40. The reader / writer 10 can write data in the target RF tags 40A, 40B, and 40C in a flow reverse to the data reading process in response to a command from the PLC 50. That is, the memory processing unit 22 can confirm that the target RF tag 40 has arrived within the communicable area of the antenna 35, and can write a predetermined amount of data in a predetermined position in the memory of the target RF tag 40.
 〔メモリ処理部22による処理の流れについて〕
 図8は、アンテナ35の通信可能領域内に全ての対象RFタグ40A,40B,40Cが存在しない場合のメモリ処理部22によるデータの読み出し処理の流れの一例を示すフローチャートである。
[Regarding Flow of Processing by Memory Processing Unit 22]
FIG. 8 is a flowchart showing an example of the flow of data reading processing by the memory processing unit 22 when all target RF tags 40A, 40B, and 40C do not exist within the communicable area of the antenna 35.
 RF通信制御部20は、RFタグ特定部21の機能により特定された対象RFタグ40A,40B,40Cのうち、1番目にデータを読み出す対象RFタグ40Aの、アンテナ35の通信可能領域内への到着を待ち、メモリ処理部22の機能により、対象RFタグ40Aのメモリの所定位置から、所定容量のデータを読み出す(ステップS41)。 The RF communication control unit 20 sets the target RF tag 40A from which the data is read first among the target RF tags 40A, 40B, and 40C specified by the function of the RF tag specifying unit 21 within the communicable area of the antenna 35. Waiting for the arrival, the function of the memory processing unit 22 reads a predetermined amount of data from a predetermined position of the memory of the target RF tag 40A (step S41).
 RF通信制御部20は、メモリ処理部22が対象RFタグ40Aから正常にデータを読み出せたか否かを判定する(ステップS42)。RF通信制御部20は、メモリ処理部22が対象RFタグ40Aから正常にデータを読み出せたと判定すると(ステップS42でYES)、ステップS43に進む。RF通信制御部20は、メモリ処理部22が対象RFタグ40Aから正常にデータを読み出せなかったと判定すると(ステップS42でNO)、データの読み出しが異常終了した旨をPLC50に通知して、処理を終了する。 The RF communication control unit 20 determines whether the memory processing unit 22 has successfully read the data from the target RF tag 40A (step S42). When the RF communication control unit 20 determines that the memory processing unit 22 has successfully read the data from the target RF tag 40A (YES in step S42), the process proceeds to step S43. When the RF communication control unit 20 determines that the memory processing unit 22 has not normally read the data from the target RF tag 40A (NO in step S42), it notifies the PLC 50 that the data reading has abnormally ended, and executes the processing. To finish.
 RF通信制御部20は、対象RFタグ40Aから応答を受信した旨をPLCに通知する(ステップS43)。 The RF communication control unit 20 notifies the PLC that the response has been received from the target RF tag 40A (step S43).
 RF通信制御部20は、2番目にデータを読み出す対象RFタグ40Bの、アンテナ35の通信可能領域内への到着を待ち、メモリ処理部22の機能により、対象RFタグ40Bのメモリの所定位置から、所定容量のデータを読み出す(ステップS44)。 The RF communication control unit 20 waits for the second target RF tag 40B from which data is read to arrive within the communicable area of the antenna 35, and the function of the memory processing unit 22 causes the target RF tag 40B to move from a predetermined position in the memory of the target RF tag 40B. , A predetermined amount of data is read (step S44).
 RF通信制御部20は、メモリ処理部22が対象RFタグ40Bから正常にデータを読み出せたか否かを判定する(ステップS45)。RF通信制御部20は、メモリ処理部22が対象RFタグ40Bから正常にデータを読み出せたと判定すると(ステップS45でYES)、ステップS46に進む。RF通信制御部20は、メモリ処理部22が対象RFタグ40Bから正常にデータを読み出せなかったと判定すると(ステップS45でNO)、データの読み出しが異常終了した旨をPLC50に通知して、処理を終了する。 The RF communication control unit 20 determines whether the memory processing unit 22 has successfully read the data from the target RF tag 40B (step S45). When the RF communication control unit 20 determines that the memory processing unit 22 has successfully read the data from the target RF tag 40B (YES in step S45), the process proceeds to step S46. When the RF communication control unit 20 determines that the memory processing unit 22 has not successfully read the data from the target RF tag 40B (NO in step S45), the RF communication control unit 20 notifies the PLC 50 that the data reading has abnormally ended, and executes the processing. To finish.
 RF通信制御部20は、対象RFタグ40Bから応答を受信した旨をPLCに通知する(ステップS46)。 The RF communication control unit 20 notifies the PLC that the response has been received from the target RF tag 40B (step S46).
 RF通信制御部20は、3番目にデータを読み出す対象RFタグ40Cの、アンテナ35の通信可能領域内への到着を待ち、メモリ処理部22の機能により、対象RFタグ40Cのメモリの所定位置から、所定容量のデータを読み出す(ステップS47)。 The RF communication control unit 20 waits for arrival of the target RF tag 40C from which data is read out third within the communicable area of the antenna 35, and the function of the memory processing unit 22 causes the target RF tag 40C to read from a predetermined position in the memory of the target RF tag 40C. , A predetermined amount of data is read (step S47).
 RF通信制御部20は、メモリ処理部22が対象RFタグ40Cから正常にデータを読み出せたか否かを判定する(ステップS48)。RF通信制御部20は、メモリ処理部22が対象RFタグ40Cから正常にデータを読み出せたと判定すると(ステップS48でYES)、ステップS49に進む。RF通信制御部20は、メモリ処理部22が対象RFタグ40Cから正常にデータを読み出せなかったと判定すると(ステップS48でNO)、データの読み出しが異常終了した旨をPLC50に通知して、処理を終了する。 The RF communication control unit 20 determines whether the memory processing unit 22 has successfully read the data from the target RF tag 40C (step S48). When the RF communication control unit 20 determines that the memory processing unit 22 has successfully read the data from the target RF tag 40C (YES in step S48), the process proceeds to step S49. When the RF communication control unit 20 determines that the memory processing unit 22 has not successfully read the data from the target RF tag 40C (NO in step S48), the RF communication control unit 20 notifies the PLC 50 that the data reading has abnormally ended, and executes the processing. To finish.
 RF通信制御部20は、対象RFタグ40Cから応答を受信した旨をPLCに通知するとともに、対象RFタグ40A,40B,40Cのそれぞれから読み出したデータを統合して、PLC50に全データを送信する(ステップS49)ことによって、指令に対する処理が正常終了した旨をPLC50に通知し処理を終了する。 The RF communication control unit 20 notifies the PLC that the response has been received from the target RF tag 40C, integrates the data read from each of the target RF tags 40A, 40B, 40C, and transmits all the data to the PLC 50. As a result (step S49), the PLC 50 is notified that the processing corresponding to the command has normally ended, and the processing ends.
 〔ソフトウェアによる実現例〕
 リーダライタ10の制御ブロック(特に上位通信制御部11、およびRF通信制御部20)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of software implementation]
The control block of the reader / writer 10 (in particular, the higher-level communication control unit 11 and the RF communication control unit 20) may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or by software. May be realized.
 後者の場合、リーダライタ10は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、前記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、前記コンピュータにおいて、前記プロセッサが前記プログラムを前記記録媒体から読み取って実行することにより、本発明の目的が達成される。前記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。前記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、前記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、前記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して前記コンピュータに供給されてもよい。なお、本発明の一態様は、前記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the reader / writer 10 includes a computer that executes the instructions of a program that is software that realizes each function. The computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes the program to achieve the object of the present invention. As the processor, for example, a CPU (Central Processing Unit) can be used. As the recording medium, a “non-transitory tangible medium”, for example, a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (Random Access Memory) for expanding the program may be further provided. Further, the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, or the like) capable of transmitting the program. Note that one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
 〔まとめ〕
 本発明の一態様に係るリーダライタは、RFタグとの間で無線通信によりデータの読み出しおよび書き込みの少なくともいずれか一方を行うリーダライタであって、所定の複数のRFタグを対象RFタグとして特定するRFタグ特定部と、複数の前記対象RFタグがそれぞれ備えるメモリを統合して、1つの仮想メモリ空間として読み出しおよび書き込みの少なくともいずれか一方のメモリ処理を行うメモリ処理部と、を備える構成である。
[Summary]
A reader / writer according to one embodiment of the present invention is a reader / writer that performs at least one of reading and writing of data by wireless communication with an RF tag, and specifies a plurality of predetermined RF tags as target RF tags. And a memory processing unit that integrates memories included in each of the plurality of target RF tags to perform at least one memory processing of reading and writing as one virtual memory space. is there.
 前記の構成によれば、複数の対象RFタグがそれぞれ備えるメモリを統合して、1つの仮想メモリ空間として読み出しおよび書き込みの少なくともいずれか一方のメモリ処理を行うことができる。これにより、メモリ容量の小さい一般的な既製品のRFタグを複数用いることで、1つのRFタグのメモリには記憶しきれない容量の必要な情報を、1つの仮想メモリ空間に記憶させて用いることができる。よって、RFタグのコストの増大を抑制して、RFタグによって管理できる情報の容量を増大させることができる。 According to the above configuration, it is possible to integrate memories included in a plurality of target RF tags and perform at least one of read and write memory processing as one virtual memory space. As a result, by using a plurality of general off-the-shelf RF tags having a small memory capacity, necessary information having a capacity that cannot be stored in the memory of one RF tag is stored in one virtual memory space for use. be able to. Therefore, it is possible to suppress an increase in cost of the RF tag and increase the amount of information that can be managed by the RF tag.
 また、本発明の一態様に係るリーダライタは、前記RFタグ特定部は、前記対象RFタグの識別情報をインデックスとして管理することによって、前記仮想メモリ空間における、前記それぞれの前記対象RFタグが備えるメモリのアドレスを設定してもよい。 In the reader / writer according to an aspect of the present invention, the RF tag identification unit manages the identification information of the target RF tag as an index, so that each of the target RF tags in the virtual memory space is provided. The memory address may be set.
 前記の構成によれば、複数の対象RFタグがそれぞれ備えるメモリとの間でのデータの読み出しおよび書き込みの少なくともいずれか一方を行う際に、複数の対象RFタグを検出した際の読み出す順番を、インデックスとして管理している識別番号に応じた順番と予め決めておくことができる。これにより、別途複数の対象RFタグを読み出すまたは複数の対象RFタグに書き込む順番に関する情報を記録しておく、などの処理が不要となる。よって、データ統合を効率良く行うことができる。このため、複数の対象RFタグのメモリを1つの仮想メモリ空間として用いても、データ処理を効率化し、データ容量を増大させることができる。 According to the above configuration, when performing reading and / or writing of data with the memories respectively provided in the plurality of target RF tags, the order of reading when the plurality of target RF tags is detected is set to: The order can be determined in advance according to the identification number managed as an index. As a result, it is not necessary to separately perform processing such as reading a plurality of target RF tags or recording information regarding the order of writing to the plurality of target RF tags. Therefore, data integration can be performed efficiently. Therefore, even if the memories of the plurality of target RF tags are used as one virtual memory space, the data processing can be made efficient and the data capacity can be increased.
 また、本発明の一態様に係るリーダライタは、前記RFタグ特定部は、外部の上位機器から前記対象RFタグの数を示す個数情報を受信し、前記個数情報と、通信可能領域内に存在する通信可能RFタグの数とが一致した場合に、該通信可能RFタグを前記対象RFタグとして特定してもよい。 Further, in the reader / writer according to an aspect of the present invention, the RF tag identification unit receives the number information indicating the number of the target RF tags from an external higher-level device and exists in the communication range with the number information. When the number of communicable RF tags corresponding to each other matches, the communicable RF tag may be specified as the target RF tag.
 前記の構成によれば、リーダライタは、上位機器からの指令に応じた数の通信可能RFタグを、対象RFタグとして適切に特定することができる。 According to the above configuration, the reader / writer can appropriately identify the number of communicable RF tags according to the instruction from the host device as the target RF tags.
 また、本発明の一態様に係るリーダライタは、前記RFタグ特定部は、通信可能領域内に存在する通信可能RFタグの総メモリ容量を算出し、前記メモリ処理に必要とされるデータ量が前記総メモリ容量以下である場合に、該通信可能RFタグを前記対象RFタグとして特定してもよい。 Further, in the reader / writer according to an aspect of the present invention, the RF tag identification unit calculates a total memory capacity of the communicable RF tags existing in the communicable area, and the data amount required for the memory processing is calculated. When the total memory capacity is equal to or less than the total memory capacity, the communicable RF tag may be specified as the target RF tag.
 前記の構成によれば、リーダライタは、複数の対象RFタグの総メモリ容量が、メモリ処理に必要な容量に達していることを確認してから、データの読み出しおよび書き込みの少なくともいずれか一方を行うことができる。これにより、複数の対象RFタグのメモリを1つの仮想メモリ空間として用いる場合に、データの読み出しまたは書き込みに必要な容量が、メモリ処理の途中に足りなくなり異常終了することがない。よって、リーダライタは、効率よく、データの読み出しおよび書き込みの少なくともいずれか一方の処理を、複数の対象RFタグに対して行うことができる。 According to the above configuration, the reader / writer confirms that the total memory capacity of the plurality of target RF tags has reached the capacity required for memory processing, and then performs at least one of reading and writing of data. It can be carried out. As a result, when the memories of a plurality of target RF tags are used as one virtual memory space, the capacity required for reading or writing data does not run short during the memory processing and abnormal termination does not occur. Therefore, the reader / writer can efficiently perform at least one of reading and writing of data on a plurality of target RF tags.
 また、本発明の一態様に係るリーダライタは、前記RFタグ特定部は、通信可能領域内に存在する通信可能RFタグのうち、複数の前記対象RFタグの識別情報が記録されている通信可能RFタグから該識別情報を読み出し、読み出した識別情報に対応する通信可能RFタグを前記対象RFタグとして特定してもよい。 Further, in the reader / writer according to an aspect of the present invention, the RF tag specifying unit is capable of performing communication in which identification information of a plurality of the target RF tags among the communicable RF tags existing in the communicable area is recorded. The identification information may be read from the RF tag, and the communicable RF tag corresponding to the read identification information may be specified as the target RF tag.
 前記の構成によれば、通信可能RFタグから読み出した識別情報を参照することで、複数の対象RFタグを識別することができ、対象RFタグの特定を効率よく行うことができる。 According to the above configuration, a plurality of target RF tags can be identified by referring to the identification information read from the communicable RF tag, and the target RF tag can be efficiently specified.
 また、本発明の一態様に係るリーダライタは、前記メモリ処理部は、前記メモリ処理を行う時点で、通信可能領域内に全ての前記対象RFタグが存在する場合には、全ての前記対象RFタグに対して順次メモリ処理を行う一方、前記メモリ処理を行う時点で、前記通信可能領域内に全ての前記対象RFタグが存在しない場合には、前記通信可能領域内に存在する前記対象RFタグに対して順次メモリ処理を行うとともに、残りの前記対象RFタグが前記通信可能領域内に入ってきた時点で、順次メモリ処理を行ってもよい。 Further, in the reader / writer according to an aspect of the present invention, the memory processing unit, when all the target RF tags exist in a communicable area at the time of performing the memory processing, all the target RF tags. While the memory processing is sequentially performed on the tags, if all the target RF tags do not exist in the communicable area at the time of performing the memory processing, the target RF tag existing in the communicable area. May be sequentially subjected to memory processing, and when the remaining target RF tags enter the communicable area, the memory processing may be sequentially performed.
 前記の構成によれば、複数の対象RFタグの特定可能領域を、通信可能領域外に広げることができ、通信可能領域内に入りきらない複数のRFタグのメモリも、1つの仮想メモリ空間として用いて、データの読み出しおよび書き込みの少なくともいずれか一方を行うことができる。 According to the above configuration, the identifiable area of the plurality of target RF tags can be expanded to the outside of the communicable area, and the memories of the plurality of RF tags that cannot fit in the communicable area are also regarded as one virtual memory space. At least one of reading and writing of data can be performed by using the data.
 また、前記の課題を解決するために、本発明の一態様に係るリーダライタの制御方法は、所定の複数のRFタグを対象RFタグとして特定するステップと、複数の前記対象RFタグがそれぞれ備えるメモリを統合して、1つの仮想メモリ空間として読み出しおよび書き込みの少なくともいずれか一方のメモリ処理を行うステップと、を含む方法である。 Further, in order to solve the above-mentioned problems, a control method of a reader / writer according to an aspect of the present invention includes a step of specifying a predetermined plurality of RF tags as target RF tags, and a plurality of the target RF tags. Integrating the memories to perform at least one memory processing of reading and writing as one virtual memory space.
 前記の方法によれば、複数の対象RFタグがそれぞれ備えるメモリを統合して、1つの仮想メモリ空間として読み出しおよび書き込みの少なくともいずれか一方のメモリ処理を行うことができる。これにより、メモリ容量の小さい一般的な既製品のRFタグを複数用いることで、1つのRFタグのメモリには記憶しきれない容量の必要な情報を、1つの仮想メモリ空間に記憶させて用いることができる。よって、RFタグのコストの増大を抑制して、RFタグによって管理できる情報の容量を増大させることができる。 According to the above method, it is possible to integrate memories included in a plurality of target RF tags and perform at least one of read and write memory processing as one virtual memory space. As a result, by using a plurality of general off-the-shelf RF tags having a small memory capacity, necessary information having a capacity that cannot be stored in the memory of one RF tag is stored in one virtual memory space for use. be able to. Therefore, it is possible to suppress an increase in cost of the RF tag and increase the amount of information that can be managed by the RF tag.
 また、前記の課題を解決するために、本発明の一態様に係るプログラムは、前記リーダライタを動作させるプログラムであって、コンピュータを前記RFタグ特定部、および前記メモリ処理部として機能させるプログラムである。 In order to solve the above problems, a program according to an aspect of the present invention is a program for operating the reader / writer, which causes a computer to function as the RF tag specifying unit and the memory processing unit. is there.
 前記の構成によれば、RFタグのコストの増大を抑制して、RFタグによって管理できる情報の容量を増大させることができる。 With the above configuration, it is possible to suppress an increase in the cost of the RF tag and increase the amount of information that can be managed by the RF tag.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
10 リーダライタ
11 上位通信制御部
20 RF通信制御部
21 RFタグ特定部
22 メモリ処理部
30 記憶部
50 PLC(上位機器)
40(40A,40B,40C) RFタグ
10 Reader / Writer 11 Upper Communication Control Section 20 RF Communication Control Section 21 RF Tag Specification Section 22 Memory Processing Section 30 Storage Section 50 PLC (Upper Device)
40 (40A, 40B, 40C) RF tag

Claims (8)

  1.  RFタグとの間で無線通信によりデータの読み出しおよび書き込みの少なくともいずれか一方を行うリーダライタであって、
     所定の複数のRFタグを対象RFタグとして特定するRFタグ特定部と、
     複数の前記対象RFタグがそれぞれ備えるメモリを統合して、1つの仮想メモリ空間として読み出しおよび書き込みの少なくともいずれか一方のメモリ処理を行うメモリ処理部と、
    を備えるリーダライタ。
    A reader / writer that performs at least one of reading and writing of data by wireless communication with an RF tag,
    An RF tag specifying unit that specifies a plurality of predetermined RF tags as target RF tags;
    A memory processing unit that integrates memories included in each of the plurality of target RF tags to perform at least one of read and write memory processing as one virtual memory space;
    A reader / writer equipped with.
  2.  前記RFタグ特定部は、前記対象RFタグの識別情報をインデックスとして管理することによって、前記仮想メモリ空間における、前記それぞれの前記対象RFタグが備えるメモリのアドレスを設定する請求項1に記載のリーダライタ。 The reader according to claim 1, wherein the RF tag specifying unit sets an address of a memory included in each of the target RF tags in the virtual memory space by managing identification information of the target RF tag as an index. lighter.
  3.  前記RFタグ特定部は、外部の上位機器から前記対象RFタグの数を示す個数情報を受信し、前記個数情報と、通信可能領域内に存在する通信可能RFタグの数とが一致した場合に、該通信可能RFタグを前記対象RFタグとして特定する請求項2に記載のリーダライタ。 The RF tag specifying unit receives the number information indicating the number of the target RF tags from an external host device, and when the number information matches the number of communicable RF tags existing in the communicable area, The reader / writer according to claim 2, wherein the communicable RF tag is specified as the target RF tag.
  4.  前記RFタグ特定部は、通信可能領域内に存在する通信可能RFタグの総メモリ容量を算出し、前記メモリ処理に必要とされるデータ量が前記総メモリ容量以下である場合に、該通信可能RFタグを前記対象RFタグとして特定する請求項2または3に記載のリーダライタ。 The RF tag specifying unit calculates the total memory capacity of the communicable RF tags existing in the communicable area, and when the amount of data required for the memory processing is equal to or less than the total memory capacity, the communication is possible. The reader / writer according to claim 2, wherein an RF tag is specified as the target RF tag.
  5.  前記RFタグ特定部は、通信可能領域内に存在する通信可能RFタグのうち、複数の前記対象RFタグの識別情報が記録されている通信可能RFタグから該識別情報を読み出し、読み出した識別情報に対応する通信可能RFタグを前記対象RFタグとして特定する請求項2に記載のリーダライタ。 The RF tag identifying unit reads the identification information from the communicable RF tags in which the identification information of the plurality of target RF tags is recorded among the communicable RF tags existing in the communicable area, and the read identification information is read. The reader / writer according to claim 2, wherein a communicable RF tag corresponding to is specified as the target RF tag.
  6.  前記メモリ処理部は、
     前記メモリ処理を行う時点で、通信可能領域内に全ての前記対象RFタグが存在する場合には、全ての前記対象RFタグに対して順次メモリ処理を行う一方、
     前記メモリ処理を行う時点で、前記通信可能領域内に全ての前記対象RFタグが存在しない場合には、前記通信可能領域内に存在する前記対象RFタグに対して順次メモリ処理を行うとともに、残りの前記対象RFタグが前記通信可能領域内に入ってきた時点で、順次メモリ処理を行う請求項1、2および5のいずれか一項に記載のリーダライタ。
    The memory processing unit,
    When all the target RF tags are present in the communicable area at the time of performing the memory processing, the memory processing is sequentially performed on all the target RF tags,
    When not all the target RF tags are present in the communicable area at the time of performing the memory processing, the target RF tags existing in the communicable area are sequentially subjected to the memory processing and the remaining The reader / writer according to any one of claims 1, 2 and 5, wherein the memory processing is sequentially performed when the target RF tag of (1) enters the communicable area.
  7.  所定の複数のRFタグを対象RFタグとして特定するステップと、
     複数の前記対象RFタグがそれぞれ備えるメモリを統合して、1つの仮想メモリ空間として読み出しおよび書き込みの少なくともいずれか一方のメモリ処理を行うステップと、を含むリーダライタの制御方法。
    Specifying a plurality of predetermined RF tags as target RF tags;
    A method of controlling a reader / writer, comprising: integrating memories included in a plurality of target RF tags, and performing at least one memory processing of reading and writing as one virtual memory space.
  8.  請求項1から6までのいずれか1項に記載のリーダライタを動作させるプログラムであって、コンピュータを前記RFタグ特定部、および前記メモリ処理部として機能させるためのプログラム。 A program for operating the reader / writer according to any one of claims 1 to 6, which causes a computer to function as the RF tag specifying unit and the memory processing unit.
PCT/JP2019/036539 2018-10-30 2019-09-18 Reader/writer, reader/writer control method, and program WO2020090269A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980057264.1A CN112639716B (en) 2018-10-30 2019-09-18 Reader-writer, control method of reader-writer, and storage medium
DE112019005456.2T DE112019005456T5 (en) 2018-10-30 2019-09-18 READER / WRITER, CONTROL PROCEDURE FOR A READER / WRITER, AND PROGRAM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-204364 2018-10-30
JP2018204364A JP7155879B2 (en) 2018-10-30 2018-10-30 Reader/Writer, Reader/Writer Control Method, and Program

Publications (1)

Publication Number Publication Date
WO2020090269A1 true WO2020090269A1 (en) 2020-05-07

Family

ID=70463057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036539 WO2020090269A1 (en) 2018-10-30 2019-09-18 Reader/writer, reader/writer control method, and program

Country Status (4)

Country Link
JP (1) JP7155879B2 (en)
CN (1) CN112639716B (en)
DE (1) DE112019005456T5 (en)
WO (1) WO2020090269A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060279412A1 (en) * 2005-06-13 2006-12-14 Holland Joshua H System for using RFID tags as data storage devices
JP2011516933A (en) * 2007-10-28 2011-05-26 テゴ,インコーポレイテッド Method and system for sharing power in a multiple radio frequency network node RFID tag

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3007926U (en) 1994-08-18 1995-02-28 多摩川精機株式会社 Hollow shaft motor
WO2005093643A1 (en) * 2004-03-17 2005-10-06 Nokia Corporation Continuous data provision by radio frequency identification (rfid) transponders
JP4893211B2 (en) * 2006-10-04 2012-03-07 株式会社デンソーウェーブ RF tag system and control apparatus for RF tag reader
JP5011405B2 (en) * 2010-02-12 2012-08-29 東芝テック株式会社 RF tag reader / writer
JP5102862B2 (en) * 2010-06-02 2012-12-19 シャープ株式会社 Indoor wiring termination state determination device, PLC adapter, indoor wiring termination state determination method
CN103559524B (en) * 2013-11-19 2017-04-26 威海北洋电气集团股份有限公司 RFID accurate locating device and using method thereof
CN203673337U (en) * 2014-01-13 2014-06-25 南京国电环保科技有限公司 Automobile coal factory-reception intelligent control system of thermal power plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060279412A1 (en) * 2005-06-13 2006-12-14 Holland Joshua H System for using RFID tags as data storage devices
JP2011516933A (en) * 2007-10-28 2011-05-26 テゴ,インコーポレイテッド Method and system for sharing power in a multiple radio frequency network node RFID tag

Also Published As

Publication number Publication date
JP7155879B2 (en) 2022-10-19
CN112639716B (en) 2024-01-19
CN112639716A (en) 2021-04-09
DE112019005456T5 (en) 2021-09-09
JP2020071612A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
JP3028815B2 (en) Transmission method of portable electronic device and portable electronic device
JP2006023962A (en) Non-contact ic tag system
JP2007156570A (en) Tag access control system, tag access control method, and tag access control program
WO2020090269A1 (en) Reader/writer, reader/writer control method, and program
JP2020004022A (en) Rfid communication unit, control method of rfid communication unit, and program
JP2010146090A (en) Process management method, process management system, management server, terminal and rfid tag
CN101324915A (en) Electronic label recognition method, radio frequency recognition system and electronic label
CN110661554B (en) Radio frequency circuit, radio frequency tag and communication system
CN108388819B (en) Anti-collision method, device and system based on ultrahigh frequency rfid transponder
JP2019029880A (en) Filtering device for RFID tag
JP5157793B2 (en) RFID system
KR100662050B1 (en) Anti-collision method for rfid readers
CN101833633B (en) Radio frequency identification device, wireless network platform and operating method thereof
JP3714143B2 (en) Mobile object identification device
US20150042459A1 (en) Rfid transponder having a plurality of memory areas
CN114726407B (en) Method, device, controller and storage medium for acquiring abnormal information
CN109313426B (en) Controller
JP7386291B1 (en) Information processing device, information processing system, program, and information processing method
EP3842883B1 (en) Production equipment system and production method
JP4485205B2 (en) Identification method of elements by host computer to avoid collision
JP5022418B2 (en) Wireless tag control device
CN109784112B (en) Automobile electronic identification reading and writing method and device, electronic equipment and medium
US20200264587A1 (en) Controller, storage medium, and wireless communication device
KR20240029720A (en) RFID System
JP2009064150A (en) Wireless tag reader/writer apparatus, method of detecting drop-out of wireless tag, and wireless tag

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878223

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19878223

Country of ref document: EP

Kind code of ref document: A1