WO2020089969A1 - Endoscope optical transducer, endoscope, and manufacturing method for endoscope optical transducer - Google Patents

Endoscope optical transducer, endoscope, and manufacturing method for endoscope optical transducer Download PDF

Info

Publication number
WO2020089969A1
WO2020089969A1 PCT/JP2018/040121 JP2018040121W WO2020089969A1 WO 2020089969 A1 WO2020089969 A1 WO 2020089969A1 JP 2018040121 W JP2018040121 W JP 2018040121W WO 2020089969 A1 WO2020089969 A1 WO 2020089969A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
insertion hole
hole
endoscope
Prior art date
Application number
PCT/JP2018/040121
Other languages
French (fr)
Japanese (ja)
Inventor
優希 伊藤
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2018/040121 priority Critical patent/WO2020089969A1/en
Publication of WO2020089969A1 publication Critical patent/WO2020089969A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present invention relates to an optical transducer for an endoscope including an optical element, an optical fiber and a ferrule, an endoscope including an optical transducer including an optical element, an optical fiber and a ferrule, and an optical element, an optical fiber and a ferrule.
  • a method for manufacturing an optical transducer for an endoscope comprising:
  • the endoscope has an image pickup device such as a CCD at the tip of the elongated insertion portion.
  • an image pickup device such as a CCD at the tip of the elongated insertion portion.
  • an image pickup device having a large number of pixels for an endoscope has been studied.
  • the amount of signals transmitted from the image sensor to the signal processing device (processor) increases. Therefore, optical signal transmission via an optical fiber by an optical signal is preferable in place of electrical signal transmission via a metal wiring by an electric signal.
  • an E / O type optical transducer electrical-optical converter
  • an O / E type optical transducer optical-electrical converter
  • the transmission efficiency of the optical transducer will decrease.
  • the core that transmits the optical signal of the optical fiber may be eccentric from the center of the optical fiber. Then, even if the center of the insertion hole accurately faces the light emitting portion, the transmission efficiency of the optical transducer is reduced.
  • the optical fiber may rotate in the ferrule before being fixed, which may reduce the transmission efficiency.
  • An optical signal output from an endoscope including an optical transducer having low transmission efficiency may be deteriorated.
  • Embodiments of the present invention provide an optical transducer for an endoscope with high transmission efficiency, an endoscope including an optical transducer with high transmission efficiency, and a method for manufacturing an optical transducer for an endoscope with high transmission efficiency. To aim.
  • the optical transducer for an endoscope of the embodiment has a first main surface and a second main surface facing the first main surface, and from the first main surface to the second main surface
  • a ferrule having an insertion hole penetrating therethrough, an optical element having a light emitting portion for generating an optical signal, wherein the light emitting portion is arranged at a position facing the insertion hole, including a core, a clad, and a coating layer
  • An optical fiber for transmitting the optical signal wherein a tip portion of the optical fiber is fitted into the insertion hole in a non-rotating state, and a side surface of the tip portion of the optical fiber has at least one outer plane
  • the inner surface of the insertion hole has at least one inner plane, and the outer plane and the inner plane are in contact with each other.
  • the endoscope of the embodiment includes an optical transducer, and the optical transducer has a first main surface and a second main surface facing the first main surface, and from the first main surface, A ferrule having an insertion hole penetrating to the second main surface, an optical element having a light emitting portion for generating an optical signal, the light emitting portion being arranged at a position facing the insertion hole, a core and a clad. And an optical fiber for transmitting the optical signal, which includes a cover layer and a tip portion fitted into the insertion hole in a non-rotatable state, and at least on a side surface of the tip portion of the optical fiber. There is one outer plane, and there is at least one inner plane on the inner surface of the insertion hole, and the outer plane and the inner plane are in contact with each other.
  • a method of manufacturing an optical transducer for an endoscope includes a light emitting element having a light emitting portion for emitting an optical signal on a light emitting surface, a first main surface, and a second main surface facing the first main surface. And a ferrule having an insertion hole penetrating from the first main surface to the second main surface, the insertion hole having a core, a clad, and a coating layer, and having an inner flat surface on the inner surface, A method for manufacturing an optical transducer for an endoscope, wherein a tip portion having an outer flat surface on a side surface is fitted, and an optical fiber for transmitting the optical signal, wherein the tip portion is inserted into the insertion hole.
  • the inserting step, the measuring step, the removing step, and the rotating step are repeatedly performed, and the optimum angle selecting step of selecting the optimum angle that is the rotation angle at which the light amount is the largest;
  • a reinsertion step of inserting the optical fiber into the insertion hole at an optimum angle and a fixing step of fixing the optical fiber to the ferrule are provided.
  • an optical transducer for an endoscope with high transmission efficiency an endoscope including an optical transducer with high transmission efficiency
  • a method for manufacturing an optical transducer for an endoscope with high transmission efficiency ..
  • FIG. 3 is an exploded view of a main part of the optical transducer of the embodiment.
  • FIG. 4 is a cross-sectional view of the optical transducer according to the embodiment, taken along line IV-IV in FIG. 3.
  • FIG. 5 is a cross-sectional view of the optical transducer according to the embodiment, taken along line VV of FIG. 3.
  • 6 is a flowchart of a method for manufacturing the optical transducer of the embodiment.
  • 9 is a perspective view of a ferrule of an optical transducer of a modified example 1.
  • FIG. FIG. 8 is a sectional view taken along the line VIII-VIII in FIG.
  • FIG. 11 is a cross-sectional view of the main parts of the optical transducer of Modification 2.
  • FIG. 11 is a cross-sectional view of a main part of an optical transducer of Modification 3;
  • FIG. 11 is a cross-sectional view of the main parts of the optical transducer of Modification Example 4.
  • FIG. 11 is a cross-sectional view of the main parts of an optical transducer of Modification Example 5.
  • FIG. 13 is a cross-sectional view of the main parts of the optical transducer of Modification 6;
  • the endoscope 9 of the embodiment shown in FIG. 1 constitutes an endoscope system 6 together with a processor 5A and a monitor 5B.
  • the endoscope 9 is disposed at the insertion portion 3, the grip portion 4 arranged at the base end portion of the insertion portion 3, the universal cord 4B extending from the grip portion 4, and the proximal end portion of the universal cord 4B.
  • the connector 4C is provided.
  • the insertion portion 3 includes a distal end portion 3A, a bending portion 3B extending from the distal end portion 3A, which is bendable to change the direction of the distal end portion 3A, and a flexible portion 3C extending from the bending portion 3B.
  • the grasping portion 4 is provided with a rotating angle knob 4A which is an operating portion for an operator to operate the bending portion 3B.
  • the universal cord 4B is connected to the processor 5A by the connector 4C.
  • the processor 5A controls the entire endoscope system 6, performs signal processing on the image pickup signal, and outputs the image pickup signal as an image signal.
  • the monitor 5B displays the image signal output by the processor 5A as an endoscopic image.
  • the endoscope 9 is a flexible endoscope, it may be a rigid endoscope.
  • the endoscope 9 may be medical or industrial.
  • optical transducer 1 An endoscope optical transducer 1 (hereinafter, referred to as “optical transducer 1”) and an imaging unit 2 are provided at a tip portion 3A of the endoscope 9.
  • the optical transducer 1 converts the image pickup signal output by the image pickup unit 2 into an optical signal.
  • the optical signal is converted into an electric signal again by the O / E type optical module 8 arranged in the grip portion 4 by passing through the optical fiber 20 which passes through the insertion portion 3, and the conductor wire 20M which passes through the universal cord 4B. Is transmitted by way of. That is, the image pickup signal is transmitted through the optical fiber 20 in the small-diameter insertion portion 3, and is not inserted into the body and is thicker than the optical fiber 20 in the universal cord 4B having a small outer diameter limitation. It is transmitted by way of 20M.
  • the optical fiber 20 is inserted through the universal cord 4B.
  • the optical transducer 1 has good transmission efficiency. Therefore, the endoscope 9 has good signal transmission efficiency and little signal deterioration, so that the monitor 5B can display a good endoscopic image.
  • the endoscope optical transducer 1 converts an electrical signal output from the imaging unit 2 into an optical signal, and then transmits the optical signal via the optical fiber 20.
  • the image pickup unit 2 includes a lens unit 50, a cover glass 41, an image pickup element 40, a three-dimensional wiring board 42, and a drive IC 43.
  • the lens unit 50 includes a plurality of lenses and collects a subject image.
  • the image pickup device 40 to which the cover glass 41 is adhered outputs an image pickup signal.
  • the drive IC 43 arranged on the three-dimensional wiring board 42 outputs a drive signal based on the image pickup signal.
  • the optical transducer 1 includes an optical element 30, a wiring board 15, a ferrule 10, and an optical fiber 20.
  • the optical element 30 is a light emitting element such as a surface emitting laser chip or an LED chip having a light emitting section 31 for generating an optical signal on the light emitting surface 30SA.
  • the optical element 30 having a microscopic size of 250 ⁇ m ⁇ 300 ⁇ m in a plan view has a light emitting portion 31 having a diameter of 20 ⁇ m and an external electrode 32 on a light emitting surface 30SA.
  • the light emitting unit 31 emits an optical signal in a direction perpendicular to the light emitting surface 30SA.
  • the wiring board 15 has a mounting surface 15SA and a rear surface 15SB facing the mounting surface 15SA, and is made of a transparent glass plate as a base.
  • the external electrode 32 of the optical element 30 is bonded to the mounting surface 15SA.
  • the ferrule 10 has a first main surface 10SA and a second main surface 10SB that faces the first main surface 10SA, and an insertion hole that penetrates from the first main surface 10SA to the second main surface 10SB. There is H10.
  • the tip of the optical fiber 20 is inserted into the insertion hole H10 and fixed by the adhesive 19.
  • the material of the ferrule 10 that is a square pole or a cylinder is ceramic, silicon, glass, metal, or resin.
  • a transparent plate such as a glass plate may be provided on the second main surface 10SB of the ferrule 10.
  • the optical fiber 20 includes a core 21 having a diameter of 50 ⁇ m that transmits light, a clad 22 having a diameter of 120 ⁇ m that covers the core 21, and a coating layer 23 having a diameter of 140 ⁇ m that covers the clad 22. That is, the thickness of the coating layer 23 is 10 ⁇ m.
  • FIGS. 3 to 5 there are six outer planes 20SS on the side surface of the tip of the optical fiber 20. That is, at the tip portion, there are six outer flat surfaces 20SS which are notched surfaces in which the coating layer 23 is notched. In addition, when the coating layer 23 at the tip portion is peeled off, the cutout surface is formed up to the clad 22.
  • the cross-sectional shape of the tip portion orthogonal to the optical axis O is a regular hexagon circumscribing the 120 ⁇ m diameter circle of the clad 22. This is also a regular hexagon inscribed in a circle having an outer diameter of 140 ⁇ m of the coating layer 23.
  • the inner surface of the insertion hole H10 of the ferrule 10 is a regular hexagon in which a cross-sectional shape orthogonal to the optical axis O is inscribed in a circle having a diameter of 150 ⁇ m. That is, there are six inner planes 10SS on the inner surface of the insertion hole H10.
  • the inscribed circle of the insertion hole H10 is slightly larger than the inscribed circle of the tip of the optical fiber 20.
  • the tip of the optical fiber 20 is inserted into the insertion hole H10.
  • the second main surface 10SB of the ferrule 10 is arranged on the rear surface 15SB of the wiring board 15 in a state where the insertion hole H10 faces the light emitting section 31.
  • the extension line from the center of the core 21 at the tip of the optical fiber 20 intersects the light emitting unit 31. Therefore, the optical signal generated by the light emitting unit 31 enters the optical fiber 20 by passing through the wiring board 15.
  • the wiring board is not an essential component of the optical transducer.
  • the six outer planes 20SS are in contact with the respective six inner planes 10SS of the insertion hole H10, which face each other.
  • the end of the optical fiber 20 is fitted in the insertion hole H10 so as not to rotate. That is, the tip of the optical fiber 20 is inserted in a state of being fitted exactly to the tip of the insertion hole H10.
  • the center CH10 of the insertion hole H10 of the ferrule 10 exactly faces the center C31 of the light emitting portion 31 of the optical element 30, and the center C21 of the core 21 of the optical fiber 20 matches the center C20 of the optical fiber 20. Therefore, even if the optical fiber 20 is rotated, the amount of light transmitted by the optical fiber 20 does not change.
  • the center C21 of the core 21 of the optical fiber 20 does not coincide with the center C20 of the optical fiber 20, and therefore the center CH10 of the insertion hole H10 of the ferrule 10 and the light emitting portion.
  • the center C31 of 31 may deviate.
  • a part (or all) of the light beam (light flux) emitted from the light emitting unit 31 may enter the clad 22 around the core 21.
  • the optical fiber 20 is rotated, the area where the light beam (light flux) emitted from the light emitting unit 31 and the core 21 overlap with each other changes. That is, the amount of light incident on the core 21 changes. As a result, the amount of light transmitted by the optical fiber 20 changes.
  • the optical fiber 20 is inserted and fixed in the insertion hole H10 at the angle with the highest transmission efficiency among the six rotation angles. Therefore, the optical transducer 1 has high transmission efficiency.
  • the endoscope 9 including the optical transducer 1 having high transmission efficiency does not have a possibility that the transmitted optical signal is deteriorated. Therefore, the endoscope system 6 including the endoscope 9 can display a good image.
  • the inner surface of the cross section of the insertion hole H10 in the direction orthogonal to the optical axis is a regular hexagon.
  • the ferrule 10 is manufactured by cutting the ferrule wafer after a plurality of insertion holes H10 are formed in the ferrule wafer made of silicon by the DEEP-RIE method. Six cutout surfaces are formed in the coating layer 23 at the tip of the optical fiber 20. A cross section of the tip of the optical fiber 20 having six cutout surfaces (outer planes) orthogonal to the optical axis is a regular hexagon.
  • the optical fiber 20 There are six rotation angles of the optical fiber 20 whose tip fits into the insertion hole H10.
  • the optical fiber 20 is fitted into the insertion hole H10 at any one of the six rotation angles.
  • Step S20 Measuring Step An optical signal is generated from the light emitting section 31 of the optical element 30, and the light amount of the optical signal transmitted by the optical fiber 20 is measured. For example, the rear end of the optical fiber 20 is inserted into a photometer and the light quantity is measured.
  • Step S40> When the light amount measurement at all of the six rotation angles is completed (YES), the process proceeds to step S60. If the light amount measurement is not completed (NO), the process from step S50 is performed.
  • the insertion step S10, the measurement step S20, the removal step S30, and the rotation step S50 are repeated 6 times. Then, the light quantity at six rotation angles can be obtained by six measurements. Then, from the six rotation angles, the rotation angle (optimum angle) having the largest light amount is selected.
  • Step S70> Reinsertion Process The optical fiber 20 is inserted into the insertion hole H10 at the optimum angle. That is, the optical fiber 20 set to the rotation angle with the largest light quantity is inserted into the insertion hole H10.
  • the optical fiber 20 is fixed to the ferrule 10.
  • the uncured adhesive 19 is arranged around the insertion hole H10 of the first main surface 10SA, and the curing process is performed. Before the reinsertion step, the uncured transparent adhesive 19 may be injected into the insertion hole H10.
  • the optical fiber 20 is fitted in the insertion hole H10. That is, since the outer flat surface 20SS is in contact with the inner flat surface 10SS, it does not rotate after the reinsertion step.
  • the optical fiber 20 is inserted into the insertion hole H10 and fixed at an angle (optimal rotation state) having the best transmission efficiency among the six rotation angles (rotation state). Has been done. Therefore, the optical transducer 1 has high transmission efficiency.
  • the endoscope optical transducers 1A to 1F and the endoscopes 9A to 9F including the optical transducers 1A to 1F of the modified example are similar to the endoscope optical transducer 1 and the endoscope 9 and have the same effect. Therefore, the components having the same functions are designated by the same reference numerals and the description thereof will be omitted.
  • the insertion hole H10 of the ferrule 10A is connected to the first hole H10A having an opening in the first main surface 10SA and the first hole H10A.
  • a second hole H10B having an opening in the second main surface 10SB.
  • the inner surface of the first hole H10A has a circular cross section orthogonal to the optical axis O.
  • the inner surface of the second hole H10B is a regular hexagon in which a cross section orthogonal to the optical axis O has six inner planes 10SS.
  • the circle of the first hole H10A is a regular hexagonal circumscribing circle of the second hole H10B.
  • the shape of the inner surface of the second hole H10B may be a truncated cone, a regular hexagonal pyramid, or the like whose diameter increases toward the second main surface 10SB.
  • the tip of the optical fiber 20 is fitted into the second hole H10B.
  • the tip portion is removed from the second hole H10B, but is not removed from the first hole H10A. That is, in the rotating step S50, the tip portion is not inserted into the second hole H10B, but is inserted into the first hole H10A.
  • the optical transducer 1A is easier to manufacture than the optical transducer 1.
  • the shape of the insertion hole of the ferrule and the tip of the optical fiber is the shape of a cross section orthogonal to the optical axis.
  • the insertion hole H10 of the ferrule 10B is rectangular, and the optical fiber 20B has one outer plane.
  • the inner shape of the insertion hole H10 is set in a state in which the notched optical fiber 20B is fitted.
  • the optical fiber 20B is inserted into the insertion hole H10 at only two rotation angles. However, the optical fiber 20B is inserted and fixed to the ferrule 10B at an angle of the two rotation angles with which the transmission efficiency is good.
  • the insertion hole H10 of the ferrule 10C is a square (square), and the optical fiber 20C has two outer planes orthogonal to each other.
  • the inner shape of the insertion hole H10 is set in a state in which the notched optical fiber 20C is fitted.
  • the optical fiber 20C is inserted into the insertion hole H10 at four rotation angles.
  • the optical fiber 20C is inserted and fixed to the ferrule 10C at an angle with good transmission efficiency among the four rotation angles.
  • the insertion hole H10 of the ferrule 10D is a square (square)
  • the optical fiber 20D is a regular octagon, and has eight outer planes.
  • the inner shape of the insertion hole H10 is set in a state in which the notched optical fiber 20D is fitted.
  • the optical fiber 20D is inserted into the insertion hole H10 at six rotation angles.
  • the optical fiber 20D is inserted and fixed to the ferrule 10D at an angle with high transmission efficiency among the eight rotation angles.
  • the insertion hole H10 and the optical fiber 20D are in a fitted state, but there are spaces at the four corners (square corners) of the insertion hole H10.
  • the optical fiber 20D is inserted after the transparent adhesive 19 is injected into the insertion hole H10, the excess adhesive 19 flows into the space even if the amount of the adhesive 19 is excessive. From this point of view, the optical transducer 1D is easy to manufacture.
  • the insertion hole H10 of the ferrule 10E is a regular triangle
  • the optical fiber 20E is a regular hexagon
  • the inner shape of the insertion hole H10 is set in a state in which the notched optical fiber 20E is fitted.
  • the optical fiber 20E is inserted into the insertion hole H10 at six rotation angles.
  • the optical fiber 20E is inserted and fixed to the ferrule 10E at an angle with good transmission efficiency among the six rotation angles.
  • optical transducer 1E there are wider spaces than the optical transducer 1D at the three corners of the insertion hole H10 (corners of an equilateral triangle).
  • the cross-sectional shape of the insertion hole H10 in the direction orthogonal to the optical axis is a regular N polygon (N is an integer of 3 or more) and has N inner planes, and the cross-sectional shape of the optical fiber in the orthogonal direction to the optical axis is a regular M polygon.
  • N an integer of 3 or more
  • the number of rotation angles for example, the number N of inner planes of the insertion hole H10 is preferably 8 or less.
  • the core 21 of the optical fiber 20F is eccentric with respect to the clad 22. That is, the center C21 of the core 21 is largely separated from the center C20 of the optical fiber 20 (clad 22).
  • the eccentric state of the core 21 is evaluated.
  • the tip end surface of the optical fiber 20F is observed with a microscope, or the distribution of light that enters from one end and exits from the other end is measured.
  • a notch is formed according to the eccentric state of the core 21. That is, the outer plane 20SS is formed at a position (optimal position) centered on a point where the straight line L passing through the center C21 of the core 21 and the center C20 of the optical fiber 20 intersects with the coating layer 23. That is, when the optical fiber 20 is inserted into the insertion hole H10 of the ferrule 10, the center C21 of the core 21 is closer to the center of the insertion hole H10 than when the outer flat surface 20SS is formed at another position. In addition, the outer flat surface 20SS is formed.
  • the center C21 of the core 21 is decentered from the center C20 of the optical fiber 20 by 3 ⁇ m, the outer plane 20SS where the cladding 22 is exposed is formed by completely notching the coating layer 23 having a thickness of 7.5 ⁇ m.
  • the center C20 of the fiber 20 moves 3.75 ⁇ m. Therefore, when the optical fiber 20 is inserted into the insertion hole H10 of the ferrule 10, the center C21 of the core 21 is close to the center C10 of the insertion hole H10.

Abstract

An endoscope optical transducer 1 is provided with: a ferrule 10 having an insertion hole H10; an optical element 30 that has a light-emission part 31 for generating an optical signal, with the light-emission part 31 disposed at a position opposing the insertion hole H10; and an optical fiber 20 that includes a core 21, a clad 22, and a coating layer 23, that has a tip part fitting to the insertion hole H10, and that transmits an optical signal. A side surface of the tip part of the optical fiber 20 has an outer plane 20SS, and the inner surface of the insertion hole H10 has an inner plane 10SS. An outer plane 32SS and the inner plane 10SS abut against each other.

Description

内視鏡用光トランスデューサ、内視鏡、および、内視鏡用光トランスデューサの製造方法OPTICAL TRANSDUCER FOR ENDOSCOPE, ENDOSCOPE, AND METHOD FOR MANUFACTURING OPTICAL TRANSDUCER FOR ENDOSCOPE
 本発明は、光素子と光ファイバとフェルールとを具備する内視鏡用光トランスデューサ、光素子と光ファイバとフェルールとを具備する光トランスデューサを含む内視鏡、および、光素子と光ファイバとフェルールとを具備する内視鏡用光トランスデューサの製造方法に関する。 The present invention relates to an optical transducer for an endoscope including an optical element, an optical fiber and a ferrule, an endoscope including an optical transducer including an optical element, an optical fiber and a ferrule, and an optical element, an optical fiber and a ferrule. And a method for manufacturing an optical transducer for an endoscope, comprising:
 内視鏡は、細長い挿入部の先端部にCCD等の撮像素子を有する。近年、高画素数の撮像素子の内視鏡への使用が検討されている。高画素数の撮像素子を使用した場合には、撮像素子から信号処理装置(プロセッサ)へ伝送する信号量が増加する。このため、電気信号によるメタル配線を介した電気信号伝送に替えて光信号による光ファイバを介した光信号伝送が好ましい。光信号伝送には、電気信号を光信号に変換するE/O型光トランスデューサ(電気-光変換器)と、光信号を電気信号に変換するO/E型光トランスデューサ(光-電気変換器)とが用いられる。 ▽ The endoscope has an image pickup device such as a CCD at the tip of the elongated insertion portion. In recent years, use of an image pickup device having a large number of pixels for an endoscope has been studied. When an image sensor with a high pixel count is used, the amount of signals transmitted from the image sensor to the signal processing device (processor) increases. Therefore, optical signal transmission via an optical fiber by an optical signal is preferable in place of electrical signal transmission via a metal wiring by an electric signal. For optical signal transmission, an E / O type optical transducer (electrical-optical converter) that converts an electrical signal into an optical signal and an O / E type optical transducer (optical-electrical converter) that converts an optical signal into an electrical signal And are used.
 特開2015-0688835号公報に記載されているように、内視鏡用光トランスデューサは、極めて小さいために、光素子と光信号を伝送する光ファイバとを効率良く光結合するために正確な位置決めと固定とが特に重要である。光素子と光ファイバとを、正確に、かつ簡単に位置決めするために、光素子が実装されている配線板に挿入孔があるフェルールが配設されている。光ファイバをフェルールの挿入孔に挿入することによって、光素子と光ファイバとを簡単に位置決めできる。 As described in Japanese Unexamined Patent Publication No. 2015-068885, since the optical transducer for an endoscope is extremely small, accurate positioning is performed to efficiently optically couple an optical element and an optical fiber for transmitting an optical signal. And fixation are especially important. In order to accurately and easily position the optical element and the optical fiber, a ferrule having an insertion hole is provided on the wiring board on which the optical element is mounted. The optical element and the optical fiber can be easily positioned by inserting the optical fiber into the insertion hole of the ferrule.
 しかし、フェルールの挿入孔の中心が正確に光素子の発光部と対向していないと光トランスデューサの伝送効率が低下する。また、光ファイバの光信号を伝送するコアが、光ファイバの中心から偏心していることがある。すると、挿入孔の中心が正確に発光部と対向していても、光トランスデューサの伝送効率が低下する。 However, if the center of the ferrule insertion hole does not exactly face the light emitting part of the optical element, the transmission efficiency of the optical transducer will decrease. In addition, the core that transmits the optical signal of the optical fiber may be eccentric from the center of the optical fiber. Then, even if the center of the insertion hole accurately faces the light emitting portion, the transmission efficiency of the optical transducer is reduced.
 このため、フェルールの挿入孔に光ファイバを挿入してから、光ファイバを回転することによって、最も伝送効率の良い最適角度とし、最適回転角度において光ファイバをフェルールに固定することが好ましい。しかし、光ファイバが固定する前にフェルール内で回転してしまい、伝送効率が低下するおそれがあった。伝送効率の悪い光トランスデューサを含む内視鏡から出力される光信号は劣化しているおそれがあった。 Therefore, it is preferable to insert the optical fiber into the ferrule insertion hole and then rotate the optical fiber to obtain the optimum angle with the best transmission efficiency, and fix the optical fiber to the ferrule at the optimum rotation angle. However, the optical fiber may rotate in the ferrule before being fixed, which may reduce the transmission efficiency. An optical signal output from an endoscope including an optical transducer having low transmission efficiency may be deteriorated.
特開2015-0688835号公報Japanese Unexamined Patent Application Publication No. 2005-068885
 本発明の実施形態は、伝送効率のよい内視鏡用光トランスデューサ、伝送効率のよい光トランスデューサを含む内視鏡、および、伝送効率のよい内視鏡用光トランスデューサの製造方法を提供することを目的とする。 Embodiments of the present invention provide an optical transducer for an endoscope with high transmission efficiency, an endoscope including an optical transducer with high transmission efficiency, and a method for manufacturing an optical transducer for an endoscope with high transmission efficiency. To aim.
 実施形態の内視鏡用光トランスデューサは、第1の主面と前記第1の主面と対向する第2の主面とを有し、前記第1の主面から前記第2の主面まで貫通する挿入孔があるフェルールと、光信号を発生する発光部を有し、前記発光部が前記挿入孔と対向する位置に配置されている光素子と、コアとクラッドと被覆層とを含み、先端部が前記挿入孔と回転しない状態に嵌合している、前記光信号を伝送する光ファイバと、を具備し、前記光ファイバの前記先端部の側面に、少なくとも1つの外平面があり、前記挿入孔の内面に、少なくとも1つの内平面があり、前記外平面と前記内平面とが当接している。 The optical transducer for an endoscope of the embodiment has a first main surface and a second main surface facing the first main surface, and from the first main surface to the second main surface A ferrule having an insertion hole penetrating therethrough, an optical element having a light emitting portion for generating an optical signal, wherein the light emitting portion is arranged at a position facing the insertion hole, including a core, a clad, and a coating layer, An optical fiber for transmitting the optical signal, wherein a tip portion of the optical fiber is fitted into the insertion hole in a non-rotating state, and a side surface of the tip portion of the optical fiber has at least one outer plane, The inner surface of the insertion hole has at least one inner plane, and the outer plane and the inner plane are in contact with each other.
 実施形態の内視鏡は、光トランスデューサを含み、前記光トランスデューサは、第1の主面と前記第1の主面と対向する第2の主面とを有し、前記第1の主面から前記第2の主面まで貫通する挿入孔があるフェルールと、光信号を発生する発光部を有し、前記発光部が前記挿入孔と対向する位置に配置されている光素子と、コアとクラッドと被覆層とを含み、先端部が前記挿入孔と回転しない状態に嵌合している、前記光信号を伝送する光ファイバと、を具備し、前記光ファイバの前記先端部の側面に、少なくとも1つの外平面があり、前記挿入孔の内面に、少なくとも1つの内平面があり、前記外平面と前記内平面とが当接している。 The endoscope of the embodiment includes an optical transducer, and the optical transducer has a first main surface and a second main surface facing the first main surface, and from the first main surface, A ferrule having an insertion hole penetrating to the second main surface, an optical element having a light emitting portion for generating an optical signal, the light emitting portion being arranged at a position facing the insertion hole, a core and a clad. And an optical fiber for transmitting the optical signal, which includes a cover layer and a tip portion fitted into the insertion hole in a non-rotatable state, and at least on a side surface of the tip portion of the optical fiber. There is one outer plane, and there is at least one inner plane on the inner surface of the insertion hole, and the outer plane and the inner plane are in contact with each other.
 実施形態の内視鏡用光トランスデューサの製造方法は、光信号を発生する発光部を発光面に有する発光素子と、第1の主面と前記第1の主面と対向する第2の主面とを有し、前記第1の主面から前記第2の主面まで貫通する挿入孔があるフェルールと、コアとクラッドと被覆層とを有し、内面に内平面がある前記挿入孔と、側面に外平面がある先端部が嵌合しており、前記光信号を伝送する光ファイバと、を具備する内視鏡用光トランスデューサの製造方法であって、前記先端部を、前記挿入孔に挿入し嵌合する挿入工程と、前記発光部から前記光信号を発生し、前記光ファイバが伝送する前記光信号の光量を測定する測定工程と、前記光ファイバを前記挿入孔から抜去する抜去工程と、前記光ファイバを、光軸を中心に回転する回転工程と、前記挿入工程と、前記測定工程と、前記抜去工程と、前記回転工程と、を繰り返し行い、前記光量が最も大きい回転角度である最適角度を選択する最適角度選択工程と、前記光ファイバを前記最適角度において前記挿入孔に挿入する再挿入工程と、前記光ファイバを前記フェルールに固定する固定工程と、を具備する。 A method of manufacturing an optical transducer for an endoscope according to an embodiment includes a light emitting element having a light emitting portion for emitting an optical signal on a light emitting surface, a first main surface, and a second main surface facing the first main surface. And a ferrule having an insertion hole penetrating from the first main surface to the second main surface, the insertion hole having a core, a clad, and a coating layer, and having an inner flat surface on the inner surface, A method for manufacturing an optical transducer for an endoscope, wherein a tip portion having an outer flat surface on a side surface is fitted, and an optical fiber for transmitting the optical signal, wherein the tip portion is inserted into the insertion hole. An inserting step of inserting and fitting, a measuring step of generating the optical signal from the light emitting portion, measuring a light amount of the optical signal transmitted by the optical fiber, and an extracting step of removing the optical fiber from the insertion hole And a step of rotating the optical fiber about the optical axis , The inserting step, the measuring step, the removing step, and the rotating step are repeatedly performed, and the optimum angle selecting step of selecting the optimum angle that is the rotation angle at which the light amount is the largest; A reinsertion step of inserting the optical fiber into the insertion hole at an optimum angle and a fixing step of fixing the optical fiber to the ferrule are provided.
 本発明の実施形態によれば、伝送効率のよい内視鏡用光トランスデューサ、伝送効率のよい光トランスデューサを含む内視鏡、および、伝送効率のよい内視鏡用光トランスデューサの製造方法を提供できる。 According to the embodiments of the present invention, it is possible to provide an optical transducer for an endoscope with high transmission efficiency, an endoscope including an optical transducer with high transmission efficiency, and a method for manufacturing an optical transducer for an endoscope with high transmission efficiency. ..
実施形態の内視鏡の斜視図である。It is a perspective view of the endoscope of an embodiment. 実施形態の光トランスデューサの断面図である。It is sectional drawing of the optical transducer of embodiment. 実施形態の光トランスデューサの要部の分解図である。FIG. 3 is an exploded view of a main part of the optical transducer of the embodiment. 実施形態の光トランスデューサの図3のIV-IV線に沿った断面図である。FIG. 4 is a cross-sectional view of the optical transducer according to the embodiment, taken along line IV-IV in FIG. 3. 実施形態の光トランスデューサの図3のV-V線に沿った断面図である。FIG. 5 is a cross-sectional view of the optical transducer according to the embodiment, taken along line VV of FIG. 3. 実施形態の光トランスデューサの製造方法のフローチャートである。6 is a flowchart of a method for manufacturing the optical transducer of the embodiment. 変形例1の光トランスデューサのフェルールの斜視図である。9 is a perspective view of a ferrule of an optical transducer of a modified example 1. FIG. 変形例1の光トランスデューサのフェルール図7のVIII-VIII線に沿った断面図である。FIG. 8 is a sectional view taken along the line VIII-VIII in FIG. 7 of the ferrule of the optical transducer of the first modification. 変形例1の光トランスデューサのフェルール図7のIX-IX線に沿った断面図である。FIG. 9 is a sectional view taken along line IX-IX in FIG. 7 of the ferrule of the optical transducer of the first modification. 変形例2の光トランスデューサの要部の断面図である。FIG. 11 is a cross-sectional view of the main parts of the optical transducer of Modification 2. 変形例3の光トランスデューサの要部の断面図である。FIG. 11 is a cross-sectional view of a main part of an optical transducer of Modification 3; 変形例4の光トランスデューサの要部の断面図である。FIG. 11 is a cross-sectional view of the main parts of the optical transducer of Modification Example 4. 変形例5の光トランスデューサの要部の断面図である。FIG. 11 is a cross-sectional view of the main parts of an optical transducer of Modification Example 5. 変形例6の光トランスデューサの要部の断面図である。FIG. 13 is a cross-sectional view of the main parts of the optical transducer of Modification 6;
<内視鏡>
 図1に示す実施形態の内視鏡9は、プロセッサ5Aおよびモニタ5Bと共に内視鏡システム6を構成している。内視鏡9は、挿入部3と、挿入部3の基端部に配設された把持部4と、把持部4から延設されたユニバーサルコード4Bと、ユニバーサルコード4Bの基端部に配設されたコネクタ4Cと、を具備する。挿入部3は、先端部3Aと、先端部3Aから延設された、湾曲自在であり先端部3Aの方向を変えるための湾曲部3Bと、湾曲部3Bから延設された軟性部3Cとを含む。把持部4には術者が湾曲部3Bを操作するための操作部である回動するアングルノブ4Aが配設されている。
<Endoscope>
The endoscope 9 of the embodiment shown in FIG. 1 constitutes an endoscope system 6 together with a processor 5A and a monitor 5B. The endoscope 9 is disposed at the insertion portion 3, the grip portion 4 arranged at the base end portion of the insertion portion 3, the universal cord 4B extending from the grip portion 4, and the proximal end portion of the universal cord 4B. The connector 4C is provided. The insertion portion 3 includes a distal end portion 3A, a bending portion 3B extending from the distal end portion 3A, which is bendable to change the direction of the distal end portion 3A, and a flexible portion 3C extending from the bending portion 3B. Including. The grasping portion 4 is provided with a rotating angle knob 4A which is an operating portion for an operator to operate the bending portion 3B.
 ユニバーサルコード4Bは、コネクタ4Cによってプロセッサ5Aに接続される。プロセッサ5Aは内視鏡システム6の全体を制御するとともに、撮像信号に信号処理を行い画像信号として出力する。モニタ5Bは、プロセッサ5Aが出力する画像信号を内視鏡画像として表示する。なお、内視鏡9は軟性鏡であるが、硬性鏡でもよい。また、内視鏡9は、医療用でも工業用でもよい。 The universal cord 4B is connected to the processor 5A by the connector 4C. The processor 5A controls the entire endoscope system 6, performs signal processing on the image pickup signal, and outputs the image pickup signal as an image signal. The monitor 5B displays the image signal output by the processor 5A as an endoscopic image. Although the endoscope 9 is a flexible endoscope, it may be a rigid endoscope. The endoscope 9 may be medical or industrial.
 内視鏡9の先端部3Aには、内視鏡用光トランスデューサ1(以下、「光トランスデューサ1」という。)と撮像部2とが配設されている。光トランスデューサ1は、撮像部2が出力する撮像信号を、光信号に変換する。 An endoscope optical transducer 1 (hereinafter, referred to as “optical transducer 1”) and an imaging unit 2 are provided at a tip portion 3A of the endoscope 9. The optical transducer 1 converts the image pickup signal output by the image pickup unit 2 into an optical signal.
 光信号は、挿入部3を挿通する光ファイバ20を経由することによって把持部4に配設されたO/E型の光モジュール8によって再び電気信号に変換され、ユニバーサルコード4Bを挿通する導線20Mを経由することによって伝送される。すなわち、撮像信号は、細径の挿入部3内においては光ファイバ20を経由することによって伝送され、体内に挿入されず外径の制限の小さいユニバーサルコード4B内においては光ファイバ20よりも太い導線20Mを経由することによって伝送される。 The optical signal is converted into an electric signal again by the O / E type optical module 8 arranged in the grip portion 4 by passing through the optical fiber 20 which passes through the insertion portion 3, and the conductor wire 20M which passes through the universal cord 4B. Is transmitted by way of. That is, the image pickup signal is transmitted through the optical fiber 20 in the small-diameter insertion portion 3, and is not inserted into the body and is thicker than the optical fiber 20 in the universal cord 4B having a small outer diameter limitation. It is transmitted by way of 20M.
 なお、O/E型の光モジュール8がコネクタ4Cに配置されている場合には、光ファイバ20はユニバーサルコード4Bを挿通している。 Incidentally, when the O / E type optical module 8 is arranged in the connector 4C, the optical fiber 20 is inserted through the universal cord 4B.
 後述するように、光トランスデューサ1は伝送効率が良い。このため、内視鏡9は信号の伝送効率が良く、信号劣化が少ないため、モニタ5Bは良好な内視鏡画像を表示できる。 As will be described later, the optical transducer 1 has good transmission efficiency. Therefore, the endoscope 9 has good signal transmission efficiency and little signal deterioration, so that the monitor 5B can display a good endoscopic image.
<内視鏡用光トランスデューサ>
 図2に示す実施形態の内視鏡用光トランスデューサ1は、撮像部2が出力する電気信号を光信号に変換してから、光ファイバ20を経由することによって伝送する。
<Optical transducer for endoscope>
The endoscope optical transducer 1 according to the embodiment shown in FIG. 2 converts an electrical signal output from the imaging unit 2 into an optical signal, and then transmits the optical signal via the optical fiber 20.
 なお、以下の説明において、各実施の形態に基づく図面は、模式的なものであり、各部分の厚さと幅との関係、夫々の部分の厚さの比率および相対角度などは現実のものとは異なることに留意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、一部の構成要素の図示を省略する場合がある。 In the following description, the drawings based on each embodiment are schematic, and the relationship between the thickness and width of each part, the ratio of the thickness of each part, the relative angle, etc. are actual. It should be noted that there is a difference in dimensional relationship and ratio between the drawings even if the drawings are different from each other. In addition, some components may not be illustrated.
 撮像部2は、レンズユニット50とカバーガラス41と撮像素子40と立体配線板42とドライブIC43とを含む。レンズユニット50は複数のレンズを含み被写体像を集光する。カバーガラス41が接着された撮像素子40は撮像信号を出力する。立体配線板42に配設されたドライブIC43は、撮像信号をもとに駆動信号を出力する。 The image pickup unit 2 includes a lens unit 50, a cover glass 41, an image pickup element 40, a three-dimensional wiring board 42, and a drive IC 43. The lens unit 50 includes a plurality of lenses and collects a subject image. The image pickup device 40 to which the cover glass 41 is adhered outputs an image pickup signal. The drive IC 43 arranged on the three-dimensional wiring board 42 outputs a drive signal based on the image pickup signal.
 光トランスデューサ1は、光素子30と、配線板15と、フェルール10と、光ファイバ20と、を具備する。 The optical transducer 1 includes an optical element 30, a wiring board 15, a ferrule 10, and an optical fiber 20.
 光素子30は、光信号を発生する発光部31を発光面30SAに有する面発光レーザーチップまたはLEDチップ等の発光素子である。例えば、平面視寸法が250μm×300μmと超小型の光素子30は、直径が20μmの発光部31と外部電極32とを発光面30SAに有する。外部電極32にドライブIC43から駆動信号が入力されると発光部31は発光面30SAに対して垂直方向に光信号を出射する。 The optical element 30 is a light emitting element such as a surface emitting laser chip or an LED chip having a light emitting section 31 for generating an optical signal on the light emitting surface 30SA. For example, the optical element 30 having a microscopic size of 250 μm × 300 μm in a plan view has a light emitting portion 31 having a diameter of 20 μm and an external electrode 32 on a light emitting surface 30SA. When a drive signal is input to the external electrode 32 from the drive IC 43, the light emitting unit 31 emits an optical signal in a direction perpendicular to the light emitting surface 30SA.
 配線板15は、実装面15SAと実装面15SAと対向する後面15SBとを有し、透明なガラス板を基体とする。実装面15SAに光素子30の外部電極32が接合されている。 The wiring board 15 has a mounting surface 15SA and a rear surface 15SB facing the mounting surface 15SA, and is made of a transparent glass plate as a base. The external electrode 32 of the optical element 30 is bonded to the mounting surface 15SA.
 フェルール10は、第1の主面10SAと第1の主面10SAと対向する第2の主面10SBとを有し、第1の主面10SAから第2の主面10SBまでを貫通する挿入孔H10がある。挿入孔H10には光ファイバ20の先端部が挿入され接着剤19によって固定されている。四角柱または円柱であるフェルール10の材質は、セラミック、シリコン、ガラス、金属、または樹脂である。なお、フェルール10の第2の主面10SBに、透明板、例えば、ガラス板が配設されていてもよい。 The ferrule 10 has a first main surface 10SA and a second main surface 10SB that faces the first main surface 10SA, and an insertion hole that penetrates from the first main surface 10SA to the second main surface 10SB. There is H10. The tip of the optical fiber 20 is inserted into the insertion hole H10 and fixed by the adhesive 19. The material of the ferrule 10 that is a square pole or a cylinder is ceramic, silicon, glass, metal, or resin. A transparent plate such as a glass plate may be provided on the second main surface 10SB of the ferrule 10.
 光ファイバ20は、光を伝送する50μm径のコア21と、コア21を覆う120μm径のクラッド22と、クラッド22を覆う140μm径の被覆層23と、を含む。すなわち、被覆層23の厚さは10μmである。 The optical fiber 20 includes a core 21 having a diameter of 50 μm that transmits light, a clad 22 having a diameter of 120 μm that covers the core 21, and a coating layer 23 having a diameter of 140 μm that covers the clad 22. That is, the thickness of the coating layer 23 is 10 μm.
 図3~図5に示すように、光ファイバ20の先端部の側面には、6つの外平面20SSがある。すなわち、先端部には、被覆層23が切り欠きされた切り欠き面である6つの外平面20SSがある。なお、先端部の被覆層23が剥離されている場合等には、切り欠き面はクラッド22にまで形成されている。 As shown in FIGS. 3 to 5, there are six outer planes 20SS on the side surface of the tip of the optical fiber 20. That is, at the tip portion, there are six outer flat surfaces 20SS which are notched surfaces in which the coating layer 23 is notched. In addition, when the coating layer 23 at the tip portion is peeled off, the cutout surface is formed up to the clad 22.
 先端部の光軸Oに直交する断面形状は、クラッド22の120μm径の円に外接する正六角形である。これは、被覆層23の140μmの外径の円に内接する正六角形でもある。 The cross-sectional shape of the tip portion orthogonal to the optical axis O is a regular hexagon circumscribing the 120 μm diameter circle of the clad 22. This is also a regular hexagon inscribed in a circle having an outer diameter of 140 μm of the coating layer 23.
 一方、フェルール10の挿入孔H10は内面が、光軸Oに直交する断面形状が150μm径の円に内接する正六角形である。すなわち、挿入孔H10の内面には6つの内平面10SSがある。挿入孔H10の内接円は、光ファイバ20の先端部の内接円よりも僅かに大きい。 On the other hand, the inner surface of the insertion hole H10 of the ferrule 10 is a regular hexagon in which a cross-sectional shape orthogonal to the optical axis O is inscribed in a circle having a diameter of 150 μm. That is, there are six inner planes 10SS on the inner surface of the insertion hole H10. The inscribed circle of the insertion hole H10 is slightly larger than the inscribed circle of the tip of the optical fiber 20.
 挿入孔H10には、光ファイバ20の先端部が挿入されている。フェルール10の第2の主面10SBは、挿入孔H10が発光部31と対向する状態において、配線板15の後面15SBに配設されている。言い替えれば、光ファイバ20の先端部のコア21の中心(光ファイバ20の光軸C21)からの延長線は発光部31と交差している。このため、発光部31が発生した光信号は、配線板15を透過することによって光ファイバ20に入射する。 The tip of the optical fiber 20 is inserted into the insertion hole H10. The second main surface 10SB of the ferrule 10 is arranged on the rear surface 15SB of the wiring board 15 in a state where the insertion hole H10 faces the light emitting section 31. In other words, the extension line from the center of the core 21 at the tip of the optical fiber 20 (the optical axis C21 of the optical fiber 20) intersects the light emitting unit 31. Therefore, the optical signal generated by the light emitting unit 31 enters the optical fiber 20 by passing through the wiring board 15.
 なお、不透明材料を基体とする配線板を用いた場合には、配線板には光信号の光路となる貫通孔が形成される。また、フェルールの第2の主面10SBに光素子30が実装されていてもよい。すなわち、配線板は光トランスデューサの必須構成要素ではない。 Note that if a wiring board based on an opaque material is used, a through hole is formed in the wiring board that serves as an optical path for optical signals. The optical element 30 may be mounted on the second main surface 10SB of the ferrule. That is, the wiring board is not an essential component of the optical transducer.
 挿入孔H10に挿入された光ファイバ20の先端部は、6つの外平面20SSは、それぞれが対向する、挿入孔H10の6つの内平面10SSのそれぞれと当接している。光ファイバ20は、先端部が、挿入孔H10の中において回転しない状態に嵌合している。すなわち、光ファイバ20の先端部は、挿入孔H10の先端部にぴったりと合う状態において入れ込まれている。 At the tip of the optical fiber 20 inserted into the insertion hole H10, the six outer planes 20SS are in contact with the respective six inner planes 10SS of the insertion hole H10, which face each other. The end of the optical fiber 20 is fitted in the insertion hole H10 so as not to rotate. That is, the tip of the optical fiber 20 is inserted in a state of being fitted exactly to the tip of the insertion hole H10.
 フェルール10の挿入孔H10の中心CH10が光素子30の発光部31の中心C31と正確に対向しており、かつ、光ファイバ20のコア21の中心C21が光ファイバ20の中心C20と一致していれば、光ファイバ20を回転しても、光ファイバ20が伝送する光量は変化しない。 The center CH10 of the insertion hole H10 of the ferrule 10 exactly faces the center C31 of the light emitting portion 31 of the optical element 30, and the center C21 of the core 21 of the optical fiber 20 matches the center C20 of the optical fiber 20. Therefore, even if the optical fiber 20 is rotated, the amount of light transmitted by the optical fiber 20 does not change.
 しかし、実際には、図4および図5に示すように、光ファイバ20のコア21の中心C21が光ファイバ20の中心C20と一致しないために、フェルール10の挿入孔H10の中心CH10と発光部31の中心C31とがずれることがある。すると、発光部31から出る光線(光束)の一部(または全て)がコア21の周囲のクラッド22に入射してしまう場合がある。この場合、光ファイバ20を回転すると、発光部31から出る光線(光束)とコア21とが重なり合う面積が変化する。すなわち、コア21に入射する光量が変化する。その結果、光ファイバ20が伝送する光量が変化する。 However, in reality, as shown in FIGS. 4 and 5, the center C21 of the core 21 of the optical fiber 20 does not coincide with the center C20 of the optical fiber 20, and therefore the center CH10 of the insertion hole H10 of the ferrule 10 and the light emitting portion. The center C31 of 31 may deviate. Then, a part (or all) of the light beam (light flux) emitted from the light emitting unit 31 may enter the clad 22 around the core 21. In this case, when the optical fiber 20 is rotated, the area where the light beam (light flux) emitted from the light emitting unit 31 and the core 21 overlap with each other changes. That is, the amount of light incident on the core 21 changes. As a result, the amount of light transmitted by the optical fiber 20 changes.
 後述するように、光トランスデューサ1は、光ファイバ20が6つの回転角度のうち、最も伝送効率のよい角度において、挿入孔H10に挿入され固定されている。このため、光トランスデューサ1は、伝送効率がよい。伝送効率がよい光トランスデューサ1を含む内視鏡9は、伝送された光信号が劣化しているおそれがない。このため、内視鏡9を有する内視鏡システム6は良好な画像を表示できる。 As will be described later, in the optical transducer 1, the optical fiber 20 is inserted and fixed in the insertion hole H10 at the angle with the highest transmission efficiency among the six rotation angles. Therefore, the optical transducer 1 has high transmission efficiency. The endoscope 9 including the optical transducer 1 having high transmission efficiency does not have a possibility that the transmitted optical signal is deteriorated. Therefore, the endoscope system 6 including the endoscope 9 can display a good image.
<光トランスデューサの製造方法>
 図6のフローチャートに沿って、光トランスデューサ1の製造方法を説明する。
<Method of manufacturing optical transducer>
A method of manufacturing the optical transducer 1 will be described with reference to the flowchart of FIG.
<ステップS10>挿入工程
 光ファイバ20の先端部が、フェルール10の挿入孔H10に挿入され、回転しない状態に嵌合する。
<Step S10> Inserting Step The tip of the optical fiber 20 is inserted into the insertion hole H10 of the ferrule 10 and fitted in a non-rotating state.
 挿入孔H10の光軸直交方向の断面の内面は正六角形である。例えばシリコンからなるフェルールウエハにDEEP-RIE法によって複数の挿入孔H10が形成されてからフェルールウエハを切断することによってフェルール10は作製される。光ファイバ20の先端部の被覆層23には6つの切り欠き面が形成されている。6つの切り欠き面(外平面)のある光ファイバ20の先端部の光軸に直交する断面は、正六角形である。 The inner surface of the cross section of the insertion hole H10 in the direction orthogonal to the optical axis is a regular hexagon. For example, the ferrule 10 is manufactured by cutting the ferrule wafer after a plurality of insertion holes H10 are formed in the ferrule wafer made of silicon by the DEEP-RIE method. Six cutout surfaces are formed in the coating layer 23 at the tip of the optical fiber 20. A cross section of the tip of the optical fiber 20 having six cutout surfaces (outer planes) orthogonal to the optical axis is a regular hexagon.
 先端部が挿入孔H10と嵌合する光ファイバ20の回転角度は、6つある。最初のステップS10では、6つの回転角度のうちの、いずれかの回転角度において光ファイバ20が挿入孔H10と嵌合する。 There are six rotation angles of the optical fiber 20 whose tip fits into the insertion hole H10. In the first step S10, the optical fiber 20 is fitted into the insertion hole H10 at any one of the six rotation angles.
<ステップS20>測定工程
 光素子30の発光部31から光信号を発生させ、光ファイバ20が伝送する光信号の光量が測定される。例えば、光ファイバ20の後端部が光量計に挿入され、光量が測定される。
<Step S20> Measuring Step An optical signal is generated from the light emitting section 31 of the optical element 30, and the light amount of the optical signal transmitted by the optical fiber 20 is measured. For example, the rear end of the optical fiber 20 is inserted into a photometer and the light quantity is measured.
<ステップS30>抜去工程
 光ファイバ20が挿入孔H10から抜去される。
<Step S30> Removal Step The optical fiber 20 is removed from the insertion hole H10.
<ステップS40>
 6つある回転角度の全ての回転角度における光量測定が終了する(YES)と、ステップS60に移行する。光量測定が終了していない(NO)と、ステップS50からの処理が行われる。
<Step S40>
When the light amount measurement at all of the six rotation angles is completed (YES), the process proceeds to step S60. If the light amount measurement is not completed (NO), the process from step S50 is performed.
<ステップS50>回転工程
 光ファイバ20が、光軸Oを中心に60度回転される。
<Step S50> Rotation Step The optical fiber 20 is rotated about the optical axis O by 60 degrees.
<ステップS60>最適角度選択工程
 挿入工程S10と測定工程S20と抜去工程S30と回転工程S50とが繰り返し6回行われる。そして、6回の測定によって6つの回転角度における光量が得られる。そして、6つの回転角度の中から、光量が最も大きい回転角度(最適角度)が選択される。
<Step S60> Optimal Angle Selection Step The insertion step S10, the measurement step S20, the removal step S30, and the rotation step S50 are repeated 6 times. Then, the light quantity at six rotation angles can be obtained by six measurements. Then, from the six rotation angles, the rotation angle (optimum angle) having the largest light amount is selected.
<ステップS70>再挿入工程
 光ファイバ20が最適角度において挿入孔H10に挿入される。すなわち、最も光量が大きい回転角度に設定されている光ファイバ20が挿入孔H10に挿入される。
<Step S70> Reinsertion Process The optical fiber 20 is inserted into the insertion hole H10 at the optimum angle. That is, the optical fiber 20 set to the rotation angle with the largest light quantity is inserted into the insertion hole H10.
<ステップS80>固定工程
 光ファイバ20がフェルール10に固定される。例えば、第1の主面10SAの挿入孔H10の周囲に未硬化の接着剤19が配設され硬化処理が行われる。なお、再挿入工程の前に、挿入孔H10に、未硬化の透明の接着剤19が注入されていてもよい。
<Step S80> Fixing Process The optical fiber 20 is fixed to the ferrule 10. For example, the uncured adhesive 19 is arranged around the insertion hole H10 of the first main surface 10SA, and the curing process is performed. Before the reinsertion step, the uncured transparent adhesive 19 may be injected into the insertion hole H10.
 光ファイバ20は、挿入孔H10と嵌合している。すなわち、外平面20SSが内平面10SSと当接しているために、再挿入工程のあと、回転することはない。 The optical fiber 20 is fitted in the insertion hole H10. That is, since the outer flat surface 20SS is in contact with the inner flat surface 10SS, it does not rotate after the reinsertion step.
 本実施形態の光トランスデューサの製造方法によれば、光ファイバ20は、6つの回転角度(回転状態)のうち、最も伝送効率のよい角度(最適な回転状態)において、挿入孔H10に挿入され固定されている。このため、光トランスデューサ1は、伝送効率がよい。 According to the method of manufacturing the optical transducer of the present embodiment, the optical fiber 20 is inserted into the insertion hole H10 and fixed at an angle (optimal rotation state) having the best transmission efficiency among the six rotation angles (rotation state). Has been done. Therefore, the optical transducer 1 has high transmission efficiency.
<変形例>
 変形例の内視鏡用光トランスデューサ1A~1Fおよび光トランスデューサ1A~1Fを具備する内視鏡9A~9Fは、内視鏡用光トランスデューサ1および内視鏡9と類似し同じ効果を有しているため、同じ機能の構成要素には同じ符号を付し説明は省略する。
<Modification>
The endoscope optical transducers 1A to 1F and the endoscopes 9A to 9F including the optical transducers 1A to 1F of the modified example are similar to the endoscope optical transducer 1 and the endoscope 9 and have the same effect. Therefore, the components having the same functions are designated by the same reference numerals and the description thereof will be omitted.
<変形例1>
 図7~図9に示すように、本変形例の光トランスデューサ1Aでは、フェルール10Aの挿入孔H10は、第1の主面10SAに開口がある第1孔H10Aと、第1孔H10Aとつながっており第2の主面10SBに開口がある第2孔H10Bと、からなる。第1孔H10Aの内面は、光軸Oに直交する断面が円形である。第2孔H10Bの内面は、光軸Oに直交する断面が、6つの内平面10SSがある正六角形である。第1孔H10Aの円は、第2孔H10Bの正六角形の外接円である。なお、第2孔H10Bの内面形状は、第2の主面10SBに向かって径が広がっていく円錐台または正六角錐台等でもよい。
<Modification 1>
As shown in FIGS. 7 to 9, in the optical transducer 1A of the present modification, the insertion hole H10 of the ferrule 10A is connected to the first hole H10A having an opening in the first main surface 10SA and the first hole H10A. And a second hole H10B having an opening in the second main surface 10SB. The inner surface of the first hole H10A has a circular cross section orthogonal to the optical axis O. The inner surface of the second hole H10B is a regular hexagon in which a cross section orthogonal to the optical axis O has six inner planes 10SS. The circle of the first hole H10A is a regular hexagonal circumscribing circle of the second hole H10B. The shape of the inner surface of the second hole H10B may be a truncated cone, a regular hexagonal pyramid, or the like whose diameter increases toward the second main surface 10SB.
 言い替えれば、挿入孔H10は、第1孔H10Aの内径Aと第2孔H10Bの外接円の径Bと光ファイバ20の外接円の径Cとに間には、(式1)の関係が成立する。 In other words, in the insertion hole H10, the relationship of (Formula 1) is established between the inner diameter A of the first hole H10A, the diameter B of the circumscribing circle of the second hole H10B, and the diameter C of the circumscribing circle of the optical fiber 20. To do.
 A>C、かつ、B>C  (式1) A> C and B> C (Formula 1)
 光トランスデューサ1Aの製造方法では、挿入工程S10において、光ファイバ20の先端部は、第2孔H10Bと嵌合する。抜去工程S30において、先端部は、第2孔H10Bから抜去されるが、第1孔H10Aから抜去されない。すなわち、回転工程S50において、先端部は第2孔H10Bに挿入されていないが第1孔H10Aに挿入されている。 In the method of manufacturing the optical transducer 1A, in the insertion step S10, the tip of the optical fiber 20 is fitted into the second hole H10B. In the removing step S30, the tip portion is removed from the second hole H10B, but is not removed from the first hole H10A. That is, in the rotating step S50, the tip portion is not inserted into the second hole H10B, but is inserted into the first hole H10A.
 細い光ファイバ20を、光ファイバ20の外寸と略同じ内寸の挿入孔H10に挿入するのは容易ではない。しかし、光トランスデューサ1Aの製造方法では、光ファイバ20を一度、挿入孔H10に挿入すれば、再び、挿入作業を行う必要がない。 It is not easy to insert the thin optical fiber 20 into the insertion hole H10 having an inner dimension that is substantially the same as the outer dimension of the optical fiber 20. However, in the method of manufacturing the optical transducer 1A, once the optical fiber 20 is inserted into the insertion hole H10, there is no need to perform the insertion work again.
 光トランスデューサ1Aは、光トランスデューサ1よりも製造が容易である。 The optical transducer 1A is easier to manufacture than the optical transducer 1.
<変形例2~変形例5>
 以下の変形例の説明において、フェルールの挿入孔および光ファイバの先端部の形状は、光軸に直交する断面の形状である。
<Modification 2 to Modification 5>
In the description of the modified examples below, the shape of the insertion hole of the ferrule and the tip of the optical fiber is the shape of a cross section orthogonal to the optical axis.
 図10に示す変形例2の光トランスデューサ1Bでは、フェルール10Bの挿入孔H10は長方形であり、光ファイバ20Bには1つの外平面がある。挿入孔H10は、切り欠きされた光ファイバ20Bが嵌合する状態に内形が設定されている。 In the optical transducer 1B of the second modification shown in FIG. 10, the insertion hole H10 of the ferrule 10B is rectangular, and the optical fiber 20B has one outer plane. The inner shape of the insertion hole H10 is set in a state in which the notched optical fiber 20B is fitted.
 光トランスデューサ1Bでは、光ファイバ20Bが挿入孔H10に挿入される回転角度は2つしかない。しかし、光ファイバ20Bは、2つの回転角度のうち、伝送効率のよい角度において挿入されフェルール10Bに固定されている。 In the optical transducer 1B, the optical fiber 20B is inserted into the insertion hole H10 at only two rotation angles. However, the optical fiber 20B is inserted and fixed to the ferrule 10B at an angle of the two rotation angles with which the transmission efficiency is good.
 図11に示す変形例3の光トランスデューサ1Cでは、フェルール10Cの挿入孔H10は正方形(正四角形)であり、光ファイバ20Cには直交する2つの外平面がある。挿入孔H10は、切り欠きされた光ファイバ20Cが嵌合する状態に内形が設定されている。 In the optical transducer 1C of the modified example 3 shown in FIG. 11, the insertion hole H10 of the ferrule 10C is a square (square), and the optical fiber 20C has two outer planes orthogonal to each other. The inner shape of the insertion hole H10 is set in a state in which the notched optical fiber 20C is fitted.
 光トランスデューサ1Cでは、光ファイバ20Cが挿入孔H10に挿入される回転角度は4つある。光ファイバ20Cは、4つの回転角度のうち、伝送効率のよい角度において挿入されフェルール10Cに固定されている。 In the optical transducer 1C, the optical fiber 20C is inserted into the insertion hole H10 at four rotation angles. The optical fiber 20C is inserted and fixed to the ferrule 10C at an angle with good transmission efficiency among the four rotation angles.
 図12に示す変形例4の光トランスデューサ1Dでは、フェルール10Dの挿入孔H10は正方形(正四角形)であり、光ファイバ20Dは正8角形であり8つの外平面がある。挿入孔H10は、切り欠きされた光ファイバ20Dが嵌合する状態に内形が設定されている。 In the optical transducer 1D of the modification 4 shown in FIG. 12, the insertion hole H10 of the ferrule 10D is a square (square), the optical fiber 20D is a regular octagon, and has eight outer planes. The inner shape of the insertion hole H10 is set in a state in which the notched optical fiber 20D is fitted.
 光トランスデューサ1Dでは、光ファイバ20Dが挿入孔H10に挿入される回転角度は6つある。光ファイバ20Dは、8つの回転角度のうち、伝送効率のよい角度において挿入されフェルール10Dに固定されている。 In the optical transducer 1D, the optical fiber 20D is inserted into the insertion hole H10 at six rotation angles. The optical fiber 20D is inserted and fixed to the ferrule 10D at an angle with high transmission efficiency among the eight rotation angles.
 なお、挿入孔H10と光ファイバ20Dとは嵌合した状態であるが、挿入孔H10の四隅(正方形の角部)には、空間がある。挿入孔H10に透明な接着剤19を注入してから光ファイバ20Dを挿入する場合に、接着剤19の量が過剰であっても、過剰な接着剤19は上記空間に流れ込む。この観点からも、光トランスデューサ1Dは製造が容易である。 The insertion hole H10 and the optical fiber 20D are in a fitted state, but there are spaces at the four corners (square corners) of the insertion hole H10. When the optical fiber 20D is inserted after the transparent adhesive 19 is injected into the insertion hole H10, the excess adhesive 19 flows into the space even if the amount of the adhesive 19 is excessive. From this point of view, the optical transducer 1D is easy to manufacture.
 図13に示す変形例5の光トランスデューサ1Eでは、フェルール10Eの挿入孔H10は正三角形であり、光ファイバ20Eは正6角形であり6つの外平面がある。挿入孔H10は、切り欠きされた光ファイバ20Eが嵌合する状態に内形が設定されている。 In the optical transducer 1E of the modified example 5 shown in FIG. 13, the insertion hole H10 of the ferrule 10E is a regular triangle, the optical fiber 20E is a regular hexagon, and has six outer planes. The inner shape of the insertion hole H10 is set in a state in which the notched optical fiber 20E is fitted.
 光トランスデューサ1Eでは、光ファイバ20Eが挿入孔H10に挿入される回転角度は6つある。光ファイバ20Eは、6つの回転角度のうち、伝送効率のよい角度において挿入されフェルール10Eに固定されている。 In the optical transducer 1E, the optical fiber 20E is inserted into the insertion hole H10 at six rotation angles. The optical fiber 20E is inserted and fixed to the ferrule 10E at an angle with good transmission efficiency among the six rotation angles.
 光トランスデューサ1Eでは、光トランスデューサ1Dよりも更に広い空間が挿入孔H10の三隅(正三角形の角部)にある。 In the optical transducer 1E, there are wider spaces than the optical transducer 1D at the three corners of the insertion hole H10 (corners of an equilateral triangle).
 挿入孔H10の光軸直交方向の断面形状が、正N角形(Nは3以上の整数)でありN個の内平面があり、かつ、光ファイバの光軸直交方向の断面形状が正M角形でありM個の外平面がある光トランスデューサでは、光ファイバ20の回転角度はN個またはM個ある(ただし、M=2N、または、N=2M)。なお、回転角度の数は、M=2N、N=2Mに限定されるものではなく、例えば、M=4、N=16、または、M=3、N=12でもよい。 The cross-sectional shape of the insertion hole H10 in the direction orthogonal to the optical axis is a regular N polygon (N is an integer of 3 or more) and has N inner planes, and the cross-sectional shape of the optical fiber in the orthogonal direction to the optical axis is a regular M polygon. In an optical transducer with M and M outer planes, there are N or M rotation angles of the optical fiber 20 (where M = 2N or N = 2M). The number of rotation angles is not limited to M = 2N and N = 2M, and may be M = 4, N = 16 or M = 3 and N = 12, for example.
 選択できる回転角度の数が多いほど、伝送効率の高い光トランスデューサを製造できる。しかし、内平面(外平面)の数が多くなると、光ファイバ20が回転しない状態に保持することが容易ではなくなる。このため、回転角度の数、例えば、挿入孔H10の内平面の数Nは、8以下であることが好ましい。 The larger the number of rotation angles that can be selected, the more the optical transducer with high transmission efficiency can be manufactured. However, if the number of inner planes (outer planes) increases, it becomes difficult to keep the optical fiber 20 in a non-rotating state. Therefore, the number of rotation angles, for example, the number N of inner planes of the insertion hole H10 is preferably 8 or less.
<変形例6>
 図14に示す変形例6の光トランスデューサ1Fでは、光ファイバ20Fは、コア21がクラッド22に対して偏心している。すなわち、コア21の中心C21が、光ファイバ20(クラッド22)の中心C20から大きく離れている。
<Modification 6>
In the optical transducer 1F of the modification 6 shown in FIG. 14, the core 21 of the optical fiber 20F is eccentric with respect to the clad 22. That is, the center C21 of the core 21 is largely separated from the center C20 of the optical fiber 20 (clad 22).
 光トランスデューサ1Fでは、コア21の偏心状態が評価される。例えば、光ファイバ20Fの先端面を顕微鏡を用いて観察したり、一端から光を入射し他端から出射される光の分布が測定されたりする。 In the optical transducer 1F, the eccentric state of the core 21 is evaluated. For example, the tip end surface of the optical fiber 20F is observed with a microscope, or the distribution of light that enters from one end and exits from the other end is measured.
 そして、コア21の偏心状態に応じて、切り欠きが形成される。すなわち、コア21の中心C21と光ファイバ20の中心C20とを通過する直線Lが、被覆層23と交わる点を中心とする位置(最適位置)に外平面20SSが形成される。すなわち、外平面20SSが他の位置に形成された場合よりも、光ファイバ20がフェルール10の挿入孔H10に挿入されたときに、コア21の中心C21が挿入孔H10の中心に近接する最適位置に、外平面20SSは形成されている。 A notch is formed according to the eccentric state of the core 21. That is, the outer plane 20SS is formed at a position (optimal position) centered on a point where the straight line L passing through the center C21 of the core 21 and the center C20 of the optical fiber 20 intersects with the coating layer 23. That is, when the optical fiber 20 is inserted into the insertion hole H10 of the ferrule 10, the center C21 of the core 21 is closer to the center of the insertion hole H10 than when the outer flat surface 20SS is formed at another position. In addition, the outer flat surface 20SS is formed.
 例えば、コア21の中心C21が光ファイバ20の中心C20から3μm偏心している場合、7.5μm厚の被覆層23を完全に切り欠くことによって、クラッド22が露出する外平面20SSを形成すると、光ファイバ20の中心C20は、3.75μm移動する。このため、光ファイバ20がフェルール10の挿入孔H10に挿入されたときに、コア21の中心C21は、挿入孔H10の中心C10に近接する。 For example, when the center C21 of the core 21 is decentered from the center C20 of the optical fiber 20 by 3 μm, the outer plane 20SS where the cladding 22 is exposed is formed by completely notching the coating layer 23 having a thickness of 7.5 μm. The center C20 of the fiber 20 moves 3.75 μm. Therefore, when the optical fiber 20 is inserted into the insertion hole H10 of the ferrule 10, the center C21 of the core 21 is close to the center C10 of the insertion hole H10.
 本発明は、上述した実施形態および変形例等に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更、組み合わせおよび応用が可能である。 The present invention is not limited to the above-described embodiments and modifications, and various modifications, combinations and applications are possible without departing from the spirit of the invention.
1、1A~1F・・・内視鏡用光トランスデューサ
2・・・撮像部
3・・・挿入部
6・・・内視鏡システム
8・・・光モジュール
9・・・内視鏡
10・・・フェルール
10SA・・・第1の主面
10SB・・・第2の主面
10SS・・・内平面
15・・・配線板
15SA・・・実装面
15SB・・・後面
19・・・接着剤
20・・・光ファイバ
20M・・・導線
20SS・・・外平面
21・・・コア
22・・・クラッド
23・・・被覆層
30・・・光素子
30SA・・・発光面
30SS・・・外平面
31・・・発光部
32・・・外部電極
40・・・撮像素子
41・・・カバーガラス
42・・・立体配線板
50・・・レンズユニット
H10・・・挿入孔
H10A・・・第1孔
H10B・・・第2孔
1, 1A to 1F ... Optical transducer for endoscope 2 ... Imaging unit 3 ... Insertion unit 6 ... Endoscopy system 8 ... Optical module 9 ... Endscope 10 ... -Ferrule 10SA ... 1st main surface 10SB ... 2nd main surface 10SS ... Inner plane 15 ... Wiring board 15SA ... Mounting surface 15SB ... Rear surface 19 ... Adhesive 20・ ・ ・ Optical fiber 20M ・ ・ ・ Conductor 20SS ・ ・ ・ Outer plane 21 ・ ・ ・ Core 22 ・ ・ ・ Clad 23 ・ ・ ・ Cover layer 30 ・ ・ ・ Optical element 30SA ・ ・ ・ Light emitting surface 30SS ・ ・ ・ Outer plane 31 ... Light emitting part 32 ... External electrode 40 ... Imaging element 41 ... Cover glass 42 ... Three-dimensional wiring board 50 ... Lens unit H10 ... Insertion hole H10A ... First hole H10B ... Second hole

Claims (9)

  1.  第1の主面と前記第1の主面と対向する第2の主面とを有し、前記第1の主面から前記第2の主面まで貫通する挿入孔があるフェルールと、
     光信号を発生する発光部を有し、前記発光部が前記挿入孔と対向する位置に配置されている光素子と、
     コアとクラッドと被覆層とを含み、先端部が前記挿入孔と回転しない状態に嵌合している、前記光信号を伝送する光ファイバと、を具備し、
     前記光ファイバの前記先端部の側面に、少なくとも1つの外平面があり、
     前記挿入孔の内面に、少なくとも1つの内平面があり、
     前記外平面と前記内平面とが当接していることを特徴とする内視鏡用光トランスデューサ。
    A ferrule having a first main surface and a second main surface facing the first main surface, the ferrule having an insertion hole penetrating from the first main surface to the second main surface;
    An optical element having a light emitting portion for generating an optical signal, wherein the light emitting portion is arranged at a position facing the insertion hole,
    An optical fiber for transmitting the optical signal, which includes a core, a clad, and a coating layer, and a tip portion of which is fitted into the insertion hole in a non-rotating state.
    At least one outer plane on the side surface of the tip of the optical fiber,
    The inner surface of the insertion hole has at least one inner plane,
    An optical transducer for an endoscope, wherein the outer plane and the inner plane are in contact with each other.
  2.  前記側面に複数の外平面があり、
     前記内面に複数の内平面があり、
     前記複数の外平面のそれぞれが、対向する前記複数の内平面のそれぞれと当接していることを特徴とする請求項1に記載の内視鏡用光トランスデューサ。
    A plurality of outer planes on the side surface,
    There are a plurality of inner planes on the inner surface,
    The optical transducer for an endoscope according to claim 1, wherein each of the plurality of outer planes is in contact with each of the plurality of inner planes that face each other.
  3.  前記外平面が、前記被覆層の切り欠き面であることを特徴とする請求項1または請求項2に記載の内視鏡用光トランスデューサ。 The optical transducer for an endoscope according to claim 1 or 2, wherein the outer plane is a cutout surface of the coating layer.
  4.  前記挿入孔の光軸直交方向の断面形状が、N個の前記内平面がある正N角形(Nは3以上の整数)であり、
     前記光ファイバの前記側面にM個(M=2N、または、N=2M)の前記外平面があることを特徴とする請求項2または請求項3のいずれか1項に記載の内視鏡用光トランスデューサ。
    The cross-sectional shape of the insertion hole in the direction orthogonal to the optical axis is a regular N-gonal shape (N is an integer of 3 or more) having N inner planes,
    4. The endoscope according to claim 2, wherein there are M (M = 2N or N = 2M) outer planes on the side surface of the optical fiber. Optical transducer.
  5.  前記挿入孔は、前記内平面を有し前記第1の主面に開口がある第1孔と、前記第1孔とつながっており前記内平面を有しておらず前記第2の主面に開口がある第2孔と、からなり、
     前記光ファイバの前記先端部は、前記第2孔と嵌合しており、前記第1孔とは嵌合していないことを特徴とする請求項1から請求項4のいずれか1項に記載の内視鏡用光トランスデューサ。
    The insertion hole has a first hole that has the inner plane and has an opening on the first main surface, and a second hole that is connected to the first hole and does not have the inner plane. It consists of a second hole with an opening,
    The said tip part of the said optical fiber is fitted with the said 2nd hole, and is not fitted with the said 1st hole, The any one of Claim 1 to 4 characterized by the above-mentioned. Optical transducer for endoscope.
  6.  前記光ファイバは、前記コアが前記クラッドに対して偏心しており、
     前記外平面は、前記挿入孔に挿入された前記光ファイバの前記コアの中心が前記挿入孔の中心に近接する位置に形成されていることを特徴とする請求項1に記載の内視鏡用光トランスデューサ。
    The optical fiber, the core is eccentric to the clad,
    The endoscope according to claim 1, wherein the outer plane is formed at a position where the center of the core of the optical fiber inserted into the insertion hole is close to the center of the insertion hole. Optical transducer.
  7.  請求項1から請求項6のいずれか1項に記載の内視鏡用光トランスデューサを含むことを特徴とする内視鏡。 An endoscope including the optical transducer for an endoscope according to any one of claims 1 to 6.
  8.  光信号を発生する発光部を発光面に有する発光素子と、
     第1の主面と前記第1の主面と対向する第2の主面とを有し、前記第1の主面から前記第2の主面まで貫通する挿入孔があるフェルールと、
     コアとクラッドと被覆層とを有し、内面に内平面がある前記挿入孔と、側面に外平面がある先端部とが嵌合しており、前記光信号を伝送する光ファイバと、を具備する内視鏡用光トランスデューサの製造方法であって、
     前記先端部を、前記挿入孔に挿入し嵌合する挿入工程と、
     前記発光部から前記光信号を発生し、前記光ファイバが伝送する前記光信号の光量を測定する測定工程と、
     前記光ファイバを前記挿入孔から抜去する抜去工程と、
     前記光ファイバを、光軸を中心に回転する回転工程と、
     前記挿入工程と、前記測定工程と、前記抜去工程と、前記回転工程と、を繰り返し行い、前記光量が最も大きい回転角度である最適角度を選択する最適角度選択工程と、
     前記光ファイバを前記最適角度において前記挿入孔に挿入する再挿入工程と、
     前記光ファイバを前記フェルールに固定する固定工程と、を具備することを特徴とする内視鏡用光トランスデューサの製造方法。
    A light emitting element having a light emitting portion for generating an optical signal on a light emitting surface,
    A ferrule having a first main surface and a second main surface facing the first main surface, the ferrule having an insertion hole penetrating from the first main surface to the second main surface;
    An optical fiber having a core, a clad, and a coating layer, the insertion hole having an inner flat surface on the inner surface, and the tip having an outer flat surface on the side surface are fitted to each other, and transmitting the optical signal. A method of manufacturing an optical transducer for an endoscope, comprising:
    An inserting step of inserting and fitting the tip portion into the insertion hole,
    Generating the optical signal from the light emitting unit, a measuring step of measuring the light amount of the optical signal transmitted by the optical fiber,
    A withdrawing step of withdrawing the optical fiber from the insertion hole,
    A rotation step of rotating the optical fiber about an optical axis,
    The insertion step, the measuring step, the removing step, and the rotating step are repeatedly performed, and an optimum angle selecting step of selecting an optimum angle that is the rotation angle at which the light amount is the largest,
    A reinsertion step of inserting the optical fiber into the insertion hole at the optimum angle,
    A step of fixing the optical fiber to the ferrule, and a method for manufacturing an optical transducer for an endoscope, comprising:
  9.  前記挿入孔は、前記内平面を有し前記第1の主面に開口がある第1孔と、前記第1孔とつながっており前記内平面を有しておらず前記第2の主面に開口がある第2孔と、からなり、
     前記挿入工程において、前記先端部は、前記第2孔と嵌合し、
     前記抜去工程において、前記先端部は、前記第2孔から抜去されるが、前記第1孔から抜去されず、
     前記回転工程において、前記先端部は、前記第2孔に挿入されていないが、前記第1孔に挿入されていることを特徴とする請求項8に記載の内視鏡用光トランスデューサの製造方法。
    The insertion hole has a first hole that has the inner plane and has an opening on the first main surface, and a second hole that is connected to the first hole and does not have the inner plane. It consists of a second hole with an opening,
    In the inserting step, the tip portion is fitted with the second hole,
    In the removing step, the tip portion is removed from the second hole, but is not removed from the first hole,
    The method of manufacturing an optical transducer for an endoscope according to claim 8, wherein, in the rotating step, the tip portion is not inserted into the second hole, but is inserted into the first hole. ..
PCT/JP2018/040121 2018-10-29 2018-10-29 Endoscope optical transducer, endoscope, and manufacturing method for endoscope optical transducer WO2020089969A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/040121 WO2020089969A1 (en) 2018-10-29 2018-10-29 Endoscope optical transducer, endoscope, and manufacturing method for endoscope optical transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/040121 WO2020089969A1 (en) 2018-10-29 2018-10-29 Endoscope optical transducer, endoscope, and manufacturing method for endoscope optical transducer

Publications (1)

Publication Number Publication Date
WO2020089969A1 true WO2020089969A1 (en) 2020-05-07

Family

ID=70463644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040121 WO2020089969A1 (en) 2018-10-29 2018-10-29 Endoscope optical transducer, endoscope, and manufacturing method for endoscope optical transducer

Country Status (1)

Country Link
WO (1) WO2020089969A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001147345A (en) * 1999-10-06 2001-05-29 Lucent Technol Inc Optical connector having integrated housing
US6409395B1 (en) * 2001-05-24 2002-06-25 Axsun Technologies, Inc. Method for fabricating fiber arrays with precision fiber core-to-core pitch and height
JP2003156648A (en) * 2001-11-21 2003-05-30 Ngk Insulators Ltd Polarization fiber and method for manufacturing the same, ribbon fiber and optical waveguide device using the same, and optical fiber array and method for manufacturing the same
JP2006078674A (en) * 2004-09-08 2006-03-23 Hakusan Mfg Co Ltd Detachable relay optical connector for filter
JP2006184271A (en) * 2004-12-01 2006-07-13 Kyocera Corp Method and apparatus for measuring eccentricity of core, and method for manufacturing optical connector plug
JP2014142495A (en) * 2013-01-24 2014-08-07 Mitsubishi Cable Ind Ltd Connection structure and connection method for multi-core optical fiber
JP2015068835A (en) * 2013-09-26 2015-04-13 オリンパス株式会社 Optical transmission module and endoscope
JP2017161836A (en) * 2016-03-11 2017-09-14 オリンパス株式会社 Optical connector
WO2017158721A1 (en) * 2016-03-15 2017-09-21 オリンパス株式会社 Optical transmission module and endoscope

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001147345A (en) * 1999-10-06 2001-05-29 Lucent Technol Inc Optical connector having integrated housing
US6409395B1 (en) * 2001-05-24 2002-06-25 Axsun Technologies, Inc. Method for fabricating fiber arrays with precision fiber core-to-core pitch and height
JP2003156648A (en) * 2001-11-21 2003-05-30 Ngk Insulators Ltd Polarization fiber and method for manufacturing the same, ribbon fiber and optical waveguide device using the same, and optical fiber array and method for manufacturing the same
JP2006078674A (en) * 2004-09-08 2006-03-23 Hakusan Mfg Co Ltd Detachable relay optical connector for filter
JP2006184271A (en) * 2004-12-01 2006-07-13 Kyocera Corp Method and apparatus for measuring eccentricity of core, and method for manufacturing optical connector plug
JP2014142495A (en) * 2013-01-24 2014-08-07 Mitsubishi Cable Ind Ltd Connection structure and connection method for multi-core optical fiber
JP2015068835A (en) * 2013-09-26 2015-04-13 オリンパス株式会社 Optical transmission module and endoscope
JP2017161836A (en) * 2016-03-11 2017-09-14 オリンパス株式会社 Optical connector
WO2017158721A1 (en) * 2016-03-15 2017-09-21 オリンパス株式会社 Optical transmission module and endoscope

Similar Documents

Publication Publication Date Title
JP6411088B2 (en) Optical transmission module and endoscope
EP2031430B1 (en) Image pickup unit
WO2015045630A1 (en) Imaging module and endoscope device
JP6539548B2 (en) Endoscope imaging apparatus and endoscope
US10972707B2 (en) Endoscope and method of manufacturing endoscope
US20210096355A1 (en) Image pickup apparatus for endoscope, endoscope, and manufacturing method of image pickup apparatus for endoscope
US20170315310A1 (en) Optical transmission module and endoscope
US20210096309A1 (en) Optical module for endoscope, endoscope, and manufacturing method of optical module for endoscope
US10321815B2 (en) Image pickup module and endoscope
WO2016092991A1 (en) Endoscope
WO2019176601A1 (en) Imaging unit and oblique endoscope
JP6602970B2 (en) Optical signal transmission module
WO2020089969A1 (en) Endoscope optical transducer, endoscope, and manufacturing method for endoscope optical transducer
US10542874B2 (en) Imaging device and endoscope device
US20210382250A1 (en) Manufacturing method for image pickup apparatus for endoscope, image pickup apparatus for endoscope, and endoscope
WO2019224942A1 (en) Endoscope optical module, endoscope, and endoscope optical module manufacturing method
WO2018139406A1 (en) Endoscope and endoscope manufacturing method
WO2017072862A1 (en) Image pickup unit and endoscope
WO2020065757A1 (en) Endoscopic imaging device, endoscope, and endoscopic imaging device production method
US20210251471A1 (en) Optical transducer for endoscope, endoscope, and manufacturing method of optical transducer for endoscope
US20170360284A1 (en) Endoscope device
US11846808B2 (en) Optical transducer for endoscope, endoscope, and manufacturing method for optical transducer for endoscope
WO2018116391A1 (en) Optical module, endoscope, and method for manufacturing optical module
US20200379246A1 (en) Optical module for endoscope, endoscope, and manufacturing method of optical module for endoscope
WO2018146806A1 (en) Optical module and endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP