WO2020088604A1 - 一种电励磁同步电机动态参数试验测量方法 - Google Patents
一种电励磁同步电机动态参数试验测量方法 Download PDFInfo
- Publication number
- WO2020088604A1 WO2020088604A1 PCT/CN2019/114807 CN2019114807W WO2020088604A1 WO 2020088604 A1 WO2020088604 A1 WO 2020088604A1 CN 2019114807 W CN2019114807 W CN 2019114807W WO 2020088604 A1 WO2020088604 A1 WO 2020088604A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- axis
- stator winding
- waveform data
- winding
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/34—Testing dynamo-electric machines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
Definitions
- This application relates to the technical field of motor dynamic parameter testing, for example, a method for measuring and testing the dynamic parameters of electric excitation synchronous motors.
- the three-phase sudden short circuit test of the machine end is mainly used to measure the dynamic parameters of the electric excitation synchronous motor.
- the process of the three-phase sudden short circuit test is: when the electric excitation synchronous motor is at the rated speed and running at the required no-load voltage, a three-phase sudden short circuit occurs at the machine end of the electric excitation synchronous motor using a circuit breaker.
- the armature current is used to identify the parameters of the electric excitation synchronous motor.
- the three-phase sudden short circuit test has the following conditions:
- the three-phase sudden short circuit test in the related technology takes a long time and will cause great damage to the unit, which threatens the safe and stable operation of the electric excitation synchronous motor after it is put into operation. Therefore, it is necessary to propose a safer and simpler electric excitation Motor dynamic parameter test method.
- the present application provides a test method for testing dynamic parameters of synchronous motors with strong operability, safety and high accuracy, which can effectively measure the dynamic parameters of the d-axis and q-axis equivalent circuits of electrically excited synchronous motors.
- the electric excitation synchronous motor includes: a stator winding, an excitation winding, the stator winding includes a phase, b phase, and c phase; the method includes: the electric excitation When the synchronous motor is placed in a stationary state, the excitation winding is placed in a short-circuit state; when the excitation winding axis coincides with the d-axis, a step voltage is applied to the stator winding a phase and the stator Between b-phase windings; during the dynamic process after sudden application of the step voltage, the first line current waveform data of the a-phase of the stator winding, between the a-phase of the stator winding and the b-phase of the stator winding are measured The first line voltage waveform data and the induced current waveform data in the excitation winding; according to the first line current waveform data of the stator winding a phase, between the stator winding a phase and the stator winding b phase;
- the line voltage between the a-phase and b-phase windings of the stator armature is the output voltage of a controllable DC voltage source.
- the electric excitation synchronous motor includes a solid rotor tuning camera.
- the first line current waveform data of the stator winding a phase the first line voltage waveform data between the stator winding a phase and the stator winding b phase, and the excitation winding
- To determine the d-axis dynamic parameter values of the induced current waveform data including: first fitting the first-line current waveform data of the a-phase of the stator winding as the d-axis parameter to a first target curve, and inducing the induced current in the excitation winding
- the waveform data is used as the second fitting target curve of the d-axis parameter, based on the first line voltage waveform data between the stator winding a phase and the stator winding b phase and the first line current waveform data of the stator winding a phase
- the q-axis dynamic parameter value is obtained,
- the method includes: fitting the second-line current waveform data of the stator winding a-phase as a q-axis parameter to a target curve, and according to the second-line voltage waveform data of the stator winding a-phase and the stator winding b-phase and the The second-line current waveform data of the a-phase of the stator winding obtains the resistance value of the stator winding measurement circuit; according to the q-axis equivalent circuit and the resistance value of the stator winding measurement loop, the time-domain response of the q-axis current is obtained Expression; fitting the target curve to the curve corresponding to the time domain response expression of the q-axis current according to the q-axis parameter fitting target curve to determine the dynamic parameter value of the
- FIG. 1 is a wiring diagram of a d-axis dynamic parameter test of an electric excitation synchronous motor based on the step voltage injection method of this application;
- FIG. 2 is a wiring diagram for the test of the q-axis dynamic parameters of an electric excitation synchronous motor based on the step voltage injection method of this application;
- Figure 3 is a waveform diagram of a step voltage used in the experiment of this application.
- FIG. 5 is a flow chart of the method for measuring and measuring the dynamic parameters of an electric excitation synchronous motor based on the step voltage injection method of this application;
- FIG. 6 is a waveform diagram of the current response of the a-phase of the stator winding after applying a step voltage during the d-axis dynamic parameter test of this application;
- FIG. 7 is a waveform diagram of the current response of the excitation winding after applying a step voltage during the d-axis dynamic parameter test of the present application.
- the rotor of the electric excitation synchronous motor includes the excitation winding,
- the field winding is fixed inside the rotor.
- the axis of the excitation winding coincides with the d axis of the electric excitation synchronous motor, and the record At this time, the position of the rotor, when the induced voltage of the excitation winding is the smallest, the position of the excitation winding axis coincides with the q axis of the electric excitation synchronous motor, and the rotor position at this time is recorded.
- the excitation winding of the electric excitation synchronous motor is short-circuited when the electric excitation synchronous motor is placed in a stationary state.
- the step voltage needs to be applied to the two-phase winding of the stator. It is now assumed that it is applied between the a and b phases of the stator winding.
- the test measurement wiring diagram of the d-axis dynamic parameters of the electric excitation synchronous motor is shown in Figure 1.
- the test of the q-axis dynamic parameters The measurement wiring diagram is shown in Figure 2.
- the applied step voltage can have different forms, for example:
- Um is the amplitude of the step voltage
- f is the frequency
- t s is the starting moment of the step voltage
- t p is the duration of the step voltage, and the step voltage waveform is shown in FIG. 3.
- the rotor When performing the d-axis dynamic parameter test shown in Fig. 1, the rotor is rotated so that the axis of the field winding coincides with the d-axis. Since voltage is applied only between the two phases of the stator winding a and b, it can be considered that the stator windings a and b The line voltage between the phases is proportional to the d-axis voltage, the phase current of the stator winding a is proportional to the d-axis current, and the position of each winding axis is shown in FIG. 4. The proportional relationship between the amplitude of voltage and current is:
- V d represents the d-axis voltage
- V s represents the line voltage between the a and b phases of the stator winding
- I d represents the d-axis current
- I s represents the stator winding a-phase line current.
- the stator windings a and b When a step voltage is suddenly applied between the two phases of the stator windings a and b, the stator windings a and b generate current, and at the same time induce current in the excitation winding. Record the first-line current waveform data of the stator winding a-phase, the first-line voltage waveform data between the stator winding a-phase and b-phase, and the induced current waveform data in the excitation winding, according to the stator winding a-phase and stator winding The first-line voltage waveform data between the b-phase and the first-line current waveform data of the a-phase of the stator winding obtain the resistance value of the stator winding measurement loop.
- the stator winding measurement loop refers to the resistance value of the entire loop with the positive and negative poles of the voltage source as the starting and ending points. Therefore, the resistance value of the stator winding measurement loop includes the measurement wire resistance and the stator winding resistance. According to the characteristics of the damping circuit of the electric excitation synchronous motor, an appropriate d-axis equivalent circuit is established and its order is determined.
- the time-domain response expression of the d-axis current is determined according to the voltage balance relationship and the stator winding measurement loop resistance value. Furthermore, from the relationship between the time domain response expression of the induced current in the excitation winding and the time domain response expression of the d-axis current, the time of the induced current induced in the excitation winding after the two-phase winding of the stator winding is suddenly applied with a step voltage Domain response expression.
- the first line current waveform data of the a-phase of the stator winding is used as the first fitting target curve of the d-axis parameter, and the induced current waveform data of the excitation winding is used as the second fitting target curve of the d-axis parameter.
- the curve corresponding to the formula is fitted in the time domain to obtain the d-axis dynamic parameter value.
- the d-axis dynamic parameter values include d-axis synchronous reactance, d-axis transient reactance, d-axis secondary transient reactance, d-axis transient time constant, and d-axis secondary transient time constant.
- the rotor When performing the q-axis dynamic parameter test shown in Fig. 4, the rotor is rotated so that the axis of the excitation winding coincides with the q-axis.
- the relationship between the stator voltage and the q-axis voltage is similar to the d-axis measurement.
- the stator current and the q-axis current satisfy the The relationship is similar to the d-axis measurement.
- the resistance value of the stator winding measurement loop here refers to the above introduction, which will not be repeated here.
- the q-axis equivalent circuit of the electric excitation synchronous motor is established. According to the voltage balance relationship and the stator winding measurement loop resistance value, the time-domain response expression of the q-axis current is obtained.
- the dynamic parameter value of the axis include q-axis synchronous reactance, q-axis transient reactance, q-axis sub-transient reactance, q-axis transient time constant, and q-axis sub-transient time constant.
- the present application provides a method for testing and measuring dynamic parameters of an electric excitation synchronous motor, including steps (1) to (6).
- the auxiliary equipment required for the preparation of the test includes a low-voltage high-power controllable DC voltage source, a multichannel power recorder, two current measuring probes and a voltage measuring probe.
- the current measurement probe and the voltage measurement probe are used to measure the stator winding a-phase line current, the stator winding a-phase and b-phase line voltage and the induced current of the excitation winding, and Imported into the multi-channel power recorder and saved, the first-line current response waveform of the a-phase of the stator winding after the step voltage is applied is shown in Figure 6, and the induced current response waveform in the excitation winding after the step voltage is applied is shown in Figure 7 Show.
- step (6) is performed.
- the electric excitation synchronous motor includes a solid rotor tuning camera.
- This application proposes a high-safety, easy-to-implement test method for dynamic parameters of electric excitation synchronous motors, which avoids the use of three-phase sudden short-circuit tests and enables accurate measurement of dynamic parameters of electric excitation synchronous motors.
- the performance parameter test and dynamic reactive power output characteristic analysis of excitation synchronous motor provide new methods and ideas.
- the electric excitation synchronous motor does not have a prime mover, an additional prime mover is required to carry out the three-phase sudden short circuit test, so that the electric excitation synchronous motor can run stably at the rated speed, and when the electric excitation synchronous motor is installed in the converter station Due to site and equipment limitations, it is difficult to meet the requirements of three-phase sudden short circuit test equipment.
- the test method proposed in this application is conducted when the electric excitation synchronous motor is at rest, the requirements for the test equipment are greatly reduced, and it is more simple and easy to implement;
- the test method proposed in this application is less dangerous and will not pose a threat to the safety of electrically excited synchronous motors, test equipment, and test personnel.
- the voltage signal applied at the machine end of this application is very small, so the armature current generated is also very small and there is no danger.
- the transient current in the test will be as high as 3 times the rated current, and using the test method proposed in this application, the transient current can be controlled to Only tens of amps.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
Abstract
一种电励磁同步电机动态参数试验测量方法,电励磁同步电机包括定子绕组和励磁绕组,定子绕组包括a相,b相和c相;在电励磁同步电机置于静止状态时,将励磁绕组短路;将阶跃电压施加到定子绕组a相和b相之间;测量d、q轴参数时励磁绕组轴线分别与d、q轴重合,根据测量d、q轴参数时获得的数据,得到d轴参数第一拟合目标曲线、d轴参数第二拟合目标曲线、q轴参数拟合目标曲线及定子绕组测量回路的电阻值,根据d、q轴各自的等效电路和定子绕组测量回路的电阻值,得到d轴电流、励磁绕组中感应电流及q轴电流各自的时域响应表达式,根据上述三种参数拟合目标曲线分别对对应的表达式进行时域拟合,以计算d轴及q轴动态参数值。
Description
本申请要求在2018年10月31日提交中国专利局、申请号为201811289285.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
本申请涉及电机动态参数试验技术领域,例如一种电励磁同步电机动态参数试验测量方法。
在工程中主要采用机端三相突然短路试验来测量电励磁同步电机的动态参数。三相突然短路试验的流程为:在电励磁同步电机处于额定转速并在所需的空载电压下运行的情况下,利用断路器使电励磁同步电机机端发生三相突然短路,短路过程中的电枢电流被用于进行电励磁同步电机的参数辨识。
三相突然短路试验存在以下情况:
1.进行三相突然短路试验时,电励磁同步电机端电流很大,容易威胁到试验现场操作人员的人身安全且对试验现场的辅助设备性能,如断路器,要求较高。
2.三相突然短路试验中,会存在电励磁同步电机内部磁场高度饱和,绕组发热严重等情况,因此会对电励磁同步电机内部造成损伤,威胁到机组投运后的安全稳定运行。
综上,相关技术中三相突然短路试验耗时长并且会对机组形成较大的破坏,对电励磁同步电机投运后的安全稳定运行产生了威胁,因此需要提出更加安全、简便的电励磁同步电机动态参数试验方法。
发明内容
本申请提供一种可操作性强、安全性与精确度高的同步电机动态参数试验测量方法,可对电励磁同步电机的d轴及q轴等效电路的动态参数进行有效测量。
一种电励磁同步电机动态参数试验测量方法,所述电励磁同步电机包括:定子绕组、励磁绕组,所述定子绕组包括a相,b相以及c相;所述方法包括:在 所述电励磁同步电机置于静止状态的情况下,将所述励磁绕组置于短路状态;在所述励磁绕组轴线与d轴重合的情况下,将阶跃电压施加到所述定子绕组a相和所述定子绕组b相之间;在突然施加所述阶跃电压后的动态过程中,测量所述定子绕组a相的第一线电流波形数据、所述定子绕组a相和所述定子绕组b相之间的第一线电压波形数据,以及所述励磁绕组中的感应电流波形数据;根据所述定子绕组a相的第一线电流波形数据、所述定子绕组a相和所述定子绕组b相之间的第一线电压波形数据,以及所述励磁绕组中的感应电流波形数据,确定d轴的动态参数值;在所述励磁绕组轴线与q轴重合的情况下,将阶跃电压施加到所述定子绕组a相和所述定子绕组b相之间;在突然施加阶跃电压后动态过程中,测量所述定子绕组a相的第二线电流波形数据,以及所述定子绕组a相和所述定子绕组b相之间的第二线电压波形数据;根据所述定子绕组a相的第二线电流波形数据,所述定子绕组a相和所述定子绕组b相之间的第二线电压波形数据,确定q轴的动态参数值。
在一实施例中,所述定子电枢a相和b相绕组之间的线电压为可控直流电压源的输出电压。
在一实施例中,所述电励磁同步电机包括实心转子调相机。
在一实施例中,根据所述定子绕组a相的第一线电流波形数据、所述定子绕组a相和所述定子绕组b相之间的第一线电压波形数据,以及所述励磁绕组中的感应电流波形数据,确定d轴的动态参数值,包括:将所述定子绕组a相的第一线电流波形数据作为d轴参数第一拟合目标曲线,将所述励磁绕组中的感应电流波形数据作为d轴参数第二拟合目标曲线,根据所述定子绕组a相和所述定子绕组b相之间的第一线电压波形数据和所述定子绕组a相的第一线电流波形数据得到所述定子绕组测量回路的电阻值;根据d轴的等效电路并结合所述定子绕组测量回路的电阻值,得到所述d轴电流的时域响应表达式和所述励磁绕组中的感应电流的时域响应表达式;根据所述d轴参数第一拟合目标曲线对所述d轴电流的时域响应表达式对应的曲线进行拟合,同时根据所述d轴参数第二拟合目标曲线对所述励磁绕组中的感应电流的时域响应表达式对应的曲线进行时域拟合,得到d轴的动态参数值。
在一实施例中,根据所述定子绕组a相的第二线电流波形数据,所述定子绕组a相和所述定子绕组b相之间的第二线电压波形数据,得到q轴的动态参数值,包括:将所述定子绕组a相的第二线电流波形数据,作为q轴参数拟合 目标曲线,根据所述定子绕组a相和所述定子绕组b相之间的第二线电压波形数据和所述定子绕组a相的第二线电流波形数据得到所述定子绕组测量电路的电阻值;根据q轴的等效电路并结合所述定子绕组测量回路的电阻值,得到所述q轴电流的时域响应表达式;根据所述q轴参数拟合目标曲线对所述q轴电流的时域响应表达式对应的曲线进行时域拟合,确定q轴的动态参数值。
图1是本申请基于阶跃电压注入法的电励磁同步电机d轴动态参数试验接线图;
图2是本申请基于阶跃电压注入法的电励磁同步电机q轴动态参数试验接线图;
图3是本申请试验中采用的一种阶跃电压的波形图;
图4是本申请d轴试验时各绕组轴线位置图;
图5是本申请基于阶跃电压注入法的电励磁同步电机动态参数试验测量方法的流程图;
图6是本申请d轴动态参数试验时施加阶跃电压后,定子绕组a相的电流响应波形图;
图7是本申请d轴动态参数试验时施加阶跃电压后,励磁绕组电流响应波形图。
为分别测出电励磁同步电机d轴及q轴对应的动态参数,需要确定励磁绕组轴线分别与电励磁同步电机d轴及q轴重合时的转子位置,电励磁同步电机的转子包括励磁绕组,励磁绕组固定在转子内部。首先对电励磁同步电机定子绕组施加100Hz的交流电,缓慢旋转电励磁同步电机转子,并测量励磁绕组的感应电压,励磁绕组感应电压最大时,励磁绕组轴线与电励磁同步电机d轴重合,记录下此时转子的位置,励磁绕组感应电压最小时,励磁绕组轴线的位置与电励磁同步电机q轴重合,记录下此时转子的位置。励磁绕组轴线分别与d轴及q轴重合时,对应的转子位置确定后,在电励磁同步电机置于静止状态的情况下,将电励磁同步电机的励磁绕组短接。
阶跃电压需要施加于定子的两相绕组,现假定施加在定子绕组a相与b相 之间,则电励磁同步电机d轴动态参数的试验测量接线图如图1,q轴动态参数的试验测量接线图如图2。施加的阶跃电压可以有不同形式,例如:
进行如图1所示的d轴动态参数试验时,转动转子,使励磁绕组轴线与d轴重合,由于仅在定子绕组a相及b相两相间加电压,因此可以认为定子绕组a相和b相之间的线电压与d轴电压成正比,定子绕组a相线电流与d轴电流成正比,各绕组轴线位置如附图4所示。电压与电流的幅值比例关系为:
其中:V
d表示d轴电压;V
s表示定子绕组a相和b相之间的线电压;I
d表示d轴电流;I
s表示定子绕组a相线电流。
当在定子绕组a相及b相两相间突然施加阶跃电压的情况下,定子绕组a相及b相会产生电流,并且同时在励磁绕组中感应出电流。对定子绕组a相的第一线电流波形数据、定子绕组a相和b相之间的第一线电压波形数据以及励磁绕组中的感应电流波形数据进行录波,根据定子绕组a相和定子绕组b相之间的第一线电压波形数据和定子绕组a相的第一线电流波形数据得到定子绕组测量回路的电阻值。定子绕组测量回路指以电压源正负极作为起止点的整个回路的电阻值,因此,定子绕组测量回路的电阻值包含测量导线电阻及定子绕组电阻等。并根据电励磁同步电机的阻尼回路特点,建立合适的d轴等效电路并确定其阶数。
在所建立的d轴等效电路中,根据电压平衡关系并结合定子绕组测量回路的电阻值,确定得到的d轴电流时域响应表达式。进而由励磁绕组中的感应电流的时域响应表达式与d轴电流的时域响应表达式的关系,得到定子绕组两相绕组突然施加阶跃电压后励磁绕组中所感应出的感应电流的时域响应表达式。
将定子绕组a相的第一线电流波形数据作为d轴参数第一拟合目标曲线,将励磁绕组中的感应电流波形数据作为d轴参数第二拟合目标曲线。
根据d轴参数第一拟合目标曲线对d轴电流的时域响应表达式对应的曲线 进行拟合,同时根据d轴参数第二拟合目标曲线对励磁绕组中的感应电流的时域响应表达式对应的曲线进行时域拟合,得到d轴的动态参数值。d轴的动态参数值包括d轴同步电抗、d轴暂态电抗、d轴次暂态电抗、d轴暂态时间常数及d轴次暂态时间常数等。
进行如图4所示的q轴动态参数试验时,转动转子,使励磁绕组轴线与q轴重合,定子电压与q轴电压满足的关系与d轴测量时类似,定子电流与q轴电流满足的关系与d轴测量时类似。
在定子绕组a相及b两相间突加阶跃电压的情况下,定子绕组a相及b相间会产生电流,但是此时在励磁绕组中不会感应出电流。对定子绕组a相的第二线电流波形数据,以及定子绕组a相和定子绕组b相之间的第二线电压波形数据进行录波,根据定子绕组a相和定子绕组b相之间的第二线电压波形数据和定子绕组a相的第二线电流波形数据得到定子绕组测量回路的电阻值,此处的定子绕组测量回路的电阻值参见上述介绍,在此不做赘述。建立电励磁同步电机的q轴等效电路,根据电压平衡关系并结合定子绕组测量回路的电阻值,得到q轴电流的时域响应表达式。
将定子绕组a相的第二线电流波形数据,作为q轴参数拟合目标曲线,根据q轴参数拟合目标曲线对q轴电流的时域响应表达式对应的曲线进行时域拟合,确定q轴的动态参数值。q轴的动态参数值包括q轴同步电抗、q轴暂态电抗、q轴次暂态电抗、q轴暂态时间常数及q轴次暂态时间常数等。
如图5所示,本申请提供一种电励磁同步电机动态参数试验测量方法,包括步骤(1)至步骤(6)。
(1)准备试验所需的辅助设备包括低压大功率可控直流电压源、多路电量录波仪以及两个电流测量探头和一个电压测量探头。
(2)试验时将电励磁同步电机置于静止状态,同时让电励磁同步电机励磁绕组置于短路状态。
(3)确定电励磁同步电机励磁绕组轴线分别与d轴及q轴重合时对应的转子位置,并首先让励磁绕组轴线与d轴重合,以测量电励磁同步电机d轴有关动态参数。
(4)进行d轴动态参数实验的电路连接,让定子绕组a、b相引出线分别与低压大功率可控直流电压源的正负端口相接,低压大功率可控直流电压源产生阶跃电压,阶跃电压输入定子绕组a、b相,用电流测量探头和电压测量探头 分别测量定子绕组a相线电流、定子绕组a相和b相之间的线电压以及励磁绕组的感应电流,并导入多路电量录波仪中保存,施加阶跃电压后定子绕组a相的第一线电流响应波形如图6所示,施加阶跃电压后励磁绕组中的感应电流响应波形图如图7所示。在电励磁同步电机中的励磁绕组中的感应电流未衰减至起始值的10%的情况下,对定子绕组a相线电流、定子绕组a相和b相之间的线电压以及励磁绕组的感应电流进行录波;在电励磁同步电机中的励磁绕组感应电流衰减至起始值的10%的情况下,执行步骤(5)。
(5)将转子旋转90度电角度,使励磁绕组轴线与q轴重合,以测量电励磁同步电机q轴有关动态参数,进行q轴动态参数实验的电路连接,仍用低压大功率可控直流电压源产生阶跃电压输入定子绕组a相及b相,用电流测量探头和电压测量探头分别测量定子绕组a相绕组线电流、定子绕组a相和b相之间的线电压,并导入多路电量录波仪中保存。在电励磁同步电机中的定子绕组a相电流未达到稳态值的情况下,对定子绕组a相线电流及定子绕组a相和b相之间的线电压进行录波;在电励磁同步电机中的定子绕组a相电流达到稳态值的情况下,执行步骤(6)。
(6)导出多路电量录波仪所得的电压电流波形数据,将其中的电流波形数据作为参数拟合目标曲线,并根据电流电压波形数据计算得到定子绕组测量回路的电阻值;根据电机学有关知识,确定电励磁同步电机d轴及q轴的等效电路,并根据等效电路的电压平衡方程结合定子绕组测量回路的电阻值,采用解析计算方法得到d轴电流的时域响应表达式、励磁绕组电流的时域响应表达式及q轴电流的时域响应表达式;再根据参数拟合目标曲线分别对d轴电流的时域响应表达式对应的曲线、励磁绕组电流的时域响应表达式对应的曲线及q轴电流的时域响应表达式对应的曲线进行时域拟合,以计算电励磁同步电机d轴及q轴动态参数的值。
在一实施例中,电励磁同步电机包括实心转子调相机。
本申请提出了一种安全性高、易于实现的电励磁同步电机动态参数试验测量方法,避免了采用三相突然短路试验造成的有关情况,可实现电励磁同步电机动态参数的准确测量,为电励磁同步电机的性能参数试验与动态无功输出特性分析提供了新方法与思路。
由于电励磁同步电机不具有原动机,因此若开展三相突然短路试验需要额外配备一台原动机,使电励磁同步电机能稳定在额定转速运行,而当电励磁同 步电机加装于换流站后,由于场地和设备的限制,难以满足三相突然短路的试验设备要求。本申请提出的试验方法在电励磁同步电机静止时候进行,对试验设备的要求大大降低,更加简便易行;
本申请提出的试验方法危险性小,不会对电励磁同步电机、试验设备和试验人员的安全造成威胁。本申请在机端施加的电压信号很小,因此产生的电枢电流也很小,没有危险性。例如,进行在50%额定电压下对电励磁同步电机进行三相突然短路试验,试验中的瞬态电流将高达3倍的额定电流,而利用本申请提出的试验方法,瞬态电流可以控制到仅为数十安培。
Claims (5)
- 一种电励磁同步电机动态参数试验测量方法,所述电励磁同步电机包括:定子绕组及励磁绕组,所述定子绕组包括a相,b相以及c相;所述方法包括:在所述电励磁同步电机置于静止状态的情况下,将所述励磁绕组置于短路状态;在所述励磁绕组轴线与d轴重合的情况下,将阶跃电压施加到所述定子绕组a相和所述定子绕组b相之间;在突然施加所述阶跃电压后的动态过程中,测量所述定子绕组a相的第一线电流波形数据、所述定子绕组a相和所述定子绕组b相之间的第一线电压波形数据,以及所述励磁绕组中的感应电流波形数据;根据所述定子绕组a相的第一线电流波形数据、所述定子绕组a相和所述定子绕组b相之间的第一线电压波形数据,以及所述励磁绕组中的感应电流波形数据,确定d轴的动态参数值;在所述励磁绕组轴线与q轴重合的情况下,将所述阶跃电压施加到所述定子绕组a相和所述定子绕组b相之间;在突然施加阶跃电压后动态过程中,测量所述定子绕组a相的第二线电流波形数据,以及所述定子绕组a相和所述定子绕组b相之间的第二线电压波形数据;根据所述定子绕组a相的第二线电流波形数据,所述定子绕组a相和所述定子绕组b相之间的第二线电压波形数据,确定q轴的动态参数值。
- 如权利要求1所述的方法,其中,所述定子绕组a相和所述定子绕组b相之间的线电压为可控直流电压源的输出电压。
- 如权利要求1所述的方法,其中,所述电励磁同步电机包括实心转子调相机。
- 如权利要求1所述的方法,其中,根据所述定子绕组a相的第一线电流波形数据、所述定子绕组a相和所述定子绕组b相之间的第一线电压波形数据,以及所述励磁绕组中的感应电流波形数据,确定d轴的动态参数值,包括:将所述定子绕组a相的第一线电流波形数据作为d轴参数第一拟合目标曲线,将所述励磁绕组中的感应电流波形数据作为d轴参数第二拟合目标曲线,根据所述定子绕组a相和所述定子绕组b相之间的第一线电压波形数据和所述定子绕组a相的第一线电流波形数据得到所述定子绕组测量回路的电阻值;根据d轴的等效电路并结合所述定子绕组测量回路的电阻值,得到d轴电 流的时域响应表达式和所述励磁绕组中的感应电流的时域响应表达式;根据所述d轴参数第一拟合目标曲线对所述d轴电流的时域响应表达式对应的曲线进行拟合,同时根据所述d轴参数第二拟合目标曲线对所述励磁绕组中感应电流的时域响应表达式对应的曲线进行时域拟合,得到d轴的动态参数值。
- 如权利要求1所述的方法,其中,根据所述定子绕组a相的第二线电流波形数据,所述定子绕组a相和所述定子绕组b相之间的第二线电压波形数据,得到q轴的动态参数值,包括:将所述定子绕组a相的第二线电流波形数据,作为q轴参数拟合目标曲线,根据所述定子绕组a相和所述定子绕组b相之间的第二线电压波形数据和所述定子绕组a相的第二线电流波形数据得到所述定子绕组测量回路的电阻值;根据q轴的等效电路并结合所述定子绕组测量回路的电阻值,得到q轴电流的时域响应表达式;根据所述q轴参数拟合目标曲线对所述q轴电流的时域响应表达式对应的曲线进行时域拟合,确定q轴的动态参数值。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811289285.XA CN109490774B (zh) | 2018-10-31 | 2018-10-31 | 一种实心转子大型调相机动态参数试验测量方法 |
CN201811289285.X | 2018-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020088604A1 true WO2020088604A1 (zh) | 2020-05-07 |
Family
ID=65693530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/114807 WO2020088604A1 (zh) | 2018-10-31 | 2019-10-31 | 一种电励磁同步电机动态参数试验测量方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109490774B (zh) |
WO (1) | WO2020088604A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113131491B (zh) * | 2021-04-25 | 2022-08-30 | 哈尔滨理工大学 | 一种调相机转子静止状态下无功调节方法及装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1220439A2 (en) * | 2000-12-27 | 2002-07-03 | Honda Giken Kogyo Kabushiki Kaisha | Parameter detection of a DC brushless motor and vector control of that motor |
US20090157336A1 (en) * | 2007-12-17 | 2009-06-18 | Ming-Tsung Chen | Static measuring method of electrical references of three-phase permanent magnet synchronous motor |
KR20090067919A (ko) * | 2007-12-21 | 2009-06-25 | 주식회사 포스콘 | 유도전동기의 상수 추정 방법 |
CN104360171A (zh) * | 2014-11-17 | 2015-02-18 | 长春工程学院 | 永磁同步电机电感参数测量方法 |
CN105353220A (zh) * | 2015-11-26 | 2016-02-24 | 昆明电器科学研究所 | 三相异步电动机电学性能参数的辨识方法 |
CN106610472A (zh) * | 2015-10-23 | 2017-05-03 | 中国电力工程顾问集团华北电力设计院有限公司 | 大型同步发电机异步特性电气参数测辨方法 |
CN106610474A (zh) * | 2015-10-23 | 2017-05-03 | 中国电力工程顾问集团华北电力设计院有限公司 | 基于同步发电机异步旋转频率响应试验的参数测试方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101452054B (zh) * | 2007-12-06 | 2011-02-09 | 台达电子工业股份有限公司 | 三相永磁同步电机基本电气参数的静态测量方法 |
EP2421146B1 (de) * | 2010-08-16 | 2015-02-11 | Baumüller Nürnberg GmbH | Vorrichtung und Verfahren zur drehgeberlosen Identifikation magnetomechanischer Kenngrößen eines Drehstrom-Synchronmotors |
CN102073014B (zh) * | 2011-01-07 | 2013-08-07 | 华北电网有限公司 | 一种同步发电机参数的辨识方法 |
CN102510263B (zh) * | 2011-10-25 | 2014-10-22 | 中国电力科学研究院 | 基于抛载试验和数值差分的同步发电机实用参数辨识方法 |
CN103066913B (zh) * | 2012-12-03 | 2015-04-01 | 苏州汇川技术有限公司 | 永磁同步电机参数识别系统、方法及控制装置 |
CN103472313B (zh) * | 2013-09-29 | 2015-07-08 | 哈尔滨工业大学 | 考虑饱和情况时永磁同步电机交直轴电感测试方法 |
KR101575294B1 (ko) * | 2014-06-02 | 2015-12-21 | 현대자동차 주식회사 | 인버터의 입력단 전압 추정 방법 및 이를 이용한 모터 제어 방법 |
CN104104301B (zh) * | 2014-07-28 | 2017-01-11 | 辽宁工程技术大学 | 一种无速度传感器的内插式永磁同步电机无源控制方法 |
CN106610473B (zh) * | 2015-10-23 | 2019-04-16 | 中国电力工程顾问集团华北电力设计院有限公司 | 基于同步发电机静止频率响应试验的电气参数测试方法 |
JP6559058B2 (ja) * | 2015-12-24 | 2019-08-14 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 制御装置、空気調和装置、制御方法 |
KR101837277B1 (ko) * | 2016-06-17 | 2018-03-09 | 한양대학교 산학협력단 | 영구자석 동기전동기의 인덕턴스 추정 방법 및 그 장치 |
CN108107315B (zh) * | 2017-12-21 | 2021-02-05 | 中国电力科学研究院有限公司 | 一种凸极永磁同步电机定子绕组匝间短路抗干扰故障诊断方法及系统 |
-
2018
- 2018-10-31 CN CN201811289285.XA patent/CN109490774B/zh active Active
-
2019
- 2019-10-31 WO PCT/CN2019/114807 patent/WO2020088604A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1220439A2 (en) * | 2000-12-27 | 2002-07-03 | Honda Giken Kogyo Kabushiki Kaisha | Parameter detection of a DC brushless motor and vector control of that motor |
US20090157336A1 (en) * | 2007-12-17 | 2009-06-18 | Ming-Tsung Chen | Static measuring method of electrical references of three-phase permanent magnet synchronous motor |
KR20090067919A (ko) * | 2007-12-21 | 2009-06-25 | 주식회사 포스콘 | 유도전동기의 상수 추정 방법 |
CN104360171A (zh) * | 2014-11-17 | 2015-02-18 | 长春工程学院 | 永磁同步电机电感参数测量方法 |
CN106610472A (zh) * | 2015-10-23 | 2017-05-03 | 中国电力工程顾问集团华北电力设计院有限公司 | 大型同步发电机异步特性电气参数测辨方法 |
CN106610474A (zh) * | 2015-10-23 | 2017-05-03 | 中国电力工程顾问集团华北电力设计院有限公司 | 基于同步发电机异步旋转频率响应试验的参数测试方法 |
CN105353220A (zh) * | 2015-11-26 | 2016-02-24 | 昆明电器科学研究所 | 三相异步电动机电学性能参数的辨识方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109490774B (zh) | 2020-02-21 |
CN109490774A (zh) | 2019-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Stojčić et al. | Detecting faults in doubly fed induction generator by rotor side transient current measurement | |
Iyer et al. | A novel two-axis theory-based approach towards parameter determination of line-start permanent magnet synchronous machines | |
JP2016073200A (ja) | 永久磁石同期モーターにおける鉄損を決定するための方法及びシステム | |
Martin et al. | Synchronous machine parameter determination using the sudden short-circuit axis currents | |
Maurer et al. | Two full parameter identification methods for synchronous machine applying DC-decay tests for a rotor in arbitrary position | |
Blanquez et al. | New fault-resistance estimation algorithm for rotor-winding ground-fault online location in synchronous machines with static excitation | |
Armando et al. | Flux-decay test: A viable solution to evaluate the induction motor rotor time-constant | |
WO2020088604A1 (zh) | 一种电励磁同步电机动态参数试验测量方法 | |
Yu et al. | Experimental determination of exact equivalent circuit parameters of synchronous machines | |
CN109932648B (zh) | 一种同步电机q轴电感饱和特性试验测量方法 | |
Yamamoto et al. | Prediction of starting performance of PM motors by DC decay testing method | |
Pardo et al. | Detection and location of a ground-fault in the excitation circuit of a 106 MVA synchronous generator by a new on-line method | |
CN115459647A (zh) | 基于等值励磁电动势判据的同步电机失磁保护方法及装置 | |
Banerjee et al. | Online parameter estimation and self commissioning of permanent magnet motor drive | |
Rengifo et al. | Experimental evaluation of the voltage unbalance in the efficiency of induction motors | |
Monaro et al. | Experimental platform for controlled faults on synchronous generator armature windings | |
Naseer et al. | Experimental Determination of Equivalent Circuit Parameters for a Synchronous Generator | |
Bortoni et al. | Revisiting three-phase sudden short-circuit and voltage recovery tests | |
Donolo et al. | Effects of negative sequence voltage on the core losses of induction motors | |
He et al. | Diagnosis of stator short-circuit faults in an IPM synchronous machine using a space-vector pendulous oscillation method | |
Rolek et al. | Estimation of electromagnetic parameters of an induction motor multi-loop equivalent circuit based on the machine inductance frequency characteristic | |
CN109782172A (zh) | 一种同步电机参数试验测量方法 | |
Xu et al. | Sensorless Temperature Estimator of the Rotor for Submersible Motor Based on Input Voltages and Currents | |
Finney et al. | Electromagnetic torque from event report data—A measure of machine performance | |
Despalatovic et al. | On-line hydrogenerator power angle and synchronous reactances determination based on air gap measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19877996 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19877996 Country of ref document: EP Kind code of ref document: A1 |