WO2020088347A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2020088347A1
WO2020088347A1 PCT/CN2019/113128 CN2019113128W WO2020088347A1 WO 2020088347 A1 WO2020088347 A1 WO 2020088347A1 CN 2019113128 W CN2019113128 W CN 2019113128W WO 2020088347 A1 WO2020088347 A1 WO 2020088347A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
sampling points
domain sampling
data block
sub
Prior art date
Application number
PCT/CN2019/113128
Other languages
English (en)
French (fr)
Inventor
颜敏
王光健
林伟
马梦瑶
李彦淳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020088347A1 publication Critical patent/WO2020088347A1/zh
Priority to US17/241,689 priority Critical patent/US11962527B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03248Arrangements for operating in conjunction with other apparatus
    • H04L25/0328Arrangements for operating in conjunction with other apparatus with interference cancellation circuitry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain

Definitions

  • This application relates to the field of communication, and in particular to a communication method and device.
  • High-frequency band wireless communication (that is, high-frequency wireless communication) is one of the hot researches of the current fifth generation (5G) and wireless fidelity (Wi-Fi) communication systems.
  • IEEE802.11ad / ay is a high-frequency wireless communication standard used in wireless local area network (WLAN) communication.
  • the high-frequency communication in the WLAN system works at 60GHz in the millimeter wave band, that is, millimeter wave communication.
  • phase noise has a greater impact on system performance.
  • high-frequency communication requires very high error phase amplitude (EVM), and the effect of phase noise on system performance is more significant.
  • EDM error phase amplitude
  • the frame of a single carrier (SC) physical layer (PHY) of different bonded channels (channel) is generally composed of multiple
  • the data block is composed of multiple guard intervals (GI), where a data block has a GI at both ends.
  • GI guard intervals
  • the phase error of the compensated data part will be large, and the phase cannot be reduced well. Impact of noise on system performance.
  • This application provides a communication method and device for reducing the impact of phase noise on system performance.
  • the present application provides a communication method, which includes: after a transmitter generates a wireless frame, the wireless frame is sent to a receiver; and after the receiver receives the wireless frame from the transmitter, it parses the Wireless frame; wherein, the wireless frame includes: a data block, the data block includes N pilot blocks, M sub-data blocks, and a guard interval GI, wherein every two pilots in the N pilot blocks The frequency blocks are not adjacent, and the GI is located at the end of the data block; 4 ⁇ N ⁇ 8 and N is an integer, M ⁇ N-1 and M is an integer.
  • the receiver can perform phase estimation and compensation through the pilot blocks at both ends of the sub-data block, so that the length of the sub-data block between two adjacent pilot blocks is small, which can reduce The effect of phase noise on system performance.
  • the pilot block is used for phase estimation and compensation. This can achieve channel equalization.
  • the transmitter is an access point and the receiver is a site; or, the transmitter is a site and the receiver is an access point.
  • each of the N pilot blocks includes P pilots, 4 ⁇ P ⁇ 8 and P is an integer. This can achieve better results when reducing the impact of phase noise on system performance.
  • every two sub-data blocks in the M sub-data blocks are not adjacent. In this way, the sub-data blocks can be evenly distributed, which can achieve better results when reducing the impact of phase noise on system performance.
  • the N pilot blocks have the same length. In this way, the pilot blocks can be evenly distributed, the pilot overhead can be reduced, and the average performance of the system can be improved, which can achieve better results when reducing the impact of phase noise on the system performance.
  • the M sub-data blocks have the same length. This can improve the average performance of the system, and can achieve better results when reducing the impact of phase noise on the system performance.
  • the data block includes 512 time-domain sampling points, and the data block includes 4 pilot blocks, 4 sub-data blocks, and 1 GI, where each pilot block contains 4 Pilots, each sub-data block includes 112 time-domain sampling points, and the GI includes 48 time-domain sampling points; or, each pilot block contains 4 pilots, and each sub-data block includes 109 time-domain sampling points ,
  • the GI includes 60 time-domain sampling points; or, each pilot block includes 8 pilots, each sub-data block includes 106 time-domain sampling points, and the GI includes 56 time-domain sampling points.
  • the data block includes 1024 time-domain sampling points, and the data block includes 4 pilot blocks, 4 sub-data blocks, and 1 GI, where each pilot block contains 4 Pilots, each sub-data block includes 224 time-domain sampling points, and the GI includes 112 time-domain sampling points; or, each pilot block contains 4 pilots, and each sub-data block includes 221 time-domain sampling points
  • the GI includes 124 time-domain sampling points; or, each pilot block includes 8 pilots, each sub-data block includes 218 time-domain sampling points, and the GI includes 120 time-domain sampling points.
  • the data block includes 512 time-domain sampling points, and the data block includes 4 sub-data blocks, 3 pilot blocks, and 1 GI, where each pilot block contains 4 Pilot, each sub-data block includes 112 time-domain sampling points, the GI includes 52 time-domain sampling points; or, each pilot block contains 4 pilots, and each sub-data block includes 109 time-domain sampling points
  • the GI includes 64 time-domain sampling points; or, each pilot block includes 8 pilots, and each sub-data block includes 106 time-domain sampling points, and the GI includes 64 time-domain sampling points.
  • the data block includes 1024 time-domain sampling points, and the data block includes 4 sub-data blocks, 3 pilot blocks, and 1 GI, where each pilot block contains 4 Pilot, each sub-data block includes 224 time-domain sampling points, the GI includes 116 time-domain sampling points; or, each pilot block contains 4 pilots, and each sub-data block includes 221 time-domain sampling points , The GI includes 128 time-domain sampling points; or, each pilot block includes 8 pilots, and each sub-data block includes 218 time-domain sampling points, and the GI includes 128 time-domain sampling points.
  • the present application also provides a communication device having the function of implementing the transmitter in the method example of the first aspect described above.
  • the function can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a processing unit and a sending unit, and these units can perform the corresponding functions in the method example of the first aspect described above. See the detailed description in the method example, which is not repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally may also include a memory, the transceiver is used to transmit wireless frames, and communicate with other devices in the communication system (such as a receiver )
  • the processor is configured to support the transmitter to perform the corresponding function in the method of the first aspect.
  • the memory is coupled to the processor, and stores necessary program instructions and data of the communication device.
  • the present application further provides a communication device having the function of implementing the receiver in the method example of the second aspect.
  • the function can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a receiving unit and a processing unit, and these units can perform the corresponding functions in the method example of the first aspect described above. See the detailed description in the method example, which is not repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally may also include a memory, the transceiver is used to receive wireless frames, and communicate with other devices in the communication system (such as a transmitter )
  • the processor is configured to support the receiver to perform the corresponding function in the method of the first aspect.
  • the memory is coupled to the processor, and stores necessary program instructions and data of the communication device.
  • the present application also provides a communication system, which may include at least one transmitter and at least one receiver mentioned above.
  • the present application also provides a computer storage medium that stores computer-executable instructions, which when used by the computer are used to cause the computer to perform any of the above tasks On the one hand.
  • the present application also provides a computer program product containing instructions that, when run on a computer, cause the computer to perform the method of any of the above aspects.
  • the present application further provides a chip system
  • the chip system includes a processor, which is used to support the above-mentioned communication device to realize the functions mentioned in the above-mentioned first or second aspects, for example, generating or processing The radio frame (or information, or data, etc.) involved.
  • the chip system further includes a memory, which is used to store necessary program instructions and data of the communication device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • FIG. 1 is an architectural diagram of a communication system provided by an embodiment of this application
  • FIG. 2 is an exemplary diagram of an internal structure of an AP and a STA provided by an embodiment of this application;
  • FIG. 3 is a flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a wireless frame format provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • 15 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • 16 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • 17 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • 20 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • 21 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • 22 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • FIG. 23 is a schematic diagram of another wireless frame format provided by an embodiment of the present application.
  • 24 is a schematic diagram of a simulation effect analysis provided by an embodiment of the present application.
  • 25 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • 26 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • FIG. 27 is a structural diagram of a communication device according to an embodiment of the present application.
  • Embodiments of the present application provide a communication method and device to reduce the impact of phase noise on system performance.
  • the method and the device described in this application are based on the same inventive concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition is not repeated here.
  • the transmitter is a wireless communication device with a wireless transmission function, and may also have a wireless reception function, a device for generating and transmitting wireless frames, and may be an access point (AP) or a WLAN communication system.
  • a station may also be a base station or terminal device in a cellular communication system.
  • the transmitter may be, but not limited to, a wireless fidelity (WiFi) router, etc., and may support multi-site parallel uplink transmission; when the transmitter is a site
  • the transmitter may be, but not limited to, a computer, a notebook computer, a mobile phone, or virtual reality (Virtual Reality (VR) glasses, etc., devices with wireless communication functions.
  • VR Virtual Reality
  • the receiver is a wireless communication device with a wireless receiving function, and may also have a wireless transmission function, a device for receiving and analyzing wireless frames, may be an AP or STA in a WLAN communication system, or may be a cellular communication system
  • the base station or the terminal device in, wherein, when the transmitter is an AP, the receiver is an STA; or when the transmitter is an STA, the receiver is an AP.
  • the receiver when the receiver is an AP, it may be the same as the AP involved in 1), or when the receiver is an STA, it may be the same as the STA involved in 1), and specific examples can be referred to each other , No more details here.
  • the communication method provided by the embodiment of the present application may be, but not limited to, a wireless local area network (wireless local area networks, WLAN) scenario applied to high-frequency wireless communication.
  • FIG. 1 shows an architecture of a communication system in a possible application scenario to which the communication method provided by an embodiment of the present application is applicable.
  • the architecture of the communication system may include at least one AP and multiple STAs, where the At least one AP and the plurality of STAs can perform wireless communication. specific:
  • the at least one AP is a device deployed in a wireless communication network to provide wireless communication functions for its associated stations.
  • the AP can be used as a hub of the communication system.
  • the AP can be a base station, router, gateway, or repeater. Communication servers, switches, bridges, etc., wherein the base station may include various forms of macro base stations, micro base stations, relay stations, and the like.
  • the AP in FIG. 1 is only shown as a (WiFi) router. Of course, it can also be other AP devices, and this application will not show them one by one.
  • the plurality of STAs may be various user terminals, user devices, access devices, subscriber stations, subscriber units, mobile stations, user agents, user equipment or other names with wireless communication functions, where the user terminals may include various A variety of handheld devices, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to wireless modems with wireless communication functions, as well as various forms of user equipment (UE), mobile stations (MS) , Terminal, terminal equipment, portable communication device, handset, portable computing device, entertainment device, gaming device or system, global positioning system device, or any other suitable device that is configured for network communication via a wireless medium Equipment, etc.
  • FIG. 1 shows a plurality of STAs using a mobile phone as an example. Among them, each AP supports multi-STA parallel uplink transmission.
  • wireless communication is performed between the AP and the STA, and wireless frames are generated and interacted with each other during the communication process.
  • FIG. 2 shows an example of the internal structure of an AP and a STA.
  • the communication result between the AP and the STA can be adjusted by the baseband module to control the radio frequency antenna, thereby achieving multi-user multiple input multiple output , MU MIMO) transmission. among them:
  • the protocol part of the communication negotiation process in the wireless communication process mainly involves the logical link control (LLC) module and the media access control (MAC) layer module in FIG. 2.
  • the control and adjustment of the antenna and beamforming mainly involve the physical layer (PHY) baseband module, radio frequency (RF) module and antenna part.
  • the antenna and the radio frequency module can be a fixed one-to-one connection or a switchable connection.
  • the PHY baseband module mainly implements the signal processing function, that is, performs digital-to-analog or analog-to-digital conversion, and performs transceiver signal processing.
  • the PHY baseband module performs signal processing to generate a reference signal (that is, a radio frame) for measurement, and receives the reference signal, and thus can estimate signal strength, or estimate channel quality, or estimate channel coefficients, and so on.
  • the PHY baseband module can also modulate the signal to the target frequency band or demodulate the received signal.
  • the PHY baseband module is also connected to upper layer protocol modules (for example, LLC module and MAC layer module) to perform packet sealing and unpacking, and to perform the packet transmission and reception sequence agreed by the protocol, which may include sending training frames, receiving training frames, and replying to response frames Wait.
  • upper layer protocol modules for example, LLC module and MAC layer module
  • the radio frequency module is connected to the PHY baseband module.
  • the radio frequency module is used to convert the reference signal (also referred to as baseband signal) generated by the PHY baseband module to the target frequency spectrum (for example, millimeter wave frequency band, or other frequency band), or convert the signal of the target frequency spectrum
  • the baseband signal is transmitted to the PHY baseband module.
  • Multi-antennas are used to transmit, propagate, or receive signals on the target spectrum in specific antenna (or beam) directions.
  • FIG. 1 the architecture of the communication system shown in FIG. 1 is not limited to include only the devices shown in the figure, but may also include other devices not shown in the figure. Specifically, this application will not list them one by one here.
  • the communication system shown in FIG. 1 is only an example, and does not constitute a limitation of the communication system to which the embodiments of the present application can be applied.
  • the communication system architecture shown in FIG. 1 may be a 5G system architecture.
  • the method of the embodiment of the present application may also be applicable to various future communication systems, such as 6G or other communication networks.
  • the communication method provided in the embodiments of the present application may be applicable to IEEE 802.11 system standards, such as the IEEE 802.11ad / ay standard, or its next-generation or next-generation standards, which is not limited in this application.
  • the communication method provided by the embodiments of the present application is applicable to the communication system shown in FIG. 1.
  • the specific flow of the method may include:
  • Step 301 The transmitter generates a wireless frame; wherein the wireless frame includes: a data block, the data block includes N pilot blocks, M sub-data blocks, and a guard interval GI, wherein the N pilot blocks Every two pilot blocks in are not adjacent, the GI is located at the end of the data block; 4 ⁇ N ⁇ 8 and N is an integer, M ⁇ N-1 and M is an integer.
  • the pilot block is used for phase estimation and compensation; in this way, multiple pilot blocks are inserted in the middle of a data block, and phase estimation and compensation can be performed through the pilot blocks at both ends of the sub-data block. In this way, the length of the sub-data block between two adjacent pilot blocks is small, which can reduce the impact of phase noise on the system performance.
  • the GI is also used for phase estimation and compensation. Specifically, that the GI is located at the end of the data block may be understood that the GI is located in the N pilot blocks and after the M sub-data blocks.
  • the two pilot blocks are not adjacent may be understood that the two pilot blocks are divided by at least one sub-data block.
  • Step 302 The transmitter sends the wireless frame to the receiver.
  • Step 303 The receiver parses the wireless frame.
  • the receiver can perform phase estimation and compensation based on the pilot blocks to analyze the radio frame. Since the interval between the pilot blocks is small, the influence of phase noise on the system performance can be reduced.
  • the transmitter is an AP in the communication system shown in FIG. 1 and the receiver is an STA in the communication system shown in FIG. 1; in another possible case, The transmitter is an STA in the communication system shown in FIG. 1, and the receiver is an AP in the communication system shown in FIG.
  • any one radio frame may include at least one data block, and each data block may conform to the structure of the data block provided by the embodiment of the present application.
  • the wireless frame may be constituted in the following manner: the head end of the wireless frame includes a GI, and the GI is referred to as a head end GI for convenience of description, and the head end GI sequentially includes at least A data block, in which the length of the first end GI of the radio frame and the GI included in each data block may be the same or different, which is not limited in this application.
  • the radio frames subsequently referred to in this application can be understood as the radio frames configured in the foregoing configuration manners.
  • any two sub-data blocks may be adjacent or non-adjacent, and the non-adjacent sub-data blocks may be divided by the inserted pilot block.
  • the schematic diagram of the format of the wireless frame may be as shown in FIG. 4, FIG. 5, FIG. 6 or FIG. 7, wherein the wireless frame in any of FIG. 4, FIG. 5, FIG. 6 or FIG. 7
  • the data block 1, data block 2, etc. in the data block have the same composition.
  • the format of the radio frame shown in the above figure is only an illustration of a possible situation, and may also be other formats, which will not be enumerated here in this application.
  • FIG. 5 a schematic diagram of the format of the wireless frame 4, FIG. 5, FIG. 6, or FIG. 7 is illustrated by taking the wireless frame including 2 data blocks as an example, but it should be understood that The data blocks included in the wireless frame may not only be 2, but also one or more (for example, three, four, etc.), which will not be specifically listed here in this application.
  • each of the N pilot blocks may include P pilots, 4 ⁇ P ⁇ 8 and P is an integer. This can achieve better results when reducing the impact of phase noise on system performance.
  • every two sub-data blocks in the M sub-data blocks may not be adjacent.
  • any adjacent two sub-data blocks are separated by a pilot block.
  • the format of each two sub-data blocks in the radio frame can be referred to the figure 4 and the structure of sub-data block 1 and sub-data block 2 in FIG. 5.
  • the N pilot blocks have the same length.
  • the N pilot blocks may all include 4 pilots, 5 pilots, 8 pilots, and so on.
  • the length of one pilot can be understood as that one pilot includes one time-domain sampling point. It should be noted that, in the embodiment of the present application, the unit length of the pilot involved is all one time-domain sampling point. In this way, the effect of phase noise on the system performance can be made much smaller.
  • the length of the M sub-data blocks may be the same.
  • the sub-data blocks in the data block are equivalent to a uniform distribution, which can achieve a better effect in reducing the impact of phase noise on the system performance.
  • the length of the data block may be set to a corresponding fast Fourier transform (FFT) length during data transmission.
  • FFT fast Fourier transform
  • the length of the data block can be understood as that the data block includes 512 time-domain sampling points, or 1024 time-domain sampling points, and so on.
  • the channel bandwidth is 2.16 gigahertz (GHz)
  • the length of the data block is generally 512 time-domain sampling points, but it is not limited to the data block including 512 time-domain sampling points, for example, it may also be a data block Including 1024 time-domain sampling points, that is, a channel bandwidth of 2.16 GHz, and a data block including 1024 time-domain sampling points, the frame structure of the embodiment of the present application may also be used, such as FIG.
  • the data block may include 512 time-domain sampling points, etc., that is, the channel bandwidth is 4.32 GHz, and a data block includes 512 time-domain sampling points, the frame structure of the embodiment of the present application may also be used, such as FIG. 8 to FIG. 11 or FIG. 16 to FIG. 19 The frame structure shown.
  • Example 1 In the format diagram of the wireless frame shown in FIG. 8, the data block includes 512 time-domain sampling points, and the data block includes 4 pilot blocks, 4 sub-data blocks, and 1 GI, each The pilot block contains 4 pilots, each sub-data block includes 112 time domain sampling points, and the GI includes 48 time domain sampling points.
  • the head-end GI of the wireless frame may also include other numbers of time-domain sampling points, for example, 48 time-domain sampling points and 52 time-domain sampling points Wait, this application does not limit this.
  • Example 2 In the schematic diagram of the wireless frame format shown in FIG. 9, the data block includes 512 time-domain sampling points, and the data block includes 4 pilot blocks, 4 sub-data blocks, and 1 GI, each The pilot block contains 4 pilots, each sub-data block includes 109 time-domain sampling points, and the GI includes 60 time-domain sampling points.
  • the head-end GI of the wireless frame may also include other numbers of time-domain sampling points, such as 60 time-domain sampling points, etc. limited.
  • Example 3 In the schematic diagram of the wireless frame format shown in FIG. 10, the data block includes 512 time-domain sampling points, and the data block includes 4 pilot blocks, 4 sub-data blocks, and 1 GI, each The pilot block contains 8 pilots, each sub-data block includes 106 time-domain sampling points, and the GI includes 56 time-domain sampling points.
  • the head-end GI of the wireless frame may also include other numbers of time-domain sampling points, such as 56 time-domain sampling points, etc. limited.
  • Example 4 In the schematic diagram of the wireless frame format shown in FIG. 11, the data block includes 512 time-domain sampling points, and the data block includes 6 pilot blocks, 6 sub-data blocks, and 1 GI
  • the pilot block contains 6 pilots
  • each sub-data block includes 71 time-domain sampling points
  • the GI includes 50 time-domain sampling points.
  • the head-end GI of the wireless frame may also include other numbers of time-domain sampling points, such as 50 time-domain sampling points or 56 time-domain sampling points, etc. The application does not limit this.
  • Example 5 In the schematic diagram of the wireless frame format shown in FIG. 12, the data block includes 1024 time-domain sampling points, and the data block includes 4 pilot blocks, 4 sub-data blocks, and 1 GI, each The pilot block contains 4 pilots, each sub-data block includes 224 time-domain sampling points, and the GI includes 112 time-domain sampling points.
  • the head-end GI of the wireless frame may also include other numbers of time-domain sampling points, such as 112 time-domain sampling points or 116 time-domain sampling points, etc. , This application does not limit this.
  • Example 6 In the schematic diagram of the wireless frame format shown in FIG. 13, the data block includes 1024 time-domain sampling points, and the data block includes 4 pilot blocks, 4 sub-data blocks, and 1 GI, each The pilot block contains 4 pilots, each sub-data block includes 221 time-domain sampling points, and the GI includes 124 time-domain sampling points.
  • the head-end GI of the wireless frame may also include other numbers of time-domain sampling points, such as 126 time-domain sampling points, etc. Not limited.
  • Example 7 In the format diagram of the wireless frame shown in FIG. 14, the data block includes 1024 time-domain sampling points, and the data block includes 4 pilot blocks, 4 sub-data blocks, and 1 GI, each The pilot block contains 8 pilots, each sub-data block includes 218 time domain sampling points, and the GI includes 120 time domain sampling points.
  • the head-end GI of the wireless frame may also include other numbers of time-domain sampling points, such as 120 time-domain sampling points, etc. Not limited.
  • Example 8 In the schematic diagram of the wireless frame format shown in FIG. 15, the data block includes 1024 time-domain sampling points, and the data block includes 5 pilot blocks, 5 sub-data blocks, and 1 GI, each The pilot block contains 5 pilots, each sub-data block includes 181 time-domain sampling points, and the GI includes 94 time-domain sampling points.
  • the head-end GI of the wireless frame may also include other numbers of time-domain sampling points, for example, 94 time-domain sampling points or 99 time-domain sampling points Wait, this application does not limit this.
  • Example 9 In the schematic diagram of the wireless frame format shown in FIG. 16, the data block includes 512 time-domain sampling points, and the data block includes 4 sub-data blocks, 3 pilot blocks, and 1 GI, each The pilot block contains 4 pilots, each sub-data block includes 112 time domain sampling points, and the GI includes 52 time domain sampling points.
  • the number of time-domain sampling points included in the head-end GI of the radio frame in FIG. 15 is similar to that in FIG. 8 and can be referred to each other.
  • Example 10 In a schematic diagram of a wireless frame format shown in FIG. 17, the data block includes 512 time-domain sampling points, and the data block includes 4 sub-data blocks, 3 pilot blocks, and 1 GI, each The pilot block contains 4 pilots, each sub-data block includes 109 time-domain sampling points, and the GI includes 64 time-domain sampling points.
  • the number of time-domain sampling points included in the head-end GI of the wireless frame in FIG. 16 is similar to that in FIG. 9, and can be referred to each other.
  • Example 11 In the schematic diagram of the wireless frame format shown in FIG. 18, the data block includes 512 time-domain sampling points, and the data block includes 4 sub-data blocks, 3 pilot blocks, and 1 GI, each The pilot block contains 8 pilots, each sub-data block includes 106 time-domain sampling points, and the GI includes 64 time-domain sampling points. Among them, the number of time-domain sampling points included in the head-end GI of the wireless frame in FIG. 17 is similar to that in FIG. 10, and can be referred to each other.
  • Example 12 In the schematic diagram of the wireless frame format shown in FIG. 19, the data block includes 512 time-domain sampling points, and the data block includes 5 pilot blocks, 6 sub-data blocks, and 1 GI, each The pilot block contains 6 pilots, each sub-data block includes 71 time-domain sampling points, and the GI includes 56 time-domain sampling points.
  • the number of time-domain sampling points included in the head-end GI of the radio frame in FIG. 18 is similar to that in FIG. 11 and can be referred to each other.
  • Example 13 In the schematic diagram of the wireless frame format shown in FIG. 20, the data block includes 1024 time-domain sampling points, and any one of the data blocks includes 4 sub-data blocks, 3 pilot blocks, and 1 GI, Each pilot block contains 4 pilots, each sub-data block includes 224 time-domain sampling points, and the GI includes 116 time-domain sampling points.
  • the number of time-domain sampling points included in the head end GI of the radio frame in FIG. 20 is similar to that in FIG. 12, and can be referred to each other.
  • Example 14 In the schematic diagram of the wireless frame format shown in FIG. 21, the data block includes 1024 time-domain sampling points, and any one of the data blocks includes 4 sub-data blocks, 3 pilot blocks, and 1 GI, Each pilot block contains 4 pilots, each sub-data block includes 221 time-domain sampling points, and the GI includes 128 time-domain sampling points.
  • the number of time-domain sampling points included in the head-end GI of the radio frame in FIG. 21 is similar to that in FIG. 13 and can be referred to each other.
  • Example 15 In the schematic diagram of the wireless frame format shown in FIG. 22, the data block includes 1024 time-domain sampling points, and any one of the data blocks includes 4 sub-data blocks, 3 pilot blocks, and 1 GI, Each pilot block contains 8 pilots, each sub-data block includes 218 time-domain sampling points, and the GI includes 128 time-domain sampling points.
  • the number of time-domain sampling points included in the head-end GI of the radio frame in FIG. 22 is similar to that in FIG. 14 and can be referred to each other.
  • Example 16 In the schematic diagram of the wireless frame format shown in FIG. 23, the data block includes 1024 time-domain sampling points, and the data block includes 4 pilot blocks, 5 sub-data blocks, and 1 GI, each The pilot block contains 5 pilots, each sub-data block includes 181 time-domain sampling points, and the GI includes 99 time-domain sampling points.
  • the number of time-domain sampling points included in the head-end GI of the radio frame in FIG. 23 is similar to that in FIG. 15 and can be referred to each other.
  • the GIs included in the data blocks described in the above examples 1 to 8 and a neighboring pilot block can synthesize an equivalent GI, and the number of time domain sampling points included in the synthesized equivalent GI respectively correspond to The number of time-domain sampling points included in the GI included in the data blocks described in Example 9 to Example 16 above.
  • the GI included in the data block in Example 1 includes 48 time-domain sampling points
  • the pilot block adjacent to the GI includes 4 pilots.
  • the number of time-domain sampling points included in the pilot block adjacent to the GI after synthesis becomes 52 time-domain sampling points.
  • the synthesis block including 52 time-domain sampling points may be
  • the data block includes a GI equivalent of 52 time-domain sampling points, that is, the synthesized block is used as an equivalent GI. Therefore, it can be understood that when the GI in the data block is adjacent to a pilot block, the synthesis of the GI and the pilot block adjacent to the GI can be regarded as an equivalent GI, and the The equivalent GI is the GI included in the data block.
  • the above embodiment only describes an example where the number of pilot blocks is between 4 and 8, but it can be understood that when the number N of pilot blocks conforms to 4 ⁇ N ⁇ 8, the phase is reduced The effect of noise on the system performance is more prominent, and when N is less than 4 or greater than 8, the impact of phase noise on the system is also reduced relative to the prior art, and the reduction may be smaller, that is, compared with the prior art. There are certain improvements. Therefore, the number N of pilot blocks may also be a value less than 4 or greater than 8, and the principle is the same as when 4 ⁇ N ⁇ 8, which will not be described in detail in this application. Similarly, the number P of pilots included in each pilot block may also be a value less than 4 or greater than 8, which will not be described in detail in this application.
  • the transmitter uses the communication method provided in the embodiment of the present application to generate the wireless frame and then sends the wireless frame to the receiver, and the receiver parses the wireless frame after receiving the wireless frame to implement the transmitter and the Wireless communication between receivers;
  • the wireless frame includes: a data block, the data block includes N pilot blocks, M sub-data blocks, and a guard interval GI, where every two pilot blocks are different Adjacent, the GI is at the end of the data block; 4 ⁇ N ⁇ 8 and N is an integer, M ⁇ N-1 and M is an integer.
  • the phase estimation and compensation can be performed through the pilot blocks at both ends of the sub-data block, so that the length of the sub-data block between two adjacent pilot blocks is small, which can reduce the phase noise Impact on system performance.
  • case 1 corresponds to the frame structure shown in FIG.
  • case 2 corresponds to a data block in 802.11ad including 512 time-domain sampling points, and the data block includes 1 First-end GI (64 time-domain sampling points), 1 sub-data block (448 time-domain sampling points), and 1 end GI (64 time-domain sampling points);
  • Case 3 corresponds to 802.11ay.
  • One data block includes 1024 Time-domain sampling points, the data block includes a first-end GI (128 time-domain sampling points), a sub-data block (896 time-domain sampling points), and an end GI (128 time-domain sampling points) .
  • the embodiments of the present application also provide a communication device, which is applied to a transmitter and can be applied to an AP or STA in the communication system shown in FIG.
  • the communication device 2500 may include: a processing unit 2501 and a sending unit 2502, wherein: the processing unit 2501 is used to generate a wireless frame; wherein, the wireless frame includes: a data block, the data The block includes N pilot blocks, M sub-data blocks and a guard interval GI, where every two pilot blocks are not adjacent, the GI is located at the end of the data block; 4 ⁇ N ⁇ 8 and N is an integer, M ⁇ N-1 and M is an integer; the sending unit 2502 is used to send the wireless frame to a receiver.
  • an embodiment of the present application further provides another communication device, which is applied to a receiver, and can be applied to an AP or STA in the communication system shown in FIG. 1 for implementing as shown in FIG. 3
  • the communication device 2600 may include: a receiving unit 2501 and a processing unit 2602, where:
  • the receiving unit 2601 is configured to receive a wireless frame from a transmitter.
  • the wireless frame includes: a data block, the data block includes N pilot blocks, M sub-data blocks, and a guard interval GI, where the N Every two pilot blocks in the pilot blocks are not adjacent, and the GI is located at the end of the data block; 4 ⁇ N ⁇ 8 and N is an integer, M ⁇ N-1 and M is an integer; the processing unit 2602, used to parse the wireless frame.
  • each of the N pilot blocks involved in the above two communication devices of FIG. 25 and FIG. 26 includes P pilots, 4 ⁇ P ⁇ 8 and P Is an integer.
  • every two sub-data blocks in the M sub-data blocks involved in the above two communication devices of FIG. 25 and FIG. 26 are not adjacent.
  • the N pilot blocks involved in the above two communication devices of FIG. 25 and FIG. 26 have the same length.
  • the M sub-data blocks involved in the two communication devices shown in FIG. 25 and FIG. 26 have the same length.
  • the data blocks involved in the above two communication devices of FIG. 25 and FIG. 26 include 512 time-domain sampling points, and the data block includes 4 pilot blocks, 4 sub-data blocks, and 1 GI, where: each pilot block contains 4 pilots, each sub-data block includes 112 time domain sampling points, the GI includes 48 time domain sampling points; or, each pilot block contains 4 pilots Frequency, each sub-data block includes 109 time-domain sampling points, and the GI includes 60 time-domain sampling points; or, each pilot block includes 8 pilots, and each sub-data block includes 106 time-domain sampling points, The GI includes 56 time-domain sampling points.
  • the data blocks involved in the above two communication devices in FIG. 25 and FIG. 26 include 1024 time-domain sampling points, and the data block includes 4 pilot blocks, 4 sub-data blocks, and 1 GI, where: each pilot block contains 4 pilots, each sub-data block includes 224 time domain sampling points, and the GI includes 112 time domain sampling points; or, each pilot block contains 4 pilots Pilot, each sub-data block includes 221 time-domain sampling points, and the GI includes 124 time-domain sampling points; or, each pilot block contains 8 pilots, and each sub-data block includes 218 time-domain sampling points ,
  • the GI includes 120 time-domain sampling points.
  • the data blocks involved in the above two communication devices of FIG. 25 and FIG. 26 include 512 time-domain sampling points, and the data block includes 4 sub-data blocks, 3 pilot blocks, and 1 GI, where: each pilot block contains 4 pilots, each sub-data block includes 112 time-domain sampling points, and the GI includes 52 time-domain sampling points; or, each pilot block contains 4 pilots Pilot, each sub-data block includes 109 time-domain sampling points, and the GI includes 64 time-domain sampling points; or, each pilot block contains 8 pilots, and each sub-data block includes 106 time-domain sampling points , The GI includes 64 time-domain sampling points.
  • the data blocks involved in the above two communication devices of FIG. 25 and FIG. 26 include 1024 time-domain sampling points, and the data block includes 4 sub-data blocks, 3 pilot blocks, and 1 GI, where: each pilot block contains 4 pilots, each sub-data block includes 224 time-domain sampling points, and the GI includes 116 time-domain sampling points; or, each pilot block contains 4 pilots Pilot, each sub-data block includes 221 time-domain sampling points, and the GI includes 128 time-domain sampling points; or, each pilot block includes 8 pilots, and each sub-data block includes 218 time-domain sampling points , The GI includes 128 time-domain sampling points.
  • the division of the units in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or all or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium , Including several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) or processor to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • an embodiment of the present application further provides a communication device, which is applied to the communication system shown in FIG. 1 and is used to implement the communication method shown in FIG. 3.
  • the communication device 2700 may include a transceiver 2701 and a processor 2702.
  • the communication device 2700 may further include a memory 2703.
  • the processor 2702 may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP, etc.
  • the processor 2702 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the PLD can be a complex programmable logic device (complex programmable logic device (CPLD), field programmable gate array (FPGA), general array logic (GAL) or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field programmable gate array
  • GAL general array logic
  • the transceiver 2701 and the processor 2702 are connected to each other.
  • the transceiver 2701 and the processor 2702 are connected to each other through a bus 2704;
  • the bus 2704 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (Extended Industry Standard, EISA) bus, etc. .
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only a thick line is used in FIG. 27, but it does not mean that there is only one bus or one type of bus.
  • the memory 2703 coupled to the processor 2702, is used to store programs necessary for the communication device.
  • the program may include program code, and the program code includes computer operation instructions.
  • the memory 2703 may include RAM, and may also include a non-volatile memory (non-volatile memory), for example, at least one magnetic disk memory.
  • the processor 2702 executes the application program stored in the memory 2703 to realize the function of the communication device.
  • the communication device shown in FIG. 27 may be used to perform the operation of the transmitter in the embodiment shown in FIG. 3 described above.
  • the processor 2702 is used to generate a wireless frame; wherein the wireless frame includes: a data block, the data block includes N pilot blocks, M sub-data blocks, and a guard interval GI, wherein the N Every two pilot blocks in the pilot blocks are not adjacent, and the GI is located at the end of the data block; 4 ⁇ N ⁇ 8 and N is an integer, M ⁇ N-1 and M is an integer; the transceiver 2701 is used to send the wireless frame to the receiver.
  • the communication device shown in FIG. 27 may be used to perform the operation of the receiver in the embodiment shown in FIG. 3 described above.
  • the transceiver 2701 is used to receive a wireless frame from a transmitter.
  • the wireless frame includes: a data block, the data block includes N pilot blocks, M sub-data blocks, and a guard interval GI, wherein the Every two pilot blocks of the N pilot blocks are not adjacent, and the GI is located at the end of the data block; 4 ⁇ N ⁇ 8 and N is an integer, M ⁇ N-1 and M is an integer; the processing
  • the filter 2702 is used to parse the wireless frame.
  • an embodiment of the present application provides a communication method and device.
  • a transmitter generates a wireless frame and then sends the wireless frame to a receiver, and the receiver parses the wireless frame after receiving it.
  • the wireless frame implements wireless communication between the transmitter and the receiver; wherein the wireless frame includes: a data block, the data block includes N pilot blocks, M sub-data blocks, and one Guard interval GI, where every two pilot blocks are not adjacent, the GI is located at the end of the data block; 4 ⁇ N ⁇ 8 and N is an integer, M ⁇ N-1 and M is an integer.
  • the phase estimation and compensation can be performed through the pilot blocks at both ends of the sub-data block, so that the sub-data block between two adjacent pilot blocks is better
  • the length of the data block between two adjacent GIs is small, so that the phase error of the data portion relative to the prior art can be reduced, thereby reducing the impact of phase noise on system performance.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, the present application may take the form of a computer program product implemented on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processing machine, or other programmable data processing device to produce a machine that enables the generation of instructions executed by the processor of the computer or other programmable data processing device
  • These computer program instructions may also be stored in a computer-readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including an instruction device, the instructions The device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,用以降低相位噪声对系统性能的影响。在该方法中,发射机向接收机发送无线帧,所述接收机解析所述无线帧,实现所述发射机和所述接收机之间的无线通信;其中,所述无线帧包括:一个数据块,所述数据块包括N个导频块、M个子数据块和一个保护间隔GI,其中每两个导频块不相邻,所述GI位于所述数据块末端;4≤N≤8且N为整数,M≥N-1且M为整数。这样可以通过子数据块两端的导频块进行相位估计和补偿,相邻两个导频块之间的子数据块长度小,从而可以降低相位噪声对系统性能的影响。

Description

一种通信方法及装置
本申请要求在2018年10月29日提交中国专利局、申请号为201811268162.8、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法及装置。
背景技术
高频频段的无线通信(也即高频无线通信),是当前第五代(5 generation,5G)和无线保真(wireless-fidelity,Wi-Fi)通信系统的热点研究之一。IEEE 802.11ad/ay是应用在无线局域网(wireless local area networks,WLAN)通信中的高频无线通信标准,WLAN系统中的高频通信工作在毫米波频段的60GHz,也即毫米波通信。在毫米波通信中,相位噪声对系统性能影响较大。尤其是在大带宽,高阶调制系统下,高频通信对误差相位幅度(error vector magnitude,EVM)要求非常高,相位噪声对系统性能的影响更加显著。
支持标准802.11ad/ay的通信系统,在数据传输过程中,不同绑定信道(channel bonding,CB)的单载波(single carrier,SC)物理层(Physical layer,PHY)的帧中一般由多个数据块和多个保护间隔(guard interval,GI)组成,其中,一个数据块前后两端均有一个GI。目前,通常情况下,利用每个数据块前后两端的GI来进行相位估计和补偿,但是由于现有帧格式的限制,得到的补偿的数据部分相位误差会很大,并不能很好地降低相位噪声对系统性能的影响。
发明内容
本申请提供一种通信方法及装置,用以降低相位噪声对系统性能的影响。
第一方面,本申请提供了一种通信方法,该方法包括:发射机生成无线帧后,向接收机发送所述无线帧;所述接收机从所述发射机接收无线帧后,解析所述无线帧;其中,所述无线帧包括:一个数据块,所述数据块包括N个导频块、M个子数据块和一个保护间隔GI,其中所述N个导频块中的每两个导频块不相邻,所述GI位于所述数据块末端;4≤N≤8且N为整数,M≥N-1且M为整数。
通过上述方法,在无线通信的数据传输中,接收机可以通过子数据块两端的导频块进行相位估计和补偿,这样相邻两个导频块之间的子数据块长度小,从而可以降低相位噪声对系统性能的影响。
在一种可能的设计中,所述导频块用于进行相位估计和补偿。这样可以实现信道均衡。
在一种可能的设计中,所述发射机为接入点,且所述接收机为站点;或者,所述发射机为站点,且所述接收机为接入点。
在一种可能的设计中,所述N个导频块中的每个导频块包含P个导频,4≤P≤8且P为整数。这样可以在降低相位噪声对系统性能的影响时,达到较好的效果。
在一种可能的设计中,所述M个子数据块中的每两个子数据块不相邻。这样可以使子 数据块分布均匀,进而可以在降低相位噪声对系统性能的影响时,达到较好的效果。
在一种可能的设计中,所述N个导频块长度相同。这样可以使导频块分布均匀,降低导频开销,提升系统平均性能,进而可以在降低相位噪声对系统性能的影响时,达到较好的效果。
在一种可能的设计中,所述M个子数据块长度相同。这样可以提升系统平均性能,可以在降低相位噪声对系统性能的影响时,达到较好的效果。
在一种可能的设计中,所述数据块包括512个时域采样点,所述数据块包括4个导频块、4个子数据块和1个GI,其中:每个导频块包含4个导频,每个子数据块包括112个时域采样点,所述GI包括48个时域采样点;或者,每个导频块包含4个导频,每个子数据块包括109个时域采样点,所述GI包括60个时域采样点;或者,每个导频块包含8个导频,每个子数据块包括106个时域采样点,所述GI包括56个时域采样点。
通过上述方法,可以在降低相位噪声对系统性能的影响时,达到较好的效果。
在一种可能的设计中,所述数据块包括1024个时域采样点,所述数据块包括4个导频块、4个子数据块和1个GI,其中:每个导频块包含4个导频,每个子数据块包括224个时域采样点,所述GI包括112个时域采样点;或者,每个导频块包含4个导频,每个子数据块包括221个时域采样点,所述GI包括124个时域采样点;或者,每个导频块包含8个导频,每个子数据块包括218个时域采样点,所述GI包括120个时域采样点。
通过上述方法,可以在降低相位噪声对系统性能的影响时,达到较好的效果。
在一种可能的设计中,所述数据块包括512个时域采样点,所述数据块包括4个子数据块、3个导频块和1个GI,其中:每个导频块包含4个导频,每个子数据块包括112个时域采样点,所述GI包括52个时域采样点;或者,每个导频块包含4个导频,每个子数据块包括109个时域采样点,所述GI包括64个时域采样点;或者,每个导频块包含8个导频,每个子数据块包括106个时域采样点,所述GI包括64个时域采样点。
通过上述方法,可以在降低相位噪声对系统性能的影响时,达到较好的效果。
在一种可能的设计中,所述数据块包括1024个时域采样点,所述数据块包括4个子数据块、3个导频块和1个GI,其中:每个导频块包含4个导频,每个子数据块包括224个时域采样点,所述GI包括116个时域采样点;或者,每个导频块包含4个导频,每个子数据块包括221个时域采样点,所述GI包括128个时域采样点;或者,每个导频块包含8个导频,每个子数据块包括218个时域采样点,所述GI包括128个时域采样点。
通过上述方法,可以在降低相位噪声对系统性能的影响时,达到较好的效果。
第二方面,本申请还提供了一种通信装置,该通信装置具有实现上述第一方面方法实例中发射机的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括处理单元和发送单元,这些单元可以执行上述第一方面方法示例中的相应功能,参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还可以包括存储器,所述收发器用于发送无线帧,以及与通信系统中的其他设备(例如接收机)进行通信交互,所述处理器被配置为支持所述发射机执行上述第一方面方法中相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第三方面,本申请还提供了一种通信装置,该通信装置具有实现上述第二方面方法实例中接收机的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括接收单元和处理单元,这些单元可以执行上述第一方面方法示例中的相应功能,参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还可以包括存储器,所述收发器用于接收无线帧,以及与通信系统中的其他设备(例如发射机)进行通信交互,所述处理器被配置为支持所述接收机执行上述第一方面方法中相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第四方面,本申请还提供了一种通信系统,所述通信系统可以包括上述提及的至少一个发射机和至少一个接收机等。
第五方面,本申请还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行上述任一方面的方法。
第六方面,本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方面的方法。
第七方面,本申请还提供了一种芯片系统,该芯片系统包括处理器,用于支持上述通信装置实现上述第一方面或第二方面中所涉及的功能,例如,生成或处理上述方法中所涉及的无线帧(或信息,或数据等)。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存通信装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1为本申请实施例提供的一种通信系统的架构图;
图2为本申请实施例提供的一种AP和STA的内部结构示例图;
图3为本申请实施例提供的一种通信方法的流程图;
图4为本申请实施例提供的一种无线帧的格式示意图;
图5为本申请实施例提供的另一种无线帧的格式示意图;
图6为本申请实施例提供的另一种无线帧的格式示意图;
图7为本申请实施例提供的另一种无线帧的格式示意图;
图8为本申请实施例提供的另一种无线帧的格式示意图;
图9为本申请实施例提供的另一种无线帧的格式示意图;
图10为本申请实施例提供的另一种无线帧的格式示意图;
图11为本申请实施例提供的另一种无线帧的格式示意图;
图12为本申请实施例提供的另一种无线帧的格式示意图;
图13为本申请实施例提供的另一种无线帧的格式示意图;
图14为本申请实施例提供的另一种无线帧的格式示意图;
图15为本申请实施例提供的另一种无线帧的格式示意图;
图16为本申请实施例提供的另一种无线帧的格式示意图;
图17为本申请实施例提供的另一种无线帧的格式示意图;
图18为本申请实施例提供的另一种无线帧的格式示意图;
图19为本申请实施例提供的另一种无线帧的格式示意图;
图20为本申请实施例提供的另一种无线帧的格式示意图;
图21为本申请实施例提供的另一种无线帧的格式示意图;
图22为本申请实施例提供的另一种无线帧的格式示意图;
图23为本申请实施例提供的另一种无线帧的格式示意图;
图24为本申请实施例提供的一种仿真效果分析示意图;
图25为本申请实施例提供的一种通信装置的结构示意图;
图26为本申请实施例提供的另一种通信装置的结构示意图;
图27为本申请实施例提供的一种通信装置的结构图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种通信方法及装置,用以降低相位噪声对系统性能的影响。其中,本申请所述方法和装置基于同一发明构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、发射机,为具有无线发送功能的无线通信装置,还可以具有无线接收功能,为无线帧的生成并发送的设备,可以为WLAN通信系统中的接入点(access point,AP)或者站点(station,STA),还可以为蜂窝通信系统中的基站或者终端设备。其中,当所述发射机为接入点时,所述发射机可以但不限于为无线保真(wireless fidelity,WiFi)路由器等,可以支持多站点并行上行传输;当所述发射机为站点时,所述发射机可以但不限于为计算机、笔记本电脑、手机或者虚拟现实((virtual reality,VR)眼镜等等具有无线通信功能的设备。
2)、接收机,为具有无线接收功能的无线通信装置,还可以具有无线发送功能,为无线帧的接收并解析的设备,可以为WLAN通信系统中的AP或者STA,还可以为蜂窝通信系统中的基站或者终端设备,其中,当发射机为AP时,所述接收机为STA;或者当所述发射机为STA时,所述接收机为AP。具体的,在本申请中,所述接收机为AP时,与1)中涉及的AP可以相同,或者所述接收机为STA时,与1)中涉及的STA可以相同,具体举例可以相互参见,此处不再赘述。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。字符“/”一般表示前后关联对象是一种“或”的关系。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供 的通信方法及装置进行详细说明。
本申请实施例提供的通信方法可以但不限于应用于高频无线通信下的无线局域网(wireless local area networks,WLAN)场景。例如,图1示出了本申请实施例提供的通信方法适用的一种可能的应用场景下的通信系统的架构,所述通信系统的架构中可以包括至少一个AP和多个STA,其中所述至少一个AP与所述多个STA之间可以进行无线通信。具体的:
所述至少一个AP,是一种部署在无线通信网络中为其关联的站点提供无线通信功能的装置,AP可用作该通信系统的中枢,AP可以为基站、路由器、网关、中继器,通信服务器,交换机或网桥等,其中,所述基站可以包括各种形式的宏基站,微基站,中继站等。例如,图1中AP仅以(WiFi)路由器示出,当然,还可以是其他AP设备,本申请不再一一示出。所述多个STA,可以是各种具有无线通信功能的用户终端、用户装置,接入装置,订户站,订户单元,移动站,用户代理,用户装备或其他名称,其中,用户终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),终端(terminal),终端设备(terminal equipment),便携式通信设备,手持机,便携式计算设备,娱乐设备,游戏设备或系统,全球定位系统设备或被配置为经由无线介质进行网络通信的任何其他合适的设备等等。例如图1中以手机为例示出了多个STA。其中,每个AP均支持多STA并行上行传输。
在本申请实施例中,AP和STA之间进行无线通信,在通信过程中分别生成无线帧并相互交互。例如,图2示出了AP和STA的内部结构示例,AP和STA之间的通信结果可以通过基带模块调整射频控制天线,从而达到多用户多入多出(multi-user multiple-input multiple-output,MU MIMO)传输。其中:
无线通信过程中的通信协商流程协议部分主要涉及的是图2中的逻辑链路控制(logical link control,LLC)模块和媒体接入控制(media access control,MAC)层模块。天线的控制与调整及波束成形主要涉及的是物理层(port physical layer,PHY)基带模块、射频(radio frequency,RF)模块以及天线部分。天线和射频模块间可为固定的一对一连接,也可为可切换(switchable)的连接。
PHY基带模块主要实现的是信号处理功能,即进行数字到模拟或模拟到数字的转换,并进行收发信号处理。PHY基带模块进行信号处理可生成供测量的参考信号(也即无线帧),并接收参考信号,进而可以估计信号强度,或估计信道质量,或估计信道系数等。PHY基带模块还可以将信号调制到目标频段或解调接收到的信号。PHY基带模块还与上层的协议模块(例如,LLC模块和MAC层模块)连接,进行包的封包和解包,以及执行协议约定的包收发序列,可以包括发送训练帧,接收训练帧,回复响应帧等。
射频模块与PHY基带模块相连,射频模块用于将PHY基带模块生成的参考信号(也可以称为基带信号)变换到目标频谱(例如毫米波频段,或其他频段),或将目标频谱的信号变换到基带信号传输给PHY基带模块。
多天线用于将目标频谱上的信号以特定天线(或波束)方向进行发送传播或接收捕获。
需要说明的是,图1所示的通信系统的架构中不限于仅包含图中所示的设备,还可以包含其它未在图中表示的设备,具体本申请在此处不再一一列举。
需要说明的是,图1所示的通信系统仅仅作为示例,并不构成本申请实施例能够适用 的通信系统的限定。图1所示的通信系统架构可以为5G系统架构,本申请实施例的方法还可以适用于未来的各种通信系统,例如6G或者其他通信网络等。本申请实施例的提供的通信方法可以适用于IEEE 802.11系统标准,例如IEEE802.11ad/ay标准,或其下一代或更下一代的标准中,本申请对此不作限定。
本申请实施例提供的一种通信方法,适用于如图1所示的通信系统。参阅图3所示,该方法的具体流程可以包括:
步骤301、发射机生成无线帧;其中,所述无线帧包括:一个数据块,所述数据块包括N个导频块、M个子数据块和一个保护间隔GI,其中所述N个导频块中的每两个导频块不相邻,所述GI位于所述数据块末端;4≤N≤8且N为整数,M≥N-1且M为整数。
在一种实施方式中,所述导频块用于进行相位估计和补偿;这样,在一个数据块中间插入多个导频块,可以通过子数据块两端的导频块进行相位估计和补偿,这样相邻两个导频块之间的子数据块长度小,从而可以降低相位噪声对系统性能的影响。
其中,所述GI也用于进行相位估计和补偿。具体的,所述GI位于所述数据块的末端可以理解为所述GI位于所述N个导频块,所述M个子数据块之后。
其中,两个导频块不相邻可以理解为这两个导频块被至少一个子数据块分割开。
步骤302、所述发射机向接收机发送所述无线帧。
步骤303、所述接收机解析所述无线帧。
接收机可基于导频块进行相位估计和补偿,从而解析该无线帧,由于导频块之间的间隔小,因此可以降低相位噪声对系统性能的影响。
在一种可能的情况中,所述发射机为图1所示的通信系统中的AP,且所述接收机为图1所示的通信系统中的STA;在另一种可能的情况中,所述发射机为图1所示的通信系统中的STA,且所述接收机为图1所示的通信系统中的AP。
应理解,任一个无线帧可以包括至少一个数据块,每一个数据块均可以符合本申请实施例提供的所述数据块的结构。在一种可选的实现方式中,所述无线帧的构成可以为以下方式:所述无线帧的首端包括一个GI,该GI为描述方便称为首端GI,该首端GI后边依次包括至少一个数据块,其中无线帧的首端GI与每一个数据块中包括的GI的长度可以相同,也可以不相同,本申请对此不作限定。需要说明的是,本申请后续涉及的无线帧,均可以理解为上述构成方式构成的无线帧。
无线帧的一个数据块中,任意两个子数据块可以相邻,也可以不相邻,不相邻的子数据块可以被插入的导频块分割开。例如,所述无线帧的格式(frame format)示意图可以如图4、图5、图6或者图7所示,其中,图4、图5、图6或者图7中任一个图中的无线帧中的数据块1、数据块2等等数据块的构成相同。当然,上述图中所示的无线帧的格式只是可能的情况的示意,还可能是其他格式,本申请此处不再一一列举。需要说明的,为方便示出,在本申请实施例中无线帧的格式示意图4、图5、图6或者图7中均以无线帧包括了2个数据块为例进行示意,但是应理解,无线帧中包括的数据块不仅仅可以为2个,还可以为1个或者其他多个(例如3个,4个等等),本申请此处不再具体一一列举。
在一种可选的实施方式中,所述N个导频块中的每个导频块可以包含P个导频,4≤P≤8且P为整数。这样可以在降低相位噪声对系统性能的影响时,达到较好的效果。
在一种可能的设计中,所述M个子数据块中的每两个子数据块可以均不相邻。在这种 情况下,在一个数据块中,任意相邻的两个子数据块之间均被一个导频块间隔开,例如,每两个子数据块在所述无线帧中的格式,可以参考图4和图5中子数据块1和子数据块2的结构。
在一种具体的实现方式中,所述N个导频块长度相同。例如,所述N个导频块中可以均包括4个导频、5个导频、8个导频等等。其中,1个导频的长度可以理解为是1个导频包括1个时域采样点,需要说明的是,在本申请实施例中,涉及的导频的单位长度均为1个时域采样点。这样,可以使相位噪声对系统性能的影响小的多。
在一种具体的实现方式中,所述M个子数据块长度可以相同。这样,所述数据块中的子数据块相当于均匀分布,可以在降低相位噪声对系统性能的影响方面达到较好的效果。
在一种可选的实施方式中,所述数据块的长度可以设置为数据传输时对应的快速傅立叶变换(fast fourier transformation,FFT)长度。例如,所述数据块的长度可以理解为是所述数据块包括512个时域采样点,或者1024个时域采样点等等。例如,在信道带宽为2.16吉赫(GHz)时,所述数据块的长度一般是512个时域采样点,但也不限于数据块包括512个时域采样点,例如,还可以是数据块包括1024个时域采样点等,即信道带宽为2.16GHz,一个数据块包括1024个时域采样点时,也可以采用本申请实施例的帧结构,例如图12至图15或图20至图23所示的帧结构;在信道带宽为4.32GHz,所述数据块的长度一般是1024个时域采样点,但也不限于数据块包括1024个时域采样点,例如,可以是数据块包括512个时域采样点等,即信道带宽为4.32GHz,一个数据块包括512个时域采样点时,也可以采用本申请实施例的帧结构,例如图8至图11或图16至图19所示的帧结构。
以下,基于上述介绍,以具体的示例,对所述数据块的结构进行示例性说明(其中,每个示例中以无线帧中包括了3个数据块进行示例性说明):
示例1、如图8所示的无线帧的格式示意图中,所述数据块包括512个时域采样点,所述数据块包括4个导频块、4个子数据块和1个GI,每个导频块包含4个导频,每个子数据块包括112个时域采样点,所述GI包括48个时域采样点。其中,在图8中,无线帧的首端GI除了包括64个时域采样点以外,还可以是包括其它个数的时域采样点,例如48个时域采样点,52个时域采样点等等,本申请对此不作限定。
示例2、如图9所示的无线帧的格式示意图中,所述数据块包括512个时域采样点,所述数据块包括4个导频块、4个子数据块和1个GI,每个导频块包含4个导频,每个子数据块包括109个时域采样点,所述GI包括60个时域采样点。其中,在图9中,无线帧的首端GI除了包括64个时域采样点以外,还可以包括其它个数的时域采样点,例如60个时域采样点等等,本申请对此不作限定。
示例3、如图10所示的无线帧的格式示意图中,所述数据块包括512个时域采样点,所述数据块包括4个导频块、4个子数据块和1个GI,每个导频块包含8个导频,每个子数据块包括106个时域采样点,所述GI包括56个时域采样点。其中,在图10中,无线帧的首端GI除了包括64个时域采样点以外,还可以包括其它个数的时域采样点,例如56个时域采样点等等,本申请对此不作限定。
示例4、如图11所示的无线帧的格式示意图中,所述数据块包括512个时域采样点,所述数据块包括6个导频块、6个子数据块和1个GI,每个导频块包含6个导频,每个子数据块包括71个时域采样点,所述GI包括50个时域采样点。其中,在图11中,无线帧的首端GI除了包括64个时域采样点以外,还可以包括其它个数的时域采样点,例如50 个时域采样点或者56个时域采样点等等,本申请对此不作限定。
示例5、如图12所示的无线帧的格式示意图中,所述数据块包括1024个时域采样点,所述数据块包括4个导频块、4个子数据块和1个GI,每个导频块包含4个导频,每个子数据块包括224个时域采样点,所述GI包括112个时域采样点。其中,在图12中,无线帧的首端GI除了包括128个时域采样点以外,还可以包括其它个数的时域采样点,例如112时域采样点或者116个时域采样点等等,本申请对此不作限定。
示例6、如图13所示的无线帧的格式示意图中,所述数据块包括1024个时域采样点,所述数据块包括4个导频块、4个子数据块和1个GI,每个导频块包含4个导频,每个子数据块包括221个时域采样点,所述GI包括124个时域采样点。其中,在图13中,无线帧的首端GI除了可以包括128个时域采样点以外,还可以包括其它个数的时域采样点,例如126个时域采样点等等,本申请对此不作限定。
示例7、如图14所示的无线帧的格式示意图中,所述数据块包括1024个时域采样点,所述数据块包括4个导频块、4个子数据块和1个GI,每个导频块包含8个导频,每个子数据块包括218个时域采样点,所述GI包括120个时域采样点。其中,在图14中,无线帧的首端GI除了可以包括128个时域采样点以外,还可以包括其它个数的时域采样点,例如120个时域采样点等等,本申请对此不作限定。
示例8、如图15所示的无线帧的格式示意图中,所述数据块包括1024个时域采样点,所述数据块包括5个导频块、5个子数据块和1个GI,每个导频块包含5个导频,每个子数据块包括181个时域采样点,所述GI包括94个时域采样点。其中,在图15中,无线帧的首端GI除了可以包括128个时域采样点以外,还可以包括其它个数的时域采样点,例如94个时域采样点或者99个时域采样点等等,本申请对此不作限定。
示例9、如图16所示的无线帧的格式示意图中,所述数据块包括512个时域采样点,所述数据块包括4个子数据块、3个导频块和1个GI,每个导频块包含4个导频,每个子数据块包括112个时域采样点,所述GI包括52个时域采样点。其中,在图15中无线帧的首端GI包括的时域采样点的个数与图8中类似,可以相互参见。
示例10、如图17所示的无线帧的格式示意图中,所述数据块包括512个时域采样点,所述数据块包括4个子数据块、3个导频块和1个GI,每个导频块包含4个导频,每个子数据块包括109个时域采样点,所述GI包括64个时域采样点。其中,在图16中无线帧的首端GI包括的时域采样点的个数与图9中类似,可以相互参见。
示例11、如图18所示的无线帧的格式示意图中,所述数据块包括512个时域采样点,所述数据块包括4个子数据块、3个导频块和1个GI,每个导频块包含8个导频,每个子数据块包括106个时域采样点,所述GI包括64个时域采样点。其中,在图17中无线帧的首端GI包括的时域采样点的个数与图10中类似,可以相互参见。
示例12、如图19所示的无线帧的格式示意图中,所述数据块包括512个时域采样点,所述数据块包括5个导频块、6个子数据块和1个GI,每个导频块包含6个导频,每个子数据块包括71个时域采样点,所述GI包括56个时域采样点。其中,其中,在图18中无线帧的首端GI包括的时域采样点的个数与图11中类似,可以相互参见。
示例13、如图20所示的无线帧的格式示意图中,所述数据块包括1024个时域采样点,所述任一个数据块包括4个子数据块、3个导频块和1个GI,每个导频块包含4个导频,每个子数据块包括224个时域采样点,所述GI包括116个时域采样点。在图20中无线帧 的首端GI包括的时域采样点的个数与图12中类似,可以相互参见。
示例14、如图21所示的无线帧的格式示意图中,所述数据块包括1024个时域采样点,所述任一个数据块包括4个子数据块、3个导频块和1个GI,每个导频块包含4个导频,每个子数据块包括221个时域采样点,所述GI包括128个时域采样点。在图21中无线帧的首端GI包括的时域采样点的个数与图13中类似,可以相互参见。
示例15、如图22所示的无线帧的格式示意图中,所述数据块包括1024个时域采样点,所述任一个数据块包括4个子数据块、3个导频块和1个GI,每个导频块包含8个导频,每个子数据块包括218个时域采样点,所述GI包括128个时域采样点。在图22中无线帧的首端GI包括的时域采样点的个数与图14中类似,可以相互参见。
示例16、如图23所示的无线帧的格式示意图中,所述数据块包括1024个时域采样点,所述数据块包括4个导频块、5个子数据块和1个GI,每个导频块包含5个导频,每个子数据块包括181个时域采样点,所述GI包括99个时域采样点。在图23中无线帧的首端GI包括的时域采样点的个数与图15中类似,可以相互参见。
可以理解的是,上述示例1到示例8中所述数据块包含的GI与其相邻的一个导频块可以合成一个等效GI,合成的等效GI包括的时域采样点的个数分别对应上述示例9至示例16中所述数据块包含的GI包括的时域采样点的个数。例如,示例1中所述数据块包含的GI包括的时域采样点的个数为48个时域采样点,与所述GI相邻的导频块包含4个导频,将所述GI和与所述GI相邻的导频块合成后包括的时域采样点的个数变为52个时域采样点,此时可以将包括52个时域采样点的合成块与示例9中的所述数据块包含的包括52个时域采样点的GI等效,即将所述合成块作为一个等效GI。因此,可以理解为,当所述数据块中的GI与一个导频块相邻时,可以将所述GI和与所述GI相邻的导频块合成看作一个等效GI,将所述等效GI作为所述数据块包括的GI。
需要说明的是,上述实施例中仅仅描述了所述导频块的个数在4到8之间的示例,但是可以理解,导频块的个数N符合4≤N≤8时,降低相位噪声对系统性能的影响效果比较突出,而在N小于4或者大于8时,相对于现有技术相位噪声对系统的影响同样有所降低,可能降低的较小,也就是相对于现有技术仍有一定改进。因此,导频块的个数N同样可以是小于4或者大于8中的一个值,原理与4≤N≤8时相同,本申请此处不再详细描述。同理,每个导频块包括的导频的个数P同样可以是小于4或者大于8中的一个值,本申请此处不再详细描述。
采用本申请实施例提供的通信方法,发射机生成无线帧后向接收机发送所述无线帧,所述接收机接收到所述无线帧后解析所述无线帧,实现所述发射机和所述接收机之间的无线通信;其中,所述无线帧包括:一个数据块,所述数据块包括N个导频块、M个子数据块和一个保护间隔GI,其中每两个导频块不相邻,所述GI位于所述数据块末端;4≤N≤8且N为整数,M≥N-1且M为整数。通过上述方法,在无线通信的数据传输中,可以通过子数据块两端的导频块进行相位估计和补偿,这样相邻两个导频块之间的子数据块长度小,从而可以降低相位噪声对系统性能的影响。
基于以上实施例,以下通过发射机和接收机采用上述示例13中的无线帧的格式进行无线通信的情况(例如图24中情况1所示),与现有技术中标准802.11ad中的无线帧的格式进行无线通信的情况(例如图24中情况2所示)以及现有技术中标准802.11ay中的无 线帧的格式进行无线通信的情况(例如图24中情况3所示)下的相位噪声对系统性能的影响进行简单对比:其中情况1对应本申请实施例中的图20所示的帧结构;情况2对应802.11ad中一个数据块包括512个时域采样点,该数据块包括1个首端GI(64个时域采样点),1个子数据块(448个时域采样点),以及1个末端GI(64个时域采样点);情况3对应802.11ay中一个数据块包括1024个时域采样点,该数据块包括1个首端GI(128个时域采样点),1个子数据块(896个时域采样点),以及1个末端GI(128个时域采样点)。
如图24中所示的,可以看出通常情况下在信号功率和噪声功率的比值相同时(例如图中的20分贝(decibel,dB)、20.5dB等),情况1中的无线帧的错误率明显低于情况2和情况3中的无线帧的错误率,也就是说情况1中的系统性能明显好于情况2和情况3中的系统性能。因此,通过上述对比分析,明显可以看出采用本申请实施例提供的方法相对于现有技术可以降低相位噪声对系统性能的影响。
基于以上实施例,本申请实施例还提供了一种通信装置,所述通信装置应用于发射机,可以应用于如图1所示的通信系统中的AP或者STA,用于实现如图3所示的通信方法。参阅图25所示,该通信装置2500可以包括:处理单元2501和发送单元2502,其中:所述处理单元2501,用于生成无线帧;其中,所述无线帧包括:一个数据块,所述数据块包括N个导频块、M个子数据块和一个保护间隔GI,其中每两个导频块不相邻,所述GI位于所述数据块末端;4≤N≤8且N为整数,M≥N-1且M为整数;所述发送单元2502,用于向接收机发送所述无线帧。
基于以上实施例,本申请实施例还提供了另一种通信装置,所述通信装置应用于接收机,可以应用于如图1所示的通信系统中的AP或者STA,用于实现如图3所示的通信方法。参阅图26所示,该通信装置2600可以包括:接收单元2501和处理单元2602,其中:
所述接收单元2601,用于从发射机接收无线帧,所述无线帧包括:一个数据块,所述数据块包括N个导频块、M个子数据块和一个保护间隔GI,其中所述N个导频块中的每两个导频块不相邻,所述GI位于所述数据块末端;4≤N≤8且N为整数,M≥N-1且M为整数;所述处理单元2602,用于解析所述无线帧。
在一种可选的实施方式中,上述图25和图26两种通信装置中涉及的所述N个导频块中的每个导频块包含P个导频,4≤P≤8且P为整数。
在一种可能的设计中,上述图25和图26两种通信装置中涉及的所述M个子数据块中的每两个子数据块不相邻。
在一种可选的方式中,上述图25和图26两种通信装置中涉及的所述N个导频块长度相同。
在一种可选的方式中,上述图25和图26两种通信装置中涉及的所述M个子数据块长度相同。
在一种可能的设计中,上述图25和图26两种通信装置中涉及的所述数据块包括512个时域采样点,所述数据块包括4个导频块、4个子数据块和1个GI,其中:每个导频块包含4个导频,每个子数据块包括112个时域采样点,所述GI包括48个时域采样点;或者,每个导频块包含4个导频,每个子数据块包括109个时域采样点,所述GI包括60个时域采样点;或者,每个导频块包含8个导频,每个子数据块包括106个时域采样点,所述GI包括56个时域采样点。
在另一种可能的设计中,上述图25和图26两种通信装置中涉及的所述数据块包括1024个时域采样点,所述数据块包括4个导频块、4个子数据块和1个GI,其中:每个导频块包含4个导频,每个子数据块包括224个时域采样点,所述GI包括112个时域采样点;或者,每个导频块包含4个导频,每个子数据块包括221个时域采样点,所述GI包括124个时域采样点;或者,每个导频块包含8个导频,每个子数据块包括218个时域采样点,所述GI包括120个时域采样点。
在又一种可能的设计中,上述图25和图26两种通信装置中涉及的所述数据块包括512个时域采样点,所述数据块包括4个子数据块、3个导频块和1个GI,其中:每个导频块包含4个导频,每个子数据块包括112个时域采样点,所述GI包括52个时域采样点;或者,每个导频块包含4个导频,每个子数据块包括109个时域采样点,所述GI包括64个时域采样点;或者,每个导频块包含8个导频,每个子数据块包括106个时域采样点,所述GI包括64个时域采样点。
在又一种可能的设计中,上述图25和图26两种通信装置中涉及的所述数据块包括1024个时域采样点,所述数据块包括4个子数据块、3个导频块和1个GI,其中:每个导频块包含4个导频,每个子数据块包括224个时域采样点,所述GI包括116个时域采样点;或者,每个导频块包含4个导频,每个子数据块包括221个时域采样点,所述GI包括128个时域采样点;或者,每个导频块包含8个导频,每个子数据块包括218个时域采样点,所述GI包括128个时域采样点。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种通信装置,所述通信装置应用于如图1所示的通信系统,用于实现如图3所示的通信方法。参阅图27所示,所述通信装置2700可以包括:收发器2701和处理器2702,可选的,所述通信装置2700还可以包括存储器2703。其中,处理器2702可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合等等。处理器2702还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其 任意组合。处理器2702在实现上述功能时,可以通过硬件实现,当然也可以通过硬件执行相应的软件实现。
收发器2701和处理器2702之间相互连接。可选的,收发器2701和处理器2702通过总线2704相互连接;总线2704可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图27中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器2703,与处理器2702耦合,用于存放通信装置必要的程序等。例如,程序可以包括程序代码,该程序代码包括计算机操作指令。存储器2703可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。处理器2702执行存储器2703所存放的应用程序,实现通信装置的功能。
在一个实施例中,图27所示的通信装置可用于执行上述图3所示的实施例中的发射机的操作。例如:所述处理器2702用于生成无线帧;其中,所述无线帧包括:一个数据块,所述数据块包括N个导频块、M个子数据块和一个保护间隔GI,其中所述N个导频块中的每两个导频块不相邻,所述GI位于所述数据块末端;4≤N≤8且N为整数,M≥N-1且M为整数;所述收发器2701用于向接收机发送所述无线帧。
在另一个实施例中,图27所示的通信装置可用于执行上述图3所示的实施例中的接收机的操作。例如:所述收发器2701用于从发射机接收无线帧,所述无线帧包括:一个数据块,所述数据块包括N个导频块、M个子数据块和一个保护间隔GI,其中所述N个导频块中的每两个导频块不相邻,所述GI位于所述数据块末端;4≤N≤8且N为整数,M≥N-1且M为整数;所述处理器2702用于解析所述无线帧。
其中,本申请提供的通信装置中的技术方案的具体描述可以参见上述图3所示的实施例中的相关描述,重复之处此处不再赘述。
综上所述,通过本申请实施例提供一种通信方法及装置,在该方法中,发射机生成无线帧后向接收机发送所述无线帧,所述接收机接收到所述无线帧后解析所述无线帧,实现所述发射机和所述接收机之间的无线通信;其中,所述无线帧包括:一个数据块,所述数据块包括N个导频块、M个子数据块和一个保护间隔GI,其中每两个导频块不相邻,所述GI位于所述数据块末端;4≤N≤8且N为整数,M≥N-1且M为整数。通过上述方法,在无线通信的数据传输中,可以通过子数据块两端的导频块进行相位估计和补偿,这样相邻两个导频块之间的子数据块要比现有技术中的相邻两个GI之间的数据块长度小,这样相对于现有技术得到的数据部分相位误差可以降低,从而可以降低相位噪声对系统性能的影响。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流 程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种通信方法,其特征在于,包括:
    发射机生成无线帧;其中,所述无线帧包括:一个数据块,所述数据块包括N个导频块、M个子数据块和一个保护间隔GI,其中所述N个导频块中的每两个导频块不相邻,所述GI位于所述数据块末端;4≤N≤8且N为整数,M≥N-1且M为整数;
    所述发射机向接收机发送所述无线帧。
  2. 一种通信方法,其特征在于,包括:
    接收机从发射机接收无线帧,所述无线帧包括:一个数据块,所述数据块包括N个导频块、M个子数据块和一个保护间隔GI,其中所述N个导频块中的每两个导频块不相邻,所述GI位于所述数据块末端;4≤N≤8且N为整数,M≥N-1且M为整数;
    所述接收机解析所述无线帧。
  3. 如权利要求1或2所述的方法,其特征在于,所述N个导频块中的每个导频块包含P个导频,4≤P≤8且P为整数。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述M个子数据块中的每两个子数据块不相邻。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述N个导频块长度相同。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述M个子数据块长度相同。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述数据块包括512个时域采样点,所述数据块包括4个导频块、4个子数据块和1个GI,其中:
    每个导频块包含4个导频,每个子数据块包括112个时域采样点,所述GI包括48个时域采样点;或者
    每个导频块包含4个导频,每个子数据块包括109个时域采样点,所述GI包括60个时域采样点;或者
    每个导频块包含8个导频,每个子数据块包括106个时域采样点,所述GI包括56个时域采样点。
  8. 如权利要求1-6任一项所述的方法,其特征在于,所述数据块包括1024个时域采样点,所述数据块包括4个导频块、4个子数据块和1个GI,其中:
    每个导频块包含4个导频,每个子数据块包括224个时域采样点,所述GI包括112个时域采样点;或者
    每个导频块包含4个导频,每个子数据块包括221个时域采样点,所述GI包括124个时域采样点;或者
    每个导频块包含8个导频,每个子数据块包括218个时域采样点,所述GI包括120 个时域采样点。
  9. 如权利要求1-6任一项所述的方法,其特征在于,所述数据块包括512个时域采样点,所述数据块包括4个子数据块、3个导频块和1个GI,其中:
    每个导频块包含4个导频,每个子数据块包括112个时域采样点,所述GI包括52个时域采样点;或者
    每个导频块包含4个导频,每个子数据块包括109个时域采样点,所述GI包括64个时域采样点;或者
    每个导频块包含8个导频,每个子数据块包括106个时域采样点,所述GI包括64个时域采样点。
  10. 如权利要求1-6任一项所述的方法,其特征在于,所述数据块包括1024个时域采样点,所述数据块包括4个子数据块、3个导频块和1个GI,其中:
    每个导频块包含4个导频,每个子数据块包括224个时域采样点,所述GI包括116个时域采样点;或者
    每个导频块包含4个导频,每个子数据块包括221个时域采样点,所述GI包括128个时域采样点;或者
    每个导频块包含8个导频,每个子数据块包括218个时域采样点,所述GI包括128个时域采样点。
  11. 一种通信装置,所述通信装置应用于发射机,其特征在于,包括:
    处理单元,用于生成无线帧;其中,所述无线帧包括:一个数据块,所述数据块包括N个导频块、M个子数据块和一个保护间隔GI,其中所述N个导频块中的每两个导频块不相邻,所述GI位于所述数据块末端;4≤N≤8且N为整数,M≥N-1且M为整数;
    发送单元,用于向接收机发送所述无线帧。
  12. 一种通信装置,所述通信装置应用于接收机,其特征在于,包括:
    接收单元,用于从发射机接收无线帧,所述无线帧包括:一个数据块,所述数据块包括N个导频块、M个子数据块和一个保护间隔GI,其中所述N个导频块中的每两个导频块不相邻,所述GI位于所述数据块末端;4≤N≤8且N为整数,M≥N-1且M为整数;
    处理单元,用于解析所述无线帧。
  13. 如权利要求11或12所述的装置,其特征在于,所述N个导频块中的每个导频块包含P个导频,4≤P≤8且P为整数。
  14. 如权利要求11-13任一项所述的装置,其特征在于,所述M个子数据块中的每两个子数据块不相邻。
  15. 如权利要求11-14任一项所述的装置,其特征在于,所述N个导频块长度相同。
  16. 如权利要求11-15任一项所述的装置,其特征在于,所述M个子数据块长度相同。
  17. 如权利要求11-16任一项所述的装置,其特征在于,所述数据块包括512个时域采样点,所述数据块包括4个导频块、4个子数据块和1个GI,其中:
    每个导频块包含4个导频,每个子数据块包括112个时域采样点,所述GI包括48个时域采样点;或者
    每个导频块包含4个导频,每个子数据块包括109个时域采样点,所述GI包括60个时域采样点;或者
    每个导频块包含8个导频,每个子数据块包括106个时域采样点,所述GI包括56个时域采样点。
  18. 如权利要求11-16任一项所述的装置,其特征在于,所述数据块包括1024个时域采样点,所述数据块包括4个导频块、4个子数据块和1个GI,其中:
    每个导频块包含4个导频,每个子数据块包括224个时域采样点,所述GI包括112个时域采样点;或者
    每个导频块包含4个导频,每个子数据块包括221个时域采样点,所述GI包括124个时域采样点;或者
    每个导频块包含8个导频,每个子数据块包括218个时域采样点,所述GI包括120个时域采样点。
  19. 如权利要求11-16任一项所述的装置,其特征在于,所述数据块包括512个时域采样点,所述数据块包括4个子数据块、3个导频块和1个GI,其中:
    每个导频块包含4个导频,每个子数据块包括112个时域采样点,所述GI包括52个时域采样点;或者
    每个导频块包含4个导频,每个子数据块包括109个时域采样点,所述GI包括64个时域采样点;或者
    每个导频块包含8个导频,每个子数据块包括106个时域采样点,所述GI包括64个时域采样点。
  20. 如权利要求11-16任一项所述的装置,其特征在于,所述数据块包括1024个时域采样点,所述数据块包括4个子数据块、3个导频块和1个GI,其中:
    每个导频块包含4个导频,每个子数据块包括224个时域采样点,所述GI包括116个时域采样点;或者
    每个导频块包含4个导频,每个子数据块包括221个时域采样点,所述GI包括128个时域采样点;或者
    每个导频块包含8个导频,每个子数据块包括218个时域采样点,所述GI包括128个时域采样点。
  21. 一种装置,其特征在于,用于实现权利要求1至10中任一项所述的方法。
  22. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器存储指令,当所述指令被所述处理器指示时,使得所述通信装置执行权利要求1至10 中任一项所述的方法。
  23. 一种计算机存储介质,其特征在于,所述计算机存储介质中存储有可执行指令,所述计算机可执行指令在被处理器调用时用于使所述处理器执行权利要求1至10中任一项所述的方法。
  24. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求1至10中任一项所述的方法。
PCT/CN2019/113128 2018-10-29 2019-10-24 一种通信方法及装置 WO2020088347A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/241,689 US11962527B2 (en) 2018-10-29 2021-04-27 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811268162.8A CN111106911B (zh) 2018-10-29 2018-10-29 一种通信方法及装置
CN201811268162.8 2018-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/241,689 Continuation US11962527B2 (en) 2018-10-29 2021-04-27 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020088347A1 true WO2020088347A1 (zh) 2020-05-07

Family

ID=70419854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113128 WO2020088347A1 (zh) 2018-10-29 2019-10-24 一种通信方法及装置

Country Status (3)

Country Link
US (1) US11962527B2 (zh)
CN (1) CN111106911B (zh)
WO (1) WO2020088347A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547094A (zh) * 2016-06-29 2018-01-05 华为技术有限公司 一种信号传输方法及装置
WO2018013639A2 (en) * 2016-07-14 2018-01-18 Intel Corporation Apparatus, system and method of communicating a transmission according to a symbol block structure and guard interval (gi) scheme
CN107925424A (zh) * 2015-08-14 2018-04-17 高通股份有限公司 在动态导频和零音调模式选择的情况下的相位噪声估计

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881948B2 (ja) * 2006-06-23 2012-02-22 パナソニック株式会社 無線送信装置、無線受信装置、およびデータ生成方法
WO2009045135A1 (en) * 2007-10-04 2009-04-09 Telefonaktiebolaget Lm Ericsson (Publ) Pilot design for tdd ofdm systems
CN101997803B (zh) * 2009-08-20 2013-01-30 清华大学 数字信号的块传输方法及系统
US9019921B2 (en) * 2012-02-22 2015-04-28 Lg Electronics Inc. Method and apparatus for transmitting data between wireless devices in wireless communication system
US20160330059A1 (en) * 2015-05-07 2016-11-10 Qualcomm Incorporated Distributed pilots for single carrier transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925424A (zh) * 2015-08-14 2018-04-17 高通股份有限公司 在动态导频和零音调模式选择的情况下的相位噪声估计
CN107547094A (zh) * 2016-06-29 2018-01-05 华为技术有限公司 一种信号传输方法及装置
WO2018013639A2 (en) * 2016-07-14 2018-01-18 Intel Corporation Apparatus, system and method of communicating a transmission according to a symbol block structure and guard interval (gi) scheme

Also Published As

Publication number Publication date
CN111106911A (zh) 2020-05-05
US11962527B2 (en) 2024-04-16
CN111106911B (zh) 2023-03-28
US20210250147A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
US10411776B2 (en) Beamforming training using multiple-input and multiple-output transmission scheme
US9602182B2 (en) Baseband processing apparatus in radio communication system and radio communication
CA3042834A1 (en) Communication method, communications apparatus, network device, and terminal
US10841025B2 (en) Methods, systems, and computer readable media for testing a central unit using a distributed unit emulation
CN108476499B (zh) 无线网络中相同链路方向的子帧部分之间的保护时段
US11664876B2 (en) Method and device for training downlink beams
US20190123991A1 (en) Systems and Methods for a Sounding Frame in an IEEE 802.11AX Compliant Network
CN107637007A (zh) 用于覆盖增强的系统和方法
US11528671B2 (en) Frame structure to support long distance transmission
JP2022553031A (ja) 無線通信システムにおける基地局のラジオユニットのリソースを管理するための装置及び方法
WO2019041854A1 (zh) 一种发送波束优化协议包的方法及设备
US20180248600A1 (en) Wideband sector sweep using wideband training (trn) field
WO2020078320A1 (zh) 通信方法和通信装置
US11005545B2 (en) Base station and control method thereof
WO2020088347A1 (zh) 一种通信方法及装置
US20240015537A1 (en) Method for csi and beam report enhancement for multi-trp full duplex
TWI752368B (zh) 一種無線通信方法及相關裝置
WO2024016837A1 (zh) 一种通信方法及装置
US20240146370A1 (en) Asymmetric coordinated beamforming
WO2023044742A1 (en) Srs collision handling
US20230216566A1 (en) Cmr and imr configuration enhancement for multi-trp csi-rs reporting
WO2023056611A1 (en) Prioritization mechanism for srs antenna port switching
WO2019128890A1 (zh) 一种数据传输方法及设备
KR20220142154A (ko) 무선 통신 시스템에서 시간 정렬 오차(timing alignment error, TAE)에 기반하여 통신을 수행하기 위한 장치 및 방법
WO2019109483A1 (zh) 一种通信的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880131

Country of ref document: EP

Kind code of ref document: A1