WO2020087797A1 - 无极性低压断路器 - Google Patents

无极性低压断路器 Download PDF

Info

Publication number
WO2020087797A1
WO2020087797A1 PCT/CN2019/074046 CN2019074046W WO2020087797A1 WO 2020087797 A1 WO2020087797 A1 WO 2020087797A1 CN 2019074046 W CN2019074046 W CN 2019074046W WO 2020087797 A1 WO2020087797 A1 WO 2020087797A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
static
bridge
moving
static contact
Prior art date
Application number
PCT/CN2019/074046
Other languages
English (en)
French (fr)
Inventor
吴锦松
薛建和
韩骁勇
Original Assignee
厦门安达兴电气集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门安达兴电气集团有限公司 filed Critical 厦门安达兴电气集团有限公司
Publication of WO2020087797A1 publication Critical patent/WO2020087797A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H73/00Protective overload circuit-breaking switches in which excess current opens the contacts by automatic release of mechanical energy stored by previous operation of a hand reset mechanism
    • H01H73/02Details
    • H01H73/18Means for extinguishing or suppressing arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H73/00Protective overload circuit-breaking switches in which excess current opens the contacts by automatic release of mechanical energy stored by previous operation of a hand reset mechanism
    • H01H73/02Details
    • H01H73/04Contacts

Definitions

  • the invention relates to the technical field of electrical switch, in particular to a non-polar low-voltage circuit breaker.
  • the arc generated by the switch breaks must be introduced into the arc extinguishing chamber under the action of an external magnetic field by means of arc starting plates, arc starting plates, etc., which not only increases the cost of materials, but also increases the cost of manual assembly.
  • the permanent magnets can only be partially fixed.
  • the polarity of the magnetic field needs to be set in advance according to the polarity of the power supply used to facilitate arc blowing. Therefore, it can only be made with polar blowing
  • the arc characteristics limit its application field.
  • the purpose of the present invention is to provide a non-polar low-voltage circuit breaker to overcome the problem that the prior art cannot achieve reliable arc starting and arc extinguishing effects without considering the polarity, thus improving the safety of use.
  • the present invention adopts the following technical solutions:
  • a non-polar low-voltage circuit breaker includes an operating mechanism, two sets of static contact assemblies, a bridge-type moving contact assembly, and two arc-extinguishing chambers.
  • the bridge-type moving contact assembly is opposite to the static contact assembly, and the two sets of static contacts.
  • the head components are the input and output static contact groups, and the bridge type dynamic contact component cooperates with the two groups of static contact components to form left and right dynamic and static contact breaks.
  • the left and right dynamic and static contact fractures are close to the matching arc extinguishing chamber; the operating mechanism controls the bridge
  • the movable contact assembly is in contact with or separated from the two sets of static contact assemblies at the same time, so as to realize the closing or opening of the circuit breaker; when the circuit is broken, the arc formed between the left and right movable contact breaks, due to its current
  • the self-excitation magnetic fields generated in the opposite directions repel each other, prompting the arcs on the left and right fractures to be introduced into the two arc extinguishing chambers to achieve arc extinction.
  • the bridge type moving contact assembly directly leads to the left and right static contacts of the two sets of static contact assemblies.
  • the bridge type moving contact assembly includes left and right moving contacts, and the left and right moving contacts are matched with the left and right
  • the static contacts form a left and a static contact assembly and a right and a static contact assembly.
  • the path of the dynamic and static contacts in each dynamic and static contact assembly is partially designed such that the current direction of the dynamic and static contacts is opposite when conducting electricity, and the circuit breaker is switched off. In the road, the electric repulsion force generated by the moving and static contacts due to the opposite direction of the current pushes the bridge type moving contact assembly away from the static contact assembly quickly.
  • the two sets of static contact assemblies are left and right static contact assemblies, and the left and right static contact assemblies respectively extend an inclined arc guide surface toward the corresponding arc extinguishing chamber, and both ends of the bridge type dynamic contact assembly
  • the arc guiding surfaces on the left and right static contact assemblies each extend an inclined arc guiding surface into the left and right arc extinguishing chambers.
  • the bridge-type moving contact assembly includes a contact bridge, and the left static contact assembly and the right static contact assembly are each provided with a conductive arm parallel to the contact bridge, and the current directions on the two conductive arms are the same and The direction of the current on the contact bridge is opposite.
  • the conductive arms of the left and right static contact assemblies are provided with a static contact immediately adjacent to the adjacent arc extinguishing chamber, the static contact is directly opposite the contact bridge, and the two static contacts on the contact bridge are provided.
  • the operation mechanism includes a moving contact bracket connected to the bridge type moving contact assembly.
  • the moving contact bracket is located between the left and right static contact assemblies, and the moving contact bracket slides up and down to drive the bridge type moving contact.
  • the head assembly is in contact with or separated from the static contact assembly.
  • each of the left and right moving contacts of the bridge type moving contact assembly is provided with a spring, and the bridge type moving contact assembly, the two springs and the moving contact bracket form an overtravel structure After the moving contact bracket moves upward and drives the bridge type moving contact assembly to contact the left and right static contact assemblies, continue to move up the contact bracket.
  • the moving contact bracket compresses two springs, and the two springs are bridge type moving contacts. The closure of the head assembly and the static contact assembly provides reliable contact pressure.
  • the left and right arc extinguishing chambers are connected by an arc inducing plate, and the movable contact bracket is provided with a position avoidance hole at the position of the arc inducing plate, one end of a conductive spring abuts the arc inducing plate, and the other end Abutting to the bridge type moving contact assembly through the position avoiding hole.
  • the movable contact bracket is provided with a vertically placed main compression spring.
  • the main compression spring is compressed and stored as a storage required for driving the movable contact and the static contact to break Can stretch.
  • the structure of the non-polar low-voltage circuit breaker provided by the present invention is also suitable for non-polar miniature circuit breakers, and has the following beneficial effects:
  • the circuit breaker has two switch fractures and two arc extinguishing chambers.
  • the two switch fractures are connected in series.
  • the arc energy generated is shared by the two fractures, and the arc extinguishment is undertaken by the two arc extinction chambers. , Conducive to rapid arc extinction.
  • the switch fracture of the present invention is close to the arc extinguishing chamber, and the movable and static contact assemblies are provided with arc guiding slopes extending to the arc extinguishing chamber.
  • the arcs generated by the two fractures repel each other under the action of the arc self-excitation magnetic field and follow the guide
  • the arc slope quickly enters the arc extinguishing chamber to extinguish the arc, realizing the true non-polar arc blowing characteristic, making the non-polar low-voltage circuit breaker suitable for circuits in all fields.
  • the direction of the current on the two static contact assemblies is opposite to the direction of the current on the bridge type moving contact assembly.
  • the electromotive force generated by the current repels each other, by using mutually parallel conductive arms and contact bridges
  • the structure makes the dynamic and static contacts generate the largest electric repulsion when breaking the fault current, so that the bridge type dynamic contact assembly quickly leaves the static contact assembly, and its short breaking time is beneficial to the extinguishment of the arc.
  • the two springs can also be replaced by one spring leaf.
  • the spring leaf type or two spring type overtravel mechanisms are used. When the spring leaf or two springs are compressed, the two ends of the bridge moving contact assembly are simultaneously stressed, so that the two The contact points of the dynamic and static contacts are balanced and the contact is reliable.
  • FIG. 1 shows an overall schematic view of the closed state of the case of the circuit breaker of Embodiment 1;
  • FIG. 3 shows an internal front view of the circuit breaker of the embodiment 1 in a closed state
  • FIG. 4 shows an internal perspective schematic view of the circuit breaker of the embodiment 1 in the off state
  • Example 5 shows a schematic diagram of the current direction when the circuit breaker of Example 1 generates a fault current
  • FIG. 6 shows a schematic diagram of the arc extinguishing principle of the circuit breaker of Embodiment 1, and the two arcs generated between the dynamic and static contacts repel each other in the direction of the arrow;
  • FIG. 7 is a schematic diagram showing the disconnection of the dynamic and static contacts of the circuit breaker of Embodiment 2;
  • FIG. 9 shows a schematic diagram of closing the dynamic and static contacts of the circuit breaker of Embodiment 2.
  • the structure of the non-polar low-voltage circuit breaker according to the present invention is also suitable for non-polar miniature circuit breakers.
  • the non-polar low-voltage circuit breaker provided by the present invention mainly includes: a plastic casing and left and right wiring clip assemblies placed therein, an operating mechanism, a magnetic trip system, a thermal trip system, Bridge type dynamic contact assembly 16, two sets of static contact assemblies and two arc extinguishing chambers.
  • the casing includes the base 1 and the upper cover 29, and all the internal parts of the circuit breaker take the base 1 and the upper cover 29 as the installation reference.
  • the left terminal clamp assembly 30 is connected to the thermal trip system and the power supply
  • the right terminal clamp assembly 13 is connected to the magnetic trip system and the load.
  • the magnetic trip system and the thermal trip system pass through the bridge type movable contact assembly 16 and the static contact assembly
  • the closing of 15 realizes the electrical connection.
  • the bridge-type moving contact assembly 16 is disposed opposite to the static contact assemblies 15, 21, and the two arc extinguishing chambers are bilaterally symmetrical with respect to the bridge-type moving contact assembly 16 and the static contact assemblies 15, 21.
  • the bridge type dynamic contact assembly 16 is arranged opposite to the static contact assemblies 15, 21, the two sets of static contact assemblies 15, 21 are input and output static contact assemblies respectively, and the bridge type dynamic contact assembly 16 and the two sets of static contacts The components 15 and 21 cooperate to form the left and right dynamic and static contact breaks.
  • the operating mechanism controls the bridge type dynamic contact assembly 16 to contact the two sets of static contact assemblies 15, 21 at the same time or Separation, so as to realize the closing or opening of the circuit breaker; when the circuit is opened, the arc formed between the left and right dynamic and static contact fractures repels each other due to the self-excitation magnetic field generated by the opposite direction of the current, which promotes the arc of the left and right fractures Introduce two arc extinguishing chambers to achieve arc extinction.
  • the bridge-type moving contact assembly 16 leads directly to the two sets of static contact assemblies 15, 21 left and right static contacts.
  • the bridge-type moving contact assembly 16 includes left and right moving contacts, and the left and right moving contacts are matched with the left
  • the right static contact forms the left and right static contact assembly 36 and the right dynamic and static contact assembly 37.
  • the path of the dynamic and static contacts in each assembly is partially designed such that the current direction of the dynamic and static contacts is opposite when conducting, and the circuit breaker opens During the circuit, the electric repulsion force generated by the moving and static contacts due to the opposite direction of the current pushes the bridge-type moving contact assembly 16 away from the static contact assembly quickly.
  • the bridge-type moving contact assembly 16 includes a contact bridge 26, and two ends of a side of the contact bridge 26 facing the static contact assembly are respectively provided with a moving contact 24 close to the arc extinguishing chamber.
  • the left and right ends of the contact bridge 26 extend into the left and right arc extinguishing chambers 12 and 14 respectively, and the extended portion is an inclined arc guiding surface 27.
  • a spring piece 17 is fixed on the side of the contact bridge 26 facing away from the moving contact, and the stress points at both ends of the spring piece 17 are located at or close to the two moving contacts 24 respectively.
  • the static contact assembly includes a left static contact assembly 15 and a right static contact assembly 21.
  • the left static contact assembly is connected to a power source through a thermal trip system
  • the right static contact assembly is connected to a load through a magnetic trip system.
  • Both the left stationary contact assembly 15 and the right stationary contact assembly 21 are provided with a section of conductive arms 32, 33 parallel to the contact bridge 26.
  • the current directions on the two conductive arms are the same and opposite to the current directions on the contact bridge.
  • Each conductive arm is provided with an arc guiding surface which extends obliquely to the adjacent arc extinguishing chamber, and each conductive arm is provided with a static contact 23 corresponding to an adjacent moving contact 24 on the contact bridge 26.
  • the moving and static contact assemblies form two switch breaks.
  • the arcs generated by the two switch breaks quickly enter the arc extinguishing chamber along the inclined arc guide surface to extinguish the arc.
  • the direction of the current is opposite.
  • the electromotive force generated by the currents of the bridge-type moving contact assembly and the static contact assembly mutually repel each other, pushing the bridge-type moving contact assembly away from the static contact assembly quickly.
  • the short time is conducive to the extinguishment of the arc.
  • the operating mechanism mainly includes a handle 5, a handle return spring 4, a lever 6, a lock lever 8 and a moving contact bracket 18, and a link shaft 3 is used to articulate between the handle 5 and the lever 6 and between the lever 6 and the moving contact bracket 18 ,
  • the lock lever is fixed on the base through a rotating shaft and connected with the lever.
  • the lock lever is also linked with an indicator 7, and the circuit breaker is in the open or closed state by observing the indication information of the indicator 7.
  • a groove is provided in the movable contact bracket 18, and the main compression spring 20 is vertically placed in the groove, and the limiting block 28 on the base 1 extends into the groove, the upper end of the main compression spring 20 pushes against the limiting block 28, The lower end resists pushing the contact bracket 18.
  • the contact bridge 26 and the spring piece 17 of the bridge-type moving contact assembly 16 pass through the end of the moving contact holder 18.
  • the operating mechanism drives the moving contact bracket 18 to move up and down, so that the bridge type moving contact assembly 16 simultaneously contacts or separates from the left stationary contact assembly 15 and the right stationary contact assembly 21, thereby closing or opening the circuit breaker.
  • the main compression spring is compressed and stored as the energy storage elastic force required to drive the moving contact and the static contact to break.
  • the main compression spring rebounds and pushes The contact leaves the static contact.
  • the bottoms of the left and right arc extinguishing chambers 12 and 14 are connected by an arc inducing plate, and the movable contact holder 18 is provided with a position avoiding hole at the position of the arc inducing plate.
  • One end of a conductive spring 19 abuts the arc-leading plate, and the other end contacts the spring piece 17 through the avoidance hole.
  • the two ends of the conductive spring 19 always abut the arc-leading respectively ⁇ ⁇ ⁇ 17 ⁇ Plate and spring 17.
  • the thermal tripping system includes a bimetal 25, a trip lever 2 and the like.
  • the bimetal 25 is connected to the left static contact 15 assembly through a wire.
  • the trip lever 2 is rotatably fixed on the base and is realized by a locking surface Support the lock lever.
  • the magnetic tripping system includes a coil 9, a magnetic core assembly 10, a yoke 11 and a magnetic tripping push rod 22.
  • the coil 9 has one end connected to the right static contact assembly 21 and the other end connected to the right terminal clamp assembly 13.
  • the magnetic force generated by the coil drives the magnetic tripping push rod to move toward the tripping rod, and pushes the tripping rod 2 to rotate to unlock the tripping rod and the locking rod.
  • the lock lever After the lock lever is unlocked, it rotates downward and drives the operating system to disconnect the dynamic and static contacts.
  • the bridge type moving contact assembly 16, the spring piece 17 and the moving contact bracket 18 together constitute an overtravel structure. After the bridge moving contact assembly 16 moves upward to contact with the static contact assembly, it continues to move the moving contact bracket 18 upward. Then the moving contact bracket 18 compresses the spring piece 17. When the spring piece 17 is compressed, the force on both ends of the spring piece 17 is balanced. The force points on the two ends of the spring piece 17 are located at or close to the two moving contacts 24, which ensures that the force of the two moving contacts 24 is balanced and is a static contact.
  • the closing of the components 15, 21 and the bridge type moving contact component 16 provides reliable contact pressure and over-travel elasticity for ensuring electrical contact.
  • the operating handle 5 When the switch is off, the operating handle 5 is rotated clockwise. Under the drive of the link shaft 3, the lever 6 is rotated counterclockwise, and the contact bracket 18 is pulled upward to move the bridge type movable contact assembly 16 and the static contact. The head assembly contacts, closing the circuit. After the circuit is closed, the moving contact holder 18 continues to move upward and compresses the spring piece 17, and the overtravel structure ensures that the bridge moving contact assembly 16 has sufficient pressure to reliably contact the static contact assemblies 15, 21.
  • the switch When the switch is closed, when the line is overloaded or short-circuited, the switch is automatically opened. Specifically: when overloaded, the bimetal 25 bends overheating and pushes the top of the trip lever 2 to rotate clockwise; when short-circuited, the coil 9 generates a strong magnetic field, and the moving iron core inside the magnetic core assembly 10 moves to the left, and The magnetic tripping push rod 22 fixedly connected to the moving iron core pushes the tripping lever 2 to the left, so that the tripping lever 2 rotates clockwise. As the trip lever 2 rotates clockwise, the latch lever 8 is separated from the trip lever 2, the latch lever 8 loses its support surface, and it rotates counterclockwise under the action of the energy stored in the main compression spring.
  • the main compression spring 20 rebounds and pushes the moving contact bracket 18 downward, driving the bridge-type moving contact assembly 16 and the static contact assembly 15 apart, thereby disconnecting the circuit.
  • the operating handle 5 is rotated counterclockwise under the action of the handle return spring 4 to reset.
  • the bridge type movable contact assembly 16 and the static contact assemblies 15 and 21 extend to the arc guiding surface of the arc extinguishing chamber, so that the arc 31 moves along the oblique surface in the arc extinguishing chamber, which elongates the arc and facilitates the extinguishment of the arc.
  • the special design of the static contact assemblies 15, 21 ensures that the direction of the fault current on the static contact assemblies 15, 21 is always opposite to the direction of the fault current on the bridge-type movable contact assembly 16, as shown in FIG. 5.
  • Electric repulsive force is generated between the conductive arms 32 and 33 and the contact bridge 26 of the bridge-type moving contact assembly, which pushes the bridge-type moving contact assembly 16 to quickly separate from the static contact assemblies 15, 21 to realize the breaking circuit.
  • the conductive arms 32, 33 and the contact bridge 26 are parallel to each other to maximize the electric repulsion.
  • Example 2 The difference between Example 2 and Example 1 is that two springs 34 are used to replace the spring piece 17 described in Example 1, as shown in FIGS. 7 and 9, the two springs 34 are located on the contact bridge and the moving contact. Between the head bracket 18 and under the two moving contacts respectively, the bridge type moving contact assembly 16, the two springs 34 and the moving contact bracket 18 constitute a contact overtravel mechanism, which has better stability. After the moving contact bracket moves up and drives the bridge type moving contact assembly to contact the left and right static contact assemblies, continue to move up the contact bracket, the moving contact bracket compresses two springs, and the two springs are bridge type moving contacts The closure of the assembly and the static contact assembly provides reliable contact pressure. The upper end of the conductive spring 19 passes through the position avoiding hole on the moving contact bracket 18 and contacts the contact bridge 26.
  • a link 35 is added to the trip lever 2, and the link 35 connects the trip lever 2 and the lock lever 8.
  • This low-voltage circuit breaker adopts a bridge type double-break switch structure and is equipped with two arc-extinguishing chambers.
  • the contact bridge of the bridge type movable contact assembly 16 is parallel to the conductive arms of the contact assemblies 15, 21, the bridge type movable contact assembly moves in the vertical direction, the bridge type movable contact assembly 16 and the static contact assemblies 15, 21 All are provided with inclined arc guiding structure.
  • a bridge overtravel mechanism composed of a bridge-type moving contact assembly 16, a spring piece 17 (or two springs 34) and a moving contact holder 18 is used.

Abstract

本发明公开一种无极性低压断路器,涉及电器开关技术领域,包括操作机构、两组静触头组件、桥式动触头组件和两个灭弧室,桥式动触头组件与静触头组件相对设置,两组静触头组件分别为输入、输出静触头组,桥式动触头组件与两组静触头组件配合形成左、右动静触头断口,所述的左、右动静触头断口紧靠相配合的灭弧室;开断电路时,左、右动静触头断口之间形成的电弧,由于其电流方向相反所产生的自励磁场相互排斥,促使左右断口的电弧自行导入两个灭弧室实现熄弧。本发明断路器具有两个开关断口和两个灭弧室,两个开关断口串联,当开断电路时,产生的电弧能量由两个断口分担,熄弧由两个灭弧室分别承担,有利于快速熄弧。

Description

无极性低压断路器 技术领域
本发明涉及电器开关技术领域,特别是涉及一种无极性低压断路器。
背景技术
现有的低压断路器通常只有一个开关断口,该开关断口由一个旋转的动触头与一个静触头组成,对应开关断口配置有一个灭弧室。开断电路时,所有的电弧能量均由这一个断口开断并且由这一个灭弧室熄弧,其熄弧能力弱,这种结构限制了断路器的分断能力。
开关断口与灭弧室有一段距离,这个距离一般在6~12mm之间,开断电路产生电弧后,需要通过引弧板、引弧片等将电弧引入灭弧室熄灭,导致燃弧时间长、熄弧过程慢、动静触头烧蚀等各种问题,严重影响断路器的使用寿命。
针对直流低压断路器,其开关断口产生的电弧要在外加磁场的作用下依靠引弧板、引弧片等导入灭弧室,既增加了材料成本,又增加了人工装配费用。再者,由于低压断路器的内部空间有限,只能局部固定永久磁铁,需要根据使用的电源极性,事先设定好磁场极性,才能利于吹弧,故只能做成有极性的吹弧特性,限制了其应用领域。
为了避免由于极性安装错误带来的人身以及财产损失,需要一种无需考虑极性、可以实现可靠的引弧和灭弧效果的无极性低压断路器。
发明内容
本发明的目的在于提供一种无极性低压断路器,以克服现有技术无法实现可靠的引弧和灭弧效果问题,并且无需考虑极性,提高了使用安全性。
为实现上述目的,本发明采用了以下技术方案:
一种无极性低压断路器,包括操作机构、两组静触头组件、桥式动触头组件和两个灭弧室,桥式动触头组件与静触头组件相对设置,两组静触头组件分别为输入、输出静触头组,桥式动触头组件与两组静触头组件配合形成左、右动静触头断口,当动、静触头在导电状态下开断时,左、右动静触头断口的电弧电流方向相反;两灭弧室为左灭弧室和右灭弧室,所述的左、右动静触头断口紧靠相配合的灭弧室;操作机构控制桥式动触头组件同时与两组静触头组件接触或分离,从而实现断路器的合闸或分闸;开断电路时,左、右动静触头断口之间形成的电弧,由于其电流方向相反所产生的自励磁场相互排斥,促使左右断口的电弧自行导入两个灭弧室实现熄弧。
进一步的,桥式动触头组件直通两组静触头组件左、右静触头,桥式动触头组件包括左、右动触头,左、右动触头与相配合的左、右静触头形成左动静触头组件和右动静触头组件,每一动静触头组件中动、静触头的通路局部设计为当导电时其动静触头的电流方向相反,断 路器开断电路时,动、静触头由于电流方向相反所产生的电动斥力推动桥式动触头组件快速离开静触头组件。
进一步的,所述两组静触头组件为左、右静触头组件,左、右静触头组件分别朝对应的灭弧室延伸一倾斜的导弧面,桥式动触头组件两端对应左、右静触头组件上的导弧面各延伸一倾斜的导弧面至左、右灭弧室中。
进一步的,所述桥式动触头组件包括一触桥,左静触头组件和右静触头组件均设有一段平行于该触桥的导电臂,两个导电臂上的电流方向相同并与触桥上的电流方向相反。
进一步的,所述左、右静触头组件的导电臂上紧靠邻近的灭弧室各设有一个静触点,静触点正对触桥,触桥上相对两个静触点设有两个动触点,动、静触点的接触或分离实现电路的合闸或分闸。
进一步的,所述的操作机构包括连接桥式动触头组件的动触头支架,动触头支架位于左、右静触头组件之间,动触头支架上下滑移从而带动桥式动触头组件与静触头组件接触或分离。
进一步的,所述的桥式动触头组件的左、右两个动触头下方各设有一个弹簧,所述的桥式动触头组件、两个弹簧和动触头支架形成超程结构,动触头支架上移并驱动桥式动触头组件与左、右静触头组件接触后,继续上移动触头支架,动触头支架压缩两个弹簧,两个弹簧为桥式动触头组件与静触头组件的闭合提供可靠的接触压力。
进一步的,所述的左、右灭弧室通过一引弧板连接,动触头支架正对该引弧板的部位开设有避位孔,一导电弹簧一端抵接引弧板,其另一端穿过避位孔抵接至桥式动触头组件。
进一步的,所述的动触头支架上设有一竖直放置的主压簧,动、静触头组件闭合时,主压簧压缩并储存为驱动动触头与静触头分断所需的储能弹力。
本发明提供的无极性低压断路器的结构也适用于无极性微型断路器,并且具有以下有益效果:
1.本断路器具有两个开关断口和两个灭弧室,两个开关断口串联,当开断电路时,产生的电弧能量由两个断口分担,熄弧由两个灭弧室分别承担,有利于快速熄弧。
2.本发明的开关断口紧靠灭弧室,动、静触头组件设有延伸至灭弧室的导弧斜面,两个断口产生的电弧在电弧自励磁场作用下相互排斥,并沿导弧斜面快速进入灭弧室进行熄弧,实现了真正意义上的无极性吹弧特性,使该无极性低压断路器适用于所有领域的电路。
3.两个静触头组件上的电流方向与桥式动触头组件上的电流方向相反,动静触头开断时,电流产生的电动力相互排斥,通过采用互相平行的导电臂和触桥结构,使动静触头分断故障电流时产生最大的电动斥力,使桥式动触头组件快速离开静触头组件,其分断时间短,有利于电弧熄灭。
4.两个弹簧也可以由一个弹簧片代替,采用弹簧片式或二个弹簧式超程机构,弹簧片或二个弹簧受压时,桥式动触头组件两端同时受力,使两个动静触头接触点受力均衡,接触可靠。
附图说明
图1示出了实施例1断路器外壳盖合状态的整体示意图;
图2示出了实施例1断路器电路断开状态的内部正视图;
图3示出了实施例1断路器电路闭合状态的内部正视图;
图4示出了实施例1断路器电路断开状态的内部立体示意图;
图5示出了实施例1断路器产生故障电流时的电流方向示意图;
图6示出了实施例1断路器的电弧灭弧原理示意图,动静触头间产生的两段电弧沿箭头方向相互排斥;
图7示出了实施例2的断路器的动静触头断开示意图;
图8示出了实施例2的断路器的动静触头闭合或断开过程示意图;
图9示出了实施例2的断路器的动静触头闭合示意图。
具体实施方式
现结合附图和具体实施方式对本发明作进一步说明。下文中使用的术语“上”、“下”、“左”、“右”是参照附图图面设定的,仅是为了描述方便而非对本发明的限制。
本发明所述的无极性低压断路器的结构也适用于无极性微型断路器。
实施例1:如图1至图6所示,本发明提供的无极性低压断路器主要包括:塑料外壳和置于其中的左右接线夹组件、操作机构、磁脱扣系统、热脱扣系统、桥式动触头组件16、两组静触头组件和两个灭弧室。外壳包括底座1和上盖29,断路器的所有内部零件以底座1和上盖29为安装基准。其中,左接线夹组件30连接热脱扣系统和电源,右接线夹组件13连接磁脱扣系统和负载,磁脱扣系统与热脱扣系统通过桥式动触头组件16与静触头组件15的闭合实现电连接。桥式动触头组件16与静触头组件15、21相对设置,两个灭弧室相对于桥式动触头组件16和静触头组件15、21左右对称。桥式动触头组件16与静触头组件15、21相对设置,两组静触头组件15、21分别为输入、输出静触头组件,桥式动触头组件16与两组静触头组件15、21配合形成左、右动静触头断口,当动、静触头在导电状态下开断时,左、右动静触头断口的电弧电流方向相反;两灭弧室为左灭弧室12和右灭弧室14,所述的左、右动静触头断口紧靠相配合的灭弧室;操作机构控制桥式动触头组件16同时与两组静触头组件15、21接触或分离,从而实现断路器的合闸或分闸;开断电路时,左、右动静触头断口之间形成的电弧由于其电流方向相反所产生的自励磁场相互排斥促使左右断口的电弧自行导入 两个灭弧室实现熄弧。
桥式动触头组件16直通两组静触头组件15、21左、右静触头,桥式动触头组件16包括左、右动触头,左、右动触头与相配合的左、右静触头形成左动静触头组件36和右动静触头组件37,每一组件中动、静触头的通路局部设计为当导电时其动静触头的电流方向相反,断路器开断电路时,动、静触头由于电流方向相反所产生的电动斥力推动桥式动触头组件16快速离开静触头组件。
桥式动触头组件16包括一触桥26,触桥26正对静触头组件的一面的两端分别设有一个紧靠灭弧室的动触头24。触桥26左、右两端分别延伸至左、右两个灭弧室12、14中,其延伸部分为倾斜的导弧面27。触桥26背离动触头的一面上固定有一弹簧片17,弹簧片17两端的受力点分别位于或紧靠两个动触头24下方。
静触头组件包括左静触头组件15和右静触头组件21,左静触头组件通过热脱扣系统连接电源,右静触头组件通过磁脱扣系统连接负载。左静触头组件15和右静触头组件21均设有一段平行于触桥26的导电臂32、33,两个导电臂上的电流方向相同并与触桥上的电流方向相反。各导电臂均设有一个倾斜延伸至邻近的灭弧室的导弧面,各导电臂对应触桥26上的一个邻近的动触头24设有一个静触头23。
动、静触头组件构成两个开关断口,两个开关断口产生的电弧沿倾斜的导弧面快速进入灭弧室进行熄弧,并且,由于桥式动触头组件和静触头组件上的电流方向相反,桥式动触头组件开断时,桥式动触头组件和静触头组件的电流产生的电动力相互排斥,推动桥式动触头组件快速离开静触头组件,由于分断时间短,有利于电弧熄灭。
操作机构主要包括手柄5、手柄复位簧4、杠杆6、锁扣杆8和动触头支架18,手柄5和杠杆6之间、以及杠杆6和动触头支架18之间采用链接轴3铰接,锁扣杆通过一转轴固定在底座上并与杠杆联动连接。锁扣杆还与一指示器7联动,通过观察指示器7的指示信息来获知断路器处于分闸或合闸状态。
动触头支架18内设有一凹槽,凹槽内竖直放置有主压簧20,底座1上的限位块28延伸至该凹槽中,主压簧20上端抵推限位块28,下端抵推动触头支架18。桥式动触头组件16的触桥26和弹簧片17穿置于动触头支架18末端。操作机构驱动动触头支架18上下移动,使桥式动触头组件16同时与左静触头组件15和右静触头组件21接触或分离,以此实现断路器合闸或开闸。桥式动触头组件与两组静触头组件闭合时,主压簧压缩并储存为驱动动触头与静触头分断所需的储能弹力,电路发生故障时,主压簧反弹推动动触头离开静触头。
左、右灭弧室12、14底部通过一引弧板连接,动触头支架18正对该引弧板的部位开设有避位孔。一导电弹簧19一端抵接引弧板,另一端穿过避位孔抵接至弹簧片17,在桥式动 触头组件16上下移动过程中,该导电弹簧19两端始终分别抵接引弧板和弹簧片17。
热脱扣系统包括双金属片25、脱扣杆2等,双金属片25通过电线与左静触头15组件连接,脱扣杆2可转动地固定在底座上,并通过一锁扣面实现对锁扣杆的支撑。磁脱扣系统包括线圈9、磁芯组件10、磁轭11和磁脱扣推杆22,线圈9一端与右静触头组件21连接,另一端与右接线夹组件13连接。短路时,线圈产生的磁作用力驱动磁脱扣推杆朝脱扣杆移动,并推动脱扣杆2旋转,使脱扣杆与锁扣杆解锁。锁扣杆解锁后向下旋转,并带动操作系统断开动静触头。
桥式动触头组件16、弹簧片17和动触头支架18共同组成超程结构,桥式动触头组件16向上移动至与静触头组件接触后,继续向上移动动触头支架18,则动触头支架18压缩弹簧片17。弹簧片17压缩时,其两端的受力平衡,弹簧片17两端的受力点位于或紧靠两个动触头24下方,保证了两个动触头24的受力均衡,为静触头组件15、21和桥式动触头组件16的闭合提供保证电接触可靠的接触压力和超程弹力。
在开关断开状态时,顺时针旋转操作手柄5,在链接轴3的驱动下,使得杠杆6逆时针旋转,并拉动触头支架18向上运动,从而带动桥式动触头组件16与静触头组件接触,使电路闭合。电路闭合后,动触头支架18继续向上运动并压缩弹簧片17,超程结构保证桥式动触头组件16有足够的压力与静触头组件15、21可靠接触。
在开关闭合状态时,当线路发生过载或短路时,开关自动断开。具体为:过载时,双金属片25过热弯曲,推动脱扣杆2顶端以使其顺时针旋转;短路时,线圈9产生强大的磁场,磁芯组件10内部的动铁芯向左运动,与动铁芯固定连接的磁脱扣推杆22向左推动脱扣杆2,使得脱扣杆2顺时针旋转。随着脱扣杆2顺时针旋转,锁扣杆8与脱扣杆2分离,锁扣杆8失去支撑面,其在主压簧储能的作用下逆时针旋转。主压簧20反弹并推动动触头支架18向下运动,带动桥式动触头组件16与静触头组件15分离,从而使电路断开。在此过程中,操作手柄5在手柄复位簧4的作用下逆时针旋转复位。
如图6所示,在开关断开状态下,产生故障电流时,动,静触头之间的断口处产生电弧31,两个开关断口处的电弧31电流方向相反,在两段电弧电流的自励磁场的作用下,两段电弧的弧柱相互排斥,使各电弧快速进入邻近的灭弧室。
桥式动触头组件16和静触头组件15、21延伸至灭弧室的导弧面使电弧31沿斜面向灭弧室内运动,拉长了电弧,利于熄弧。静触头组件15、21的特殊设计,保证静触头组件15、21上的故障电流方向与桥式动触头组件16上的故障电流方向如图5所示始终相反,静触头组件的导电臂32、33和桥式动触头组件的触桥26之间产生电动斥力,推动桥式动触头组件16快速与静触头组件15、21分离,实现开断电路。导电臂32、33和触桥26相互平行,使 电动斥力最大化。
实施例2:本实施例2与实施例1的区别在于采用两个弹簧34代替实施例1所述的弹簧片17,如图7和图9所示,两个弹簧34位于触桥和动触头支架18之间、且分别位于两个动触头下方,桥式动触头组件16、两个弹簧34以及动触头支架18组成触头超程机构,其具有更好的稳定性。动触头支架上移并驱动桥式动触头组件与左、右静触头组件接触后,继续上移动触头支架,动触头支架压缩二个弹簧,二个弹簧为桥式动触头组件与静触头组件的闭合提供可靠的接触压力。导电弹簧19上端穿过动触头支架18上的避位孔抵接至触桥26上。
此外,在脱扣杆2上增设了一个连杆35,该连杆35连接脱扣杆2和锁扣杆8。
本发明与现有技术的主要区别在于以下几点:
1.本低压断路器采用桥式双断口开关结构,配置两个灭弧室。
2.桥式动触头组件16的触桥与触头组件15、21的导电臂平行,桥式动触头组件沿垂直方向运动,桥式动触头组件16与静触头组件15、21均设置有斜面导弧结构。
3.由于两个电弧的电流方向相反,其自励磁场相互排斥,依靠两个电弧弧柱的相互排斥力,将两个电弧弧柱推入紧邻的灭弧室熄弧,实现直流分断无极性。
4.由于动、静触头组件的特殊设计,使平行的导电臂和触桥分断故障电流时,产生最大的电动斥力,使得开关快速分离,开断电路。
5.操作机构的机械结构。
6.采用了桥式动触头组件16、弹簧片17(或二个弹簧34)以及动触头支架18组成的触头超程机构。
以上所记载,仅为利用本创作技术内容的实施例,任何熟悉本项技艺者运用本创作所做的修饰、变化,皆属本创作主张的专利范围,而不限于实施例所揭示者。

Claims (9)

  1. 一种无极性低压断路器,其特征在于:包括操作机构、两组静触头组件、桥式动触头组件和两个灭弧室,桥式动触头组件与静触头组件相对设置,两组静触头组件分别为输入、输出静触头组,桥式动触头组件与两组静触头组件配合形成左、右动静触头断口,当动、静触头在导电状态下开断时,左、右动静触头断口的电弧电流方向相反;两灭弧室为左灭弧室和右灭弧室,所述的左、右动静触头断口紧靠相配合的灭弧室;操作机构控制桥式动触头组件同时与两组静触头组件接触或分离,从而实现断路器的合闸或分闸;开断电路时,左、右动静触头断口之间形成的电弧,由于其电流方向相反所产生的自励磁场相互排斥,促使左右断口的电弧自行导入两个灭弧室实现熄弧。
  2. 根据权利要求1所述的无极性低压断路器,其特征在于:桥式动触头组件直通两组静触头组件的左、右静触头,桥式动触头组件包括左、右动触头,左、右动触头与相配合的左、右静触头形成左动静触头组件和右动静触头组件,每一动静触头组件中动、静触头的通路局部设计为当导电时其动静触头上的电流方向相反,断路器开断电路时,动、静触头由于电流方向相反所产生的电动斥力推动桥式动触头组件快速离开静触头组件。
  3. 根据权利要求1所述的无极性低压断路器,其特征在于:所述两组静触头组件为左、右静触头组件,左、右静触头组件分别朝对应的灭弧室延伸一倾斜的导弧面;桥式动触头组件两端对应左、右静触头组件上的导弧面各延伸一倾斜的导弧面至左、右灭弧室中。
  4. 根据权利要求2所述的无极性低压断路器,其特征在于:所述桥式动触头组件包括一触桥,左静触头组件和右静触头组件均设有一段平行于该触桥的导电臂,两个导电臂上的电流方向相同并与触桥上的电流方向相反。
  5. 根据权利要求4所述的无极性低压断路器,其特征在于:所述左、右静触头组件的导电臂上紧靠邻近的灭弧室各设有一个静触点,静触点正对触桥,触桥上相对两个静触点设有两个动触点,动、静触点的接触或分离实现电路的合闸或分闸。
  6. 根据权利要求1所述的无极性低压断路器,其特征在于:所述的操作机构包括连接桥式动触头组件的动触头支架,动触头支架位于左、右静触头组件之间,动触头支架上下滑移从而带动桥式动触头组件与静触头组件接触或分离。
  7. 根据权利要求6所述的无极性低压断路器,其特征在于:所述的桥式动触头组件的左、右两个动触头下方各设有一个弹簧,所述的桥式动触头组件、两个弹簧和动触头支架形成超程结构;动触头支架上移并驱动桥式动触头组件与左、右静触头组件接触后,继续上移动触头支架,动触头支架压缩两个弹簧,两个弹簧为桥式动触头组件与静触头组件的闭合提供可靠的接触压力。
  8. 根据权利要求6所述的无极性低压断路器,其特征在于:所述的左、右灭弧室通过一引弧板连接,动触头支架正对该引弧板的部位开设有避位孔,一导电弹簧一端抵接引弧板,其另一端穿过避位孔抵接至桥式动触头组件。
  9. 根据权利要求6所述的无极性低压断路器,其特征在于:所述的动触头支架上设有一竖直放置的主压簧,动、静触头组件闭合时,主压簧压缩并储存为驱动动触头与静触头分断所需的储能弹力。
PCT/CN2019/074046 2018-10-31 2019-01-31 无极性低压断路器 WO2020087797A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811286405.0A CN109036994A (zh) 2018-10-31 2018-10-31 无极性微型断路器
CN201811286405.0 2018-10-31
CN201910051590.3A CN109473324A (zh) 2018-10-31 2019-01-21 无极性低压断路器
CN201910051590.3 2019-01-21

Publications (1)

Publication Number Publication Date
WO2020087797A1 true WO2020087797A1 (zh) 2020-05-07

Family

ID=64614605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074046 WO2020087797A1 (zh) 2018-10-31 2019-01-31 无极性低压断路器

Country Status (2)

Country Link
CN (2) CN109036994A (zh)
WO (1) WO2020087797A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114582665A (zh) * 2022-01-29 2022-06-03 上海京硅智能技术有限公司 隔离开关触头极

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109036994A (zh) * 2018-10-31 2018-12-18 厦门安达兴电气集团有限公司 无极性微型断路器
CN110033999A (zh) * 2019-04-19 2019-07-19 宁夏力成电气集团有限公司 一种微型断路器及磁轭机构
CN110416035A (zh) * 2019-08-26 2019-11-05 厦门安达兴电气集团有限公司 一种交直流通用型塑壳断路器
CN114649153A (zh) * 2020-12-21 2022-06-21 天津首瑞智能电气有限公司 一种开关
CN113937682A (zh) * 2021-11-08 2022-01-14 国网山东省电力公司临沂供电公司 交叉互联箱换位错误带电消缺工具
CN114783844B (zh) * 2022-06-22 2022-09-13 江苏凯隆电器有限公司 永磁式塑壳断路器的手动操作机构
CN117174546A (zh) * 2023-10-24 2023-12-05 河北宝凯电气股份有限公司 触头灭弧系统的断路器及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2308162Y (zh) * 1995-12-04 1999-02-17 机械工业部上海电器科学研究所 一种控制与保护功能组合模块式开关电器
JP2002008508A (ja) * 2000-06-27 2002-01-11 Mitsubishi Electric Corp 回路遮断器
CN2472341Y (zh) * 2001-03-26 2002-01-16 上海电器科学研究所 一种集成化的控制与保护开关电器
CN201655694U (zh) * 2009-09-21 2010-11-24 浙江中凯科技股份有限公司 一种带短路保护功能的触头系统
CN103177884A (zh) * 2011-12-26 2013-06-26 上海电科电器科技有限公司 低压电器的触头结构
CN103403827A (zh) * 2010-12-07 2013-11-20 伊顿电气Ip两合公司 具有灭弧室的开关
CN109036994A (zh) * 2018-10-31 2018-12-18 厦门安达兴电气集团有限公司 无极性微型断路器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2242766A1 (en) * 1973-08-30 1975-03-28 Merlin Gerin Electric circuit breaker - has double fixed and moving contacts in series and double arc repulsion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2308162Y (zh) * 1995-12-04 1999-02-17 机械工业部上海电器科学研究所 一种控制与保护功能组合模块式开关电器
JP2002008508A (ja) * 2000-06-27 2002-01-11 Mitsubishi Electric Corp 回路遮断器
CN2472341Y (zh) * 2001-03-26 2002-01-16 上海电器科学研究所 一种集成化的控制与保护开关电器
CN201655694U (zh) * 2009-09-21 2010-11-24 浙江中凯科技股份有限公司 一种带短路保护功能的触头系统
CN103403827A (zh) * 2010-12-07 2013-11-20 伊顿电气Ip两合公司 具有灭弧室的开关
CN103177884A (zh) * 2011-12-26 2013-06-26 上海电科电器科技有限公司 低压电器的触头结构
CN109036994A (zh) * 2018-10-31 2018-12-18 厦门安达兴电气集团有限公司 无极性微型断路器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114582665A (zh) * 2022-01-29 2022-06-03 上海京硅智能技术有限公司 隔离开关触头极
CN114582665B (zh) * 2022-01-29 2024-03-12 上海京硅智能技术有限公司 隔离开关触头极

Also Published As

Publication number Publication date
CN109473324A (zh) 2019-03-15
CN109036994A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
WO2020087797A1 (zh) 无极性低压断路器
US4220934A (en) Current limiting circuit breaker with integral magnetic drive device housing and contact arm stop
RU2581599C2 (ru) Выключатель с дугогасительной камерой
RU2298853C2 (ru) Автоматический выключатель низкого напряжения
US20110193660A1 (en) Movable contactor assembly for current limiting type molded case circuit breaker
WO2017167086A1 (zh) 电器开关的接通分断机构
CN107359068B (zh) 一种具有复合灭弧性能的塑壳断路器
US6310528B1 (en) Overcurrent-tripping device for circuit breaker
JP2012043541A (ja) 回路遮断器
KR101568685B1 (ko) 직류 개폐기의 소호 기구, 및 상기 소호 기구를 가지는 직류 개폐기 및 직류 차단기
CN107359067B (zh) 一种具有较强灭弧能力的小型断路器
US11742165B2 (en) Switching device for guiding and switching of load currents
CN110896005B (zh) 一种真空断路器信号反馈机构
US6541727B2 (en) Molded case circuit breaker including vacuum switch assembly
CN107342178B (zh) 一种高分断小型断路器
CN107393780B (zh) 一种分断能力强的小型断路器
CN107342198B (zh) 一种具有强大分断短路电流能力的塑壳断路器
CN209374379U (zh) 无极性低压断路器
CN210296279U (zh) 一种交直流通用型塑壳断路器
CN100435253C (zh) 一种高速双断口磁吹中压大电流直流限流断路器
CN115104168A (zh) 开关设备
JP4090948B2 (ja) 回路遮断器
CN113539755A (zh) 一种断路器
RU2584551C1 (ru) Высоковольтный вакуумный выключатель
CN112863953B (zh) 一种异步双断接触机构及剩余电流动作断路器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880045

Country of ref document: EP

Kind code of ref document: A1