WO2020085372A1 - Electrically conductive resin composition and semiconductor device - Google Patents

Electrically conductive resin composition and semiconductor device Download PDF

Info

Publication number
WO2020085372A1
WO2020085372A1 PCT/JP2019/041504 JP2019041504W WO2020085372A1 WO 2020085372 A1 WO2020085372 A1 WO 2020085372A1 JP 2019041504 W JP2019041504 W JP 2019041504W WO 2020085372 A1 WO2020085372 A1 WO 2020085372A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
conductive resin
particles
mass
composition according
Prior art date
Application number
PCT/JP2019/041504
Other languages
French (fr)
Japanese (ja)
Inventor
孝一 玉野
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2020553425A priority Critical patent/JPWO2020085372A1/en
Priority to CN201980070190.5A priority patent/CN112912427B/en
Publication of WO2020085372A1 publication Critical patent/WO2020085372A1/en
Priority to JP2022075758A priority patent/JP7359252B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a conductive resin composition and a semiconductor device.
  • a conductive resin composition containing, for example, metal particles has been developed.
  • the main characteristics required for the conductive resin composition are conductivity and thermal conductivity.
  • Patent Document 1 describes that the plate-type silver fine particles can be sintered to improve the thermal conductivity as compared with the case where only ordinary silver powder is filled.
  • EBO epoxy bleed-out
  • the present invention has been made in view of such circumstances, and provides a conductive resin composition capable of improving peel strength when a semiconductor element is bonded to a metal frame surface-treated with an EBO inhibitor. provide.
  • Ag particles (A), a base resin (B), and a radical initiator (C) are contained, and the 10-hour half-life temperature of the radical initiator (C) is 100 ° C. or more and 120 ° C.
  • the following is provided for a conductive resin composition.
  • the present invention also provides a conductive resin composition containing Ag particles (A), a base resin (B), and a nitrogen-containing heterocyclic compound (E).
  • a semiconductor device having a cured product of the above-mentioned conductive resin composition.
  • the peel strength when a semiconductor element is bonded to a metal frame surface-treated with an EBO inhibitor can be improved.
  • the conductive resin composition described below is preferably used as a material for die-bonding a semiconductor element to a wiring member such as a lead frame surface-treated with an EBO inhibitor.
  • the conductive resin composition according to the first embodiment includes Ag particles (A), a base resin (B), and a radical initiator (C).
  • the 10-hour half-life temperature of the radical initiator (C) is 100 ° C. or higher and 120 ° C. or lower.
  • each component of the conductive resin composition of this embodiment will be described.
  • the content with respect to the entire conductive resin composition refers to the ratio of the mass of each component to the total mass of the components excluding the solvent described below.
  • the Ag particles (A) contained in the conductive resin composition of the present embodiment heat-treat the conductive resin composition to cause sintering and form a particle-connected structure. That is, in the cured product obtained by heating the conductive resin composition, the Ag particles (A) are present in a mutually fused state.
  • the cured product obtained by heating the conductive resin composition can have improved adhesion and conductivity to wiring members such as lead frames and semiconductor elements.
  • the Ag particles (A) contained in the conductive resin composition pierce the surface-treated layer composed of the EBO inhibitor to form a wiring member. Reach This makes it possible to improve the conductivity between the wiring member and the semiconductor element while suppressing EBO.
  • the shape of the Ag particles (A) is not particularly limited, but examples thereof include spherical shape, flake shape, and scale shape.
  • the Ag particles (A) include spherical particles.
  • the sinterability of the Ag particles (A) can be improved. It can also contribute to the improvement of the uniformity of sintering.
  • a mode in which the Ag particles (A) include flaky particles can be adopted.
  • the Ag particles (A) may contain both spherical particles and flake particles.
  • the Ag particles (A) may include 90% by mass or more and 100% by mass or less of the total Ag particles (A) including, for example, spherical particles and flake particles, and 95% by mass or more and 100% by mass. It is more preferable to include the following. Thereby, the uniformity of sintering can be improved more effectively. Further, from the viewpoint of further improving the uniformity of sintering, it is more preferable that the Ag particles (A) contain, for example, spherical particles in an amount of 90% by mass or more and 100% by mass or less of the entire Ag particles (A), and 95% by mass. It is more preferable that the content is 100% by mass or more and 100% by mass or less.
  • the particle size D 50 of the Ag particles (A) at the time of 50% accumulation in the volume-based cumulative distribution is preferably 0.8 ⁇ m or more, more preferably 1.0 ⁇ m or more, and further 1.2 ⁇ m or more. preferable.
  • the thermal conductivity can be improved.
  • the particle size D 50 of the Ag particles (A) at the time of 50% accumulation in the volume-based cumulative distribution is preferably 5.0 ⁇ m or less, more preferably 4.5 ⁇ m or less, still more preferably 4.0 ⁇ m or less.
  • the particle size D 50 of the Ag particles (A) is within the range consisting of the upper limit value and the lower limit value described above, it is possible to improve the thermal conductivity and further improve the uniformity of sintering. You can also The upper limit value and the lower limit value can be appropriately combined.
  • the particle size of the Ag particles (A) can be determined by performing particle image measurement using, for example, a flow type particle image analyzer FPIA (registered trademark) -3000 manufactured by Sysmex Corporation. More specifically, the particle size of the Ag particles (A) can be determined by measuring the volume-based median diameter using the above device. By adopting such a condition, for example, when a particle having a large particle size is present, its influence can be detected sensitively, and a particle having a narrow particle size distribution like the Ag particle (A) of the present embodiment can be detected. Even in this case, the measurement can be performed with high accuracy.
  • FPIA flow type particle image analyzer
  • the standard deviation of the particle size of Ag particles (A) is set to 2.0 ⁇ m or less.
  • the standard deviation of the particle size of the Ag particles (A) is preferably 1.9 ⁇ m or less, and more preferably 1.8 ⁇ m or less.
  • the lower limit of the standard deviation of the particle size of the Ag particles (A) is not particularly limited, but is, for example, 0.1 ⁇ m or more, and in consideration of the availability of the Ag particles (A) and the like, 0 It can also be set to 0.3 ⁇ m or more.
  • the above-mentioned standard deviation of the particle diameter of the Ag particles (A) is accumulated on a volume basis of the Ag particles (A).
  • the value divided by the particle size D 50 at 50% accumulation in the distribution is preferably 2.5 or less, more preferably 2.0 or less, and further preferably 1.8 or less.
  • the lower limit of the value obtained by dividing the standard deviation of the particle size of Ag particles (A) by the particle size D 50 at the time of 50% accumulation in the volume-based cumulative distribution of Ag particles (A) is not particularly limited. , For example, 0.1 or more.
  • the content of Ag particles (A) in the conductive resin composition is, for example, preferably 40% by mass or more, and more preferably 50% by mass or more, based on the entire conductive resin composition. This makes it possible to improve the sinterability of the Ag particles (A) and contribute to the improvement of thermal conductivity and conductivity.
  • the content of Ag particles (A) in the conductive resin composition is, for example, preferably 90% by mass or less, and more preferably 80% by mass or less, based on the entire conductive resin composition. . This can contribute to improvement in coating workability of the entire conductive resin composition and mechanical strength of a cured product obtained by heating the conductive resin composition.
  • the base resin (B) is at least one selected from the group consisting of acrylic resins and epoxy resins.
  • acrylic resin examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, isobutyl (meth) acrylate, cyclohexyl (meth).
  • Homopolymers of one of (meth) acrylic monomers such as acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, n-stearyl (meth) acrylate, benzyl (meth) acrylate, and 2 Examples include copolymers of one or more species.
  • the epoxy resin examples include a biphenyl type epoxy resin, a bisphenol type epoxy resin, a (meth) acrylic acid ester-based epoxy resin, an alicyclic epoxy resin, and a glycidyl ester-based epoxy resin, and one of these is used. Alternatively, two or more kinds can be used in combination.
  • the content of the base resin (B) contained in the conductive resin composition is, for example, preferably 3% by mass or more, and more preferably 5% by mass or more, based on the entire conductive resin composition. It is more preferably 8% by mass or more. This makes it possible to improve the uniformity of sintering more effectively. Further, it can also contribute to the improvement of mechanical strength and the like of a cured product obtained by heating the conductive resin composition.
  • the content of the base resin (B) contained in the conductive resin composition is, for example, preferably 60% by mass or less, and 55% by mass or less with respect to the entire conductive resin composition. More preferably, it is still more preferably 50% by mass or less. This makes it possible to contribute to improving the sinterability of the Ag particles (A).
  • the content of the base resin (B) contained in the conductive resin composition is within the range consisting of the upper limit value and the lower limit value described above, the uniformity of sintering can be more effectively improved. At the same time, it can also contribute to improving the sinterability of the Ag particles (A).
  • the upper limit value and the lower limit value can be appropriately combined.
  • Radar initiator (C) As the radical initiator (C), one that accelerates the polymerization reaction of the base resin (B) can be used. This can contribute to improving the mechanical properties of the cured product obtained using the conductive resin composition.
  • the 10-hour half-life temperature of the radical initiator (C) is 100 ° C or higher and 120 ° C or lower.
  • the 10-hour half-life temperature of the radical initiator (C) is 100 ° C. or higher
  • the surface of the wiring member such as the lead frame is covered before the radical initiator (C) decomposes when the conductive resin composition is heated.
  • the EBO inhibitor to be dissolved easily, the adhesiveness between the conductive resin composition and the EBO inhibitor is improved, and the peel strength between the semiconductor element and the metal frame is improved, and the Ag particles in the conductive resin composition are improved.
  • (A) easily penetrates the surface treatment layer made of the EBO inhibitor to reach the wiring member.
  • the 10-hour half-life temperature of the radical initiator (C) is 120 ° C. or lower, the time until curing can be shortened, and the uncured resin component is reduced, so that the peel strength between the semiconductor element and the metal frame is reduced. improves
  • radical initiator (C) having such a 10-hour half-life temperature
  • examples of the radical initiator (C) having such a 10-hour half-life temperature include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, peroxy. At least one selected from the group consisting of dicarbonates can be mentioned.
  • Examples of ketone peroxides include methyl ethyl ketone peroxide (10-hour half-life temperature: 110 ° C).
  • Examples of the peroxyketals include n-butyl 4,4-di- (t-butylperoxy) valerate (10-hour half-life temperature: 100 ° C.) and the like.
  • Examples of hydroperoxides include p-Menthane hydroperoxide (10-hour half-life temperature: 120 ° C.).
  • Examples of the dialkyl peroxides include di- ⁇ -cumyl peroxide (10-hour half-life temperature: 120 ° C.).
  • Examples of peroxyesters include t-Butyl peroxybenzoate (10-hour half-life temperature: 100 ° C.) and the like.
  • the content of the radical initiator (C) contained in the conductive resin composition can be, for example, 25 parts by mass or less with respect to 100 parts by mass of the base resin (B). Moreover, the content of the radical initiator (C) contained in the conductive resin composition can be more than 0 parts by mass with respect to 100 parts by mass of the base resin (B). From the viewpoint of improving the mechanical properties of the cured product obtained by heating the conductive resin composition, for example, the content of the radical initiator (C) relative to 100 parts by mass of the base resin (B) is 0.1 parts by mass or more. Can be
  • the conductive resin composition according to this embodiment may include, for example, a solvent. This can improve the fluidity of the conductive resin composition and contribute to the improvement of workability.
  • the solvent is not particularly limited, for example, ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono Propyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, methyl methoxybutanol, ⁇ -terpineol, ⁇ -terpineol, hexylene glycol, benzyl alcohol, 2 -Phenylethyl alcohol, Iso Alcohols such as palmityl alcohol, isostearyl alcohol, lauryl alcohol, ethylene glycol, propylene glycol or glycerin; acetone
  • the adhesion between the wiring member and the semiconductor element in other words, And chip peel strength can be improved.
  • the conductivity between the wiring member and the semiconductor element can be improved, and the EBO inhibitor can prevent the base resin (B) contained in the conductive resin composition from oozing out.
  • the conductive resin composition according to the present embodiment has, in addition to the components (A), (B) and (C) described above, It may contain a monomer (D) and / or a nitrogen-containing heterocyclic compound (E).
  • the monomer (D) contained in the conductive resin composition of the present embodiment is at least one selected from the group consisting of acrylic monomers, (meth) acrylic monomers and conjugated olefins.
  • acrylic monomers include 1,4-cyclohexanedimethanol monoacrylate, 1.6 hexanediol dimethacrylate, and 2-phenoxyethyl methacrylate.
  • Examples of the (meth) acrylic monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, isobutyl (meth) acrylate, cyclohexyl ( Examples thereof include (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, n-stearyl (meth) acrylate, and benzyl (meth) acrylate.
  • conjugated olefin examples include butadiene, isoprene, piperylene, 1,4-dimethylbutadiene, trans-2-methyl-1,3-pentadiene, 1,2-dimethylenecyclohexane and cyclopentadiene.
  • the content of the monomer (D) contained in the conductive resin composition of the present embodiment is preferably 2% by mass or more and more preferably 4% by mass or more with respect to the entire conductive resin composition. It is preferably 6% by mass or more, and more preferably 6% by mass or more.
  • the content of the monomer (D) contained in the conductive resin composition is preferably 25% by mass or less, more preferably 20% by mass or less, based on the entire conductive resin composition. It is more preferably 15% by mass or less.
  • the nitrogen-containing heterocyclic compound (E) contained in the conductive resin composition of the present embodiment is at least one selected from the group consisting of triazine, triazole, isocyanuric acid, and derivatives thereof.
  • isocyanuric acid derivatives include tris (2-hydroxyethyl) isocyanurate triacrylate.
  • the content of the nitrogen-containing heterocyclic compound (E) contained in the conductive resin composition of the present embodiment is preferably 0.05% by mass or more based on the entire conductive resin composition, and is 0.10. It is more preferably at least mass%, and even more preferably at least 0.15 mass%.
  • the content of the nitrogen-containing heterocyclic compound (E) contained in the conductive resin composition is preferably 5% by mass or less, and preferably 3% by mass or less, based on the entire conductive resin composition. Is more preferable and 1% by mass or less is further preferable.
  • the conductive resin composition according to the second embodiment contains Ag particles (A), a base resin (B), and a monomer (D).
  • the Ag particles (A) and the base resin (B) of this embodiment are the same as those of the first embodiment.
  • the conductive resin composition of this embodiment may contain a solvent as in the first embodiment.
  • the content of the monomer (D) contained in the conductive resin composition of the present embodiment is preferably 2% by mass or more and more preferably 4% by mass or more with respect to the entire conductive resin composition. It is preferably 6% by mass or more, and more preferably 6% by mass or more.
  • the content of the monomer (D) contained in the conductive resin composition is preferably 25% by mass or less, more preferably 20% by mass or less, based on the entire conductive resin composition. It is more preferably 15% by mass or less.
  • the conductive resin composition according to the third embodiment includes Ag particles (A), a base resin (B), and a nitrogen-containing heterocyclic compound (E).
  • the Ag particles (A) and the base resin (B) of this embodiment are the same as those of the first embodiment.
  • the conductive resin composition of this embodiment may contain a solvent as in the first embodiment.
  • a configuration different from that of the first embodiment will be described. In the present embodiment, by including the Ag particles (A), the base resin (B), and the nitrogen-containing heterocyclic compound (E) in combination,
  • the content of the nitrogen-containing heterocyclic compound (E) contained in the conductive resin composition of the present embodiment is preferably 0.05% by mass or more based on the entire conductive resin composition, and is 0.10. It is more preferably at least mass%, and even more preferably at least 0.15 mass%. Further, the content of the nitrogen-containing heterocyclic compound (E) contained in the conductive resin composition is preferably 5% by mass or less, and preferably 3% by mass or less, based on the entire conductive resin composition. Is more preferable and 1% by mass or less is further preferable.
  • the upper limit value and the lower limit value can be appropriately combined. According to the conductive resin composition of the present embodiment, while obtaining the same effects as in Embodiment 1, the effect of the nitrogen-containing heterocyclic compound (E) further improves the adhesion to the wiring member and the semiconductor element. be able to.
  • FIG. 1 is a sectional view showing a semiconductor device 100 according to the embodiment.
  • the semiconductor device 100 according to the present embodiment is provided on the base material 30 via the base material 30 and an adhesive layer (die attach layer 10) composed of a cured product obtained by heat-treating the above-mentioned conductive resin composition.
  • a semiconductor element 20 mounted on the.
  • the semiconductor element 20 and the base material 30 are electrically connected, for example, via a bonding wire 40 or the like.
  • the semiconductor element 20 is sealed with, for example, the sealing resin 50.
  • the film thickness of the die attach layer 10 is not particularly limited, but is, for example, 5 ⁇ m or more and 100 ⁇ m or less.
  • the base material 30 is, for example, a lead frame.
  • the semiconductor element 20 will be mounted on the die pad 32 (30) via the die attach layer 10.
  • the surface of the die pad 32 (30) is subjected to a surface treatment with an EBO inhibitor, and the sintered silver particles in the die attach layer 10 penetrate the EBO inhibitor and reach the surface of the die pad 32 (30).
  • the EBO inhibitor is not particularly limited, and commercially available products that are generally distributed are used.
  • the semiconductor element 20 is electrically connected to the outer lead 34 (30) via the bonding wire 40, for example.
  • the base material 30 which is a lead frame is composed of, for example, a 42 alloy and a Cu frame.
  • the base material 30 may be an organic substrate or a ceramic substrate.
  • As the organic substrate for example, a substrate known to those skilled in the art to which an epoxy resin, a cyanate resin, a maleimide resin or the like is applied is suitable.
  • the planar shape of the semiconductor element 20 is not particularly limited, but is, for example, a rectangle.
  • a rectangular semiconductor element 20 having a chip size of 0.5 mm square to 15 mm square can be used.
  • the conductivity is improved and the base resin in the conductive resin composition is exuded. It is possible to improve the adhesion between the semiconductor element 20 and the die pad 32 (30) while suppressing the above.
  • Conductive resin compositions were prepared for Examples 1 to 3 and Comparative Example 1. This preparation was performed by mixing the components according to the formulation shown in Table 1, stirring the mixture using a three-roll mill, and then performing defoaming treatment at 2 mmHg for 30 minutes. The details of the components shown in Table 1 are as follows.
  • Ag particles 1 Ag-DSB-114, manufactured by DOWA Hitech, D 50 : 0.7 ⁇ m
  • Base resin (B) Base resin 1: An acrylic polymer solution was prepared by the following procedure. 4.4 parts by mass of UG4035 (manufactured by Toagosei Co., Ltd.) and 4.4 parts by mass of light ester PO (manufactured by Kyoeisha Chemical Co., Ltd.) were heated to 100 ° C. and stirred to obtain a uniform solution.
  • Base resin 2 modified polybutadiene (RICOBOND1731, manufactured by Cray Valley)
  • Base resin 3 Allyl polymer (SBM-8C03, manufactured by Kanto Chemical Co., Inc.)
  • Monomer (D) Monomer 1: Phenoxyethyl methacrylate (light ester PO, Kyoeisha Chemical Co., Ltd.)
  • Monomer 2 1,6-hexanediol dimethacrylate (light ester 1, 6 Hex, Kyoeisha Chemical Co., Ltd.)
  • Monomer 3 1,4-Cyclohexanedimethanol monoacrylate (CHDMMA, manufactured by Nippon Kasei Co., Ltd.)
  • Nitrogen-containing heterocyclic compound 1 tris (2-hydroxyethyl) isocyanurate triacrylate (SR-368, manufactured by Arkema Inc.)
  • Radical initiator (C) Radical initiator 1: Perhexa C (s), manufactured by NOF CORPORATION (10-hour half-life temperature: 91 ° C., 1,1-di (t-butylperoxy) cyclohexane)
  • Radical Initiator 2 Percadox BC, manufactured by Kayaku Akzo Co., Ltd. (10-hour half-life temperature: 117 ° C., di- ⁇ -cumylpa-oxide)
  • FIG. 2 is a schematic diagram showing a method for measuring chip peel strength.
  • the semiconductor chip 220 is bonded to the copper frame 200 surface-treated with the Anti-EBO agent via the conductive resin composition 210.
  • the jig 230 was pressed against the side surface of the semiconductor chip 220, and a force was applied in the arrow direction shown in FIG. 2 to obtain the chip peel strength. The obtained results are shown in Table 2.

Abstract

An electrically conductive resin composition according to an embodiment of the present invention contains Ag particles (A), a base resin (B) and a radical initiator (C). The 10-hour half-life decomposition temperature of the radical initiator (C) is 100-120ºC.

Description

導電性樹脂組成物および半導体装置Conductive resin composition and semiconductor device
 本発明は、導電性樹脂組成物および半導体装置に関する。 The present invention relates to a conductive resin composition and a semiconductor device.
 従来、銅などのリードフレーム上にIC、LSIなどの半導体素子をダイボンディングするための材料として、たとえば金属粒子を含有する導電性樹脂組成物の開発が進められている。当該導電性樹脂組成物に要求される主な特性としては、導電性と熱伝導性がある。たとえば、特許文献1には、プレート型銀微粒子を焼結することで、通常の銀粉のみを充填した場合よりも熱伝導率を向上させることができることが記載されている。 Conventionally, as a material for die-bonding semiconductor elements such as IC and LSI on a lead frame such as copper, a conductive resin composition containing, for example, metal particles has been developed. The main characteristics required for the conductive resin composition are conductivity and thermal conductivity. For example, Patent Document 1 describes that the plate-type silver fine particles can be sintered to improve the thermal conductivity as compared with the case where only ordinary silver powder is filled.
特開2014-194013号公報JP, 2014-194013, A
 近年、リードフレームにディスペンスした導電性樹脂組成物に含まれる樹脂の滲み出し現象(EBO(エポキシブリードアウト)という)が問題となっている。EBOが発生すると、導電性樹脂組成物の密着性が低下し、ひいては半導体パッケージの信頼性低下の要因となる。そこで、EBOの対策として、リードフレーム上にEBO防止剤と呼ばれる表面処理層を形成する場合がある。
 EBO防止剤が表面に設けられたリードフレームに半導体素子をダイボンディングする場合に、EBO防止剤で構成される表面処理層が介在することにより、リードフレームと半導体素子との間の剥離強度が低下するという課題が新たに生じる。しかし、従来技術では、このような課題が未解決のままであり、導電性樹脂組成物に関して開発の余地が残されている。
 本発明は、このような事情を鑑みなされたものであり、半導体素子をEBO防止剤で表面処理が施された金属フレームに接着したときの剥離強度を向上させることができる導電性樹脂組成物を提供する。
In recent years, a phenomenon of exudation of a resin contained in a conductive resin composition dispensed on a lead frame (referred to as EBO (epoxy bleed-out)) has become a problem. When EBO is generated, the adhesiveness of the conductive resin composition is reduced, which eventually causes the reliability of the semiconductor package to be reduced. Therefore, as a measure against EBO, a surface treatment layer called an EBO inhibitor may be formed on the lead frame.
When a semiconductor element is die-bonded to a lead frame provided with an EBO inhibitor on the surface, a surface treatment layer composed of the EBO inhibitor is interposed, so that the peel strength between the lead frame and the semiconductor element is reduced. A new issue arises. However, in the related art, such a problem remains unsolved, and there is room for development regarding the conductive resin composition.
The present invention has been made in view of such circumstances, and provides a conductive resin composition capable of improving peel strength when a semiconductor element is bonded to a metal frame surface-treated with an EBO inhibitor. provide.
 本発明によれば、Ag粒子(A)と、ベース樹脂(B)と、ラジカル開始剤(C)と、を含み、前記ラジカル開始剤(C)の10時間半減期温度が100℃以上120℃以下である、導電性樹脂組成物が提供される。 According to the present invention, Ag particles (A), a base resin (B), and a radical initiator (C) are contained, and the 10-hour half-life temperature of the radical initiator (C) is 100 ° C. or more and 120 ° C. The following is provided for a conductive resin composition.
 また、本発明によれば、Ag粒子(A)と、ベース樹脂(B)と、窒素含複素環化合物(E)と、を含む導電性樹脂組成物が提供される。 The present invention also provides a conductive resin composition containing Ag particles (A), a base resin (B), and a nitrogen-containing heterocyclic compound (E).
 また、本発明によれば、上述した導電性樹脂組成物の硬化物を有する半導体装置が提供される。 Further, according to the present invention, there is provided a semiconductor device having a cured product of the above-mentioned conductive resin composition.
 本発明によれば、半導体素子をEBO防止剤で表面処理が施された金属フレームに接着したときの剥離強度を向上させることができる。 According to the present invention, the peel strength when a semiconductor element is bonded to a metal frame surface-treated with an EBO inhibitor can be improved.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-mentioned object and other objects, features and advantages will be further clarified by the preferred embodiment described below and the following drawings accompanying it.
実施形態に係る半導体装置を示す断面図である。It is a sectional view showing a semiconductor device concerning an embodiment. チップ剥離強度の測定方法を示す模式図である。It is a schematic diagram which shows the measuring method of chip peeling strength.
 以下、本発明の実施形態について、詳細に説明する。なお、本明細書中、数値範囲の説明における「a~b」との表記は、特に断らない限り、a以上b以下であることを表す。 Hereinafter, embodiments of the present invention will be described in detail. In the present specification, the notation “a to b” in the description of the numerical range means that it is a or more and b or less, unless otherwise specified.
 以下に説明する導電性樹脂組成物は、EBO防止剤で表面処理が施されたリードフレームなどの配線部材に半導体素子をダイボンディングする際の材料として好適に利用される。 The conductive resin composition described below is preferably used as a material for die-bonding a semiconductor element to a wiring member such as a lead frame surface-treated with an EBO inhibitor.
(実施形態1)
 実施形態1に係る導電性樹脂組成物は、Ag粒子(A)と、ベース樹脂(B)と、ラジカル開始剤(C)と、を含む。ラジカル開始剤(C)の10時間半減期温度は100℃以上120℃以下である。以下、本実施形態の導電性樹脂組成物の各成分について説明する。なお、以下の説明において、導電性樹脂組成物全体に対する含有量とは、後述する溶媒を除く成分の合計質量に対する各成分の質量の割合を指す。
(Embodiment 1)
The conductive resin composition according to the first embodiment includes Ag particles (A), a base resin (B), and a radical initiator (C). The 10-hour half-life temperature of the radical initiator (C) is 100 ° C. or higher and 120 ° C. or lower. Hereinafter, each component of the conductive resin composition of this embodiment will be described. In the following description, the content with respect to the entire conductive resin composition refers to the ratio of the mass of each component to the total mass of the components excluding the solvent described below.
(Ag粒子(A))
 本実施形態の導電性樹脂組成物に含まれるAg粒子(A)は、導電性樹脂組成物に対して熱処理することによりシンタリングを起こして粒子連結構造を形成する。すなわち、導電性樹脂組成物を加熱して得られる硬化物において、Ag粒子(A)同士は互いに融着して存在する。
 これにより、導電性樹脂組成物を加熱して得られる硬化物について、リードフレームなどの配線部材や半導体素子に対する密着性および導電性を向上させることができる。
 なお、配線部材の表面に、EBO防止剤が塗布されている場合には、導電性樹脂組成物に含まれるAg粒子(A)がEBO防止剤で構成される表面処理層を突き破り、配線部材に達する。これにより、EBOを抑制しつつ、配線部材と半導体素子との間の導電性を良好にすることができる。
(Ag particles (A))
The Ag particles (A) contained in the conductive resin composition of the present embodiment heat-treat the conductive resin composition to cause sintering and form a particle-connected structure. That is, in the cured product obtained by heating the conductive resin composition, the Ag particles (A) are present in a mutually fused state.
Thus, the cured product obtained by heating the conductive resin composition can have improved adhesion and conductivity to wiring members such as lead frames and semiconductor elements.
When the surface of the wiring member is coated with the EBO inhibitor, the Ag particles (A) contained in the conductive resin composition pierce the surface-treated layer composed of the EBO inhibitor to form a wiring member. Reach This makes it possible to improve the conductivity between the wiring member and the semiconductor element while suppressing EBO.
 Ag粒子(A)の形状は、特に限定されないが、たとえば球状、フレーク状、および鱗片状等を挙げることができる。本実施形態においては、Ag粒子(A)が球状粒子を含むことがより好ましい。これにより、Ag粒子(A)の焼結性を向上させることができる。また、シンタリングの均一性の向上にも寄与することができる。
 また、コストを低減させる観点からは、Ag粒子(A)がフレーク状粒子を含む態様を採用することもできる。さらには、コストの低減とシンタリングの均一性のバランスを向上させる観点から、Ag粒子(A)が球状粒子とフレーク状粒子の双方を含んでいてもよい。
The shape of the Ag particles (A) is not particularly limited, but examples thereof include spherical shape, flake shape, and scale shape. In the present embodiment, it is more preferable that the Ag particles (A) include spherical particles. Thereby, the sinterability of the Ag particles (A) can be improved. It can also contribute to the improvement of the uniformity of sintering.
Further, from the viewpoint of reducing the cost, a mode in which the Ag particles (A) include flaky particles can be adopted. Further, from the viewpoint of reducing the cost and improving the balance between the uniformity of sintering, the Ag particles (A) may contain both spherical particles and flake particles.
 本実施形態においては、Ag粒子(A)が、たとえば球状粒子およびフレーク状粒子を合わせてAg粒子(A)全体の90質量%以上100質量%以下含むことができ、95質量%以上100質量%以下含むことがより好ましい。これにより、シンタリングの均一性をより効果的に向上させることができる。また、シンタリングの均一性をさらに向上させる観点からは、Ag粒子(A)が、たとえば球状粒子をAg粒子(A)全体の90質量%以上100質量%以下含むことがより好ましく、95質量%以上100質量%以下含むことがさらに好ましい。 In the present embodiment, the Ag particles (A) may include 90% by mass or more and 100% by mass or less of the total Ag particles (A) including, for example, spherical particles and flake particles, and 95% by mass or more and 100% by mass. It is more preferable to include the following. Thereby, the uniformity of sintering can be improved more effectively. Further, from the viewpoint of further improving the uniformity of sintering, it is more preferable that the Ag particles (A) contain, for example, spherical particles in an amount of 90% by mass or more and 100% by mass or less of the entire Ag particles (A), and 95% by mass. It is more preferable that the content is 100% by mass or more and 100% by mass or less.
 本実施形態において、Ag粒子(A)の、体積基準の累積分布における50%累積時の粒径D50は、0.8μm以上が好ましく、1.0μm以上がより好ましく、1.2μm以上がさらに好ましい。Ag粒子(A)の体積基準の累積分布における50%累積時の粒径D50をこの数値以上とすることにより、熱伝導性の向上を図ることができる。 In the present embodiment, the particle size D 50 of the Ag particles (A) at the time of 50% accumulation in the volume-based cumulative distribution is preferably 0.8 μm or more, more preferably 1.0 μm or more, and further 1.2 μm or more. preferable. By setting the particle diameter D 50 at 50% accumulation in the volume-based cumulative distribution of Ag particles (A) to this value or more, the thermal conductivity can be improved.
 一方、Ag粒子(A)の、体積基準の累積分布における50%累積時の粒径D50は、5.0μm以下が好ましく、4.5μm以下がより好ましく、4.0μm以下がさらに好ましい。Ag粒子(A)の体積基準の累積分布における50%累積時の粒径D50をこの数値以下とすることにより、Ag粒子(A)間における焼結性を向上させることができ、シンタリングの均一性の向上を図ることができる。 On the other hand, the particle size D 50 of the Ag particles (A) at the time of 50% accumulation in the volume-based cumulative distribution is preferably 5.0 μm or less, more preferably 4.5 μm or less, still more preferably 4.0 μm or less. By setting the particle diameter D 50 at 50% accumulation in the volume-based cumulative distribution of the Ag particles (A) to this value or less, the sinterability between the Ag particles (A) can be improved, and the sintering The uniformity can be improved.
 Ag粒子(A)の粒径D50が、上述の上限値と下限値とからなる範囲内であると、熱伝導性の向上を図ることができ、さらにシンタリングの均一性の向上をも図ることもできる。なお、上限値と下限値は適宜組み合わせることができる。 When the particle size D 50 of the Ag particles (A) is within the range consisting of the upper limit value and the lower limit value described above, it is possible to improve the thermal conductivity and further improve the uniformity of sintering. You can also The upper limit value and the lower limit value can be appropriately combined.
 Ag粒子(A)の粒径は、たとえばシスメックス株式会社製フロー式粒子像分析装置FPIA(登録商標)-3000を用い、粒子画像計測を行うことで決定することができる。より具体的には、上記装置を用い、体積基準のメジアン径を計測することでAg粒子(A)の粒径を決定することができる。
 かかる条件を採用することで、たとえば粒径の大きい粒子が存在した場合に、その影響を敏感に検知することができ、また、本実施形態のAg粒子(A)のように狭い粒度分布の粒子であっても精度高く測定を行うことができる。
The particle size of the Ag particles (A) can be determined by performing particle image measurement using, for example, a flow type particle image analyzer FPIA (registered trademark) -3000 manufactured by Sysmex Corporation. More specifically, the particle size of the Ag particles (A) can be determined by measuring the volume-based median diameter using the above device.
By adopting such a condition, for example, when a particle having a large particle size is present, its influence can be detected sensitively, and a particle having a narrow particle size distribution like the Ag particle (A) of the present embodiment can be detected. Even in this case, the measurement can be performed with high accuracy.
 また、本実施形態の導電性樹脂組成物において、Ag粒子(A)の粒径の標準偏差は2.0μm以下に設定される。このようにAg粒子(A)の粒径の標準偏差を上記の値以下に設定することにより、シンタリング時の均一性を一段と向上させることができる。
 Ag粒子(A)の粒径の標準偏差は1.9μm以下であることが好ましく、1.8μm以下であることがより好ましい。
 Ag粒子(A)の粒径の標準偏差の下限値は特に限定されるものではないが、たとえば、0.1μm以上であり、また、Ag粒子(A)の入手容易性等を考慮し、0.3μm以上に設定することもできる。
Further, in the conductive resin composition of the present embodiment, the standard deviation of the particle size of Ag particles (A) is set to 2.0 μm or less. By setting the standard deviation of the particle diameter of the Ag particles (A) to the above value or less, the uniformity during sintering can be further improved.
The standard deviation of the particle size of the Ag particles (A) is preferably 1.9 μm or less, and more preferably 1.8 μm or less.
The lower limit of the standard deviation of the particle size of the Ag particles (A) is not particularly limited, but is, for example, 0.1 μm or more, and in consideration of the availability of the Ag particles (A) and the like, 0 It can also be set to 0.3 μm or more.
 本実施形態の導電性樹脂組成物に含まれるAg粒子(A)のD50と標準偏差に関し、上述のAg粒子(A)の粒径の標準偏差を、Ag粒子(A)の体積基準の累積分布における50%累積時の粒径D50で除した値は、2.5以下とすることが好ましく、2.0以下とすることがより好ましく、1.8以下とすることがより好ましい。
 粒径の標準偏差とD50との関係をこのように設定することにより、Ag粒子(A)全体の粒径としてのばらつきをなくし、一段とシンタリングの均一性を向上させることができる。
 Ag粒子(A)の粒径の標準偏差を、Ag粒子(A)の体積基準の累積分布における50%累積時の粒径D50で除した値の下限値は特に限定されるものではないが、たとえば、0.1以上である。
Regarding the D 50 and the standard deviation of the Ag particles (A) contained in the conductive resin composition of the present embodiment, the above-mentioned standard deviation of the particle diameter of the Ag particles (A) is accumulated on a volume basis of the Ag particles (A). The value divided by the particle size D 50 at 50% accumulation in the distribution is preferably 2.5 or less, more preferably 2.0 or less, and further preferably 1.8 or less.
By setting the relationship between the standard deviation of the particle size and D 50 in this way, it is possible to eliminate the variation in the particle size of the Ag particles (A) as a whole and to further improve the uniformity of sintering.
The lower limit of the value obtained by dividing the standard deviation of the particle size of Ag particles (A) by the particle size D 50 at the time of 50% accumulation in the volume-based cumulative distribution of Ag particles (A) is not particularly limited. , For example, 0.1 or more.
 導電性樹脂組成物中におけるAg粒子(A)の含有量は、たとえば導電性樹脂組成物全体に対して40質量%以上であることが好ましく、50質量%以上であることがより好ましい。これにより、Ag粒子(A)の焼結性を向上させ、熱伝導性と導電性の向上に寄与することが可能となる。
 一方で、導電性樹脂組成物中におけるAg粒子(A)の含有量は、たとえば導電性樹脂組成物全体に対して90質量%以下であることが好ましく、80質量%以下であることがより好ましい。これにより、導電性樹脂組成物全体の塗布作業性や、導電性樹脂組成物を加熱して得られる硬化物の機械強度等の向上に寄与することができる。
The content of Ag particles (A) in the conductive resin composition is, for example, preferably 40% by mass or more, and more preferably 50% by mass or more, based on the entire conductive resin composition. This makes it possible to improve the sinterability of the Ag particles (A) and contribute to the improvement of thermal conductivity and conductivity.
On the other hand, the content of Ag particles (A) in the conductive resin composition is, for example, preferably 90% by mass or less, and more preferably 80% by mass or less, based on the entire conductive resin composition. . This can contribute to improvement in coating workability of the entire conductive resin composition and mechanical strength of a cured product obtained by heating the conductive resin composition.
(ベース樹脂(B))
 ベース樹脂(B)はアクリル樹脂、エポキシ樹脂からなる群より選ばれる少なくとも1種である。
(Base resin (B))
The base resin (B) is at least one selected from the group consisting of acrylic resins and epoxy resins.
 アクリル樹脂としては、たとえば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート等の(メタ)アクリルモノマーのうちの1種による単独重合体、および、2種以上による共重合体が挙げられる。 Examples of the acrylic resin include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, isobutyl (meth) acrylate, cyclohexyl (meth). ) Homopolymers of one of (meth) acrylic monomers such as acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, n-stearyl (meth) acrylate, benzyl (meth) acrylate, and 2 Examples include copolymers of one or more species.
 エポキシ樹脂としては、たとえば、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、(メタ)アクリル酸エステル系エポキシ樹脂、脂環式系エポキシ樹脂およびグリシジルエステル系エポキシ樹脂等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 Examples of the epoxy resin include a biphenyl type epoxy resin, a bisphenol type epoxy resin, a (meth) acrylic acid ester-based epoxy resin, an alicyclic epoxy resin, and a glycidyl ester-based epoxy resin, and one of these is used. Alternatively, two or more kinds can be used in combination.
 導電性樹脂組成物中に含まれるベース樹脂(B)の含有量は、たとえば導電性樹脂組成物全体に対して3質量%以上であることが好ましく、5質量%以上であることがより好ましく、8質量%以上であることがさらに好ましい。これにより、シンタリングの均一性をより効果的に向上させることが可能となる。また、導電性樹脂組成物を加熱して得られる硬化物の機械強度等の向上に寄与することもできる。一方で、導電性樹脂組成物中に含まれるベース樹脂(B)の含有量は、たとえば導電性樹脂組成物全体に対して60質量%以下であることが好ましく、55質量%以下であることがより好ましく、50質量%以下であることがさらに好ましい。これにより、Ag粒子(A)の焼結性の向上に寄与することが可能となる。 The content of the base resin (B) contained in the conductive resin composition is, for example, preferably 3% by mass or more, and more preferably 5% by mass or more, based on the entire conductive resin composition. It is more preferably 8% by mass or more. This makes it possible to improve the uniformity of sintering more effectively. Further, it can also contribute to the improvement of mechanical strength and the like of a cured product obtained by heating the conductive resin composition. On the other hand, the content of the base resin (B) contained in the conductive resin composition is, for example, preferably 60% by mass or less, and 55% by mass or less with respect to the entire conductive resin composition. More preferably, it is still more preferably 50% by mass or less. This makes it possible to contribute to improving the sinterability of the Ag particles (A).
 導電性樹脂組成物中に含まれるベース樹脂(B)の含有量が、上述の上限値と下限値とからなる範囲内であると、シンタリングの均一性をより効果的に向上させることができるとともに、さらにAg粒子(A)の焼結性の向上にも寄与することもできる。なお、上限値と下限値は適宜組み合わせることができる。 When the content of the base resin (B) contained in the conductive resin composition is within the range consisting of the upper limit value and the lower limit value described above, the uniformity of sintering can be more effectively improved. At the same time, it can also contribute to improving the sinterability of the Ag particles (A). The upper limit value and the lower limit value can be appropriately combined.
(ラジカル開始剤(C))
 ラジカル開始剤(C)は、ベース樹脂(B)の重合反応を促進させるものを用いることができる。これにより、導電性樹脂組成物を用いて得られる硬化物の機械特性の向上に寄与することができる。
(Radical initiator (C))
As the radical initiator (C), one that accelerates the polymerization reaction of the base resin (B) can be used. This can contribute to improving the mechanical properties of the cured product obtained using the conductive resin composition.
 ラジカル開始剤(C)の10時間半減期温度は100℃以上120℃以下である。ラジカル開始剤(C)の10時間半減期温度が100℃以上であると、導電性樹脂組成物の加熱時に、ラジカル開始剤(C)が分解する前にリードフレームなどの配線部材の表面を被覆するEBO防止剤が溶けやすくなり、導電性樹脂組成物とEBO防止剤との接着性が向上し、ひいては半導体素子と金属フレームとの剥離強度が向上するとともに、導電性樹脂組成物中のAg粒子(A)がEBO防止剤からなる表面処理層を突き破って配線部材に到達し易くなる。一方、ラジカル開始剤(C)の10時間半減期温度が120℃以下であると、硬化までの時間が短縮でき、また未硬化の樹脂成分が少なくなり、半導体素子と金属フレームとの剥離強度が向上する The 10-hour half-life temperature of the radical initiator (C) is 100 ° C or higher and 120 ° C or lower. When the 10-hour half-life temperature of the radical initiator (C) is 100 ° C. or higher, the surface of the wiring member such as the lead frame is covered before the radical initiator (C) decomposes when the conductive resin composition is heated. The EBO inhibitor to be dissolved easily, the adhesiveness between the conductive resin composition and the EBO inhibitor is improved, and the peel strength between the semiconductor element and the metal frame is improved, and the Ag particles in the conductive resin composition are improved. (A) easily penetrates the surface treatment layer made of the EBO inhibitor to reach the wiring member. On the other hand, when the 10-hour half-life temperature of the radical initiator (C) is 120 ° C. or lower, the time until curing can be shortened, and the uncured resin component is reduced, so that the peel strength between the semiconductor element and the metal frame is reduced. improves
 このような10時間半減期温度を持つラジカル開始剤(C)として、ケトンパーオキサイド類、パーオキシケタール類、ハイドロパーオキサイド類、ジアルキルパーオキサイド類、ジアシルパーオキサイド類、パーオキシエステル類、パーオキシジカーボネート類からなる群より選ばれる少なくとも1種が挙げられる。 Examples of the radical initiator (C) having such a 10-hour half-life temperature include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, peroxy. At least one selected from the group consisting of dicarbonates can be mentioned.
 ケトンパーオキサイド類としては、メチルエチルケトンパーオキサイド(10時間半減期温度:110℃)等が挙げられる。パーオキシケタール類としては、n-Butyl 4,4-di-(t-butylperoxy)valerate(10時間半減期温度:100℃)等が挙げられる。ハイドロパーオキサイド類としては、p-Menthane hydroperoxide(10時間半減期温度:120℃)等が挙げられる。ジアルキルパーオキサイド類としては、ジ-α-クミルパーオキサイド(10時間半減期温度:120℃)等が挙げられる。パーオキシエステル類としては、t-Butyl peroxybenzoate(10時間半減期温度:100℃)等が挙げられる。 Examples of ketone peroxides include methyl ethyl ketone peroxide (10-hour half-life temperature: 110 ° C). Examples of the peroxyketals include n-butyl 4,4-di- (t-butylperoxy) valerate (10-hour half-life temperature: 100 ° C.) and the like. Examples of hydroperoxides include p-Menthane hydroperoxide (10-hour half-life temperature: 120 ° C.). Examples of the dialkyl peroxides include di-α-cumyl peroxide (10-hour half-life temperature: 120 ° C.). Examples of peroxyesters include t-Butyl peroxybenzoate (10-hour half-life temperature: 100 ° C.) and the like.
 導電性樹脂組成物中に含まれるラジカル開始剤(C)の含有量は、たとえばベース樹脂(B)100質量部に対して25質量部以下とすることができる。また、導電性樹脂組成物中に含まれるラジカル開始剤(C)の含有量は、上記ベース樹脂(B)100質量部に対して0質量部超とすることができる。導電性樹脂組成物を加熱して得られる硬化物の機械特性を向上させる観点からは、たとえば上記ベース樹脂(B)100質量部に対するラジカル開始剤(C)の含有量を0.1質量部以上とすることができる。 The content of the radical initiator (C) contained in the conductive resin composition can be, for example, 25 parts by mass or less with respect to 100 parts by mass of the base resin (B). Moreover, the content of the radical initiator (C) contained in the conductive resin composition can be more than 0 parts by mass with respect to 100 parts by mass of the base resin (B). From the viewpoint of improving the mechanical properties of the cured product obtained by heating the conductive resin composition, for example, the content of the radical initiator (C) relative to 100 parts by mass of the base resin (B) is 0.1 parts by mass or more. Can be
(溶媒)
 本実施形態に係る導電性樹脂組成物は、たとえば溶剤を含むことができる。これにより、導電性樹脂組成物の流動性を向上させ、作業性の向上に寄与することができる。
(solvent)
The conductive resin composition according to this embodiment may include, for example, a solvent. This can improve the fluidity of the conductive resin composition and contribute to the improvement of workability.
 溶剤は、特に限定されないが、たとえばエチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、メチルメトキシブタノール、α-ターピネオール、β-ターピネオール、へキシレングリコール、ベンジルアルコール、2-フェニルエチルアルコール、イゾパルミチルアルコール、イソステアリルアルコール、ラウリルアルコール、エチレングリコール、プロピレングリコールもしくはグリセリン等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジアセトンアルコール(4-ヒドロキシ-4-メチル-2-ペンタノン)、2-オクタノン、イソホロン(3、5、5-トリメチル-2-シクロヘキセン-1-オン)もしくはジイソブチルケトン(2、6-ジメチル-4-ヘプタノン)等のケトン類;酢酸エチル、酢酸ブチル、ジエチルフタレート、ジブチルフタレート、アセトキシエタン、酪酸メチル、ヘキサン酸メチル、オクタン酸メチル、デカン酸メチル、メチルセロソルブアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、1,2-ジアセトキシエタン、リン酸トリブチル、リン酸トリクレジルもしくはリン酸トリペンチル等のエステル類;テトラヒドロフラン、ジプロピルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、エトキシエチルエーテル、1,2-ビス(2-ジエトキシ)エタンもしくは1,2-ビス(2-メトキシエトキシ)エタン等のエーテル類;酢酸2-(2ブトキシエトキシ)エタン等のエステルエーテル類;2-(2-メトキシエトキシ)エタノール等のエーテルアルコール類、トルエン、キシレン、n-パラフィン、イソパラフィン、ドデシルベンゼン、テレピン油、ケロシンもしくは軽油等の炭化水素類;アセトニトリルもしくはプロピオニトリル等のニトリル類;アセトアミドもしくはN,N-ジメチルホルムアミド等のアミド類;低分子量の揮発性シリコンオイル、または揮発性有機変成シリコンオイル等のシリコンオイル類から選択される1種または2種以上を含むことができる。 The solvent is not particularly limited, for example, ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono Propyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, methyl methoxybutanol, α-terpineol, β-terpineol, hexylene glycol, benzyl alcohol, 2 -Phenylethyl alcohol, Iso Alcohols such as palmityl alcohol, isostearyl alcohol, lauryl alcohol, ethylene glycol, propylene glycol or glycerin; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol (4-hydroxy-4-methyl-2-pentanone), Ketones such as 2-octanone, isophorone (3,5,5-trimethyl-2-cyclohexen-1-one) or diisobutyl ketone (2,6-dimethyl-4-heptanone); ethyl acetate, butyl acetate, diethyl phthalate, Dibutyl phthalate, acetoxyethane, methyl butyrate, methyl hexanoate, methyl octanoate, methyl decanoate, methyl cellosolve acetate, ethylene glycol monobutyl ether acetate, Esters such as pyrene glycol monomethyl ether acetate, 1,2-diacetoxyethane, tributyl phosphate, tricresyl phosphate or tripentyl phosphate; tetrahydrofuran, dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, Ethers such as propylene glycol dimethyl ether, ethoxyethyl ether, 1,2-bis (2-diethoxy) ethane or 1,2-bis (2-methoxyethoxy) ethane; ester ethers such as acetic acid 2- (2butoxyethoxy) ethane Ethers such as 2- (2-methoxyethoxy) ethanol, toluene, xylene, n-paraffin, isoparaffin, dodecylbenzene, terepi Hydrocarbons such as oil, kerosene or light oil; nitriles such as acetonitrile or propionitrile; amides such as acetamide or N, N-dimethylformamide; low molecular weight volatile silicone oil or volatile organic modified silicone oil One or two or more kinds selected from the above silicone oils can be included.
 以上説明した導電性樹脂組成物の硬化物を、EBO防止剤で表面処理されたリードフレームなどの配線部材と半導体素子との接着層として用いることにより、配線部材と半導体素子との密着性、言い換えるとチップ剥離強度を向上させることができる。
 また、配線部材と半導体素子との導電性の向上を図るとともに、EBO防止剤により導電性樹脂組成物に含まれるベース樹脂(B)が滲み出すことを抑制することができる。
By using the cured product of the conductive resin composition described above as an adhesive layer between a wiring member such as a lead frame surface-treated with an EBO inhibitor and a semiconductor element, the adhesion between the wiring member and the semiconductor element, in other words, And chip peel strength can be improved.
Further, the conductivity between the wiring member and the semiconductor element can be improved, and the EBO inhibitor can prevent the base resin (B) contained in the conductive resin composition from oozing out.
 本実施形態の導電性樹脂組成物は、上述の成分(A)、(B)および(C)以外に、
モノマー(D)および/または窒素含複素環化合物(E)を含むことができる。
The conductive resin composition according to the present embodiment has, in addition to the components (A), (B) and (C) described above,
It may contain a monomer (D) and / or a nitrogen-containing heterocyclic compound (E).
(モノマー(D))
 本実施形態の導電性樹脂組成物が有するモノマー(D)はアクリルモノマー、(メタ)アクリルモノマー、共役オレフィンからなる群より選ばれる少なくとも1種である。
 アクリルモノマーとしては、1,4-シクロヘキサンジメタノールモノアクリレート、1.6ヘキサンジオールジメタクリレート、2-フェノキシエチルメタクリレート等が挙げられる。
 (メタ)アクリルモノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。
 共役オレフィンとしては、ブタジエン、イソプレン、ピペリレン、1,4-ジメチルブタジエン、トランス-2-メチル-1,3-ペンタジエン、1,2-ジメチレンシクロヘキサン、シクロペンタジエン等が挙げられる。
(Monomer (D))
The monomer (D) contained in the conductive resin composition of the present embodiment is at least one selected from the group consisting of acrylic monomers, (meth) acrylic monomers and conjugated olefins.
Examples of acrylic monomers include 1,4-cyclohexanedimethanol monoacrylate, 1.6 hexanediol dimethacrylate, and 2-phenoxyethyl methacrylate.
Examples of the (meth) acrylic monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, isobutyl (meth) acrylate, cyclohexyl ( Examples thereof include (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, n-stearyl (meth) acrylate, and benzyl (meth) acrylate.
Examples of the conjugated olefin include butadiene, isoprene, piperylene, 1,4-dimethylbutadiene, trans-2-methyl-1,3-pentadiene, 1,2-dimethylenecyclohexane and cyclopentadiene.
 本実施形態の導電性樹脂組成物中に含まれるモノマー(D)の含有量は、導電性樹脂組成物全体に対して2質量%以上であることが好ましく、4質量%以上であることがより好ましく、6質量%以上であることがさらに好ましい。また、導電性樹脂組成物中に含まれるモノマー(D)の含有量は、導電性樹脂組成物全体に対して25質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることがさらに好ましい。導電性樹脂組成物中に含まれるモノマー(D)の含有量を上記範囲とすることで、導電性樹脂組成物を加熱して得られる硬化物の機械強度等の向上に寄与することができる。なお、上限値と下限値は適宜組み合わせることができる。 The content of the monomer (D) contained in the conductive resin composition of the present embodiment is preferably 2% by mass or more and more preferably 4% by mass or more with respect to the entire conductive resin composition. It is preferably 6% by mass or more, and more preferably 6% by mass or more. The content of the monomer (D) contained in the conductive resin composition is preferably 25% by mass or less, more preferably 20% by mass or less, based on the entire conductive resin composition. It is more preferably 15% by mass or less. By setting the content of the monomer (D) contained in the conductive resin composition in the above range, it is possible to contribute to improvement in mechanical strength and the like of a cured product obtained by heating the conductive resin composition. The upper limit value and the lower limit value can be appropriately combined.
(窒素含複素環化合物(E))
 本実施形態の導電性樹脂組成物が有する窒素含複素環化合物(E)はトリアジン、トリアゾール、イソシアヌル酸、またはこれらの誘導体からなる群より選ばれる少なくとも1種である。
 イソシアヌル酸の誘導体として、トリス(2-ヒドロキシエチル)イソシアヌレートトリアクリレートが挙げられる。
 本実施形態の導電性樹脂組成物中に含まれる窒素含複素環化合物(E)の含有量は、導電性樹脂組成物全体に対して0.05質量%以上であることが好ましく、0.10質量%以上であることがより好ましく、0.15質量%以上であることがさらに好ましい。また、導電性樹脂組成物中に含まれる窒素含複素環化合物(E)の含有量は、導電性樹脂組成物全体に対して5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。導電性樹脂組成物中に含まれる窒素含複素環化合物(E)の含有量を上記範囲とすることで、配線部材および半導体素子との密着性を向上させることができる。なお、上限値と下限値は適宜組み合わせることができる。
(Nitrogen-containing heterocyclic compound (E))
The nitrogen-containing heterocyclic compound (E) contained in the conductive resin composition of the present embodiment is at least one selected from the group consisting of triazine, triazole, isocyanuric acid, and derivatives thereof.
Examples of isocyanuric acid derivatives include tris (2-hydroxyethyl) isocyanurate triacrylate.
The content of the nitrogen-containing heterocyclic compound (E) contained in the conductive resin composition of the present embodiment is preferably 0.05% by mass or more based on the entire conductive resin composition, and is 0.10. It is more preferably at least mass%, and even more preferably at least 0.15 mass%. Further, the content of the nitrogen-containing heterocyclic compound (E) contained in the conductive resin composition is preferably 5% by mass or less, and preferably 3% by mass or less, based on the entire conductive resin composition. Is more preferable and 1% by mass or less is further preferable. By setting the content of the nitrogen-containing heterocyclic compound (E) contained in the conductive resin composition within the above range, the adhesion with the wiring member and the semiconductor element can be improved. The upper limit value and the lower limit value can be appropriately combined.
(実施形態2)
 実施形態2に係る導電性樹脂組成物は、Ag粒子(A)と、ベース樹脂(B)と、モノマー(D)と、を含む。本実施形態のAg粒子(A)およびベース樹脂(B)は、実施形態1と同様である。なお、本実施形態の導電性樹脂組成物は、実施形態1と同様に溶媒を含んでもよい。以下、実施形態2に係る導電性樹脂組成物について、実施形態1と異なる構成を説明する。
(Embodiment 2)
The conductive resin composition according to the second embodiment contains Ag particles (A), a base resin (B), and a monomer (D). The Ag particles (A) and the base resin (B) of this embodiment are the same as those of the first embodiment. The conductive resin composition of this embodiment may contain a solvent as in the first embodiment. Hereinafter, regarding the conductive resin composition according to the second embodiment, a configuration different from that of the first embodiment will be described.
 本実施形態の導電性樹脂組成物中に含まれるモノマー(D)の含有量は、導電性樹脂組成物全体に対して2質量%以上であることが好ましく、4質量%以上であることがより好ましく、6質量%以上であることがさらに好ましい。また、導電性樹脂組成物中に含まれるモノマー(D)の含有量は、導電性樹脂組成物全体に対して25質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることがさらに好ましい。導電性樹脂組成物中に含まれるモノマー(D)の含有量を上記範囲とすることで、導電性樹脂組成物を加熱して得られる硬化物の機械強度等の向上に寄与することができる。なお、上限値と下限値は適宜組み合わせることができる。
 本実施形態の導電性樹脂組成物によれば、実施形態1と同様な効果を得つつ、加熱によりモノマー(D)が重合することにより、導電性樹脂組成物を加熱して得られる硬化物の機械強度等のさらなる向上を図ることができる。
The content of the monomer (D) contained in the conductive resin composition of the present embodiment is preferably 2% by mass or more and more preferably 4% by mass or more with respect to the entire conductive resin composition. It is preferably 6% by mass or more, and more preferably 6% by mass or more. The content of the monomer (D) contained in the conductive resin composition is preferably 25% by mass or less, more preferably 20% by mass or less, based on the entire conductive resin composition. It is more preferably 15% by mass or less. By setting the content of the monomer (D) contained in the conductive resin composition within the above range, it is possible to contribute to improvement in mechanical strength and the like of a cured product obtained by heating the conductive resin composition. The upper limit value and the lower limit value can be appropriately combined.
According to the conductive resin composition of the present embodiment, a cured product obtained by heating the conductive resin composition by polymerizing the monomer (D) by heating while obtaining the same effect as in Embodiment 1. It is possible to further improve mechanical strength and the like.
(実施形態3)
 実施形態3に係る導電性樹脂組成物は、Ag粒子(A)と、ベース樹脂(B)と、窒素含複素環化合物(E)と、を含む。本実施形態のAg粒子(A)およびベース樹脂(B)は、実施形態1と同様である。なお、本実施形態の導電性樹脂組成物は、実施形態1と同様に溶媒を含んでもよい。以下、実施形態3に係る導電性樹脂組成物について、実施形態1と異なる構成を説明する。
 本実施形態においては、Ag粒子(A)と、ベース樹脂(B)と、窒素含複素環化合物(E)とを組み合わせて含むことにより
(Embodiment 3)
The conductive resin composition according to the third embodiment includes Ag particles (A), a base resin (B), and a nitrogen-containing heterocyclic compound (E). The Ag particles (A) and the base resin (B) of this embodiment are the same as those of the first embodiment. The conductive resin composition of this embodiment may contain a solvent as in the first embodiment. Hereinafter, regarding the conductive resin composition according to the third embodiment, a configuration different from that of the first embodiment will be described.
In the present embodiment, by including the Ag particles (A), the base resin (B), and the nitrogen-containing heterocyclic compound (E) in combination,
 本実施形態の導電性樹脂組成物中に含まれる窒素含複素環化合物(E)の含有量は、導電性樹脂組成物全体に対して0.05質量%以上であることが好ましく、0.10質量%以上であることがより好ましく、0.15質量%以上であることがさらに好ましい。また、導電性樹脂組成物中に含まれる窒素含複素環化合物(E)の含有量は、導電性樹脂組成物全体に対して5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。導電性樹脂組成物中に含まれる窒素含複素環化合物(E)の含有量を上記範囲とすることで、配線部材および半導体素子との密着性を向上させることができる。なお、上限値と下限値は適宜組み合わせることができる。
 本実施形態の導電性樹脂組成物によれば、実施形態1と同様な効果を得つつ、窒素含複素環化合物(E)の作用により、配線部材および半導体素子との密着性のさらなる向上を図ることができる。
The content of the nitrogen-containing heterocyclic compound (E) contained in the conductive resin composition of the present embodiment is preferably 0.05% by mass or more based on the entire conductive resin composition, and is 0.10. It is more preferably at least mass%, and even more preferably at least 0.15 mass%. Further, the content of the nitrogen-containing heterocyclic compound (E) contained in the conductive resin composition is preferably 5% by mass or less, and preferably 3% by mass or less, based on the entire conductive resin composition. Is more preferable and 1% by mass or less is further preferable. By setting the content of the nitrogen-containing heterocyclic compound (E) contained in the conductive resin composition within the above range, the adhesion with the wiring member and the semiconductor element can be improved. The upper limit value and the lower limit value can be appropriately combined.
According to the conductive resin composition of the present embodiment, while obtaining the same effects as in Embodiment 1, the effect of the nitrogen-containing heterocyclic compound (E) further improves the adhesion to the wiring member and the semiconductor element. be able to.
(半導体装置)
 次に、実施形態に係る半導体装置の例について説明する。
 図1は、実施形態に係る半導体装置100を示す断面図である。本実施形態に係る半導体装置100は、基材30と、上述した導電性樹脂組成物を熱処理して得られる硬化物で構成される接着剤層(ダイアタッチ層10)を介して基材30上に搭載された半導体素子20と、を備えている。半導体素子20と基材30は、たとえばボンディングワイヤ40等を介して電気的に接続される。また、半導体素子20は、たとえば封止樹脂50により封止される。ダイアタッチ層10の膜厚は、特に限定されないが、たとえば5μm以上100μm以下である。
(Semiconductor device)
Next, an example of the semiconductor device according to the embodiment will be described.
FIG. 1 is a sectional view showing a semiconductor device 100 according to the embodiment. The semiconductor device 100 according to the present embodiment is provided on the base material 30 via the base material 30 and an adhesive layer (die attach layer 10) composed of a cured product obtained by heat-treating the above-mentioned conductive resin composition. And a semiconductor element 20 mounted on the. The semiconductor element 20 and the base material 30 are electrically connected, for example, via a bonding wire 40 or the like. The semiconductor element 20 is sealed with, for example, the sealing resin 50. The film thickness of the die attach layer 10 is not particularly limited, but is, for example, 5 μm or more and 100 μm or less.
 図1に示す例において、基材30は、たとえばリードフレームである。この場合、半導体素子20は、ダイパッド32(30)上にダイアタッチ層10を介して搭載されることとなる。なお、ダイパッド32(30)の表面には、EBO防止剤により表面処理が施されており、ダイアタッチ層10中のシンタリングした銀粒子がEBO防止剤を突き破り、ダイパッド32(30)の表面に達している。EBO防止剤は、特に限定されず、一般に流通する市販品が用いられる。 In the example shown in FIG. 1, the base material 30 is, for example, a lead frame. In this case, the semiconductor element 20 will be mounted on the die pad 32 (30) via the die attach layer 10. The surface of the die pad 32 (30) is subjected to a surface treatment with an EBO inhibitor, and the sintered silver particles in the die attach layer 10 penetrate the EBO inhibitor and reach the surface of the die pad 32 (30). Has reached The EBO inhibitor is not particularly limited, and commercially available products that are generally distributed are used.
 半導体素子20は、たとえばボンディングワイヤ40を介してアウターリード34(30)へ電気的に接続される。リードフレームである基材30は、たとえば42アロイ、Cuフレームにより構成される。なお、基材30は、有機基板や、セラミック基板であってもよい。有機基板としては、たとえばエポキシ樹脂、シアネート樹脂、マレイミド樹脂等を適用した当業者公知の基板が好適である。 The semiconductor element 20 is electrically connected to the outer lead 34 (30) via the bonding wire 40, for example. The base material 30 which is a lead frame is composed of, for example, a 42 alloy and a Cu frame. The base material 30 may be an organic substrate or a ceramic substrate. As the organic substrate, for example, a substrate known to those skilled in the art to which an epoxy resin, a cyanate resin, a maleimide resin or the like is applied is suitable.
 半導体素子20の平面形状は、特に限定されないが、たとえば矩形である。本実施形態においては、たとえば0.5mm角以上15mm角以下のチップサイズを有する矩形状の半導体素子20を採用することができる。 The planar shape of the semiconductor element 20 is not particularly limited, but is, for example, a rectangle. In this embodiment, for example, a rectangular semiconductor element 20 having a chip size of 0.5 mm square to 15 mm square can be used.
 以上説明した半導体装置100は、接着剤層として、上述した導電性樹脂組成物を熱処理して得られる硬化物を用いることにより、導電性の向上や導電性樹脂組成物中のベース樹脂の滲み出しの抑制を図りつつ、半導体素子20とダイパッド32(30)との密着性を向上させることができる。 In the semiconductor device 100 described above, by using a cured product obtained by heat-treating the above-mentioned conductive resin composition as the adhesive layer, the conductivity is improved and the base resin in the conductive resin composition is exuded. It is possible to improve the adhesion between the semiconductor element 20 and the die pad 32 (30) while suppressing the above.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 The embodiments of the present invention have been described above, but these are examples of the present invention, and various configurations other than the above can be adopted.
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(導電性樹脂組成物の調製)
 実施例1乃至3および比較例1について、導電性樹脂組成物を調製した。この調製は、表1に示す配合に従い各成分を混合し、3本ロールを用いて攪拌した後、2mmHgで30分間脱泡処理を行うことにより行った。なお、表1に示す成分の詳細は以下のとおりである。
(Preparation of conductive resin composition)
Conductive resin compositions were prepared for Examples 1 to 3 and Comparative Example 1. This preparation was performed by mixing the components according to the formulation shown in Table 1, stirring the mixture using a three-roll mill, and then performing defoaming treatment at 2 mmHg for 30 minutes. The details of the components shown in Table 1 are as follows.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(Ag粒子(A))
Ag粒子1:Ag-DSB-114、DOWAハイテック社製、D50:0.7μm
(Ag particles (A))
Ag particles 1: Ag-DSB-114, manufactured by DOWA Hitech, D 50 : 0.7 μm
(ベース樹脂(B))
ベース樹脂1:アクリルポリマー溶液を以下の手順にて作製した。UG4035(東亞合成株式会社製)4.4質量部、ライトエステルPO(共栄社化学株式会社製)4.4質量部を100℃に加熱、攪拌し、均一な溶液を得た。
ベース樹脂2:修飾ポリブタジエン(RICOBOND1731、Cray Valley社製)
ベース樹脂3:アリルポリマー(SBM-8C03、関東化学株式会社製)
(Base resin (B))
Base resin 1: An acrylic polymer solution was prepared by the following procedure. 4.4 parts by mass of UG4035 (manufactured by Toagosei Co., Ltd.) and 4.4 parts by mass of light ester PO (manufactured by Kyoeisha Chemical Co., Ltd.) were heated to 100 ° C. and stirred to obtain a uniform solution.
Base resin 2: modified polybutadiene (RICOBOND1731, manufactured by Cray Valley)
Base resin 3: Allyl polymer (SBM-8C03, manufactured by Kanto Chemical Co., Inc.)
(モノマー(D))
モノマー1:フェノキシエチルメタクリレート(ライトエステルPO、共栄社化学株式会社製)
モノマー2:1,6-ヘキサンジオールジメタクリレート(ライトエステル1、6Hex、共栄社化学株式会社製)
モノマー3:1,4-シクロヘキサンジメタノールモノアクリレート(CHDMMA、日本化成株式会社製)
(Monomer (D))
Monomer 1: Phenoxyethyl methacrylate (light ester PO, Kyoeisha Chemical Co., Ltd.)
Monomer 2: 1,6-hexanediol dimethacrylate (light ester 1, 6 Hex, Kyoeisha Chemical Co., Ltd.)
Monomer 3: 1,4-Cyclohexanedimethanol monoacrylate (CHDMMA, manufactured by Nippon Kasei Co., Ltd.)
(窒素含複素環化合物(E))
窒素含複素環化合物1:トリス(2-ヒドロキシエチル)イソシアヌレートトリアクリレート(SR-368、アルケマ株式会社製)
(Nitrogen-containing heterocyclic compound (E))
Nitrogen-containing heterocyclic compound 1: tris (2-hydroxyethyl) isocyanurate triacrylate (SR-368, manufactured by Arkema Inc.)
(ラジカル開始剤(C))
ラジカル開始剤1:パーヘキサC(s)、日油株式会社製(10時間半減期温度:91℃、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン)
ラジカル開始剤2:パーカドックスBC、化薬アクゾ株式会社製(10時間半減期温度:117℃、ジ-α-クミルパ-オキサイド)
(Radical initiator (C))
Radical initiator 1: Perhexa C (s), manufactured by NOF CORPORATION (10-hour half-life temperature: 91 ° C., 1,1-di (t-butylperoxy) cyclohexane)
Radical Initiator 2: Percadox BC, manufactured by Kayaku Akzo Co., Ltd. (10-hour half-life temperature: 117 ° C., di-α-cumylpa-oxide)
(剥離強度測定)
 得られた各導電性樹脂組成物の特性(チップ剥離強度)を下記に示す方法で調べた。
 導電性樹脂組成物をAnti-EBO剤(新光電気社製)で表面処理を行った銅フレーム上に20μm厚に塗布し、その上に2mm×2mmの半導体チップをマウントした。30℃から175℃に30分で昇温し、175℃で1時間加熱硬化させ、260℃のプレート上に上記サンプルを20秒置き、その状態でボンドテスター(DAGE 4000P型)によりチップ剥離強度を測定した。図2は、チップ剥離強度の測定方法を示す模式図である。半導体チップ220は、Anti-EBO剤で表面処理された銅フレーム200の上に導電性樹脂組成物210を介して接着されている。半導体チップ220の側面に治具230を押し当て、図2に示した矢印方向に力を加えることにより、チップ剥離強度を求めた。得られた結果を表2に示す。
(Peel strength measurement)
The characteristics (chip peeling strength) of each conductive resin composition obtained were examined by the methods described below.
The conductive resin composition was applied on a copper frame surface-treated with an Anti-EBO agent (manufactured by Shinko Electric Co., Ltd.) to a thickness of 20 μm, and a 2 mm × 2 mm semiconductor chip was mounted thereon. The temperature is raised from 30 ° C. to 175 ° C. in 30 minutes, heat-cured at 175 ° C. for 1 hour, and the sample is placed on a plate at 260 ° C. for 20 seconds. It was measured. FIG. 2 is a schematic diagram showing a method for measuring chip peel strength. The semiconductor chip 220 is bonded to the copper frame 200 surface-treated with the Anti-EBO agent via the conductive resin composition 210. The jig 230 was pressed against the side surface of the semiconductor chip 220, and a force was applied in the arrow direction shown in FIG. 2 to obtain the chip peel strength. The obtained results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1乃至3の導電性樹脂組成物は比較例1の導電性樹脂組成物に比べてチップ剥離強度が向上することが確認された。 As shown in Table 2, it was confirmed that the conductive resin compositions of Examples 1 to 3 had improved chip peel strength as compared with the conductive resin composition of Comparative Example 1.
 この出願は、2018年10月24日に出願された日本出願特願2018-200424号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2018-2004424 filed on October 24, 2018, and incorporates all of the disclosure thereof.

Claims (12)

  1.  Ag粒子(A)と、
     ベース樹脂(B)と、
     ラジカル開始剤(C)と、
     を含み、
     前記ラジカル開始剤(C)の10時間半減期温度が100℃以上120℃以下である、導電性樹脂組成物。
    Ag particles (A),
    Base resin (B),
    Radical initiator (C),
    Including,
    A conductive resin composition, wherein the 10-hour half-life temperature of the radical initiator (C) is 100 ° C. or higher and 120 ° C. or lower.
  2.  前記ラジカル開始剤(C)がケトンパーオキサイド類、パーオキシケタール類、ハイドロパーオキサイド類、ジアルキルパーオキサイド類、ジアシルパーオキサイド類、およびパーオキシジカーボネート類からなる群より選ばれる少なくとも1種である請求項1に記載の導電性樹脂組成物。 The radical initiator (C) is at least one selected from the group consisting of ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, and peroxydicarbonates. The conductive resin composition according to claim 1.
  3.  さらに、モノマー(D)を含む、請求項1または2に記載の導電性樹脂組成物。 The electrically conductive resin composition according to claim 1 or 2, further comprising a monomer (D).
  4.  モノマー(D)は、アクリルモノマー、(メタ)アクリルモノマー、および共役オレフィンからなる群より選ばれる少なくとも1種である、請求項3に記載の導電性樹脂組成物。 The conductive resin composition according to claim 3, wherein the monomer (D) is at least one selected from the group consisting of acrylic monomers, (meth) acrylic monomers, and conjugated olefins.
  5.  さらに、窒素含複素環化合物(E)を含む、請求項1乃至4のいずれか1項に記載の導電性樹脂組成物。 The electrically conductive resin composition according to any one of claims 1 to 4, further comprising a nitrogen-containing heterocyclic compound (E).
  6.  窒素含複素環化合物(E)がトリアジン、トリアゾール、イソシアヌル酸、およびこれらの誘導体からなる群より選ばれる少なくとも1種である請求項5に記載の導電性樹脂組成物。 The conductive resin composition according to claim 5, wherein the nitrogen-containing heterocyclic compound (E) is at least one selected from the group consisting of triazine, triazole, isocyanuric acid, and derivatives thereof.
  7.  Ag粒子(A)と、
     ベース樹脂(B)と、
     窒素含複素環化合物(E)と、
     を含む導電性樹脂組成物。
    Ag particles (A),
    Base resin (B),
    A nitrogen-containing heterocyclic compound (E),
    A conductive resin composition containing:
  8.  前記窒素含複素環化合物(E)がトリアジン、トリアゾール、イソシアヌル酸、またはこれらの誘導体からなる群より選ばれる少なくとも1種である請求項7に記載の導電性樹脂組成物。 The conductive resin composition according to claim 7, wherein the nitrogen-containing heterocyclic compound (E) is at least one selected from the group consisting of triazine, triazole, isocyanuric acid, and derivatives thereof.
  9.  前記ベース樹脂(B)がアクリル樹脂、エポキシ樹脂からなる群より選ばれる少なくとも1種である請求項1乃至8のいずれか1項に記載の導電性樹脂組成物。 The conductive resin composition according to claim 1, wherein the base resin (B) is at least one selected from the group consisting of acrylic resins and epoxy resins.
  10.  Ag粒子(A)の含有量が当該導電性樹脂組成物全体に対して、40質量%以上90質量%以下である、請求項1乃至9のいずれか1項に記載の導電性樹脂組成物。 The conductive resin composition according to any one of claims 1 to 9, wherein the content of the Ag particles (A) is 40% by mass or more and 90% by mass or less with respect to the entire conductive resin composition.
  11.  請求項1乃至10のいずれか1項に記載の導電性樹脂組成物の硬化物を有する半導体装置。  A semiconductor device comprising the cured product of the conductive resin composition according to any one of claims 1 to 10.
  12.  エポキシブリードアウト防止剤で表面処理されたリードフレームと、
     請求項1乃至10のいずれか1項に記載の導電性樹脂組成物の硬化物からなる接着剤層と、
     前記接着剤層を介して前記リードフレーム上に搭載された半導体素子と、
     備える、請求項11に記載の半導体装置。
    A lead frame surface-treated with an epoxy bleed-out inhibitor,
    An adhesive layer comprising a cured product of the conductive resin composition according to any one of claims 1 to 10,
    A semiconductor element mounted on the lead frame via the adhesive layer,
    The semiconductor device according to claim 11, comprising.
PCT/JP2019/041504 2018-10-24 2019-10-23 Electrically conductive resin composition and semiconductor device WO2020085372A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020553425A JPWO2020085372A1 (en) 2018-10-24 2019-10-23 Conductive resin compositions and semiconductor devices
CN201980070190.5A CN112912427B (en) 2018-10-24 2019-10-23 Conductive resin composition and semiconductor device
JP2022075758A JP7359252B2 (en) 2018-10-24 2022-05-02 Conductive resin composition and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-200424 2018-10-24
JP2018200424 2018-10-24

Publications (1)

Publication Number Publication Date
WO2020085372A1 true WO2020085372A1 (en) 2020-04-30

Family

ID=70331380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041504 WO2020085372A1 (en) 2018-10-24 2019-10-23 Electrically conductive resin composition and semiconductor device

Country Status (4)

Country Link
JP (2) JPWO2020085372A1 (en)
CN (1) CN112912427B (en)
TW (1) TWI824045B (en)
WO (1) WO2020085372A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141779A (en) * 1984-10-15 1986-06-28 ナショナル スタ−チ アンド ケミカル コ−ポレイション Heat stable adhesive
JPH0221626A (en) * 1988-07-08 1990-01-24 Narumi China Corp Ceramic substrate for mounting semiconductor element
JPH05501783A (en) * 1989-11-29 1993-04-02 アチソン・インダストリーズ・インコーポレイテツド Conductive adhesive useful for bonding semiconductor die to a conductive support base
JPH06350000A (en) * 1993-06-04 1994-12-22 Hitachi Ltd Surface treating agent of lead frame and manufacture of semiconductor integrated circuit device using the same
JPH11195662A (en) * 1997-12-26 1999-07-21 Japan Energy Corp Epoxy bleed-out preventing agent and method therefor
JP2001181482A (en) * 1999-12-27 2001-07-03 Hitachi Chem Co Ltd Resin paste composition and semi-conductor device using the same
JP2010126617A (en) * 2008-11-27 2010-06-10 Lintec Corp Adhesive composition, adhesive sheet and method for manufacturing semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186261A (en) * 1998-12-21 2000-07-04 Hitachi Chem Co Ltd Adhesive for copper frame, semiconductor package and production of semiconductor package
JP5352970B2 (en) 2007-07-04 2013-11-27 住友ベークライト株式会社 Resin composition and semiconductor device
JP5501783B2 (en) 2010-02-02 2014-05-28 株式会社マキタ Caulking gun
JP5540916B2 (en) * 2010-06-15 2014-07-02 デクセリアルズ株式会社 Method for manufacturing connection structure
JP6350000B2 (en) 2014-06-19 2018-07-04 大日本印刷株式会社 Laminated material, touch panel sensor, electromagnetic shielding material, and image display device
JP6747000B2 (en) * 2016-03-25 2020-08-26 住友ベークライト株式会社 Paste adhesive composition, semiconductor device, method for manufacturing semiconductor device, and method for adhering heat sink
CN109643662B (en) * 2016-08-19 2021-07-13 住友电木株式会社 Chip bonding paste and semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141779A (en) * 1984-10-15 1986-06-28 ナショナル スタ−チ アンド ケミカル コ−ポレイション Heat stable adhesive
JPH0221626A (en) * 1988-07-08 1990-01-24 Narumi China Corp Ceramic substrate for mounting semiconductor element
JPH05501783A (en) * 1989-11-29 1993-04-02 アチソン・インダストリーズ・インコーポレイテツド Conductive adhesive useful for bonding semiconductor die to a conductive support base
JPH06350000A (en) * 1993-06-04 1994-12-22 Hitachi Ltd Surface treating agent of lead frame and manufacture of semiconductor integrated circuit device using the same
JPH11195662A (en) * 1997-12-26 1999-07-21 Japan Energy Corp Epoxy bleed-out preventing agent and method therefor
JP2001181482A (en) * 1999-12-27 2001-07-03 Hitachi Chem Co Ltd Resin paste composition and semi-conductor device using the same
JP2010126617A (en) * 2008-11-27 2010-06-10 Lintec Corp Adhesive composition, adhesive sheet and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
TWI824045B (en) 2023-12-01
JP2022115943A (en) 2022-08-09
CN112912427A (en) 2021-06-04
CN112912427B (en) 2023-08-22
JP7359252B2 (en) 2023-10-11
TW202033567A (en) 2020-09-16
JPWO2020085372A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
JP6260722B2 (en) Paste adhesive composition, semiconductor device, method for manufacturing semiconductor device, and method for bonding heat sink
JP6747000B2 (en) Paste adhesive composition, semiconductor device, method for manufacturing semiconductor device, and method for adhering heat sink
JP6164256B2 (en) Thermally conductive composition, semiconductor device, method for manufacturing semiconductor device, and method for bonding heat sink
JP2022069401A (en) Pasty composition, high thermal conductivity material, and semiconductor device
WO2020085372A1 (en) Electrically conductive resin composition and semiconductor device
WO2017163589A1 (en) Resin composition
JP7264211B2 (en) THERMALLY CONDUCTIVE COMPOSITION AND SEMICONDUCTOR DEVICE
JP2010177613A (en) Semiconductor device
JP2022018051A (en) Pasty resin composition, high heat-conductive material, and semiconductor device
WO2021153405A1 (en) Paste-like resin composition, highly heat conductive material, and semiconductor device
JP7392876B2 (en) Silver-containing pastes and joints
WO2022259905A1 (en) Conductive paste, cured product, and semiconductor device
KR20180129793A (en) Resin composition and semiconductor device
JP2024011926A (en) Conductive paste, cured product and semiconductor device
JP2024011945A (en) Conductive paste, cured product and semiconductor device
JP2023016331A (en) Conductive paste and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553425

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875648

Country of ref document: EP

Kind code of ref document: A1