WO2020085358A1 - Reversible thermochromic microcapsule pigment for ink and reversible thermochromic aqueous ink composition using same - Google Patents

Reversible thermochromic microcapsule pigment for ink and reversible thermochromic aqueous ink composition using same Download PDF

Info

Publication number
WO2020085358A1
WO2020085358A1 PCT/JP2019/041460 JP2019041460W WO2020085358A1 WO 2020085358 A1 WO2020085358 A1 WO 2020085358A1 JP 2019041460 W JP2019041460 W JP 2019041460W WO 2020085358 A1 WO2020085358 A1 WO 2020085358A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcapsule pigment
ink
parts
reversible thermochromic
color
Prior art date
Application number
PCT/JP2019/041460
Other languages
French (fr)
Japanese (ja)
Inventor
真之 三田
格 若木
Original Assignee
株式会社パイロットコーポレーション
パイロットインキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パイロットコーポレーション, パイロットインキ株式会社 filed Critical 株式会社パイロットコーポレーション
Priority to JP2020553420A priority Critical patent/JPWO2020085358A1/en
Publication of WO2020085358A1 publication Critical patent/WO2020085358A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks

Definitions

  • the present invention relates to a reversible thermochromic microcapsule pigment. More specifically, the present invention relates to a reversible thermochromic water-based microcapsule pigment for ink, which is rich in color development and capable of forming a high-definition image. The present invention also relates to an ink composition using the microcapsule pigment, and an ink container containing the ink composition.
  • an ink composition having a reversible thermochromic property has excellent vividness and can realize different colors depending on the temperature, and thus has been used in various writing instruments and printing devices.
  • a reversible thermochromic microcapsule pigment containing a reversible thermochromic component as a colorant is insoluble in an ink solvent, has high stability, and is highly sensitive to color reaction. Often used.
  • the reversible thermochromic microcapsule pigment has a larger particle size than general pigments and may form coarse aggregates in the ink, which may cause clogging of the ink flow path.
  • Reversible thermochromic microcapsule pigment in ink because it is difficult to form a high-definition image because the ink ejection property from the ink ejection part deteriorates when the ink flow path becomes clogged, and the color development is rich. It is considered to suppress the aggregation of (See, for example, Patent Documents 1 and 2)
  • Patent Document 1 describes an ink composition for a writing instrument containing a reversible thermochromic microcapsule pigment, water, a water-soluble polysaccharide, and bentonite.
  • the ink composition for a writing instrument is excellent in the dispersibility of the reversible thermochromic microcapsule pigment, and suppresses the aggregation of the reversible thermochromic microcapsule pigment so that the ink ejection property from the ink ejection portion of the writing instrument is good. Is.
  • Patent Document 2 describes a reversible thermochromic ink composition for inkjet including a microcapsule pigment having a reversible thermochromic property as a colorant.
  • the reversible thermochromic ink composition for inkjet is excellent in ink releasability of the reversible thermochromic microcapsule pigment from the nozzle (ink ejection portion) of the printer head, rich in color development, and forms a high-definition printed image. It was made possible.
  • thermochromic microcapsule pigment it is possible to suppress aggregation of the reversible thermochromic microcapsule pigment to some extent.
  • the effect of suppressing the aggregation is not sufficient, and the reversible thermochromic microcapsule pigment aggregates, the ink ejection property from the ink ejection portion is deteriorated, the color development is rich, and it is difficult to form a high-definition image.
  • the present invention has been made in view of the above, is excellent in dispersibility in ink, facilitates ink ejection from the ink ejection portion by improving the fluidity of the ink, is rich in color development, and has high-definition reversibility.
  • a reversible thermochromic microcapsule pigment for ink which is capable of forming a thermochromic image, a reversible thermochromic aqueous ink composition comprising the reversible thermochromic microcapsule pigment, and the aqueous ink composition
  • the present invention provides an ink container containing the.
  • the present invention includes (a) an electron-donating color-developing organic compound, (b) an electron-accepting compound, and (c) a reaction medium that determines the temperature at which the color reaction of components (a) and (b) occurs.
  • a reversible thermochromic microcapsule containing a reversible thermochromic composition comprising Reversible heat for ink, characterized in that the microcapsules have a positive or negative zeta potential under conditions of 20 ° C. and a pH value of 7 in a microcapsule dispersion liquid consisting of water and the microcapsules only.
  • the present invention relates to a color-changing microcapsule pigment.
  • the present invention contains the reversible thermochromic microcapsule pigment for ink described above, water, and a dispersant
  • the present invention relates to a reversible thermochromic water-based ink composition, wherein the dispersant has a functional group having a charge having a sign opposite to the zeta potential value of the microcapsule pigment in the structure.
  • the present invention also relates to an ink container containing the water-based ink composition described above.
  • the present invention also relates to an ink container set including a plurality of ink containers described above.
  • the dispersibility in ink is excellent, the fluidity of the ink is good, the ink is easily ejected from the ink ejecting portion, the color development is rich, and a highly precise reversible thermochromic image can be formed.
  • a reversible thermochromic microcapsule pigment for ink a reversible thermochromic aqueous ink composition containing the same, and an ink container containing the aqueous ink composition.
  • thermochromic composition which has color memory. It is a schematic diagram showing an example of composition of an ink jet printer.
  • the present invention relates to a reversible thermochromic microcapsule pigment for ink, and a reversible thermochromic aqueous ink composition containing the reversible thermochromic microcapsule pigment (hereinafter also referred to as “aqueous ink composition” or “ink composition”). ) Is related to.
  • aqueous ink composition or “ink composition”.
  • the present invention also relates to an ink container containing a water-based ink composition.
  • the reversible thermochromic microcapsule pigment and each component constituting the water-based ink composition will be described.
  • thermochromic microcapsule pigment (Reversible thermochromic microcapsule pigment)
  • the reversible thermochromic microcapsule pigment of the present invention (hereinafter, also referred to as “microcapsule pigment”) comprises an electron-donating color-forming organic compound, an electron-accepting compound, and a reaction medium that determines the temperature at which a color reaction between the two occurs.
  • the reversible thermochromic composition described below is included.
  • a color change occurs before and after a predetermined temperature (color change point) as a boundary, which is described in JP-B-51-44706, JP-B-51-44707, and JP-B-1-29398.
  • a predetermined temperature color change point
  • JP-B-51-44706, JP-B-51-44707, and JP-B-1-29398 exhibits a decolored state in the temperature range above the high-temperature side discoloration point, and a colored state in the temperature range below the low-temperature side discoloration point.There is only one specific state at room temperature in both states, and the other state.
  • a microcapsule pigment containing a heat-decolorizable reversible thermochromic composition having ⁇ H 1 ° C. to 7 ° C.) can be used (see FIG. 1).
  • thermochromic composition exhibiting a large hysteresis characteristic, which is described in JP-A-2006-137886, JP-A-2006-188660, JP-A-2008-45062, JP-A-2008-280523 and the like. It is also possible to use a microcapsule pigment containing a substance. That is, the shape of the curve plotting the change in the coloring density due to the temperature change is significantly different between the case where the temperature is increased from the lower temperature side than the color change temperature range and the case where the temperature is decreased from the higher temperature side than the color change temperature range.
  • a microcapsule pigment including a reversible thermochromic composition having color memory can be used (see FIG. 2).
  • the vertical axis represents color density and the horizontal axis represents temperature.
  • the change in color density due to the temperature change progresses along the arrow.
  • A is a point indicating the density at a temperature t4 (hereinafter referred to as a complete erasing temperature) at which the completely erasing state is reached
  • B is a temperature t3 at which the erasing is started (hereinafter referred to as an erasing starting temperature).
  • C is a point showing the density at a temperature t2 at which color development starts (hereinafter, referred to as a color development start temperature)
  • D is a temperature t1 at which a fully developed state is reached (hereinafter referred to as a complete color development temperature).
  • the color change temperature range is the temperature range between t1 and t4, and both the colored state and the decolored state can coexist, and the temperature range between t2 and t3, which is a region with a large difference in color density, is the substantial color change temperature range. Is.
  • the length of the line segment EF is a scale showing the contrast of discoloration
  • the length of the line segment HG passing through the midpoint of the line segment EF is a temperature width (hereinafter referred to as hysteresis width ⁇ H) showing the degree of hysteresis.
  • hysteresis width ⁇ H a temperature width showing the degree of hysteresis
  • the complete erasing temperature t4 is, for example, 50 ° C. or more and 90 ° C. or less, preferably 55 ° C. or more and 85 ° C. or less, and more preferably, when erasing by frictional heat generated by rubbing between the friction member and the writing surface. It is in the range of 60 ° C. or higher and 80 ° C. or lower, and the complete color development temperature t1 can be a temperature that can be obtained only in a freezer, a cold region, etc., and is, for example, 0 ° C. or lower, preferably ⁇ 50 ° C. or higher and ⁇ 5. C. or lower, more preferably -50.degree. C. or higher and -10.degree. C. or lower.
  • the electron-donating color-developing organic compound is a component that determines the color tone and is a compound that develops a color by donating an electron to the electron-accepting compound.
  • the electron-donating color-developing organic compound include a phthalide compound, a fluoran compound, a styrinoquinoline compound, a diazarhodamine lactone compound, a pyridine compound, a quinazoline compound, and a bisquinazoline compound. Of these, a phthalide compound and a fluoran compound are included. At least one selected from the group is preferred.
  • phthalide compound examples include diphenylmethanephthalide compound, phenylindolylphthalide compound, indolylphthalide compound, diphenylmethaneazaphthalide compound, phenylindolylazaphthalide compound, and derivatives thereof.
  • Phenylindolyl azaphthalide compounds, and their derivatives are preferred.
  • fluorane compound examples include an aminofluorane compound, an alkoxyfluorane compound, and derivatives thereof.
  • a substituent on the phenyl group forming a lactone ring as well as a substituent on the phenyl group forming a xanthene ring
  • a substituent on the phenyl group forming a lactone ring for example, An alkyl group such as a methyl group, or a halogen atom such as a chloro group
  • a compound exhibiting a blue color or a black color for example, An alkyl group such as a methyl group, or a halogen atom such as a chloro group
  • Examples of the electron-accepting compound include compounds having an active proton, pseudo-acidic compounds (a compound which is not an acid but acts as an acid in the composition to develop an electron-donating color-forming organic compound), and an electron vacancy. There is a group of compounds having pores.
  • Examples of the compound having an active proton include compounds having a phenolic hydroxyl group, such as monophenols and polyphenols, and further substituents thereof include an alkyl group, an alkenyl group, an aryl group, an acyl group, an alkoxycarbonyl group, and a carboxy group.
  • Examples thereof include compounds having an ester or amide group thereof, a halogen group, and the like, and phenol-aldehyde condensation resins such as bis type and tris type phenols. Further, it may be a metal salt of a compound having a phenolic hydroxyl group.
  • the electron-accepting compound examples include phenol, o-cresol, tert-butylcatechol, nonylphenol, n-octylphenol, n-dodecylphenol, n-stearylphenol, p-chlorophenol, p-bromophenol, o-phenyl.
  • a compound having a phenolic hydroxyl group can exhibit the most effective thermochromic property, but aromatic carboxylic acids and aliphatic carboxylic acids having 2 to 5 carbon atoms, carboxylic acid metal salts, acidic phosphoric acid esters and their metals. It may be a compound selected from salts, 1,2,3-triazole and its derivatives.
  • reaction medium that determines the temperature at which the color reaction by the electron-donating organic compound and the electron-accepting compound occurs.
  • the reaction medium include compounds such as alcohols, esters, ketones, ethers and acid amides.
  • low-molecular weight compounds evaporate out of the capsule when subjected to high heat treatment, so in order to stably retain them in the capsule, the number of carbon atoms is 10 or more.
  • Compounds of are preferably used.
  • an aliphatic monovalent saturated alcohol having 10 or more carbon atoms is effective. Specific examples thereof include decyl alcohol, undecyl alcohol, dodecyl alcohol, tridecyl alcohol, tetradecyl alcohol, pentadecyl alcohol, hexadecyl alcohol, heptadecyl alcohol, octadecyl alcohol, eicosyl alcohol and docosyl alcohol.
  • esters having 10 or more carbon atoms are effective, and any combination of a monovalent carboxylic acid having an aliphatic and alicyclic or aromatic ring and a monohydric alcohol having an aliphatic, alicyclic or aromatic ring.
  • esters obtained from any combination of a monovalent carboxylic acid having an aromatic ring and a polyhydric alcohol having an aliphatic and alicyclic or aromatic ring there can be mentioned esters obtained from any combination of a monovalent carboxylic acid having an aromatic ring and a polyhydric alcohol having an aliphatic and alicyclic or aromatic ring.
  • Ester compounds selected from esters of saturated fatty acids and branched fatty alcohols and esters of unsaturated fatty acids or saturated fatty acids having a branched or substituted group and branched or having 16 or more carbon atoms are also effective. is there.
  • Acid stearyl 2-methylpentyl 12-hydroxystearate, 2-ethylhexyl 18-bromostearate, isostearyl 2-ketomyristate, 2-ethylhexyl 2-fluoromyristate, cetyl butyrate, stearyl butyrate, behenyl butyrate, etc.
  • the temperature of 5 ° C. or more and less than 50 ° C. described in JP-B-4-17154 is used.
  • Carboxylic acid ester compound showing ⁇ T value for example, carboxylic acid ester containing substituted aromatic ring in molecule, ester of carboxylic acid containing unsubstituted aromatic ring and aliphatic alcohol having 10 or more carbon atoms
  • a fatty acid ester compound having a total carbon number of 17 to 23 obtained from an acid is also effective.
  • ketones aliphatic ketones having a total carbon number of 10 or more are effective.
  • ketones arylalkyl ketones having a total carbon number of 12 to 24, for example, n-octadecanophenone, n-heptadecanophenone, n-hexadecanophenone, n-pentadecanophenone, n -Tetradecanophenone, 4-n-dodecaacetophenone, n-tridecanophenone, 4-n-undecanoacetophenone, n-laurophenone, 4-n-decanoacetophenone, n-undecanophenone, 4-n- Nonylacetophenone, n-decanophenone, 4-n-octylacetophenone, n-nonanophenone, 4-n-heptylacetophenone, n-octanophenone, 4-n-hexylacetophenone, 4-n-cyclohexylacetophenone, 4-tert-butyl Propiophenone, n-oct
  • aliphatic ethers having a total carbon number of 10 or more are effective. Specifically, dipentyl ether, dihexyl ether, diheptyl ether, dioctyl ether, dinonyl ether, didecyl ether, diundecyl ether, didodecyl ether, ditridecyl ether, ditetradecyl ether, dipentadecyl ether, dihexadecyl ether.
  • Examples thereof include decyl ether, dioctadecyl ether, decanediol dimethyl ether, undecanediol dimethyl ether, dodecanediol dimethyl ether, tridecanediol dimethyl ether, decanediol diethyl ether, and undecanediol diethyl ether.
  • acid amides include acetamide, propionic acid amide, butyric acid amide, caproic acid amide, caprylic acid amide, capric acid amide, lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, and oleic acid amide.
  • a compound represented by the following formula (1) can be used as a reaction medium.
  • R 1 represents a hydrogen atom or a methyl group
  • m represents an integer of 0 to 2
  • one of X 1 and X 2 is — (CH 2 ) nOCOR 2 or (CH 2 ) nCOOR 2 , the other.
  • n represents an integer of 0 to 2
  • R 2 represents an alkyl group or an alkenyl group having 4 or more carbon atoms
  • Y 1 and Y 2 represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms
  • a methoxy group or a halogen atom is shown
  • r and p are integers from 1 to 3.
  • R 1 is a hydrogen atom
  • a reversible thermochromic composition having a wider hysteresis width can be obtained, which is preferable
  • R 1 is a hydrogen atom
  • M is more preferably 0.
  • the compound represented by the following formula (2) is more preferably used.
  • R in the formula (2) represents an alkyl group or an alkenyl group having 8 or more carbon atoms, preferably an alkyl group having 10 to 24 carbon atoms, and more preferably an alkyl group having 12 to 22 carbon atoms.
  • Specific examples of the compound represented by the formula (2) include 4-benzyloxyphenylethyl octanoate, 4-benzyloxyphenylethyl nonanoate, 4-benzyloxyphenylethyl decanoate, and 4-benzyl undecanoate.
  • a compound represented by the following formula (3) can be used as a reaction medium.
  • R represents an alkyl group or an alkenyl group having 8 or more carbon atoms
  • m and n each represent an integer of 1 to 3
  • X and Y each represent a hydrogen atom, and an alkyl group having 1 to 4 carbon atoms.
  • Specific examples of the compound represented by the formula (3) include 1,1-diphenylmethyl octanoate, 1,1-diphenylmethyl nonanoate, 1,1-diphenylmethyl decanoate, 1,1-diphenylmethyl undecanoate, 1,1-Diphenylmethyl dodecanoate, 1,1-Diphenylmethyl tridecanoate, 1,1-Diphenylmethyl tetradecanoate, 1,1-Diphenylmethyl pentadecanoate, 1,1-Diphenylmethyl hexadecanoate, Heptadecanoic acid 1,1 Examples thereof include diphenylmethyl and 1,1-diphenylmethyl octadecanoate.
  • a compound represented by the following formula (4) can be used as a reaction medium.
  • X represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a methoxy group, or a halogen atom
  • m represents an integer of 1 to 3
  • n represents an integer of 1 to 20.
  • the compound represented by the formula (4) includes a diester of malonic acid and 2- [4- (4-chlorobenzyloxy) phenyl)] ethanol, and a diester of succinic acid and 2- (4-benzyloxyphenyl) ethanol.
  • a compound represented by the following formula (5) can be used as a reaction medium.
  • R represents an alkyl group or an alkenyl group having 1 to 21 carbon atoms
  • n represents an integer of 1 to 3.
  • Examples of the compound represented by the formula (5) include diesters of 1,3-bis (2-hydroxyethoxy) benzene and capric acid, diesters of 1,3-bis (2-hydroxyethoxy) benzene and undecanoic acid, 1 , 3-bis (2-hydroxyethoxy) benzene with lauric acid, 1,3-bis (2-hydroxyethoxy) benzene with myristic acid, 1,4-bis (hydroxymethoxy) benzene with butyric acid Diester of 1,4-bis (hydroxymethoxy) benzene and isovaleric acid, diester of 1,4-bis (2-hydroxyethoxy) benzene and acetic acid, 1,4-bis (2-hydroxyethoxy) Diester of benzene and propionic acid, 1,4-bis (2-hydroxyethoxy) benzene and valer , A diester of 1,4-bis (2-hydroxyethoxy) benzene and caproic acid, a diester of 1,4-bis (2-hydroxyeth
  • a compound represented by the following formula (6) can be used as a reaction medium.
  • X represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom
  • m represents an integer of 1 to 3
  • n represents 1 To an integer of 20.
  • Examples of the compound represented by the formula (6) include a diester of succinic acid and 2-phenoxyethanol, a diester of suberic acid and 2-phenoxyethanol, a diester of sebacic acid and 2-phenoxyethanol, 1,10-decanedicarboxylic acid and 2 Examples include a diester of phenoxyethanol and a diester of 1,18-octadecanedicarboxylic acid and 2-phenoxyethanol.
  • a compound represented by the following formula (7) can be used as a reaction medium.
  • R represents an alkyl group having 4 to 22 carbon atoms, a cycloalkylalkyl group, a cycloalkyl group or an alkenyl group having 4 to 22 carbon atoms
  • X represents a hydrogen atom or 1 to 4 carbon atoms. Is an alkyl group, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, and n is 0 or 1.
  • Examples of the compound represented by the formula (7) include decyl 4-phenylbenzoate, lauryl 4-phenylbenzoate, myristyl 4-phenylbenzoate, cyclohexylethyl 4-phenylbenzoate, octyl 4-biphenylacetate, and 4-biphenylacetic acid.
  • Examples include hexyl 4-biphenylacetate and cyclohexylmethyl 4-biphenylacetate.
  • a compound represented by the following formula (8) can be used as a reaction medium.
  • R represents either an alkyl group having 3 to 18 carbon atoms or an aliphatic acyl group having 3 to 18 carbon atoms
  • X is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or 1 carbon atom.
  • 2 is an alkoxy group or a halogen atom
  • Y is a hydrogen atom or a methyl group
  • Z is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 or 2 carbon atoms.
  • Or a halogen atom is any organic radicals.
  • Examples of the compound represented by the formula (8) include phenoxyethyl 4-butoxybenzoate, phenoxyethyl 4-pentyloxybenzoate, phenoxyethyl 4-tetradecyloxybenzoate, phenoxyethyl 4-hydroxybenzoate and dodecanoic acid. Examples thereof include esters and phenoxyethyl vanillic acid dodecyl ether.
  • a compound represented by the following formula (9) can be used as a reaction medium.
  • R represents an alkyl group having 4 to 22 carbon atoms, an alkenyl group having 4 to 22 carbon atoms, a cycloalkylalkyl group, or a cycloalkyl group
  • X represents a hydrogen atom, an alkyl group, or an alkoxy.
  • a group or a halogen atom Y represents a hydrogen atom, an alkyl group, an alkoxy group, or a halogen atom
  • n represents 0 or 1.
  • Examples of the compound represented by the formula (9) include benzoic acid ester of octyl p-hydroxybenzoate, benzoic acid ester of decyl p-hydroxybenzoate, p-methoxybenzoic acid ester of heptyl p-hydroxybenzoate and p-hydroxyl. Examples thereof include o-methoxybenzoic acid ester of dodecyl benzoate and benzoic acid ester of cyclohexylmethyl p-hydroxybenzoate.
  • a compound represented by the following formula (10) can be used as a reaction medium.
  • R is either an alkyl group having 3 to 18 carbon atoms, a cycloalkylalkyl group having 6 to 11 carbon atoms, a cycloalkyl group having 5 to 7 carbon atoms, or an alkenyl group having 3 to 18 carbon atoms.
  • X is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a halogen atom
  • Y is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or methoxy. Represents a group, an ethoxy group, or a halogen atom.
  • Examples of the compound represented by the formula (10) include phenoxyethyl ether of nonyl p-hydroxybenzoate, phenoxyethyl ether of decyl p-hydroxybenzoate, phenoxyethyl ether of undecyl p-hydroxybenzoate, and phenoxyethyl dodecyl vanillate.
  • An example is ether.
  • a compound represented by the following formula (11) can be used as a reaction medium.
  • R represents a cycloalkyl group having 3 to 8 carbon atoms or a cycloalkylalkyl group having 4 to 9 carbon atoms
  • n represents an integer of 1 to 3.
  • Examples of the compound represented by the formula (11) include diesters of 1,3-bis (2-hydroxyethoxy) benzene and cyclohexanecarboxylic acid, and diesters of 1,4-bis (2-hydroxyethoxy) benzene and cyclohexanepropionic acid.
  • An example is a diester of 1,3-bis (2-hydroxyethoxy) benzene and cyclohexanepropionic acid.
  • a compound represented by the following formula (12) can be used as a reaction medium.
  • R represents an alkyl group having 3 to 17 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or a cycloalkylalkyl group having 5 to 8 carbon atoms
  • X represents a hydrogen atom or 1 to 1 carbon atoms
  • 5 represents an alkyl group, a methoxy group, an ethoxy group, or a halogen atom
  • n represents an integer of 1 to 3.
  • Examples of the compound represented by the formula (12) include a diester of 4-phenylphenol ethylene glycol ether and cyclohexanecarboxylic acid, a diester of 4-phenylphenol diethylene glycol ether and lauric acid, 4-phenylphenol triethylene glycol ether and cyclohexanecarboxylic acid.
  • the electron-accepting compound a specific alkoxyphenol compound having a linear or side chain alkyl group having 3 to 18 carbon atoms is used (Japanese Patent Application Laid-Open Nos. 11-129623 and 11-5973), or a specific Using a hydroxybenzoic acid ester (Japanese Unexamined Patent Publication No. 2001-105732), using a gallic acid ester, etc. (Japanese Patent Publication No. 51-44706, Japanese Unexamined Patent Publication No.
  • thermochromic composition which is decolorized by cooling
  • thermochromic microcapsule pigment reversible thermochromic pigment
  • the reversible thermochromic composition is a compatibilized solution containing an electron-donating color-developing organic compound, an electron-accepting compound and a reaction medium as essential components.
  • the proportion of each component may be appropriately selected depending on the density, the color change temperature, the color change form, the type of each component, and the like.
  • the component ratio for obtaining desired characteristics is such that the electron-accepting compound is 0.1 to 100 parts by mass, preferably 0.1 to 50 parts by mass, relative to 1 part by mass of the electron-donating color-forming organic compound.
  • the reaction medium is 5 to 200 parts by mass, preferably 5 to 100 parts by mass, more preferably 10 to 100 parts by mass.
  • the microcapsule pigment may further contain various light stabilizers, if necessary.
  • the light stabilizer is contained in order to prevent photodegradation of the reversible thermochromic composition, and is 0.3 part by mass or more and 24 parts by mass or less, preferably 0 part by mass with respect to 1 part by mass of the electron-donating color-developing organic compound. It is contained in a proportion of not less than 3 parts by mass and not more than 16 parts by mass.
  • the ultraviolet absorber effectively blocks ultraviolet rays contained in sunlight and the like to prevent photodegradation caused by an excited state due to a photoreaction of the electron-accepting compound.
  • antioxidants, singlet oxygen quenchers, superoxide anion quenchers, ozone quenchers and the like suppress the oxidation reaction due to light.
  • the light stabilizers may be used alone or in combination of two or more.
  • the reversible thermochromic composition is used as a reversible thermochromic microcapsule pigment by being encapsulated in microcapsules.
  • the microencapsulation methods include conventionally known interfacial polymerization method, in-situ polymerization method, submerged curing coating method, phase separation method from aqueous solution, phase separation method from organic solvent, melt dispersion cooling method, vaporization method. There are a medium suspension coating method, a spray drying method and the like, which are appropriately selected depending on the application.
  • the surface of the microcapsules may be provided with a secondary resin film depending on the purpose to impart durability or may be modified in surface characteristics for practical use. Further, the zeta potential of the microcapsule pigment can be changed by providing a secondary resin film or modifying the surface characteristics.
  • the zeta potential of the microcapsule pigment can also be changed by adjusting the mass ratio of the inclusions of the microcapsule pigment and the wall film.
  • thermochromic composition By encapsulating the reversible thermochromic composition in microcapsules, a chemically and physically stable pigment can be constructed.
  • the microcapsule pigment has a positive or negative zeta potential under the conditions of 20 ° C. and a pH value of 7. Since the microcapsule pigment has a positive or negative zeta potential in the microcapsule pigment dispersion liquid consisting of only water and the microcapsule pigment, by combining the microcapsule pigment and the dispersant described below, It is possible to obtain a water-based ink composition which has good dispersibility of the microcapsule pigment and exhibits excellent ink fluidity. When the zeta potential is 0 mV, the dispersibility of the microcapsule pigment is reduced and aggregates are easily formed.
  • ion-exchanged water can also be used.
  • ion-exchanged water ion-exchanged water produced by ion-exchanging distilled water and having an electrical conductivity of less than 1000 ⁇ S / m at 25 ° C. is used.
  • an ion-exchanged water generation device such as (product name: pure water production device Autostill WA33, manufactured by Yamato Scientific Co., Ltd.).
  • ion-exchanged water ion-exchanged water having electric conductivity, which is generated by ion-exchanging tap water obtained by filtering impurities, can be used.
  • the tap water that is subjected to ion exchange may be tap water that has not been filtered.
  • the value of the zeta potential of the microcapsule pigment is 20 ° C. and the pH value of the microcapsule pigment dispersion liquid is 7 (pH value of 6.5 or more), considering that the microcapsule pigment has good dispersibility and thermal discoloration.
  • a pH value of less than 7.5 is regarded as a pH value 7. More practically, a pH value of 6.8 or more and 7.2 or less is regarded as a pH value of 7.), and 0 ⁇
  • the zeta potential value is considered to be substantially 0 mV.
  • the zeta potential of the microcapsule pigment is calculated from the streaming potential measured by the streaming potential method.
  • a product name: streaming potential measuring device Stabino PMX400, manufactured by Microtrac Bell Co., Ltd. is used.
  • the transfer of electrons between the components (a), (b), and (c) is affected in the thermochromic function of the components (a), (b), and (c). Is less likely to cause discoloration sensitivity, and it is less likely to cause residual color such as residual color when erasing. Further, in the present invention, even if a microcapsule pigment and an additive having a high absolute value of zeta potential are combined in the ink composition, problems are less likely to occur. Therefore, various additives having different zeta potential values are used. There is a degree of freedom, and stable ink can be adjusted.
  • the microcapsule pigment preferably has a volume average particle diameter (median diameter) of 0.1 to 5 ⁇ m and does not include microcapsule pigment particles having a particle diameter of more than 8 ⁇ m.
  • a microcapsule pigment has excellent tinting strength, and when it is used in an ink, the fluidity of the ink composition is good, so that it is possible to further improve the ink dischargeability and the image color developability. It should be noted that if the microcapsule pigment particles having a particle size of more than 8 ⁇ m are not included, the microcapsule pigment particles having a particle size of more than 8 ⁇ m are likely to cause clogging. Is to do.
  • the microcapsule pigment particles having a particle diameter of more than 4 ⁇ m are not included.
  • microcapsule pigments have a larger particle size than general pigments, clogging may occur in the ink flow path depending on the particle size. Further, when a microcapsule pigment having an excessively small particle diameter is used, clogging can be suppressed, but the coloring power of the microcapsule pigment is low, so that the color developability of an image tends to be deteriorated. Further, even if the microcapsule pigment has a particle size that does not cause clogging and has sufficient coloring power, it is difficult to achieve good ink fluidity due to variations in the particle size, and high-definition It tends to be difficult to form an image.
  • the inkjet printer when an inkjet printer is used as an apparatus for forming an image, the inkjet printer includes an ink flow path having a small inner diameter and an ink ejection portion in the printer head, but the microcapsule pigment having the above-mentioned average particle diameter and particle diameter is In addition, clogging is less likely to occur in the ink flow path and the ink discharge portion, so that the ink dischargeability can be improved.
  • fine ink droplets having a uniform diameter are ejected from the ink ejecting portion, so that the ink droplet landing accuracy on the surface to be printed is good.
  • a microcapsule pigment having an average particle diameter and a particle diameter has a small variation in particle diameter, so uniform and fine ink droplets can be easily formed, and a high-definition printed image can be easily formed.
  • the microcapsule pigment has the upper limit of the volume average particle diameter.
  • the thickness is preferably 4 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the upper limit value is specified as described above because it is possible to secure a substantial color density when the microcapsule pigment has a size of about 2 ⁇ m, but it is easier to secure the color density when the microcapsule pigment is larger. If present, it is not preferable from the viewpoints of continuous ejection stability, prevention of clogging, prevention of sedimentation, etc. Therefore, it is essential that the volume average particle diameter be 5 ⁇ m or less.
  • the upper limit value is preferably 4 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the lower limit of the volume average particle diameter is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more.
  • the lower limit value is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more.
  • microcapsule pigment contained in the ink composition include microcapsules having a volume average particle diameter (median diameter) of 0.1 to 5.0 ⁇ m and not containing microcapsule pigment particles having a particle diameter of more than 8 ⁇ m.
  • the colorability of each ink composition, the ink dischargeability, and the droplets having a uniform diameter at the time of ink discharge Since the formability is good, it is possible to form a high-definition printed image with excellent color development, or to form a printed image whose appearance changes with changes in temperature.
  • the particle diameter and the volume average particle diameter are measured by determining the particle area using image analysis type particle size distribution measurement software "MacView” manufactured by Mountech Co., Ltd., and the projected area circle equivalent diameter (from the area of the particle area) (Heywood diameter) is calculated, and is the value measured as the average particle diameter of particles corresponding to equal volume spheres. If all or most of the particles have a particle size of more than 0.2 ⁇ m, a particle size distribution measuring device (Beckman Coulter, Inc., product name: Multisizer 4e) is used to obtain an equivalent volume sphere by the Coulter method. It is also possible to measure as the average particle diameter of the particles.
  • a laser diffraction / scattering particle size distribution measuring device (device name: LA-300, manufactured by Horiba, Ltd.) was calibrated based on standard samples or the values measured using a measuring device by the Coulter method. Alternatively, the volume-based particle diameter and the average particle diameter (median diameter) may be measured.
  • the shape of the microcapsule pigment may have a non-circular cross section as well as a circular cross section.
  • microcapsule pigments may be used alone or in combination of two or more.
  • average particle diameter and the particle diameter of the mixture satisfy the above-mentioned ranges.
  • the ink composition according to the present invention contains at least a microcapsule pigment, water, and a dispersant, has excellent dispersibility of the microcapsule pigment, and has good fluidity of the ink to facilitate ink ejection from the ink ejection portion, It is rich in color development and can form a high-definition reversible thermochromic image.
  • the content of the microcapsule pigment is, for example, 3% by mass or more and 30% by mass or less, preferably 5% by mass or more and 20% by mass or less, more preferably 10% by mass or more and 15%, based on the total mass of the ink composition. It is not more than mass%.
  • the content rate of the microcapsule pigment is within the above range, aggregation of the microcapsule pigment is suppressed, and the ink ejection property from the ink ejection portion is easily improved.
  • the dispersant has a functional group having a charge having a sign opposite to the zeta potential value of the microcapsule pigment in the ink composition in the structure.
  • the dispersant has a functional group strongly adsorbed to the surface of the microcapsule pigment, thereby preventing the microcapsule pigments from approaching each other and aggregating, increasing the dispersibility of the microcapsule pigment, and improving the ink fluidity. . For this reason, clogging of the ink flow path due to the agglomerates of the microcapsule pigments is suppressed, and the ink ejection from the ink ejection portion is improved, so that it is possible to form a high-definition image with rich color development. .
  • the dispersant include a styrene-maleic acid copolymer and an alkali neutralized product thereof, an olefin-maleic acid copolymer and an alkali neutralized product thereof, as a substance having a functional group having a negative charge in its structure.
  • examples thereof include acrylic polymer compounds and synthetic resins such as styrene-acrylic acid copolymer.
  • Examples of the substance having a positively charged functional group in its structure include dialkylaminoacrylic acid esters such as dimethylaminoethyl acrylate and diethylaminoethyl acrylate, dialkylaminomethacrylic acid esters such as dimethylaminoethyl methacrylate, dimethylaminostyrene and diethylamino.
  • Dialkylaminostyrenes such as styrene and methylethylaminostyrene and quaternary ammonium derivatives thereof, methacryloxyethyltrimethylammonium chloride, methacrylamidopropyltrimethylammonium chloride, 2-hydroxy-3-methacryloxypropyltrimethylammonium chloride, vinylbenzyltrimethylammonium chloride And other unsaturated vinyl monomers (cationic resin It can be mentioned copolymers of the illustrated ones) and as used in obtaining the John emulsion polymerization.
  • an olefin-maleic acid copolymer and its alkali-neutralized product are used as the substance having a functional group having a negative charge in its structure.
  • acrylic polymer compounds are preferable, and acrylic polymer compounds are particularly preferable.
  • the acrylic polymer compound it is possible to use substances such as polyacrylic acid, acrylic acid-maleic acid copolymer, acrylic urethane copolymer, and alkali-neutralized products thereof, more preferably a carboxyl group.
  • an acrylic polymer compound having a comb structure having a carboxyl group in its side chain is possible to use substances such as polyacrylic acid, acrylic acid-maleic acid copolymer, acrylic urethane copolymer, and alkali-neutralized products thereof, more preferably a carboxyl group.
  • an acrylic polymer compound having a comb structure having a carboxyl group in its side chain is preferably a carboxyl group.
  • a particularly preferred dispersant is an acrylic polymer compound having a comb structure having a plurality of carboxyl groups in its side chain, and specific examples thereof include product names: Sols Perth 43000, acrylic polymer compounds manufactured by Nippon Lubrizol Co., Ltd., and the like. Can be mentioned.
  • dialkylaminoacrylic acid esters such as dimethylaminoethyl acrylate and diethylaminoethyl acrylate, and dialkylaminomethacrylic acid esters such as dimethylaminoethyl methacrylate are preferable.
  • the content of the dispersant is 0.01, based on the total mass of the ink composition, in consideration of suppressing excessive thickening of the ink composition and improving dispersibility of the microcapsule pigment. It is preferably contained in an amount of 2 to 2% by mass, more preferably 0.1 to 1.5% by mass.
  • the ink composition may contain the following components, if necessary. Specifically, ethylene glycol, propanediol, butanediol, pentanediol, diethylene glycol, glycerin, polyethylene glycol, polypropylene glycol, radical polymerizable compound, polyvinyl alcohol, polyvinylpyrrolidone, urethane resin, styrene-butadiene resin, alkyd resin, Sulfoamide resin, maleic acid resin, polyvinyl acetate resin, ethylene vinyl acetate resin, vinyl chloride-vinyl acetate resin, copolymer of styrene and maleic acid ester, styrene-acrylonitrile resin, cyanate-modified polyalkylene glycol, ester gum, xylene resin , Urea resin, urea aldehyde resin, phenol resin, alkylphenol resin, terpene phenol resin, rosin resin and its hydrogen
  • the radical polymerizable compound and a radical polymerization initiator are used in the ink composition
  • the printed image is irradiated with light, particularly UV light
  • the radical polymerizable compound is immediately polymerized to form an ink composition. Since the object quickly adheres to the surface to be printed, the fixability of the printed image can be further enhanced.
  • Radical polymerizable compounds include (meth) acrylates, (meth) acrylamides, aromatic vinyls, allyl compounds, N-vinyl compounds, vinyl esters (vinyl acetate, vinyl propionate, vinyl versatate, etc.), allyl Esters (allyl acetate, etc.), halogen-containing monomers (vinylidene chloride, vinyl chloride, etc.), vinyl ethers (methyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, methoxy vinyl ether, 2-ethylhexyl vinyl ether, methoxyethyl vinyl ether, cyclohexyl vinyl ether, chloro) Examples thereof include ethyl vinyl ether), vinyl cyanide ((meth) acrylonitrile etc.) and olefins (ethylene, propylene etc.).
  • radical polymerization initiator aromatic ketones, aromatic onium salt compounds, organic peroxides, hexaarylbiimidazole compounds, ketoxime ester compounds, borate compounds, azinium compounds, metallocene compounds, active ester compounds , A compound having a carbon-halogen bond, and the like.
  • the viscosity of the ink composition can be adjusted to any value as long as the ink composition can be ejected well from the ink ejecting portion, but it is preferably 2 to 30 mPa when measured at a rotation speed of 30 rpm. ⁇ S is preferable, and 3 to 20 mPa ⁇ s is more preferable.
  • ⁇ S is preferable, and 3 to 20 mPa ⁇ s is more preferable.
  • the viscosity can be measured at 20 ° C. using a BL type viscometer (product name: TVB-M type viscometer, L type rotor, manufactured by Toki Sangyo Co., Ltd.).
  • the surface tension of the ink composition is preferably 20 to 50 mN / m, and more preferably 20 to 35 mN / m. By setting the surface tension within the above numerical range, it becomes easy to enhance the permeability of the ink composition and improve the drying property of the image.
  • the surface tension is obtained by measuring the surface tension using a surface tension measuring instrument manufactured by Kyowa Interface Science Co., Ltd. in a 20 ° C. environment using a glass plate by the vertical plate method.
  • the pH value of the ink composition is preferably 4 to 8 at 20 ° C., more preferably 5 to 7 in consideration of improving the stability of the ink composition over time.
  • the aqueous ink composition according to the present invention can be produced by using various stirrers such as a propeller stirrer, a homodisper, or a homomixer, and various dispersers such as a bead mill.
  • various stirrers such as a propeller stirrer, a homodisper, or a homomixer
  • various dispersers such as a bead mill.
  • a specific manufacturing method there can be mentioned a manufacturing method in which a microcapsule pigment, water and an additive are mixed to prepare a microcapsule pigment dispersion liquid, and then the dispersant is mixed.
  • a manufacturing method in which the additives are mixed after mixing the microcapsule pigment, water and the dispersant can also be mentioned.
  • the water-based ink composition according to the present invention is used for a writing instrument and an inkjet printer printing machine.
  • the ink composition of the present invention is preferably used for writing instruments.
  • a direct liquid type ballpoint pen, a marking pen, a fountain pen, etc. can be exemplified.
  • various tips are attached to the writing tip, ink is directly stored inside the barrel (ink storage section), and a comb-shaped ink flow rate adjusting member (pen core) made of synthetic resin is interposed. Marking pens, ballpoint pens, and fountain pens having a structure can be mentioned.
  • a fiber tip, a felt tip, a plastic tip, a writing brush, or the like can be applied as the marking pen tip, and as the ballpoint pen tip, the vicinity of the tip of the metal pipe is pressed and deformed inward from the outer surface.
  • Chip that holds the ball in the ball holding part chip that holds the ball in the ball holding part formed by cutting a metal material with a drill, etc., resin ball inside the metal or plastic chip
  • a chip provided with a seat, or a ball held on the chip and biased forward by a spring body can be applied.
  • cemented carbide, stainless steel, ruby, ceramic, resin, rubber, etc. can be applied, and those having a diameter of 0.1 mm to 1.0 mm are preferably used.
  • a metal plate such as a stainless steel plate or a gold alloy plate that is cut into a tapered shape and is bent or curved, or a pen-shaped resin molded product can be applied.
  • the pen body may be provided with a slit at the center or a ball portion at the tip.
  • any general-purpose polycarbonate, polypropylene, polyethylene, acrylonitrile-butadiene-styrene copolymer, or the like can be used as long as it is a synthetic resin that can be injection-molded into a structure in which a large number of discs are formed in a comb groove shape.
  • an acrylonitrile-butadiene-styrene copolymer is preferable because it has particularly high moldability and can easily obtain pen core performance.
  • the ink composition according to the present invention may be used in an inkjet printer.
  • the inkjet printer was not ejected from the ink containing portion containing the ink composition, the printer head, the ink supply channel for supplying ink from the ink containing portion to the printer head, and the nozzle (ink ejecting portion) of the printer head.
  • An ink recovery channel for returning ink from the printer head to the ink supply channel is provided, and the ink is circulated through the ink supply channel, the printer head, and the ink recovery channel.
  • Inkjet printers prevent ink from accumulating in the ink flow path (ink supply flow path and ink recovery flow path) and the printer head due to ink circulation and agglomeration of the microcapsule pigments, and from the nozzles of the printer head. Ink ejection property is improved.
  • the printer head be provided with a flow path for ink circulation in the printer head. Since the printer head is provided with the above flow path, it is possible to easily circulate the ink in the printer head during the ink circulation and to suppress the ink retention in the printer head, so that the microcapsule pigment aggregates in the printer head. It is easy to suppress that.
  • the inkjet printer includes the above-mentioned mechanism, and the structure of the apparatus is not limited as long as ink circulation is possible, and may include a deaeration mechanism, a heating mechanism, and the like.
  • the ink ejection method of the printer head is a known method, for example, a charge control method in which ink is ejected by using electrostatic attraction, a drop-on-demand method (pressure pulse method) in which vibration pressure of a piezo element is used, or an electric method.
  • An acoustic inkjet method in which a signal is converted into an acoustic beam to irradiate the ink and the ink is ejected by using radiation pressure, a thermal ink jet (Bubble Jet (registered trademark) that uses the pressure generated by heating the ink to form bubbles ) Method etc. can be adopted suitably.
  • the nozzle of the printer head has an inner diameter that allows good ejection of the ink composition.
  • the inner diameter preferably has an inner diameter of 10 ⁇ m to 100 ⁇ m, and more preferably has an inner diameter of 10 to 50 ⁇ m, in consideration of improving the color developability and fineness of the printed image.
  • the more preferable inner diameter of the nozzle is 10 to 30 ⁇ m.
  • the inkjet printer preferably includes a UV light irradiation unit.
  • the radically polymerizable compound is polymerized and the ink composition is quickly fixed to the printed surface, so that the fixability of the printed image can be improved.
  • the ink container may be capable of mounting the ink container.
  • FIG. 3 is a schematic diagram illustrating an example of the configuration of an inkjet printer including an ink circulation mechanism.
  • the ink supply device 1 shown in FIG. 3 includes an ink container 2, a printer head 3, an ink supply channel 4a, a pump 5, a wiping means 6, and a head for returning ink to the ink supply channel 4a to circulate the ink.
  • the flow path 4b (flow path on the left side of the printer head 3 in the drawing) is provided.
  • the printer head 3 is formed with an ink ejection portion 8 of a plurality of nozzles 7 for ejecting the ink composition 9 on one surface, and the ink composition 9 in the nozzle 7 is extruded by a piezoelectric element or the like, whereby The ink composition 9 is discharged from the ink discharge port 8. Further, the printer head 3 includes an ink intake port 3b for taking in the ink composition from the ink supply flow path 4a, an ink exhaust port 3a for exhausting the ink composition to the ink recovery flow path 4b, a plurality of nozzles 7, and an ink intake port. It has an internal flow path 3c that connects the inlet 3b and the ink discharge port 3a.
  • the ink circulation path is a path that circulates the ink composition 9 by connecting the ink intake port 3b and the ink discharge port 3a of the printer head 3 with an ink flow path.
  • an ink supply flow path 4a, an internal flow path 3c of the printer head 3, and an ink recovery flow path 4b form an annular path to circulate the ink composition 9. While the printing is stopped, the ink composition 9 is circulated in the annular path in order to prevent the microcapsule pigments of the ink composition 9 from settling and aggregating the microcapsule pigments in the printer head 3. Is preferred.
  • pipes having a diameter of 1 to 10 mm can be used, and the material can be silicon pipes.
  • the length of one round of the circulation path may be 800 mm to 10 m, further 1 to 9 m, and particularly 3 to 8 m.
  • the pump 5 is arranged on the upstream side of the printer head 3 in the ink supply flow path 4 a and supplies the ink composition 9 to the printer head 3.
  • the pump 5 is arranged on the upstream side of the printer head 3 in the ink supply flow path 4 a and supplies the ink composition 9 to the printer head 3.
  • ink jet printing it is preferable to circulate the ink composition with a pump. Further, while the inkjet printing is stopped, it is preferable that a cap (not shown) is attached to the nozzle discharge portion to circulate the ink composition.
  • Reversible thermal discoloration by using an inkjet printer to form an appropriate printed image by spraying on any target object such as paper, synthetic paper, coated paper, plastic sheet, plastic, wood, metal, glass, etc., fabric, non-woven fabric, etc. Printed matter is obtained.
  • the ink composition may be contained in an ink container.
  • the ink container is not particularly limited as long as it can contain the ink composition, and can be selected from various constituent materials and forms.
  • the constituent material include plastics such as polyethylene terephthalate (PET) and polypropylene (PP), various metals (including alloys), and polyethylene, ethylene vinyl acetate copolymer, and polyolefin such as polypropylene. it can.
  • PET polyethylene terephthalate
  • PP polypropylene
  • various metals including alloys
  • polyethylene ethylene vinyl acetate copolymer
  • polyolefin such as polypropylene.
  • the present invention is not limited to these, and may be a polymer obtained by blending or laminating the above-mentioned polymers in an appropriate ratio, a film thereof, or the like.
  • the form of the ink container include a pack, a bottle, a tank, a bottle, and a can.
  • the ink container may be provided with a plurality of ink storage chambers that are independent of each other, and each of the chambers may store a plurality of colors of ink composition so that the inks in the chambers have different colors. Also, a plurality of ink containers can be combined to form an ink container set.
  • the ink container set may be composed of the same color ink or plural colors of ink. Further, the ink container may have a structure that allows it to be attached to an inkjet printer and supply the ink composition from the ink container to the ink flow path.
  • the average particle diameter in the present invention uses an average particle diameter (median diameter) on a volume basis, but in measuring the particle diameter, image analysis type particle size distribution measurement software (MacView, Mountec Co., Coulter method (electric detection zone method) particle size measuring device, laser diffraction / scattering type particle size distribution measuring device (device name: LA-300, manufactured by Horiba, Ltd.) can be used.
  • image analysis type particle size distribution measurement software MacView, Mountec Co., Coulter method (electric detection zone method) particle size measuring device, laser diffraction / scattering type particle size distribution measuring device (device name: LA-300, manufactured by Horiba, Ltd.) can be used.
  • the measurement is performed by a measuring device which is calibrated by another measuring device such as a standard sample or the Coulter method (electrical detection zone method). If there is a difference in the numerical values obtained depending on the measuring machine, the numerical value obtained using the image analysis type particle size distribution measurement software will be given priority.
  • a laser diffraction / scattering particle size distribution measuring device (device name: LA-300, manufactured by Horiba, Ltd.) calibrated by the Coulter method (electrical detection zone method) was used to measure the volume. The average particle size (median size) and the particle size were measured. However, in Examples 6 and 14, the average particle size (median size) and the particle size on a volume basis were measured using image analysis type particle size distribution measurement software (MacView, manufactured by Mountech Co., Ltd.).
  • the zeta potential in the present invention can be measured by a measuring device such as a streaming potential measuring device (Stabino PMX400, manufactured by Microtrac Bell Co., Ltd.).
  • the above-mentioned measuring machine measures streaming potential, calculation of zeta potential, and measurement of pH value.
  • the zeta potential measuring device can be used as long as it can measure the zeta potential at a specific pH value by linking the zeta potential display and the pH meter.
  • Microcapsule pigment dispersion prepared according to the following: Sample amount during measurement: 10 ml Sample temperature during measurement: 20 °C Measuring machine piston size: 400 ⁇ m Number of measurements: The same sample is repeatedly measured until a zeta potential of 20 is obtained when a pH value of 7 is measured by the measuring instrument. The number average value of the individual pieces is the zeta potential of the microcapsule pigment.
  • Viscosity of ink composition Product name: TVB-M type viscometer, L type rotor, manufactured by Toki Sangyo Co., Ltd.
  • Example 1 (Preparation of microcapsule pigment) As component (a), 6.0 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthene-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 15.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as a component and 50.0 parts of 4-benzyloxyphenylethyl caprate as a component (c) was uniformly added.
  • a solution in which 40.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent were mixed as a wall film material was emulsified and dispersed in a 10% polyvinyl alcohol aqueous solution to form fine droplets, and added. After continuing stirring while warming, 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
  • the microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle size of the microcapsule pigment was 0.71 ⁇ m, and the maximum particle size was 2.29 ⁇ m. (Median diameter)
  • the microcapsule pigment has a complete decolorization temperature of 60 ° C.
  • the zeta potential of the microcapsule pigment As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 7.0 was 6.3 mV.
  • Microcapsule pigment pre-cooled and developed color 10.00 parts, glycerin 10.00 parts, preservative (pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (citric acid) 0.10 parts and 79.08 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
  • preservative pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.
  • antiseptic 3-iodo-2-propynylbutyl carbamate
  • product name: Glycacil 2000 manufactured by Lonza Japan Co., Ltd.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.). As a result of measuring the viscosity of the water-based ink composition, it was 5.46 mPa ⁇ s at 20 ° C. and a rotation speed of 30 rpm.
  • the above water-based ink composition was contained in an ink container (fountain pen cartridge: product name IRF-12S, manufactured by Pilot Corporation).
  • the ink container was housed in a fountain pen (product name: Kakuno, manufactured by Pilot Corporation), and writing was performed on copy paper.
  • Magenta handwriting is visible on copy paper at room temperature (25 ° C), and reversible thermochromic image (handwriting) is erased by heating to 60 ° C or higher, and at -25 ° C or lower immediately after writing. It returned to (a state in which magenta handwriting was formed). From the handwriting in the colored state, good coloring was visually recognized and the outline was clear.
  • Example 2 (Preparation of microcapsule pigment) As component (a), 9 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthen-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 15.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as a component and 50.0 parts of 4-benzyloxyphenylethyl caprate as a component (c) was uniformly added.
  • a solution of the cresol novolac type epoxy resin 10.0 parts as a wall film material and 50.0 parts of a co-solvent was melted at a high temperature, emulsified and dispersed in a 10% gelatin aqueous solution to form fine droplets, and heated. After continuing the stirring, 5.0 parts of the water-soluble aliphatic modified amine was added, and the stirring was further continued to obtain a microcapsule pigment suspension. After removing coarse particles from the suspension by a centrifuge, the suspension was filtered by a filter press to obtain a microcapsule pigment. The volume average particle size of the microcapsule pigment was 0.71 ⁇ m, and the maximum particle size was 2.60 ⁇ m.
  • the microcapsule pigment has a complete decolorization temperature of 60 ° C. and a complete color development temperature of ⁇ 25 ° C., and changes from magenta color to colorless due to temperature change.
  • Microcapsule pigment pre-cooled and developed color 10.00 parts, glycerin 10.00 parts, preservative (pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, preservative (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (glycolic acid) 0.20 parts and 78.98 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
  • the above water-based ink composition was placed in a fountain pen of the same type as the fountain pen used in Example 1, and writing was performed on copy paper.
  • Magenta handwriting is visible on copy paper at room temperature (25 ° C), and reversible thermochromic image (handwriting) is erased by heating to 60 ° C or higher, and at -25 ° C or lower immediately after writing. It returned to (a state in which magenta handwriting was formed). From the handwriting in the colored state, good coloring was visually recognized and the outline was clear.
  • Example 3 Preparation of microcapsule pigment A microcapsule pigment similar to that in Example 1 was prepared.
  • Microcapsule pigment pre-cooled and developed color 10.00 parts, glycerin 10.00 parts, preservative (pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (citric acid) 0.05 parts and 79.13 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
  • the above water-based ink composition was placed in a fountain pen of the same type as the fountain pen used in Example 1, and writing was performed on copy paper.
  • Magenta handwriting is visible on copy paper at room temperature (25 ° C), and reversible thermochromic image (handwriting) is erased by heating to 60 ° C or higher, and at -25 ° C or lower immediately after writing. It returned to (a state in which magenta handwriting was formed). From the handwriting in the colored state, good coloring was visually recognized and the outline was clear.
  • Example 4 Preparation of microcapsule pigment A microcapsule pigment similar to that in Example 1 was prepared.
  • Microcapsule pigment pre-cooled and developed color 10.00 parts, glycerin 10.00 parts, preservative (pyridine-2-thiol 1-oxide sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0 20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (glycolic acid) 0 30 parts and 78.88 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
  • the above water-based ink composition was placed in a fountain pen and written on copy paper.
  • Magenta handwriting is visible on copy paper at room temperature (25 ° C), and reversible thermochromic image (handwriting) is erased by heating to 60 ° C or higher, and at -25 ° C or lower immediately after writing. It returned to (a state in which magenta handwriting was formed). From the handwriting in the colored state, good coloring was visually recognized and the outline was clear.
  • Example 5 (Preparation of microcapsule pigment) As component (a), 6.0 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthene-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 15.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as a component and 50.0 parts of 4-benzyloxyphenylethyl caprate as a component (c) was uniformly added.
  • a solution in which 40.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent were mixed as a wall film material was emulsified and dispersed in a 10% polyvinyl alcohol aqueous solution to form fine droplets, and added. After continuing stirring while warming, 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
  • the microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle diameter of the microcapsule pigment was 5.26 ⁇ m, and the maximum particle diameter was 7.69 ⁇ m. (Median diameter)
  • the microcapsule pigment has a complete decolorization temperature of 60 ° C.
  • the zeta potential of the microcapsule pigment was 4.8 mV.
  • Microcapsule pigment pre-cooled and developed color 10.00 parts, glycerin 10.00 parts, preservative (pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (citric acid) 0.10 parts and 79.08 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
  • the above water-based ink composition was placed in a fountain pen of the same type as the fountain pen used in Example 1, and writing was performed on copy paper.
  • Magenta handwriting is visible on copy paper at room temperature (25 ° C), and reversible thermochromic image (handwriting) is erased by heating to 60 ° C or higher, and at -25 ° C or lower immediately after writing. It returned to (a state in which magenta handwriting was formed). Good color was visually recognized from the handwriting in the color-developed state, but some fading occurred and the outline was partially unclear.
  • Example 6 (Preparation of microcapsule pigment) As component (a), 6.0 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthene-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 15.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as a component and 50.0 parts of 4-benzyloxyphenylethyl caprate as a component (c) was uniformly added.
  • a solution of 40.0 parts of an aromatic polyvalent isocyanate prepolymer and 50.0 parts of a co-solvent as a wall film material was dissolved at a high temperature, emulsified and dispersed in an aqueous 12% polyvinyl alcohol solution to form fine droplets, and added. After continuing stirring while warming, 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
  • the microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle diameter of the microcapsule pigment was 0.05 ⁇ m, and the maximum particle diameter was 0.61 ⁇ m. (Median diameter)
  • the microcapsule pigment has a complete decolorization temperature of 60 ° C.
  • the zeta potential of the microcapsule pigment As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion liquid was 7.0 was 6.8 mV.
  • Microcapsule pigment pre-cooled and developed color 10.00 parts, glycerin 10.00 parts, preservative (pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (citric acid) 0.10 parts and 79.08 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
  • the above water-based ink composition was placed in a fountain pen of the same type as the fountain pen used in Example 1, and writing was performed on copy paper.
  • Magenta handwriting is visible on the copy paper at room temperature (25 ° C), and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state immediately after writing at -25 ° C (magenta color). It has returned to the state where the handwriting was formed).
  • the handwriting in the colored state had a clear outline, but the color was slightly pale.
  • Example 7 (Preparation of microcapsule pigment) As component (a), 9 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthen-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 15.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as a component and 50.0 parts of 4-benzyloxyphenylethyl caprate as a component (c) was uniformly added.
  • a solution of 40.0 parts of an aromatic polyvalent isocyanate prepolymer and 50.0 parts of a co-solvent as a wall film material was dissolved at a high temperature, emulsified and dispersed in an 8% aqueous polyvinyl alcohol solution to form fine droplets, and added. After continuing stirring while warming, 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
  • the microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle diameter of the microcapsule pigment was 1.73 ⁇ m, and the maximum particle diameter was 9.94 ⁇ m. (Median diameter)
  • the microcapsule pigment has a complete decolorization temperature of 60 ° C.
  • the zeta potential of the microcapsule pigment As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 7.0 was 2.8 mV.
  • Microcapsule pigment pre-cooled and developed color 10.00 parts, glycerin 10.00 parts, preservative (pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (citric acid) 0.10 parts and 79.48 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
  • the above water-based ink composition was placed in a fountain pen of the same type as the fountain pen used in Example 1, and writing was performed on copy paper.
  • Magenta handwriting is visible on copy paper at room temperature (25 ° C), and reversible thermochromic image (handwriting) is erased by heating to 60 ° C or higher, and at -25 ° C or lower immediately after writing. It returned to (a state in which magenta handwriting was formed). Good color was visually recognized from the handwriting in the color-developed state, but some fading occurred and the outline was partially unclear.
  • Example 8 Preparation of microcapsule pigment A microcapsule pigment similar to that in Example 1 was prepared.
  • Microcapsule pigment pre-cooled and developed color 10.00 parts, glycerin 12.00 parts, preservative (pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (citric acid) 0.10 parts and 77.08 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
  • preservative pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.
  • antiseptic 3-iodo-2-propynylbutyl carbamate
  • product name: Glycacil 2000 manufactured by Lonza Japan Co., Ltd.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
  • the viscosity of the water-based ink composition was measured using a BL type viscometer (product name: TVB-M type viscometer, L type rotor, manufactured by Toki Sangyo Co., Ltd.). As a result, it was 6 at 20 ° C. and a rotation speed of 30 rpm. It was 0.74 mPa ⁇ s.
  • the water-based ink composition a large number of discs are arranged in parallel with a comb-shaped gap between them, a slit-shaped ink guide groove longitudinally extending through the discs and a ventilation groove thicker than the groove are provided, Direct liquid type ball-point pen (product name: Hitec Point V5 that guides ink to a pen tip in the form of a ball-point pen through the pen core that has an ink guide core for guiding ink from the ink storage section to the pen tip at the shaft center. Grip, manufactured by Pilot Corporation, Inc.) and written on copy paper.
  • Hitec Point V5 that guides ink to a pen tip in the form of a ball-point pen through the pen core that has an ink guide core for guiding ink from the ink storage section to the pen tip at the shaft center. Grip, manufactured by Pilot Corporation, Inc.
  • Magenta handwriting is visible on copy paper at room temperature (25 ° C), and reversible thermochromic image (handwriting) is erased by heating to 60 ° C or higher, and at -25 ° C or lower immediately after writing. It returned to (a state in which magenta handwriting was formed). From the handwriting in the colored state, good coloring was visually recognized and the outline was clear.
  • Example 9 Preparation of microcapsule pigment A microcapsule pigment similar to that in Example 1 was prepared.
  • Microcapsule pigment pre-cooled and developed color 10.00 parts, glycerin 15.00 parts, preservative (pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (citric acid) 0.10 parts and 74.08 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
  • preservative pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.
  • antiseptic 3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.). As a result of measuring the viscosity of the aqueous ink composition, it was 9.12 mPa ⁇ s at 20 ° C. and a rotation speed of 30 rpm.
  • a water-based ink composition in which an ink occlusion body made of a fiber bundle is built in the barrel, and a marking pen tip made of a fusion-bonded body of heat-fusible fibers in which a capillary gap is formed is attached to the barrel. Then, the ink occlusion body of the marking pen in which the ink occlusion body and the chip were connected was impregnated, and writing was performed on copy paper.
  • Magenta handwriting is visible on copy paper at room temperature (25 ° C), and reversible thermochromic image (handwriting) is erased by heating to 60 ° C or higher, and at -25 ° C or lower immediately after writing. It returned to (a state in which magenta handwriting was formed). From the handwriting in the colored state, good coloring was visually recognized and the outline was clear.
  • Example 10 (Preparation of microcapsule pigment) A microcapsule pigment similar to that in Example 1 was prepared.
  • Microcapsule pigment pre-cooled and developed color 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Corporation
  • antifoaming agent silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.). As a result of measuring the viscosity of the water-based ink composition, it was 5.68 mPa ⁇ s at 20 ° C. and a rotation speed of 30 rpm.
  • the aqueous ink composition was contained in an ink container (polypropylene bottle).
  • a printer head including an ink storage unit, a UV light irradiation unit for irradiating a print image with UV light, an ink supply channel for supplying ink from the ink storage unit to the printer head, and ink for the printer head
  • An ink recovery flow path for returning the ink from the head to the ink supply flow path, and connecting the ink storage section, the printer head, the ink supply flow path, and the ink recovery flow path to the ink supply flow path, the printer head, and
  • the water-based ink composition was stored in the ink storage portion using an inkjet printer that enables ink circulation through the ink recovery channel.
  • the printer head has a nozzle having an inner diameter of 25 ⁇ m, an ink inlet for taking in the ink composition from an ink supply channel, an ink outlet for discharging the ink composition to an ink recovery channel, a nozzle, and an ink inlet. , And a printer head internal flow path communicating with the ink discharge port.
  • the circulation mechanism connects the pump and the ink recovery channel between the ink storage section of the printer and the printer head between the ink storage section and the printer head to enable ink circulation.
  • the flow rate of the ink composition in the flow channel (hereinafter referred to as "ink flow rate") was controlled by a pump.
  • the ink supply channel and the ink recovery channel were made of silicone rubber.
  • thermochromic print Printing on recording paper (copy paper) and UV light irradiation were performed using an inkjet printer to obtain a reversible thermochromic print.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • the reversible thermochromic image of magenta color is visually recognized at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state before erasing (magenta) at -25 ° C or lower. The state in which color printing was formed) was restored.
  • thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used. From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
  • Example 11 (Preparation of microcapsule pigment) As component (a), 9 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthen-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 15.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as a component and 50.0 parts of 4-benzyloxyphenylethyl caprate as a component (c) was uniformly added.
  • a solution which was dissolved at room temperature and mixed with 35.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent was emulsified and dispersed in an 8% polyvinyl alcohol aqueous solution to form fine droplets, and added.
  • 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
  • the microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle size of the microcapsule pigment was 1.02 ⁇ m, and the maximum particle size was 3.91 ⁇ m. (Median diameter)
  • the microcapsule pigment has a complete decolorization temperature of 60 ° C.
  • the zeta potential of the microcapsule pigment As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion liquid was 7.0 was 6.8 mV.
  • Microcapsule pigment pre-cooled and developed color 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Corporation
  • antifoaming agent silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.). The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • Example 10 Using the inkjet printer used in Example 10, the aqueous ink composition was stored in the ink storage portion.
  • Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • the reversible thermochromic image of magenta color is visible at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state before use (magenta color) at -25 ° C or lower.
  • the state in which the print characters of (1) have been formed) has been restored.
  • thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used. From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
  • Example 12 (Preparation of microcapsule pigment) As component (a), 6.0 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthene-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 15.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as a component and 50.0 parts of 4-benzyloxyphenylethyl caprate as a component (c) was uniformly added.
  • a solution of 40.0 parts of an aromatic polyvalent isocyanate prepolymer and 50.0 parts of a co-solvent as a wall film material was dissolved at a high temperature, emulsified and dispersed in an aqueous 12% polyvinyl alcohol solution to form fine droplets, and added. After continuing stirring while warming, 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
  • the microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle size of the microcapsule pigment was 0.55 ⁇ m, and the maximum particle size was 1.55 ⁇ m. (Median diameter)
  • the microcapsule pigment has a complete decolorization temperature of 60 ° C.
  • the zeta potential of the microcapsule pigment As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion liquid was 7.0 was 8.2 mV.
  • Microcapsule pigment pre-cooled and developed color 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Corporation
  • antifoaming agent silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.). The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • Example 10 Using the inkjet printer used in Example 10, the aqueous ink composition was stored in the ink storage portion.
  • Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • the reversible thermochromic image of magenta color is visible at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state before use (magenta color) at -25 ° C or lower.
  • the state in which the print characters of (1) have been formed) has been restored.
  • thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used. From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
  • Example 13 Preparation of microcapsule pigment A microcapsule pigment similar to that in Example 5 was prepared.
  • Microcapsule pigment pre-cooled and developed color 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Corporation
  • antifoaming agent silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.). The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • the reversible thermochromic image of magenta color is visible at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state before use (magenta color) at -25 ° C or lower.
  • the state in which the print characters of (1) have been formed) has been restored.
  • thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used. From the printing in the color-developed state, good color was visually recognized, but some fading occurred, and the start point, end point, and contour were partially unclear.
  • Example 14 (Preparation of microcapsule pigment) A microcapsule pigment similar to that in Example 6 was prepared.
  • Microcapsule pigment pre-cooled and developed color 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Corporation
  • antifoaming agent silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.). The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • Example 10 Using the inkjet printer used in Example 10, the aqueous ink composition was stored in the ink storage portion.
  • Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • the reversible thermochromic image of magenta color is visually recognized on the printed matter at room temperature (25 ° C), and the reversible thermochromic image disappears when heated to 60 ° C or more, and the state before use (magenta color of -25 or less) It returned to the state where printed characters were formed).
  • the reversible thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used. In the color-developed state, the start point, the end point, and the outline were clear, but the color was slightly light.
  • Example 15 (Preparation of microcapsule pigment) A microcapsule pigment similar to that in Example 7 was prepared.
  • Microcapsule pigment pre-cooled and developed color 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Corporation
  • antifoaming agent silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.). The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • the reversible thermochromic image of magenta color is visible at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state before use (magenta color) at -25 ° C or lower.
  • the state in which the print characters of (1) have been formed) has been restored.
  • thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used. From the printing in the color-developed state, good color was visually recognized, but some fading occurred, and the start point, end point, and contour were partially unclear.
  • Example 16 (Preparation of microcapsule pigment and aqueous ink composition)
  • the microcapsule pigment of Example 10 and the aqueous ink composition were used.
  • the aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • thermochromic image was formed on a recording paper (coated paper, product name: Raicho Coat, manufactured by Chuetsu Chemical Industry Co., Ltd.) using the above inkjet printer to form a reversible thermochromic image to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to flow the ink in the ink flow path and the printer head.
  • the reversible thermochromic image of magenta color is visible at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state before use (magenta color) at -25 ° C or lower.
  • the state in which the print of (1) was formed) was returned.
  • thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used. From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
  • Example 17 (Preparation of microcapsule pigment and aqueous ink composition)
  • the microcapsule pigment of Example 10 and the aqueous ink composition were used.
  • the aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • thermochromic image was formed on a recording material (resin plate, thickness 5 mm, made of acrylic resin) using the above inkjet printer to form a reversible thermochromic image to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to flow the ink in the ink flow path and the printer head.
  • the reversible thermochromic image of magenta color is visible at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state immediately after printing at -25 ° C (magenta color printing is It has returned to the formed state).
  • thermochromic image was formed by setting the decolored recording material again in the ink jet printer and printing was carried out, and the printed material could be used repeatedly. From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
  • Example 18 (Preparation of microcapsule pigment and aqueous ink composition)
  • the microcapsule pigment of Example 10 and the aqueous ink composition were used.
  • the aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • the ink jet printer was used to print on the side wall of a recording material (polypropylene resin bottle) to form a reversible thermochromic image to obtain a reversible thermochromic printed matter.
  • a recording material polypropylene resin bottle
  • the circulation mechanism was operated to flow the ink in the ink flow path and the printer head.
  • the reversible thermochromic image of magenta color is visually recognized at room temperature (25 ° C) in the printed matter, and the reversible thermochromic image disappears when hot water of 60 ° C or higher is poured, and the state immediately after printing (magenta color of -25 ° C or less). It returned to the state where the print was formed.
  • thermochromic image was formed by setting the decolored recording material again in the ink jet printer and printing was carried out, and the printed material could be used repeatedly. From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
  • Example 19 (Preparation of microcapsule pigment) 7- [2- (acetylamino) -4- (diethylamino) phenyl] -7- (2-methyl-1-propyl-1H-indol-3-yl) furo [3,4-b] as component (a) Pyridine-5 (7H) -one 3.0 parts, 1,1'-bis (4'-hydroxyphenyl) n-nonane 15.0 parts as component (b), 4-benzyloxy caprate as component (c) A solution in which a reversible thermochromic composition composed of 50.0 parts of phenylethyl was uniformly heated and dissolved, and 40.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent were mixed, Emulsified and dispersed in a 10% aqueous solution of polyvinyl alcohol to form fine droplets, continued stirring while heating, then add 2.5 parts of water-soluble aliphatic modified amine, and continue stirring
  • the microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle diameter of the microcapsule pigment was 0.73 ⁇ m, and the maximum particle diameter was 2.60 ⁇ m.
  • the completely decolorized temperature of the microcapsule pigment is 60 ° C., the completely developed temperature is ⁇ 25 ° C., and the cyan color changes to colorless due to the temperature change.
  • the zeta potential of the microcapsule pigment As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 6.9 was 7.6 mV.
  • Microcapsule pigment pre-cooled and developed color 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Corporation
  • antifoaming agent silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.). The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used. From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
  • Example 20 (Preparation of microcapsule pigment) 3.0 parts of 4- [2,6-bis (2-ethoxyphenyl) -4-pyridinyl] -N, N-dimethylbenzenamine as component (a) and 2,2-bis (4- as component (b)
  • a reversible thermochromic composition composed of 9.0 parts of (hydroxyphenyl) hexafluoropropane and 50.0 parts of 4-benzyloxyphenylethyl caprate as the component (c) was uniformly dissolved by heating to produce an aromatic wall film material.
  • a solution prepared by mixing 40.0 parts of a polyvalent isocyanate prepolymer and 50.0 parts of a cosolvent was emulsified and dispersed in a 10% polyvinyl alcohol aqueous solution to form fine droplets, and the mixture was stirred while heating and then water-soluble. 2.5 parts of a modified aliphatic aliphatic amine was added and stirring was continued to obtain a microcapsule pigment suspension.
  • the microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle size of the microcapsule pigment was 0.70 ⁇ m, and the maximum particle size was 2.60 ⁇ m. (Median diameter)
  • the microcapsule pigment has a complete decolorization temperature of 60 ° C.
  • the zeta potential of the microcapsule pigment As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 7.2 was 7.4 mV.
  • Microcapsule pigment pre-cooled and developed color 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Corporation
  • antifoaming agent silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.). The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used. From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
  • Example 21 (Preparation of microcapsule pigment) 7.0 parts of 2- (2-chloroanilino) -6-di-n-butylaminofluorane as component (a) and 1,1'-bis (4'-hydroxyphenyl) n-dodecane 15 as component (b) 0.04 parts, and a reversible thermochromic composition composed of 50.0 parts of 4-benzyloxyphenylethyl caprate as the component (c) was uniformly heated and dissolved, and an aromatic polyvalent isocyanate prepolymer 40.
  • a solution prepared by mixing 0 parts and 50.0 parts of a cosolvent was emulsified and dispersed in a 10% aqueous solution of polyvinyl alcohol to form fine droplets, and the mixture was stirred while heating, and then water-soluble aliphatically modified amine 2. 5 parts was added and stirring was continued to obtain a microcapsule pigment suspension.
  • the microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle diameter of the microcapsule pigment was 0.78 ⁇ m, and the maximum particle diameter was 2.60 ⁇ m.
  • the complete decolorization temperature of the microcapsule pigment is 60 ° C.
  • the complete color development temperature is ⁇ 25 ° C.
  • the zeta potential when the pH value of the microcapsule pigment dispersion was 7.0 was 7.7 mV.
  • Microcapsule pigment pre-cooled and developed color 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Corporation
  • antifoaming agent silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.). The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • the reversible thermochromic image of black color is visually recognized on the printed matter at room temperature (25 ° C), and the reversible thermochromic image disappears when heated to 60 ° C or higher, and immediately after printing (black color at -25 ° C or lower).
  • the state in which the print of (1) was formed) was returned.
  • the reversible thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used. From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
  • Example 22 (Preparation of microcapsule pigment)
  • component (a) 6.0 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthene-12,1 '(3H) -isobenzofuran] -3'-one,
  • component (b) 2,2-bis (4-hydroxyphenyl) hexafluoropropane (4.0 parts), 4,4 ′-(2-ethylhexylidene) bisphenol (11.0 parts)
  • component glutaric acid di-4 A reversible thermochromic composition consisting of 50.0 parts of benzyloxyphenylethyl was uniformly heated and dissolved, and 40.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent were mixed.
  • the solution was emulsified and dispersed in a 10% aqueous solution of polyvinyl alcohol to form fine droplets, and the mixture was stirred while heating, then 2.5 parts of a water-soluble aliphatic modified amine was added, and the mixture was further stirred.
  • a microcapsule pigment suspension The microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle size of the microcapsule pigment was 0.92 ⁇ m, and the maximum particle size was 3.52 ⁇ m. (Median diameter)
  • the complete decolorization temperature of the microcapsule pigment is 87 ° C., the complete color development temperature is ⁇ 35 ° C., and the color changes from magenta to colorless due to temperature change.
  • the zeta potential when the pH value of the microcapsule pigment dispersion was 6.9 was 7.0 mV.
  • Microcapsule pigment pre-cooled and developed color 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Corporation
  • antifoaming agent silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.). The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • Example 10 Using the inkjet printer used in Example 10, the aqueous ink composition was stored in the ink storage portion.
  • Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • a reversible thermochromic image of magenta color is visible at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 87 ° C or higher, and the state immediately after printing (magenta color) at -35 ° C or lower. The state in which the print of (1) was formed) was returned.
  • thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used. From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
  • Example 23 (Preparation of microcapsule pigment) As component (a), 6.0 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthene-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 10.0 parts of 1,1′-bis (4′-hydroxyphenyl) 2-ethylhexane as a component and 50.0 parts of n-nonyl palmitate as a component (c) was uniformly added.
  • a solution in which 40.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent were mixed as a wall film material was emulsified and dispersed in a 10% polyvinyl alcohol aqueous solution to form fine droplets, and added. After continuing stirring while warming, 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
  • the microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle diameter of the microcapsule pigment was 1.02 ⁇ m, and the maximum particle diameter was 3.72 ⁇ m. (Median diameter)
  • the microcapsule pigment has a complete decolorization temperature of 30 ° C.
  • the zeta potential of the microcapsule pigment As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 6.9 was 6.8 mV.
  • Microcapsule pigment pre-cooled and developed color 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Corporation
  • antifoaming agent silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.). The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • the reversible thermochromic image of magenta color is visually recognized at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 30 ° C or more, and the state immediately after printing (magenta color of 18 ° C or less). It returned to the state where printed characters were formed). From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
  • Example 24 (Preparation of microcapsule pigment) As component (a), 9 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthen-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 10.0 parts of 1,1′-bis (4′-hydroxyphenyl) 2-ethylhexane as a component and 50.0 parts of 4-methylbenzyl laurate as a component (c) is uniformly added.
  • the microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle size of the microcapsule pigment was 0.87 ⁇ m, and the maximum particle size was 2.57 ⁇ m.
  • the complete decolorization temperature of the microcapsule pigment is 27 ° C and the complete color development temperature is -25 ° C, and the color changes from magenta to colorless due to temperature change.
  • the zeta potential of the microcapsule pigment was 7.5 mV.
  • Microcapsule pigment pre-cooled and developed color 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Corporation
  • antifoaming agent silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.). The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • Example 10 Using the inkjet printer used in Example 10, the aqueous ink composition was stored in the ink storage portion.
  • Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • the reversible thermochromic image of magenta color is visible at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 27 ° C or higher, and the state immediately after printing (magenta color) at -25 ° C or lower.
  • the state in which the print characters of (1) have been formed has been restored. From printing at room temperature, good color development was visually recognized, and the start point, end point, and outline were clear.
  • Example 25 (Preparation of microcapsule pigment) A microcapsule pigment similar to that in Example 1 was prepared.
  • Microcapsule pigment pre-cooled and developed color 10.0 parts, organic pigment (pigment blue 15: 3) 0.2 part, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10 0.0 part, 2-hydroxy-3- (4-benzoylphenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 part, antifungal agent (product name: proxel XL-2, manufactured by Zeneca Co., Ltd.) 0.2 part, antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.) 0.5 part, pH adjuster (phosphoric acid) 0.10 part and 60.1 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
  • organic pigment pigment (pigment blue 15: 3) 0.2 part
  • morpholinoethyl (meth) acrylate 14.0 parts piperazino
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
  • the aqueous ink composition was contained in the same ink bottle as the ink bottle used in Example 10.
  • Example 10 Using the inkjet printer used in Example 10, the aqueous ink composition was stored in the ink storage portion.
  • Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • a purple reversible thermochromic image is visually recognized on the printed matter at room temperature (25 ° C), and the reversible thermochromic image changes to cyan color when heated to 60 ° C or higher, and immediately after printing at -25 ° C or lower (purple color).
  • the state in which the print of (1) was formed) was returned. From the print, good color development was visually recognized, and the start point, end point, and outline were clear.
  • Example 26 Preparation of microcapsule pigment
  • Microcapsule Pigment A As component (a), 7- [2- (acetylamino) -4- (diethylamino) phenyl] -7- (2-methyl-1-propyl-1H-indol-3-yl) furo [ 3,4-b] Pyridin-5 (7H) -one 3.0 parts, 4,4 '-(2-ethylhexylidene) bisphenol 15.0 parts as component (b), and capric acid as component (c)
  • a reversible thermochromic composition composed of 50.0 parts of 4-benzyloxyphenylethyl is uniformly dissolved by heating, and 40.0 parts of an aromatic polyvalent isocyanate prepolymer and 50.0 parts of a cosolvent are mixed as a wall film material.
  • the resulting solution was emulsified and dispersed in a 10% aqueous solution of polyvinyl alcohol to form fine droplets, and the mixture was continuously stirred while heating, then 2.5 parts of a water-soluble aliphatic modified amine was added, and the mixture was further stirred to prepare a microscopic solution.
  • a capsule pigment suspension was obtained.
  • Microcapsule pigment A was obtained by filtering the suspension with a filter press.
  • the volume average particle diameter of the microcapsule pigment A was 0.69 ⁇ m, and the maximum particle diameter was 2.27 ⁇ m. (Median diameter)
  • the complete decolorization temperature of the microcapsule pigment A is 60 ° C., the complete color development temperature is ⁇ 25 ° C., and the cyan color changes to colorless due to the temperature change.
  • Microcapsule Pigment B 9-Ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthene-12,1 '(3H) -isobenzofuran] -3'-one as component (a) 6.
  • a reversible thermochromic composition comprising 0 part, 10.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as the component (b), and 50.0 parts of 4-methylbenzyl palmitate as the component (c).
  • microcapsule pigment B was obtained by filtering the suspension with a filter press.
  • the volume average particle size of the microcapsule pigment B was 0.73 ⁇ m, and the maximum particle size was 2.60 ⁇ m. (Median diameter)
  • the complete decolorization temperature of the microcapsule pigment B is 40 ° C.
  • the zeta potential of the microcapsule pigment mixture obtained by mixing the microcapsule pigment A and the microcapsule pigment B in a mass ratio of 1: 1 was measured, and as a result, the zeta potential when the pH value of the microcapsule pigment dispersion was 7.1 was 7 It was 0.6 mV.
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
  • the aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • a purple reversible thermochromic image is visually recognized at room temperature (25 ° C), and the reversible thermochromic image changes to cyan when heated to 40 ° C or higher, and the reversible thermochromic image is heated to 60 ° C or higher.
  • thermochromic image disappeared, and the reversible thermochromic image changed to magenta at -5 ° C or lower and returned to the state immediately after printing (state where purple print was formed) at -25 ° C or lower.
  • the reversible thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used. From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
  • Example 27 (Preparation of microcapsule pigment) 4.5 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthene-12,1 '(3H) -isobenzofuran] -3'-one as component (a), (b) As components, 4.0 parts of 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 4.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol, and as component (c) stearyl caprate 32.
  • a reversible thermochromic composition consisting of 5 parts and 17.5 parts of stearyl laurate is uniformly heated and dissolved, and 40.0 parts of an aromatic polyisocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent are mixed.
  • the resulting solution was emulsified and dispersed in a 10% aqueous solution of polyvinyl alcohol so as to form fine droplets, and the mixture was stirred while heating, then 2.5 parts of a water-soluble aliphatic modified amine was added, and the stirring was continued.
  • a microcapsule pigment suspension Te The microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle diameter of the microcapsule pigment was 0.85 ⁇ m, and the maximum particle diameter was 2.85 ⁇ m. (Median diameter)
  • the complete decolorization temperature of the microcapsule pigment is 37 ° C., the complete color development temperature is 28 ° C., and the color changes from magenta to colorless due to temperature change.
  • the zeta potential of the microcapsule pigment dispersion liquid the zeta potential was 7.2 mV when the pH value of the microcapsule pigment dispersion liquid was 6.8.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Co., Ltd.
  • antifoaming agent silicon type, product name: SN deformer 381 (manufactured by San
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
  • the aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • the reversible thermochromic image of magenta color was visually recognized on the printed matter at room temperature (25 ° C), and the reversible thermochromic image was erased by heating at 37 ° C or higher, and immediately after printing at room temperature (25 ° C). It returned to the state (state in which the magenta print image was formed). From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
  • Example 28 (Preparation of microcapsule pigment) 3.0 parts of 3 ', 6'-bis [phenyl (3-methylphenyl) amino] -spiro [isobenzofuran-1 (3H), 9'-(9H) xanthene] -3-one as component (a), Consists of 8.0 parts of 4,4 '-(2-methylpropylidene) bisphenol as component (b), 15.0 parts of 2-methylpentyl stearate and 35.0 parts of 2-ethylhexyl stearate as component (c).
  • a reversible thermochromic composition was uniformly heated and dissolved, and a solution prepared by mixing 40.0 parts of an aromatic polyvalent isocyanate prepolymer and 50.0 parts of a cosolvent as a wall film material was added to a 10% polyvinyl alcohol aqueous solution to give a fine solution.
  • the mixture was emulsified and dispersed in the form of drops, and stirring was continued while heating, 2.5 parts of a water-soluble aliphatic modified amine was added, and the stirring was further continued to obtain a microcapsule pigment suspension.
  • the microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle diameter of the microcapsule pigment was 0.85 ⁇ m, and the maximum particle diameter was 2.85 ⁇ m.
  • the complete decolorization temperature of the microcapsule pigment is 10 ° C and the complete color development temperature is 5 ° C, and the color changes from blue to colorless due to temperature change.
  • the zeta potential of the microcapsule pigment was 7.3 mV.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Co., Ltd.
  • antifoaming agent silicon type, product name: SN deformer 381 (manufactured by San
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
  • the aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • Example 10 Using the inkjet printer used in Example 10, the aqueous ink composition was stored in the ink storage portion.
  • Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • the reversible thermochromic image of the printed matter is in a decolored state at room temperature (25 ° C), and the blue reversible thermochromic image is visually recognized by cooling to 5 ° C or lower, and by heating to 10 ° C or higher.
  • the reversible thermochromic image returned to the decolorized state. In the print that developed color after cooling, good color was visually recognized, and the start point, end point, and outline were clear.
  • Example 29 (Preparation of microcapsule pigment) 3.0 parts of 3 ', 6'-bis [phenyl (3-methylphenyl) amino] -spiro [isobenzofuran-1 (3H), 9'-(9H) xanthene] -3-one as component (a), Reversible thermal discoloration consisting of 8.0 parts of 4,4 '-(2-methylpropylidene) bisphenol as component (b), 30.0 parts of n-nonyl palmitate and 20.0 parts of decyl myristate as component (c) Solution of a hydrophilic composition uniformly heated and mixed with 40.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent to form fine droplets in a 10% aqueous polyvinyl alcohol solution.
  • microcapsule pigment suspension After emulsifying and dispersing as described above, stirring was continued while heating, 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
  • a microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle size of the microcapsule pigment was 0.83 ⁇ m, and the maximum particle size was 2.81 ⁇ m. (Median diameter)
  • the complete decolorization temperature of the microcapsule pigment is 20 ° C., the complete color development temperature is 15 ° C., and the color changes from blue to colorless due to temperature change.
  • the zeta potential of the microcapsule pigment As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 7.1 was 7.5 mV.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Co., Ltd.
  • antifoaming agent silicon type, product name: SN deformer 381 (manufactured by San
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
  • the aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • the reversible thermochromic image of the printed matter is in a decolored state at room temperature (25 ° C), and a blue reversible thermochromic image is visually recognized by cooling to 15 ° C or lower, and by heating to 20 ° C or higher.
  • the reversible thermochromic image returned to the decolorized state. From the print that developed color after cooling, good color development was visually recognized, and the start point, end point, and outline were clear.
  • Example 30 (Preparation of microcapsule pigment) 3.0 parts of 3 ', 6'-bis [phenyl (3-methylphenyl) amino] -spiro [isobenzofuran-1 (3H), 9'-(9H) xanthene] -3-one as component (a), Reversible thermochromic composition consisting of 8.0 parts of 4,4 '-(2-methylpropylidene) bisphenol as the component (b), 37.5 parts of stearyl caprate and 12.5 parts of cetyl caprate as the component (c).
  • the solution was uniformly heated and dissolved, and a solution prepared by mixing 40.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent was formed into fine droplets in a 10% aqueous polyvinyl alcohol solution. After emulsification and dispersion, and stirring was continued while heating, 2.5 parts of water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
  • the microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle diameter of the microcapsule pigment was 0.91 ⁇ m, and the maximum particle diameter was 3.01 ⁇ m.
  • the complete decolorization temperature of the microcapsule pigment is 30 ° C and the complete color development temperature is 25 ° C, and the color changes from blue to colorless due to temperature change.
  • the zeta potential of the microcapsule pigment was 6.9 mV.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Co., Ltd.
  • antifoaming agent silicon type, product name: SN deformer 381 (manufactured by San
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
  • the aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • a reversible thermochromic image of blue is visually recognized at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 30 ° C or more, and a state immediately after printing (blue at room temperature (25 ° C) The state in which the print characters of (1) have been formed) has been restored. From the print that developed color after heating, good color development was visually recognized, and the start point, end point, and outline were clear.
  • Example 31 (Preparation of microcapsule pigment) 3.0 parts of 3 ', 6'-bis [phenyl (3-methylphenyl) amino] -spiro [isobenzofuran-1 (3H), 9'-(9H) xanthene] -3-one as component (a), Consists of 8.0 parts of 4,4 '-(2-methylpropylidene) bisphenol as component (b), 25.0 parts of 3-methylbutyl behenate and 25.0 parts of 2-methylpentyl behenate as component (c).
  • a reversible thermochromic composition was uniformly heated and dissolved, and a solution prepared by mixing 40.0 parts of an aromatic polyvalent isocyanate prepolymer and 50.0 parts of a cosolvent as a wall film material was added to a 10% polyvinyl alcohol aqueous solution to give a fine solution.
  • the mixture was emulsified and dispersed in the form of drops, and stirring was continued while heating, 2.5 parts of a water-soluble aliphatic modified amine was added, and the stirring was further continued to obtain a microcapsule pigment suspension.
  • the microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle diameter of the microcapsule pigment was 0.94 ⁇ m, and the maximum particle diameter was 3.15 ⁇ m.
  • the complete decolorization temperature of the microcapsule pigment is 40 ° C. and the complete color development temperature is 35 ° C., and the color changes from blue to colorless due to temperature change.
  • the zeta potential of the microcapsule pigment dispersion As a result of measuring the zeta potential of the microcapsule pigment dispersion, the zeta potential when the pH value of the microcapsule pigment dispersion was 7.0 was 6.8 mV.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Co., Ltd.
  • antifoaming agent silicon type, product name: SN deformer 381 (manufactured by San
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
  • the aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • a blue reversible thermochromic image is visually recognized at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 40 ° C or higher, and a state immediately after printing (blue at room temperature (25 ° C)).
  • the state in which the print characters of (1) have been formed has been restored.
  • good color was visually recognized, and the start point, end point, and outline were clear.
  • Example 32 (Preparation of microcapsule pigment) 3.0 parts of 3 ', 6'-bis [phenyl (3-methylphenyl) amino] -spiro [isobenzofuran-1 (3H), 9'-(9H) xanthene] -3-one as component (a), Reversible composition consisting of 8.0 parts of 4,4 '-(2-methylpropylidene) bisphenol as component (b), 45.0 parts of n-butyl myristate and 5.0 parts of n-butyl palmitate as component (c).
  • thermochromic composition was uniformly heated and dissolved, and a solution prepared by mixing 40.0 parts of an aromatic polyvalent isocyanate prepolymer and 50.0 parts of a cosolvent as a wall film material was added to a 10% polyvinyl alcohol aqueous solution to form microdroplets.
  • the resulting emulsion was emulsified and dispersed, and the mixture was stirred while heating, 2.5 parts of a water-soluble aliphatic modified amine was added, and the mixture was further stirred to obtain a microcapsule pigment suspension.
  • the microcapsule pigment was obtained by filtering the suspension with a filter press.
  • the volume average particle size of the microcapsule pigment was 0.89 ⁇ m, and the maximum particle size was 2.93 ⁇ m.
  • the complete decolorization temperature of the microcapsule pigment is 0 ° C.
  • the complete color development temperature is ⁇ 15 ° C.
  • the zeta potential of the microcapsule pigment the zeta potential when the pH value of the microcapsule pigment dispersion liquid was 7.1 was 7.2 mV.
  • antifungal agent product name: Proxel XL-2, manufactured by Zeneca Co., Ltd.
  • antifoaming agent silicon type, product name: SN deformer 381 (manufactured by San
  • An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
  • the aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
  • Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • the reversible thermochromic image of the printed matter is in a decolored state at room temperature (25 ° C), and when cooled to -15 ° C or less, a blue reversible thermochromic image is visually recognized and heated to 0 ° C or more. As a result, the reversible thermochromic image returned to a decolored state. From the print that developed color after cooling, good color development was visually recognized, and the start point, end point, and outline were clear.
  • Example 33 (Preparation of microcapsule pigment and aqueous ink composition) The cyan, magenta, yellow, and black aqueous ink compositions of Example 10, Example 19, Example 20, and Example 21 were used.
  • Ink container The ink composition was contained in an ink bottle of the same form as the ink container used in Example 10 to prepare an ink container set consisting of magenta, cyan, yellow, and black ink bottles.
  • the ink accommodating portion of the inkjet printer used in Example 10 was made to be capable of accommodating the above-described four-color ink compositions independently, and the ink accommodating portion accommodated each color independently.
  • thermochromic image was formed on recording paper (copy paper) using the above inkjet printer to form a reversible thermochromic image to obtain a reversible thermochromic printed matter.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • room temperature 25 ° C.
  • thermochromic image disappeared and returned to a state immediately after printing (a state in which prints of cyan, magenta, yellow, black, etc. were formed) at -25 ° C.
  • the reversible thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used. From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
  • Example 34 (Preparation of microcapsule pigment and aqueous ink composition) The aqueous ink compositions of Example 28, Example 29, Example 30, and Example 31 were used.
  • Ink container Four types of water-based ink compositions were housed in an ink bottle of the same form as the ink container used in Example 10 to prepare an ink container set consisting of each ink bottle.
  • the ink containing portion of the ink jet printer used in Example 10 was made to be able to contain four types of ink compositions independently, and each ink composition was contained independently in the ink containing portion.
  • thermochromic printed matter After printing each of the water-based ink compositions on a recording paper (copy paper) using the above-mentioned inkjet printer so that they are recorded at different positions, the printed area is irradiated with UV light to form a reversible thermochromic image. Thus, a reversible thermochromic printed matter was obtained.
  • the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
  • the printed matter is at room temperature (25 ° C.)
  • the prints formed with the ink compositions of Example 28 and Example 29 are in a decolored state
  • the prints formed with the ink compositions of Example 30 and Example 31 are It was visually confirmed and confirmed to play a role as a temperature indicator. From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
  • Comparative Example 1 (Preparation of microcapsule pigment) As component (a), 9 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthen-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 15.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as a component and 50.0 parts of 4-benzyloxyphenylethyl caprate as a component (c) was uniformly added.
  • the resulting emulsion was emulsified and dispersed, and stirring was continued while heating, 5.0 parts of a water-soluble aliphatic modified amine was added, and the stirring was further continued to obtain a microcapsule pigment suspension. After removing coarse particles from the suspension by a centrifuge, the suspension was filtered by a filter press to obtain a microcapsule pigment.
  • the volume average particle diameter of the microcapsule pigment was 0.86 ⁇ m, and the maximum particle diameter was 2.72 ⁇ m.
  • the microcapsule pigment has a complete decolorization temperature of 60 ° C. and a complete color development temperature of ⁇ 25 ° C., and changes from magenta color to colorless due to temperature change.
  • the zeta potential was measured when the pH value of the microcapsule dispersion was 7.0, the zeta potential was 0 mV. (Each zeta potential value of 20 data pieces is ⁇ 0.04 to +0.04 mV, and the number average value thereof is less than 0.04 mV, which can be regarded as substantially 0 mV.)
  • Microcapsule pigment pre-cooled and developed color 10.00 parts, glycerin 10.00 parts, preservative (pyridine-2-thiol 1-oxide sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0 20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts and water 79.58 parts uniformly. By mixing, an aqueous ink composition was obtained.
  • the above water-based ink composition was placed in a fountain pen of the same type as the fountain pen used in Example 1, and writing was performed on copy paper.
  • Magenta handwriting is visible on the copy paper at room temperature (25 ° C), and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state immediately after writing at -25 ° C (magenta color). It has returned to the state where the handwriting was formed).
  • the handwriting in the colored state was extremely faint, and it was difficult to visually recognize the color and outline.
  • Comparative example 2 (Preparation of microcapsule pigment) The same microcapsule pigment as in Comparative Example 1 was prepared.
  • Microcapsule pigment pre-cooled and developed color 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of a defoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Ltd.) and 60.8 parts of water were uniformly mixed to obtain a water-based ink composition.
  • a defoaming agent silicon type, product name: SN deformer 381, manufactured by San Nopco Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet (AREA)

Abstract

[Problem] To provide a reversible thermochromic microcapsule pigment for ink that is rich in color forming properties and is capable of forming a high-definition reversible thermochromic image, a reversible thermochromic aqueous ink composition using the same, and an ink container accommodating the aqueous ink composition. [Solution] A reversible thermochromic microcapsule pigment for ink in which a reversible thermochromic composition including (a) an electron-donating color-forming organic compound, (b) an electron-accepting compound, and (c) a reaction medium for determining a temperature at which a color reaction of the components (a) and (b) occurs is enclosed in microcapsules, and the microcapsules are characterized by having a zeta potential of a positive or negative value in a microcapsule dispersion composed of only water and the microcapsules.

Description

インキ用可逆熱変色性マイクロカプセル顔料、およびそれを用いた可逆熱変色性水性インキ組成物Reversible thermochromic microcapsule pigment for ink, and reversible thermochromic aqueous ink composition using the same
 本発明は、可逆熱変色性マイクロカプセル顔料に関するものである。さらに詳しくは、本発明は、発色性に富み、高精細な像を形成可能とするインキ用可逆熱変色性水性マイクロカプセル顔料に関するものである。また、本発明は、前記マイクロカプセル顔料を用いたインキ組成物、および前記インキ組成物を収容したインク容器にも関するものである。 The present invention relates to a reversible thermochromic microcapsule pigment. More specifically, the present invention relates to a reversible thermochromic water-based microcapsule pigment for ink, which is rich in color development and capable of forming a high-definition image. The present invention also relates to an ink composition using the microcapsule pigment, and an ink container containing the ink composition.
 従来から、可逆熱変色性を有するインキ組成物は鮮明性に優れ、温度によって異なる色を具現できるため、様々な筆記具や印刷機器に利用されている。
 このようなインキには、着色剤として、可逆熱変色性成分を内包した可逆熱変色性マイクロカプセル顔料が、インキ溶媒に対して不溶で安定性が高く、呈色反応の鋭敏性に優れることからよく用いられる。
BACKGROUND ART Conventionally, an ink composition having a reversible thermochromic property has excellent vividness and can realize different colors depending on the temperature, and thus has been used in various writing instruments and printing devices.
In such an ink, a reversible thermochromic microcapsule pigment containing a reversible thermochromic component as a colorant is insoluble in an ink solvent, has high stability, and is highly sensitive to color reaction. Often used.
 しかしながら、可逆熱変色性マイクロカプセル顔料は、一般的な顔料と比べて粒子径が大きく、インキ中で粗大な凝集物を形成してインキ流路の目詰まりの原因となることがある。インキ流路が目詰まりを起こすとインキ吐出部からのインキ吐出性が低下し、発色性に富み、高精細な像を形成することが難しいことから、インキ中での可逆熱変色性マイクロカプセル顔料の凝集を抑制することが検討されている。(例えば特許文献1、2参照) However, the reversible thermochromic microcapsule pigment has a larger particle size than general pigments and may form coarse aggregates in the ink, which may cause clogging of the ink flow path. Reversible thermochromic microcapsule pigment in ink because it is difficult to form a high-definition image because the ink ejection property from the ink ejection part deteriorates when the ink flow path becomes clogged, and the color development is rich. It is considered to suppress the aggregation of (See, for example, Patent Documents 1 and 2)
 特許文献1には、可逆熱変色性マイクロカプセル顔料と水と水溶性多糖類とベントナイトとを含む筆記具用インキ組成物が記載されている。
 前記筆記具用インキ組成物は、可逆熱変色性マイクロカプセル顔料の分散性に優れ、可逆熱変色性マイクロカプセル顔料の凝集を抑制して筆記具のインキ吐出部からのインキ吐出性が良好とされたものである。
Patent Document 1 describes an ink composition for a writing instrument containing a reversible thermochromic microcapsule pigment, water, a water-soluble polysaccharide, and bentonite.
The ink composition for a writing instrument is excellent in the dispersibility of the reversible thermochromic microcapsule pigment, and suppresses the aggregation of the reversible thermochromic microcapsule pigment so that the ink ejection property from the ink ejection portion of the writing instrument is good. Is.
 また、特許文献2には、可逆熱変色性を有するマイクロカプセル顔料を着色剤として含むインクジェット用可逆熱変色性インキ組成物が記載されている。
 前記インクジェット用可逆熱変色性インキ組成物は、可逆熱変色性マイクロカプセル顔料の、プリンタヘッドのノズル(インキ吐出部)からのインキ吐出性に優れ、発色性に富み、高精細な印刷画像が形成可能とされたものである。
In addition, Patent Document 2 describes a reversible thermochromic ink composition for inkjet including a microcapsule pigment having a reversible thermochromic property as a colorant.
The reversible thermochromic ink composition for inkjet is excellent in ink releasability of the reversible thermochromic microcapsule pigment from the nozzle (ink ejection portion) of the printer head, rich in color development, and forms a high-definition printed image. It was made possible.
 上記特許文献には、確かにある程度、可逆熱変色性マイクロカプセル顔料の凝集抑制を可能としている。しかしながら、その凝集抑制効果は十分ではなく、可逆熱変色性マイクロカプセル顔料が凝集して、インキ吐出部からのインキ吐出性が低下し、発色性に富み、高精細な像を形成することが難しくなることがあるため、改善の余地があった。 In the above patent document, it is possible to suppress aggregation of the reversible thermochromic microcapsule pigment to some extent. However, the effect of suppressing the aggregation is not sufficient, and the reversible thermochromic microcapsule pigment aggregates, the ink ejection property from the ink ejection portion is deteriorated, the color development is rich, and it is difficult to form a high-definition image. However, there was room for improvement.
特開2012-97168号公報JP 2012-97168 A 特開2012-158621号公報JP 2012-158621A
 本発明は上記に鑑みて為されたものであり、インキ中での分散性に優れ、インキの流動性を良好としてインキ吐出部からのインキ吐出を容易とし、発色性に富み、高精細な可逆熱変色性の像を形成可能とする、インキ用可逆熱変色性マイクロカプセル顔料、前記インキ用可逆熱変色性マイクロカプセル顔料を含んでなる可逆熱変色性水性インキ組成物、および前記水性インキ組成物を収容してなるインク容器を提供するものである。 The present invention has been made in view of the above, is excellent in dispersibility in ink, facilitates ink ejection from the ink ejection portion by improving the fluidity of the ink, is rich in color development, and has high-definition reversibility. A reversible thermochromic microcapsule pigment for ink, which is capable of forming a thermochromic image, a reversible thermochromic aqueous ink composition comprising the reversible thermochromic microcapsule pigment, and the aqueous ink composition The present invention provides an ink container containing the.
 本発明は、(a)電子供与性呈色性有機化合物、(b)電子受容性化合物、および(c)(a)成分および(b)成分の呈色反応の生起温度を決める反応媒体を含んでなる可逆熱変色性組成物を内包してなる可逆熱変色性マイクロカプセルであって、
 前記マイクロカプセルが、水と前記マイクロカプセルのみからなるマイクロカプセル分散液中において、20℃、pH値7の条件下、正または負の値のゼータ電位を有することを特徴とする、インキ用可逆熱変色性マイクロカプセル顔料に関するものである。
 また、本発明は、前記したインキ用可逆熱変色性マイクロカプセル顔料と、水と、分散剤とを含み、
 前記分散剤が、前記マイクロカプセル顔料が有するゼータ電位の値と反対符号の電荷を帯びる官能基を構造に有することを特徴とする、可逆熱変色性水性インキ組成物に関するものである。
 また、本発明は、前記した水性インキ組成物を収容してなる、インク容器に関するものである。
 また、本発明は、複数の、前記したインク容器で構成された、インク容器セットに関するものである。
The present invention includes (a) an electron-donating color-developing organic compound, (b) an electron-accepting compound, and (c) a reaction medium that determines the temperature at which the color reaction of components (a) and (b) occurs. A reversible thermochromic microcapsule containing a reversible thermochromic composition comprising
Reversible heat for ink, characterized in that the microcapsules have a positive or negative zeta potential under conditions of 20 ° C. and a pH value of 7 in a microcapsule dispersion liquid consisting of water and the microcapsules only. The present invention relates to a color-changing microcapsule pigment.
Further, the present invention contains the reversible thermochromic microcapsule pigment for ink described above, water, and a dispersant,
The present invention relates to a reversible thermochromic water-based ink composition, wherein the dispersant has a functional group having a charge having a sign opposite to the zeta potential value of the microcapsule pigment in the structure.
The present invention also relates to an ink container containing the water-based ink composition described above.
The present invention also relates to an ink container set including a plurality of ink containers described above.
 本発明によれば、インキ中での分散性に優れ、インキの流動性を良好としてインキ吐出部からのインキ吐出を容易とし、発色性に富み、高精細な可逆熱変色性の像を形成可能とする、インキ用可逆熱変色性マイクロカプセル顔料と、それを含んでなる可逆熱変色性水性インキ組成物、および前記水性インキ組成物を収容したインク容器が提供される。 According to the present invention, the dispersibility in ink is excellent, the fluidity of the ink is good, the ink is easily ejected from the ink ejecting portion, the color development is rich, and a highly precise reversible thermochromic image can be formed. There is provided a reversible thermochromic microcapsule pigment for ink, a reversible thermochromic aqueous ink composition containing the same, and an ink container containing the aqueous ink composition.
可逆熱変色性組成物を内包したマイクロカプセル顔料(加熱消色型)の変色挙動を示す説明図である。It is explanatory drawing which shows the color change behavior of the microcapsule pigment (heat-decoloring type) which included the reversible thermochromic composition. 色彩記憶性を有する可逆熱変色性組成物を内包したマイクロカプセル顔料(加熱消色型)の変色挙動を示す説明図である。It is explanatory drawing which shows the discoloration behavior of the microcapsule pigment (heat-decoloring type) which encapsulated the reversible thermochromic composition which has color memory. インクジェットプリンターの構成の一例を示す概略図である。It is a schematic diagram showing an example of composition of an ink jet printer.
 以下、本発明の実施の形態について、詳細に説明する。なお、本明細書において、配合を示す「部」、「%」、「比」などは特に断らない限り質量基準である。 Hereinafter, embodiments of the present invention will be described in detail. In the present specification, “parts”, “%”, “ratio”, etc. indicating the composition are based on mass unless otherwise specified.
 本発明はインキ用可逆熱変色性マイクロカプセル顔料、および可逆熱変色性マイクロカプセル顔料を含んでなる可逆熱変色性水性インキ組成物(以下、「水性インキ組成物」または「インキ組成物」ともいう)に関するものである。また、本発明は、水性インキ組成物を収容してなるインク容器に関するものでもある。以下、可逆熱変色性マイクロカプセル顔料、および水性インキ組成物を構成する各成分について説明する。 The present invention relates to a reversible thermochromic microcapsule pigment for ink, and a reversible thermochromic aqueous ink composition containing the reversible thermochromic microcapsule pigment (hereinafter also referred to as “aqueous ink composition” or “ink composition”). ) Is related to. The present invention also relates to an ink container containing a water-based ink composition. Hereinafter, the reversible thermochromic microcapsule pigment and each component constituting the water-based ink composition will be described.
(可逆熱変色性マイクロカプセル顔料)
 本発明の可逆熱変色性マイクロカプセル顔料(以下、「マイクロカプセル顔料」ともいう)は、電子供与性呈色性有機化合物、電子受容性化合物および両者の呈色反応の生起温度を決める反応媒体からなる可逆熱変色性組成物を内包してなる。
(Reversible thermochromic microcapsule pigment)
The reversible thermochromic microcapsule pigment of the present invention (hereinafter, also referred to as “microcapsule pigment”) comprises an electron-donating color-forming organic compound, an electron-accepting compound, and a reaction medium that determines the temperature at which a color reaction between the two occurs. The reversible thermochromic composition described below is included.
 マイクロカプセル顔料としては、特公昭51-44706号公報、特公昭51-44707号公報、特公平1-29398号公報等に記載されている、所定の温度(変色点)を境としてその前後で変色し、高温側変色点以上の温度域で消色状態、低温側変色点以下の温度域で発色状態を呈し、両状態のうち常温域では特定の一方の状態しか存在せず、もう一方の状態は、その状態が発現するのに要した熱または冷熱が適用されている間は維持されるが、熱または冷熱の適用がなくなれば常温域で呈する状態に戻る、ヒステリシス幅が比較的小さい特性(ΔH=1℃から7℃)を有する加熱消色型の可逆熱変色性組成物を内包してなるマイクロカプセル顔料を用いることができる(図1参照)。 As the microcapsule pigment, a color change occurs before and after a predetermined temperature (color change point) as a boundary, which is described in JP-B-51-44706, JP-B-51-44707, and JP-B-1-29398. However, it exhibits a decolored state in the temperature range above the high-temperature side discoloration point, and a colored state in the temperature range below the low-temperature side discoloration point.There is only one specific state at room temperature in both states, and the other state. Is maintained as long as the heat or cold required to develop that state is applied, but returns to the state exhibited at room temperature when heat or cold is not applied, with a relatively small hysteresis width ( A microcapsule pigment containing a heat-decolorizable reversible thermochromic composition having ΔH = 1 ° C. to 7 ° C.) can be used (see FIG. 1).
 また、特開2006-137886号公報、特開2006-188660号公報、特開2008-45062号公報、特開2008-280523号公報等に記載されている、大きなヒステリシス特性を示す可逆熱変色性組成物を内包してなるマイクロカプセル顔料を用いることもできる。即ち、温度変化による着色濃度の変化をプロットした曲線の形状が、温度を変色温度域より低温側から上昇させていく場合と逆に変色温度域より高温側から下降させていく場合とで大きく異なる経路を辿って変色し、完全発色温度(t1)以下の低温域での発色状態、または完全消色温度(t4)以上の高温域での消色状態が、特定温度域〔t2からt3の間の温度域(実質的二相保持温度域)〕で色彩記憶性を有する可逆熱変色性組成物を内包させたマイクロカプセル顔料を用いることもできる(図2参照)。 Further, a reversible thermochromic composition exhibiting a large hysteresis characteristic, which is described in JP-A-2006-137886, JP-A-2006-188660, JP-A-2008-45062, JP-A-2008-280523 and the like. It is also possible to use a microcapsule pigment containing a substance. That is, the shape of the curve plotting the change in the coloring density due to the temperature change is significantly different between the case where the temperature is increased from the lower temperature side than the color change temperature range and the case where the temperature is decreased from the higher temperature side than the color change temperature range. The color changes along the path, and the color development state in the low temperature range below the complete color development temperature (t1) or the color development state in the high temperature range above the complete color removal temperature (t4) is in the specific temperature range [between t2 and t3. In the temperature range (substantially two-phase holding temperature range)], a microcapsule pigment including a reversible thermochromic composition having color memory can be used (see FIG. 2).
 色彩記憶性を有する可逆熱変色性組成物を内包させたマイクロカプセル顔料の色濃度-温度曲線におけるヒステリシス特性について説明する。
 図2では、縦軸に色濃度、横軸に温度が表されている。温度変化による色濃度の変化は矢印に沿って進行する。ここで、Aは完全消色状態に達する温度t4(以下、完全消色温度と称す)における濃度を示す点であり、Bは消色を開始する温度t3(以下、消色開始温度と称す)における濃度を示す点であり、Cは発色を開始する温度t2(以下、発色開始温度と称す)における濃度を示す点であり、Dは完全発色状態に達する温度t1(以下、完全発色温度と称す)における濃度を示す点である。
 変色温度域は前記t1とt4間の温度域であり、着色状態と消色状態の両状態が共存でき、色濃度の差の大きい領域であるt2とt3の間の温度域が実質変色温度域である。
 また、線分EFの長さが変色のコントラストを示す尺度であり、線分EFの中点を通る線分HGの長さがヒステリシスの程度を示す温度幅(以下、ヒステリシス幅ΔHと記す)であり、このΔH値が小さいと変色前後の両状態のうち常温域では特定の一方の状態しか存在しえない。また、ΔH値が大きいと変色前後の各状態の保持が容易となる。
The hysteresis characteristics in the color density-temperature curve of the microcapsule pigment containing the reversible thermochromic composition having color memory will be described.
In FIG. 2, the vertical axis represents color density and the horizontal axis represents temperature. The change in color density due to the temperature change progresses along the arrow. Here, A is a point indicating the density at a temperature t4 (hereinafter referred to as a complete erasing temperature) at which the completely erasing state is reached, and B is a temperature t3 at which the erasing is started (hereinafter referred to as an erasing starting temperature). Is a point showing the density at C, C is a point showing the density at a temperature t2 at which color development starts (hereinafter, referred to as a color development start temperature), and D is a temperature t1 at which a fully developed state is reached (hereinafter referred to as a complete color development temperature). ) Is a point indicating the concentration.
The color change temperature range is the temperature range between t1 and t4, and both the colored state and the decolored state can coexist, and the temperature range between t2 and t3, which is a region with a large difference in color density, is the substantial color change temperature range. Is.
Further, the length of the line segment EF is a scale showing the contrast of discoloration, and the length of the line segment HG passing through the midpoint of the line segment EF is a temperature width (hereinafter referred to as hysteresis width ΔH) showing the degree of hysteresis. However, if this ΔH value is small, only one specific state can exist in the normal temperature range of both states before and after discoloration. Further, if the ΔH value is large, it becomes easy to maintain each state before and after the color change.
 完全消色温度t4は、摩擦部材と被筆記面との擦過によって生じる摩擦熱等により消色させる場合、例えば、50℃以上90℃以下であり、好ましくは55℃以上85℃以下、より好ましくは60℃以上80℃以下の範囲にあり、完全発色温度t1は冷凍室、寒冷地等でしか得られない温度とすることができ、例えば、0℃以下であり、好ましくは-50℃以上-5℃以下、より好ましくは-50℃以上-10℃以下の範囲にある。 The complete erasing temperature t4 is, for example, 50 ° C. or more and 90 ° C. or less, preferably 55 ° C. or more and 85 ° C. or less, and more preferably, when erasing by frictional heat generated by rubbing between the friction member and the writing surface. It is in the range of 60 ° C. or higher and 80 ° C. or lower, and the complete color development temperature t1 can be a temperature that can be obtained only in a freezer, a cold region, etc., and is, for example, 0 ° C. or lower, preferably −50 ° C. or higher and −5. C. or lower, more preferably -50.degree. C. or higher and -10.degree. C. or lower.
 以下に電子供与性呈色性有機化合物、電子受容性化合物および反応媒体について説明する。電子供与性呈色性有機化合物は、色調を決める成分であって、電子受容性化合物に電子を供与して、発色する化合物である。電子供与性呈色性有機化合物としては、フタリド化合物、フルオラン化合物、スチリノキノリン化合物、ジアザローダミンラクトン化合物、ピリジン化合物、キナゾリン化合物、ビスキナゾリン化合物等が挙げられ、これらのうちフタリド化合物およびフルオラン化合物からなる群から選択される少なくとも1種が好ましい。 The electron-donating color-developing organic compound, electron-accepting compound and reaction medium are explained below. The electron-donating color-developing organic compound is a component that determines the color tone and is a compound that develops a color by donating an electron to the electron-accepting compound. Examples of the electron-donating color-developing organic compound include a phthalide compound, a fluoran compound, a styrinoquinoline compound, a diazarhodamine lactone compound, a pyridine compound, a quinazoline compound, and a bisquinazoline compound. Of these, a phthalide compound and a fluoran compound are included. At least one selected from the group is preferred.
 フタリド化合物としては、例えばジフェニルメタンフタリド化合物、フェニルインドリルフタリド化合物、インドリルフタリド化合物、ジフェニルメタンアザフタリド化合物、フェニルインドリルアザフタリド化合物、およびそれらの誘導体などが挙げられ、これらの中でも、フェニルインドリルアザフタリド化合物、ならびにそれらの誘導体が好ましい。また、フルオラン化合物としては、例えば、アミノフルオラン化合物、アルコキシフルオラン化合物、およびそれらの誘導体が挙げられる。 Examples of the phthalide compound include diphenylmethanephthalide compound, phenylindolylphthalide compound, indolylphthalide compound, diphenylmethaneazaphthalide compound, phenylindolylazaphthalide compound, and derivatives thereof. , Phenylindolyl azaphthalide compounds, and their derivatives are preferred. In addition, examples of the fluorane compound include an aminofluorane compound, an alkoxyfluorane compound, and derivatives thereof.
 以下にこれらの化合物を例示する。
 3,3-ビス(p-ジメチルアミノフェニル)-6-ジメチルアミノフタリド、
 3-(4-ジエチルアミノフェニル)-3-(1-エチル-2-メチルインドール-3-イル)フタリド、
 3,3-ビス(1-n-ブチル-2-メチルインドール-3-イル)フタリド、
 3,3-ビス(2-エトキシ-4-ジエチルアミノフェニル)-4-アザフタリド、
 3-(2-エトキシ-4-ジエチルアミノフェニル)-3-(1-エチル-2-メチルインドール-3-イル)-4-アザフタリド、
 3-(2-ヘキシルオキシ-4-ジエチルアミノフェニル)-3-(1-エチル-2-メチルインドール-3-イル)-4-アザフタリド、
 3-〔2-エトキシ-4-(N-エチルアニリノ)フェニル〕-3-(1-エチル-2-メチルインドール-3-イル)-4-アザフタリド、
 3-(2-アセトアミド-4-ジエチルアミノフェニル)-3-(1-プロピルインドール-3-イル)-4-アザフタリド、
 3,6-ビス(ジフェニルアミノ)フルオラン、
 3,6-ジメトキシフルオラン、
 3,6-ジ-n-ブトキシフルオラン、
 2-メチル-6-(N-エチル-N-p-トリルアミノ)フルオラン、
 3-クロロ-6-シクロヘキシルアミノフルオラン、
 2-メチル-6-シクロヘキシルアミノフルオラン、
 2-(2-クロロアミノ)-6-ジブチルアミノフルオラン、
 2-(2-クロロアニリノ)-6-ジ-n-ブチルアミノフルオラン、
 2-(3-トリフルオロメチルアニリノ)-6-ジエチルアミノフルオラン、
 2-(3-トリフルオロメチルアニリノ)-6-ジペンチルアミノフルオラン、
 2-(ジベンジルアミノ)-6-ジエチルアミノフルオラン、
 2-(N-メチルアニリノ)-6-(N-エチル-N-p-トリルアミノ)フルオラン、
 1,3-ジメチル-6-ジエチルアミノフルオラン、
 2-クロロ-3-メチル-6-ジエチルアミノフルオラン、
 2-アニリノ-3-メチル-6-ジエチルアミノフルオラン、
 2-アニリノ-3-メトキシ-6-ジエチルアミノフルオラン、
 2-アニリノ-3-メチル-6-ジ-n-ブチルアミノフルオラン、
 2-アニリノ-3-メトキシ-6-ジ-n-ブチルアミノフルオラン、
 2-キシリジノ-3-メチル-6-ジエチルアミノフルオラン、
 2-アニリノ-3-メチル-6-(N-エチル-N-p-トリルアミノ)フルオラン、
 1,2-ベンツ-6-ジエチルアミノフルオラン、
 1,2-ベンツ-6-(N-エチル-N-イソブチルアミノ)フルオラン、
 1,2-ベンツ-6-(N-エチル-N-イソアミルアミノ)フルオラン、
 2-(3-メトキシ-4-ドデコキシスチリル)キノリン、
 スピロ〔5H-(1)ベンゾピラノ[2,3-d]ピリミジン-5,1’(3’H)イソベンゾフラン〕-3’-オン,2-(ジエチルアミノ)-8-(ジエチルアミノ)-4-メチル、
 スピロ〔5H-(1)ベンゾピラノ[2,3-d]ピリミジン-5,1’(3’H)イソベンゾフラン〕-3’-オン,2-(ジ-n-ブチルアミノ)-8-(ジ-n-ブチルアミノ)-4-メチル、
 スピロ〔5H-(1)ベンゾピラノ[2,3-d]ピリミジン-5,1’(3’H)イソベンゾフラン〕-3’-オン,2-(ジ-n-ブチルアミノ)-8-(ジエチルアミノ)-4-メチル、
 スピロ〔5H-(1)ベンゾピラノ[2,3-d]ピリミジン-5,1’(3’H)イソベンゾフラン〕-3’-オン,2-(ジ-n-ブチルアミノ)-8-(N-エチル-N-i-アミルアミノ)-4-メチル、
 スピロ〔5H-(1)ベンゾピラノ[2,3-d]ピリミジン-5,1’(3’H)イソベンゾフラン〕-3’-オン,2-(ジブチルアミノ)-8-(ジペンチルアミノ)-4-メチル、
 4,5,6,7-テトラクロロ-3-〔4-(ジメチルアミノ)-2-メトキシフェニル〕-3-(1-ブチル-2-メチル-1H-インドール-3-イル)-1(3H)-イソベンゾフラノン、
 4,5,6,7-テトラクロロ-3-〔4-(ジエチルアミノ)-2-エトキシフェニル〕-3-(1-エチル-2-メチル-1H-インドール-3-イル)-1(3H)-イソベンゾフラノン、
 4,5,6,7-テトラクロロ-3-〔4-(ジエチルアミノ)-2-エトキシフェニル〕-3-(1-ペンチル-2-メチル-1H-インドール-3-イル)-1(3H)-イソベンゾフラノン、
 4,5,6,7-テトラクロロ-3-[4-(ジエチルアミノ)-2-メチルフェニル]-3-(1-エチル-2-メチル-1H-インドール-3-イル)-1(3H)-イソベンゾフラノン、
 3’,6’-ビス〔フェニル(2-メチルフェニル)アミノ〕-スピロ[イソベンゾフラン-1(3H),9’-〔9H〕キサンテン]-3-オン、
 3’,6’-ビス〔フェニル(3-メチルフェニル)アミノ〕-スピロ[イソベンゾフラン-1(3H),9’-〔9H〕キサンテン]-3-オン、
 3’,6’-ビス〔フェニル(3-エチルフェニル)アミノ〕-スピロ[イソベンゾフラン-1(3H),9’-〔9H〕キサンテン]-3-オン、
 2,6-ビス(2’-エチルオキシフェニル)-4-(4’-ジメチルアミノフェニル)ピリジン、
 2,6-ビス(2’,4’-ジエチルオキシフェニル)-4-(4’-ジメチルアミノフェニル)ピリジン、
 2-(4’-ジメチルアミノフェニル)-4-メトキシ-キナゾリン、
 4,4’-(エチレンジオキシ)-ビス〔2-(4-ジエチルアミノフェニル)キナゾリン〕等を挙げることができる。
Examples of these compounds are shown below.
3,3-bis (p-dimethylaminophenyl) -6-dimethylaminophthalide,
3- (4-diethylaminophenyl) -3- (1-ethyl-2-methylindol-3-yl) phthalide,
3,3-bis (1-n-butyl-2-methylindol-3-yl) phthalide,
3,3-bis (2-ethoxy-4-diethylaminophenyl) -4-azaphthalide,
3- (2-ethoxy-4-diethylaminophenyl) -3- (1-ethyl-2-methylindol-3-yl) -4-azaphthalide,
3- (2-hexyloxy-4-diethylaminophenyl) -3- (1-ethyl-2-methylindol-3-yl) -4-azaphthalide,
3- [2-ethoxy-4- (N-ethylanilino) phenyl] -3- (1-ethyl-2-methylindol-3-yl) -4-azaphthalide,
3- (2-acetamido-4-diethylaminophenyl) -3- (1-propylindol-3-yl) -4-azaphthalide,
3,6-bis (diphenylamino) fluorane,
3,6-dimethoxyfluorane,
3,6-di-n-butoxyfluorane,
2-methyl-6- (N-ethyl-Np-tolylamino) fluorane,
3-chloro-6-cyclohexylaminofluorane,
2-methyl-6-cyclohexylaminofluorane,
2- (2-chloroamino) -6-dibutylaminofluorane,
2- (2-chloroanilino) -6-di-n-butylaminofluorane,
2- (3-trifluoromethylanilino) -6-diethylaminofluorane,
2- (3-trifluoromethylanilino) -6-dipentylaminofluorane,
2- (dibenzylamino) -6-diethylaminofluorane,
2- (N-methylanilino) -6- (N-ethyl-Np-tolylamino) fluorane,
1,3-dimethyl-6-diethylaminofluorane,
2-chloro-3-methyl-6-diethylaminofluorane,
2-anilino-3-methyl-6-diethylaminofluorane,
2-anilino-3-methoxy-6-diethylaminofluorane,
2-anilino-3-methyl-6-di-n-butylaminofluorane,
2-anilino-3-methoxy-6-di-n-butylaminofluorane,
2-xylidino-3-methyl-6-diethylaminofluorane,
2-anilino-3-methyl-6- (N-ethyl-Np-tolylamino) fluorane,
1,2-benz-6-diethylaminofluorane,
1,2-benz-6- (N-ethyl-N-isobutylamino) fluorane,
1,2-benz-6- (N-ethyl-N-isoamylamino) fluorane,
2- (3-methoxy-4-dodecoxystyryl) quinoline,
Spiro [5H- (1) benzopyrano [2,3-d] pyrimidin-5,1 '(3'H) isobenzofuran] -3'-one, 2- (diethylamino) -8- (diethylamino) -4-methyl ,
Spiro [5H- (1) benzopyrano [2,3-d] pyrimidin-5,1 '(3'H) isobenzofuran] -3'-one, 2- (di-n-butylamino) -8- (di -N-butylamino) -4-methyl,
Spiro [5H- (1) benzopyrano [2,3-d] pyrimidin-5,1 '(3'H) isobenzofuran] -3'-one, 2- (di-n-butylamino) -8- (diethylamino ) -4-methyl,
Spiro [5H- (1) benzopyrano [2,3-d] pyrimidin-5,1 '(3'H) isobenzofuran] -3'-one, 2- (di-n-butylamino) -8- (N -Ethyl-N-i-amylamino) -4-methyl,
Spiro [5H- (1) benzopyrano [2,3-d] pyrimidin-5,1 '(3'H) isobenzofuran] -3'-one, 2- (dibutylamino) -8- (dipentylamino) -4 -Methyl,
4,5,6,7-Tetrachloro-3- [4- (dimethylamino) -2-methoxyphenyl] -3- (1-butyl-2-methyl-1H-indol-3-yl) -1 (3H ) -Isobenzofuranone,
4,5,6,7-Tetrachloro-3- [4- (diethylamino) -2-ethoxyphenyl] -3- (1-ethyl-2-methyl-1H-indol-3-yl) -1 (3H) -Isobenzofuranone,
4,5,6,7-Tetrachloro-3- [4- (diethylamino) -2-ethoxyphenyl] -3- (1-pentyl-2-methyl-1H-indol-3-yl) -1 (3H) -Isobenzofuranone,
4,5,6,7-Tetrachloro-3- [4- (diethylamino) -2-methylphenyl] -3- (1-ethyl-2-methyl-1H-indol-3-yl) -1 (3H) -Isobenzofuranone,
3 ', 6'-bis [phenyl (2-methylphenyl) amino] -spiro [isobenzofuran-1 (3H), 9'-[9H] xanthen] -3-one,
3 ′, 6′-bis [phenyl (3-methylphenyl) amino] -spiro [isobenzofuran-1 (3H), 9 ′-[9H] xanthen] -3-one,
3 ′, 6′-bis [phenyl (3-ethylphenyl) amino] -spiro [isobenzofuran-1 (3H), 9 ′-[9H] xanthen] -3-one,
2,6-bis (2'-ethyloxyphenyl) -4- (4'-dimethylaminophenyl) pyridine,
2,6-bis (2 ', 4'-diethyloxyphenyl) -4- (4'-dimethylaminophenyl) pyridine,
2- (4'-dimethylaminophenyl) -4-methoxy-quinazoline,
4,4 '-(ethylenedioxy) -bis [2- (4-diethylaminophenyl) quinazoline] and the like can be mentioned.
 なお、フルオラン類としては、キサンテン環を形成するフェニル基に置換基を有する前記化合物の他、キサンテン環を形成するフェニル基に置換基を有すると共にラクトン環を形成するフェニル基にも置換基(例えば、メチル基等のアルキル基、クロロ基等のハロゲン原子)を有する青色や黒色を呈する化合物であってもよい。 As the fluoranes, in addition to the compound having a substituent on the phenyl group forming a xanthene ring, a substituent on the phenyl group forming a lactone ring as well as a substituent on the phenyl group forming a xanthene ring (for example, , An alkyl group such as a methyl group, or a halogen atom such as a chloro group), and a compound exhibiting a blue color or a black color.
 電子受容性化合物としては、活性プロトンを有する化合物群、偽酸性化合物群(酸ではないが、組成物中で酸として作用して電子供与性呈色性有機化合物を発色させる化合物群)、電子空孔を有する化合物群等がある。活性プロトンを有する化合物を例示すると、フェノール性水酸基を有する化合物としては、モノフェノール類、ポリフェノール類があり、さらにその置換基としてアルキル基、アルケニル基、アリール基、アシル基、アルコキシカルボニル基、カルボキシ基およびそのエステルまたはアミド基、ハロゲン基等を有する化合物、およびビス型、トリス型フェノール等のフェノール-アルデヒド縮合樹脂等を挙げることができる。また、フェノール性水酸基を有する化合物の金属塩であってもよい。 Examples of the electron-accepting compound include compounds having an active proton, pseudo-acidic compounds (a compound which is not an acid but acts as an acid in the composition to develop an electron-donating color-forming organic compound), and an electron vacancy. There is a group of compounds having pores. Examples of the compound having an active proton include compounds having a phenolic hydroxyl group, such as monophenols and polyphenols, and further substituents thereof include an alkyl group, an alkenyl group, an aryl group, an acyl group, an alkoxycarbonyl group, and a carboxy group. Examples thereof include compounds having an ester or amide group thereof, a halogen group, and the like, and phenol-aldehyde condensation resins such as bis type and tris type phenols. Further, it may be a metal salt of a compound having a phenolic hydroxyl group.
 電子受容性化合物の具体例としては、フェノール、o-クレゾール、ターシャリーブチルカテコール、ノニルフェノール、n-オクチルフェノール、n-ドデシルフェノール、n-ステアリルフェノール、p-クロロフェノール、p-ブロモフェノール、o-フェニルフェノール、p-ヒドロキシ安息香酸n-ブチル、p-ヒドロキシ安息香酸n-オクチル、レゾルシン、没食子酸ドデシル、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルフィド、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、4-ヒドロキシフェニル-4-イソプロポキシフェニルスルホン、4-ベンジルオキシフェニル-4-ヒドロキシフェニルスルホン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)n-ブタン、1,1-ビス(4-ヒドロキシフェニル)n-ペンタン、1,1-ビス(4-ヒドロキシフェニル)n-ヘキサン、1,1-ビス(4-ヒドロキシフェニル)n-ヘプタン、1,1-ビス(4-ヒドロキシフェニル)n-オクタン、1,1-ビス(4-ヒドロキシフェニル)n-ノナン、1,1-ビス(4-ヒドロキシフェニル)n-デカン、1,1-ビス(4-ヒドロキシフェニル)n-ドデカン、1,1-ビス(4-ヒドロキシフェニル)-2-メチルプロパン、1,1-ビス(4-ヒドロキシフェニル)-3-メチルブタン、1,1-ビス(4-ヒドロキシフェニル)-3-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)-2,3-ジメチルペンタン、1,1-ビス(4-ヒドロキシフェニル)-2-エチルブタン、1,1-ビス(4-ヒドロキシフェニル)-2-エチルヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,7-ジメチルオクタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1-フェニル-1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)n-ブタン、2,2-ビス(4-ヒドロキシフェニル)n-ペンタン、2,2-ビス(4-ヒドロキシフェニル)n-ヘキサン、2,2-ビス(4-ヒドロキシフェニル)n-へプタン、2,2-ビス(4-ヒドロキシフェニル)n-オクタン、2,2-ビス(4-ヒドロキシフェニル)n-ノナン、2,2-ビス(4-ヒドロキシフェニル)n-デカン、2,2-ビス(4-ヒドロキシフェニル)n-ドデカン、2,2-ビス(4-ヒドロキシフェニル)エチルプロピオネート、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルヘキサン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,3-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼン、ビス(2-ヒドロキシフェニル)メタン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)ブタン、4-t-ブチル-2’,4’-ジヒドロキシベンゾフェノン等を挙げることができる。 Specific examples of the electron-accepting compound include phenol, o-cresol, tert-butylcatechol, nonylphenol, n-octylphenol, n-dodecylphenol, n-stearylphenol, p-chlorophenol, p-bromophenol, o-phenyl. Phenol, n-butyl p-hydroxybenzoate, n-octyl p-hydroxybenzoate, resorcin, dodecyl gallate, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfide, bis (3-allyl- 4-hydroxyphenyl) sulfone, 4-hydroxyphenyl-4-isopropoxyphenylsulfone, 4-benzyloxyphenyl-4-hydroxyphenylsulfone, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis 4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) n-butane, 1,1-bis (4-hydroxyphenyl) n-pentane, 1,1-bis (4-hydroxyphenyl) n- Hexane, 1,1-bis (4-hydroxyphenyl) n-heptane, 1,1-bis (4-hydroxyphenyl) n-octane, 1,1-bis (4-hydroxyphenyl) n-nonane, 1,1 -Bis (4-hydroxyphenyl) n-decane, 1,1-bis (4-hydroxyphenyl) n-dodecane, 1,1-bis (4-hydroxyphenyl) -2-methylpropane, 1,1-bis ( 4-hydroxyphenyl) -3-methylbutane, 1,1-bis (4-hydroxyphenyl) -3-methylpentane, 1,1-bis (4-hydroxyphenyl) -2 3-dimethylpentane, 1,1-bis (4-hydroxyphenyl) -2-ethylbutane, 1,1-bis (4-hydroxyphenyl) -2-ethylhexane, 1,1-bis (4-hydroxyphenyl)- 3,7-Dimethyloctane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 1-phenyl-1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) n-butane, 2,2-bis (4-hydroxyphenyl) n-pentane 2,2-bis (4-hydroxyphenyl) n-hexane, 2,2-bis (4-hydroxyphenyl) n-heptane, 2,2-bis ( 4-hydroxyphenyl) n-octane, 2,2-bis (4-hydroxyphenyl) n-nonane, 2,2-bis (4-hydroxyphenyl) n-decane, 2,2-bis (4-hydroxyphenyl) n-dodecane, 2,2-bis (4-hydroxyphenyl) ethyl propionate, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 2,2-bis (4-hydroxyphenyl) -4 -Methylhexane, 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 9,9-bis (4-hydroxy-3-methylphenyl) ) Fluorene, 1,3-bis [2- (4-hydroxyphenyl) -2-propyl] benzene, bis (2-hydroxyphenyl) methane, 1,1 1- tris (4-hydroxyphenyl) ethane, 2,2-bis (3-methyl-4-hydroxyphenyl) butane, 4-t-butyl-2 ', may be mentioned 4'-dihydroxy benzophenone.
 フェノール性水酸基を有する化合物が最も有効な熱変色特性を発現させることができるが、芳香族カルボン酸および炭素数2から5の脂肪族カルボン酸、カルボン酸金属塩、酸性リン酸エステルおよびそれらの金属塩、1,2,3-トリアゾールおよびその誘導体から選ばれる化合物等であってもよい。 A compound having a phenolic hydroxyl group can exhibit the most effective thermochromic property, but aromatic carboxylic acids and aliphatic carboxylic acids having 2 to 5 carbon atoms, carboxylic acid metal salts, acidic phosphoric acid esters and their metals. It may be a compound selected from salts, 1,2,3-triazole and its derivatives.
 電子供与性呈色性有機化合物および電子受容性化合物による呈色反応の生起温度を決める反応媒体について説明する。反応媒体としては、アルコール類、エステル類、ケトン類、エーテル類、酸アミド類等の化合物が挙げられる。これらの化合物を用いてマイクロカプセル化および二次加工に応用する場合は、低分子量の化合物では高熱処理を施すとカプセル外に蒸散するので、安定的にカプセル内に保持させるために炭素数10以上の化合物が好適に用いられる。 Explain the reaction medium that determines the temperature at which the color reaction by the electron-donating organic compound and the electron-accepting compound occurs. Examples of the reaction medium include compounds such as alcohols, esters, ketones, ethers and acid amides. When using these compounds for microencapsulation and secondary processing, low-molecular weight compounds evaporate out of the capsule when subjected to high heat treatment, so in order to stably retain them in the capsule, the number of carbon atoms is 10 or more. Compounds of are preferably used.
 アルコール類としては、炭素数10以上の脂肪族一価の飽和アルコールが有効である。具体的にはデシルアルコール、ウンデシルアルコール、ドデシルアルコール、トリデシルアルコール、テトラデシルアルコール、ペンタデシルアルコール、ヘキサデシルアルコール、ヘプタデシルアルコール、オクタデシルアルコール、エイコシルアルコール、ドコシルアルコール等が挙げられる。 As the alcohol, an aliphatic monovalent saturated alcohol having 10 or more carbon atoms is effective. Specific examples thereof include decyl alcohol, undecyl alcohol, dodecyl alcohol, tridecyl alcohol, tetradecyl alcohol, pentadecyl alcohol, hexadecyl alcohol, heptadecyl alcohol, octadecyl alcohol, eicosyl alcohol and docosyl alcohol.
 エステル類としては、炭素数10以上のエステル類が有効であり、脂肪族および脂環或いは芳香環を有する一価カルボン酸と、脂肪族および脂環或いは芳香環を有する一価アルコールの任意の組み合わせから得られるエステル類、脂肪族および脂環或いは芳香環を有する多価カルボン酸と、脂肪族および脂環或いは芳香環を有する一価アルコールの任意の組み合わせから得られるエステル類、脂肪族および脂環或いは芳香環を有する一価カルボン酸と、脂肪族および脂環或いは芳香環を有する多価アルコールの任意の組み合わせから得られるエステル類が挙げられる。具体的にはカプリル酸エチル、カプリル酸オクチル、カプリル酸ステアリル、カプリン酸ミリスチル、カプリン酸ドコシル、ラウリン酸2-エチルヘキシル、ラウリン酸n-デシル、ミリスチン酸3-メチルブチル、ミリスチン酸セチル、パルミチン酸イソプロピル、パルミチン酸ネオペンチル、パルミチン酸ノニル、パルミチン酸シクロヘキシル、ステアリン酸n-ブチル、ステアリン酸2-メチルブチル、ステアリン酸3,5,5-トリメチルヘキシル、ステアリン酸n-ウンデシル、ステアリン酸ペンタデシル、ステアリン酸ステアリル、ステアリン酸シクロヘキシルメチル、ベヘン酸イソプロピル、ベヘン酸ヘキシル、ベヘン酸ラウリル、ベヘン酸ベヘニル、安息香酸セチル、ptert-ブチル安息香酸ステアリル、フタル酸ジミリスチル、フタル酸ジステアリル、シュウ酸ジミリスチル、シュウ酸ジセチル、マロン酸ジセチル、コハク酸ジラウリル、グルタル酸ジラウリル、アジピン酸ジウンデシル、アゼライン酸ジラウリル、セバシン酸ジ-(n-ノニル)、1,18-オクタデシルメチレンジカルボン酸ジネオペンチル、エチレングリコールジミリステート、プロピレングリコールジラウレート、プロピレングリコールジステアレート、ヘキシレングリコールジパルミテート、1,5-ペンタンジオールジステアレート、1,2,6-ヘキサントリオールトリミリステート、1,4-シクロヘキサンジオールジデシル、1,4-シクロヘキサンジメタノールジミリステート、キシレングリコールジカプリネート、キシレングリコールジステアレート等が挙げられる。 As the esters, esters having 10 or more carbon atoms are effective, and any combination of a monovalent carboxylic acid having an aliphatic and alicyclic or aromatic ring and a monohydric alcohol having an aliphatic, alicyclic or aromatic ring. , An aliphatic, an alicyclic or aromatic ring-containing polyvalent carboxylic acid, and an ester, an aliphatic or an alicyclic ring obtained from any combination of an aliphatic, alicyclic or aromatic ring-containing monohydric alcohol Alternatively, there can be mentioned esters obtained from any combination of a monovalent carboxylic acid having an aromatic ring and a polyhydric alcohol having an aliphatic and alicyclic or aromatic ring. Specifically, ethyl caprylate, octyl caprylate, stearyl caprylate, myristyl caprate, docosyl caprate, 2-ethylhexyl laurate, n-decyl laurate, 3-methylbutyl myristate, cetyl myristate, isopropyl palmitate, Neopentyl palmitate, nonyl palmitate, cyclohexyl palmitate, n-butyl stearate, 2-methylbutyl stearate, 3,5,5-trimethylhexyl stearate, n-undecyl stearate, pentadecyl stearate, stearyl stearate, stearin Cyclohexyl methyl acid, isopropyl behenate, hexyl behenate, lauryl behenate, behenyl behenate, cetyl benzoate, ptert-butyl stearyl benzoate stearyl, diimiphthalate Stille, distearyl phthalate, dimyristyl oxalate, dicetyl oxalate, dicetyl malonate, dilauryl succinate, dilauryl glutarate, diundecyl adipate, dilauryl azelate, di- (n-nonyl) sebacate, 1,18-octadecyl Dyneopentyl methylene dicarboxylate, ethylene glycol dimyristate, propylene glycol dilaurate, propylene glycol distearate, hexylene glycol dipalmitate, 1,5-pentanediol distearate, 1,2,6-hexanetriol trimyristate, 1,4-cyclohexanediol didecyl, 1,4-cyclohexanedimethanol dimyristate, xylene glycol dicaprinate, xylene glycol distearate and the like can be mentioned.
 飽和脂肪酸と分枝脂肪族アルコールのエステル、および不飽和脂肪酸または分枝もしくは置換基を有する飽和脂肪酸と分岐状であるかまたは炭素数16以上の脂肪族アルコールのエステルから選ばれるエステル化合物も有効である。具体的には、酪酸2-エチルヘキシル、ベヘン酸2-エチルヘキシル、ミリスチン酸2-エチルヘキシル、カプリン酸2-エチルヘキシル、ラウリン酸3,5,5-トリメチルヘキシル、パルミチン酸3,5,5-トリメチルヘキシル、ステアリン酸3,5,5-トリメチルヘキシル、カプロン酸2-メチルブチル、カプリル酸2-メチルブチル、カプリン酸2-メチルブチル、パルミチン酸1-エチルプロピル、ステアリン酸1-エチルプロピル、ベヘン酸1-エチルプロピル、ラウリン酸1-エチルヘキシル、ミリスチン酸1-エチルヘキシル、パルミチン酸1-エチルヘキシル、カプロン酸2-メチルペンチル、カプリル酸2-メチルペンチル、カプリン酸2-メチルペンチル、ラウリン酸2-メチルペンチル、ステアリン酸2-メチルブチル、ステアリン酸2-メチルブチル、ステアリン酸3-メチルブチル、ステアリン酸1-メチルヘプチル、ベヘン酸2-メチルブチル、ベヘン酸3-メチルブチル、ステアリン酸1-メチルヘプチル、ベヘン酸1-メチルヘプチル、カプロン酸1-エチルペンチル、パルミチン酸1-エチルペンチル、ステアリン酸1-メチルプロピル、ステアリン酸1-メチルオクチル、ステアリン酸1-メチルヘキシル、ラウリン酸1,1-ジメチルプロピル、カプリン酸1-メチルペンチル、パルミチン酸2-メチルヘキシル、ステアリン酸2-メチルヘキシル、ベヘン酸2-メチルヘキシル、ラウリン酸3,7-ジメチルオクチル、ミリスチン酸3,7-ジメチルオクチル、パルミチン酸3,7-ジメチルオクチル、ステアリン酸3,7-ジメチルオクチル、ベヘン酸3,7-ジメチルオクチル、オレイン酸ステアリル、オレイン酸ベヘニル、リノール酸ステアリル、リノール酸ベヘニル、エルカ酸3,7-ジメチルオクチル、エルカ酸ステアリル、エルカ酸イソステアリル、イソステアリン酸セチル、イソステアリン酸ステアリル、12-ヒドロキシステアリン酸2-メチルペンチル、18-ブロモステアリン酸2-エチルヘキシル、2-ケトミリスチン酸イソステアリル、2-フルオロミリスチン酸2-エチルヘキシル、酪酸セチル、酪酸ステアリル、酪酸ベヘニル等が挙げられる。 Ester compounds selected from esters of saturated fatty acids and branched fatty alcohols and esters of unsaturated fatty acids or saturated fatty acids having a branched or substituted group and branched or having 16 or more carbon atoms are also effective. is there. Specifically, 2-ethylhexyl butyrate, 2-ethylhexyl behenate, 2-ethylhexyl myristate, 2-ethylhexyl caprate, 3,5,5-trimethylhexyl laurate, 3,5,5-trimethylhexyl palmitate, 3,5,5-Trimethylhexyl stearate, 2-methylbutyl caproate, 2-methylbutyl caprylate, 2-methylbutyl caprate, 1-ethylpropyl palmitate, 1-ethylpropyl stearate, 1-ethylpropyl behenate, 1-ethylhexyl laurate, 1-ethylhexyl myristate, 1-ethylhexyl palmitate, 2-methylpentyl caproate, 2-methylpentyl caprylate, 2-methylpentyl caprate, 2-methylpentyl laurate, 2-stearic acid stearate Met Butyl, 2-methylbutyl stearate, 3-methylbutyl stearate, 1-methylheptyl stearate, 2-methylbutyl behenate, 3-methylbutyl behenate, 1-methylheptyl stearate, 1-methylheptyl behenate, caproic acid 1 -Ethylpentyl, 1-ethylpentyl palmitate, 1-methylpropyl stearate, 1-methyloctyl stearate, 1-methylhexyl stearate, 1,1-dimethylpropyl laurate, 1-methylpentyl caprate, palmitic acid 2-methylhexyl, 2-methylhexyl stearate, 2-methylhexyl behenate, 3,7-dimethyloctyl laurate, 3,7-dimethyloctyl myristate, 3,7-dimethyloctyl palmitate, stearic acid 3, 7-Jime Ruoctyl, 3,7-dimethyloctyl behenate, stearyl oleate, behenyl oleate, stearyl linoleate, behenyl linoleate, 3,7-dimethyloctyl erucate, stearyl erucate, isostearyl erucate, cetyl isostearate, isostearine. Acid stearyl, 2-methylpentyl 12-hydroxystearate, 2-ethylhexyl 18-bromostearate, isostearyl 2-ketomyristate, 2-ethylhexyl 2-fluoromyristate, cetyl butyrate, stearyl butyrate, behenyl butyrate, etc. To be
 更に、色濃度-温度曲線に関して大きなヒステリシス特性を示して変色し、温度変化に依存して色彩記憶性を与えるためには、特公平4-17154号公報に記載された5℃以上50℃未満のΔT値(融点-曇点)を示すカルボン酸エステル化合物、例えば、分子中に置換芳香族環を含むカルボン酸エステル、無置換芳香族環を含むカルボン酸と炭素数10以上の脂肪族アルコールのエステル、分子中にシクロヘキシル基を含むカルボン酸エステル、炭素数6以上の脂肪酸と無置換芳香族アルコールまたはフェノールのエステル、炭素数8以上の脂肪酸と分岐脂肪族アルコールまたはエステル、ジカルボン酸と芳香族アルコールまたは分岐脂肪族アルコールのエステル、ケイ皮酸ジベンジル、ステアリン酸ヘプチル、アジピン酸ジデシル、アジピン酸ジラウリル、アジピン酸ジミリスチル、アジピン酸ジセチル、アジピン酸ジステアリル、トリラウリン、トリミリスチン、トリステアリン、ジミリスチン、ジステアリン等が挙げられる。 Furthermore, in order to exhibit a large hysteresis characteristic with respect to the color density-temperature curve and to change the color, and to impart the color memory property depending on the temperature change, the temperature of 5 ° C. or more and less than 50 ° C. described in JP-B-4-17154 is used. Carboxylic acid ester compound showing ΔT value (melting point-clouding point), for example, carboxylic acid ester containing substituted aromatic ring in molecule, ester of carboxylic acid containing unsubstituted aromatic ring and aliphatic alcohol having 10 or more carbon atoms A carboxylic acid ester having a cyclohexyl group in the molecule, a fatty acid having 6 or more carbon atoms and an unsubstituted aromatic alcohol or phenol, a fatty acid having 8 or more carbon atoms and a branched aliphatic alcohol or ester, a dicarboxylic acid and an aromatic alcohol, or Esters of branched aliphatic alcohols, dibenzyl cinnamate, heptyl stearate, didecyl adipate, Adipic acid dilauryl, dimyristyl adipate, dicetyl adipate, distearyl adipate, trilaurin, trimyristin, tristearin, dimyristin, distearate, and the like.
 炭素数9以上の奇数の脂肪族一価アルコールと炭素数が偶数の脂肪族カルボン酸から得られる脂肪酸エステル化合物、n-ペンチルアルコールまたはn-ヘプチルアルコールと炭素数10から16の偶数の脂肪族カルボン酸より得られる総炭素数17から23の脂肪酸エステル化合物も有効である。具体的には、酢酸n-ペンタデシル、酪酸n-トリデシル、酪酸n-ペンタデシル、カプロン酸n-ウンデシル、カプロン酸n-トリデシル、カプロン酸n-ペンタデシル、カプリル酸n-ノニル、カプリル酸n-ウンデシル、カプリル酸n-トリデシル、カプリル酸n-ペンタデシル、カプリン酸n-ヘプチル、カプリン酸n-ノニル、カプリン酸n-ウンデシル、カプリン酸n-トリデシル、カプリン酸n-ペンタデシル、ラウリン酸n-ペンチル、ラウリン酸n-ヘプチル、ラウリン酸n-ノニル、ラウリン酸n-ウンデシル、ラウリン酸n-トリデシル、ラウリン酸n-ペンタデシル、ミリスチン酸n-ペンチル、ミリスチン酸n-ヘプチル、ミリスチン酸n-ノニル、ミリスチン酸n-ウンデシル、ミリスチン酸n-トリデシル、ミリスチン酸n-ペンタデシル、パルミチン酸n-ペンチル、パルミチン酸n-ヘプチル、パルミチン酸n-ノニル、パルミチン酸n-ウンデシル、パルミチン酸n-トリデシル、パルミチン酸n-ペンタデシル、ステアリン酸n-ノニル、ステアリン酸n-ウンデシル、ステアリン酸n-トリデシル、ステアリン酸n-ペンタデシル、エイコサン酸n-ノニル、エイコサン酸n-ウンデルシ、エイコサン酸n-トリデシル、エイコサン酸n-ペンタデシル、ベヘニン酸n-ノニル、ベヘニン酸n-ウンデシル、ベヘニン酸n-トリデシル、ベヘニン酸n-ペンタデシル等が挙げられる。 Fatty acid ester compound obtained from odd-numbered aliphatic monohydric alcohol having 9 or more carbon atoms and aliphatic carboxylic acid having even-numbered carbons, n-pentyl alcohol or n-heptyl alcohol, and even aliphatic carboxylic acid having 10 to 16 carbon atoms A fatty acid ester compound having a total carbon number of 17 to 23 obtained from an acid is also effective. Specifically, n-pentadecyl acetate, n-tridecyl butyrate, n-pentadecyl butyrate, n-undecyl caproate, n-tridecyl caproate, n-pentadecyl caproate, n-nonyl caprylate, n-undecyl caprylate, N-Tridecyl caprylate, n-pentadecyl caprylate, n-heptyl caprate, n-nonyl caprate, n-undecyl caprate, n-tridecyl caprate, n-pentadecyl caprate, n-pentyl laurate, lauric acid n-heptyl, n-nonyl laurate, n-undecyl laurate, n-tridecyl laurate, n-pentadecyl laurate, n-pentyl myristate, n-heptyl myristate, n-nonyl myristate, n-myristate Undecyl, n-tridecyl myristate, N-Pentadecyl lithitate, n-pentyl palmitate, n-heptyl palmitate, n-nonyl palmitate, n-undecyl palmitate, n-tridecyl palmitate, n-pentadecyl palmitate, n-nonyl stearate, stearic acid n-Undecyl, n-tridecyl stearate, n-pentadecyl stearate, n-nonyl eicosanate, n-underci eicosanate, n-tridecyl eicosanate, n-pentadecyl eicosanate, n-nonyl behenate, n-behenate Examples include undecyl, n-tridecyl behenate, and n-pentadecyl behenate.
 ケトン類としては、総炭素数が10以上の脂肪族ケトン類が有効である。具体的には、2-デカノン、3-デカノン、4-デカノン、2-ウンデカノン、3-ウンデカノン、4-ウンデカノン、5-ウンデカノン、2-ドデカノン、3-ドデカノン、4-ドデカノン、5-ドデカノン、2-トリデカノン、3-トリデカノン、2-テトラデカノン、2-ペンタデカノン、8-ペンタデカノン、2-ヘキサデカノン、3-ヘキサデカノン、9-ヘプタデカノン、2-ペンタデカノン、2-オクタデカノン、2-ノナデカノン、10-ノナデカノン、2-エイコサノン、11-エイコサノン、2-ヘンエイコサノン、2-ドコサノン、ラウロン、ステアロン等が挙げられる。 As ketones, aliphatic ketones having a total carbon number of 10 or more are effective. Specifically, 2-decanone, 3-decanone, 4-decanone, 2-undecanone, 3-undecanone, 4-undecanone, 5-undecanone, 2-dodecanone, 3-dodecanone, 4-dodecanone, 5-dodecanone, 2 -Tridecanone, 3-Tridecanone, 2-Tetradecanone, 2-Pentadecanone, 8-Pentadecanone, 2-Hexadecanone, 3-Hexadecanone, 9-Heptadecanone, 2-Pentadecanone, 2-Octadecanone, 2-Nonadecanone, 10-Nonadecanone, 2-Eicosanone , 11-eicosanone, 2-heneicosanone, 2-docosanone, lauron, stearone and the like.
 ケトン類として更には、総炭素数が12から24のアリールアルキルケトン類、例えば、n-オクタデカノフェノン、n-ヘプタデカノフェノン、n-ヘキサデカノフェノン、n-ペンタデカノフェノン、n-テトラデカノフェノン、4-n-ドデカアセトフェノン、n-トリデカノフェノン、4-n-ウンデカノアセトフェノン、n-ラウロフェノン、4-n-デカノアセトフェノン、n-ウンデカノフェノン、4-n-ノニルアセトフェノン、n-デカノフェノン、4-n-オクチルアセトフェノン、n-ノナノフェノン、4-n-ヘプチルアセトフェノン、n-オクタノフェノン、4-n-ヘキシルアセトフェノン、4-n-シクロヘキシルアセトフェノン、4-tert-ブチルプロピオフェノン、n-ヘプタフェノン、4-n-ペンチルアセトフェノン、シクロヘキシルフェニルケトン、ベンジル-n-ブチルケトン、4-n-ブチルアセトフェノン、n-ヘキサノフェノン、4-イソブチルアセトフェノン、1-アセトナフトン、2-アセトナフトン、シクロペンチルフェニルケトン等が挙げられる。 Further, as the ketones, arylalkyl ketones having a total carbon number of 12 to 24, for example, n-octadecanophenone, n-heptadecanophenone, n-hexadecanophenone, n-pentadecanophenone, n -Tetradecanophenone, 4-n-dodecaacetophenone, n-tridecanophenone, 4-n-undecanoacetophenone, n-laurophenone, 4-n-decanoacetophenone, n-undecanophenone, 4-n- Nonylacetophenone, n-decanophenone, 4-n-octylacetophenone, n-nonanophenone, 4-n-heptylacetophenone, n-octanophenone, 4-n-hexylacetophenone, 4-n-cyclohexylacetophenone, 4-tert-butyl Propiophenone, n-heptaphenone, 4-n- Emissions chill acetophenone, phenyl ketone, benzyl -n- butyl ketone, 4-n-butyl acetophenone, n- hexanophenone, 4-isobutyl acetophenone, 1-acetonaphthone, 2-acetonaphthone, cyclopentyl phenyl ketone.
 エーテル類としては、総炭素数10以上の脂肪族エーテル類が有効である。具体的には、ジペンチルエーテル、ジヘキシルエーテル、ジヘプチルエーテル、ジオクチルエーテル、ジノニルエーテル、ジデシルエーテル、ジウンデシルエーテル、ジドデシルエーテル、ジトリデシルエーテル、ジテトラデシルエーテル、ジペンタデシルエーテル、ジヘキサデシルエーテル、ジオクタデシルエーテル、デカンジオールジメチルエーテル、ウンデカンジオールジメチルエーテル、ドデカンジオールジメチルエーテル、トリデカンジオールジメチルエーテル、デカンジオールジエチルエーテル、ウンデカンジオールジエチルエーテル等が挙げられる。 As the ethers, aliphatic ethers having a total carbon number of 10 or more are effective. Specifically, dipentyl ether, dihexyl ether, diheptyl ether, dioctyl ether, dinonyl ether, didecyl ether, diundecyl ether, didodecyl ether, ditridecyl ether, ditetradecyl ether, dipentadecyl ether, dihexadecyl ether. Examples thereof include decyl ether, dioctadecyl ether, decanediol dimethyl ether, undecanediol dimethyl ether, dodecanediol dimethyl ether, tridecanediol dimethyl ether, decanediol diethyl ether, and undecanediol diethyl ether.
 酸アミド類としては、アセトアミド、プロピオン酸アミド、酪酸アミド、カプロン酸アミド、カプリル酸アミド、カプリン酸アミド、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘニン酸アミド、オレイン酸アミド、エルカ酸アミド、ベンズアミド、カプロン酸アニリド、カプリル酸アニリド、カプリン酸アニリド、ラウリン酸アニリド、ミリスチン酸アニリド、パルミチン酸アニリド、ステアリン酸アニリド、ベヘニン酸アニリド、オレイン酸アニリド、エルカ酸アニリド、カプロン酸N-メチルアミド、カプリル酸N-メチルアミド、カプリン酸N-メチルアミド、ラウリン酸N-メチルアミド、ミリスチン酸N-メチルアミド、パルミチン酸N-メチルアミド、ステアリン酸N-メチルアミド、ベヘニン酸N-メチルアミド、オレイン酸N-メチルアミド、エルカ酸N-メチルアミド、ラウリン酸N-エチルアミド、ミリスチン酸N-エチルアミド、パルミチン酸N-エチルアミド、ステアリン酸N-エチルアミド、オレイン酸N-エチルアミド、ラウリン酸N-ブチルアミド、ミリスチン酸N-ブチルアミド、パルミチン酸N-ブチルアミド、ステアリン酸N-ブチルアミド、オレイン酸N-ブチルアミド、ラウリン酸N-オクチルアミド、ミリスチン酸N-オクチルアミド、パルミチン酸N-オクチルアミド、ステアリン酸N-オクチルアミド、オレイン酸N-オクチルアミド、ラウリン酸N-ドデシルアミド、ミリスチン酸N-ドデシルアミド、パルミチン酸N-ドデシルアミド、ステアリン酸N-ドデシルアミド、オレイン酸N-ドデシルアミド、ジラウリン酸アミド、ジミリスチン酸アミド、ジパルミチン酸アミド、ジステアリン酸アミド、ジオレイン酸アミド、トリラウリン酸アミド、トリミリスチン酸アミド、トリパルミチン酸アミド、トリステアリン酸アミド、トリオレイン酸アミド、コハク酸アミド、アジピン酸アミド、グルタル酸アミド、マロン酸アミド、アゼライン酸アミド、マレイン酸アミド、コハク酸N-メチルアミド、アジピン酸N-メチルアミド、グルタル酸N-メチルアミド、マロン酸N-メチルアミド、アゼライン酸N-メチルアミド、コハク酸N-エチルアミド、アジピン酸N-エチルアミド、グルタル酸N-エチルアミド、マロン酸N-エチルアミド、アゼライン酸N-エチルアミド、コハク酸N-ブチルアミド、アジピン酸N-ブチルアミド、グルタル酸N-ブチルアミド、マロン酸N-ブチルアミド、アジピン酸N-オクチルアミド、アジピン酸N-ドデシルアミド等が挙げられる。 Examples of acid amides include acetamide, propionic acid amide, butyric acid amide, caproic acid amide, caprylic acid amide, capric acid amide, lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, and oleic acid amide. , Erucamide, benzamide, caproic acid anilide, caprylic acid anilide, capric acid anilide, lauric acid anilide, myristic acid anilide, palmitic acid anilide, stearic acid anilide, behenic acid anilide, oleic acid anilide, erucic acid anilide, caproic acid N -Methylamide, caprylic acid N-methylamide, capric acid N-methylamide, lauric acid N-methylamide, myristic acid N-methylamide, palmitic acid N-methylamide, stearic acid N-methylamide De, behenic acid N-methylamide, oleic acid N-methylamide, erucic acid N-methylamide, lauric acid N-ethylamide, myristic acid N-ethylamide, palmitic acid N-ethylamide, stearic acid N-ethylamide, oleic acid N-ethylamide, Lauric acid N-butylamide, myristic acid N-butylamide, palmitic acid N-butylamide, stearic acid N-butylamide, oleic acid N-butylamide, lauric acid N-octylamide, myristic acid N-octylamide, palmitic acid N-octylamide , Stearic acid N-octylamide, oleic acid N-octylamide, lauric acid N-dodecylamide, myristic acid N-dodecylamide, palmitic acid N-dodecylamide, stearic acid N-dodecylamide, oleic acid Acid N-dodecyl amide, dilauric acid amide, dimyristic acid amide, dipalmitic acid amide, distearic acid amide, dioleic acid amide, trilauric acid amide, trimyristic acid amide, tripalmitic acid amide, tristearic acid amide, triolein Acid amide, succinic acid amide, adipic acid amide, glutaric acid amide, malonic acid amide, azelaic acid amide, maleic acid amide, succinic acid N-methylamide, adipic acid N-methylamide, glutaric acid N-methylamide, malonic acid N-methylamide , Azelaic acid N-methylamide, succinic acid N-ethylamide, adipic acid N-ethylamide, glutaric acid N-ethylamide, malonic acid N-ethylamide, azelaic acid N-ethylamide, succinic acid N-butylamide, adipic acid N -Butylamide, glutaric acid N-butylamide, malonic acid N-butylamide, adipic acid N-octylamide, adipic acid N-dodecylamide and the like.
 また、反応媒体として、下記式(1)で示される化合物を用いることもできる。 Also, a compound represented by the following formula (1) can be used as a reaction medium.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、Rは水素原子またはメチル基を示し、mは0から2の整数を示し、X、Xのいずれか一方は-(CH)nOCORまたは(CH)nCOOR、他方は水素原子を示し、nは0から2の整数を示し、Rは炭素数4以上のアルキル基またはアルケニル基を示し、YおよびYは水素原子、炭素数1から4のアルキル基、メトキシ基またはハロゲン原子を示し、rおよびpは1から3の整数を示す。 In the formula, R 1 represents a hydrogen atom or a methyl group, m represents an integer of 0 to 2, and one of X 1 and X 2 is — (CH 2 ) nOCOR 2 or (CH 2 ) nCOOR 2 , the other. Represents a hydrogen atom, n represents an integer of 0 to 2, R 2 represents an alkyl group or an alkenyl group having 4 or more carbon atoms, Y 1 and Y 2 represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, A methoxy group or a halogen atom is shown, and r and p are integers from 1 to 3.
 前記式(1)で示される化合物のうち、Rが水素原子の場合、より広いヒステリシス幅を有する可逆熱変色性組成物が得られるため好適であり、更にRが水素原子であり、且つ、mが0の場合がより好適である。なお、式(1)で示される化合物のうち、より好ましくは下記式(2)で示される化合物が用いられる。 Of the compounds represented by the formula (1), when R 1 is a hydrogen atom, a reversible thermochromic composition having a wider hysteresis width can be obtained, which is preferable, and R 1 is a hydrogen atom, and , M is more preferably 0. Among the compounds represented by formula (1), the compound represented by the following formula (2) is more preferably used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2)中のRは炭素数8以上のアルキル基またはアルケニル基を示すが、好ましくは炭素数10から24のアルキル基、更に好ましくは炭素数12から22のアルキル基である。 R in the formula (2) represents an alkyl group or an alkenyl group having 8 or more carbon atoms, preferably an alkyl group having 10 to 24 carbon atoms, and more preferably an alkyl group having 12 to 22 carbon atoms.
 式(2)で示される化合物として具体的には、オクタン酸-4-ベンジルオキシフェニルエチル、ノナン酸-4-ベンジルオキシフェニルエチル、デカン酸-4-ベンジルオキシフェニルエチル、ウンデカン酸-4-ベンジルオキシフェニルエチル、ドデカン酸-4-ベンジルオキシフェニルエチル、トリデカン酸-4-ベンジルオキシフェニルエチル、テトラデカン酸-4-ベンジルオキシフェニルエチル、ペンタデカン酸-4-ベンジルオキシフェニルエチル、ヘキサデカン酸-4-ベンジルオキシフェニルエチル、ヘプタデカン酸-4-ベンジルオキシフェニルエチル、オクタデカン酸-4-ベンジルオキシフェニルエチルを例示できる。 Specific examples of the compound represented by the formula (2) include 4-benzyloxyphenylethyl octanoate, 4-benzyloxyphenylethyl nonanoate, 4-benzyloxyphenylethyl decanoate, and 4-benzyl undecanoate. Oxyphenylethyl, 4-benzyloxyphenylethyl dodecanoate, 4-benzyloxyphenylethyl tridecanoate, 4-benzyloxyphenylethyl tetradecanoate, 4-benzyloxyphenylethyl pentadecanoate, 4-benzylhexadecanoate Examples thereof include oxyphenylethyl, 4-benzyloxyphenylethyl heptadecanoate, and 4-benzyloxyphenylethyl octadecanoate.
 更に、反応媒体として、下記式(3)で示される化合物を用いることもできる。 Further, a compound represented by the following formula (3) can be used as a reaction medium.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(3)中、Rは炭素数8以上のアルキル基またはアルケニル基を示し、mおよびnはそれぞれ1から3の整数を示し、XおよびYはそれぞれ水素原子、炭素数1から4のアルキル基、炭素数1から4のアルコキシ基またはハロゲン原子を示す。 In formula (3), R represents an alkyl group or an alkenyl group having 8 or more carbon atoms, m and n each represent an integer of 1 to 3, X and Y each represent a hydrogen atom, and an alkyl group having 1 to 4 carbon atoms. , An alkoxy group having 1 to 4 carbon atoms or a halogen atom.
 式(3)で示される化合物として具体的には、オクタン酸1,1-ジフェニルメチル、ノナン酸1,1-ジフェニルメチル、デカン酸1,1-ジフェニルメチル、ウンデカン酸1,1-ジフェニルメチル、ドデカン酸1,1-ジフェニルメチル、トリデカン酸1,1-ジフェニルメチル、テトラデカン酸1,1-ジフェニルメチル、ペンタデカン酸1,1-ジフェニルメチル、ヘキサデカン酸1,1-ジフェニルメチル、ヘプタデカン酸1,1-ジフェニルメチル、オクタデカン酸1,1-ジフェニルメチルを例示できる。 Specific examples of the compound represented by the formula (3) include 1,1-diphenylmethyl octanoate, 1,1-diphenylmethyl nonanoate, 1,1-diphenylmethyl decanoate, 1,1-diphenylmethyl undecanoate, 1,1-Diphenylmethyl dodecanoate, 1,1-Diphenylmethyl tridecanoate, 1,1-Diphenylmethyl tetradecanoate, 1,1-Diphenylmethyl pentadecanoate, 1,1-Diphenylmethyl hexadecanoate, Heptadecanoic acid 1,1 Examples thereof include diphenylmethyl and 1,1-diphenylmethyl octadecanoate.
 更に、反応媒体として下記式(4)で示される化合物を用いることもできる。 Furthermore, a compound represented by the following formula (4) can be used as a reaction medium.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(4)中、Xは水素原子、炭素数1から4のアルキル基、メトキシ基またはハロゲン原子のいずれかを示し、mは1から3の整数を示し、nは1から20の整数を示す。 In formula (4), X represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a methoxy group, or a halogen atom, m represents an integer of 1 to 3, and n represents an integer of 1 to 20. .
 式(4)で示される化合物としては、マロン酸と2-〔4-(4-クロロベンジルオキシ)フェニル)〕エタノールとのジエステル、こはく酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、こはく酸と2-〔4-(3-メチルベンジルオキシ)フェニル)〕エタノールとのジエステル、グルタル酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、グルタル酸と2-〔4-(4-クロロベンジルオキシ)フェニル)〕エタノールとのジエステル、アジピン酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、ピメリン酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、スベリン酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、スベリン酸と2-〔4-(3-メチルベンジルオキシ)フェニル)〕エタノールとのジエステル、スベリン酸と2-〔4-(4-クロロベンジルオキシ)フェニル)〕エタノールとのジエステル、スベリン酸と2-〔4-(2,4-ジクロロベンジルオキシ)フェニル)〕エタノールとのジエステル、アゼライン酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、セバシン酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、1,10-デカンジカルボン酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、1,18-オクタデカンジカルボン酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、1,18-オクタデカンジカルボン酸と2-〔4-(2-メチルベンジルオキシ)フェニル)〕エタノールとのジエステルを例示できる。 The compound represented by the formula (4) includes a diester of malonic acid and 2- [4- (4-chlorobenzyloxy) phenyl)] ethanol, and a diester of succinic acid and 2- (4-benzyloxyphenyl) ethanol. , A diester of succinic acid and 2- [4- (3-methylbenzyloxy) phenyl)] ethanol, a diester of glutaric acid and 2- (4-benzyloxyphenyl) ethanol, glutaric acid and 2- [4- ( 4-chlorobenzyloxy) phenyl)] ethanol diester, adipic acid 2- (4-benzyloxyphenyl) ethanol diester, pimelic acid 2- (4-benzyloxyphenyl) ethanol diester, suberic acid Of 2- (4-benzyloxyphenyl) ethanol with suberic acid and 2- 4- (3-methylbenzyloxy) phenyl)] ethanol diester, suberic acid and 2- [4- (4-chlorobenzyloxy) phenyl)] ethanol diester, suberic acid and 2- [4- (2 , 4-Dichlorobenzyloxy) phenyl)] ethanol diester, azelaic acid 2- (4-benzyloxyphenyl) ethanol diester, sebacic acid 2- (4-benzyloxyphenyl) ethanol diester, 1 , 10-decanedicarboxylic acid diester of 2- (4-benzyloxyphenyl) ethanol, 1,18-octadecanedicarboxylic acid diester of 2- (4-benzyloxyphenyl) ethanol, 1,18-octadecanedicarboxylic acid And 2- [4- (2-methylbenzyloxy) phenyl)] It can be exemplified diester of Nord.
 更に、反応媒体として下記式(5)で示される化合物を用いることもできる。 Furthermore, a compound represented by the following formula (5) can be used as a reaction medium.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(5)中、Rは炭素数1から21のアルキル基またはアルケニル基を示し、nは1から3の整数を示す。 In the formula (5), R represents an alkyl group or an alkenyl group having 1 to 21 carbon atoms, and n represents an integer of 1 to 3.
 式(5)で示される化合物としては、1,3-ビス(2-ヒドロキシエトキシ)ベンゼンとカプリン酸とのジエステル、1,3-ビス(2-ヒドロキシエトキシ)ベンゼンとウンデカン酸とのジエステル、1,3-ビス(2-ヒドロキシエトキシ)ベンゼンとラウリン酸とのジエステル、1,3-ビス(2-ヒドロキシエトキシ)ベンゼンとミリスチン酸とのジエステル、1,4-ビス(ヒドロキシメトキシ)ベンゼンと酪酸とのジエステル、1,4-ビス(ヒドロキシメトキシ)ベンゼンとイソ吉草酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンと酢酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンとプロピオン酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンと吉草酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンとカプロン酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンとカプリル酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンとカプリン酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンとラウリン酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンとミリスチン酸とのジエステルを例示できる。 Examples of the compound represented by the formula (5) include diesters of 1,3-bis (2-hydroxyethoxy) benzene and capric acid, diesters of 1,3-bis (2-hydroxyethoxy) benzene and undecanoic acid, 1 , 3-bis (2-hydroxyethoxy) benzene with lauric acid, 1,3-bis (2-hydroxyethoxy) benzene with myristic acid, 1,4-bis (hydroxymethoxy) benzene with butyric acid Diester of 1,4-bis (hydroxymethoxy) benzene and isovaleric acid, diester of 1,4-bis (2-hydroxyethoxy) benzene and acetic acid, 1,4-bis (2-hydroxyethoxy) Diester of benzene and propionic acid, 1,4-bis (2-hydroxyethoxy) benzene and valer , A diester of 1,4-bis (2-hydroxyethoxy) benzene and caproic acid, a diester of 1,4-bis (2-hydroxyethoxy) benzene and caprylic acid, 1,4-bis (2- Examples include diesters of hydroxyethoxy) benzene and capric acid, diesters of 1,4-bis (2-hydroxyethoxy) benzene and lauric acid, and diesters of 1,4-bis (2-hydroxyethoxy) benzene and myristic acid. it can.
 更に、反応媒体として下記式(6)で示される化合物を用いることもできる。 Furthermore, a compound represented by the following formula (6) can be used as a reaction medium.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(6)中、Xは水素原子、炭素数1から4のアルキル基、炭素数1から4のアルコキシ基またはハロゲン原子のいずれかを示し、mは1から3の整数を示し、nは1から20の整数を示す。 In formula (6), X represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, m represents an integer of 1 to 3, and n represents 1 To an integer of 20.
 式(6)で示される化合物としては、こはく酸と2-フェノキシエタノールとのジエステル、スベリン酸と2-フェノキシエタノールとのジエステル、セバシン酸と2-フェノキシエタノールとのジエステル、1,10-デカンジカルボン酸と2-フェノキシエタノールとのジエステル、1,18-オクタデカンジカルボン酸と2-フェノキシエタノールとのジエステルを例示できる。 Examples of the compound represented by the formula (6) include a diester of succinic acid and 2-phenoxyethanol, a diester of suberic acid and 2-phenoxyethanol, a diester of sebacic acid and 2-phenoxyethanol, 1,10-decanedicarboxylic acid and 2 Examples include a diester of phenoxyethanol and a diester of 1,18-octadecanedicarboxylic acid and 2-phenoxyethanol.
 更に、反応媒体として下記式(7)で示される化合物を用いることもできる。 Furthermore, a compound represented by the following formula (7) can be used as a reaction medium.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(7)中、Rは炭素数4から22のアルキル基、シクロアルキルアルキル基、シクロアルキル基または炭素数4から22のアルケニル基のいずれかを示し、Xは水素原子、炭素数1から4のアルキル基、炭素数1から4のアルコキシ基またはハロゲン原子のいずれかを示し、nは0または1を示す。 In formula (7), R represents an alkyl group having 4 to 22 carbon atoms, a cycloalkylalkyl group, a cycloalkyl group or an alkenyl group having 4 to 22 carbon atoms, and X represents a hydrogen atom or 1 to 4 carbon atoms. Is an alkyl group, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, and n is 0 or 1.
 式(7)で示される化合物としては、4-フェニル安息香酸デシル、4-フェニル安息香酸ラウリル、4-フェニル安息香酸ミリスチル、4-フェニル安息香酸シクロヘキシルエチル、4-ビフェニル酢酸オクチル、4-ビフェニル酢酸ノニル、4-ビフェニル酢酸デシル、4-ビフェニル酢酸ラウリル、4-ビフェニル酢酸ミリスチル、4-ビフェニル酢酸トリデシル、4-ビフェニル酢酸ペンタデシル、4-ビフェニル酢酸セチル、4-ビフェニル酢酸シクロペンチル、4-ビフェニル酢酸シクロヘキシルメチル、4-ビフェニル酢酸ヘキシル、4-ビフェニル酢酸シクロヘキシルメチルを例示できる。 Examples of the compound represented by the formula (7) include decyl 4-phenylbenzoate, lauryl 4-phenylbenzoate, myristyl 4-phenylbenzoate, cyclohexylethyl 4-phenylbenzoate, octyl 4-biphenylacetate, and 4-biphenylacetic acid. Nonyl, decyl 4-biphenylacetate, lauryl 4-biphenylacetate, myristyl 4-biphenylacetate, tridecyl 4-biphenylacetate, pentadecyl 4-biphenylacetate, cetyl 4-biphenylacetate, cyclopentyl 4-biphenylacetate, cyclohexylmethyl 4-biphenylacetate Examples include hexyl 4-biphenylacetate and cyclohexylmethyl 4-biphenylacetate.
 更に、反応媒体として下記式(8)で示される化合物を用いることもできる。 Furthermore, a compound represented by the following formula (8) can be used as a reaction medium.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(8)中、Rは炭素数3から18のアルキル基または炭素数3から18の脂肪族アシル基のいずれかを示し、Xは水素原子、炭素数1から3のアルキル基、炭素数1若しくは2のアルコキシ基、またはハロゲン原子のいずれかを示し、Yは水素原子またはメチル基のいずれかを示し、Zは水素原子、炭素数1から4のアルキル基、炭素数1若しくは2のアルコキシ基、またはハロゲン原子のいずれかを示す。 In formula (8), R represents either an alkyl group having 3 to 18 carbon atoms or an aliphatic acyl group having 3 to 18 carbon atoms, and X is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or 1 carbon atom. Or 2 is an alkoxy group or a halogen atom, Y is a hydrogen atom or a methyl group, Z is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 or 2 carbon atoms. , Or a halogen atom.
 式(8)で示される化合物としては、4-ブトキシ安息香酸フェノキシエチル、4-ペンチルオキシ安息香酸フェノキシエチル、4-テトラデシルオキシ安息香酸フェノキシエチル、4-ヒドロキシ安息香酸フェノキシエチルとドデカン酸とのエステル、バニリン酸フェノキシエチルのドデシルエーテルを例示できる。 Examples of the compound represented by the formula (8) include phenoxyethyl 4-butoxybenzoate, phenoxyethyl 4-pentyloxybenzoate, phenoxyethyl 4-tetradecyloxybenzoate, phenoxyethyl 4-hydroxybenzoate and dodecanoic acid. Examples thereof include esters and phenoxyethyl vanillic acid dodecyl ether.
 更に、反応媒体として下記式(9)で示される化合物を用いることもできる。 Furthermore, a compound represented by the following formula (9) can be used as a reaction medium.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(9)中、Rは炭素数4から22のアルキル基、炭素数4から22のアルケニル基、シクロアルキルアルキル基、またはシクロアルキル基のいずれかを示し、Xは水素原子、アルキル基、アルコキシ基、またはハロゲン原子のいずれかを示し、Yは水素原子、アルキル基、アルコキシ基、またはハロゲン原子のいずれかを示し、nは0または1を示す。 In formula (9), R represents an alkyl group having 4 to 22 carbon atoms, an alkenyl group having 4 to 22 carbon atoms, a cycloalkylalkyl group, or a cycloalkyl group, and X represents a hydrogen atom, an alkyl group, or an alkoxy. A group or a halogen atom, Y represents a hydrogen atom, an alkyl group, an alkoxy group, or a halogen atom, and n represents 0 or 1.
 式(9)で示される化合物としては、p-ヒドロキシ安息香酸オクチルの安息香酸エステル、p-ヒドロキシ安息香酸デシルの安息香酸エステル、p-ヒドロキシ安息香酸ヘプチルのp-メトキシ安息香酸エステル、p-ヒドロキシ安息香酸ドデシルのo-メトキシ安息香酸エステル、p-ヒドロキシ安息香酸シクロヘキシルメチルの安息香酸エステルを例示できる。 Examples of the compound represented by the formula (9) include benzoic acid ester of octyl p-hydroxybenzoate, benzoic acid ester of decyl p-hydroxybenzoate, p-methoxybenzoic acid ester of heptyl p-hydroxybenzoate and p-hydroxyl. Examples thereof include o-methoxybenzoic acid ester of dodecyl benzoate and benzoic acid ester of cyclohexylmethyl p-hydroxybenzoate.
 更に、反応媒体として下記式(10)で示される化合物を用いることもできる。 Further, a compound represented by the following formula (10) can be used as a reaction medium.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(10)中、Rは炭素数3から18のアルキル基、炭素数6から11のシクロアルキルアルキル基、炭素数5から7のシクロアルキル基、または炭素数3から18のアルケニル基のいずれかを示し、Xは水素原子、炭素数1から4のアルキル基、炭素数1から3のアルコキシ基、またはハロゲン原子のいずれかを示し、Yは水素原子、炭素数1から4のアルキル基、メトキシ基、エトキシ基、またはハロゲン原子のいずれかを示す。 In formula (10), R is either an alkyl group having 3 to 18 carbon atoms, a cycloalkylalkyl group having 6 to 11 carbon atoms, a cycloalkyl group having 5 to 7 carbon atoms, or an alkenyl group having 3 to 18 carbon atoms. X is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a halogen atom, and Y is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or methoxy. Represents a group, an ethoxy group, or a halogen atom.
 式(10)で示される化合物としては、p-ヒドロキシ安息香酸ノニルのフェノキシエチルエーテル、p-ヒドロキシ安息香酸デシルのフェノキシエチルエーテル、p-ヒドロキシ安息香酸ウンデシルのフェノキシエチルエーテル、バニリン酸ドデシルのフェノキシエチルエーテルを例示できる。 Examples of the compound represented by the formula (10) include phenoxyethyl ether of nonyl p-hydroxybenzoate, phenoxyethyl ether of decyl p-hydroxybenzoate, phenoxyethyl ether of undecyl p-hydroxybenzoate, and phenoxyethyl dodecyl vanillate. An example is ether.
 更に、反応媒体として下記式(11)で示される化合物を用いることもできる。 Furthermore, a compound represented by the following formula (11) can be used as a reaction medium.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(11)中、Rは炭素数3から8のシクロアルキル基または炭素数4から9のシクロアルキルアルキル基を示し、nは1から3の整数を示す。 In the formula (11), R represents a cycloalkyl group having 3 to 8 carbon atoms or a cycloalkylalkyl group having 4 to 9 carbon atoms, and n represents an integer of 1 to 3.
 式(11)で示される化合物としては、1,3-ビス(2-ヒドロキシエトキシ)ベンゼンとシクロヘキサンカルボン酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンとシクロヘキサンプロピオン酸とのジエステル、1,3-ビス(2-ヒドロキシエトキシ)ベンゼンとシクロヘキサンプロピオン酸とのジエステルを例示できる。 Examples of the compound represented by the formula (11) include diesters of 1,3-bis (2-hydroxyethoxy) benzene and cyclohexanecarboxylic acid, and diesters of 1,4-bis (2-hydroxyethoxy) benzene and cyclohexanepropionic acid. An example is a diester of 1,3-bis (2-hydroxyethoxy) benzene and cyclohexanepropionic acid.
 更に、反応媒体として下記式(12)で示される化合物を用いることもできる。 Furthermore, a compound represented by the following formula (12) can be used as a reaction medium.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(12)中、Rは炭素数3から17のアルキル基、炭素数3から8のシクロアルキル基、または炭素数5から8のシクロアルキルアルキル基を示し、Xは水素原子、炭素数1から5のアルキル基、メトキシ基、エトキシ基、またはハロゲン原子を示し、nは1から3の整数を示す。 In formula (12), R represents an alkyl group having 3 to 17 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or a cycloalkylalkyl group having 5 to 8 carbon atoms, and X represents a hydrogen atom or 1 to 1 carbon atoms. 5 represents an alkyl group, a methoxy group, an ethoxy group, or a halogen atom, and n represents an integer of 1 to 3.
 式(12)で示される化合物としては、4-フェニルフェノールエチレングリコールエーテルとシクロヘキサンカルボン酸とのジエステル、4-フェニルフェノールジエチレングリコールエーテルとラウリン酸とのジエステル、4-フェニルフェノールトリエチレングリコールエーテルとシクロヘキサンカルボン酸とのジエステル、4-フェニルフェノールエチレングリコールエーテルとオクタン酸とのジエステル、4-フェニルフェノールエチレングリコールエーテルとノナン酸とのジエステル、4-フェニルフェノールエチレングリコールエーテルとデカン酸とのジエステル、4-フェニルフェノールエチレングリコールエーテルとミリスチン酸とのジエステルを例示できる。 Examples of the compound represented by the formula (12) include a diester of 4-phenylphenol ethylene glycol ether and cyclohexanecarboxylic acid, a diester of 4-phenylphenol diethylene glycol ether and lauric acid, 4-phenylphenol triethylene glycol ether and cyclohexanecarboxylic acid. Acid diester, 4-phenylphenol ethylene glycol ether and octanoic acid diester, 4-phenylphenol ethylene glycol ether and nonanoic acid diester, 4-phenylphenol ethylene glycol ether and decanoic acid diester, 4-phenyl Examples thereof include diesters of phenol ethylene glycol ether and myristic acid.
 また、電子受容性化合物として炭素数3~18の直鎖または側鎖アルキル基を有する特定のアルコキシフェノール化合物を用いたり(特開平11-129623号公報、特開平11-5973号公報)、特定のヒドロキシ安息香酸エステルを用いたり(特開2001-105732号公報)、没食子酸エステル等を用いた(特公昭51-44706号公報、特開2003-253149号公報)加熱発色型(加熱により発色し、冷却により消色する)の可逆熱変色性組成物およびそれを内包した可逆熱変色性マイクロカプセル顔料(可逆熱変色性顔料)を適用することもできる。 Further, as the electron-accepting compound, a specific alkoxyphenol compound having a linear or side chain alkyl group having 3 to 18 carbon atoms is used (Japanese Patent Application Laid-Open Nos. 11-129623 and 11-5973), or a specific Using a hydroxybenzoic acid ester (Japanese Unexamined Patent Publication No. 2001-105732), using a gallic acid ester, etc. (Japanese Patent Publication No. 51-44706, Japanese Unexamined Patent Publication No. 2003-253149), a coloring type by heating (coloring by heating, It is also possible to apply a reversible thermochromic composition which is decolorized by cooling) and a reversible thermochromic microcapsule pigment (reversible thermochromic pigment) containing the reversible thermochromic composition.
 可逆熱変色性組成物は、電子供与性呈色性有機化合物、電子受容性化合物および反応媒体を必須成分とする相溶体である。各成分の割合は、濃度、変色温度、変色形態や各成分の種類等に応じて適宜選択すればよい。一般的に所望の特性が得られる成分比は、電子供与性呈色性有機化合物1質量部に対して、電子受容性化合物が0.1から100質量部、好ましくは0.1から50質量部、より好ましくは0.5から20質量部であり、反応媒体が5から200質量部、好ましくは5から100質量部、より好ましくは10から100質量部の範囲である。 The reversible thermochromic composition is a compatibilized solution containing an electron-donating color-developing organic compound, an electron-accepting compound and a reaction medium as essential components. The proportion of each component may be appropriately selected depending on the density, the color change temperature, the color change form, the type of each component, and the like. Generally, the component ratio for obtaining desired characteristics is such that the electron-accepting compound is 0.1 to 100 parts by mass, preferably 0.1 to 50 parts by mass, relative to 1 part by mass of the electron-donating color-forming organic compound. , More preferably 0.5 to 20 parts by mass, and the reaction medium is 5 to 200 parts by mass, preferably 5 to 100 parts by mass, more preferably 10 to 100 parts by mass.
 マイクロカプセル顔料は、必要に応じて各種光安定剤を更に含んでいてもよい。光安定剤は、可逆熱変色性組成物の光劣化を防止するために含有され、電子供与性呈色性有機化合物1質量部に対して0.3質量部以上24質量部以下、好ましくは0.3質量部以上16質量部以下の割合で含有される。又、光安定剤のうち、紫外線吸収剤は、太陽光等に含まれる紫外線を効果的にカットして、電子受容性化合物の光反応による励起状態によって生ずる光劣化を防止する。又、酸化防止剤、一重項酸素消光剤、スーパーオキシドアニオン消光剤、オゾン消光剤等は光による酸化反応を抑制する。光安定剤は1種単独で用いてもよいし、2種以上を併用して用いてもよい。 The microcapsule pigment may further contain various light stabilizers, if necessary. The light stabilizer is contained in order to prevent photodegradation of the reversible thermochromic composition, and is 0.3 part by mass or more and 24 parts by mass or less, preferably 0 part by mass with respect to 1 part by mass of the electron-donating color-developing organic compound. It is contained in a proportion of not less than 3 parts by mass and not more than 16 parts by mass. Further, among the light stabilizers, the ultraviolet absorber effectively blocks ultraviolet rays contained in sunlight and the like to prevent photodegradation caused by an excited state due to a photoreaction of the electron-accepting compound. Further, antioxidants, singlet oxygen quenchers, superoxide anion quenchers, ozone quenchers and the like suppress the oxidation reaction due to light. The light stabilizers may be used alone or in combination of two or more.
 可逆熱変色性組成物は、マイクロカプセルに内包させることによって可逆熱変色性マイクロカプセル顔料として用いられる。尚、マイクロカプセル化の方法には、従来より公知の界面重合法、in Situ重合法、液中硬化被覆法、水溶液からの相分離法、有機溶媒からの相分離法、融解分散冷却法、気中懸濁被覆法、スプレードライング法等があり、用途に応じて適宜選択される。更にマイクロカプセルの表面には、目的に応じて更に二次的な樹脂皮膜を設けて耐久性を付与させたり、表面特性を改質させたりして実用に供することもできる。また、二次的な樹脂皮膜を設けたり、表面特性を改質させることによりマイクロカプセル顔料のゼータ電位を変動させることもできる。 The reversible thermochromic composition is used as a reversible thermochromic microcapsule pigment by being encapsulated in microcapsules. The microencapsulation methods include conventionally known interfacial polymerization method, in-situ polymerization method, submerged curing coating method, phase separation method from aqueous solution, phase separation method from organic solvent, melt dispersion cooling method, vaporization method. There are a medium suspension coating method, a spray drying method and the like, which are appropriately selected depending on the application. Further, the surface of the microcapsules may be provided with a secondary resin film depending on the purpose to impart durability or may be modified in surface characteristics for practical use. Further, the zeta potential of the microcapsule pigment can be changed by providing a secondary resin film or modifying the surface characteristics.
 マイクロカプセル顔料は、内包物/壁膜=7/1から1/1(質量比)の範囲であることが好ましく、壁膜の比率が前記範囲内にあることにより、発色時の色濃度および鮮明性の低下を防止することができ、より好適には、内包物/壁膜=6/1から1/1(質量比)である。
 なお、マイクロカプセル顔料のゼータ電位は、マイクロカプセル顔料の内包物と壁膜との質量比を調整することによっても、変動させることができる。
The content of the microcapsule pigment is preferably in the range of inclusion / wall film = 7/1 to 1/1 (mass ratio), and when the ratio of the wall film is within the above range, the color density and vividness at the time of color development are clear. It is possible to prevent deterioration of the property, and more preferably, inclusion / wall film = 6/1 to 1/1 (mass ratio).
The zeta potential of the microcapsule pigment can also be changed by adjusting the mass ratio of the inclusions of the microcapsule pigment and the wall film.
 可逆熱変色性組成物をマイクロカプセルに内包させることにより、化学的、物理的に安定な顔料を構成できる。 By encapsulating the reversible thermochromic composition in microcapsules, a chemically and physically stable pigment can be constructed.
 マイクロカプセル顔料は、20℃、pH値7の条件下、正または負の値のゼータ電位を有する。
 マイクロカプセル顔料が、水とマイクロカプセル顔料のみから成るマイクロカプセル顔料分散液中で正または負の値のゼータ電位を有するため、マイクロカプセル顔料と、後述する分散剤とを組み合わせることで、インキ中におけるマイクロカプセル顔料の分散性を良好とし、優れたインキ流動性を奏する、水性インキ組成物とすることができる。ゼータ電位が0mVであると、マイクロカプセル顔料の分散性が低下し、凝集物が形成しやすくなる。
The microcapsule pigment has a positive or negative zeta potential under the conditions of 20 ° C. and a pH value of 7.
Since the microcapsule pigment has a positive or negative zeta potential in the microcapsule pigment dispersion liquid consisting of only water and the microcapsule pigment, by combining the microcapsule pigment and the dispersant described below, It is possible to obtain a water-based ink composition which has good dispersibility of the microcapsule pigment and exhibits excellent ink fluidity. When the zeta potential is 0 mV, the dispersibility of the microcapsule pigment is reduced and aggregates are easily formed.
 水は純水を用いることが理想ではあるが、イオン交換水を用いることもできる。
 イオン交換水には、蒸留水をイオン交換することによって生成された、25℃において1000μS/m未満の電気伝導率を有するイオン交換水を用いる。
 イオン交換水を生成する装置としては、(製品名:純水製造装置AutostillWA33、ヤマト科学株式会社製)などのイオン交換水生成装置を用いることが可能である。
 また、イオン交換水は、不純物を濾過処理した水道水をイオン交換することによって生成された、電気伝導率を有するイオン交換水が使用可能である。
 イオン交換を施す水道水は、濾過処理を行っていない水道水であってもよい。
Although it is ideal to use pure water as the water, ion-exchanged water can also be used.
As the ion-exchanged water, ion-exchanged water produced by ion-exchanging distilled water and having an electrical conductivity of less than 1000 μS / m at 25 ° C. is used.
As a device for generating ion-exchanged water, it is possible to use an ion-exchanged water generation device such as (product name: pure water production device Autostill WA33, manufactured by Yamato Scientific Co., Ltd.).
Further, as the ion-exchanged water, ion-exchanged water having electric conductivity, which is generated by ion-exchanging tap water obtained by filtering impurities, can be used.
The tap water that is subjected to ion exchange may be tap water that has not been filtered.
 マイクロカプセル顔料のゼータ電位の値は、マイクロカプセル顔料の分散性および熱変色を良好とすることを考慮すれば、マイクロカプセル顔料分散液の温度20℃、pH値を7(pH値6.5以上7.5未満は、pH値7とみなす。より現実的には、pH値6.8以上7.2以下を、pH値7とみなす。)とした時に、0<|ζ|≦20mVであることが好ましく、1≦|ζ|≦15mVであることがより好ましい。さらに好ましくは、2≦|ζ|≦10mVであり、3≦|ζ|≦10mVが特に好ましい。
 本発明において、ゼータ電位の測定データ数20個の数平均値が、-0.04mV~0.04mVの範囲である場合は、ゼータ電位値は実質的に0mVとみなすものとする。
The value of the zeta potential of the microcapsule pigment is 20 ° C. and the pH value of the microcapsule pigment dispersion liquid is 7 (pH value of 6.5 or more), considering that the microcapsule pigment has good dispersibility and thermal discoloration. A pH value of less than 7.5 is regarded as a pH value 7. More practically, a pH value of 6.8 or more and 7.2 or less is regarded as a pH value of 7.), and 0 <| ζ | ≦ 20 mV. It is preferable that 1 ≦ | ζ | ≦ 15 mV is more preferable. More preferably, 2 ≦ | ζ | ≦ 10 mV, and particularly preferably 3 ≦ | ζ | ≦ 10 mV.
In the present invention, when the number average value of 20 pieces of measurement data of zeta potential is in the range of −0.04 mV to 0.04 mV, the zeta potential value is considered to be substantially 0 mV.
 マイクロカプセル顔料のゼータ電位は、流動電位法により、測定された流動電位から算出する。流動電位の測定、およびゼータ電位の算出には、製品名:流動電位測定装置 Stabino PMX400、マイクロトラック・ベル株式会社製が用いられる。 The zeta potential of the microcapsule pigment is calculated from the streaming potential measured by the streaming potential method. For measuring the streaming potential and calculating the zeta potential, a product name: streaming potential measuring device Stabino PMX400, manufactured by Microtrac Bell Co., Ltd. is used.
 ゼータ電位の値が前記範囲内であると、(a)、(b)、および(c)成分による熱変色機能において(a)、(b)、および(c)成分間の電子の授受に影響を与えることが少ないため、変色感度を損なったり、消色時に色残り等の残色を生じにくい。
 また、本発明はマイクロカプセル顔料とインキ組成物中で高いゼータ電位の絶対値を有する添加剤とを組み合わせたとしても不具合を生じることが少ないため、ゼータ電位の値が大小様々な添加剤を用いる自由度があり、安定したインキを調整することができる。
When the value of the zeta potential is within the above range, the transfer of electrons between the components (a), (b), and (c) is affected in the thermochromic function of the components (a), (b), and (c). Is less likely to cause discoloration sensitivity, and it is less likely to cause residual color such as residual color when erasing.
Further, in the present invention, even if a microcapsule pigment and an additive having a high absolute value of zeta potential are combined in the ink composition, problems are less likely to occur. Therefore, various additives having different zeta potential values are used. There is a degree of freedom, and stable ink can be adjusted.
 マイクロカプセル顔料は、0.1~5μmの体積平均粒子径(メジアン径)を有し、かつ、8μmを超える粒子径を有するマイクロカプセル顔料粒子を含まないことが好ましい。このようなマイクロカプセル顔料は、着色力に優れ、インキに用いた際にインキ組成物の流動性が良好となるため、インキ吐出性および像の発色性をより良好とすることができる。
 尚、8μmを超える粒子径を有するマイクロカプセル顔料粒子含まないとは、8μmを超える粒子径を有するマイクロカプセル顔料粒子が目詰まりの要因となり易いため、実質上影響を与えるものは含まないようにコントロールするということである。なお、8μmを超える粒子径を有するマイクロカプセル顔料粒子を含まない本発明のインキについて、後述するように体積平均粒子径の上限値が4μm以下の場合は6μmを超える粒子径を有するマイクロカプセル顔料粒子を含まれず、体積平均粒子径の上限値が3μm以下の場合は4μmを超える粒子径を有するマイクロカプセル顔料粒子を含まれないことが好ましい。
The microcapsule pigment preferably has a volume average particle diameter (median diameter) of 0.1 to 5 μm and does not include microcapsule pigment particles having a particle diameter of more than 8 μm. Such a microcapsule pigment has excellent tinting strength, and when it is used in an ink, the fluidity of the ink composition is good, so that it is possible to further improve the ink dischargeability and the image color developability.
It should be noted that if the microcapsule pigment particles having a particle size of more than 8 μm are not included, the microcapsule pigment particles having a particle size of more than 8 μm are likely to cause clogging. Is to do. Regarding the ink of the present invention which does not contain microcapsule pigment particles having a particle size of more than 8 μm, the microcapsule pigment particles having a particle size of more than 6 μm when the upper limit of the volume average particle size is 4 μm or less as described later. When the upper limit of the volume average particle diameter is 3 μm or less, it is preferable that the microcapsule pigment particles having a particle diameter of more than 4 μm are not included.
 マイクロカプセル顔料は一般の顔料と比べて粒子径が大きいため、粒子径によってはインキ流路で目詰まりが生じることがある。また、粒子径が過度に小さいマイクロカプセル顔料を用いた場合には、目詰まりを抑制できるものの、マイクロカプセル顔料の着色力が低いため、像の発色性が低下する傾向にある。
 さらに、マイクロカプセル顔料が、目詰まりを生じず、十分な着色力を有する程度の粒子径を有しているとしても、その粒子径のばらつきによっては、インキ流動性を良好とし難く、高精細な像の形成が難しくなる傾向にある。
Since microcapsule pigments have a larger particle size than general pigments, clogging may occur in the ink flow path depending on the particle size. Further, when a microcapsule pigment having an excessively small particle diameter is used, clogging can be suppressed, but the coloring power of the microcapsule pigment is low, so that the color developability of an image tends to be deteriorated.
Further, even if the microcapsule pigment has a particle size that does not cause clogging and has sufficient coloring power, it is difficult to achieve good ink fluidity due to variations in the particle size, and high-definition It tends to be difficult to form an image.
 このため、マイクロカプセル顔料の平均粒子径、および粒子径を前記した範囲とすることにより、マイクロカプセル顔料の着色力を良好とし、マイクロカプセル顔料を用いたインキの流動性を高めることができるため、発色性に富み、高精細な像を形成することが容易となる。
 特に、像を形成する装置としてインクジェットプリンターを用いる場合、インクジェットプリンターは、プリンタヘッドに小さい内径を有するインキ流路とインキ吐出部を備えるが、前記の平均粒子径および粒子径を有するマイクロカプセル顔料は、インキ流路やインキ吐出部で目詰まりを起こしにくいため、インキ吐出性を良好とすることができる。
 また、インクジェットプリンターで高精細な画像を形成する際、インク吐出部から均一径を有する微細なインキ液滴が吐出されることが、被印刷面へのインキ液滴の着弾精度を良好とするため望ましいが、平均粒子径および粒子径を有するマイクロカプセル顔料は、粒子径のばらつきが小さいことから均一で微細なインキ液滴を形成しやすく、高精細な印刷画像を形成することが容易となる。
Therefore, by setting the average particle diameter of the microcapsule pigment, and the particle diameter within the above range, the coloring power of the microcapsule pigment is improved, and the fluidity of the ink using the microcapsule pigment can be increased. It is easy to form a high-definition image with rich color development.
In particular, when an inkjet printer is used as an apparatus for forming an image, the inkjet printer includes an ink flow path having a small inner diameter and an ink ejection portion in the printer head, but the microcapsule pigment having the above-mentioned average particle diameter and particle diameter is In addition, clogging is less likely to occur in the ink flow path and the ink discharge portion, so that the ink dischargeability can be improved.
Further, when forming a high-definition image with an inkjet printer, fine ink droplets having a uniform diameter are ejected from the ink ejecting portion, so that the ink droplet landing accuracy on the surface to be printed is good. Although desirable, a microcapsule pigment having an average particle diameter and a particle diameter has a small variation in particle diameter, so uniform and fine ink droplets can be easily formed, and a high-definition printed image can be easily formed.
 マイクロカプセル顔料の着色力およびインキ吐出性を良好とし、インキ吐出の際に均一径を有する液滴を形成容易とすることをより考慮すれば、マイクロカプセル顔料は、体積平均粒子径の上限値を好ましくは4μm以下、より好ましくは3μm以下とする。上限値を上記のように特定するのはマイクロカプセル顔料が2μm程度であれば実質的な色濃度を確保できるが、より大きい方が色濃度を確保し易いためであり、ある程度大きな粒子が一定体積以上存在すると連続吐出安定性と目詰まりの防止、沈降防止の観点等から好ましくないため、体積平均粒子径は5μm以下が必須となる。また、同様の理由により上限値は4μm以下が好ましく、3μm以下がより好ましい。
 さらに、体積平均粒子径の下限値は好ましくは0.3μm以上、より好ましくは0.5μm以上とする。下限値を上記のように特定するのは、発色性の観点から0.1μm以上である必要があり、それ未満では十分な色濃度が得られ難い。更に、同様の理由により下限値は0.3μm以上が好ましく、0.5μm以上がより好ましい。
Considering that the coloring power and the ink dischargeability of the microcapsule pigment are good and the droplets having a uniform diameter are easily formed at the time of ink discharge, the microcapsule pigment has the upper limit of the volume average particle diameter. The thickness is preferably 4 μm or less, more preferably 3 μm or less. The upper limit value is specified as described above because it is possible to secure a substantial color density when the microcapsule pigment has a size of about 2 μm, but it is easier to secure the color density when the microcapsule pigment is larger. If present, it is not preferable from the viewpoints of continuous ejection stability, prevention of clogging, prevention of sedimentation, etc. Therefore, it is essential that the volume average particle diameter be 5 μm or less. For the same reason, the upper limit value is preferably 4 μm or less, more preferably 3 μm or less.
Furthermore, the lower limit of the volume average particle diameter is preferably 0.3 μm or more, more preferably 0.5 μm or more. In order to specify the lower limit as described above, it is necessary to be 0.1 μm or more from the viewpoint of color developability, and if it is less than that, it is difficult to obtain a sufficient color density. Further, for the same reason, the lower limit value is preferably 0.3 μm or more, more preferably 0.5 μm or more.
 インキ組成物に含まれるマイクロカプセル顔料の具体例としては、体積平均粒子径(メジアン径)が0.1~5.0μmであり、8μmを超える粒子径を有するマイクロカプセル顔料粒子を含まないマイクロカプセル顔料、体積平均粒子径が0.3~5.0μmであり、8μmを超える粒子径を有するマイクロカプセル顔料粒子を含まないマイクロカプセル顔料、体積平均粒子径が0.5~5.0μmであり、8μmを超える粒子径を有するマイクロカプセル顔料粒子を含まないマイクロカプセル顔料、体積平均粒子径が0.1~4.0μmであり、6μmを超える粒子径を有するマイクロカプセル顔料粒子を含まないマイクロカプセル顔料、体積平均粒子径が0.3~4.0μmであり、6μmを超える粒子径を有するマイクロカプセル顔料粒子を含まないマイクロカプセル顔料、体積平均粒子径が0.5~4.0μmであり、6μmを超える粒子径を有するマイクロカプセル顔料粒子を含まないマイクロカプセル顔料、体積平均粒子径が0.1~3.0μmであり、4μmを超える粒子径を有するマイクロカプセル顔料粒子を含まないマイクロカプセル顔料、体積平均粒子径が0.3~3.0μmであり、4μmを超える粒子径を有するマイクロカプセル顔料粒子を含まないマイクロカプセル顔料、および体積平均粒子径が0.5~3.0μmであり、4μmを超える粒子径を有するマイクロカプセル顔料粒子を含まないマイクロカプセル顔料を挙げることができる。 Specific examples of the microcapsule pigment contained in the ink composition include microcapsules having a volume average particle diameter (median diameter) of 0.1 to 5.0 μm and not containing microcapsule pigment particles having a particle diameter of more than 8 μm. A pigment, a volume average particle diameter of 0.3 to 5.0 μm, a microcapsule pigment not including microcapsule pigment particles having a particle diameter of more than 8 μm, a volume average particle diameter of 0.5 to 5.0 μm, Microcapsule pigment not containing microcapsule pigment particles having a particle size of more than 8 μm, microcapsule pigment having a volume average particle size of 0.1 to 4.0 μm and not containing microcapsule pigment particles having a particle size of more than 6 μm Microcapsule pigment particles having a volume average particle diameter of 0.3 to 4.0 μm and a particle diameter of more than 6 μm Not containing, microcapsule pigments having a volume average particle diameter of 0.5 to 4.0 μm and not having microcapsule pigment particles having a particle diameter of more than 6 μm, volume average particle diameters of 0.1 to 3 A microcapsule pigment which does not include microcapsule pigment particles having a particle diameter of 0.0 μm or more than 4 μm, and a microcapsule pigment particle having a volume average particle diameter of 0.3 to 3.0 μm and a particle diameter of more than 4 μm. Mention may be made of microcapsule pigments that do not contain, and microcapsule pigments that do not contain microcapsule pigment particles having a volume average particle size of 0.5 to 3.0 μm and a particle size exceeding 4 μm.
 インクジェットプリンターによる印刷画像を、シアン色、マゼンタ色、イエロー色、およびブラック色等の多色のインキや、変色温度が異なる同一色の多色のインキ組成物を用いて形成する場合、全てのインキが良好に吐出されないと高精細で多彩な色合いを有する印刷画像を形成したり、温度変化により様相が変化する印刷画像を形成し難くなる。しかしながら、各色のインキ組成物に含まれるマイクロカプセル顔料の平均粒子径および粒子径を前記とすることで、各インキ組成物の着色性、インキ吐出性、およびインキ吐出時の均一径を有する液滴形成性を良好とするため、発色性に優れ、高精細な印刷画像を形成したり、温度変化により様相が変化する印刷画像を形成することが可能となる。 When forming a printed image with an inkjet printer using multicolor inks such as cyan, magenta, yellow, and black, or multicolor ink compositions of the same color with different discoloration temperatures, all inks are used. If it is not ejected satisfactorily, it becomes difficult to form a print image with high definition and a wide variety of hues, or a print image whose appearance changes due to temperature changes. However, by setting the average particle size and particle size of the microcapsule pigment contained in the ink composition of each color as described above, the colorability of each ink composition, the ink dischargeability, and the droplets having a uniform diameter at the time of ink discharge Since the formability is good, it is possible to form a high-definition printed image with excellent color development, or to form a printed image whose appearance changes with changes in temperature.
 尚、粒子径および体積平均粒子径の測定は、マウンテック社製の画像解析式粒度分布測定ソフトウェア「マックビュー」を用いて粒子の領域を判定し、粒子の領域の面積から投影面積円相当径(Heywood径)を算出し、その値による等体積球相当の粒子の平均粒子径として測定した値である。
 また、全ての粒子或いは大部分の粒子の粒子径が0.2μmを超える場合は、粒度分布測定装置(ベックマン・コールター株式会社製、製品名:Multisizer 4e)を用いてコールター法により等体積球相当の粒子の平均粒子径として測定することも可能である。
 さらに、標準試料またはコールター法による測定装置を用いて計測した数値を基にしてキャリブレーションを行ったレーザー回折/散乱式粒子径分布測定装置(装置名:LA-300、株式会社堀場製作所製)を用いて、体積基準の粒子径および平均粒子径(メジアン径)を測定しても良い。
The particle diameter and the volume average particle diameter are measured by determining the particle area using image analysis type particle size distribution measurement software "MacView" manufactured by Mountech Co., Ltd., and the projected area circle equivalent diameter (from the area of the particle area) (Heywood diameter) is calculated, and is the value measured as the average particle diameter of particles corresponding to equal volume spheres.
If all or most of the particles have a particle size of more than 0.2 μm, a particle size distribution measuring device (Beckman Coulter, Inc., product name: Multisizer 4e) is used to obtain an equivalent volume sphere by the Coulter method. It is also possible to measure as the average particle diameter of the particles.
Furthermore, a laser diffraction / scattering particle size distribution measuring device (device name: LA-300, manufactured by Horiba, Ltd.) was calibrated based on standard samples or the values measured using a measuring device by the Coulter method. Alternatively, the volume-based particle diameter and the average particle diameter (median diameter) may be measured.
 マイクロカプセル顔料の形態は円形断面の形態の他、非円形断面の形態であってもよい。 The shape of the microcapsule pigment may have a non-circular cross section as well as a circular cross section.
 マイクロカプセル顔料は、1種を単独で、または2種以上を併用することができる。
 2種以上のマイクロカプセル顔料を併用した混合物を用いる場合、その混合物における平均粒子径、および粒子径は、前記した範囲を満たすことが好ましい。
The microcapsule pigments may be used alone or in combination of two or more.
When using a mixture in which two or more kinds of microcapsule pigments are used in combination, it is preferable that the average particle diameter and the particle diameter of the mixture satisfy the above-mentioned ranges.
(インキ組成物)
 本発明によるインキ組成物は、マイクロカプセル顔料と、水と、分散剤とを少なくとも含み、マイクロカプセル顔料の分散性に優れ、インキの流動性を良好としてインキ吐出部からのインキ吐出を容易とし、発色性に富み、高精細な可逆熱変色性の像を形成可能とする。
(Ink composition)
The ink composition according to the present invention contains at least a microcapsule pigment, water, and a dispersant, has excellent dispersibility of the microcapsule pigment, and has good fluidity of the ink to facilitate ink ejection from the ink ejection portion, It is rich in color development and can form a high-definition reversible thermochromic image.
 マイクロカプセル顔料の含有量は、インキ組成物の総質量を基準として、例えば、3質量%以上30質量%以下であり、好ましくは5質量%以上20質量%以下、より好ましくは10質量%以上15質量%以下である。マイクロカプセル顔料の含有率が上記範囲内であると、マイクロカプセル顔料の凝集を抑制し、インキ吐出部からのインキ吐出性を良好としやすい。 The content of the microcapsule pigment is, for example, 3% by mass or more and 30% by mass or less, preferably 5% by mass or more and 20% by mass or less, more preferably 10% by mass or more and 15%, based on the total mass of the ink composition. It is not more than mass%. When the content rate of the microcapsule pigment is within the above range, aggregation of the microcapsule pigment is suppressed, and the ink ejection property from the ink ejection portion is easily improved.
(分散剤)
 分散剤は、インキ組成物中でマイクロカプセル顔料の有するゼータ電位の値と反対符号の電荷を帯びる官能基を構造に有するものである。
 分散剤は、官能基がマイクロカプセル顔料表面に強く吸着することにより、マイクロカプセル顔料同士が接近して凝集することを抑制し、マイクロカプセル顔料の分散性を高めて、インキ流動性を良好とする。
 このため、マイクロカプセル顔料の凝集物によるインク流路の目詰まりが抑制されてインク吐出部からのインキ吐出が良好となるため、発色性に富み、高精細な像を形成することが可能となる。
(Dispersant)
The dispersant has a functional group having a charge having a sign opposite to the zeta potential value of the microcapsule pigment in the ink composition in the structure.
The dispersant has a functional group strongly adsorbed to the surface of the microcapsule pigment, thereby preventing the microcapsule pigments from approaching each other and aggregating, increasing the dispersibility of the microcapsule pigment, and improving the ink fluidity. .
For this reason, clogging of the ink flow path due to the agglomerates of the microcapsule pigments is suppressed, and the ink ejection from the ink ejection portion is improved, so that it is possible to form a high-definition image with rich color development. .
 分散剤の具体例としては、負の電荷を帯びる官能基を構造に有する物質として、スチレン-マレイン酸共重合体およびそのアルカリ中和物、オレフィン-マレイン酸共重合体およびそのアルカリ中和物、アクリル系高分子化合物、スチレン-アクリル酸共重合体等の合成樹脂等を挙げることができる。
 正の電荷を帯びる官能基を構造に有する物質としては、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート等のジアルキルアミノアクリル酸エステル、ジメチルアミノエチルメタアクリレート等のジアルキルアミノメタアクリル酸エステル、ジメチルアミノスチレン、ジエチルアミノスチレン、メチルエチルアミノスチレン等のジアルキルアミノスチレンおよびその4級アンモニウム誘導体、メタクリロキシエチルトリメチルアンモニウムクロライド、メタクリルアミドプロピルトリメチルアンモニウムクロライド、2-ヒドロキシ-3-メタクリロキシプロピルトリメチルアンモニウムクロライド、ビニルベンジルトリメチルアンモニウムクロライド等のモノマーと前述の不飽和ビニルモノマー(カチオン性樹脂エマルジョンを乳化重合で得る際に使用するものとして例示したもの)との共重合体等を挙げることができる。
Specific examples of the dispersant include a styrene-maleic acid copolymer and an alkali neutralized product thereof, an olefin-maleic acid copolymer and an alkali neutralized product thereof, as a substance having a functional group having a negative charge in its structure. Examples thereof include acrylic polymer compounds and synthetic resins such as styrene-acrylic acid copolymer.
Examples of the substance having a positively charged functional group in its structure include dialkylaminoacrylic acid esters such as dimethylaminoethyl acrylate and diethylaminoethyl acrylate, dialkylaminomethacrylic acid esters such as dimethylaminoethyl methacrylate, dimethylaminostyrene and diethylamino. Dialkylaminostyrenes such as styrene and methylethylaminostyrene and quaternary ammonium derivatives thereof, methacryloxyethyltrimethylammonium chloride, methacrylamidopropyltrimethylammonium chloride, 2-hydroxy-3-methacryloxypropyltrimethylammonium chloride, vinylbenzyltrimethylammonium chloride And other unsaturated vinyl monomers (cationic resin It can be mentioned copolymers of the illustrated ones) and as used in obtaining the John emulsion polymerization.
 分散剤の中でも、マイクロカプセル顔料の分散性をより良好とすることを考慮すれば、負の電荷を帯びる官能基を構造に有する物質としては、オレフィン-マレイン酸共重合体およびそのアルカリ中和物、ならびにアクリル系高分子化合物が好ましく、アクリル系高分子化合物が特に好ましい。アクリル系高分子化合物としては、ポリアクリル酸、アクリル酸マレイン酸共重合体、アクリルウレタン共重合体、およびこれらのアルカリ中和物等の物質を用いることが可能であるが、より好ましくはカルボキシル基を有するアクリル系高分子化合物であり、さらには側鎖にカルボキシル基を有する櫛形構造のアクリル系高分子化合物である。特に好ましい分散剤としては、側鎖に複数のカルボキシル基を有する櫛形構造のアクリル系高分子化合物であり、その具体例として製品名:ソルスパース43000、日本ルーブリゾール株式会社製等のアクリル系高分子化合物を挙げることができる。 Among the dispersants, in consideration of improving the dispersibility of the microcapsule pigment, as the substance having a functional group having a negative charge in its structure, an olefin-maleic acid copolymer and its alkali-neutralized product are used. , And acrylic polymer compounds are preferable, and acrylic polymer compounds are particularly preferable. As the acrylic polymer compound, it is possible to use substances such as polyacrylic acid, acrylic acid-maleic acid copolymer, acrylic urethane copolymer, and alkali-neutralized products thereof, more preferably a carboxyl group. And an acrylic polymer compound having a comb structure having a carboxyl group in its side chain. A particularly preferred dispersant is an acrylic polymer compound having a comb structure having a plurality of carboxyl groups in its side chain, and specific examples thereof include product names: Sols Perth 43000, acrylic polymer compounds manufactured by Nippon Lubrizol Co., Ltd., and the like. Can be mentioned.
 また、正の電荷を帯びる官能基を構造に有する物質としては、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート等のジアルキルアミノアクリル酸エステル、ジメチルアミノエチルメタアクリレート等のジアルキルアミノメタアクリル酸エステルが好ましい。 Further, as the substance having a functional group having a positive charge in its structure, dialkylaminoacrylic acid esters such as dimethylaminoethyl acrylate and diethylaminoethyl acrylate, and dialkylaminomethacrylic acid esters such as dimethylaminoethyl methacrylate are preferable.
 分散剤の含有量は、インキ組成物を過度に増粘することを抑制し、マイクロカプセル顔料の分散性を良好とすることを考慮すれば、インキ組成物の総質量を基準として、0.01~2質量%含まれることが好ましく、0.1~1.5質量%含まれることが好ましい。 The content of the dispersant is 0.01, based on the total mass of the ink composition, in consideration of suppressing excessive thickening of the ink composition and improving dispersibility of the microcapsule pigment. It is preferably contained in an amount of 2 to 2% by mass, more preferably 0.1 to 1.5% by mass.
 (添加剤)
 インキ組成物は、必要に応じて、以下の成分を含んでも良い。具体的には、エチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ジエチレングリコール、グリセリン、ポリエチレングリコール、ポリプロピレングリコール、ラジカル重合性化合物、ポリビニルアルコール、ポリビニルピロリドン、ウレタン樹脂、スチレン-ブタジエン系樹脂、アルキッド樹脂、スルフォアミド樹脂、マレイン酸樹脂、ポリ酢酸ビニル樹脂、エチレン酢ビ樹脂、塩ビ-酢ビ樹脂、スチレンとマレイン酸エステルとの共重合体、スチレン-アクリロニトリル樹脂、シアネート変性ポリアルキレングリコール、エステルガム、キシレン樹脂、尿素樹脂、尿素アルデヒド樹脂、フェノール樹脂、アルキルフェノール樹脂、テルペンフェノール樹脂、ロジン系樹脂やその水添化合物、ロジンフェノール樹脂、ポリビニルアルキルエーテル、ポリアミド樹脂、ポリオレフィン樹脂、ナイロン樹脂、ポリエステル樹脂、シクロヘキサノン系樹脂などの定着剤、水溶性無機塩、界面活性剤、防腐剤、防さび剤、防黴剤、酸化防止剤、紫外線吸収剤、重合開始剤、キレート剤、pH調整剤、粘度調整剤、せん断減粘性付与剤等の従来公知の物質が挙げられる。
 上記成分の中でも、ラジカル重合性化合物およびラジカル性の重合開始剤をインキ組成物に用いると、印刷画像に光、特にはUV光が照射された際、ラジカル重合性化合物が直ちに重合してインキ組成物が被印刷面に素早く固着するので、印刷画像の定着性をより高めることができる。
(Additive)
The ink composition may contain the following components, if necessary. Specifically, ethylene glycol, propanediol, butanediol, pentanediol, diethylene glycol, glycerin, polyethylene glycol, polypropylene glycol, radical polymerizable compound, polyvinyl alcohol, polyvinylpyrrolidone, urethane resin, styrene-butadiene resin, alkyd resin, Sulfoamide resin, maleic acid resin, polyvinyl acetate resin, ethylene vinyl acetate resin, vinyl chloride-vinyl acetate resin, copolymer of styrene and maleic acid ester, styrene-acrylonitrile resin, cyanate-modified polyalkylene glycol, ester gum, xylene resin , Urea resin, urea aldehyde resin, phenol resin, alkylphenol resin, terpene phenol resin, rosin resin and its hydrogenated compounds, rosin phenol resin Fixing agent for polyvinyl alkyl ether, polyamide resin, polyolefin resin, nylon resin, polyester resin, cyclohexanone resin, water-soluble inorganic salt, surfactant, antiseptic agent, rust preventive, mildew proofing agent, antioxidant, ultraviolet ray Examples include conventionally known substances such as an absorber, a polymerization initiator, a chelating agent, a pH adjuster, a viscosity adjuster, and a shear thinning agent.
Among the above components, when a radical polymerizable compound and a radical polymerization initiator are used in the ink composition, when the printed image is irradiated with light, particularly UV light, the radical polymerizable compound is immediately polymerized to form an ink composition. Since the object quickly adheres to the surface to be printed, the fixability of the printed image can be further enhanced.
 ラジカル重合性化合物としては、(メタ)アクリレート類、(メタ)アクリルアミド類、芳香族ビニル類、アリル化合物、N-ビニル化合物、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニルなど)、アリルエステル類(酢酸アリルなど)、ハロゲン含有単量体(塩化ビニリデン、塩化ビニルなど)、ビニルエーテル類(メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシビニルエーテル、2-エチルヘキシルビニルエーテル、メトキシエチルビニルエーテル、シクロヘキシルビニルエーテル、クロロエチルビニルエーテルなど)、シアン化ビニル((メタ)アクリロニトリルなど)、オレフィン類(エチレン、プロピレンなど)などが挙げられる。なお、本明細書中において、「アクリレート」、「メタクリレート」の双方あるいはいずれかを指す場合「(メタ)アクリレート」と、「アクリル」、「メタクリル」の双方あるいはいずれかを指す場合「(メタ)アクリル」と、それぞれ記載することがある。 Radical polymerizable compounds include (meth) acrylates, (meth) acrylamides, aromatic vinyls, allyl compounds, N-vinyl compounds, vinyl esters (vinyl acetate, vinyl propionate, vinyl versatate, etc.), allyl Esters (allyl acetate, etc.), halogen-containing monomers (vinylidene chloride, vinyl chloride, etc.), vinyl ethers (methyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, methoxy vinyl ether, 2-ethylhexyl vinyl ether, methoxyethyl vinyl ether, cyclohexyl vinyl ether, chloro) Examples thereof include ethyl vinyl ether), vinyl cyanide ((meth) acrylonitrile etc.) and olefins (ethylene, propylene etc.). In the present specification, "(meth) acrylate" when referring to both or any of "acrylate" and "methacrylate" and "(meth)" when referring to both or any of "acrylic" and "methacryl" "Acrylic" may be described.
 また、ラジカル性の重合開始剤としては、芳香族ケトン類、芳香族オニウム塩化合物、有機過酸化物、ヘキサアリールビイミダゾール化合物、ケトオキシムエステル化合物、ボレート化合物、アジニウム化合物、メタロセン化合物、活性エステル化合物、炭素ハロゲン結合を有する化合物等を挙げることができる。 In addition, as the radical polymerization initiator, aromatic ketones, aromatic onium salt compounds, organic peroxides, hexaarylbiimidazole compounds, ketoxime ester compounds, borate compounds, azinium compounds, metallocene compounds, active ester compounds , A compound having a carbon-halogen bond, and the like.
 インキ組成物の粘度は、インキ吐出部からインキ組成物を良好に吐出可能であれば、任意の数値に調整可能であるが、好ましくは、回転数が30rpmの条件で測定した場合、2~30mPa・sであることが好ましく、3~20mPa・sであることがより好ましい。
 粘度を上記数値とすると、インキ吐出が容易となり、発色性に富み、高精細な像を形成しやすくなる。
 なお、粘度は、20℃において、BL型粘度計(製品名:TVB-M型粘度計、L型ローター、東機産業株式会社製)を用いて測定することができる。
The viscosity of the ink composition can be adjusted to any value as long as the ink composition can be ejected well from the ink ejecting portion, but it is preferably 2 to 30 mPa when measured at a rotation speed of 30 rpm. · S is preferable, and 3 to 20 mPa · s is more preferable.
When the viscosity is set to the above-mentioned value, ink is easily ejected, rich in color developability, and a high-definition image is easily formed.
The viscosity can be measured at 20 ° C. using a BL type viscometer (product name: TVB-M type viscometer, L type rotor, manufactured by Toki Sangyo Co., Ltd.).
 インキ組成物の表面張力は、20~50mN/mとすることが好ましく、20~35mN/mとすることが好ましい。表面張力を上記数値範囲内とすることで、インキ組成物の浸透性を高め、像の乾燥性を良好とすることが容易となる。
 なお、表面張力は、20℃環境下において、協和界面科学株式会社製の表面張力計測器を用い、ガラスプレートを用いて、垂直平板法によって測定して求められる。
The surface tension of the ink composition is preferably 20 to 50 mN / m, and more preferably 20 to 35 mN / m. By setting the surface tension within the above numerical range, it becomes easy to enhance the permeability of the ink composition and improve the drying property of the image.
The surface tension is obtained by measuring the surface tension using a surface tension measuring instrument manufactured by Kyowa Interface Science Co., Ltd. in a 20 ° C. environment using a glass plate by the vertical plate method.
 インキ組成物のpH値は、インキ組成物の経時安定性を良好とすることを考慮して、20℃において4~8とすることが好ましく、5~7とすることがより好ましい。 The pH value of the ink composition is preferably 4 to 8 at 20 ° C., more preferably 5 to 7 in consideration of improving the stability of the ink composition over time.
 本発明による水性インキ組成物は、プロペラ攪拌、ホモディスパー、またはホモミキサーなどの各種攪拌機やビーズミルなどの各種分散機などを用いて、製造することができる。
 具体的な製法の一例としては、マイクロカプセル顔料と水と添加剤とを混合してマイクロカプセル顔料分散液を調製した後、分散剤を混合する製法を挙げることができる。
 また、マイクロカプセル顔料と水と分散剤とを混合した後、添加剤を混合する製法も挙げることができる。
The aqueous ink composition according to the present invention can be produced by using various stirrers such as a propeller stirrer, a homodisper, or a homomixer, and various dispersers such as a bead mill.
As an example of a specific manufacturing method, there can be mentioned a manufacturing method in which a microcapsule pigment, water and an additive are mixed to prepare a microcapsule pigment dispersion liquid, and then the dispersant is mixed.
In addition, a manufacturing method in which the additives are mixed after mixing the microcapsule pigment, water and the dispersant can also be mentioned.
 本発明による水性インキ組成物は、筆記具、およびインクジェットプリンター印刷機に利用される。 The water-based ink composition according to the present invention is used for a writing instrument and an inkjet printer printing machine.
(筆記具)
 本発明のインキ組成物は、筆記具に好ましく用いられる。
 筆記具としては、直液式のボールペン、マーキングペン、万年筆等を例示することができる。
 更に、前記筆記具としては、各種チップを筆記先端部に装着し、軸筒内部(インキ貯蔵部)に直接インキを収容し、合成樹脂製の櫛溝状インキ流量調節部材(ペン芯)を介在させる構造を有するマーキングペン、ボールペン、万年筆が挙げられる。
(Writing instrument)
The ink composition of the present invention is preferably used for writing instruments.
As the writing instrument, a direct liquid type ballpoint pen, a marking pen, a fountain pen, etc. can be exemplified.
Further, as the writing instrument, various tips are attached to the writing tip, ink is directly stored inside the barrel (ink storage section), and a comb-shaped ink flow rate adjusting member (pen core) made of synthetic resin is interposed. Marking pens, ballpoint pens, and fountain pens having a structure can be mentioned.
 前記チップのうち、マーキングペンチップとしては、例えば、繊維チップ、フェルトチップ、プラスチックチップ、毛筆等が適用でき、ボールペンチップとしては、金属製のパイプの先端近傍を外面より内方に押圧変形させたボール抱持部にボールを抱持してなるチップ、金属材料をドリル等による切削加工により形成したボール抱持部にボールを抱持してなるチップ、金属またはプラスチック製チップ内部に樹脂製のボール受け座を設けたチップ、或いは、前記チップに抱持するボールをバネ体により前方に付勢させたもの等が適用できる。尚、前記ボールは、超硬合金、ステンレス鋼、ルビー、セラミック、樹脂、ゴム等が適用でき、直径0.1mm~1.0mmの範囲のものが好適に用いられる。 Of the tips, for example, a fiber tip, a felt tip, a plastic tip, a writing brush, or the like can be applied as the marking pen tip, and as the ballpoint pen tip, the vicinity of the tip of the metal pipe is pressed and deformed inward from the outer surface. Chip that holds the ball in the ball holding part, chip that holds the ball in the ball holding part formed by cutting a metal material with a drill, etc., resin ball inside the metal or plastic chip A chip provided with a seat, or a ball held on the chip and biased forward by a spring body can be applied. As the ball, cemented carbide, stainless steel, ruby, ceramic, resin, rubber, etc. can be applied, and those having a diameter of 0.1 mm to 1.0 mm are preferably used.
 また、万年筆形態のチップ(ペン体)としては、ステンレス板、金合金板等の金属板を先細テーパー状に裁断し、屈曲または湾曲したものや、ペン先形状に樹脂成形したもの等が適用できる。尚、前記ペン体には中心にスリットを設けたり、先端に玉部を設けることもできる。 As the fountain pen-shaped tip (pen body), a metal plate such as a stainless steel plate or a gold alloy plate that is cut into a tapered shape and is bent or curved, or a pen-shaped resin molded product can be applied. . The pen body may be provided with a slit at the center or a ball portion at the tip.
 ペン芯の材質としては、多数の円盤体を櫛溝状とした構造に射出成形できる合成樹脂であれば汎用のポリカーボネート、ポリプロピレン、ポリエチレン、アクリロニトリル-ブタジエン-スチレン共重合体等いずれを用いることもできるが、特に成形性が高く、ペン芯性能が得られやすい点からアクリロニトリル-ブタジエン-スチレン共重合体が好適である。 As the material of the pen core, any general-purpose polycarbonate, polypropylene, polyethylene, acrylonitrile-butadiene-styrene copolymer, or the like can be used as long as it is a synthetic resin that can be injection-molded into a structure in which a large number of discs are formed in a comb groove shape. However, an acrylonitrile-butadiene-styrene copolymer is preferable because it has particularly high moldability and can easily obtain pen core performance.
(インクジェットプリンター)
 本発明によるインキ組成物は、インクジェットプリンターに用いても良い。
 インクジェットプリンターは、インキ組成物を収容するインク収容部と、プリンタヘッドと、インク収容部からプリンタヘッドへインキを供給するインク供給流路と、プリンタヘッドのノズル(インク吐出部)から吐出されなかったインキをプリンタヘッドからインク供給流路へ戻すインク回収流路とを備え、インク供給流路、プリンタヘッド、およびインク回収流路を介してインキを循環するものである。
(inkjet printer)
The ink composition according to the present invention may be used in an inkjet printer.
The inkjet printer was not ejected from the ink containing portion containing the ink composition, the printer head, the ink supply channel for supplying ink from the ink containing portion to the printer head, and the nozzle (ink ejecting portion) of the printer head. An ink recovery channel for returning ink from the printer head to the ink supply channel is provided, and the ink is circulated through the ink supply channel, the printer head, and the ink recovery channel.
 インクジェットプリンターは、インキ循環によってインク流路(インク供給流路とインク回収流路を指す)およびプリンタヘッド内でインキが滞留して、マイクロカプセル顔料が凝集することを抑制し、プリンタヘッドのノズルからのインキ吐出性を良好とする。 Inkjet printers prevent ink from accumulating in the ink flow path (ink supply flow path and ink recovery flow path) and the printer head due to ink circulation and agglomeration of the microcapsule pigments, and from the nozzles of the printer head. Ink ejection property is improved.
 マイクロカプセル顔料の凝集を抑制することをより考慮すれば、プリンタヘッドは、プリンタヘッド内でインキ循環する流路を備えることが好ましい。
 プリンタヘッドが上記流路を備えることで、インキ循環の際にプリンタヘッド内においてインキ循環を行い、プリンタヘッドにおけるインキ滞留を抑制することが容易となるため、プリンタヘッド内でマイクロカプセル顔料が凝集することを抑制しやすい。
 インクジェットプリンターは、上記した機構を備え、インキ循環が可能であれば、装置の構成に制限はなく、脱気機構、加温機構等を備えていても良い。
In consideration of suppressing the aggregation of the microcapsule pigment, it is preferable that the printer head be provided with a flow path for ink circulation in the printer head.
Since the printer head is provided with the above flow path, it is possible to easily circulate the ink in the printer head during the ink circulation and to suppress the ink retention in the printer head, so that the microcapsule pigment aggregates in the printer head. It is easy to suppress that.
The inkjet printer includes the above-mentioned mechanism, and the structure of the apparatus is not limited as long as ink circulation is possible, and may include a deaeration mechanism, a heating mechanism, and the like.
 プリンタヘッドのインク吐出方式としては、公知の方式、例えば、静電誘引力を利用してインクを吐出させる電荷制御方式、ピエゾ素子の振動圧力を利用するドロップオンデマンド方式(圧力パルス方式)、電気信号を音響ビームに変えインクに照射して放射圧を利用してインクを吐出させる音響インクジェット方式、インクを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット(バブルジェット(登録商標))方式等を適宜採用できる。 The ink ejection method of the printer head is a known method, for example, a charge control method in which ink is ejected by using electrostatic attraction, a drop-on-demand method (pressure pulse method) in which vibration pressure of a piezo element is used, or an electric method. An acoustic inkjet method in which a signal is converted into an acoustic beam to irradiate the ink and the ink is ejected by using radiation pressure, a thermal ink jet (Bubble Jet (registered trademark) that uses the pressure generated by heating the ink to form bubbles ) Method etc. can be adopted suitably.
 プリンタヘッドのノズルは、インキ組成物を良好に吐出できる内径を有する。その内径は、印刷画像の発色性および精細さを良好とすることを考慮して、10μ~100μmの内径を有することが好ましく、10~50μmの内径を有することがより好ましい。より好ましいノズルの内径は、10~30μmである。 -The nozzle of the printer head has an inner diameter that allows good ejection of the ink composition. The inner diameter preferably has an inner diameter of 10 μm to 100 μm, and more preferably has an inner diameter of 10 to 50 μm, in consideration of improving the color developability and fineness of the printed image. The more preferable inner diameter of the nozzle is 10 to 30 μm.
 インクジェットプリンターは、インキ組成物がラジカル重合性化合物およびラジカル性の重合開始剤を含む場合、UV光照射部を備えることが好ましい。
 上記インキ組成物で形成された印刷画像にUV光を照射することにより、ラジカル重合性化合物が重合してインキ組成物が印刷面に速やかに固着するため、印刷画像の定着性を高めることができる。
 さらに、インク収容部は前記インク容器を装着することが可能であっても良い。
When the ink composition contains a radical polymerizable compound and a radical polymerization initiator, the inkjet printer preferably includes a UV light irradiation unit.
By irradiating the printed image formed by the ink composition with UV light, the radically polymerizable compound is polymerized and the ink composition is quickly fixed to the printed surface, so that the fixability of the printed image can be improved. .
Further, the ink container may be capable of mounting the ink container.
 以下本実施形態に係るインクジェットプリンターの一例を図を用いて説明する。 An example of the inkjet printer according to this embodiment will be described below with reference to the drawings.
 図3は、インク循環機構を備えるインクジェットプリンターの構成の一例を表す概略図である。図3に示すインク供給装置1は、インク収容部2、プリンタヘッド3、インク供給流路4a、ポンプ5、拭き取り手段6、ヘッドからインクをインク供給流路4aに戻してインキを循環させるインク回収流路4b(プリンタヘッド3より図の左方の流路)を備えている。
 プリンタヘッド3は、インキ組成物9を吐出する複数のノズル7のインク吐出部8を一面に形成してあり、圧電素子等によりノズル7内のインキ組成物9を押出すことで、ノズル7のインク吐出口8からインキ組成物9を吐出する。さらに、プリンタヘッド3は、インク供給流路4aからインキ組成物を取入れるインク取入口3bと、インキ組成物をインク回収流路4bに排出するインク排出口3aと、複数のノズル7、インク取入口3bおよびインク排出口3aを連通する内部流路3cとを有している。
FIG. 3 is a schematic diagram illustrating an example of the configuration of an inkjet printer including an ink circulation mechanism. The ink supply device 1 shown in FIG. 3 includes an ink container 2, a printer head 3, an ink supply channel 4a, a pump 5, a wiping means 6, and a head for returning ink to the ink supply channel 4a to circulate the ink. The flow path 4b (flow path on the left side of the printer head 3 in the drawing) is provided.
The printer head 3 is formed with an ink ejection portion 8 of a plurality of nozzles 7 for ejecting the ink composition 9 on one surface, and the ink composition 9 in the nozzle 7 is extruded by a piezoelectric element or the like, whereby The ink composition 9 is discharged from the ink discharge port 8. Further, the printer head 3 includes an ink intake port 3b for taking in the ink composition from the ink supply flow path 4a, an ink exhaust port 3a for exhausting the ink composition to the ink recovery flow path 4b, a plurality of nozzles 7, and an ink intake port. It has an internal flow path 3c that connects the inlet 3b and the ink discharge port 3a.
 インク循環経路は、プリンタヘッド3のインク取入口3bとインク排出口3aとをインク流路で繋ぎ、インキ組成物9を循環させる経路である。図3では、インク供給流路4aと、プリンタヘッド3の内部流路3cと、インク回収流路4bとにより環状経路を形成し、インキ組成物9を循環させる。印刷を停止している間は、プリンタヘッド3内でインキ組成物9のマイクロカプセル顔料が沈降し、マイクロカプセル顔料同士が凝集することを防止するため、環状経路にインキ組成物9を循環させていることが好ましい。インク供給流路4aおよびインク回収流路4bは、例えば、径が1~10mmの管を用いることができ、材質はシリコン系配管を用いることができる。循環経路の1周の長さは、800mm~10mとすることができ、さらに1~9mとすることができ、特に3~8mとすることができる。 The ink circulation path is a path that circulates the ink composition 9 by connecting the ink intake port 3b and the ink discharge port 3a of the printer head 3 with an ink flow path. In FIG. 3, an ink supply flow path 4a, an internal flow path 3c of the printer head 3, and an ink recovery flow path 4b form an annular path to circulate the ink composition 9. While the printing is stopped, the ink composition 9 is circulated in the annular path in order to prevent the microcapsule pigments of the ink composition 9 from settling and aggregating the microcapsule pigments in the printer head 3. Is preferred. For the ink supply flow path 4a and the ink recovery flow path 4b, for example, pipes having a diameter of 1 to 10 mm can be used, and the material can be silicon pipes. The length of one round of the circulation path may be 800 mm to 10 m, further 1 to 9 m, and particularly 3 to 8 m.
 ポンプ5は、インク供給流路4a内のプリンタヘッド3より上流側に配置され、プリンタヘッド3にインキ組成物9を供給する。プリンタヘッド3にインキ組成物9を供給して、環状経路にインキ組成物9を循環させることで、プリンタヘッド3の内部流路3cのインキ組成物9が流動し、プリンタヘッド3内でインキ組成物9のマイクロカプセル顔料成分が沈降し、マイクロカプセル顔料成分同士が凝集するのを防止することができる。 The pump 5 is arranged on the upstream side of the printer head 3 in the ink supply flow path 4 a and supplies the ink composition 9 to the printer head 3. By supplying the ink composition 9 to the printer head 3 and circulating the ink composition 9 in the annular path, the ink composition 9 in the internal flow path 3c of the printer head 3 flows, and the ink composition in the printer head 3 flows. It is possible to prevent the microcapsule pigment components of Item 9 from settling and aggregating the microcapsule pigment components.
 インクジェット印刷中は、ポンプによりインキ組成物を循環させることが好ましい。また、インクジェット印刷停止中は、ノズル吐出部に図示しないキャップをし、インキ組成物を循環させることが好ましい。 During ink jet printing, it is preferable to circulate the ink composition with a pump. Further, while the inkjet printing is stopped, it is preferable that a cap (not shown) is attached to the nozzle discharge portion to circulate the ink composition.
 インクジェットプリンターにより、紙、合成紙、コート紙、プラスチックシート、プラスチック、木材、金属、ガラス等の造形体、布帛、不織布等の任意の対象物に噴射させて適宜印刷像を形成して可逆熱変色性印刷物が得られる。 Reversible thermal discoloration by using an inkjet printer to form an appropriate printed image by spraying on any target object such as paper, synthetic paper, coated paper, plastic sheet, plastic, wood, metal, glass, etc., fabric, non-woven fabric, etc. Printed matter is obtained.
(インク容器)
 インキ組成物は、インク容器に収容しても良い。
 インク容器としては、インキ組成物を収容可能であれば特に限定されず、様々な構成材料、形態から選択して構成することができる。
 構成材料としては、例えば、ポリエチレンテレフタレート(PET)やポリプロピレン(PP)等のプラスチック、各種の金属(合金を含む。)、並びにポリエチレン、エチレン酢酸ビニル共重合体、およびポリプロピレン等のポリオレフィンを挙げることができる。また、これらに限らず、上記の各ポリマーを適当な比率で配合あるいはラミネートして得られるポリマーやそのフィルム等であってもよい。
 インク容器の形態としては、例えば、パック、ボトル、タンク、ビン、缶等を挙げることができる。
(Ink container)
The ink composition may be contained in an ink container.
The ink container is not particularly limited as long as it can contain the ink composition, and can be selected from various constituent materials and forms.
Examples of the constituent material include plastics such as polyethylene terephthalate (PET) and polypropylene (PP), various metals (including alloys), and polyethylene, ethylene vinyl acetate copolymer, and polyolefin such as polypropylene. it can. Further, the present invention is not limited to these, and may be a polymer obtained by blending or laminating the above-mentioned polymers in an appropriate ratio, a film thereof, or the like.
Examples of the form of the ink container include a pack, a bottle, a tank, a bottle, and a can.
 インク容器は、容器内に複数のインキ収容室が各々独立するよう設けられ、各室に、各室のインキ同士が互いに異なる色となるよう複数色のインキ組成物が収容されても良い。
 また、インク容器は、複数個を組み合わせてインク容器セットとすることもできる。インク容器セットは同色のインクで構成されていても良く、複数色のインクで構成されていても良い。
 さらに、インク容器は、インクジェットプリンターに装着し、インク容器からインク流路にインキ組成物を供給することを可能とする構造を有していても良い。
The ink container may be provided with a plurality of ink storage chambers that are independent of each other, and each of the chambers may store a plurality of colors of ink composition so that the inks in the chambers have different colors.
Also, a plurality of ink containers can be combined to form an ink container set. The ink container set may be composed of the same color ink or plural colors of ink.
Further, the ink container may have a structure that allows it to be attached to an inkjet printer and supply the ink composition from the ink container to the ink flow path.
 以下に実施例を記載する。実施例における以下の数値は、次の測定機を用いて測定することにより得られた数値である。
・マイクロカプセル顔料の平均粒子径および粒子径
 本発明における平均粒子径は体積基準による平均粒子径(メジアン径)を用いるが、その粒子径測定にあたっては、画像解析式粒度分布測定ソフトウェア(マックビュー、マウンテック社製)、コールター法(電気的検知帯法)粒子径測定装置、レーザー回折/散乱式粒子径分布測定装置(装置名:LA-300、株式会社堀場製作所製)などが使用できる。
 なお、レーザー回折/散乱式粒子径分布測定装置を用いる場合は、標準試料やコールター法(電気的検知帯法)などの他の測定装置によりキャリブレーションを行った測定装置にて測定を行う。
 測定機によって、得られる数値に差が生じる場合は、画像解析式粒度分布測定ソフトウェアを用いて得られた数値を優先する。
 本実施例においては、コールター法(電気的検知帯法)によりキャリブレーションを行ったレーザー回折/散乱式粒子径分布測定装置(装置名:LA-300、株式会社堀場製作所製)用いて体積基準による平均粒子径(メジアン径)および粒子径を測定した。ただし、実施例6および実施例14については、画像解析式粒度分布測定ソフトウェア(マックビュー、マウンテック社製)を用いて体積基準による平均粒子径(メジアン径)および粒子径を測定した。
Examples will be described below. The following numerical values in the examples are numerical values obtained by measuring with the following measuring machine.
-Average particle diameter and particle diameter of the microcapsule pigment The average particle diameter in the present invention uses an average particle diameter (median diameter) on a volume basis, but in measuring the particle diameter, image analysis type particle size distribution measurement software (MacView, Mountec Co., Coulter method (electric detection zone method) particle size measuring device, laser diffraction / scattering type particle size distribution measuring device (device name: LA-300, manufactured by Horiba, Ltd.) can be used.
When the laser diffraction / scattering particle size distribution measuring device is used, the measurement is performed by a measuring device which is calibrated by another measuring device such as a standard sample or the Coulter method (electrical detection zone method).
If there is a difference in the numerical values obtained depending on the measuring machine, the numerical value obtained using the image analysis type particle size distribution measurement software will be given priority.
In this example, a laser diffraction / scattering particle size distribution measuring device (device name: LA-300, manufactured by Horiba, Ltd.) calibrated by the Coulter method (electrical detection zone method) was used to measure the volume. The average particle size (median size) and the particle size were measured. However, in Examples 6 and 14, the average particle size (median size) and the particle size on a volume basis were measured using image analysis type particle size distribution measurement software (MacView, manufactured by Mountech Co., Ltd.).
・マイクロカプセル顔料のゼータ電位
 本発明におけるゼータ電位は、流動電位測定装置(Stabino PMX400、マイクロトラック・ベル株式会社製)などの測定装置により測定することができる。
 上記測定機により、流動電位の測定、ゼータ電位の算出、およびpH値の測定を行う。
 なお、ゼータ電位の測定機は、ゼータ電位表示とpHメーターとを連携して、特定のpH値においてゼータ電位を測定できるものであれば使用可能である。
-Zeta potential of microcapsule pigment The zeta potential in the present invention can be measured by a measuring device such as a streaming potential measuring device (Stabino PMX400, manufactured by Microtrac Bell Co., Ltd.).
The above-mentioned measuring machine measures streaming potential, calculation of zeta potential, and measurement of pH value.
The zeta potential measuring device can be used as long as it can measure the zeta potential at a specific pH value by linking the zeta potential display and the pH meter.
・流動電位の測定条件
 試料:下記に従って調製されたマイクロカプセル顔料分散液
 測定時のサンプル量:10ml
 測定時のサンプル温度:20℃
 測定機のピストンサイズ:400μm
 測定回数:本測定機でpH値が7と測定された時のゼータ電位の測定値が20個得られるまで、同一サンプルを繰り返し測定する
 測定値から算出されたゼータ電位(ゼータ電位の測定値20個の数平均値)を、マイクロカプセル顔料のゼータ電位とする。
 なお、測定溶媒として水を使用するが、純水、またはイオン交換水生成装置(製品名:純水製造装置AutostillWA33、ヤマト科学株式会社製)で生成された、25℃において1000μS/m未満の電気伝導度を有するイオン交換水を用いることができる。
 本実施例においては、イオン交換水生成装置で生成されたイオン交換水を用い、流動電位測定装置により、pH=7のときのゼータ電位を測定した。
-Measurement conditions of streaming potential Sample: Microcapsule pigment dispersion prepared according to the following: Sample amount during measurement: 10 ml
Sample temperature during measurement: 20 ℃
Measuring machine piston size: 400μm
Number of measurements: The same sample is repeatedly measured until a zeta potential of 20 is obtained when a pH value of 7 is measured by the measuring instrument. The number average value of the individual pieces is the zeta potential of the microcapsule pigment.
Although water is used as a measurement solvent, electricity of less than 1000 μS / m at 25 ° C. generated by pure water or an ion-exchanged water generator (product name: pure water production apparatus Autostill WA33, manufactured by Yamato Scientific Co., Ltd.). Ion-exchanged water having conductivity can be used.
In this example, ion-exchanged water produced by the ion-exchanged water producing device was used to measure the zeta potential at pH = 7 by a streaming potential measuring device.
 (マイクロカプセル顔料分散液の調製手順)
1.  マイクロカプセル顔料10gとイオン交換水90gとを、ディスパーを用いて、回転数2000rpmで15分間撹拌混合する。
2.  1で得た混合物を、イオン交換水で10倍に希釈する。
3.  2で得た希釈物を、5分間超音波分散する。(完成)
(Preparation procedure of microcapsule pigment dispersion)
1. 10 g of the microcapsule pigment and 90 g of ion-exchanged water are mixed with stirring using a disper at a rotation speed of 2000 rpm for 15 minutes.
The mixture obtained in 2.1 is diluted 10 times with deionized water.
Sonicate the dilution obtained in 3.2 for 5 minutes. (Complete)
・インキ組成物の粘度
 製品名:TVB-M型粘度計、L型ローター、東機産業株式会社製
・ Viscosity of ink composition Product name: TVB-M type viscometer, L type rotor, manufactured by Toki Sangyo Co., Ltd.
 実施例1
 (マイクロカプセル顔料の調製)
 (a)成分として9-エチル-(3-メチルブチル)アミノ-スピロ[12H-ベンゾ[a]キサンテン-12,1′(3H)-イソベンゾフラン]-3′-オン6.0部、(b)成分として4,4′‐(2‐エチルヘキシリデン)ビスフェノール15.0部、(c)成分としてカプリン酸4-ベンジルオキシフェニルエチル50.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、10%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 マイクロカプセル顔料の体積平均粒子径は0.71μmであり、最大粒子径は2.29μmであった。(メジアン径)
 マイクロカプセル顔料の完全消色温度は60℃、完全発色温度は-25℃であり、温度変化によりマゼンタ色から無色に変色する。
 マイクロカプセル顔料のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が7.0のときのゼータ電位は、6.3mVであった。
Example 1
(Preparation of microcapsule pigment)
As component (a), 6.0 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthene-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 15.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as a component and 50.0 parts of 4-benzyloxyphenylethyl caprate as a component (c) was uniformly added. A solution in which 40.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent were mixed as a wall film material was emulsified and dispersed in a 10% polyvinyl alcohol aqueous solution to form fine droplets, and added. After continuing stirring while warming, 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
The microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle size of the microcapsule pigment was 0.71 μm, and the maximum particle size was 2.29 μm. (Median diameter)
The microcapsule pigment has a complete decolorization temperature of 60 ° C. and a complete color development temperature of −25 ° C., and changes from magenta color to colorless due to temperature change.
As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 7.0 was 6.3 mV.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.00部、グリセリン10.00部、防腐剤(ピリジン-2-チオール1-オキシド,ナトリウム塩、製品名:ソジウムオマジン、ロンザジャパン株式会社製)0.20部、防腐剤(3-ヨード-2-プロピニルブチルカーバメート、製品名:グライカシル2000、ロンザジャパン株式会社製)0.20部、消泡剤0.02部、pH調整剤(クエン酸)0.10部および水79.08部を均一に混合し、マイクロカプセル顔料分散液を得た。マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物の粘度を測定した結果、20℃下、回転速度30rpmにおいては5.46mPa・sであった。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.00 parts, glycerin 10.00 parts, preservative (pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (citric acid) 0.10 parts and 79.08 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid. An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
As a result of measuring the viscosity of the water-based ink composition, it was 5.46 mPa · s at 20 ° C. and a rotation speed of 30 rpm.
 上記水性インキ組成物をインク容器(万年筆用カートリッジ:製品名IRF-12S、パイロットコーポレーション製)に収容した。
 インク容器を万年筆(製品名:カクノ、株式会社パイロットコーポレーション製)に収容し、コピー紙に筆記を行った。
 コピー紙には、室温(25℃)下でマゼンタ色の筆跡が視認され、60℃以上に加温することにより可逆熱変色像(筆跡)は消色し、-25℃以下で筆記直後の状態(マゼンタ色の筆跡が形成された状態)に戻った。
 発色状態の筆跡からは、良好な発色が視認され、輪郭が明瞭であった。
The above water-based ink composition was contained in an ink container (fountain pen cartridge: product name IRF-12S, manufactured by Pilot Corporation).
The ink container was housed in a fountain pen (product name: Kakuno, manufactured by Pilot Corporation), and writing was performed on copy paper.
Magenta handwriting is visible on copy paper at room temperature (25 ° C), and reversible thermochromic image (handwriting) is erased by heating to 60 ° C or higher, and at -25 ° C or lower immediately after writing. It returned to (a state in which magenta handwriting was formed).
From the handwriting in the colored state, good coloring was visually recognized and the outline was clear.
 実施例2
 (マイクロカプセル顔料の調製)
 (a)成分として9-エチル-(3-メチルブチル)アミノ-スピロ[12H-ベンゾ[a]キサンテン-12,1′(3H)-イソベンゾフラン]-3′-オン6.0部、(b)成分として4,4′‐(2‐エチルヘキシリデン)ビスフェノール15.0部、(c)成分としてカプリン酸4-ベンジルオキシフェニルエチル50.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料としてクレゾールノボラック型エポキシ樹脂10.0部、助溶剤50.0部を混合した溶液を、10%ゼラチン水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン5.0部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液を遠心分離機により粗大粒子を取り除いた後、フィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 マイクロカプセル顔料の体積平均粒子径は0.71μmであり、最大粒子径は2.60μmであった。(メジアン径)
 マイクロカプセル顔料のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が6.9のときのゼータ電位は、18.3mVであった。
 マイクロカプセル顔料の完全消色温度は60℃、完全発色温度は-25℃であり、温度変化によりマゼンタ色から無色に変色する。
Example 2
(Preparation of microcapsule pigment)
As component (a), 9 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthen-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 15.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as a component and 50.0 parts of 4-benzyloxyphenylethyl caprate as a component (c) was uniformly added. A solution of the cresol novolac type epoxy resin 10.0 parts as a wall film material and 50.0 parts of a co-solvent was melted at a high temperature, emulsified and dispersed in a 10% gelatin aqueous solution to form fine droplets, and heated. After continuing the stirring, 5.0 parts of the water-soluble aliphatic modified amine was added, and the stirring was further continued to obtain a microcapsule pigment suspension.
After removing coarse particles from the suspension by a centrifuge, the suspension was filtered by a filter press to obtain a microcapsule pigment.
The volume average particle size of the microcapsule pigment was 0.71 μm, and the maximum particle size was 2.60 μm. (Median diameter)
As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 6.9 was 18.3 mV.
The microcapsule pigment has a complete decolorization temperature of 60 ° C. and a complete color development temperature of −25 ° C., and changes from magenta color to colorless due to temperature change.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.00部、グリセリン10.00部、防腐剤(ピリジン-2-チオール1-オキシド,ナトリウム塩、製品名:ソジウムオマジン、ロンザジャパン株式会社製)0.20部、防腐剤(3-ヨード-2-プロピニルブチルカーバメート、製品名:グライカシル2000、ロンザジャパン株式会社製)0.20部、消泡剤0.02部、pH調整剤(グリコール酸)0.20部および水78.98部を均一に混合し、マイクロカプセル顔料分散液を得た。
 マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.00 parts, glycerin 10.00 parts, preservative (pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, preservative (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (glycolic acid) 0.20 parts and 78.98 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
 上記水性インキ組成物を実施例1で用いた万年筆と同種の万年筆に収容し、コピー紙に筆記を行った。
 コピー紙には、室温(25℃)下でマゼンタ色の筆跡が視認され、60℃以上に加温することにより可逆熱変色像(筆跡)は消色し、-25℃以下で筆記直後の状態(マゼンタ色の筆跡が形成された状態)に戻った。
 発色状態の筆跡からは、良好な発色が視認され、輪郭が明瞭であった。
The above water-based ink composition was placed in a fountain pen of the same type as the fountain pen used in Example 1, and writing was performed on copy paper.
Magenta handwriting is visible on copy paper at room temperature (25 ° C), and reversible thermochromic image (handwriting) is erased by heating to 60 ° C or higher, and at -25 ° C or lower immediately after writing. It returned to (a state in which magenta handwriting was formed).
From the handwriting in the colored state, good coloring was visually recognized and the outline was clear.
 実施例3
 (マイクロカプセル顔料の調製)
 実施例1と同様のマイクロカプセル顔料を調製した。
Example 3
(Preparation of microcapsule pigment)
A microcapsule pigment similar to that in Example 1 was prepared.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.00部、グリセリン10.00部、防腐剤(ピリジン-2-チオール1-オキシド,ナトリウム塩、製品名:ソジウムオマジン、ロンザジャパン株式会社製)0.20部、防腐剤(3-ヨード-2-プロピニルブチルカーバメート、製品名:グライカシル2000、ロンザジャパン株式会社製)0.20部、消泡剤0.02部、pH調整剤(クエン酸)0.05部および水79.13部を均一に混合し、マイクロカプセル顔料分散液を得た。
 マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.00 parts, glycerin 10.00 parts, preservative (pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (citric acid) 0.05 parts and 79.13 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
 上記水性インキ組成物を実施例1で用いた万年筆と同種の万年筆に収容し、コピー紙に筆記を行った。
 コピー紙には、室温(25℃)下でマゼンタ色の筆跡が視認され、60℃以上に加温することにより可逆熱変色像(筆跡)は消色し、-25℃以下で筆記直後の状態(マゼンタ色の筆跡が形成された状態)に戻った。
 発色状態の筆跡からは、良好な発色が視認され、輪郭が明瞭であった。
The above water-based ink composition was placed in a fountain pen of the same type as the fountain pen used in Example 1, and writing was performed on copy paper.
Magenta handwriting is visible on copy paper at room temperature (25 ° C), and reversible thermochromic image (handwriting) is erased by heating to 60 ° C or higher, and at -25 ° C or lower immediately after writing. It returned to (a state in which magenta handwriting was formed).
From the handwriting in the colored state, good coloring was visually recognized and the outline was clear.
 実施例4
 (マイクロカプセル顔料の調製)
 実施例1と同様のマイクロカプセル顔料を調製した。
Example 4
(Preparation of microcapsule pigment)
A microcapsule pigment similar to that in Example 1 was prepared.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.00部、グリセリン10.00部、防腐剤(ピリジン-2-チオール1-オキシドナトリウム塩、製品名:ソジウムオマジン、ロンザジャパン株式会社製)0.20部、防腐剤(3-ヨード-2-プロピニルブチルカーバメート、製品名:グライカシル2000、ロンザジャパン株式会社製)0.20部、消泡剤0.02部、pH調整剤(グリコール酸)0.30部および水78.88部を均一に混合し、マイクロカプセル顔料分散液を得た。
 マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.00 parts, glycerin 10.00 parts, preservative (pyridine-2-thiol 1-oxide sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0 20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (glycolic acid) 0 30 parts and 78.88 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
 上記水性インキ組成物を万年筆に収容し、コピー紙に筆記を行った。
 コピー紙には、室温(25℃)下でマゼンタ色の筆跡が視認され、60℃以上に加温することにより可逆熱変色像(筆跡)は消色し、-25℃以下で筆記直後の状態(マゼンタ色の筆跡が形成された状態)に戻った。
 発色状態の筆跡からは、良好な発色が視認され、輪郭が明瞭であった。
The above water-based ink composition was placed in a fountain pen and written on copy paper.
Magenta handwriting is visible on copy paper at room temperature (25 ° C), and reversible thermochromic image (handwriting) is erased by heating to 60 ° C or higher, and at -25 ° C or lower immediately after writing. It returned to (a state in which magenta handwriting was formed).
From the handwriting in the colored state, good coloring was visually recognized and the outline was clear.
 実施例5
 (マイクロカプセル顔料の調製)
 (a)成分として9-エチル-(3-メチルブチル)アミノ-スピロ[12H-ベンゾ[a]キサンテン-12,1′(3H)-イソベンゾフラン]-3′-オン6.0部、(b)成分として4,4′‐(2‐エチルヘキシリデン)ビスフェノール15.0部、(c)成分としてカプリン酸4-ベンジルオキシフェニルエチル50.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、10%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 マイクロカプセル顔料の体積平均粒子径は5.26μmであり、最大粒子径は7.69μmであった。(メジアン径)
 マイクロカプセル顔料の完全消色温度は60℃、完全発色温度は-25℃であり、温度変化によりマゼンタ色から無色に変色する。
 マイクロカプセル顔料のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が7.0のときのゼータ電位は、4.8mVであった。
Example 5
(Preparation of microcapsule pigment)
As component (a), 6.0 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthene-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 15.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as a component and 50.0 parts of 4-benzyloxyphenylethyl caprate as a component (c) was uniformly added. A solution in which 40.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent were mixed as a wall film material was emulsified and dispersed in a 10% polyvinyl alcohol aqueous solution to form fine droplets, and added. After continuing stirring while warming, 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
The microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle diameter of the microcapsule pigment was 5.26 μm, and the maximum particle diameter was 7.69 μm. (Median diameter)
The microcapsule pigment has a complete decolorization temperature of 60 ° C. and a complete color development temperature of −25 ° C., and changes from magenta color to colorless due to temperature change.
As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 7.0 was 4.8 mV.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.00部、グリセリン10.00部、防腐剤(ピリジン-2-チオール1-オキシド,ナトリウム塩、製品名:ソジウムオマジン、ロンザジャパン株式会社製)0.20部、防腐剤(3-ヨード-2-プロピニルブチルカーバメート、製品名:グライカシル2000、ロンザジャパン株式会社製)0.20部、消泡剤0.02部、pH調整剤(クエン酸)0.10部および水79.08部を均一に混合し、マイクロカプセル顔料分散液を得た。
 マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.00 parts, glycerin 10.00 parts, preservative (pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (citric acid) 0.10 parts and 79.08 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
 上記水性インキ組成物を実施例1で用いた万年筆と同種の万年筆に収容し、コピー紙に筆記を行った。
 コピー紙には、室温(25℃)下でマゼンタ色の筆跡が視認され、60℃以上に加温することにより可逆熱変色像(筆跡)は消色し、-25℃以下で筆記直後の状態(マゼンタ色の筆跡が形成された状態)に戻った。
 発色状態の筆跡からは、良好な発色が視認されたが、若干のかすれが生じ、輪郭が一部不明瞭であった。
The above water-based ink composition was placed in a fountain pen of the same type as the fountain pen used in Example 1, and writing was performed on copy paper.
Magenta handwriting is visible on copy paper at room temperature (25 ° C), and reversible thermochromic image (handwriting) is erased by heating to 60 ° C or higher, and at -25 ° C or lower immediately after writing. It returned to (a state in which magenta handwriting was formed).
Good color was visually recognized from the handwriting in the color-developed state, but some fading occurred and the outline was partially unclear.
 実施例6
 (マイクロカプセル顔料の調製)
 (a)成分として9-エチル-(3-メチルブチル)アミノ-スピロ[12H-ベンゾ[a]キサンテン-12,1′(3H)-イソベンゾフラン]-3′-オン6.0部、(b)成分として4,4′‐(2‐エチルヘキシリデン)ビスフェノール15.0部、(c)成分としてカプリン酸4-ベンジルオキシフェニルエチル50.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、12%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 マイクロカプセル顔料の体積平均粒子径は0.05μmであり、最大粒子径は0.61μmであった。(メジアン径)
 マイクロカプセル顔料の完全消色温度は60℃、完全発色温度は-25℃であり、温度変化によりマゼンタ色から無色に変色する。
 マイクロカプセル顔料のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が7.0のときのゼータ電位は6.8mVであった。
Example 6
(Preparation of microcapsule pigment)
As component (a), 6.0 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthene-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 15.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as a component and 50.0 parts of 4-benzyloxyphenylethyl caprate as a component (c) was uniformly added. A solution of 40.0 parts of an aromatic polyvalent isocyanate prepolymer and 50.0 parts of a co-solvent as a wall film material was dissolved at a high temperature, emulsified and dispersed in an aqueous 12% polyvinyl alcohol solution to form fine droplets, and added. After continuing stirring while warming, 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
The microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle diameter of the microcapsule pigment was 0.05 μm, and the maximum particle diameter was 0.61 μm. (Median diameter)
The microcapsule pigment has a complete decolorization temperature of 60 ° C. and a complete color development temperature of −25 ° C., and changes from magenta color to colorless due to temperature change.
As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion liquid was 7.0 was 6.8 mV.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.00部、グリセリン10.00部、防腐剤(ピリジン-2-チオール1-オキシド,ナトリウム塩、製品名:ソジウムオマジン、ロンザジャパン株式会社製)0.20部、防腐剤(3-ヨード-2-プロピニルブチルカーバメート、製品名:グライカシル2000、ロンザジャパン株式会社製)0.20部、消泡剤0.02部、pH調整剤(クエン酸)0.10部および水79.08部を均一に混合し、マイクロカプセル顔料分散液を得た。
 マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.00 parts, glycerin 10.00 parts, preservative (pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (citric acid) 0.10 parts and 79.08 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
 上記水性インキ組成物を実施例1で用いた万年筆と同種の万年筆に収容し、コピー紙に筆記を行った。
 コピー紙には、室温(25℃)下でマゼンタ色の筆跡が視認され、60℃以上に加温することにより可逆熱変色像は消色し、-25℃下で筆記直後の状態(マゼンタ色の筆跡が形成された状態)に戻った。
 発色状態の筆跡は、輪郭が明瞭であったが、色が若干薄かった。
The above water-based ink composition was placed in a fountain pen of the same type as the fountain pen used in Example 1, and writing was performed on copy paper.
Magenta handwriting is visible on the copy paper at room temperature (25 ° C), and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state immediately after writing at -25 ° C (magenta color). It has returned to the state where the handwriting was formed).
The handwriting in the colored state had a clear outline, but the color was slightly pale.
 実施例7
 (マイクロカプセル顔料の調製)
 (a)成分として9-エチル-(3-メチルブチル)アミノ-スピロ[12H-ベンゾ[a]キサンテン-12,1′(3H)-イソベンゾフラン]-3′-オン6.0部、(b)成分として4,4′‐(2‐エチルヘキシリデン)ビスフェノール15.0部、(c)成分としてカプリン酸4-ベンジルオキシフェニルエチル50.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、8%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 マイクロカプセル顔料の体積平均粒子径は1.73μmであり、最大粒子径は9.94μmであった。(メジアン径)
 マイクロカプセル顔料の完全消色温度は60℃、完全発色温度は-25℃であり、温度変化によりマゼンタ色から無色に変色する。
 マイクロカプセル顔料のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が7.0のときのゼータ電位は2.8mVであった。
Example 7
(Preparation of microcapsule pigment)
As component (a), 9 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthen-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 15.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as a component and 50.0 parts of 4-benzyloxyphenylethyl caprate as a component (c) was uniformly added. A solution of 40.0 parts of an aromatic polyvalent isocyanate prepolymer and 50.0 parts of a co-solvent as a wall film material was dissolved at a high temperature, emulsified and dispersed in an 8% aqueous polyvinyl alcohol solution to form fine droplets, and added. After continuing stirring while warming, 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
The microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle diameter of the microcapsule pigment was 1.73 μm, and the maximum particle diameter was 9.94 μm. (Median diameter)
The microcapsule pigment has a complete decolorization temperature of 60 ° C. and a complete color development temperature of −25 ° C., and changes from magenta color to colorless due to temperature change.
As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 7.0 was 2.8 mV.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.00部、グリセリン10.00部、防腐剤(ピリジン-2-チオール1-オキシド,ナトリウム塩、製品名:ソジウムオマジン、ロンザジャパン株式会社製)0.20部、防腐剤(3-ヨード-2-プロピニルブチルカーバメート、製品名:グライカシル2000、ロンザジャパン株式会社製)0.20部、消泡剤0.02部、pH調整剤(クエン酸)0.10部および水79.48部を均一に混合し、マイクロカプセル顔料分散液を得た。
 マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.00 parts, glycerin 10.00 parts, preservative (pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (citric acid) 0.10 parts and 79.48 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
 上記水性インキ組成物を実施例1で用いた万年筆と同種の万年筆に収容し、コピー紙に筆記を行った。
 コピー紙には、室温(25℃)下でマゼンタ色の筆跡が視認され、60℃以上に加温することにより可逆熱変色像(筆跡)は消色し、-25℃以下で筆記直後の状態(マゼンタ色の筆跡が形成された状態)に戻った。
 発色状態の筆跡からは、良好な発色が視認されたが、若干のかすれが生じ、輪郭が一部不明瞭であった。
The above water-based ink composition was placed in a fountain pen of the same type as the fountain pen used in Example 1, and writing was performed on copy paper.
Magenta handwriting is visible on copy paper at room temperature (25 ° C), and reversible thermochromic image (handwriting) is erased by heating to 60 ° C or higher, and at -25 ° C or lower immediately after writing. It returned to (a state in which magenta handwriting was formed).
Good color was visually recognized from the handwriting in the color-developed state, but some fading occurred and the outline was partially unclear.
 実施例8
 (マイクロカプセル顔料の調製)
 実施例1と同様のマイクロカプセル顔料を調製した。
Example 8
(Preparation of microcapsule pigment)
A microcapsule pigment similar to that in Example 1 was prepared.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.00部、グリセリン12.00部、防腐剤(ピリジン-2-チオール1-オキシド,ナトリウム塩、製品名:ソジウムオマジン、ロンザジャパン株式会社製)0.20部、防腐剤(3-ヨード-2-プロピニルブチルカーバメート、製品名:グライカシル2000、ロンザジャパン株式会社製)0.20部、消泡剤0.02部、pH調整剤(クエン酸)0.10部および水77.08部を均一に混合し、マイクロカプセル顔料分散液を得た。マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物の粘度をBL型粘度計(製品名:TVB-M型粘度計、L型ローター、東機産業株式会社製)を用いて測定した結果、20℃下、回転速度30rpmにおいては6.74mPa・sであった。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.00 parts, glycerin 12.00 parts, preservative (pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (citric acid) 0.10 parts and 77.08 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid. An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The viscosity of the water-based ink composition was measured using a BL type viscometer (product name: TVB-M type viscometer, L type rotor, manufactured by Toki Sangyo Co., Ltd.). As a result, it was 6 at 20 ° C. and a rotation speed of 30 rpm. It was 0.74 mPa · s.
 水性インキ組成物を、多数の円盤体が櫛溝状の間隔を開け並列配置され、前記円盤体を軸方向に縦貫するスリット状のインキ誘導溝および該溝より太幅の通気溝が設けられ、軸心にインキ貯蔵部からペン先へインキを誘導するためのインキ誘導芯が配置されてなるペン芯を介してボールペン形態のペン先へインキを誘導する直液式ボールペン(製品名:ハイテックポイントV5グリップ、株式会社パイロットコーポレーション製)に収容し、コピー紙に筆記を行った。
 コピー紙には、室温(25℃)下でマゼンタ色の筆跡が視認され、60℃以上に加温することにより可逆熱変色像(筆跡)は消色し、-25℃以下で筆記直後の状態(マゼンタ色の筆跡が形成された状態)に戻った。
 発色状態の筆跡からは、良好な発色が視認され、輪郭が明瞭であった。
The water-based ink composition, a large number of discs are arranged in parallel with a comb-shaped gap between them, a slit-shaped ink guide groove longitudinally extending through the discs and a ventilation groove thicker than the groove are provided, Direct liquid type ball-point pen (product name: Hitec Point V5 that guides ink to a pen tip in the form of a ball-point pen through the pen core that has an ink guide core for guiding ink from the ink storage section to the pen tip at the shaft center. Grip, manufactured by Pilot Corporation, Inc.) and written on copy paper.
Magenta handwriting is visible on copy paper at room temperature (25 ° C), and reversible thermochromic image (handwriting) is erased by heating to 60 ° C or higher, and at -25 ° C or lower immediately after writing. It returned to (a state in which magenta handwriting was formed).
From the handwriting in the colored state, good coloring was visually recognized and the outline was clear.
 実施例9
 (マイクロカプセル顔料の調製)
 実施例1と同様のマイクロカプセル顔料を調製した。
Example 9
(Preparation of microcapsule pigment)
A microcapsule pigment similar to that in Example 1 was prepared.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.00部、グリセリン15.00部、防腐剤(ピリジン-2-チオール1-オキシド,ナトリウム塩、製品名:ソジウムオマジン、ロンザジャパン株式会社製)0.20部、防腐剤(3-ヨード-2-プロピニルブチルカーバメート、製品名:グライカシル2000、ロンザジャパン株式会社製)0.20部、消泡剤0.02部、pH調整剤(クエン酸)0.10部および水74.08部を均一に混合し、マイクロカプセル顔料分散液を得た。
 マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物の粘度を測定した結果、20℃下、回転速度30rpmにおいては9.12mPa・sであった。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.00 parts, glycerin 15.00 parts, preservative (pyridine-2-thiol 1-oxide, sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts, pH adjuster (citric acid) 0.10 parts and 74.08 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
As a result of measuring the viscosity of the aqueous ink composition, it was 9.12 mPa · s at 20 ° C. and a rotation speed of 30 rpm.
 水性インキ組成物を、軸筒内に繊維集束体からなるインキ吸蔵体を内蔵し、毛細間隙が形成された、熱溶融性繊維の融着加工体からなるマーキングペンチップを軸筒に装着してなり、インキ吸蔵体とチップが連結されてなるマーキングペンのインキ吸蔵体に含浸させ、コピー紙に筆記を行った。
 コピー紙には、室温(25℃)下でマゼンタ色の筆跡が視認され、60℃以上に加温することにより可逆熱変色像(筆跡)は消色し、-25℃以下で筆記直後の状態(マゼンタ色の筆跡が形成された状態)に戻った。
 発色状態の筆跡からは、良好な発色が視認され、輪郭が明瞭であった。
A water-based ink composition, in which an ink occlusion body made of a fiber bundle is built in the barrel, and a marking pen tip made of a fusion-bonded body of heat-fusible fibers in which a capillary gap is formed is attached to the barrel. Then, the ink occlusion body of the marking pen in which the ink occlusion body and the chip were connected was impregnated, and writing was performed on copy paper.
Magenta handwriting is visible on copy paper at room temperature (25 ° C), and reversible thermochromic image (handwriting) is erased by heating to 60 ° C or higher, and at -25 ° C or lower immediately after writing. It returned to (a state in which magenta handwriting was formed).
From the handwriting in the colored state, good coloring was visually recognized and the outline was clear.
 実施例10
 (マイクロカプセル顔料の調製)
 実施例1と同様のマイクロカプセル顔料を調製した。
Example 10
(Preparation of microcapsule pigment)
A microcapsule pigment similar to that in Example 1 was prepared.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物の粘度を測定した結果、20℃下、回転速度30rpmにおいては5.68mPa・sであった。
 水性インキ組成物は、インク容器(ポリプロピレン製のボトル)に収容した。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment. A dispersion was obtained. An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
As a result of measuring the viscosity of the water-based ink composition, it was 5.68 mPa · s at 20 ° C. and a rotation speed of 30 rpm.
The aqueous ink composition was contained in an ink container (polypropylene bottle).
 (インクジェットプリンター)
 インク収容部と、印刷画像にUV光照射するためのUV光照射部を備えたプリンタヘッドと、インク収容部からプリンタヘッドへインキを供給するためのインク供給流路と、プリンタヘッドのインキをプリンタヘッドから前記インク供給流路へ戻すためのインク回収流路とを備え、インク収容部、プリンタヘッド、インク供給流路、およびインク回収流路とを接続し、インク供給流路、プリンタヘッド、およびインク回収流路を介してインキ循環を可能とするインクジェットプリンターを用い、インキ収容部に前記水性インキ組成物を収容した。
(inkjet printer)
A printer head including an ink storage unit, a UV light irradiation unit for irradiating a print image with UV light, an ink supply channel for supplying ink from the ink storage unit to the printer head, and ink for the printer head An ink recovery flow path for returning the ink from the head to the ink supply flow path, and connecting the ink storage section, the printer head, the ink supply flow path, and the ink recovery flow path to the ink supply flow path, the printer head, and The water-based ink composition was stored in the ink storage portion using an inkjet printer that enables ink circulation through the ink recovery channel.
 プリンタヘッドは、25μmの内径を有するノズルと、インク供給流路から前記インキ組成物を取入れるインク取入口と、インキ組成物をインク回収流路に排出するインク排出口と、ノズル、インク取入口、およびインク排出口を連通するプリンタヘッド内部流路とを備える。 The printer head has a nozzle having an inner diameter of 25 μm, an ink inlet for taking in the ink composition from an ink supply channel, an ink outlet for discharging the ink composition to an ink recovery channel, a nozzle, and an ink inlet. , And a printer head internal flow path communicating with the ink discharge port.
 循環機構は、プリンターのインク収容部からプリンタヘッドまでのインク供給流路において、インク収容部の直後からプリンタヘッド直前までの間に、ポンプとインク回収流路を接続してインク循環を可能なものとした。流路内のインキ組成物の流速(以下、「インキ流速」という。)は、ポンプにより制御した。インク供給流路およびインク回収流路は、シリコンゴム製とした。 The circulation mechanism connects the pump and the ink recovery channel between the ink storage section of the printer and the printer head between the ink storage section and the printer head to enable ink circulation. And The flow rate of the ink composition in the flow channel (hereinafter referred to as "ink flow rate") was controlled by a pump. The ink supply channel and the ink recovery channel were made of silicone rubber.
 インクジェットプリンターを用いて記録用紙(コピー用紙)への印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、前記循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下でマゼンタ色の可逆熱変色像が視認され、60℃以上に加温することにより可逆熱変色像は消色し、-25℃以下で消色前の状態(マゼンタ色の印字が形成された状態)に戻った。
 再び、インクジェットプリンターに消色した上記記録用紙をセットして印字を行なうことにより可逆熱変色性画像を形成して印刷物を得ることができ、繰り返し記録用紙を使用することができた。
 発色状態の印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Printing on recording paper (copy paper) and UV light irradiation were performed using an inkjet printer to obtain a reversible thermochromic print.
During printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
The reversible thermochromic image of magenta color is visually recognized at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state before erasing (magenta) at -25 ° C or lower. The state in which color printing was formed) was restored.
The reversible thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used.
From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
 実施例11
 (マイクロカプセル顔料の調製)
 (a)成分として9-エチル-(3-メチルブチル)アミノ-スピロ[12H-ベンゾ[a]キサンテン-12,1′(3H)-イソベンゾフラン]-3′-オン6.0部、(b)成分として4,4′‐(2‐エチルヘキシリデン)ビスフェノール15.0部、(c)成分としてカプリン酸4-ベンジルオキシフェニルエチル50.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー35.0部、助溶剤50.0部を混合した溶液を、8%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 尚、マイクロカプセル顔料の体積平均粒子径は1.02μmであり、最大粒子径は3.91μmであった。(メジアン径)
 マイクロカプセル顔料の完全消色温度は60℃、完全発色温度は-25℃であり、温度変化によりマゼンタ色から無色に変色する。
 マイクロカプセル顔料のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が7.0のときのゼータ電位は6.8mVであった。
Example 11
(Preparation of microcapsule pigment)
As component (a), 9 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthen-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 15.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as a component and 50.0 parts of 4-benzyloxyphenylethyl caprate as a component (c) was uniformly added. A solution which was dissolved at room temperature and mixed with 35.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent was emulsified and dispersed in an 8% polyvinyl alcohol aqueous solution to form fine droplets, and added. After continuing stirring while warming, 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
The microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle size of the microcapsule pigment was 1.02 μm, and the maximum particle size was 3.91 μm. (Median diameter)
The microcapsule pigment has a complete decolorization temperature of 60 ° C. and a complete color development temperature of −25 ° C., and changes from magenta color to colorless due to temperature change.
As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion liquid was 7.0 was 6.8 mV.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment. A dispersion was obtained. An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部に水性インキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the aqueous ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、前記循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下でマゼンタ色の可逆熱変色像が視認され、60℃以上に加温することにより可逆熱変色像は消色し、-25℃以下で使用前の状態(マゼンタ色の印刷字が形成された状態)に戻った。
 再び、インクジェットプリンターに消色した上記記録用紙をセットして印字を行なうことにより可逆熱変色性画像を形成して印刷物を得ることができ、繰り返し記録用紙を使用することができた。
 発色状態の印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
During printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
The reversible thermochromic image of magenta color is visible at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state before use (magenta color) at -25 ° C or lower. The state in which the print characters of (1) have been formed) has been restored.
The reversible thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used.
From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
 実施例12
 (マイクロカプセル顔料の調製)
 (a)成分として9-エチル-(3-メチルブチル)アミノ-スピロ[12H-ベンゾ[a]キサンテン-12,1′(3H)-イソベンゾフラン]-3′-オン6.0部、(b)成分として4,4′‐(2‐エチルヘキシリデン)ビスフェノール15.0部、(c)成分としてカプリン酸4-ベンジルオキシフェニルエチル50.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、12%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 尚、マイクロカプセル顔料の体積平均粒子径は0.55μmであり、最大粒子径は1.55μmであった。(メジアン径)
 マイクロカプセル顔料の完全消色温度は60℃、完全発色温度は-25℃であり、温度変化によりマゼンタ色から無色に変色する。
 マイクロカプセル顔料のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が7.0のときのゼータ電位は8.2mVであった。
Example 12
(Preparation of microcapsule pigment)
As component (a), 6.0 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthene-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 15.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as a component and 50.0 parts of 4-benzyloxyphenylethyl caprate as a component (c) was uniformly added. A solution of 40.0 parts of an aromatic polyvalent isocyanate prepolymer and 50.0 parts of a co-solvent as a wall film material was dissolved at a high temperature, emulsified and dispersed in an aqueous 12% polyvinyl alcohol solution to form fine droplets, and added. After continuing stirring while warming, 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
The microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle size of the microcapsule pigment was 0.55 μm, and the maximum particle size was 1.55 μm. (Median diameter)
The microcapsule pigment has a complete decolorization temperature of 60 ° C. and a complete color development temperature of −25 ° C., and changes from magenta color to colorless due to temperature change.
As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion liquid was 7.0 was 8.2 mV.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment. A dispersion was obtained. An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部に水性インキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the aqueous ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下でマゼンタ色の可逆熱変色像が視認され、60℃以上に加温することにより可逆熱変色像は消色し、-25℃以下で使用前の状態(マゼンタ色の印刷字が形成された状態)に戻った。
 再び、インクジェットプリンターに消色した上記記録用紙をセットして印字を行なうことにより可逆熱変色性画像を形成して印刷物を得ることができ、繰り返し記録用紙を使用することができた。
 発色状態の印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
At the time of printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
The reversible thermochromic image of magenta color is visible at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state before use (magenta color) at -25 ° C or lower. The state in which the print characters of (1) have been formed) has been restored.
The reversible thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used.
From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
 実施例13
 (マイクロカプセル顔料の調製)
 実施例5と同様のマイクロカプセル顔料を調製した。
Example 13
(Preparation of microcapsule pigment)
A microcapsule pigment similar to that in Example 5 was prepared.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。
 マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment. A dispersion was obtained.
An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部にインキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下でマゼンタ色の可逆熱変色像が視認され、60℃以上に加温することにより可逆熱変色像は消色し、-25℃以下で使用前の状態(マゼンタ色の印刷字が形成された状態)に戻った。
 再び、インクジェットプリンターに消色した上記記録用紙をセットして印字を行なうことにより可逆熱変色性画像を形成して印刷物を得ることができ、繰り返し記録用紙を使用することができた。
 発色状態の印字からは、良好な発色が視認されたが、若干のかすれが生じ、始点、終点、および輪郭が一部不明瞭であった。
Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
At the time of printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
The reversible thermochromic image of magenta color is visible at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state before use (magenta color) at -25 ° C or lower. The state in which the print characters of (1) have been formed) has been restored.
The reversible thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used.
From the printing in the color-developed state, good color was visually recognized, but some fading occurred, and the start point, end point, and contour were partially unclear.
 実施例14
 (マイクロカプセル顔料の調製)
 実施例6と同様のマイクロカプセル顔料を調製した。
Example 14
(Preparation of microcapsule pigment)
A microcapsule pigment similar to that in Example 6 was prepared.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。
 マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment. A dispersion was obtained.
An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部に水性インキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the aqueous ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下でマゼンタ色の可逆熱変色像が視認され、60℃以上に加温することにより可逆熱変色像は消色し、-25以下で使用前の状態(マゼンタ色の印刷字が形成された状態)に戻った。
 再び、インクジェットプリンターに消色した上記記録用紙をセットして印字を行なうことにより可逆熱変色性画像を形成して印刷物を得ることができ、繰り返し記録用紙を使用することができた。
 発色状態の印字は、始点、終点、および輪郭が明瞭であったが、色が若干薄かった。
Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
At the time of printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
The reversible thermochromic image of magenta color is visually recognized on the printed matter at room temperature (25 ° C), and the reversible thermochromic image disappears when heated to 60 ° C or more, and the state before use (magenta color of -25 or less) It returned to the state where printed characters were formed).
The reversible thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used.
In the color-developed state, the start point, the end point, and the outline were clear, but the color was slightly light.
 実施例15
 (マイクロカプセル顔料の調製)
 実施例7と同様のマイクロカプセル顔料を調製した。
Example 15
(Preparation of microcapsule pigment)
A microcapsule pigment similar to that in Example 7 was prepared.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment. A dispersion was obtained. An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部にインキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下でマゼンタ色の可逆熱変色像が視認され、60℃以上に加温することにより可逆熱変色像は消色し、-25℃以下で使用前の状態(マゼンタ色の印刷字が形成された状態)に戻った。
 再び、インクジェットプリンターに消色した上記記録用紙をセットして印字を行なうことにより可逆熱変色性画像を形成して印刷物を得ることができ、繰り返し記録用紙を使用することができた。
 発色状態の印字からは、良好な発色が視認されたが、若干のかすれが生じ、始点、終点、および輪郭が一部不明瞭であった。
Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
At the time of printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
The reversible thermochromic image of magenta color is visible at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state before use (magenta color) at -25 ° C or lower. The state in which the print characters of (1) have been formed) has been restored.
The reversible thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used.
From the printing in the color-developed state, good color was visually recognized, but some fading occurred, and the start point, end point, and contour were partially unclear.
 実施例16
 (マイクロカプセル顔料および水性インキ組成物の調製)
 実施例10のマイクロカプセル顔料、および水性インキ組成物を用いた。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
Example 16
(Preparation of microcapsule pigment and aqueous ink composition)
The microcapsule pigment of Example 10 and the aqueous ink composition were used.
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターにインキ組成物を収容した。
(inkjet printer)
The ink composition was stored in the inkjet printer used in Example 10.
 上記インクジェットプリンターを用いて記録用紙(コート紙、製品名:雷鳥コート、中越化学工業株式会社製)に印字を行ない、可逆熱変色性画像を形成して可逆熱変色性印刷物を得た。
 印刷の際、循環機構を作動し、インク流路およびプリンタヘッドのインキを流動させた。
 印刷物は室温(25℃)下でマゼンタ色の可逆熱変色像が視認され、60℃以上に加温することにより可逆熱変色像は消色し、-25℃以下で使用前の状態(マゼンタ色の印字が形成された状態)に戻った。再び、インクジェットプリンターに消色した上記記録用紙をセットして印字を行なうことにより可逆熱変色性画像を形成して印刷物を得ることができ、繰り返し記録用紙を使用することができた。
 発色状態の印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Recording was performed on a recording paper (coated paper, product name: Raicho Coat, manufactured by Chuetsu Chemical Industry Co., Ltd.) using the above inkjet printer to form a reversible thermochromic image to obtain a reversible thermochromic printed matter.
During printing, the circulation mechanism was operated to flow the ink in the ink flow path and the printer head.
The reversible thermochromic image of magenta color is visible at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state before use (magenta color) at -25 ° C or lower. The state in which the print of (1) was formed) was returned. The reversible thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used.
From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
 実施例17
 (マイクロカプセル顔料および水性インキ組成物の調製)
 実施例10のマイクロカプセル顔料、および水性インキ組成物を用いた。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
Example 17
(Preparation of microcapsule pigment and aqueous ink composition)
The microcapsule pigment of Example 10 and the aqueous ink composition were used.
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部にインキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録体(樹脂板、肉厚5mm、アクリル樹脂製)に印字を行ない、可逆熱変色性画像を形成して可逆熱変色性印刷物を得た。
 印刷の際、循環機構を作動し、インク流路およびプリンタヘッドのインキを流動させた。
 印刷物は室温(25℃)下でマゼンタ色の可逆熱変色像が視認され、60℃以上に加熱すると可逆熱変色像は消色し、-25℃以下で印刷直後の状態(マゼンタ色の印字が形成された状態)に戻った。
 再び、インクジェットプリンターに消色した上記記録体をセットして印字を行なうことにより可逆熱変色性画像を形成して印刷物を得ることができ、繰り返し記録体を使用することができた。
 発色状態の印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Printing was performed on a recording material (resin plate, thickness 5 mm, made of acrylic resin) using the above inkjet printer to form a reversible thermochromic image to obtain a reversible thermochromic printed matter.
During printing, the circulation mechanism was operated to flow the ink in the ink flow path and the printer head.
The reversible thermochromic image of magenta color is visible at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state immediately after printing at -25 ° C (magenta color printing is It has returned to the formed state).
The reversible thermochromic image was formed by setting the decolored recording material again in the ink jet printer and printing was carried out, and the printed material could be used repeatedly.
From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
 実施例18
 (マイクロカプセル顔料および水性インキ組成物の調製)
 実施例10のマイクロカプセル顔料、および水性インキ組成物を用いた。
 前記水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
Example 18
(Preparation of microcapsule pigment and aqueous ink composition)
The microcapsule pigment of Example 10 and the aqueous ink composition were used.
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部に前記インキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録体(ポリプロピレン製樹脂ボトル)の側壁に印字を行ない、可逆熱変色性画像を形成して可逆熱変色性印刷物を得た。
 印刷の際、循環機構を作動し、インク流路およびプリンタヘッドのインキを流動させた。
 印刷物は室温(25℃)下でマゼンタ色の可逆熱変色像が視認され、60℃以上のお湯を注入すると可逆熱変色像は消色し、-25℃以下で印刷直後の状態(マゼンタ色の印字が形成された状態)に戻った。
 再び、インクジェットプリンターに消色した上記記録体をセットして印字を行なうことにより可逆熱変色性画像を形成して印刷物を得ることができ、繰り返し記録体を使用することができた。
 発色状態の印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
The ink jet printer was used to print on the side wall of a recording material (polypropylene resin bottle) to form a reversible thermochromic image to obtain a reversible thermochromic printed matter.
During printing, the circulation mechanism was operated to flow the ink in the ink flow path and the printer head.
The reversible thermochromic image of magenta color is visually recognized at room temperature (25 ° C) in the printed matter, and the reversible thermochromic image disappears when hot water of 60 ° C or higher is poured, and the state immediately after printing (magenta color of -25 ° C or less). It returned to the state where the print was formed.
The reversible thermochromic image was formed by setting the decolored recording material again in the ink jet printer and printing was carried out, and the printed material could be used repeatedly.
From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
 実施例19
 (マイクロカプセル顔料の調製)
 (a)成分として7-[2-(アセチルアミノ)-4-(ジエチルアミノ)フェニル]-7-(2-メチル-1-プロピル-1H-インドール-3-イル)フロ[3,4-b]ピリジン-5(7H)-オン3.0部、(b)成分として1,1′-ビス(4′-ヒドロキシフェニル)n-ノナン15.0部、(c)成分としてカプリン酸4-ベンジルオキシフェニルエチル50.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、10%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 尚、マイクロカプセル顔料の体積平均粒子径は0.73μmであり、最大粒子径は2.60μmであった。(メジアン径)
 マイクロカプセル顔料の完全消色温度は60℃、完全発色温度は-25℃であり、温度変化によりシアン色から無色に変色する。
 マイクロカプセル顔料のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が6.9のときのゼータ電位は7.6mVであった。
Example 19
(Preparation of microcapsule pigment)
7- [2- (acetylamino) -4- (diethylamino) phenyl] -7- (2-methyl-1-propyl-1H-indol-3-yl) furo [3,4-b] as component (a) Pyridine-5 (7H) -one 3.0 parts, 1,1'-bis (4'-hydroxyphenyl) n-nonane 15.0 parts as component (b), 4-benzyloxy caprate as component (c) A solution in which a reversible thermochromic composition composed of 50.0 parts of phenylethyl was uniformly heated and dissolved, and 40.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent were mixed, Emulsified and dispersed in a 10% aqueous solution of polyvinyl alcohol to form fine droplets, continued stirring while heating, then add 2.5 parts of water-soluble aliphatic modified amine, and continue stirring to suspend microcapsule pigment A liquid was obtained.
The microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle diameter of the microcapsule pigment was 0.73 μm, and the maximum particle diameter was 2.60 μm. (Median diameter)
The completely decolorized temperature of the microcapsule pigment is 60 ° C., the completely developed temperature is −25 ° C., and the cyan color changes to colorless due to the temperature change.
As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 6.9 was 7.6 mV.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment. A dispersion was obtained. An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部に前記インキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字を行ない、可逆熱変色性画像を形成して可逆熱変色性印刷物を得た。
 印刷の際記循環機構を作動し、インク流路およびプリンタヘッドのインキを流動させた。
 印刷物は室温(25℃)下でシアン色の可逆熱変色像が視認され、60℃以上に加温することにより可逆熱変色像は消色し、-25℃以下で印刷直後の状態(シアン色の印字が形成された状態)に戻った。
 再び、インクジェットプリンターに消色した上記記録用紙をセットして印字を行なうことにより可逆熱変色性画像を形成して印刷物を得ることができ、繰り返し記録用紙を使用することができた。
 発色状態の印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Printing was performed on a recording paper (copy paper) using the above inkjet printer to form a reversible thermochromic image to obtain a reversible thermochromic printed matter.
During printing, the circulation mechanism was operated to flow the ink in the ink flow path and the printer head.
A cyan color reversible thermochromic image is visible at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 60 ° C or higher. The state in which the print of (1) was formed) was returned.
The reversible thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used.
From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
 実施例20
 (マイクロカプセル顔料の調製)
 (a)成分として4-[2,6-ビス(2-エトキシフェニル)-4-ピリジニル]-N,N-ジメチルベンゼンアミン3.0部、(b)成分として2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン9.0部、(c)成分としてカプリン酸4-ベンジルオキシフェニルエチル50.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、10%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 尚、マイクロカプセル顔料の体積平均粒子径は0.70μmであり、最大粒子径は2.60μmであった。(メジアン径)
 マイクロカプセル顔料の完全消色温度は60℃、完全発色温度は-25℃であり、温度変化によりイエロー色から無色に変色する。
 マイクロカプセル顔料のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が7.2のときのゼータ電位は7.4mVであった。
Example 20
(Preparation of microcapsule pigment)
3.0 parts of 4- [2,6-bis (2-ethoxyphenyl) -4-pyridinyl] -N, N-dimethylbenzenamine as component (a) and 2,2-bis (4- as component (b) A reversible thermochromic composition composed of 9.0 parts of (hydroxyphenyl) hexafluoropropane and 50.0 parts of 4-benzyloxyphenylethyl caprate as the component (c) was uniformly dissolved by heating to produce an aromatic wall film material. A solution prepared by mixing 40.0 parts of a polyvalent isocyanate prepolymer and 50.0 parts of a cosolvent was emulsified and dispersed in a 10% polyvinyl alcohol aqueous solution to form fine droplets, and the mixture was stirred while heating and then water-soluble. 2.5 parts of a modified aliphatic aliphatic amine was added and stirring was continued to obtain a microcapsule pigment suspension.
The microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle size of the microcapsule pigment was 0.70 μm, and the maximum particle size was 2.60 μm. (Median diameter)
The microcapsule pigment has a complete decolorization temperature of 60 ° C. and a complete color development temperature of −25 ° C., and changes from yellow to colorless due to temperature change.
As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 7.2 was 7.4 mV.
 (インクジェット用水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition for inkjet)
Microcapsule pigment (pre-cooled and developed color) 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment. A dispersion was obtained. An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部にインキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字を行ない、可逆熱変色性画像を形成して可逆熱変色性印刷物を得た。
 印刷の際、前記循環機構を作動し、インク流路およびプリンタヘッドのインキを流動させた。
 前記印刷物は室温(25℃)下でイエロー色の可逆熱変色像が視認され、60℃以上に加温することにより可逆熱変色像は消色し、-25℃以下で印刷直後の状態(イエロー色の印刷画像が形成された状態)に戻った。
 再び、インクジェットプリンターに消色した上記記録用紙をセットして印字を行なうことにより可逆熱変色性画像を形成して印刷物を得ることができ、繰り返し記録用紙を使用することができた。
 発色状態の印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Printing was performed on a recording paper (copy paper) using the above inkjet printer to form a reversible thermochromic image to obtain a reversible thermochromic printed matter.
During printing, the circulation mechanism was operated to flow the ink in the ink flow path and the printer head.
A yellow reversible thermochromic image is visually recognized at room temperature (25 ° C.) on the printed matter, and the reversible thermochromic image disappears when heated to 60 ° C. or higher. The state in which a color print image was formed) was restored.
The reversible thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used.
From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
 実施例21
 (マイクロカプセル顔料の調製)
 (a)成分として2-(2-クロロアニリノ)-6-ジ-n-ブチルアミノフルオラン7.0部、(b)成分として1,1′-ビス(4′-ヒドロキシフェニル)n-ドデカン15.0部、(c)成分としてカプリン酸4-ベンジルオキシフェニルエチル50.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、10%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 尚、マイクロカプセル顔料の体積平均粒子径は0.78μmであり、最大粒子径は2.60μmであった。(メジアン径)
 マイクロカプセル顔料の完全消色温度は60℃、完全発色温度は-25℃であり、温度変化によりブラック色から無色に変色する。
 マイクロカプセル顔料のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が7.0のときのゼータ電位は7.7mVであった。(
Example 21
(Preparation of microcapsule pigment)
7.0 parts of 2- (2-chloroanilino) -6-di-n-butylaminofluorane as component (a) and 1,1'-bis (4'-hydroxyphenyl) n-dodecane 15 as component (b) 0.04 parts, and a reversible thermochromic composition composed of 50.0 parts of 4-benzyloxyphenylethyl caprate as the component (c) was uniformly heated and dissolved, and an aromatic polyvalent isocyanate prepolymer 40. A solution prepared by mixing 0 parts and 50.0 parts of a cosolvent was emulsified and dispersed in a 10% aqueous solution of polyvinyl alcohol to form fine droplets, and the mixture was stirred while heating, and then water-soluble aliphatically modified amine 2. 5 parts was added and stirring was continued to obtain a microcapsule pigment suspension.
The microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle diameter of the microcapsule pigment was 0.78 μm, and the maximum particle diameter was 2.60 μm. (Median diameter)
The complete decolorization temperature of the microcapsule pigment is 60 ° C., the complete color development temperature is −25 ° C., and the color changes from black to colorless due to temperature change.
As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 7.0 was 7.7 mV. (
 (インクジェット用水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition for inkjet)
Microcapsule pigment (pre-cooled and developed color) 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment. A dispersion was obtained. An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部にインキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下でブラック色の可逆熱変色像が視認され、60℃以上に加温することにより可逆熱変色像は消色し、-25℃以下で印刷直後の状態(ブラック色の印字が形成された状態)に戻った。
 再び、インクジェットプリンターに消色した上記記録用紙をセットして印字を行なうことにより可逆熱変色性画像を形成して印刷物を得ることができ、繰り返し記録用紙を使用することができた。
 発色状態の印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
At the time of printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
The reversible thermochromic image of black color is visually recognized on the printed matter at room temperature (25 ° C), and the reversible thermochromic image disappears when heated to 60 ° C or higher, and immediately after printing (black color at -25 ° C or lower). The state in which the print of (1) was formed) was returned.
The reversible thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used.
From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
 実施例22
 (マイクロカプセル顔料の調製)
 (a)成分として9-エチル-(3-メチルブチル)アミノ-スピロ[12H-ベンゾ[a]キサンテン-12,1′(3H)-イソベンゾフラン]-3′-オン6.0部、(b)成分として2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン4.0部、4,4′‐(2‐エチルヘキシリデン)ビスフェノール11.0部、(c)成分としてグルタル酸ジ-4-ベンジルオキシフェニルエチル50.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、10%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 尚、マイクロカプセル顔料の体積平均粒子径は0.92μmであり、最大粒子径は3.52μmであった。(メジアン径)
 マイクロカプセル顔料の完全消色温度は87℃、完全発色温度は-35℃であり、温度変化によりマゼンタ色から無色に変色する。
 マイクロカプセル顔料のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が6.9のときのゼータ電位は7.0mVであった。
Example 22
(Preparation of microcapsule pigment)
As component (a), 6.0 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthene-12,1 '(3H) -isobenzofuran] -3'-one, (b) 2,2-bis (4-hydroxyphenyl) hexafluoropropane (4.0 parts), 4,4 ′-(2-ethylhexylidene) bisphenol (11.0 parts), (c) component glutaric acid di-4 A reversible thermochromic composition consisting of 50.0 parts of benzyloxyphenylethyl was uniformly heated and dissolved, and 40.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent were mixed. The solution was emulsified and dispersed in a 10% aqueous solution of polyvinyl alcohol to form fine droplets, and the mixture was stirred while heating, then 2.5 parts of a water-soluble aliphatic modified amine was added, and the mixture was further stirred. To obtain a microcapsule pigment suspension.
The microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle size of the microcapsule pigment was 0.92 μm, and the maximum particle size was 3.52 μm. (Median diameter)
The complete decolorization temperature of the microcapsule pigment is 87 ° C., the complete color development temperature is −35 ° C., and the color changes from magenta to colorless due to temperature change.
As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 6.9 was 7.0 mV.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment. A dispersion was obtained. An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部に水性インキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the aqueous ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下でマゼンタ色の可逆熱変色像が視認され、87℃以上に加温することにより可逆熱変色像は消色し、-35℃以下で印刷直後の状態(マゼンタ色の印字が形成された状態)に戻った。
 再び、インクジェットプリンターに消色した上記記録用紙をセットして印字を行なうことにより可逆熱変色性画像を形成して印刷物を得ることができ、繰り返し記録用紙を使用することができた。
 発色状態の印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
At the time of printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
A reversible thermochromic image of magenta color is visible at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 87 ° C or higher, and the state immediately after printing (magenta color) at -35 ° C or lower. The state in which the print of (1) was formed) was returned.
The reversible thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used.
From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
 実施例23
 (マイクロカプセル顔料の調製)
 (a)成分として9-エチル-(3-メチルブチル)アミノ-スピロ[12H-ベンゾ[a]キサンテン-12,1′(3H)-イソベンゾフラン]-3′-オン6.0部、(b)成分として1,1′-ビス(4′-ヒドロキシフェニル)2-エチルヘキサン10.0部、(c)成分としてパルミチン酸n-ノニル50.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、10%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 尚、マイクロカプセル顔料の体積平均粒子径は1.02μmであり、最大粒子径は3.72μmであった。(メジアン径)
 マイクロカプセル顔料の完全消色温度は30℃、完全発色温度は18℃であり、温度変化によりマゼンタ色から無色に変色する。
 マイクロカプセル顔料のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が6.9のときのゼータ電位は6.8mVであった。
Example 23
(Preparation of microcapsule pigment)
As component (a), 6.0 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthene-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 10.0 parts of 1,1′-bis (4′-hydroxyphenyl) 2-ethylhexane as a component and 50.0 parts of n-nonyl palmitate as a component (c) was uniformly added. A solution in which 40.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent were mixed as a wall film material was emulsified and dispersed in a 10% polyvinyl alcohol aqueous solution to form fine droplets, and added. After continuing stirring while warming, 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
The microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle diameter of the microcapsule pigment was 1.02 μm, and the maximum particle diameter was 3.72 μm. (Median diameter)
The microcapsule pigment has a complete decolorization temperature of 30 ° C. and a complete color development temperature of 18 ° C. The color changes from magenta to colorless due to temperature change.
As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 6.9 was 6.8 mV.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment. A dispersion was obtained. An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部にインキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下でマゼンタ色の可逆熱変色像が視認され、30℃以上に加温することにより可逆熱変色像は消色し、18℃以下で印刷直後の状態(マゼンタ色の印刷字が形成された状態)に戻った。
 発色状態の印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
At the time of printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
The reversible thermochromic image of magenta color is visually recognized at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 30 ° C or more, and the state immediately after printing (magenta color of 18 ° C or less). It returned to the state where printed characters were formed).
From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
 実施例24
 (マイクロカプセル顔料の調製)
 (a)成分として9-エチル-(3-メチルブチル)アミノ-スピロ[12H-ベンゾ[a]キサンテン-12,1′(3H)-イソベンゾフラン]-3′-オン6.0部、(b)成分として1,1′-ビス(4′-ヒドロキシフェニル)2-エチルヘキサン10.0部、(c)成分としてラウリン酸4-メチルベンジル50.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、10%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 尚、マイクロカプセル顔料の体積平均粒子径は0.87μmであり、最大粒子径は2.57μmであった。(メジアン径)
 マイクロカプセル顔料の完全消色温度は27℃、完全発色温度は-25℃であり、温度変化によりマゼンタ色から無色に変色する。
 マイクロカプセル顔料のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が7.0のときのゼータ電位は7.5mVであった。
Example 24
(Preparation of microcapsule pigment)
As component (a), 9 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthen-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 10.0 parts of 1,1′-bis (4′-hydroxyphenyl) 2-ethylhexane as a component and 50.0 parts of 4-methylbenzyl laurate as a component (c) is uniformly added. A solution in which 40.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a co-solvent were mixed by heating and emulsified and dispersed in a 10% polyvinyl alcohol aqueous solution to form fine droplets, After continuing stirring while heating, 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
The microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle size of the microcapsule pigment was 0.87 μm, and the maximum particle size was 2.57 μm. (Median diameter)
The complete decolorization temperature of the microcapsule pigment is 27 ° C and the complete color development temperature is -25 ° C, and the color changes from magenta to colorless due to temperature change.
As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion liquid was 7.0 was 7.5 mV.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.), 0.10 parts of pH adjusting agent (phosphoric acid) and 60.3 parts of water are uniformly mixed to obtain a microcapsule pigment. A dispersion was obtained. An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部に水性インキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the aqueous ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下でマゼンタ色の可逆熱変色像が視認され、27℃以上に加温することにより可逆熱変色像は消色し、-25℃以下で印刷直後の状態(マゼンタ色の印刷字が形成された状態)に戻った。
 室温下の印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
At the time of printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
The reversible thermochromic image of magenta color is visible at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 27 ° C or higher, and the state immediately after printing (magenta color) at -25 ° C or lower. The state in which the print characters of (1) have been formed) has been restored.
From printing at room temperature, good color development was visually recognized, and the start point, end point, and outline were clear.
 実施例25
 (マイクロカプセル顔料の調製)
 実施例1と同様のマイクロカプセル顔料を調製した。
Example 25
(Preparation of microcapsule pigment)
A microcapsule pigment similar to that in Example 1 was prepared.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.0部、有機顔料(ピグメントブルー15:3)0.2部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.1部を均一に混合し、マイクロカプセル顔料分散液を得た。マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインキボトルと同様のインクボトルに収容した。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.0 parts, organic pigment (pigment blue 15: 3) 0.2 part, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10 0.0 part, 2-hydroxy-3- (4-benzoylphenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 part, antifungal agent (product name: proxel XL-2, manufactured by Zeneca Co., Ltd.) 0.2 part, antifoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Co., Ltd.) 0.5 part, pH adjuster (phosphoric acid) 0.10 part and 60.1 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid. An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in the same ink bottle as the ink bottle used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部に水性インキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the aqueous ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下で紫色の可逆熱変色像が視認され、60℃以上に加温することにより可逆熱変色像はシアン色に変色し、-25℃以下で印刷直後の状態(紫色の印字が形成された状態)に戻った。
 印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
At the time of printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
A purple reversible thermochromic image is visually recognized on the printed matter at room temperature (25 ° C), and the reversible thermochromic image changes to cyan color when heated to 60 ° C or higher, and immediately after printing at -25 ° C or lower (purple color). The state in which the print of (1) was formed) was returned.
From the print, good color development was visually recognized, and the start point, end point, and outline were clear.
 実施例26
 (マイクロカプセル顔料の調製)
 マイクロカプセル顔料Aの調製
 (a)成分として7-[2-(アセチルアミノ)-4-(ジエチルアミノ)フェニル]-7-(2-メチル-1-プロピル-1H-インドール-3-イル)フロ[3,4-b]ピリジン-5(7H)-オン3.0部、(b)成分として4,4′‐(2‐エチルヘキシリデン)ビスフェノール15.0部、(c)成分としてカプリン酸4-ベンジルオキシフェニルエチル50.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、10%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料Aを得た。
 尚、マイクロカプセル顔料Aの体積平均粒子径は0.69μmであり、最大粒子径は2.27μmであった。(メジアン径)
 マイクロカプセル顔料Aの完全消色温度は60℃、完全発色温度は-25℃であり、温度変化によりシアン色から無色に変色する。
 マイクロカプセル顔料Bの調製
 (a)成分として9-エチル-(3-メチルブチル)アミノ-スピロ[12H-ベンゾ[a]キサンテン-12,1′(3H)-イソベンゾフラン]-3′-オン6.0部、(b)成分として4,4′‐(2‐エチルヘキシリデン)ビスフェノール10.0部、(c)成分としてパルミチン酸4-メチルベンジル50.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、10%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料Bを得た。
 尚、マイクロカプセル顔料Bの体積平均粒子径は0.73μmであり、最大粒子径は2.60μmであった。(メジアン径)
 マイクロカプセル顔料Bの完全消色温度は40℃、完全発色温度は5℃であり、温度変化によりマゼンタ色から無色に変色する。
 マイクロカプセル顔料Aとマイクロカプセル顔料Bとを質量比1:1で混合したマイクロカプセル顔料混合物のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が7.1のときのゼータ電位は7.6mVであった。
Example 26
(Preparation of microcapsule pigment)
Preparation of Microcapsule Pigment A As component (a), 7- [2- (acetylamino) -4- (diethylamino) phenyl] -7- (2-methyl-1-propyl-1H-indol-3-yl) furo [ 3,4-b] Pyridin-5 (7H) -one 3.0 parts, 4,4 '-(2-ethylhexylidene) bisphenol 15.0 parts as component (b), and capric acid as component (c) A reversible thermochromic composition composed of 50.0 parts of 4-benzyloxyphenylethyl is uniformly dissolved by heating, and 40.0 parts of an aromatic polyvalent isocyanate prepolymer and 50.0 parts of a cosolvent are mixed as a wall film material. The resulting solution was emulsified and dispersed in a 10% aqueous solution of polyvinyl alcohol to form fine droplets, and the mixture was continuously stirred while heating, then 2.5 parts of a water-soluble aliphatic modified amine was added, and the mixture was further stirred to prepare a microscopic solution. A capsule pigment suspension was obtained. Microcapsule pigment A was obtained by filtering the suspension with a filter press.
The volume average particle diameter of the microcapsule pigment A was 0.69 μm, and the maximum particle diameter was 2.27 μm. (Median diameter)
The complete decolorization temperature of the microcapsule pigment A is 60 ° C., the complete color development temperature is −25 ° C., and the cyan color changes to colorless due to the temperature change.
Preparation of Microcapsule Pigment B 9-Ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthene-12,1 '(3H) -isobenzofuran] -3'-one as component (a) 6. A reversible thermochromic composition comprising 0 part, 10.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as the component (b), and 50.0 parts of 4-methylbenzyl palmitate as the component (c). Is uniformly heated and dissolved, and a solution obtained by mixing 40.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent is emulsified in a 10% polyvinyl alcohol aqueous solution to form fine droplets. After dispersing and continuing stirring with heating, 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
Microcapsule pigment B was obtained by filtering the suspension with a filter press.
The volume average particle size of the microcapsule pigment B was 0.73 μm, and the maximum particle size was 2.60 μm. (Median diameter)
The complete decolorization temperature of the microcapsule pigment B is 40 ° C. and the complete color development temperature is 5 ° C., and the color changes from magenta to colorless due to temperature change.
The zeta potential of the microcapsule pigment mixture obtained by mixing the microcapsule pigment A and the microcapsule pigment B in a mass ratio of 1: 1 was measured, and as a result, the zeta potential when the pH value of the microcapsule pigment dispersion was 7.1 was 7 It was 0.6 mV.
 (水性インキ組成物の調製)
 マイクロカプセル顔料A(予め冷却して発色させたもの)5.0部、マイクロカプセル顔料B(予め冷却して発色させたもの)5.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition)
5.0 parts of microcapsule pigment A (pre-cooled and developed color), 5.0 parts of microcapsule pigment B (pre-cooled and developed color), 14.0 parts of morpholinoethyl (meth) acrylate 10.0 parts of piperazinoethyl (meth) acrylate, 1.0 part of 2-hydroxy-3- (4-benzoylphenoxy) -N, N, N-trimethyl-1-propanammonium chloride, 5.0 parts of ethylene glycol, antifungal Agent (product name: Proxel XL-2, manufactured by Zeneca Co., Ltd.) 0.2 part, antifoaming agent (silicon type, product name: SN Deformer 381, manufactured by San Nopco Co., Ltd.) 0.5 part, pH adjuster (phosphoric acid) ) 0.10 parts and 60.3 parts of water were uniformly mixed to obtain a microcapsule pigment dispersion liquid. An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部にインキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下で紫色の可逆熱変色像が視認され、40℃以上に加温することにより可逆熱変色像はシアン色に変化し、60℃以上に加温することにより可逆熱変色像は消色し、-5℃以下で可逆熱変色像はマゼンタ色に変化し、-25℃以下で印刷直後の状態(紫色の印字が形成された状態)に戻った。
 再び、インクジェットプリンターに消色した上記記録用紙をセットして印字を行なうことにより可逆熱変色性画像を形成して印刷物を得ることができ、繰り返し記録用紙を使用することができた。
 発色状態の印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
At the time of printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
A purple reversible thermochromic image is visually recognized at room temperature (25 ° C), and the reversible thermochromic image changes to cyan when heated to 40 ° C or higher, and the reversible thermochromic image is heated to 60 ° C or higher. The discolored image disappeared, and the reversible thermochromic image changed to magenta at -5 ° C or lower and returned to the state immediately after printing (state where purple print was formed) at -25 ° C or lower.
The reversible thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used.
From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
 実施例27
 (マイクロカプセル顔料の調製)
 (a)成分として9-エチル-(3-メチルブチル)アミノ-スピロ[12H-ベンゾ[a]キサンテン-12,1′(3H)-イソベンゾフラン]-3′-オン4.5部、(b)成分として2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン4.0部、4,4′‐(2‐エチルヘキシリデン)ビスフェノール4.0部、(c)成分としてカプリン酸ステアリル32.5部、ラウリン酸ステアリル17.5部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、10%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 尚、マイクロカプセル顔料の体積平均粒子径は0.85μmであり、最大粒子径は2.85μmであった。(メジアン径)
 尚、マイクロカプセル顔料の完全消色温度は37℃、完全発色温度は28℃であり、温度変化によりマゼンタ色から無色に変色する。
 マイクロカプセル顔料分散液のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が6.8のときのゼータ電位は7.2mVであった。
Example 27
(Preparation of microcapsule pigment)
4.5 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthene-12,1 '(3H) -isobenzofuran] -3'-one as component (a), (b) As components, 4.0 parts of 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 4.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol, and as component (c) stearyl caprate 32. A reversible thermochromic composition consisting of 5 parts and 17.5 parts of stearyl laurate is uniformly heated and dissolved, and 40.0 parts of an aromatic polyisocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent are mixed. The resulting solution was emulsified and dispersed in a 10% aqueous solution of polyvinyl alcohol so as to form fine droplets, and the mixture was stirred while heating, then 2.5 parts of a water-soluble aliphatic modified amine was added, and the stirring was continued. To obtain a microcapsule pigment suspension Te.
The microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle diameter of the microcapsule pigment was 0.85 μm, and the maximum particle diameter was 2.85 μm. (Median diameter)
The complete decolorization temperature of the microcapsule pigment is 37 ° C., the complete color development temperature is 28 ° C., and the color changes from magenta to colorless due to temperature change.
As a result of measuring the zeta potential of the microcapsule pigment dispersion liquid, the zeta potential was 7.2 mV when the pH value of the microcapsule pigment dispersion liquid was 6.8.
 (水性インキ組成物の調製)
 マイクロカプセル顔料10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition)
Microcapsule pigment 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoylphenoxy) -N, N, N-trimethyl 1.0 part of -1-propaneammonium chloride, 5.0 parts of ethylene glycol, 0.2 part of antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Co., Ltd.), antifoaming agent (silicon type, product name: SN deformer 381 (manufactured by San Nopco Ltd.) 0.5 part, pH adjuster (phosphoric acid) 0.10 part and water 60.3 parts were uniformly mixed to obtain a microcapsule pigment dispersion liquid. An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部にインキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、前記循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下でマゼンタ色の可逆熱変色性像が視認され、37℃以上に加温することにより可逆熱変色性像は消色し、室温(25℃)下で印刷直後の状態(マゼンタ色の印刷画像が形成された状態)に戻った。
 発色状態の印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
During printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
The reversible thermochromic image of magenta color was visually recognized on the printed matter at room temperature (25 ° C), and the reversible thermochromic image was erased by heating at 37 ° C or higher, and immediately after printing at room temperature (25 ° C). It returned to the state (state in which the magenta print image was formed).
From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
 実施例28
 (マイクロカプセル顔料の調製)
 (a)成分として3′,6′-ビス[フェニル(3-メチルフェニル)アミノ]-スピロ[イソベンゾフラン-1(3H),9′-(9H)キサンテン]-3-オン3.0部、(b)成分として4,4′‐(2‐メチルプロピリデン)ビスフェノール8.0部、(c)成分としてステアリン酸2-メチルペンチル15.0部、ステアリン酸2-エチルヘキシル35.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、10%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 尚、マイクロカプセル顔料の体積平均粒子径は0.85μmであり、最大粒子径は2.85μmであった。(メジアン径)
 尚、マイクロカプセル顔料の完全消色温度は10℃、完全発色温度は5℃であり、温度変化により青色から無色に変色する。
 マイクロカプセル顔料のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が7.1のときのゼータ電位は7.3mVであった。
Example 28
(Preparation of microcapsule pigment)
3.0 parts of 3 ', 6'-bis [phenyl (3-methylphenyl) amino] -spiro [isobenzofuran-1 (3H), 9'-(9H) xanthene] -3-one as component (a), Consists of 8.0 parts of 4,4 '-(2-methylpropylidene) bisphenol as component (b), 15.0 parts of 2-methylpentyl stearate and 35.0 parts of 2-ethylhexyl stearate as component (c). A reversible thermochromic composition was uniformly heated and dissolved, and a solution prepared by mixing 40.0 parts of an aromatic polyvalent isocyanate prepolymer and 50.0 parts of a cosolvent as a wall film material was added to a 10% polyvinyl alcohol aqueous solution to give a fine solution. The mixture was emulsified and dispersed in the form of drops, and stirring was continued while heating, 2.5 parts of a water-soluble aliphatic modified amine was added, and the stirring was further continued to obtain a microcapsule pigment suspension.
The microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle diameter of the microcapsule pigment was 0.85 μm, and the maximum particle diameter was 2.85 μm. (Median diameter)
The complete decolorization temperature of the microcapsule pigment is 10 ° C and the complete color development temperature is 5 ° C, and the color changes from blue to colorless due to temperature change.
As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 7.1 was 7.3 mV.
 (水性インキ組成物の調製)
 マイクロカプセル顔料10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。
 マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition)
Microcapsule pigment 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoylphenoxy) -N, N, N-trimethyl 1.0 part of -1-propaneammonium chloride, 5.0 parts of ethylene glycol, 0.2 part of antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Co., Ltd.), antifoaming agent (silicon type, product name: SN deformer 381 (manufactured by San Nopco Ltd.) 0.5 part, pH adjuster (phosphoric acid) 0.10 part and water 60.3 parts were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部に水性インキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the aqueous ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下で可逆熱変色性像は消色した状態にあり、5℃以下に冷却することにより青色の可逆熱変色性像が視認され、10℃以上に加温することにより可逆熱変色性像が消色した状態に戻った。
 冷却後に発色した印字は、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
At the time of printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
The reversible thermochromic image of the printed matter is in a decolored state at room temperature (25 ° C), and the blue reversible thermochromic image is visually recognized by cooling to 5 ° C or lower, and by heating to 10 ° C or higher. The reversible thermochromic image returned to the decolorized state.
In the print that developed color after cooling, good color was visually recognized, and the start point, end point, and outline were clear.
 実施例29
 (マイクロカプセル顔料の調製)
 (a)成分として3′,6′-ビス[フェニル(3-メチルフェニル)アミノ]-スピロ[イソベンゾフラン-1(3H),9′-(9H)キサンテン]-3-オン3.0部、(b)成分として4,4′‐(2‐メチルプロピリデン)ビスフェノール8.0部、(c)成分としてパルミチン酸n-ノニル30.0部、ミリスチン酸デシル20.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、10%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 前記懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 尚、マイクロカプセル顔料の体積平均粒子径は0.83μmであり、最大粒子径は2.81μmであった。(メジアン径)
 尚、マイクロカプセル顔料の完全消色温度は20℃、完全発色温度は15℃であり、温度変化により青色から無色に変色する。
 マイクロカプセル顔料のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値は7.1のときのゼータ電位は7.5mVであった。
Example 29
(Preparation of microcapsule pigment)
3.0 parts of 3 ', 6'-bis [phenyl (3-methylphenyl) amino] -spiro [isobenzofuran-1 (3H), 9'-(9H) xanthene] -3-one as component (a), Reversible thermal discoloration consisting of 8.0 parts of 4,4 '-(2-methylpropylidene) bisphenol as component (b), 30.0 parts of n-nonyl palmitate and 20.0 parts of decyl myristate as component (c) Solution of a hydrophilic composition uniformly heated and mixed with 40.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent to form fine droplets in a 10% aqueous polyvinyl alcohol solution. After emulsifying and dispersing as described above, stirring was continued while heating, 2.5 parts of a water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
A microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle size of the microcapsule pigment was 0.83 μm, and the maximum particle size was 2.81 μm. (Median diameter)
The complete decolorization temperature of the microcapsule pigment is 20 ° C., the complete color development temperature is 15 ° C., and the color changes from blue to colorless due to temperature change.
As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 7.1 was 7.5 mV.
 (水性インキ組成物の調製)
 マイクロカプセル顔料10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。
 マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition)
Microcapsule pigment 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoylphenoxy) -N, N, N-trimethyl 1.0 part of -1-propaneammonium chloride, 5.0 parts of ethylene glycol, 0.2 part of antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Co., Ltd.), antifoaming agent (silicon type, product name: SN deformer 381 (manufactured by San Nopco Ltd.) 0.5 part, pH adjuster (phosphoric acid) 0.10 part and water 60.3 parts were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部にインキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下で可逆熱変色性像は消色した状態にあり、15℃以下に冷却することにより青色の可逆熱変色性像が視認され、20℃以上に加温することにより可逆熱変色性像が消色した状態に戻った。
 冷却後に発色した印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
At the time of printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
The reversible thermochromic image of the printed matter is in a decolored state at room temperature (25 ° C), and a blue reversible thermochromic image is visually recognized by cooling to 15 ° C or lower, and by heating to 20 ° C or higher. The reversible thermochromic image returned to the decolorized state.
From the print that developed color after cooling, good color development was visually recognized, and the start point, end point, and outline were clear.
 実施例30
 (マイクロカプセル顔料の調製)
 (a)成分として3′,6′-ビス[フェニル(3-メチルフェニル)アミノ]-スピロ[イソベンゾフラン-1(3H),9′-(9H)キサンテン]-3-オン3.0部、(b)成分として4,4′‐(2‐メチルプロピリデン)ビスフェノール8.0部、(c)成分としてカプリン酸ステアリル37.5部、カプリン酸セチル12.5部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、10%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 尚、マイクロカプセル顔料の体積平均粒子径は0.91μmであり、最大粒子径は3.01μmであった。(メジアン径)
 尚、マイクロカプセル顔料の完全消色温度は30℃、完全発色温度は25℃であり、温度変化により青色から無色に変色する。
 マイクロカプセル顔料のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が7.0のときのゼータ電位は6.9mVであった。
Example 30
(Preparation of microcapsule pigment)
3.0 parts of 3 ', 6'-bis [phenyl (3-methylphenyl) amino] -spiro [isobenzofuran-1 (3H), 9'-(9H) xanthene] -3-one as component (a), Reversible thermochromic composition consisting of 8.0 parts of 4,4 '-(2-methylpropylidene) bisphenol as the component (b), 37.5 parts of stearyl caprate and 12.5 parts of cetyl caprate as the component (c). The solution was uniformly heated and dissolved, and a solution prepared by mixing 40.0 parts of an aromatic polyvalent isocyanate prepolymer as a wall film material and 50.0 parts of a cosolvent was formed into fine droplets in a 10% aqueous polyvinyl alcohol solution. After emulsification and dispersion, and stirring was continued while heating, 2.5 parts of water-soluble aliphatic modified amine was added, and stirring was further continued to obtain a microcapsule pigment suspension.
The microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle diameter of the microcapsule pigment was 0.91 μm, and the maximum particle diameter was 3.01 μm. (Median diameter)
The complete decolorization temperature of the microcapsule pigment is 30 ° C and the complete color development temperature is 25 ° C, and the color changes from blue to colorless due to temperature change.
As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion was 7.0 was 6.9 mV.
 (水性インキ組成物の調製)
 マイクロカプセル顔料10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。
 マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition)
Microcapsule pigment 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoylphenoxy) -N, N, N-trimethyl 1.0 part of -1-propaneammonium chloride, 5.0 parts of ethylene glycol, 0.2 part of antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Co., Ltd.), antifoaming agent (silicon type, product name: SN deformer 381 (manufactured by San Nopco Ltd.) 0.5 part, pH adjuster (phosphoric acid) 0.10 part and water 60.3 parts were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部にインキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下で青色の可逆熱変色像が視認され、30℃以上に加温することにより可逆熱変色像は消色し、室温(25℃)下で印刷直後の状態(青色の印刷字が形成された状態)に戻った。
 加温後に発色した印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
At the time of printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
A reversible thermochromic image of blue is visually recognized at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 30 ° C or more, and a state immediately after printing (blue at room temperature (25 ° C) The state in which the print characters of (1) have been formed) has been restored.
From the print that developed color after heating, good color development was visually recognized, and the start point, end point, and outline were clear.
 実施例31
 (マイクロカプセル顔料の調製)
 (a)成分として3′,6′-ビス[フェニル(3-メチルフェニル)アミノ]-スピロ[イソベンゾフラン-1(3H),9′-(9H)キサンテン]-3-オン3.0部、(b)成分として4,4′‐(2‐メチルプロピリデン)ビスフェノール8.0部、(c)成分としてベヘン酸3-メチルブチル25.0部、ベヘン酸2-メチルペンチル25.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、10%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 尚、マイクロカプセル顔料の体積平均粒子径は0.94μmであり、最大粒子径は3.15μmであった。(メジアン径)
 尚、マイクロカプセル顔料の完全消色温度は40℃、完全発色温度は35℃であり、温度変化により青色から無色に変色する。
 マイクロカプセル顔料分散液のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が7.0のときのゼータ電位は6.8mVであった。
Example 31
(Preparation of microcapsule pigment)
3.0 parts of 3 ', 6'-bis [phenyl (3-methylphenyl) amino] -spiro [isobenzofuran-1 (3H), 9'-(9H) xanthene] -3-one as component (a), Consists of 8.0 parts of 4,4 '-(2-methylpropylidene) bisphenol as component (b), 25.0 parts of 3-methylbutyl behenate and 25.0 parts of 2-methylpentyl behenate as component (c). A reversible thermochromic composition was uniformly heated and dissolved, and a solution prepared by mixing 40.0 parts of an aromatic polyvalent isocyanate prepolymer and 50.0 parts of a cosolvent as a wall film material was added to a 10% polyvinyl alcohol aqueous solution to give a fine solution. The mixture was emulsified and dispersed in the form of drops, and stirring was continued while heating, 2.5 parts of a water-soluble aliphatic modified amine was added, and the stirring was further continued to obtain a microcapsule pigment suspension.
The microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle diameter of the microcapsule pigment was 0.94 μm, and the maximum particle diameter was 3.15 μm. (Median diameter)
The complete decolorization temperature of the microcapsule pigment is 40 ° C. and the complete color development temperature is 35 ° C., and the color changes from blue to colorless due to temperature change.
As a result of measuring the zeta potential of the microcapsule pigment dispersion, the zeta potential when the pH value of the microcapsule pigment dispersion was 7.0 was 6.8 mV.
 (水性インキ組成物の調製)
 マイクロカプセル顔料10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition)
Microcapsule pigment 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoylphenoxy) -N, N, N-trimethyl 1.0 part of -1-propaneammonium chloride, 5.0 parts of ethylene glycol, 0.2 part of antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Co., Ltd.), antifoaming agent (silicon type, product name: SN deformer 381 (manufactured by San Nopco Ltd.) 0.5 part, pH adjuster (phosphoric acid) 0.10 part and water 60.3 parts were uniformly mixed to obtain a microcapsule pigment dispersion liquid. An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部にインキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下で青色の可逆熱変色像が視認され、40℃以上に加温することにより可逆熱変色像は消色し、室温(25℃)下で印刷直後の状態(青色の印刷字が形成された状態)に戻った。
 加温後に発色した印字は、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
At the time of printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
A blue reversible thermochromic image is visually recognized at room temperature (25 ° C) on the printed matter, and the reversible thermochromic image disappears when heated to 40 ° C or higher, and a state immediately after printing (blue at room temperature (25 ° C)). The state in which the print characters of (1) have been formed) has been restored.
In the print that developed color after heating, good color was visually recognized, and the start point, end point, and outline were clear.
 実施例32
 (マイクロカプセル顔料の調製)
 (a)成分として3′,6′-ビス[フェニル(3-メチルフェニル)アミノ]-スピロ[イソベンゾフラン-1(3H),9′-(9H)キサンテン]-3-オン3.0部、(b)成分として4,4′‐(2‐メチルプロピリデン)ビスフェノール8.0部、(c)成分としてミリスチン酸n-ブチル45.0部、パルミチン酸n-ブチル5.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー40.0部、助溶剤50.0部を混合した溶液を、10%ポリビニルアルコール水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン2.5部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液をフィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 尚、マイクロカプセル顔料の体積平均粒子径は0.89μmであり、最大粒子径は2.93μmであった。(メジアン径)
 尚、マイクロカプセル顔料の完全消色温度は0℃、完全発色温度は-15℃であり、温度変化により青色から無色に変色する。
 マイクロカプセル顔料のゼータ電位を測定した結果、マイクロカプセル顔料分散液のpH値が7.1のときのゼータ電位は7.2mVであった。
Example 32
(Preparation of microcapsule pigment)
3.0 parts of 3 ', 6'-bis [phenyl (3-methylphenyl) amino] -spiro [isobenzofuran-1 (3H), 9'-(9H) xanthene] -3-one as component (a), Reversible composition consisting of 8.0 parts of 4,4 '-(2-methylpropylidene) bisphenol as component (b), 45.0 parts of n-butyl myristate and 5.0 parts of n-butyl palmitate as component (c). The thermochromic composition was uniformly heated and dissolved, and a solution prepared by mixing 40.0 parts of an aromatic polyvalent isocyanate prepolymer and 50.0 parts of a cosolvent as a wall film material was added to a 10% polyvinyl alcohol aqueous solution to form microdroplets. The resulting emulsion was emulsified and dispersed, and the mixture was stirred while heating, 2.5 parts of a water-soluble aliphatic modified amine was added, and the mixture was further stirred to obtain a microcapsule pigment suspension.
The microcapsule pigment was obtained by filtering the suspension with a filter press.
The volume average particle size of the microcapsule pigment was 0.89 μm, and the maximum particle size was 2.93 μm. (Median diameter)
The complete decolorization temperature of the microcapsule pigment is 0 ° C., the complete color development temperature is −15 ° C., and the color changes from blue to colorless due to temperature change.
As a result of measuring the zeta potential of the microcapsule pigment, the zeta potential when the pH value of the microcapsule pigment dispersion liquid was 7.1 was 7.2 mV.
 (水性インキ組成物の調製)
 マイクロカプセル顔料10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部、pH調整剤(リン酸)0.10部および水60.3部を均一に混合し、マイクロカプセル顔料分散液を得た。
 マイクロカプセル顔料分散液とアクリル系高分子分散剤(製品名:ソルスパース43000、日本ルーブゾール株式会社製)0.40部を混合し、水性インキ組成物を調製した。
 水性インキ組成物は、実施例10で用いたインク容器と同じ形態のボトルに収容した。
(Preparation of water-based ink composition)
Microcapsule pigment 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoylphenoxy) -N, N, N-trimethyl 1.0 part of -1-propaneammonium chloride, 5.0 parts of ethylene glycol, 0.2 part of antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Co., Ltd.), antifoaming agent (silicon type, product name: SN deformer 381 (manufactured by San Nopco Ltd.) 0.5 part, pH adjuster (phosphoric acid) 0.10 part and water 60.3 parts were uniformly mixed to obtain a microcapsule pigment dispersion liquid.
An aqueous ink composition was prepared by mixing 0.40 parts of the microcapsule pigment dispersion and an acrylic polymer dispersant (product name: Sols Perth 43000, manufactured by Nippon Luvsol Co., Ltd.).
The aqueous ink composition was contained in a bottle having the same form as the ink container used in Example 10.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターを用い、インキ収容部に前記インキ組成物を収容した。
(inkjet printer)
Using the inkjet printer used in Example 10, the ink composition was stored in the ink storage portion.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性印刷物を得た。
 印字の際、循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下で可逆熱変色性像は消色した状態にあり、-15℃以下に冷却することにより青色の可逆熱変色性像が視認され、0℃以上に加温することにより可逆熱変色性像が消色した状態に戻った。
 冷却後に発色した印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Recording paper (copy paper) was printed and UV light was irradiated using the inkjet printer to obtain a reversible thermochromic printed matter.
At the time of printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
The reversible thermochromic image of the printed matter is in a decolored state at room temperature (25 ° C), and when cooled to -15 ° C or less, a blue reversible thermochromic image is visually recognized and heated to 0 ° C or more. As a result, the reversible thermochromic image returned to a decolored state.
From the print that developed color after cooling, good color development was visually recognized, and the start point, end point, and outline were clear.
 実施例33
 (マイクロカプセル顔料、および水性インキ組成物の調製)
 実施例10、実施例19、実施例20、および実施例21の、シアン、マゼンタ、イエロー、およびブラック色の水性インキ組成物を用いた。
Example 33
(Preparation of microcapsule pigment and aqueous ink composition)
The cyan, magenta, yellow, and black aqueous ink compositions of Example 10, Example 19, Example 20, and Example 21 were used.
 (インク容器)
 インキ組成物を、実施例10で使用したインク容器と同じ形態のインクボトルに収容し、マゼンタ、シアン、イエロー、およびブラック色のインクボトルからなるインク容器セットを作製した。
(Ink container)
The ink composition was contained in an ink bottle of the same form as the ink container used in Example 10 to prepare an ink container set consisting of magenta, cyan, yellow, and black ink bottles.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターのインキ収容部を、前記した4色のインキ組成物を独立して収容可能なものとし、インキ収容部に各色を独立して収容した。
(inkjet printer)
The ink accommodating portion of the inkjet printer used in Example 10 was made to be capable of accommodating the above-described four-color ink compositions independently, and the ink accommodating portion accommodated each color independently.
 上記インクジェットプリンターを用いて記録用紙(コピー用紙)に印字とUV光照射を行い、可逆熱変色性画像を形成して可逆熱変色性印刷物を得た。
 印字の際、循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下でシアン、マゼンタ、イエロー、ブラック色、および前記した4色から選ばれる2色以上からなる混合色の可逆熱変色性像が視認され、60℃以上に加温することにより可逆熱変色性像は消色し、-25℃下で印刷直後の状態(シアン、マゼンタ、イエロー、ブラック色等の印字が形成された状態)に戻った。
 再び、インクジェットプリンターに消色した上記記録用紙をセットして印字を行なうことにより可逆熱変色性画像を形成して印刷物を得ることができ、繰り返し記録用紙を使用することができた。
 発色状態の印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
Printing and UV light irradiation were performed on recording paper (copy paper) using the above inkjet printer to form a reversible thermochromic image to obtain a reversible thermochromic printed matter.
At the time of printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
At room temperature (25 ° C.), a reversible thermochromic image of a mixed color consisting of cyan, magenta, yellow, black, and two or more colors selected from the above four colors is visually recognized on the printed matter, and heated to 60 ° C. or more. As a result, the reversible thermochromic image disappeared and returned to a state immediately after printing (a state in which prints of cyan, magenta, yellow, black, etc. were formed) at -25 ° C.
The reversible thermochromic image was formed by setting the decolored recording sheet again in the ink jet printer and printing was performed, and the printed matter could be repeatedly used.
From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
 実施例34
 (マイクロカプセル顔料、および水性インキ組成物の調製)
 実施例28、実施例29、実施例30、および実施例31の水性インキ組成物を用いた。
Example 34
(Preparation of microcapsule pigment and aqueous ink composition)
The aqueous ink compositions of Example 28, Example 29, Example 30, and Example 31 were used.
 (インク容器)
 水性インキ組成物4種を、実施例10で使用したインク容器と同じ形態のインクボトルに収容し、各インクボトルからなるインク容器セットを作製した。
(Ink container)
Four types of water-based ink compositions were housed in an ink bottle of the same form as the ink container used in Example 10 to prepare an ink container set consisting of each ink bottle.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターのインキ収容部を、インキ組成物4種を独立して収容可能なものとし、インキ収容部に各インキ組成物を独立して収容した。
(inkjet printer)
The ink containing portion of the ink jet printer used in Example 10 was made to be able to contain four types of ink compositions independently, and each ink composition was contained independently in the ink containing portion.
 上記インクジェットプリンターを用いて、水性インキ組成物の各々が、互いに異なる位置に記録されるよう記録用紙(コピー用紙)に印字した後、印字部にUV光照射を行い、可逆熱変色性画像を形成して可逆熱変色性印刷物を得た。
 印字の際、前記循環機構を作動し、インク供給流路、プリンタヘッド、およびインク回収流路のインキを循環させた。
 印刷物は室温(25℃)下で、実施例28および実施例29のインキ組成物で形成された印字は消色状態にあり、実施例30および実施例31のインキ組成物で形成された印字が視認され、示温材としての役割を果たすことが確認された。
 発色状態の印字からは、良好な発色が視認され、始点、終点、および輪郭が明瞭であった。
After printing each of the water-based ink compositions on a recording paper (copy paper) using the above-mentioned inkjet printer so that they are recorded at different positions, the printed area is irradiated with UV light to form a reversible thermochromic image. Thus, a reversible thermochromic printed matter was obtained.
During printing, the circulation mechanism was operated to circulate the ink in the ink supply channel, the printer head, and the ink recovery channel.
The printed matter is at room temperature (25 ° C.), the prints formed with the ink compositions of Example 28 and Example 29 are in a decolored state, and the prints formed with the ink compositions of Example 30 and Example 31 are It was visually confirmed and confirmed to play a role as a temperature indicator.
From the printing in the color-developed state, good color was visually recognized, and the start point, the end point, and the contour were clear.
 比較例1
 (マイクロカプセル顔料の調製)
 (a)成分として9-エチル-(3-メチルブチル)アミノ-スピロ[12H-ベンゾ[a]キサンテン-12,1′(3H)-イソベンゾフラン]-3′-オン6.0部、(b)成分として4,4′‐(2‐エチルヘキシリデン)ビスフェノール15.0部、(c)成分としてカプリン酸4-ベンジルオキシフェニルエチル50.0部からなる可逆熱変色性組成物を均一に加温溶解し、壁膜材料として芳香族多価イソシアネートプレポリマー20.0部、クレゾールノボラック型エポキシ樹脂10.0部、助溶剤50.0部を混合した溶液を、10%ゼラチン水溶液中で微小滴になるように乳化分散し、加温しながら攪拌を続けた後、水溶性脂肪族変性アミン5.0部を加え、更に攪拌を続けてマイクロカプセル顔料懸濁液を得た。
 懸濁液を遠心分離機により粗大粒子を取り除いた後、フィルタープレス機によりろ過することでマイクロカプセル顔料を得た。
 マイクロカプセル顔料の体積平均粒子径は0.86μmであり、最大粒子径は2.72μmであった。(メジアン径)
 マイクロカプセル顔料の完全消色温度は60℃、完全発色温度は-25℃であり、温度変化によりマゼンタ色から無色に変色する。
 マイクロカプセル分散液のpH値が7.0のときのゼータ電位を測定したところ、ゼータ電位は0mVであった。(データ数20個の各ゼータ電位値は-0.04~+0.04mVで、その数平均値が0.04mV未満であり、実質的に0mVとみなすことができた。)
Comparative Example 1
(Preparation of microcapsule pigment)
As component (a), 9 parts of 9-ethyl- (3-methylbutyl) amino-spiro [12H-benzo [a] xanthen-12,1 '(3H) -isobenzofuran] -3'-one, (b) A reversible thermochromic composition consisting of 15.0 parts of 4,4 '-(2-ethylhexylidene) bisphenol as a component and 50.0 parts of 4-benzyloxyphenylethyl caprate as a component (c) was uniformly added. A solution of 20.0 parts of aromatic polyvalent isocyanate prepolymer, 10.0 parts of cresol novolac type epoxy resin, and 50.0 parts of cosolvent, which were dissolved at room temperature and used as a wall film material, was added to a 10% aqueous gelatin solution to form microdroplets. The resulting emulsion was emulsified and dispersed, and stirring was continued while heating, 5.0 parts of a water-soluble aliphatic modified amine was added, and the stirring was further continued to obtain a microcapsule pigment suspension.
After removing coarse particles from the suspension by a centrifuge, the suspension was filtered by a filter press to obtain a microcapsule pigment.
The volume average particle diameter of the microcapsule pigment was 0.86 μm, and the maximum particle diameter was 2.72 μm. (Median diameter)
The microcapsule pigment has a complete decolorization temperature of 60 ° C. and a complete color development temperature of −25 ° C., and changes from magenta color to colorless due to temperature change.
When the zeta potential was measured when the pH value of the microcapsule dispersion was 7.0, the zeta potential was 0 mV. (Each zeta potential value of 20 data pieces is −0.04 to +0.04 mV, and the number average value thereof is less than 0.04 mV, which can be regarded as substantially 0 mV.)
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.00部、グリセリン10.00部、防腐剤(ピリジン-2-チオール1-オキシドナトリウム塩、製品名:ソジウムオマジン、ロンザジャパン株式会社製)0.20部、防腐剤(3-ヨード-2-プロピニルブチルカーバメート、製品名:グライカシル2000、ロンザジャパン株式会社製)0.20部、消泡剤0.02部および水79.58部を均一に混合し、水性インキ組成物を得た。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.00 parts, glycerin 10.00 parts, preservative (pyridine-2-thiol 1-oxide sodium salt, product name: Sodium omazine, manufactured by Lonza Japan Co., Ltd.) 0 20 parts, antiseptic (3-iodo-2-propynylbutyl carbamate, product name: Glycacil 2000, manufactured by Lonza Japan Co., Ltd.) 0.20 parts, antifoaming agent 0.02 parts and water 79.58 parts uniformly. By mixing, an aqueous ink composition was obtained.
 上記水性インキ組成物を実施例1で用いた万年筆と同種の万年筆に収容し、コピー紙に筆記を行った。
 コピー紙には、室温(25℃)下でマゼンタ色の筆跡が視認され、60℃以上に加温することにより可逆熱変色像は消色し、-25℃下で筆記直後の状態(マゼンタ色の筆跡が形成された状態)に戻った。
 発色状態の筆跡は、かすれがひどく、発色および輪郭の視認が難しかった。
The above water-based ink composition was placed in a fountain pen of the same type as the fountain pen used in Example 1, and writing was performed on copy paper.
Magenta handwriting is visible on the copy paper at room temperature (25 ° C), and the reversible thermochromic image disappears when heated to 60 ° C or higher, and the state immediately after writing at -25 ° C (magenta color). It has returned to the state where the handwriting was formed).
The handwriting in the colored state was extremely faint, and it was difficult to visually recognize the color and outline.
 比較例2
 (マイクロカプセル顔料の調製)
 比較例1と同様の可マイクロカプセル顔料を調製した。
Comparative example 2
(Preparation of microcapsule pigment)
The same microcapsule pigment as in Comparative Example 1 was prepared.
 (水性インキ組成物の調製)
 マイクロカプセル顔料(予め冷却して発色させたもの)10.0部、モルフォリノエチル(メタ)アクリレート14.0部、ピペラジノエチル(メタ)アクリレート10.0部、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパンアンモニウムクロリド1.0部、エチレングリコール5.0部、防黴剤(製品名:プロキセルXL-2、ゼネカ株式会社製)0.2部、消泡剤(シリコン系、製品名:SNデフォーマー381、サンノプコ株式会社製)0.5部および水60.8部を均一に混合し、水性インキ組成物を得た。
(Preparation of water-based ink composition)
Microcapsule pigment (pre-cooled and developed color) 10.0 parts, morpholinoethyl (meth) acrylate 14.0 parts, piperazinoethyl (meth) acrylate 10.0 parts, 2-hydroxy-3- (4-benzoyl) Phenoxy) -N, N, N-trimethyl-1-propanammonium chloride 1.0 part, ethylene glycol 5.0 parts, antifungal agent (product name: Proxel XL-2, manufactured by Zeneca Corporation) 0.2 part, 0.5 parts of a defoaming agent (silicon type, product name: SN deformer 381, manufactured by San Nopco Ltd.) and 60.8 parts of water were uniformly mixed to obtain a water-based ink composition.
 (インクジェットプリンター)
 実施例10で使用したインクジェットプリンターのインキ収容部に水性インキ組成物を収容した。その際、収容部内底部にマイクロカプセル顔料の凝集物が確認されたため、印刷を行わなかった。
(inkjet printer)
The water-based ink composition was stored in the ink storage portion of the inkjet printer used in Example 10. At that time, since an aggregate of the microcapsule pigment was confirmed on the inner bottom of the accommodating portion, printing was not performed.
 形成した像について、下記の通り、評価を行った。得られた結果は表1~4に記載したとおりであった。
 尚、比較例2については、前記した通り、像の形成を行わなかったため未評価である。
The formed image was evaluated as follows. The results obtained were as shown in Tables 1-4.
As described above, Comparative Example 2 was not evaluated because an image was not formed.
(発色性の評価)
 像の発色性を目視により観察した。
A:濃く、鮮明である。
B:色が若干薄いが、視認は十分可能である。
C:色が薄く、視認が困難である。実用上問題がある。
(Evaluation of color development)
The color developability of the image was visually observed.
A: Dark and clear.
B: The color is slightly light, but it is sufficiently visible.
C: Light color and difficult to see. There are practical problems.
(精細さの評価)
 像の精細さを目視で観察した。
A:カスレが無く、像の輪郭が明瞭である。
B:カスレが若干ある、または像の輪郭が若干不明瞭であるが、実用上問題はない。
C:カスレがある、または、像の輪郭が不明瞭である。実用上問題がある。
(Evaluation of fineness)
The fineness of the image was visually observed.
A: There is no blur and the outline of the image is clear.
B: There is slight blurring or the outline of the image is slightly unclear, but there is no problem in practical use.
C: There is blurring or the outline of the image is unclear. There are practical problems.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
  t1 加熱消色型の可逆熱変色性マイクロカプセル顔料の完全発色温度
  t2 加熱消色型の可逆熱変色性マイクロカプセル顔料の発色開始温度
  t3 加熱消色型の可逆熱変色性マイクロカプセル顔料の消色開始温度
  t4 加熱消色型の可逆熱変色性マイクロカプセル顔料の完全消色温度
  ΔH ヒステリシス幅
  1 インク供給装置
  2 インク容器
  3 プリンタヘッド
  3a インク排出口
  3b インク取入口
  3c 内部流路
  4a インク供給流路
  4b インク回収流路
  5 ポンプ
  6 拭き取り手段
  7 ノズル
  8 インク吐出口
  9 インキ組成物
t1 Full color development temperature of reversible thermochromic microcapsule pigment of heat bleaching type t2 Color development start temperature of reversible thermochromic microcapsule pigment of heat bleaching type t3 Decoloration of reversible thermochromic microcapsule pigment of heat bleaching type Starting temperature t4 Complete erasing temperature of heat-erasable reversible thermochromic microcapsule pigment ΔH Hysteresis width 1 Ink supply device 2 Ink container 3 Printer head 3a Ink discharge port 3b Ink intake 3c Internal flow path 4a Ink supply flow path 4b Ink collection flow path 5 Pump 6 Wiping means 7 Nozzle 8 Ink ejection port 9 Ink composition

Claims (11)

  1.  (a)電子供与性呈色性有機化合物、(b)電子受容性化合物、および(c)前記(a)成分および(b)成分の呈色反応の生起温度を決める反応媒体を含んでなる可逆熱変色性組成物を内包してなる可逆熱変色性マイクロカプセルであって、
     前記マイクロカプセルが、水と前記マイクロカプセルのみからなるマイクロカプセル分散液中において、20℃、pH値7の条件下、正または負の値のゼータ電位を有することを特徴とする、インキ用可逆熱変色性マイクロカプセル顔料。
    A reversible composition comprising (a) an electron-donating color-developing organic compound, (b) an electron-accepting compound, and (c) a reaction medium that determines the temperature at which the color reaction of the components (a) and (b) occurs. A reversible thermochromic microcapsule containing a thermochromic composition,
    Reversible heat for ink, characterized in that the microcapsules have a positive or negative zeta potential under conditions of 20 ° C. and a pH value of 7 in a microcapsule dispersion liquid consisting of water and the microcapsules only. Color-changing microcapsule pigment.
  2.  前記ゼータ電位ζが、0<|ζ|≦20mVである、請求項1に記載のマイクロカプセル顔料。 The microcapsule pigment according to claim 1, wherein the zeta potential ζ is 0 <| ζ | ≦ 20 mV.
  3.  前記ゼータ電位ζが、1≦|ζ|≦15mVである、請求項1または2に記載のマイクロカプセル顔料。 The microcapsule pigment according to claim 1 or 2, wherein the zeta potential ζ is 1 ≦ | ζ | ≦ 15 mV.
  4.  0.1~5μmの体積平均粒子径を有し、かつ、最大粒子径が8μm以下である、請求項1~3のいずれか一項に記載のマイクロカプセル顔料。 The microcapsule pigment according to any one of claims 1 to 3, which has a volume average particle diameter of 0.1 to 5 µm and a maximum particle diameter of 8 µm or less.
  5.  0.3~4μmの体積平均粒子径を有し、かつ、最大粒子径が6μm以下である、請求項1~4のいずれか一項に記載のマイクロカプセル顔料。 The microcapsule pigment according to any one of claims 1 to 4, which has a volume average particle diameter of 0.3 to 4 µm and a maximum particle diameter of 6 µm or less.
  6.  0.3~3μmの体積平均粒子径を有し、かつ、最大粒子径が4μm以下である、請求項1~5のいずれか一項に記載のマイクロカプセル顔料。 The microcapsule pigment according to any one of claims 1 to 5, which has a volume average particle diameter of 0.3 to 3 µm and a maximum particle diameter of 4 µm or less.
  7.  請求項1~6のいずれか1項に記載のマイクロカプセル顔料と、水と、分散剤とを含み、
     前記分散剤が、前記マイクロカプセル顔料が有するゼータ電位の値と反対符号の電荷を帯びる官能基を構造に有することを特徴とする、可逆熱変色性水性インキ組成物。
    A microcapsule pigment according to any one of claims 1 to 6, water, and a dispersant,
    The reversible thermochromic water-based ink composition, wherein the dispersant has a functional group having a charge having a sign opposite to the zeta potential value of the microcapsule pigment in the structure.
  8.  前記分散剤が、オレフィン-マレイン酸共重合体およびそのアルカリ中和物、アクリル系高分子化合物、ジアルキルアミノアクリル酸エステル、ならびにジアルキルアミノメタアクリル酸エステルからなる群から選択される、請求項7に記載のインキ組成物。 8. The dispersant according to claim 7, wherein the dispersant is selected from the group consisting of an olefin-maleic acid copolymer and its alkali neutralized product, an acrylic polymer compound, a dialkylaminoacrylic acid ester, and a dialkylaminomethacrylic acid ester. The described ink composition.
  9.  前記分散剤の含有量が、前記インキ組成物の総質量を基準として、0.01~2質量%である、請求項7または8に記載のインキ組成物。 The ink composition according to claim 7 or 8, wherein the content of the dispersant is 0.01 to 2 mass% based on the total mass of the ink composition.
  10.  請求項7~9のいずれか一項に記載のインキ組成物を収容してなる、インク容器。 An ink container containing the ink composition according to any one of claims 7 to 9.
  11.  複数の、請求項10に記載のインク容器で構成された、インク容器セット。 An ink container set including a plurality of ink containers according to claim 10.
PCT/JP2019/041460 2018-10-24 2019-10-23 Reversible thermochromic microcapsule pigment for ink and reversible thermochromic aqueous ink composition using same WO2020085358A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020553420A JPWO2020085358A1 (en) 2018-10-24 2019-10-23 Reversible thermochromic microcapsule pigment for ink and reversible thermochromic water-based ink composition using it

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018200430 2018-10-24
JP2018-200430 2018-10-24
JP2019029497 2019-02-21
JP2019-029497 2019-02-21

Publications (1)

Publication Number Publication Date
WO2020085358A1 true WO2020085358A1 (en) 2020-04-30

Family

ID=70331697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041460 WO2020085358A1 (en) 2018-10-24 2019-10-23 Reversible thermochromic microcapsule pigment for ink and reversible thermochromic aqueous ink composition using same

Country Status (2)

Country Link
JP (1) JPWO2020085358A1 (en)
WO (1) WO2020085358A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363456A (en) * 2001-06-05 2002-12-18 Ricoh Co Ltd Ink for inkjet recording, inkjet recording method and ink cartridge for inkjet recording
JP2012177098A (en) * 2011-02-02 2012-09-13 Ngk Spark Plug Co Ltd Ink and device
JP2013132835A (en) * 2011-12-27 2013-07-08 Pilot Corporation Method of discoloring thermal discoloration image
JP2014094554A (en) * 2012-10-11 2014-05-22 Pilot Ink Co Ltd Reversible thermochromism print
WO2015129616A1 (en) * 2014-02-27 2015-09-03 富士フイルム株式会社 Aqueous composition, manufacturing method therefor, hard coat film, laminate film, transparent conductive film, and touch panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363456A (en) * 2001-06-05 2002-12-18 Ricoh Co Ltd Ink for inkjet recording, inkjet recording method and ink cartridge for inkjet recording
JP2012177098A (en) * 2011-02-02 2012-09-13 Ngk Spark Plug Co Ltd Ink and device
JP2013132835A (en) * 2011-12-27 2013-07-08 Pilot Corporation Method of discoloring thermal discoloration image
JP2014094554A (en) * 2012-10-11 2014-05-22 Pilot Ink Co Ltd Reversible thermochromism print
WO2015129616A1 (en) * 2014-02-27 2015-09-03 富士フイルム株式会社 Aqueous composition, manufacturing method therefor, hard coat film, laminate film, transparent conductive film, and touch panel

Also Published As

Publication number Publication date
JPWO2020085358A1 (en) 2021-09-24

Similar Documents

Publication Publication Date Title
EP2468828B1 (en) Reversibly thermochromic aqueous ink composition, and writing instrument and writing instrument set each utilizing same
EP2247673B1 (en) Reversible thermal discoloration aqueous ink composition and writing implement using the same and writing implement set
US11267978B2 (en) Reversibly thermochromic aqueous ink composition and writing instrument using the same
WO2014178373A1 (en) Solid writing material
JP5383094B2 (en) Reversible thermochromic microcapsule pigment
JP6159174B2 (en) Reversible thermochromic water-based ink composition, writing instrument using the same, and writing instrument set
WO2020085358A1 (en) Reversible thermochromic microcapsule pigment for ink and reversible thermochromic aqueous ink composition using same
JP6203550B2 (en) Reversible thermochromic water-based ink composition, writing instrument using the same, and writing instrument set
JPH1036725A (en) Microcapsule pigment having color memory of temperature-sensitive change in color
JP2020063320A (en) Reversible thermochromic aqueous ink composition for ink jet printer
JP7340665B2 (en) Thermochromic printed matter for schedule management and a set of thermochromic printed matter for schedule management using the same
JP7128670B2 (en) Thermochromic printed matter and thermochromic printed matter set using the same
JP5137463B2 (en) Reversible thermochromic water-based ink composition and filling type writing instrument using the same
JP2013146969A (en) Color change method for thermochromic image
JP2015021093A (en) Reversible thermochromic liquid composition
JP2012041459A (en) Reversible thermochromic aqueous ink composition, and writing utensil and writing utensil set using the same
JP2023036305A (en) Ink composition and image forming apparatus
US20230018132A1 (en) Reversibly thermochromic aqueous inkjet printer ink composition, inkjet printer and ink cartridge using the same
JP2022144764A (en) Image forming apparatus
JP2023142355A (en) Ink composition for reversible thermochromic stamp and stamp using the same
JP2013132835A (en) Method of discoloring thermal discoloration image
JP2022008266A (en) Aqueous ink composition for writing utensil and writing utensil storing the same
JP2020002286A (en) Water-based ink composition for reversible thermochromic writing instrument, and writing instrument using the same
JP2019077853A (en) Reversible thermochromic water-based ink composition, and writing instrument using the same
JP2020079369A (en) Thermochromic ink composition for stamp and stamp using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553420

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874982

Country of ref document: EP

Kind code of ref document: A1