WO2020085335A1 - Production method for 2-cyanoacrylate compound and production method for photocurable adhesive composition - Google Patents

Production method for 2-cyanoacrylate compound and production method for photocurable adhesive composition Download PDF

Info

Publication number
WO2020085335A1
WO2020085335A1 PCT/JP2019/041400 JP2019041400W WO2020085335A1 WO 2020085335 A1 WO2020085335 A1 WO 2020085335A1 JP 2019041400 W JP2019041400 W JP 2019041400W WO 2020085335 A1 WO2020085335 A1 WO 2020085335A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
cyanoacrylate
polymerization inhibitor
depolymerization
group
Prior art date
Application number
PCT/JP2019/041400
Other languages
French (fr)
Japanese (ja)
Inventor
謙一 石▲崎▼
健人 大村
絵利香 一色
洋慈 堀江
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2020553409A priority Critical patent/JP7255606B2/en
Publication of WO2020085335A1 publication Critical patent/WO2020085335A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/23Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and carboxyl groups, other than cyano groups, bound to the same unsaturated acyclic carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing a 2-cyanoacrylate compound and a method for producing a photocurable adhesive composition.
  • the 2-cyanoacrylate compound rapidly starts polymerization due to a small amount of water existing near the surface of the adherend, and adheres almost all adherends made of various materials in an extremely short time of several seconds to several minutes. Since it has a strong adhesive force, it is used as a main component of an instant adhesive in a wide range of fields such as electric, electronic, mechanical parts, precision machinery, household products and medical care.
  • Patent Document 1 As a conventional method for producing a 2-cyanoacrylate compound, the methods described in Patent Documents 1 to 4 are known.
  • Patent Document 1 in a method for producing 2-cyanoacrylate by depolymerizing a condensate of cyanoacetate and formaldehyde, the concentration of a depolymerization catalyst in a reaction solution in a depolymerization reactor having a stirrer is adjusted during the reaction.
  • a method for producing 2-cyanoacrylate which is characterized by carrying out a depolymerization reaction while keeping it constant.
  • Patent Document 2 in depolymerizing a condensate of cyanoacetate and formaldehyde in the presence of a polymerization inhibitor, a high-boiling point fraction condensed from the fraction obtained by depolymerization at a boiling point of 2-cyanoacrylate or higher.
  • a method for producing 2-cyanoacrylate is described, which comprises depolymerizing by returning the components to the depolymerization reaction.
  • Patent Document 3 discloses a method for producing 2-cyanoacrylate, which comprises a step of depolymerizing a condensate of cyanoacetate and formaldehyde, and a step of distilling and purifying the obtained crude 2-cyanoacrylate.
  • a method for producing 2-cyanoacrylate characterized in that the temperature of the dephlegmator in the step is 10 ° C. or more higher than the boiling point of 2-cyanoacrylate at that pressure and the high-boiling acid component is decondensed and removed at 50 ° C. or less. Have been described.
  • Patent Document 4 a step of introducing a cyanoacetic acid ester and formalin into a reaction tank to carry out a polycondensation reaction, a step of introducing the obtained polycondensation reaction solution into a dehydration tank to dehydrate, and a dehydrated polycondensation
  • the step of continuously introducing the reaction solution into the thin film evaporator for desolvation and the step of continuously introducing the decondensed polycondensate into the thin film evaporator for depolymerization are carried out continuously.
  • the dehydration tank is divided into two or more dehydration tanks connected in series, and after introducing the polycondensation reaction solution into the first dehydration tank of the dehydration tanks connected in series, a solvent is added to carry out azeotropic dehydration.
  • the continuous production method of 2-cyanoacrylate is described.
  • Patent Document 1 Japanese Patent No. 3475780
  • Patent Document 2 Japanese Patent No. 3804396
  • Patent Document 3 Japanese Patent No. 3965909
  • Patent Document 4 Japanese Patent No. 5311272
  • a 2-cyanoacrylate polycondensate which is a condensate of a cyanoacetic acid ester compound and a formaldehyde compound, is depolymerized in the presence of a polymerization inhibitor under heating and reduced pressure conditions to obtain a crude 2-cyanoacrylate monomer.
  • Depolymerization process A step of distilling the crude 2-cyanoacrylate monomer to obtain a purified 2-cyanoacrylate monomer,
  • the method for producing a 2-cyanoacrylate compound wherein the radical polymerization inhibitor used as the polymerization inhibitor in the depolymerization step is a compound having no hydroquinone structure.
  • R 1 to R 5 are each independently a hydrogen atom or a substituent other than a hydroxy group (excluding a phenolic hydroxy group) which may combine with each other to form a ring.
  • the 2-cyanoacrylate compound according to ⁇ 1> or ⁇ 2> which includes a post-addition step of adding a polymerization inhibitor to the purified 2-cyanoacrylate monomer after the distillation purification step.
  • ⁇ 4> The method for producing a 2-cyanoacrylate compound according to ⁇ 3>, wherein the radical polymerization inhibitor added in the post-addition step of the polymerization inhibitor is a phenolic radical polymerization inhibitor.
  • ⁇ 5> The method for producing a 2-cyanoacrylate compound according to ⁇ 3> or ⁇ 4>, wherein the radical polymerization inhibitor added in the post-addition step of the polymerization inhibitor is a radical polymerization inhibitor having a hydroquinone structure. .
  • ⁇ 6> Any one of ⁇ 3> to ⁇ 5>, wherein the amount of the radical polymerization inhibitor added in the post-addition step of the polymerization inhibitor is 10 ppm to 1,000 ppm in the obtained 2-cyanoacrylate compound.
  • a photocurable adhesive including a mixing step of mixing a 2-cyanoacrylate compound obtained by the production method according to any one of ⁇ 1> to ⁇ 6> and a Group 8 transition metal metallocene compound A method for producing a composition.
  • a method for producing a 2-cyanoacrylate compound capable of improving the storage stability of a photocurable adhesive composition containing a Group 8 transition metal metallocene compound and a 2-cyanoacrylate compound.
  • a method for producing a photocurable adhesive composition using the 2-cyanoacrylate compound obtained by the method for producing a 2-cyanoacrylate compound.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition, unless a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • the term “step” is included in this term as long as the intended purpose of the step is achieved, not only when it is an independent step but also when it cannot be clearly distinguished from other steps.
  • “mass%” and “weight%” have the same meaning
  • “mass part” and “weight part” have the same meaning.
  • a combination of two or more preferable aspects is a more preferable aspect.
  • (meth) acryloyl represents both acryloyl and methacryloyl, or either
  • (meth) acryloxy represents both acryloxy and methacryloxy.
  • the hydrocarbon chain may be described by a simplified structural formula in which the symbols of carbon (C) and hydrogen (H) are omitted.
  • C carbon
  • H hydrogen
  • the method for producing a 2-cyanoacrylate compound of the present invention comprises Depolymerization step in the presence of a polymerization inhibitor under heating and reduced pressure conditions to obtain a crude 2-cyanoacrylate monomer, and distillation of the crude 2-cyanoacrylate monomer to obtain a purified 2-cyanoacrylate monomer And a distillation purification step, and the polymerization inhibitor used in the depolymerization step is a compound having no hydroquinone structure.
  • a compound having a hydroquinone structure such as hydroquinone is often used as a polymerization inhibitor during depolymerization.
  • the present inventors have found that when a compound having a hydroquinone structure is used during depolymerization, the compound having a hydroquinone structure is oxidized by the action of impurities or decomposed products, and a small amount of a compound having a benzoquinone structure is produced. I found it.
  • the present inventors have found that a compound having a benzoquinone structure greatly contributes to the storage stability of the 2-cyanoacrylate compound.
  • a 2-cyanoacrylate compound obtained by using only a compound having no hydroquinone structure as a polymerization inhibitor has excellent storage stability. It has been found that a method for producing a compound can be provided.
  • the 2-cyanoacrylate compound (also referred to as “2-cyanoacrylate monomer”) produced by the method for producing a 2-cyanoacrylate compound of the present invention is not particularly limited as long as it is a monomer (monomer).
  • the compound represented by the following formula (C) is preferable.
  • R is a saturated or unsaturated, straight-chain hydrocarbon group, branched chain hydrocarbon group or cyclic hydrocarbon group having 1 to 20 carbon atoms, which may have a halogen atom, or Represents an aromatic hydrocarbon group having 1 to 20 carbon atoms, which may have a halogen atom.
  • R contains an ether bond
  • either or both of the ether-bonded hydrocarbon residual chains may be a saturated or unsaturated C5 to C20 straight chain which may have a halogen atom. It is a chain hydrocarbon group, a branched chain hydrocarbon group or a cyclic hydrocarbon group, or an aromatic group having 5 to 20 carbon atoms which may have a halogen atom.
  • 2-cyanoacrylate compound examples include 2-cyanoacrylic acid methyl, ethyl, chloroethyl, n-propyl, i-propyl, allyl, propargyl, n-butyl, i-butyl, n-pentyl and n-hexyl.
  • 2-cyanoacrylate compounds include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, cyclohexyl, phenyl, tetrahydrofurfuryl, 2-ethylhexyl of 2-cyanoacrylic acid, Preferable examples include n-octyl, 2-octyl, 2-methoxyethyl, 2-ethoxyethyl ester, and 1- (2-methoxy-1-methylethoxy) propyl.
  • the 2-cyanoacrylate compound obtained by the method for producing a 2-cyanoacrylate compound of the present invention does not contain a compound having a benzoquinone structure or has a content of a compound having a benzoquinone structure from the viewpoint of storage stability. It is preferably more than 0 ppm and less than 4 ppm.
  • Examples of the compound having a benzoquinone structure include 1,4-benzoquinone, 1,2-benzoquinone, 1,4-naphthoquinone, 9,10-anthraquinone, p-xyloquinone, 2,6-dimethyl-1,4-benzoquinone, 2, Examples include 3-dichloro-5,6-dicyanobenzoquinone, 2-hydroxy-1,4-naphthoquinone, 2-methyl-1,4-naphthoquinone, 2-chloro-1,4-naphthoquinone, and 1,4-dihydroxyanthraquinone.
  • a 2-cyanoacrylate polycondensate which is a condensate of a cyanoacetic acid ester compound and a formaldehyde compound (also referred to as “2-cyanoacrylate depolymerization precursor”)
  • a compound in which the polymerization inhibitor used in the depolymerization step does not have a hydroquinone structure including a depolymerization step of obtaining a crude 2-cyanoacrylate monomer by depolymerization under the presence of a polymerization inhibitor and under heating and reduced pressure conditions.
  • a 2-cyanoacrylate polycondensate which is a condensate of a cyanoacetic acid ester compound and a formaldehyde compound is used.
  • the 2-cyanoacrylate polycondensate in the present disclosure is one that produces a 2-cyanoacrylate monomer (2-cyanoacrylate compound) by depolymerization.
  • the cyanoacetic acid ester compound is not particularly limited, and a compound corresponding to the 2-cyanoacrylate compound to be produced can be selected.
  • the formaldehyde compound is not particularly limited, but specific examples thereof include formaldehyde gas, formalin aqueous solution, a reaction product of formaldehyde and alcohol, paraformaldehyde and trioxane. Moreover, these can be used individually by 1 type or in mixture of 2 or more types. Among them, paraformaldehyde is preferable as the formaldehyde compound.
  • the polymerization inhibitor used in the depolymerization step is a compound having no hydroquinone structure.
  • the polymerization inhibitor used in the depolymerization step preferably contains a compound having a phenolic hydroxy group, more preferably a compound represented by the following formula (1), The compound represented by the following formula (2) is particularly preferable.
  • R 1 to R 5 are each independently a hydrogen atom or a hydroxy group (excluding a phenolic hydroxy group), which is bonded to each other to form a ring.
  • R 6 represents a hydrogen atom or an alkyl group
  • R 7 to R 10 each independently represents an alkyl group, a cycloalkyl group or an alkenyl group
  • R 11 represents a hydrogen atom
  • R 1 to R 5 is preferably the above-mentioned substituent, and R 1 and R 5 are more preferably at least the above-mentioned substituents, R 1 It is particularly preferable that 1 , R 3 and R 5 are at least the above substituents.
  • R 1 and R 5 in formula (1) are each independently a linear or branched alkyl group, a cycloalkyl group, an alkyl group having a structure having a phenolic hydroxy group, or (meth) from the viewpoint of storage stability.
  • R 1 is a linear or branched alkyl group
  • R 5 is an alkyl group having a structure having a phenolic hydroxy group, or (meth) acryloxyphenyl It is more preferably an alkyl group having a structure
  • R 1 is a linear or branched alkyl group
  • R 5 is particularly preferably an alkyl group having a (meth) acryloxyphenyl structure.
  • R 3 in the formula (1) is preferably a hydrogen atom, an alkyl group or an alkoxy group, and is a linear or branched alkyl group, a cycloalkyl group or an alkoxy group.
  • the alkyl group for R 1 , R 3 and R 5 is preferably an alkyl group having 1 to 8 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • a linear or branched alkyl group, a cycloalkyl group having 1 to 6 carbon atoms, a t-butyl group, or a 2-methyl-2-butyl group is more preferable, and a methyl group, a t-butyl group, or 2 It is particularly preferably a methyl-2-butyl group.
  • the alkyl group may be linear, may have a branch, may have a ring structure, and may have a substituent.
  • the substituent may be a group that does not lose its ability to inhibit polymerization, and examples thereof include a halogen atom, an alkoxy group, and an aryl group. Further, the substituent may be further substituted with at least one kind of group selected from the group consisting of the substituent and an alkyl group.
  • R 2 and R 4 are each independently preferably a hydrogen atom or an alkyl group, and more preferably a hydrogen atom.
  • R 6 in formula (2) is preferably a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and more preferably a hydrogen atom or a methyl group.
  • R 7 and R 10 in the formula (2) are preferably a tertiary alkyl group, more preferably a C 4-8 tertiary alkyl group, and t- A butyl group or a 2-methyl-2-butyl group is particularly preferable.
  • R 8 and R 9 in the formula (2) are preferably an alkyl group having 1 to 8 carbon atoms, such as a methyl group, a t-butyl group, a 2-methyl-2-butyl group, More preferably, it is a methoxy group, an ethoxy group, a propoxy group, or a butoxy group.
  • R 11 in formula (2) is preferably a hydrogen atom or a (meth) acryloyl group.
  • the 5% weight loss temperature of the polymerization inhibitor used in the depolymerization step in a nitrogen atmosphere includes a compound in the range of ⁇ 150 ° C. to + 50 ° C. with respect to the boiling point of the 2-cyanoacrylate compound used. It is preferable.
  • the polymerization inhibitor used in the depolymerization step is 2,2′-methylenebis (6-tert-butyl-p-cresol) (221 ° C.), 2,2′-methylenebis. (4-Ethyl-6-tert-butyl-phenol) (229 ° C), 2,2'-methylenebis (4-methyl-6-tert-butylphenol) monoacrylate (234 ° C), 2,2'-ethylenebis ( At least selected from the group consisting of 4,6-di-tert-amylphenol) monoacrylate (253 ° C.) and 2,2′-methylenebis (6- (1-methylcyclohexyl) -p-cresol) (285 ° C.) It is preferably one compound.
  • the temperatures in parentheses are all 5% weight loss temperatures.
  • the polymerization inhibitor may be used alone or in combination of two or more. Further, the addition amount of the polymerization inhibitor used in the depolymerization step is 0 based on 100 parts by mass of the 2-cyanoacrylate polycondensate used, from the viewpoint of depolymerization yield and storage stability. It is preferably from 1 to 20 parts by mass, more preferably from 0.5 to 10 parts by mass, and particularly preferably from 1 to 5 parts by mass.
  • the depolymerization step it is preferable to carry out depolymerization in the presence of a depolymerization catalyst from the viewpoint of depolymerization rate and depolymerization yield.
  • a depolymerization catalyst diphosphorus pentoxide, phosphoric acid, polyphosphoric acid, p-toluenesulfonic acid and the like are preferably mentioned from the viewpoints of depolymerization rate and depolymerization yield. More preferred is diphosphorus.
  • the depolymerization catalyst may have a polymerization inhibiting ability.
  • diphosphorus pentoxide, phosphoric acid, polyphosphoric acid, and p-toluenesulfonic acid are depolymerization catalysts having a polymerization inhibiting ability. It should be noted that these additives are treated as depolymerization catalysts in the present invention.
  • the depolymerization catalyst may be used alone or in combination of two or more. Further, the addition amount of the depolymerization catalyst used in the depolymerization step is 0. 0 from the viewpoint of depolymerization rate and depolymerization yield, with respect to 100 parts by mass of the 2-cyanoacrylate polycondensate used. It is preferably from 05 parts by mass to 20 parts by mass, more preferably from 0.1 parts by mass to 10 parts by mass, particularly preferably from 0.2 parts by mass to 5 parts by mass.
  • a high boiling point solvent such as tricresyl phosphate, dioctyl phthalate or diphenylphenylphosphonate may be added in order to reduce the viscosity in the reaction vessel during depolymerization.
  • the high boiling point solvent may be used alone or in combination of two or more.
  • the addition amount of the high boiling point solvent used in the depolymerization step is 0. 0, based on 100 parts by mass of the 2-cyanoacrylate polycondensate used, from the viewpoint of depolymerization rate and depolymerization yield. It is preferably 1 part by mass to 50 parts by mass, more preferably 1 part by mass to 30 parts by mass, and particularly preferably 2 parts by mass to 20 parts by mass.
  • the depolymerization temperature in the depolymerization step is not particularly limited, but is preferably 100 ° C. or higher, and more preferably 150 ° C. or higher and 320 ° C. or lower, from the viewpoint of depolymerization rate and depolymerization yield. preferable.
  • the pressure in the depolymerization step may be lower than 1 atm, but from the viewpoint of depolymerization rate and depolymerization yield, it is preferably 15,000 Pa or less, and 1 Pa to 10,000 Pa. More preferably, it is particularly preferably 10 Pa to 1,000 Pa.
  • the depolymerization step can be suitably performed by the following method, for example.
  • a 2-cyanoacrylate polycondensate which is a condensate of cyanoacetate and formaldehyde, is placed in a reactor equipped with a cooler for cooling the distillate, and the temperature is gradually raised under reduced pressure.
  • the temperature inside the reactor reaches the temperature at which the depolymerization reaction starts, the gas of the 2-cyanoacrylate monomer begins to be emitted, and the depolymerization is continued by keeping the temperature inside the reactor at a temperature higher than the temperature at which the reaction is started.
  • the cooler maintains a temperature at which the gas generated by depolymerization can be condensed.
  • the temperature of the cooler is preferably a temperature equal to or lower than the boiling point of the 2-cyanoacrylate monomer under the pressure condition of partial condensation, for example, in the range of ⁇ 30 ° C. to 50 ° C.
  • the crude 2-cyanoacrylate monomer is obtained by condensing with the condenser and collecting the condensed fraction.
  • a partial condenser and a total condenser are used as the cooler, and a high boiling point that condenses above the boiling point of the 2-cyanoacrylate monomer.
  • the fraction may be returned to the depolymerization reaction for depolymerization.
  • the method for producing a 2-cyanoacrylate compound of the present invention includes a distillation purification step of distilling the crude 2-cyanoacrylate monomer to obtain a purified 2-cyanoacrylate monomer.
  • a distillation purification step of distilling the crude 2-cyanoacrylate monomer to obtain a purified 2-cyanoacrylate monomer.
  • trace amounts of water remaining in the crude 2-cyanoacrylate monomer and polymer such as impurities can be removed, and a purified 2-cyanoacrylate monomer can be obtained.
  • the crude 2-cyanoacrylate monomer contains an organic solvent, it is preferable to carry out main distillation to obtain a purified 2-cyanoacrylate monomer after distilling off the organic solvent.
  • the pressure during the distillation in the distillation purification step is not particularly limited and may be appropriately selected depending on the heating temperature, the boiling point of the 2-cyanoacrylate monomer, etc., but is preferably under reduced pressure, 10 Pa to 13, It is more preferably 300 Pa.
  • the heating temperature during the distillation in the distillation purification step is not particularly limited and may be appropriately selected depending on the pressure during the distillation, the boiling point of the 2-cyanoacrylate monomer, and the like, but is 30 ° C to 150 ° C. It is preferable that the temperature is 40 ° C. to 100 ° C.
  • a polymerization inhibitor to the crude 2-cyanoacrylate monomer from the viewpoint of yield and storage stability.
  • anionic polymerization inhibitors such as diphosphorus pentoxide, SO 2 , p-toluenesulfonic acid, methanesulfonic acid, propanesultone, and BF 3 complex are preferably mentioned.
  • Preferred examples of the BF 3 complex include an ether complex, an alcohol complex, a carboxylic acid complex and the like.
  • the polymerization inhibitor added in the distillation and purification step preferably contains diphosphorus pentoxide from the viewpoint of yield and storage stability.
  • the radical polymerization inhibitor added as the polymerization inhibitor in the distillation purification step is a compound having no hydroquinone structure from the viewpoint of storage stability when a photocurable adhesive composition is prepared. preferable.
  • the polymerization inhibitor added in the distillation purification step may be used alone or in combination of two or more kinds.
  • the addition amount of the polymerization inhibitor in the distillation purification step is preferably 0.01 parts by mass to 5.0 parts by mass, and 0.05 parts by mass to 100 parts by mass of the crude 2-cyanoacrylate monomer. It is more preferably 1.0 part by mass.
  • Distillation in the distillation purification step can be performed by a known method. It is also possible to introduce the crude 2-cyanoacrylate monomer obtained by the depolymerization step to the distillation purification step as it is, and continuously perform the distillation purification step simultaneously with the depolymerization step.
  • the method for producing a 2-cyanoacrylate compound of the present invention is preferably performed in an atmosphere free from or low in humidity and oxygen (eg, 0.01 vol% or less), and more preferably in an inert gas atmosphere.
  • the inert gas include nitrogen and argon.
  • the method for producing a 2-cyanoacrylate compound of the present invention preferably includes a post-addition step of a polymerization inhibitor that is added after the distillation purification step. After the distillation and purification step, even if a compound having a hydroquinone structure is added as a polymerization inhibitor, the production of a compound having a benzoquinone structure is suppressed and the storage stability is excellent.
  • the polymerization inhibitor added in the post-addition step of the polymerization inhibitor is preferably a phenolic radical polymerization inhibitor from the viewpoint of storage stability.
  • phenol-based radical polymerization inhibitor examples include hydroquinone, mequinol, butylhydroxyanisole, di-tert-butylhydroxytoluene, methylhydroquinone, methoxyhydroquinone, 2,6-dimethylhydroquinone, 2,6-di-tert-butylhydroquinone, At least one selected from the group consisting of 4-tert-butylcatechol, tert-butylhydroquinone, 6-tert-butyl-4-xylenol, 2,6-di-tert-butylphenol and 1,2,4-trihydroxybenzene It is preferably a seed and is a radical polymerization inhibitor having a hydroquinone structure, such as hydroquinone, methylhydroquinone, methoxyhydroquinone, 2,6-dimethylhydroquinone and 2,6-di-ter. - and particularly preferably at least one selected from the group consisting of butyl hydroquinone
  • the polymerization inhibitor in the post-addition step of the polymerization inhibitor the polymerization inhibitor described in the depolymerization step and the distillation / purification step described above is also preferably exemplified.
  • anionic polymerization inhibitors such as diphosphorus pentoxide, SO 2 , p-toluenesulfonic acid, methanesulfonic acid, propanesultone, and BF 3 complex are preferable as these polymerization inhibitors.
  • a radical polymerization inhibitor having a hydroquinone structure and an anionic polymerization inhibitor together as the polymerization inhibitor.
  • the polymerization inhibitor in the post-addition step of the polymerization inhibitor may be used alone or in combination of two or more kinds.
  • the amount of the polymerization inhibitor added in the post-addition step of the polymerization inhibitor is preferably 50 ppm to 1% by mass, and more preferably 20 ppm to 5,000 ppm in the resulting 2-cyanoacrylate compound.
  • the amount of the radical polymerization inhibitor added in the post-addition step of the polymerization inhibitor may be 50 ppm to 1% by mass in the obtained 2-cyanoacrylate compound, when it is used for other than the photocurable adhesive composition.
  • the photocurable adhesive composition When used in addition to the photocurable adhesive composition, it is preferably 20 ppm to 5,000 ppm within a range not exceeding the addition amount of the photoradical generator.
  • the amount of the anionic polymerization inhibitor added in the post-addition step of the polymerization inhibitor is preferably 2 ppm to 200 ppm, more preferably 5 ppm to 100 ppm in the obtained 2-cyanoacrylate compound.
  • the method of adding the polymerization inhibitor in the post-addition step of the polymerization inhibitor is not particularly limited, and the polymerization initiator may be added to the purified 2-cyanoacrylate monomer.
  • the distillation purification step examples include a method in which the purified 2-cyanoacrylate monomer is added in advance to a container for collection, or a method after the distillation is completed.
  • the purified 2-cyanoacrylate monomer obtained by the distillation purification step is directly introduced to the polymerization inhibitor post-addition step, and the polymerization inhibitor post-addition step is continuously performed simultaneously with the distillation purification step. It is also possible to do so.
  • a cyanoacetic acid ester compound and a formaldehyde compound are condensed in an organic solvent in the presence of a basic catalyst to give a 2-cyanoacrylate compound.
  • a polycondensation step of obtaining a condensate (2-cyanoacrylate depolymerization precursor) may be included.
  • the cyanoacetic acid ester compound and the formaldehyde compound in the polycondensation step are the same as the cyanoacetic acid ester compound and the formaldehyde compound described in the depolymerization step, respectively, and the preferred embodiments are also the same.
  • the basic catalyst used in the polycondensation step known ones can be used. Specifically, for example, organic basic substances such as piperidine, morpholine, quinoline, isoquinoline, ethylamine, diethylamine, triethylamine, ethanolamine, pyridine acetate, and inorganic basic substances such as sodium hydroxide, potassium hydroxide, and ammonia can be used. Can be mentioned.
  • the basic catalysts may be used alone or in combination of two or more.
  • the addition amount of the basic catalyst in the polycondensation step is not particularly limited, but from the viewpoint of reactivity and yield, 0.0001 parts by mass to 0.01 parts by mass relative to 100 parts by mass of the cyanoacetic acid ester compound. Is preferred.
  • a solvent is preferably used in the polycondensation step.
  • the solvent used in the polycondensation step include toluene, xylene, benzene, trichloroethylene, cyclohexane, ethyl acetate, methanol, ethanol, isopropanol, tricresyl phosphate, dioctyl phthalate and diphenylphenylphosphonate.
  • the said solvent may be used individually by 1 type, or may use 2 or more types together.
  • the amount of the solvent used is not particularly limited and may be appropriately selected as desired.
  • the 2-cyanoacrylate polycondensate obtained by the polycondensation step is subjected to a known appropriate pretreatment so that the 2-cyanoacrylate polycondensate is decomposed into the 2-cyanoacrylate monomer in the subsequent depolymerization step.
  • a known appropriate pretreatment for example, water contained in the raw material or water generated in the condensation step is removed by azeotropy when a solvent that forms an azeotropic mixture with water is used, and if not, A treatment of distilling off is preferable.
  • the basic catalyst used is preferably deactivated with an acidic substance, washed with water, or removed with a solvent.
  • the method for producing a 2-cyanoacrylate compound of the present invention may include other known steps in addition to the steps described above.
  • the photocurable adhesive composition of the present invention is a composition containing a 2-cyanoacrylate compound obtained by the production method of the present invention, and contains the 2-cyanoacrylate compound obtained by the production method of the present invention and a Group 8 compound.
  • a composition containing a transition metal metallocene compound is preferable.
  • the method for producing the photocurable adhesive composition of the present invention preferably includes a mixing step of mixing the 2-cyanoacrylate compound obtained by the production method of the present invention and a Group 8 transition metal metallocene compound. .
  • the method for producing the photocurable resin composition of the present invention is not particularly limited and may be produced by mixing the components described above and below, but there is little or no moisture and oxygen (for example, 0.01% by volume or less). ) Mixing under an atmosphere is preferable, and mixing under an inert gas atmosphere is more preferable. Examples of the inert gas include nitrogen and argon. Further, the method for producing the photocurable resin composition of the present invention is preferably carried out under light shielding.
  • the mixing method is not particularly limited, and a known mixing method can be used.
  • the photocurable adhesive composition of the present invention does not contain a compound having a benzoquinone structure, or the content of the compound having a benzoquinone structure is more than 0 ppm and less than 4 ppm. It is preferable that the compound having a benzoquinone structure is not contained, or the content of the compound having a benzoquinone structure is more than 0 ppm and 3 ppm or less, and the compound having a benzoquinone structure is not contained, or the benzoquinone structure is not contained.
  • the content of the compound contained is more preferably more than 0 ppm and 1.5 ppm or less.
  • the photocurable adhesive composition of this invention contains the compound which has 2 or more types of benzoquinone structures, the said content is the total content of the compound which has 2 or more types of benzoquinone structures.
  • the photocurable adhesive composition of the present invention preferably contains a Group 8 transition metal metallocene compound. It is estimated that the Group 8 transition metal metallocene compound functions as a photopolymerization initiator. Further, since the light absorption wavelength of the Group 8 transition metal metallocene compound is also on the long wavelength side of 500 nm or more, the photocurable adhesive composition of the present invention has a wider wavelength range, that is, an ultraviolet range and a visible range. Light curing is possible even with light in the light range.
  • Group 8 transition metal metallocene compound examples include a ferrocene compound in which the transition metal is iron, an osmocene compound in which osmium is a ruthenocene compound in which ruthenium is a cobaltocene compound in which cobalt is a nickelocene compound. Mention may be made of metallocene compounds having a Group 8 transition metal element in the table. Among these, at least one compound selected from the group consisting of ferrocene compounds and ruthenocene compounds is preferable from the viewpoint of photocurability and storage stability.
  • Group 8 transition metal metallocene compound examples include, for example, ferrocene, ethylferrocene, n-butylferrocene, benzoylferrocene, acetylferrocene, t-amylferrocene, 1,1′-dimethylferrocene, 1,1 ′.
  • -Di-n-butylferrocene 1,1'-dibenzoylferrocene, 1,1'-di (acetylcyclopentadienyl) iron, bis (pentamethylcyclopentadienyl) iron, bis (cyclopentadienyl) Examples thereof include osmium, bis (pentamethylcyclopentadienyl) osmium, ruthenocene (bis (cyclopentadienyl) ruthenium), and bis (pentamethylcyclopentadienyl) ruthenium.
  • the Group 8 transition metal metallocene compound a transition metal metallocene compound of Group 8 of the periodic table having an aromatic electron type ligand described in JP-A-2003-277422 can be preferably used.
  • the Group 8 transition metal metallocene compound is at least one selected from the group consisting of ferrocene, ethylferrocene, n-butylferrocene, benzoylferrocene, and ruthenocene, from the viewpoint of photocurability and storage stability.
  • ferrocene ethylferrocene
  • n-butylferrocene n-butylferrocene
  • benzoylferrocene benzoylferrocene
  • ruthenocene from the viewpoint of photocurability and storage stability.
  • at least one compound selected from the group consisting of ferrocene and ruthenocene is particularly preferred.
  • the photocurable adhesive composition of the present invention may contain one kind of Group 8 transition metal metallocene compound alone, or may contain two or more kinds thereof.
  • the content of the Group 8 transition metal metallocene compound in the photocurable adhesive composition of the present invention is preferably 1 ppm to 50,000 ppm, and preferably 10 ppm to 10 ppm, from the viewpoint of photocurability and storage stability. It is more preferably 2,000 ppm, particularly preferably 20 ppm to 2,000 ppm.
  • the photocurable adhesive composition of the present invention contains the 2-cyanoacrylate compound obtained by the production method of the present invention.
  • the photocurable adhesive composition of the present invention may include one type of the 2-cyanoacrylate compound alone or may include two or more types.
  • the content of the 2-cyanoacrylate compound in the photocurable adhesive composition of the present invention is preferably 40% by mass or more, and more preferably 60% by mass or more, from the viewpoint of curability, adhesion speed, and adhesive strength. More preferably.
  • the photocurable adhesive composition of the present invention preferably further contains a photoradical generator.
  • a photo-radical generator a known photo-radical generator used when photopolymerizing a radical-polymerizable compound can be used.
  • the photoradical generator include an acylgermane-based compound, an acylphosphine oxide-based compound, a hydroxy group, an acetophenone-based compound that does not have a nitrogen atom and a thioether bond, and a benzoin-based compound that does not have a hydroxy group, a nitrogen atom, and a thioether bond.
  • an acylgermane compound is preferable from the viewpoint of photocurability, adhesion speed, and storage stability.
  • the acylgermane compound is preferably a monoacylgermane compound or a bisacylgermane compound, more preferably a bisacylgermane compound.
  • Preferable examples of the acylgermane compound include Ivocerin (manufactured by Ivoclar Vivadent).
  • acylphosphine oxide-based compound monoacylphosphine oxide-based compounds and bisacylphosphine oxide-based compounds are preferable, and bisacylphosphine oxide-based compounds are more preferable.
  • Preferred examples of the monoacylphosphine oxide compound include compounds represented by the following formula (A-1).
  • R A1 and R A2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a phenyl group, or 1 to 3 carbon atoms having 1 to 3 carbon atoms. Represents an phenyl group substituted with an alkyl group having 8 or an alkoxy group having 1 to 8 carbon atoms, and R A3 is a linear or branched alkyl group having 1 to 18 carbon atoms, which is unsubstituted or substituted with an acetyloxy group.
  • a cycloalkyl group having 3 to 12 carbon atoms an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an aryl group which is unsubstituted or substituted by a halogen atom; or by the following formula (A-2) Represents a group represented.
  • R A4 and R A5 each independently represent an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a phenyl group, or 1 to 3 carbon atoms having 1 to 3 carbon atoms.
  • 8 represents a phenyl group substituted by an alkyl group having 8 or an alkoxy group having 1 to 8 carbon atoms
  • X A1 represents a p-phenylene group.
  • acylphosphine oxide compounds include methylisobutyroylmethylphosphinate, methylisobutyroylphenylphosphinate, methylpivaloylphosphinate, methyl-2-ethylhexanoylphosphinate, and isopropyl-2-ethylhexanoylphenylphosphonate.
  • Preferred examples of the bisphosphine oxide-based compound include compounds represented by the following formula (A-3).
  • R p in the formula (A-3) is unsubstituted, is an alkyl group having 1 to 12 carbon atoms, an alkylthio group having 1 to 8 carbon atoms, or a halogen atom, and each R p is the same. It may be different.
  • the alkyl group having 1 to 12 carbon atoms in R p in formula (A-3) may be linear or branched, and is, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl. , Tert-butyl, pentyl, isopentyl, hexyl, heptyl, octyl, nonyl, decyl or dodecyl groups. It is preferably an alkyl group having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms.
  • the alkylthio group having 1 to 8 carbon atoms in R p in formula (A-3) may be linear or branched, and examples thereof include methylthio, ethylthio, propylthio, isopropylthio, butylthio, tert-butylthio, Hexylthio or octylthio are mentioned. Of these, methylthio is preferable.
  • the halogen atom include chlorine atom, bromine atom, and iodine atom. Of these, chlorine atom is preferable.
  • bisacylphosphine oxide compound examples include bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide and bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide.
  • acetophenone compound examples include 4-phenoxydichloroacetophenone, 4-t-butyldichloroacetophenone, 4-t-butyltrichloroacetophenone and diethoxyacetophenone.
  • benzoin compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, and benzyl methyl ketal.
  • the photoradical generators are dibenzoyldiethylgermanium, bis (4-methoxybenzoyl) dimethylgermanium, and bis (4-methoxybenzoyl) diethylgermanium from the viewpoints of photocurability, adhesion rate, and storage stability.
  • dibenzoyldiethylgermanium bis (4-methoxybenzoyl) dimethylgermanium, bis (4-methoxybenzoyl) diethylgermanium, bis (4-methylbenzoyl) diethylgermane Maniumu, more preferably bis (4-methylbenzoyl) at least one compound selected from the group consisting of dimethyl germanium and dibenzo dichloride butyl germanium.
  • the photocurable adhesive composition of the present invention may contain one type of photoradical generator alone, or may contain two or more types.
  • the content of the photoradical generator in the photocurable adhesive composition of the present invention is 0 with respect to the total mass of the photocurable adhesive composition from the viewpoint of photocurability, adhesion speed, and storage stability.
  • the amount is preferably 0.01% by mass to 5% by mass, more preferably 0.05% by mass to 2% by mass, and particularly preferably 0.05% by mass to 1% by mass.
  • the photocurable adhesive composition of the present invention preferably further contains a polymerization inhibitor from the viewpoint of storage stability.
  • a polymerization inhibitor a known polymerization inhibitor can be used.
  • Preferred examples of the polymerization inhibitor include diphosphorus pentoxide, SO 2 , p-toluene sulfonic acid, methane sulfonic acid, propane sultone, BF 3 complex and other anionic polymerization inhibitors having no hydroquinone structure.
  • the above-mentioned polymerization inhibitor having no hydroquinone structure such as the compound represented by the formula (1) or the formula (2) is preferably exemplified.
  • a polymerization inhibitor having no hydroquinone structure from the viewpoint of storage stability, mequinol, butylhydroxyanisole, dibutylhydroxytoluene, di-tert-butylhydroxytoluene, 6-tert-butyl-4-xylenol, 2,6- Di-tert-butylphenol, 2,2'-methylenebis (6-tert-butyl-p-cresol), 2,2'-methylenebis (4-ethyl-6-tert-butyl-phenol), 2,2'-methylenebis (4-Methyl-6-tert-butylphenol) monoacrylate, 2,2'-ethylenebis (4,6-di-tert-amylphenol) monoacrylate and 2,2'-methylenebis (6- (1-methylcyclohe
  • the polymerization inhibitor preferably contains a radical polymerization inhibitor having a hydroquinone structure, more preferably a radical polymerization inhibitor having a 1,4-hydroquinone structure.
  • the radical polymerization inhibitor having a hydroquinone structure is 1,4-hydroquinone, 1,2-hydroquinone, methylhydroquinone, 2,6-dimethylhydroquinone, 2,6-di-tert-butylhydroquinone from the viewpoint of storage stability.
  • At least one compound selected from the group consisting of 1,4-dihydroxynaphthalene, 1,2-dihydroxynaphthalene, and 9,10-dihydroxyanthracene is preferable, and 1,4-hydroquinone, 1,2-hydroquinone, More preferably, it is at least one selected from the group consisting of methylhydroquinone, methoxyhydroquinone, 2,6-dimethylhydroquinone and 2,6-di-tert-butylhydroquinone, and hydroquinone, methylhydroquinone and methoxyha are preferred. It is particularly preferred from the group consisting of Dorokinon is at least one selected.
  • the radical polymerization inhibitor having a hydroquinone structure is preferably added after the distillation and purification at the time of preparing the photocurable adhesive composition or at the time of producing the 2-cyanoacrylate compound as a raw material. It is more preferable to prepare the curable adhesive composition.
  • the photocurable adhesive composition of the present invention may contain one type of polymerization inhibitor or two or more types of polymerization inhibitors. Among them, from the viewpoint of storage stability, it is preferable to contain an anionic polymerization inhibitor having no hydroquinone structure, and it is more preferable to contain a radical polymerization inhibitor having no hydroquinone structure and an anionic polymerization inhibitor having no hydroquinone structure. It is particularly preferable to contain a radical polymerization inhibitor having a hydroquinone structure, a radical polymerization inhibitor having no hydroquinone structure, and an anionic polymerization inhibitor having no hydroquinone structure.
  • the content of the polymerization inhibitor is preferably 50 ppm to 1% by mass, and more preferably 20 ppm to 5,000 ppm, based on the total mass of the photocurable adhesive composition. Further, the content of the radical polymerization inhibitor having a hydroquinone structure is preferably 10 ppm or more and 1000 ppm or less, and more preferably 20 ppm or more and 500 ppm or less.
  • the photocurable adhesive composition of the present invention may contain an additive other than the above-mentioned components.
  • Other additives are not particularly limited, and known additives can be used.
  • As other additives for example, anionic polymerization accelerators, plasticizers, thickeners, fumed silica, particles, fillers, colorants, fragrances, solvents, strength improvers, etc., depending on the purpose, etc.
  • An appropriate amount of the adhesive composition can be blended within a range that does not impair the curability and the adhesive strength of the adhesive composition.
  • the content of other additives is not particularly limited, but is preferably 20% by mass or less, and more preferably 10% by mass or less, based on the total mass of the photocurable adhesive composition.
  • anionic polymerization accelerators include polyalkylene oxides, crown ethers, silacrown ethers, calixarenes, cyclodextrins, and pyrogallol cyclic compounds.
  • the polyalkylene oxides are polyalkylene oxides and derivatives thereof, and include, for example, JP-B-60-37836, JP-B-1-43790, JP-A-63-128088, and JP-A-3-167279. Examples thereof include those disclosed in the gazette, US Pat. No. 4,386,193, US Pat. No. 4,424,327 and the like.
  • polyalkylene oxide such as diethylene glycol, triethylene glycol, polyethylene glycol and polypropylene glycol
  • polyethylene glycol monoalkyl ester such as diethylene glycol, triethylene glycol, polyethylene glycol and polypropylene glycol
  • polyethylene glycol dialkyl ester such as polyethylene glycol dialkyl ester
  • polypropylene glycol dialkyl ester diethylene glycol monoalkyl ether
  • diethylene glycol examples include polyalkylene oxide derivatives such as dialkyl ether, dipropylene glycol monoalkyl ether, and dipropylene glycol dialkyl ether.
  • the crown ethers include those disclosed in Japanese Examined Patent Publication No. 55-2236 and Japanese Patent Laid-Open No. 3-167279.
  • silacrown ethers include those disclosed in JP-A-60-168775. Specific examples thereof include dimethylsila-11-crown-4, dimethylsila-14-crown-5, dimethylsila-17-crown-6 and the like.
  • calixarene examples include those disclosed in JP-A-60-179482, JP-A-62-235379, JP-A-63-88152 and the like.
  • Examples of cyclodextrins include those disclosed in JP-A-5-505835. Specific examples include ⁇ -, ⁇ -, or ⁇ -cyclodextrin.
  • Examples of the pyrogallol cyclic compounds include compounds disclosed in JP 2000-191600 A and the like. Specifically, 3,4,5,10,11,12,17,18,19,24,25,26-dodecaethoxycarbomethoxy-C-1, C-8, C-15, C-22- Tetramethyl [14] -metacyclophane and the like can be mentioned. These anionic polymerization accelerators may be used alone or in combination of two or more.
  • the plasticizer can be contained within a range that does not impair the effects of the present invention.
  • the plasticizer include triethyl acetyl citrate, tributyl acetyl citrate, dimethyl adipate, diethyl adipate, dimethyl sebacate, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diisodecyl phthalate, dihexyl phthalate, and phthalic acid.
  • tributyl acetyl citrate, dimethyl adipate, dimethyl phthalate, 2-ethylhexyl benzoate, and dipropylene glycol are well compatible with 2-cyanoacrylic acid ester and have high plasticization efficiency.
  • Dibenzoate is preferred.
  • These plasticizers may be used alone or in combination of two or more.
  • the content of the plasticizer is not particularly limited, but when the content of the 2-cyanoacrylate compound is 100 parts by mass, preferably 3 parts by mass to 50 parts by mass, more preferably 10 parts by mass to 45 parts by mass. And more preferably 20 to 40 parts by mass. When the content of the plasticizer is 3 parts by mass to 50 parts by mass, it is possible to improve the retention rate of the adhesive strength after the cold and heat cycle test.
  • thickener polymethylmethacrylate, a copolymer of methylmethacrylate and an acrylate ester, a copolymer of methylmethacrylate and another methacrylate ester, acrylic rubber, polyvinyl chloride, polystyrene, Examples thereof include cellulose ester, polyalkyl-2-cyanoacrylic acid ester and ethylene-vinyl acetate copolymer. These thickeners may be used alone or in combination of two or more.
  • the photocurable adhesive composition of the present invention may contain fumed silica.
  • This fumed silica is an ultrafine powder (preferably having a primary particle size of 500 nm or less, particularly preferably 1 nm to 200 nm) anhydrous silica.
  • this anhydrous silica is made from silicon tetrachloride as a raw material and is heated in a flame at high temperature.
  • An ultrafine powder (preferably having a primary particle size of 500 nm or less, particularly preferably 1 nm to 200 nm) anhydrous silica produced due to oxidation in a gas phase, which is hydrophilic silica having high hydrophilicity and hydrophobic silica With highly hydrophobic silica.
  • hydrophobic silicas are preferable because they have good dispersibility in a 2-cyanoacrylate compound.
  • hydrophilic silica various commercially available products can be used, and examples thereof include Aerosil 50, 130, 200, 300 and 380 (these are trade names and manufactured by Nippon Aerosil Co., Ltd.).
  • the specific surface areas of these hydrophilic silicas are 50 ⁇ 15 m 2 / g, 130 ⁇ 25 m 2 / g, 200 ⁇ 25 m 2 / g, 300 ⁇ 30 m 2 / g, 380 ⁇ 30 m 2 / g, respectively.
  • Reorosil QS-10, QS-20, QS-30 and QS-40 (these are trade names, manufactured by Tokuyama Corporation) and the like can be used.
  • hydrophilic silicas are 140 ⁇ 20 m 2 / g, 220 ⁇ 20 m 2 / g, 300 ⁇ 30 m 2 / g, and 380 ⁇ 30 m 2 / g, respectively.
  • commercially available hydrophilic silica manufactured by CABOT or the like can also be used.
  • hydrophobic silica a compound capable of reacting with a hydroxy group existing on the surface of the hydrophilic silica to form a hydrophobic group, or adsorbed on the surface of the hydrophilic silica to form a hydrophobic layer on the surface It is possible to use a product produced by treating the surface of the hydrophilic silica by bringing the compound into contact with the hydrophilic silica in the presence or absence of a solvent, preferably by heating.
  • Examples of the compound used for surface-treating hydrophilic silica to make it hydrophobic include alkyl-, aryl-, and aralkyl-based silane coupling agents having a hydrophobic group such as n-octyltrialkoxysilane, methyltrichlorosilane, and dimethyldisilane.
  • Examples thereof include silylating agents such as chlorosilane and hexamethyldisilazane, silicone oils such as polydimethylsiloxane, higher alcohols such as stearyl alcohol, and higher fatty acids such as stearic acid.
  • As the hydrophobic silica a product hydrophobized with any compound may be used.
  • hydrophobic silica examples include Aerosil RY200 and R202, which are surface-treated with silicone oil and hydrophobized, and Aerosil R974, R972, R976, and n-octyltril, which are hydrophobized and surface-treated with a dimethylsilylating agent.
  • Aerosil R805 surface-treated with methoxysilane and hydrophobized Aerosil R811, R812 surface-treated with trimethylsilylating agent and hydrophobized (these are trade names, manufactured by Nippon Aerosil Co., Ltd.) and methyltri Examples include hydrophobically treated Reolosil MT-10 (trade name, manufactured by Tokuyama Corporation) and the like, which is surface-treated with chlorosilane.
  • hydrophobic silicas are 100 ⁇ 20 m 2 / g, 100 ⁇ 20 m 2 / g, 170 ⁇ 20 m 2 / g, 110 ⁇ 20 m 2 / g, 250 ⁇ 25 m 2 / g, 150 ⁇ 20 m 2, respectively.
  • / G 150 ⁇ 20 m 2 / g, 260 ⁇ 20 m 2 / g, 120 ⁇ 10 m 2 / g.
  • the preferable content of fumed silica in the photocurable adhesive composition of the present invention is 1 part by mass to 30 parts by mass when the content of the 2-cyanoacrylate compound is 100 parts by mass.
  • the preferred content of the fumed silica depends on the type of the 2-cyanoacrylate compound, the type of the fumed silica, and the like, but 1 part by mass to 25 parts by mass, and particularly preferred content is 2 parts by mass to 20 parts by mass. It is a department.
  • the content of fumed silica is 1 part by mass to 30 parts by mass, it is possible to obtain an adhesive composition having good workability without impairing the curability and adhesive strength of the photocurable adhesive composition. it can.
  • the method for curing the photocurable adhesive composition of the present invention is not particularly limited as long as it can be polymerized and cured by a 2-cyanoacrylate compound, and it can be cured by light or moisture such as moisture. Good.
  • the photocurable adhesive composition of the present invention is cured by light, it is necessary to irradiate ultraviolet rays or visible light using a high pressure mercury lamp, a halogen lamp, a xenon lamp, an LED (light emitting diode) lamp, sunlight or the like. Can be cured.
  • the method for storing the photocurable adhesive composition of the present invention may be carried out by a known storage method, for example, mixing in an atmosphere without or low in humidity and oxygen (for example, 0.01% by volume or less). It is preferable to mix, and it is more preferable to mix under an inert gas atmosphere. Examples of the inert gas include nitrogen and argon. Further, the photocurable adhesive composition of the present invention is preferably stored under light shielding.
  • the photocurable adhesive composition of the present invention can be used as a known 2-cyanoacrylate composition and as a photocurable adhesive composition.
  • it can be used as a so-called instant adhesive, and can also be used as a photocurable instant adhesive.
  • the photocurable adhesive composition of the present invention has photocurability and moisture curability, and since it has excellent storage stability, it can be used in a wide range of fields such as general use, industrial use, and medical use. .
  • sealing of electronic components attachment of reel seats and threading guides on fishing rods, fixing of wire materials such as coils, fixing of magnetic heads to pedestals, and filling used for tooth treatment It can be suitably used for adhesion or fixing between the same or different kinds of articles such as adhesive or artificial nail adhesion or decoration, or coating.
  • Example 1 ⁇ Production of 2-octyl ester of 2-cyanoacrylic acid (2-OctCA)> A depolymerization reactor equipped with a cooler and a stirrer was charged with 100 parts by mass of a condensate of 2-octyl cyanoacetate and paraformaldehyde, and p-toluenesulfonic acid (PTS) was added in an amount of 0. 9 parts by mass, and 2.1 parts by mass of Sumilizer GS (GS, the following compound, manufactured by Sumitomo Chemical Co., Ltd.) were added to 100 parts by mass of the condensate.
  • PTS p-toluenesulfonic acid
  • Depolymerization was carried out under a reduced pressure of 1,000 Pa or less in the depolymerization reactor while keeping the internal temperature at 150 ° C to 200 ° C. The fraction was condensed by a cooler, and crude 2-OctCA was collected in a collection receiver. Depolymerization was terminated when the crude 2-OctCA was no longer distilled.
  • Example 2 ⁇ Production of 2-Ethoxyethyl Ester of 2-Cyanoacrylic Acid (EtOEtCA)> A depolymerization reactor equipped with a condenser and a stirrer was charged with 100 parts by mass of a condensate of 2-ethoxyethyl cyanoacetate and paraformaldehyde, and diphosphorus pentoxide (P 2 O 5 ) was added to 100 parts by mass of the condensate. 1.1 parts by mass and 3.5 parts by mass of GS were added to 100 parts by mass of the condensate.
  • Depolymerization was carried out under a reduced pressure of 1,000 Pa or less in the depolymerization reactor while keeping the internal temperature at 150 ° C to 200 ° C. The fraction was condensed by a cooler, and crude EtOEtCA was recovered in a recovery receiver. The depolymerization was terminated when the crude EtOEtCA was no longer distilled.
  • Example 3 ⁇ Production of isobutyl ester of 2-cyanoacrylic acid (iBuCA)> A depolymerization reactor equipped with a condenser and a stirrer was charged with 100 parts by mass of a condensate of isobutyl cyanoacetate and paraformaldehyde, and phosphorous pentoxide (P 2 O 5 ) was added to 100 parts by mass of the condensate in an amount of 0. 5 parts by mass and 1.0 part by mass of MDP-S were added to 100 parts by mass of the condensate.
  • P 2 O 5 phosphorous pentoxide
  • Depolymerization was carried out under a reduced pressure of 1,000 Pa or less in the depolymerization reactor while keeping the internal temperature at 150 ° C to 200 ° C. The fraction was condensed by a cooler, and the crude iBuCA was recovered in a recovery receiver. Depolymerization was terminated when the crude iBuCA was no longer distilled.
  • Table 1 summarizes the details of the method for producing the 2-cyanoacrylate compound in Examples 1 to 3.
  • Example 4 The same procedure as in Example 1 was repeated except that hydroquinone was added to the purified 2-OctCA containing BF 3 ⁇ methanol complex and Sumilizer MDP-S so that the content of hydroquinone was 40 ppm. Purified 2-OctCA and the photocurable adhesive composition of Example 4 were obtained.
  • Example 5 Purified EtOEtCA of Example 5 was prepared in the same manner as in Example 2 except that hydroquinone was added to the purified EtOEtCA to which BF 3 / methanol complex and Sumilizer MDP-S were added so that the content of hydroquinone was 40 ppm. , And the photocurable adhesive composition of Example 5 were obtained.
  • Example 6 Purified EtOEtCA of Example 6 was prepared in the same manner as in Example 2 except that hydroquinone was added to purified EtOEtCA to which BF 3 / methanol complex and Sumilizer MDP-S were added so that the amount of hydroquinone was 100 ppm. , And the photocurable adhesive composition of Example 6 were obtained.
  • Example 7 The purified iBuCA of Example 7 was prepared in the same manner as in Example 3 except that hydroquinone was added to the purified iBuCA to which BF 3 / methanol complex and Sumilizer MDP-S were added so that the amount of hydroquinone was 40 ppm. , And the photocurable adhesive composition of Example 7 were obtained.
  • Example 8 Purified iBuCA of Example 8 was prepared in the same manner as in Example 3 except that hydroquinone was added to purified iBuCA to which BF 3 / methanol complex and Sumilizer MDP-S were added so that the amount of hydroquinone was 100 ppm. , And the photocurable adhesive composition of Example 8 were obtained.
  • the photocurable adhesive compositions of Examples 1 and 4 and the obtained 2-cyanoacrylate compound (2-OctCA) were prepared from conventional Group 8 transition metal metallocene compounds and 2- It has better storage stability than a photocurable adhesive composition containing a cyanoacrylate compound.
  • the photocurable adhesive compositions of Examples 2, 5 and 6 and the obtained 2-cyanoacrylate compound (EtOEtCA) were prepared from conventional Group 8 transition metal metallocene compounds and 2- It has better storage stability than a photocurable adhesive composition containing a cyanoacrylate compound.
  • the photocurable adhesive compositions of Examples 3, 7 and 8 and the obtained 2-cyanoacrylate compound (iBuCA) were prepared from conventional Group 8 transition metal metallocene compounds and 2- It has better storage stability than a photocurable adhesive composition containing a cyanoacrylate compound.

Abstract

This production method for a 2-cyanoacrylate compound includes: a depolymerization step for depolymerizing a 2-cyanoacrylate polycondensate that is a condensate of a cyanoacetic acid ester compound and a formaldehyde compound in the presence of a polymerization inhibitor and under heat and reduced pressure to obtain a crude 2-cyanoacrylate monomer; and a distillation purification step for distilling the crude 2-cyanoacrylate monomer to obtain a purified 2-cyanoacrylate monomer. The polymerization inhibitor used in the depolymerization step is a compound that does not have a hydroquinone structure.

Description

2-シアノアクリレート化合物の製造方法、及び、光硬化性接着剤組成物の製造方法Method for producing 2-cyanoacrylate compound and method for producing photocurable adhesive composition
 本発明は、2-シアノアクリレート化合物の製造方法、及び、光硬化性接着剤組成物の製造方法に関するものである。 The present invention relates to a method for producing a 2-cyanoacrylate compound and a method for producing a photocurable adhesive composition.
 2-シアノアクリレート化合物は、被着材表面近傍に存在する微量の水分により速やかに重合を開始し、各種の材質からなる被着材の殆ど全てを数秒から数分程度の極めて短い時間に接着し、かつその接着力も強力なため、電気、電子、機械部品、精密機械、家庭用品及び医療等の広範囲な分野で瞬間接着剤の主成分として使用されている。 The 2-cyanoacrylate compound rapidly starts polymerization due to a small amount of water existing near the surface of the adherend, and adheres almost all adherends made of various materials in an extremely short time of several seconds to several minutes. Since it has a strong adhesive force, it is used as a main component of an instant adhesive in a wide range of fields such as electric, electronic, mechanical parts, precision machinery, household products and medical care.
 従来の2-シアノアクリレート化合物の製造方法としては、特許文献1~4に記載の方法が知られている。
 特許文献1には、シアノアセテートとホルムアルデヒドとの縮合体を解重合して2-シアノアクリレートを製造する方法において、攪拌機を有する解重合反応器内の反応液の解重合触媒の濃度を反応途中で一定に保って解重合反応を行うことを特徴とする2-シアノアクリレートの製造方法が記載されている。
As a conventional method for producing a 2-cyanoacrylate compound, the methods described in Patent Documents 1 to 4 are known.
In Patent Document 1, in a method for producing 2-cyanoacrylate by depolymerizing a condensate of cyanoacetate and formaldehyde, the concentration of a depolymerization catalyst in a reaction solution in a depolymerization reactor having a stirrer is adjusted during the reaction. There is described a method for producing 2-cyanoacrylate, which is characterized by carrying out a depolymerization reaction while keeping it constant.
 また、特許文献2には、シアノアセテートとホルムアルデヒドとの縮合体を重合抑制剤の存在下で解重合するに当たり、解重合で得られる留分から、2-シアノアクリレートの沸点以上で凝縮する高沸点留分を解重合反応に戻して解重合することを特徴とする2-シアノアクリレートの製造方法が記載されている。 Further, in Patent Document 2, in depolymerizing a condensate of cyanoacetate and formaldehyde in the presence of a polymerization inhibitor, a high-boiling point fraction condensed from the fraction obtained by depolymerization at a boiling point of 2-cyanoacrylate or higher. A method for producing 2-cyanoacrylate is described, which comprises depolymerizing by returning the components to the depolymerization reaction.
 また、特許文献3には、シアノアセテートとホルムアルデヒドとの縮合体を解重合する工程、並びに得られた粗製2-シアノアクリレートを蒸留精製する工程を含む2-シアノアクリレートの製造方法において、前記解重合工程における分縮器の温度がその圧力における2-シアノアクリレートの沸点より10℃以上高く、かつ50℃以下で高沸点酸分を分縮除去することを特徴とする2-シアノアクリレートの製造方法が記載されている。 Further, Patent Document 3 discloses a method for producing 2-cyanoacrylate, which comprises a step of depolymerizing a condensate of cyanoacetate and formaldehyde, and a step of distilling and purifying the obtained crude 2-cyanoacrylate. A method for producing 2-cyanoacrylate, characterized in that the temperature of the dephlegmator in the step is 10 ° C. or more higher than the boiling point of 2-cyanoacrylate at that pressure and the high-boiling acid component is decondensed and removed at 50 ° C. or less. Have been described.
 更に、特許文献4には、シアノ酢酸エステルとホルマリンを反応槽へ導入し重縮合反応を行う工程と、得られた重縮合反応液を脱水槽に導入し脱水を行う工程と、脱水した重縮合反応溶液を連続的に薄膜蒸発機に導入し脱溶を行う工程と、脱溶して得られた重縮合物を連続的に薄膜蒸発機に導入し解重合を行う工程とを連続的に行い、前記脱水槽は、直列に連結した2つ以上の脱水槽に分かれ、複数連結した脱水槽のうち第一脱水槽に前記重縮合反応液を導入した後、溶剤を添加して、共沸脱水を行うことを特徴とする2-シアノアクリレートの連続製造方法が記載されている。 Further, in Patent Document 4, a step of introducing a cyanoacetic acid ester and formalin into a reaction tank to carry out a polycondensation reaction, a step of introducing the obtained polycondensation reaction solution into a dehydration tank to dehydrate, and a dehydrated polycondensation The step of continuously introducing the reaction solution into the thin film evaporator for desolvation and the step of continuously introducing the decondensed polycondensate into the thin film evaporator for depolymerization are carried out continuously. The dehydration tank is divided into two or more dehydration tanks connected in series, and after introducing the polycondensation reaction solution into the first dehydration tank of the dehydration tanks connected in series, a solvent is added to carry out azeotropic dehydration. The continuous production method of 2-cyanoacrylate is described.
  特許文献1:特許第3475780号公報
  特許文献2:特許第3804396号公報
  特許文献3:特許第3965909号公報
  特許文献4:特許第5311272号公報
Patent Document 1: Japanese Patent No. 3475780 Patent Document 2: Japanese Patent No. 3804396 Patent Document 3: Japanese Patent No. 3965909 Patent Document 4: Japanese Patent No. 5311272
 本発明が解決しようとする課題は、第8族遷移金属メタロセン化合物と2-シアノアクリレート化合物とを含む光硬化性接着剤組成物の保存安定性を向上させることが可能な、2-シアノアクリレート化合物の製造方法を提供することである。
 本発明が解決しようとする他の課題は、前記2-シアノアクリレート化合物の製造方法により得られた2-シアノアクリレート化合物を用いた光硬化性接着剤組成物の製造方法を提供することである。
The problem to be solved by the present invention is a 2-cyanoacrylate compound capable of improving the storage stability of a photocurable adhesive composition containing a Group 8 transition metal metallocene compound and a 2-cyanoacrylate compound. Is to provide a method for manufacturing the same.
Another problem to be solved by the present invention is to provide a method for producing a photocurable adhesive composition using a 2-cyanoacrylate compound obtained by the method for producing a 2-cyanoacrylate compound.
 前記課題を解決するための手段には、以下の態様が含まれる。
<1> シアノ酢酸エステル化合物とホルムアルデヒド化合物との縮合体である2-シアノアクリレート重縮合体を、重合禁止剤の存在下、かつ加熱減圧条件下で解重合し、粗製2-シアノアクリレートモノマーを得る解重合工程と、
 前記粗製2-シアノアクリレートモノマーを蒸留して、精製2-シアノアクリレートモノマーを得る蒸留精製工程と、を含み、
 前記解重合工程において前記重合禁止剤として用いられるラジカル重合禁止剤が、ハイドロキノン構造を有しない化合物である
 2-シアノアクリレート化合物の製造方法。
<2> 前記ラジカル重合禁止剤が、下記式(1)で表される化合物を含む、<1>に記載の2-シアノアクリレート化合物の製造方法。
Means for solving the above problems include the following aspects.
<1> A 2-cyanoacrylate polycondensate, which is a condensate of a cyanoacetic acid ester compound and a formaldehyde compound, is depolymerized in the presence of a polymerization inhibitor under heating and reduced pressure conditions to obtain a crude 2-cyanoacrylate monomer. Depolymerization process,
A step of distilling the crude 2-cyanoacrylate monomer to obtain a purified 2-cyanoacrylate monomer,
The method for producing a 2-cyanoacrylate compound, wherein the radical polymerization inhibitor used as the polymerization inhibitor in the depolymerization step is a compound having no hydroquinone structure.
<2> The method for producing a 2-cyanoacrylate compound according to <1>, wherein the radical polymerization inhibitor contains a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(1)中、R~Rはそれぞれ独立に、水素原子、又は、ヒドロキシ基(但し、フェノール性ヒドロキシ基を除く)以外の、互いに結合して環を形成してもよい置換基を表す。 In formula (1), R 1 to R 5 are each independently a hydrogen atom or a substituent other than a hydroxy group (excluding a phenolic hydroxy group) which may combine with each other to form a ring. Represent
<3> 前記蒸留精製工程の後に、前記精製2-シアノアクリレートモノマーにラジカル重合禁止剤を添加する重合禁止剤後添加工程を含む、<1>又は<2>に記載の2-シアノアクリレート化合物の製造方法。
<4> 前記重合禁止剤後添加工程において添加される前記ラジカル重合禁止剤が、フェノール系ラジカル重合禁止剤である、<3>に記載の2-シアノアクリレート化合物の製造方法。
<5> 前記重合禁止剤後添加工程において添加される前記ラジカル重合禁止剤が、ハイドロキノン構造を有するラジカル重合禁止剤である、<3>又は<4>に記載の2-シアノアクリレート化合物の製造方法。
<6> 前記重合禁止剤後添加工程における前記ラジカル重合禁止剤の添加量が、得られる2-シアノアクリレート化合物において、10ppm~1,000ppmである、<3>~<5>のいずれか1つに記載の2-シアノアクリレート化合物の製造方法。
<7> <1>~<6>のいずれか1つに記載の製造方法により得られる2-シアノアクリレート化合物と、第8族遷移金属メタロセン化合物とを混合する混合工程を含む
 光硬化性接着剤組成物の製造方法。
<3> The 2-cyanoacrylate compound according to <1> or <2>, which includes a post-addition step of adding a polymerization inhibitor to the purified 2-cyanoacrylate monomer after the distillation purification step. Production method.
<4> The method for producing a 2-cyanoacrylate compound according to <3>, wherein the radical polymerization inhibitor added in the post-addition step of the polymerization inhibitor is a phenolic radical polymerization inhibitor.
<5> The method for producing a 2-cyanoacrylate compound according to <3> or <4>, wherein the radical polymerization inhibitor added in the post-addition step of the polymerization inhibitor is a radical polymerization inhibitor having a hydroquinone structure. .
<6> Any one of <3> to <5>, wherein the amount of the radical polymerization inhibitor added in the post-addition step of the polymerization inhibitor is 10 ppm to 1,000 ppm in the obtained 2-cyanoacrylate compound. The method for producing a 2-cyanoacrylate compound according to 1.
<7> A photocurable adhesive including a mixing step of mixing a 2-cyanoacrylate compound obtained by the production method according to any one of <1> to <6> and a Group 8 transition metal metallocene compound A method for producing a composition.
 本発明によれば、第8族遷移金属メタロセン化合物と2-シアノアクリレート化合物とを含む光硬化性接着剤組成物の保存安定性を向上させることが可能な、2-シアノアクリレート化合物の製造方法を提供することができる。
 また、本発明によれば、前記2-シアノアクリレート化合物の製造方法により得られた2-シアノアクリレート化合物を用いた光硬化性接着剤組成物の製造方法を提供することができる。
According to the present invention, there is provided a method for producing a 2-cyanoacrylate compound capable of improving the storage stability of a photocurable adhesive composition containing a Group 8 transition metal metallocene compound and a 2-cyanoacrylate compound. Can be provided.
Further, according to the present invention, it is possible to provide a method for producing a photocurable adhesive composition using the 2-cyanoacrylate compound obtained by the method for producing a 2-cyanoacrylate compound.
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本発明において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する上記複数の物質の合計量を意味する。
 本発明において、「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本発明において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 また、本発明において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 また、本明細書において、「(メタ)アクリロイル」はアクリロイル及びメタクリロイルの双方、又は、いずれかを表し、「(メタ)アクリロキシ」はアクリロキシ及びメタクリロキシの双方、又は、いずれかを表す。
 更に、本明細書における化合物の一部において、炭化水素鎖を炭素(C)及び水素(H)の記号を省略した簡略構造式で記載する場合もある。
 以下において、本発明の内容について詳細に説明する。
The description of the constituent elements described below may be made based on a typical embodiment of the present invention, but the present invention is not limited to such an embodiment. In the present specification, “to” is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
In the numerical ranges described stepwise in the present specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another stepwise described numerical range. Good. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present invention, the amount of each component in the composition means the total amount of the plurality of substances present in the composition, unless a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. To do.
In the present invention, the term “step” is included in this term as long as the intended purpose of the step is achieved, not only when it is an independent step but also when it cannot be clearly distinguished from other steps.
In the present invention, “mass%” and “weight%” have the same meaning, and “mass part” and “weight part” have the same meaning.
Further, in the present invention, a combination of two or more preferable aspects is a more preferable aspect.
Moreover, in this specification, "(meth) acryloyl" represents both acryloyl and methacryloyl, or either, and "(meth) acryloxy" represents both acryloxy and methacryloxy.
Further, in some of the compounds in the present specification, the hydrocarbon chain may be described by a simplified structural formula in which the symbols of carbon (C) and hydrogen (H) are omitted.
Hereinafter, the content of the present invention will be described in detail.
(2-シアノアクリレート化合物の製造方法)
 本発明の2-シアノアクリレート化合物の製造方法(以下、単に「本発明の製造方法」ともいう。)は、シアノ酢酸エステル化合物とホルムアルデヒド化合物との縮合体である2-シアノアクリレート重縮合体を、重合禁止剤の存在下、かつ加熱減圧条件下で解重合し、粗製2-シアノアクリレートモノマーを得る解重合工程と、前記粗製2-シアノアクリレートモノマーを蒸留して、精製2-シアノアクリレートモノマーを得る蒸留精製工程と、を含み、前記解重合工程において用いられる前記重合禁止剤が、ハイドロキノン構造を有しない化合物である。
(Method for producing 2-cyanoacrylate compound)
The method for producing a 2-cyanoacrylate compound of the present invention (hereinafter, also simply referred to as “production method of the present invention”) comprises Depolymerization step in the presence of a polymerization inhibitor under heating and reduced pressure conditions to obtain a crude 2-cyanoacrylate monomer, and distillation of the crude 2-cyanoacrylate monomer to obtain a purified 2-cyanoacrylate monomer And a distillation purification step, and the polymerization inhibitor used in the depolymerization step is a compound having no hydroquinone structure.
 従来の2-シアノアクリレートの製造方法では、解重合時において、重合禁止剤として、ハイドロキノン等のハイドロキノン構造を有する化合物が多くの場合において用いられていた。
 しかしながら、解重合時において、ハイドロキノン構造を有する化合物を用いた場合、不純物や分解物の作用によりハイドロキノン構造を有する化合物が酸化され、ベンゾキノン構造を有する化合物が微量ながら生成することを本発明者らは見出した。
 更に、ベンゾキノン構造を有する化合物が2-シアノアクリレート化合物の保存安定性に大きく寄与することを本発明者らは見出した。
 本発明者らが鋭意検討した結果、前記解重合工程において、重合禁止剤として、ハイドロキノン構造を有しない化合物のみを用いることにより、得られる2-シアノアクリレート化合物の保存安定性に優れる2-シアノアクリレート化合物の製造方法を提供できることを見出した。
In the conventional method for producing 2-cyanoacrylate, a compound having a hydroquinone structure such as hydroquinone is often used as a polymerization inhibitor during depolymerization.
However, the present inventors have found that when a compound having a hydroquinone structure is used during depolymerization, the compound having a hydroquinone structure is oxidized by the action of impurities or decomposed products, and a small amount of a compound having a benzoquinone structure is produced. I found it.
Furthermore, the present inventors have found that a compound having a benzoquinone structure greatly contributes to the storage stability of the 2-cyanoacrylate compound.
As a result of intensive studies by the present inventors, in the depolymerization step, a 2-cyanoacrylate compound obtained by using only a compound having no hydroquinone structure as a polymerization inhibitor has excellent storage stability. It has been found that a method for producing a compound can be provided.
 以下、本発明について詳細に説明する。 The present invention will be described in detail below.
<2-シアノアクリレート化合物>
 本発明の2-シアノアクリレート化合物の製造方法により製造される2-シアノアクリレート化合物(「2-シアノアクリレートモノマー」ともいう。)としては、単量体(モノマー)であれば特に制限はないが、下記式(C)で表される化合物であることが好ましい。
<2-cyanoacrylate compound>
The 2-cyanoacrylate compound (also referred to as “2-cyanoacrylate monomer”) produced by the method for producing a 2-cyanoacrylate compound of the present invention is not particularly limited as long as it is a monomer (monomer). The compound represented by the following formula (C) is preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(C)中、Rはハロゲン原子を有していてもよい炭素数1~20の飽和若しくは不飽和の、直鎖型炭化水素基、分岐型鎖状炭化水素基若しくは環状炭化水素基、又は、ハロゲン原子を有していてもよい炭素数1~20の芳香族炭化水素基を表す。
 ただし、Rがエーテル結合を含む場合には、エーテル結合されている炭化水素残鎖のいずれか若しくは双方が、ハロゲン原子を有していてもよい炭素数5~20の飽和若しくは不飽和の、直鎖型炭化水素基、分岐型鎖状炭化水素基若しくは環状炭化水素基、又は、ハロゲン原子を有していてもよい炭素数5~20の芳香族基である。
In formula (C), R is a saturated or unsaturated, straight-chain hydrocarbon group, branched chain hydrocarbon group or cyclic hydrocarbon group having 1 to 20 carbon atoms, which may have a halogen atom, or Represents an aromatic hydrocarbon group having 1 to 20 carbon atoms, which may have a halogen atom.
However, in the case where R contains an ether bond, either or both of the ether-bonded hydrocarbon residual chains may be a saturated or unsaturated C5 to C20 straight chain which may have a halogen atom. It is a chain hydrocarbon group, a branched chain hydrocarbon group or a cyclic hydrocarbon group, or an aromatic group having 5 to 20 carbon atoms which may have a halogen atom.
 2-シアノアクリレート化合物の具体例としては、2-シアノアクリル酸のメチル、エチル、クロロエチル、n-プロピル、i-プロピル、アリル、プロパルギル、n-ブチル、i-ブチル、n-ペンチル、n-ヘキシル、アミル、2-メチル-3-ブテニル、3-メチル-3-ブテニル、2-ペンテニル、6-クロロヘキシル、シクロヘキシル、フェニル、テトラヒドロフルフリル、2-ヘキセニル、4-メチルペンテニル、3-メチル-2-シクロヘキセニル、ノルボルニル、ヘプチル、シクロヘキサンメチル、シクロヘプチル、1-メチルシクロヘキシル、2-メチルシクロヘキシル、3-メチル-シクロヘキシル、2-エチルヘキシル、n-オクチル、2-オクチル、シクロオクチル、シクロペンタンメチル、2,3-ジメチルシクロヘキシル、n-ノニル、イソノニル、オキソノニル、n-デシル、イソデシル、n-ドデシル、2-メトキシエチル、2-エトキシエチル、2-エトキシ-2-エトキシエチル、ブトキシエトキシエチル、1-(2-メトキシ-1-メチルエトキシ)プロピル、2,2,2-トリフルオロエチル、ヘキサフルオロイソプロピル、ラウリル、イソトリデシル、ミリスチル、セチル、ステアリル、オレイル、ベヘニル、ヘキシルデシル、オクチルドデシル、ベンジル、クロロフェニル、2-ペンチルオキシエチル、2-ヘキシルオキシエチル、2-シクロヘキシルオキシエチル、2-(2-エチルヘキシルオキシ)エチル、及び、2-フェノキシエチル等のエステル化合物が挙げられる。また、これらは、シアノアクリレート系接着剤の主成分又は副成分として好適に用いられるものである。 Specific examples of the 2-cyanoacrylate compound include 2-cyanoacrylic acid methyl, ethyl, chloroethyl, n-propyl, i-propyl, allyl, propargyl, n-butyl, i-butyl, n-pentyl and n-hexyl. , Amyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 2-pentenyl, 6-chlorohexyl, cyclohexyl, phenyl, tetrahydrofurfuryl, 2-hexenyl, 4-methylpentenyl, 3-methyl-2 -Cyclohexenyl, norbornyl, heptyl, cyclohexanemethyl, cycloheptyl, 1-methylcyclohexyl, 2-methylcyclohexyl, 3-methyl-cyclohexyl, 2-ethylhexyl, n-octyl, 2-octyl, cyclooctyl, cyclopentanemethyl, 2 , 3-dimethyl Lohexyl, n-nonyl, isononyl, oxononyl, n-decyl, isodecyl, n-dodecyl, 2-methoxyethyl, 2-ethoxyethyl, 2-ethoxy-2-ethoxyethyl, butoxyethoxyethyl, 1- (2-methoxy- 1-methylethoxy) propyl, 2,2,2-trifluoroethyl, hexafluoroisopropyl, lauryl, isotridecyl, myristyl, cetyl, stearyl, oleyl, behenyl, hexyldecyl, octyldodecyl, benzyl, chlorophenyl, 2-pentyloxyethyl And ester compounds such as 2-hexyloxyethyl, 2-cyclohexyloxyethyl, 2- (2-ethylhexyloxy) ethyl, and 2-phenoxyethyl. Further, these are preferably used as a main component or a sub-component of the cyanoacrylate adhesive.
 これらの中でも、2-シアノアクリレート化合物としては、2-シアノアクリル酸のメチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、シクロヘキシル、フェニル、テトラヒドロフルフリル、2-エチルヘキシル、n-オクチル、2-オクチル、2-メトキシエチル、2-エトキシエチルエステル、又は、1-(2-メトキシ-1-メチルエトキシ)プロピルが好ましく挙げられる。 Among these, 2-cyanoacrylate compounds include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, cyclohexyl, phenyl, tetrahydrofurfuryl, 2-ethylhexyl of 2-cyanoacrylic acid, Preferable examples include n-octyl, 2-octyl, 2-methoxyethyl, 2-ethoxyethyl ester, and 1- (2-methoxy-1-methylethoxy) propyl.
 本発明の2-シアノアクリレート化合物の製造方法により得られる2-シアノアクリレート化合物は、保存安定性の観点から、ベンゾキノン構造を有する化合物を含まないか、又は、ベンゾキノン構造を有する化合物の含有量が、0ppmを超え4ppm未満であることが好ましい。
 ベンゾキノン構造を有する化合物としては、1,4-ベンゾキノン、1,2-ベンゾキノン、1,4-ナフトキノン、9,10-アントラキノン、p-キシロキノン、2,6-ジメチル-1,4-ベンゾキノン、2,3-ジクロロ-5,6-ジシアノベンゾキノン、2-ヒドロキシ-1,4-ナフトキノン、2-メチル-1,4-ナフトキノン、2-クロロ-1,4-ナフトキノン、1,4-ジヒドロキシアントラキノン等が挙げられる。
The 2-cyanoacrylate compound obtained by the method for producing a 2-cyanoacrylate compound of the present invention does not contain a compound having a benzoquinone structure or has a content of a compound having a benzoquinone structure from the viewpoint of storage stability. It is preferably more than 0 ppm and less than 4 ppm.
Examples of the compound having a benzoquinone structure include 1,4-benzoquinone, 1,2-benzoquinone, 1,4-naphthoquinone, 9,10-anthraquinone, p-xyloquinone, 2,6-dimethyl-1,4-benzoquinone, 2, Examples include 3-dichloro-5,6-dicyanobenzoquinone, 2-hydroxy-1,4-naphthoquinone, 2-methyl-1,4-naphthoquinone, 2-chloro-1,4-naphthoquinone, and 1,4-dihydroxyanthraquinone. To be
<解重合工程>
 本発明の2-シアノアクリレート化合物の製造方法は、シアノ酢酸エステル化合物とホルムアルデヒド化合物との縮合体である2-シアノアクリレート重縮合体(「2-シアノアクリレート解重合前駆体」ともいう。)を、重合禁止剤の存在下、かつ加熱減圧条件下で解重合し、粗製2-シアノアクリレートモノマーを得る解重合工程を含み、前記解重合工程において用いられる前記重合禁止剤が、ハイドロキノン構造を有しない化合物である。
<Depolymerization process>
In the method for producing a 2-cyanoacrylate compound of the present invention, a 2-cyanoacrylate polycondensate which is a condensate of a cyanoacetic acid ester compound and a formaldehyde compound (also referred to as “2-cyanoacrylate depolymerization precursor”), A compound in which the polymerization inhibitor used in the depolymerization step does not have a hydroquinone structure, including a depolymerization step of obtaining a crude 2-cyanoacrylate monomer by depolymerization under the presence of a polymerization inhibitor and under heating and reduced pressure conditions. Is.
 前記解重合工程においては、シアノ酢酸エステル化合物とホルムアルデヒド化合物との縮合体である2-シアノアクリレート重縮合体を用いる。また、本開示における2-シアノアクリレート重縮合体は、解重合することにより2-シアノアクリレートモノマー(2-シアノアクリレート化合物)を生成するものである。
 前記シアノ酢酸エステル化合物は、特に制限はなく、製造する2-シアノアクリレート化合物に対応する化合物を選択することができる。
 前記ホルムアルデヒド化合物は、特に限定されるものではないが、具体的な化合物としては、ホルムアルデヒドガス、ホルマリン水溶液、ホルムアルデヒドとアルコールとの反応生成物、パラホルムアルデヒド及びトリオキサン等が挙げられる。
 また、これらは、1種単独又は2種以上を混合して用いることができる。
 中でも、ホルムアルデヒド化合物としては、パラホルムアルデヒドが好適である。
In the depolymerization step, a 2-cyanoacrylate polycondensate which is a condensate of a cyanoacetic acid ester compound and a formaldehyde compound is used. In addition, the 2-cyanoacrylate polycondensate in the present disclosure is one that produces a 2-cyanoacrylate monomer (2-cyanoacrylate compound) by depolymerization.
The cyanoacetic acid ester compound is not particularly limited, and a compound corresponding to the 2-cyanoacrylate compound to be produced can be selected.
The formaldehyde compound is not particularly limited, but specific examples thereof include formaldehyde gas, formalin aqueous solution, a reaction product of formaldehyde and alcohol, paraformaldehyde and trioxane.
Moreover, these can be used individually by 1 type or in mixture of 2 or more types.
Among them, paraformaldehyde is preferable as the formaldehyde compound.
 前記解重合工程において用いられる前記重合禁止剤は、ハイドロキノン構造を有しない化合物である。
 前記解重合工程において用いられる前記重合禁止剤は、保存安定性の観点から、フェノール性ヒドロキシ基を有する化合物を含むことが好ましく、下記式(1)で表される化合物であることがより好ましく、下記式(2)で表される化合物であることが特に好ましい。
The polymerization inhibitor used in the depolymerization step is a compound having no hydroquinone structure.
From the viewpoint of storage stability, the polymerization inhibitor used in the depolymerization step preferably contains a compound having a phenolic hydroxy group, more preferably a compound represented by the following formula (1), The compound represented by the following formula (2) is particularly preferable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1)及び式(2)中、R~Rはそれぞれ独立に、水素原子、又は、ヒドロキシ基(但し、フェノール性ヒドロキシ基を除く)以外の、互いに結合して環を形成してもよい置換基を表し、Rは水素原子、又は、アルキル基を表し、R~R10はそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基を表し、R11は水素原子、又は、(メタ)アクリロイル基を表す。 In formulas (1) and (2), R 1 to R 5 are each independently a hydrogen atom or a hydroxy group (excluding a phenolic hydroxy group), which is bonded to each other to form a ring. Represents a substituent, R 6 represents a hydrogen atom or an alkyl group, R 7 to R 10 each independently represents an alkyl group, a cycloalkyl group or an alkenyl group, and R 11 represents a hydrogen atom, or Represents a (meth) acryloyl group.
 式(1)において、保存安定性の観点から、R~Rの少なくとも1つは前記置換基であることが好ましく、R及びRは少なくとも前記置換基であることがより好ましく、R、R及びRは少なくとも前記置換基であることが特に好ましい。
 式(1)におけるR及びRはそれぞれ独立に、保存安定性の観点から、直鎖若しくは分岐アルキル基、シクロアルキル基、フェノール性ヒドロキシ基を有する構造を有するアルキル基、又は、(メタ)アクリロキシフェニル構造を有するアルキル基であることが好ましく、Rは直鎖若しくは分岐アルキル基であり、かつRはフェノール性ヒドロキシ基を有する構造を有するアルキル基、又は、(メタ)アクリロキシフェニル構造を有するアルキル基であることがより好ましく、Rは直鎖若しくは分岐アルキル基であり、かつRは(メタ)アクリロキシフェニル構造を有するアルキル基であることが特に好ましい。
 式(1)におけるRは、保存安定性の観点から、水素原子、アルキル基、又は、アルコキシ基であることが好ましく、直鎖若しくは分岐アルキル基、シクロアルキル基、又は、アルコキシ基であることがより好ましく、直鎖若しくは分岐アルキル基、又は、アルコキシ基であることが更に好ましい。
 前記R、R及びRにおけるアルキル基としては、炭素数1~8のアルキル基であることが好ましく、炭素数1~6のアルキル基であることがより好ましく、炭素数1~6の直鎖若しくは分岐アルキル基、炭素数1~6のシクロアルキル基、t-ブチル基、又は、2-メチル-2-ブチル基であることが更に好ましく、メチル基、t-ブチル基、又は、2-メチル-2-ブチル基であることが特に好ましい。
 前記アルキル基は、直鎖状であっても、分岐を有していても、環構造を有していてもよく、また、置換基を有していてもよい。
 置換基としては、重合禁止能の失われない基であればよく、ハロゲン原子、アルコキシ基、アリール基等が挙げられる。また、前記置換基が、更に前記置換基及びアルキル基よりなる群から選ばれた少なくとも1種の基により置換されていてもよい。
 式(1)において、R及びRはそれぞれ独立に、水素原子又はアルキル基であることが好ましく、水素原子であることがより好ましい。
In the formula (1), from the viewpoint of storage stability, at least one of R 1 to R 5 is preferably the above-mentioned substituent, and R 1 and R 5 are more preferably at least the above-mentioned substituents, R 1 It is particularly preferable that 1 , R 3 and R 5 are at least the above substituents.
R 1 and R 5 in formula (1) are each independently a linear or branched alkyl group, a cycloalkyl group, an alkyl group having a structure having a phenolic hydroxy group, or (meth) from the viewpoint of storage stability. An alkyl group having an acryloxyphenyl structure is preferable, R 1 is a linear or branched alkyl group, and R 5 is an alkyl group having a structure having a phenolic hydroxy group, or (meth) acryloxyphenyl It is more preferably an alkyl group having a structure, R 1 is a linear or branched alkyl group, and R 5 is particularly preferably an alkyl group having a (meth) acryloxyphenyl structure.
From the viewpoint of storage stability, R 3 in the formula (1) is preferably a hydrogen atom, an alkyl group or an alkoxy group, and is a linear or branched alkyl group, a cycloalkyl group or an alkoxy group. Is more preferable, and a linear or branched alkyl group or an alkoxy group is further preferable.
The alkyl group for R 1 , R 3 and R 5 is preferably an alkyl group having 1 to 8 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and more preferably 1 to 6 carbon atoms. A linear or branched alkyl group, a cycloalkyl group having 1 to 6 carbon atoms, a t-butyl group, or a 2-methyl-2-butyl group is more preferable, and a methyl group, a t-butyl group, or 2 It is particularly preferably a methyl-2-butyl group.
The alkyl group may be linear, may have a branch, may have a ring structure, and may have a substituent.
The substituent may be a group that does not lose its ability to inhibit polymerization, and examples thereof include a halogen atom, an alkoxy group, and an aryl group. Further, the substituent may be further substituted with at least one kind of group selected from the group consisting of the substituent and an alkyl group.
In formula (1), R 2 and R 4 are each independently preferably a hydrogen atom or an alkyl group, and more preferably a hydrogen atom.
 式(2)におけるRは、保存安定性の観点から、水素原子、又は、炭素数1~8のアルキル基であることが好ましく、水素原子、又は、メチル基であることがより好ましい。
 式(2)におけるR及びR10は、保存安定性の観点から、第3級アルキル基であることが好ましく、炭素数4~8の第3級アルキル基であることがより好ましく、t-ブチル基、又は、2-メチル-2-ブチル基であることが特に好ましい。
 式(2)におけるR及びRは、保存安定性の観点から、炭素数1~8のアルキル基であることが好ましく、メチル基、t-ブチル基、2-メチル-2-ブチル基、メトキシ基、エトキシ基、プロポキシ基、又は、ブトキシ基であることがより好ましい。
 式(2)におけるR11は、保存安定性の観点から、水素原子、又は、(メタ)アクリロイル基であることが好ましい。
From the viewpoint of storage stability, R 6 in formula (2) is preferably a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and more preferably a hydrogen atom or a methyl group.
From the viewpoint of storage stability, R 7 and R 10 in the formula (2) are preferably a tertiary alkyl group, more preferably a C 4-8 tertiary alkyl group, and t- A butyl group or a 2-methyl-2-butyl group is particularly preferable.
From the viewpoint of storage stability, R 8 and R 9 in the formula (2) are preferably an alkyl group having 1 to 8 carbon atoms, such as a methyl group, a t-butyl group, a 2-methyl-2-butyl group, More preferably, it is a methoxy group, an ethoxy group, a propoxy group, or a butoxy group.
From the viewpoint of storage stability, R 11 in formula (2) is preferably a hydrogen atom or a (meth) acryloyl group.
 また、前記解重合工程において用いられる前記重合禁止剤の窒素雰囲気下における5%重量減少温度は、用いられる2-シアノアクリレート化合物の沸点に対し、-150℃~+50℃の範囲にある化合物を含むことが好ましい。 The 5% weight loss temperature of the polymerization inhibitor used in the depolymerization step in a nitrogen atmosphere includes a compound in the range of −150 ° C. to + 50 ° C. with respect to the boiling point of the 2-cyanoacrylate compound used. It is preferable.
 中でも、保存安定性の観点から、前記解重合工程において用いられる前記重合禁止剤は、2,2’-メチレンビス(6-tert-ブチル-p-クレゾール)(221℃)、2,2’-メチレンビス(4-エチル-6-tert-ブチル-フェノール)(229℃)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)モノアクリレート(234℃)、2,2’-エチレンビス(4,6-ジ-tert-アミルフェノール)モノアクリレート(253℃)及び2,2’-メチレンビス(6-(1-メチルシクロヘキシル)-p-クレゾール)(285℃)よりなる群から選択される少なくとも1種の化合物であることが好ましい。なお、括弧内に記載の温度は、いずれも5%重量減少温度である。 Among them, from the viewpoint of storage stability, the polymerization inhibitor used in the depolymerization step is 2,2′-methylenebis (6-tert-butyl-p-cresol) (221 ° C.), 2,2′-methylenebis. (4-Ethyl-6-tert-butyl-phenol) (229 ° C), 2,2'-methylenebis (4-methyl-6-tert-butylphenol) monoacrylate (234 ° C), 2,2'-ethylenebis ( At least selected from the group consisting of 4,6-di-tert-amylphenol) monoacrylate (253 ° C.) and 2,2′-methylenebis (6- (1-methylcyclohexyl) -p-cresol) (285 ° C.) It is preferably one compound. The temperatures in parentheses are all 5% weight loss temperatures.
 前記解重合工程においては、前記重合禁止剤を1種単独で使用しても、2種以上を使用してもよい。
 また、前記解重合工程において用いられる前記重合禁止剤の添加量は、解重合の収率、及び、保存安定性の観点から、使用する前記2-シアノアクリレート重縮合体100質量部に対し、0.1質量部~20質量部であることが好ましく、0.5質量部~10質量部であることがより好ましく、1質量部~5質量部であることが特に好ましい。
In the depolymerization step, the polymerization inhibitor may be used alone or in combination of two or more.
Further, the addition amount of the polymerization inhibitor used in the depolymerization step is 0 based on 100 parts by mass of the 2-cyanoacrylate polycondensate used, from the viewpoint of depolymerization yield and storage stability. It is preferably from 1 to 20 parts by mass, more preferably from 0.5 to 10 parts by mass, and particularly preferably from 1 to 5 parts by mass.
 前記解重合工程においては、解重合速度、及び、解重合収率の観点から、解重合触媒の存在下で解重合を行うことが好ましい。
 解重合触媒としては、解重合速度、及び、解重合収率の観点から、五酸化二リン、リン酸、ポリリン酸、p-トルエンスルホン酸等が好ましく挙げられ、p-トルエンスルホン酸又は五酸化二リンがより好ましく挙げられる。
 また、前記解重合触媒は、重合禁止能を有するものであってもよい。例えば、五酸化二リン、リン酸、ポリリン酸、及び、p-トルエンスルホン酸は、重合禁止能を有する解重合触媒である。なお、これらの添加物については、本発明においては、解重合触媒として扱うものとする。
In the depolymerization step, it is preferable to carry out depolymerization in the presence of a depolymerization catalyst from the viewpoint of depolymerization rate and depolymerization yield.
As the depolymerization catalyst, diphosphorus pentoxide, phosphoric acid, polyphosphoric acid, p-toluenesulfonic acid and the like are preferably mentioned from the viewpoints of depolymerization rate and depolymerization yield. More preferred is diphosphorus.
Further, the depolymerization catalyst may have a polymerization inhibiting ability. For example, diphosphorus pentoxide, phosphoric acid, polyphosphoric acid, and p-toluenesulfonic acid are depolymerization catalysts having a polymerization inhibiting ability. It should be noted that these additives are treated as depolymerization catalysts in the present invention.
 前記解重合工程においては、前記解重合触媒を1種単独で使用しても、2種以上を使用してもよい。
 また、前記解重合工程において用いられる前記解重合触媒の添加量は、解重合速度、及び、解重合収率の観点から、使用する前記2-シアノアクリレート重縮合体100質量部に対し、0.05質量部~20質量部であることが好ましく、0.1質量部~10質量部であることがより好ましく、0.2質量部~5質量部であることが特に好ましい。
In the depolymerization step, the depolymerization catalyst may be used alone or in combination of two or more.
Further, the addition amount of the depolymerization catalyst used in the depolymerization step is 0. 0 from the viewpoint of depolymerization rate and depolymerization yield, with respect to 100 parts by mass of the 2-cyanoacrylate polycondensate used. It is preferably from 05 parts by mass to 20 parts by mass, more preferably from 0.1 parts by mass to 10 parts by mass, particularly preferably from 0.2 parts by mass to 5 parts by mass.
 また、前記解重合工程においては、解重合時の反応容器内の粘稠性を低下させるために、トリクレジルホスフェート、ジオクチルフタレート、ジフェニルフェニルホスホネート等の高沸点溶媒を添加することもできる。
 前記解重合工程においては、前記高沸点溶媒を1種単独で使用しても、2種以上を使用してもよい。
 また、前記解重合工程において用いられる前記高沸点溶媒の添加量は、解重合速度、及び、解重合収率の観点から、使用する前記2-シアノアクリレート重縮合体100質量部に対し、0.1質量部~50質量部であることが好ましく、1質量部~30質量部であることがより好ましく、2質量部~20質量部であることが特に好ましい。
Further, in the depolymerization step, a high boiling point solvent such as tricresyl phosphate, dioctyl phthalate or diphenylphenylphosphonate may be added in order to reduce the viscosity in the reaction vessel during depolymerization.
In the depolymerization step, the high boiling point solvent may be used alone or in combination of two or more.
Further, the addition amount of the high boiling point solvent used in the depolymerization step is 0. 0, based on 100 parts by mass of the 2-cyanoacrylate polycondensate used, from the viewpoint of depolymerization rate and depolymerization yield. It is preferably 1 part by mass to 50 parts by mass, more preferably 1 part by mass to 30 parts by mass, and particularly preferably 2 parts by mass to 20 parts by mass.
 前記解重合工程における解重合温度は、特に制限はないが、解重合速度、及び、解重合収率の観点から、100℃以上であることが好ましく、150℃以上320℃以下であることがより好ましい。
 前記解重合工程における圧力は、1気圧より低い圧力であればよいが、解重合速度、及び、解重合収率の観点から、15,000Pa以下であることが好ましく、1Pa~10,000Paであることがより好ましく、10Pa~1,000Paであることが特に好ましい。
The depolymerization temperature in the depolymerization step is not particularly limited, but is preferably 100 ° C. or higher, and more preferably 150 ° C. or higher and 320 ° C. or lower, from the viewpoint of depolymerization rate and depolymerization yield. preferable.
The pressure in the depolymerization step may be lower than 1 atm, but from the viewpoint of depolymerization rate and depolymerization yield, it is preferably 15,000 Pa or less, and 1 Pa to 10,000 Pa. More preferably, it is particularly preferably 10 Pa to 1,000 Pa.
 前記解重合工程は、具体的には、例えば、以下の方法により好適に行うことができる。
 留分を冷却する冷却器を備えた反応器に、シアノアセテートとホルムアルデヒドとの縮合体である2-シアノアクリレート重縮合体を入れ、減圧下に徐々に昇温していく。反応器内部が解重合反応を開始する温度に達すると、2-シアノアクリレートモノマーのガスが出始め、反応器内部温度を前記反応を開始する温度より高い温度に保ち解重合を続ける。
 前記冷却器は、解重合により生じるガスを凝縮できる温度に保つ。この場合、前記冷却器の温度は、分縮する圧力条件下において2-シアノアクリレートモノマーの沸点以下の温度であることが好ましく、例えば、-30℃~50℃の範囲が好ましい。
 前記冷却器により凝縮し、凝縮した留分を回収し、粗製2-シアノアクリレートモノマーを得る。
 また、前記解重合工程においては、還流しながら解重合を行うことも好ましい。
 更に、前記解重合工程においては、特許第3804396号公報に記載されているように、前記冷却器として、分縮器及び全縮器を用い、2-シアノアクリレートモノマーの沸点以上で凝縮する高沸点留分を、解重合反応に戻して解重合を行ってもよい。
 なお、前記例は、バッチ式の解重合装置について述べたものだが、連続式の解重合装置も、本発明に適用できる。
Specifically, the depolymerization step can be suitably performed by the following method, for example.
A 2-cyanoacrylate polycondensate, which is a condensate of cyanoacetate and formaldehyde, is placed in a reactor equipped with a cooler for cooling the distillate, and the temperature is gradually raised under reduced pressure. When the temperature inside the reactor reaches the temperature at which the depolymerization reaction starts, the gas of the 2-cyanoacrylate monomer begins to be emitted, and the depolymerization is continued by keeping the temperature inside the reactor at a temperature higher than the temperature at which the reaction is started.
The cooler maintains a temperature at which the gas generated by depolymerization can be condensed. In this case, the temperature of the cooler is preferably a temperature equal to or lower than the boiling point of the 2-cyanoacrylate monomer under the pressure condition of partial condensation, for example, in the range of −30 ° C. to 50 ° C.
The crude 2-cyanoacrylate monomer is obtained by condensing with the condenser and collecting the condensed fraction.
In the depolymerization step, it is also preferable to carry out depolymerization while refluxing.
Further, in the depolymerization step, as described in Japanese Patent No. 3804396, a partial condenser and a total condenser are used as the cooler, and a high boiling point that condenses above the boiling point of the 2-cyanoacrylate monomer. The fraction may be returned to the depolymerization reaction for depolymerization.
Although the above example describes a batch type depolymerization apparatus, a continuous type depolymerization apparatus is also applicable to the present invention.
<蒸留精製工程>
 本発明の2-シアノアクリレート化合物の製造方法は、前記粗製2-シアノアクリレートモノマーを蒸留して、精製2-シアノアクリレートモノマーを得る蒸留精製工程を含む。
 前記蒸留精製工程により、粗製2-シアノアクリレートモノマー中に残存する微量水分や不純物である重合物等を除去することができ、精製2-シアノアクリレートモノマーが得られる。
 前記粗製2-シアノアクリレートモノマーが有機溶剤を含む場合には、有機溶剤を留去した後に、精製2-シアノアクリレートモノマーを得る本蒸留を行うことが好ましい。
 前記蒸留精製工程における前記蒸留時における圧力は、特に制限はなく、加熱温度及び2-シアノアクリレートモノマーの沸点等に応じて適宜選択すればよいが、減圧下であることが好ましく、10Pa~13,300Paであることがより好ましい。
 また、前記蒸留精製工程における前記蒸留時における加熱温度は、特に制限はなく、蒸留時の圧力及び2-シアノアクリレートモノマーの沸点等に応じて適宜選択すればよいが、30℃~150℃であることが好ましく、40℃~100℃であることがより好ましい。
<Distillation and refining process>
The method for producing a 2-cyanoacrylate compound of the present invention includes a distillation purification step of distilling the crude 2-cyanoacrylate monomer to obtain a purified 2-cyanoacrylate monomer.
By the distillation and purification step, trace amounts of water remaining in the crude 2-cyanoacrylate monomer and polymer such as impurities can be removed, and a purified 2-cyanoacrylate monomer can be obtained.
When the crude 2-cyanoacrylate monomer contains an organic solvent, it is preferable to carry out main distillation to obtain a purified 2-cyanoacrylate monomer after distilling off the organic solvent.
The pressure during the distillation in the distillation purification step is not particularly limited and may be appropriately selected depending on the heating temperature, the boiling point of the 2-cyanoacrylate monomer, etc., but is preferably under reduced pressure, 10 Pa to 13, It is more preferably 300 Pa.
The heating temperature during the distillation in the distillation purification step is not particularly limited and may be appropriately selected depending on the pressure during the distillation, the boiling point of the 2-cyanoacrylate monomer, and the like, but is 30 ° C to 150 ° C. It is preferable that the temperature is 40 ° C. to 100 ° C.
 また、前記蒸留精製工程においては、収率、及び、保存安定性の観点から、前記粗製2-シアノアクリレートモノマーに重合禁止剤を添加することが好ましい。
 前記蒸留精製工程において添加する前記重合禁止剤としては、五酸化二リン、SO、p-トルエンスルホン酸、メタンスルホン酸、プロパンサルトン、BF錯体等のアニオン重合禁止剤が好ましく挙げられる。前記BF錯体としては、エーテル錯体、アルコール錯体、カルボン酸錯体等が好ましく挙げられる。
 中でも、前記蒸留精製工程において添加する前記重合禁止剤としては、収率、及び、保存安定性の観点から、五酸化二リンを含むことが好ましい。
 また、前記蒸留精製工程において前記重合禁止剤として添加されるラジカル重合禁止剤は、光硬化性接着剤組成物を調合した際の保存安定性の観点から、ハイドロキノン構造を有しない化合物であることが好ましい。
In addition, in the distillation purification step, it is preferable to add a polymerization inhibitor to the crude 2-cyanoacrylate monomer from the viewpoint of yield and storage stability.
As the polymerization inhibitor added in the distillation and purification step, anionic polymerization inhibitors such as diphosphorus pentoxide, SO 2 , p-toluenesulfonic acid, methanesulfonic acid, propanesultone, and BF 3 complex are preferably mentioned. Preferred examples of the BF 3 complex include an ether complex, an alcohol complex, a carboxylic acid complex and the like.
Among them, the polymerization inhibitor added in the distillation and purification step preferably contains diphosphorus pentoxide from the viewpoint of yield and storage stability.
Further, the radical polymerization inhibitor added as the polymerization inhibitor in the distillation purification step is a compound having no hydroquinone structure from the viewpoint of storage stability when a photocurable adhesive composition is prepared. preferable.
 前記蒸留精製工程において添加する前記重合禁止剤は、1種単独で用いても、2種以上を併用してもよい。
 前記蒸留精製工程における前記重合禁止剤の添加量は、粗製2-シアノアクリレートモノマー100質量部に対して、0.01質量部~5.0質量部であることが好ましく、0.05質量部~1.0質量部であることがより好ましい。
The polymerization inhibitor added in the distillation purification step may be used alone or in combination of two or more kinds.
The addition amount of the polymerization inhibitor in the distillation purification step is preferably 0.01 parts by mass to 5.0 parts by mass, and 0.05 parts by mass to 100 parts by mass of the crude 2-cyanoacrylate monomer. It is more preferably 1.0 part by mass.
 前記蒸留精製工程における蒸留は、公知の方法により行うことができる。
 なお、前記解重合工程により得られた粗製2-シアノアクリレートモノマーをそのまま蒸留精製工程に導き、解重合工程と同時に連続的に蒸留精製工程を行うことも可能である。
Distillation in the distillation purification step can be performed by a known method.
It is also possible to introduce the crude 2-cyanoacrylate monomer obtained by the depolymerization step to the distillation purification step as it is, and continuously perform the distillation purification step simultaneously with the depolymerization step.
 また、本発明の2-シアノアクリレート化合物の製造方法は、湿気及び酸素のない又は少ない(例えば、0.01体積%以下)雰囲気下で行うことが好ましく、不活性ガス雰囲気下で行うことがより好ましい。
 不活性ガスとしては、窒素、アルゴン等が挙げられる。
In addition, the method for producing a 2-cyanoacrylate compound of the present invention is preferably performed in an atmosphere free from or low in humidity and oxygen (eg, 0.01 vol% or less), and more preferably in an inert gas atmosphere. preferable.
Examples of the inert gas include nitrogen and argon.
<重合禁止剤後添加工程>
 本発明の2-シアノアクリレート化合物の製造方法は、保存安定性の観点から、前記蒸留精製工程の後に、重合禁止剤を添加する重合禁止剤後添加工程を含むことが好ましい。
 前記蒸留精製工程の後であれば、ハイドロキノン構造を有する化合物を重合禁止剤として添加しても、ベンゾキノン構造を有する化合物の生成が抑制され、保存安定性に優れる。
 前記重合禁止剤後添加工程において添加される前記重合禁止剤は、保存安定性の観点から、フェノール系ラジカル重合禁止剤であることが好ましい。前記フェノール系ラジカル重合禁止剤としては、ハイドロキノン、メキノール、ブチルヒドロキシアニソール、ジ-tert-ブチルヒドロキシトルエン、メチルハイドロキノン、メトキシハイドロキノン、2,6-ジメチルハイドロキノン、2,6-ジ-tert-ブチルハイドロキノン、4-tert-ブチルカテコール、tert-ブチルヒドロキノン、6-tert-ブチル-4-キシレノール、2,6-ジ-tert-ブチルフェノール及び1,2,4-トリヒドロキシベンゼンよりなる群から選択される少なくとも1種であることが好ましく、ハイドロキノン構造を有するラジカル重合禁止剤である、ハイドロキノン、メチルハイドロキノン、メトキシハイドロキノン、2,6-ジメチルハイドロキノン及び2,6-ジ-tert-ブチルハイドロキノンよりなる群から選択される少なくとも1種であることが特に好ましい。
<Addition step after polymerization inhibitor>
From the viewpoint of storage stability, the method for producing a 2-cyanoacrylate compound of the present invention preferably includes a post-addition step of a polymerization inhibitor that is added after the distillation purification step.
After the distillation and purification step, even if a compound having a hydroquinone structure is added as a polymerization inhibitor, the production of a compound having a benzoquinone structure is suppressed and the storage stability is excellent.
The polymerization inhibitor added in the post-addition step of the polymerization inhibitor is preferably a phenolic radical polymerization inhibitor from the viewpoint of storage stability. Examples of the phenol-based radical polymerization inhibitor include hydroquinone, mequinol, butylhydroxyanisole, di-tert-butylhydroxytoluene, methylhydroquinone, methoxyhydroquinone, 2,6-dimethylhydroquinone, 2,6-di-tert-butylhydroquinone, At least one selected from the group consisting of 4-tert-butylcatechol, tert-butylhydroquinone, 6-tert-butyl-4-xylenol, 2,6-di-tert-butylphenol and 1,2,4-trihydroxybenzene It is preferably a seed and is a radical polymerization inhibitor having a hydroquinone structure, such as hydroquinone, methylhydroquinone, methoxyhydroquinone, 2,6-dimethylhydroquinone and 2,6-di-ter. - and particularly preferably at least one selected from the group consisting of butyl hydroquinone.
 また、前記重合禁止剤後添加工程における前記重合禁止剤としては、前述した前記解重合工程及び前記蒸留精製工程において前述した重合禁止剤も好適に挙げられる。
 中でも、これらの重合禁止剤としては、五酸化二リン、SO、p-トルエンスルホン酸、メタンスルホン酸、プロパンサルトン、BF錯体等のアニオン重合禁止剤が好ましく挙げられる。
 また、前記重合禁止剤としては、保存安定性の観点から、ハイドロキノン構造を有するラジカル重合禁止剤とアニオン重合禁止剤とを併用することも好ましい。
Further, as the polymerization inhibitor in the post-addition step of the polymerization inhibitor, the polymerization inhibitor described in the depolymerization step and the distillation / purification step described above is also preferably exemplified.
Among these, anionic polymerization inhibitors such as diphosphorus pentoxide, SO 2 , p-toluenesulfonic acid, methanesulfonic acid, propanesultone, and BF 3 complex are preferable as these polymerization inhibitors.
From the viewpoint of storage stability, it is also preferable to use a radical polymerization inhibitor having a hydroquinone structure and an anionic polymerization inhibitor together as the polymerization inhibitor.
 前記重合禁止剤後添加工程における前記重合禁止剤は、1種単独で使用しても、2種以上を併用してもよい。
 前記重合禁止剤後添加工程における前記重合禁止剤の添加量は、得られる2-シアノアクリレート化合物において、50ppm~1質量%であることが好ましく、20ppm~5,000ppmであることがより好ましい。
 前記重合禁止剤後添加工程における前記ラジカル重合禁止剤の添加量は、得られる2-シアノアクリレート化合物において、光硬化性接着剤組成物以外に用いる場合には、50ppm~1質量%であることが好ましく、光硬化性接着剤組成物以外に用いる場合には、光ラジカル発生剤の添加量を超えない範囲内で、20ppm~5,000ppmであることが好ましい。
 前記重合禁止剤後添加工程における前記アニオン重合禁止剤の添加量は、得られる2-シアノアクリレート化合物において、2ppm~200ppmであることが好ましく、5ppm~100ppmであることがより好ましい。
The polymerization inhibitor in the post-addition step of the polymerization inhibitor may be used alone or in combination of two or more kinds.
The amount of the polymerization inhibitor added in the post-addition step of the polymerization inhibitor is preferably 50 ppm to 1% by mass, and more preferably 20 ppm to 5,000 ppm in the resulting 2-cyanoacrylate compound.
The amount of the radical polymerization inhibitor added in the post-addition step of the polymerization inhibitor may be 50 ppm to 1% by mass in the obtained 2-cyanoacrylate compound, when it is used for other than the photocurable adhesive composition. When used in addition to the photocurable adhesive composition, it is preferably 20 ppm to 5,000 ppm within a range not exceeding the addition amount of the photoradical generator.
The amount of the anionic polymerization inhibitor added in the post-addition step of the polymerization inhibitor is preferably 2 ppm to 200 ppm, more preferably 5 ppm to 100 ppm in the obtained 2-cyanoacrylate compound.
 前記重合禁止剤後添加工程における前記重合禁止剤の添加方法としては、特に制限はなく、前記精製2-シアノアクリレートモノマーに前記重合開始剤を添加すればよいが、例えば、前記蒸留精製工程における前記精製2-シアノアクリレートモノマーを回収する容器にあらかじめ添加しておく、又は、蒸留完了後に添加する方法が挙げられる。
 また、前述のように、前記蒸留精製工程により得られた精製2-シアノアクリレートモノマーをそのまま前記重合禁止剤後添加工程に導き、前記蒸留精製工程と同時に連続的に前記重合禁止剤後添加工程を行うことも可能である。
The method of adding the polymerization inhibitor in the post-addition step of the polymerization inhibitor is not particularly limited, and the polymerization initiator may be added to the purified 2-cyanoacrylate monomer. For example, in the distillation purification step, Examples include a method in which the purified 2-cyanoacrylate monomer is added in advance to a container for collection, or a method after the distillation is completed.
Further, as described above, the purified 2-cyanoacrylate monomer obtained by the distillation purification step is directly introduced to the polymerization inhibitor post-addition step, and the polymerization inhibitor post-addition step is continuously performed simultaneously with the distillation purification step. It is also possible to do so.
<重縮合工程>
 本発明の2-シアノアクリレート化合物の製造方法は、前記解重合工程の前に、シアノ酢酸エステル化合物とホルムアルデヒド化合物とを、塩基性触媒の存在下、有機溶剤中で縮合させ、2-シアノアクリレート重縮合体(2-シアノアクリレート解重合前駆体)を得る重縮合工程を含んでいてもよい。
 前記重縮合工程におけるシアノ酢酸エステル化合物及びホルムアルデヒド化合物については、前記解重合工程において記載したシアノ酢酸エステル化合物及びホルムアルデヒド化合物とそれぞれ同様であり、好ましい態様も同様である。
<Polycondensation process>
In the method for producing a 2-cyanoacrylate compound of the present invention, before the depolymerization step, a cyanoacetic acid ester compound and a formaldehyde compound are condensed in an organic solvent in the presence of a basic catalyst to give a 2-cyanoacrylate compound. A polycondensation step of obtaining a condensate (2-cyanoacrylate depolymerization precursor) may be included.
The cyanoacetic acid ester compound and the formaldehyde compound in the polycondensation step are the same as the cyanoacetic acid ester compound and the formaldehyde compound described in the depolymerization step, respectively, and the preferred embodiments are also the same.
 前記重縮合工程で用いられる塩基性触媒は、公知のものを用いることができる。
 具体的には、例えば、ピペリジン、モルホリン、キノリン、イソキノリン、エチルアミン、ジエチルアミン、トリエチルアミン、エタノールアミン、ピリジン酢酸塩等の有機塩基性物質や、水酸化ナトリウム、水酸化カリウム、アンモニア等無機塩基性物質が挙げられる。
As the basic catalyst used in the polycondensation step, known ones can be used.
Specifically, for example, organic basic substances such as piperidine, morpholine, quinoline, isoquinoline, ethylamine, diethylamine, triethylamine, ethanolamine, pyridine acetate, and inorganic basic substances such as sodium hydroxide, potassium hydroxide, and ammonia can be used. Can be mentioned.
 前記塩基性触媒は、1種単独で使用しても、2種以上を併用してもよい。
 前記重縮合工程における塩基性触媒の添加量は、特に制限はないが、反応性及び収率の観点から、前記シアノ酢酸エステル化合物100質量部に対し、0.0001質量部~0.01質量部であることが好ましい。
The basic catalysts may be used alone or in combination of two or more.
The addition amount of the basic catalyst in the polycondensation step is not particularly limited, but from the viewpoint of reactivity and yield, 0.0001 parts by mass to 0.01 parts by mass relative to 100 parts by mass of the cyanoacetic acid ester compound. Is preferred.
 前記重縮合工程においては、溶媒を用いることが好ましい。
 前記重縮合工程で用いられる溶媒としては、トルエン、キシレン、ベンゼン、トリクロロエチレン、シクロヘキサン、酢酸エチル、メタノール、エタノール、イソプロパノール、トリクレジルホスフェート、ジオクチルフタレート、ジフェニルフェニルホスホネート等が挙げられる。
 前記溶媒は、1種単独で使用しても、2種以上を併用してもよい。
 また、前記溶媒の使用量は、特に制限はなく、所望に応じ適宜選択すればよい。
A solvent is preferably used in the polycondensation step.
Examples of the solvent used in the polycondensation step include toluene, xylene, benzene, trichloroethylene, cyclohexane, ethyl acetate, methanol, ethanol, isopropanol, tricresyl phosphate, dioctyl phthalate and diphenylphenylphosphonate.
The said solvent may be used individually by 1 type, or may use 2 or more types together.
The amount of the solvent used is not particularly limited and may be appropriately selected as desired.
 また、前記重縮合工程により得られる2-シアノアクリレート重縮合体は、引き続いて行われる前記解重合工程で良好に2-シアノアクリレートモノマーに分解されるように、公知の適切な前処理を施されていてもよい。
 前記前処理としては、例えば、原料中に含まれていた水や縮合工程中に発生する水を、水と共沸混合物を作る溶媒を用いた場合には共沸により除去し、そうでない場合は留去する処理が好ましく挙げられる。また、使用した前記塩基性触媒は、酸性物質を用いて失活させたり、水洗除去したり、溶媒と共に除去したりする処理を行うことが好ましく挙げられる。
The 2-cyanoacrylate polycondensate obtained by the polycondensation step is subjected to a known appropriate pretreatment so that the 2-cyanoacrylate polycondensate is decomposed into the 2-cyanoacrylate monomer in the subsequent depolymerization step. May be.
As the pretreatment, for example, water contained in the raw material or water generated in the condensation step is removed by azeotropy when a solvent that forms an azeotropic mixture with water is used, and if not, A treatment of distilling off is preferable. Further, the basic catalyst used is preferably deactivated with an acidic substance, washed with water, or removed with a solvent.
 本発明の2-シアノアクリレート化合物の製造方法は、前述した工程以外に、その他の公知の工程を含んでいてもよい。 The method for producing a 2-cyanoacrylate compound of the present invention may include other known steps in addition to the steps described above.
(光硬化性接着剤組成物、及び、その製造方法)
 本発明の光硬化性接着剤組成物は、本発明の製造方法により得られる2-シアノアクリレート化合物を含む組成物であり、本発明の製造方法により得られる2-シアノアクリレート化合物と、第8族遷移金属メタロセン化合物とを含む組成物であることが好ましい。
 また、本発明の光硬化性接着剤組成物の製造方法は、本発明の製造方法により得られる2-シアノアクリレート化合物と、第8族遷移金属メタロセン化合物とを混合する混合工程を含むことが好ましい。
(Photocurable adhesive composition and method for producing the same)
The photocurable adhesive composition of the present invention is a composition containing a 2-cyanoacrylate compound obtained by the production method of the present invention, and contains the 2-cyanoacrylate compound obtained by the production method of the present invention and a Group 8 compound. A composition containing a transition metal metallocene compound is preferable.
Further, the method for producing the photocurable adhesive composition of the present invention preferably includes a mixing step of mixing the 2-cyanoacrylate compound obtained by the production method of the present invention and a Group 8 transition metal metallocene compound. .
 本発明の光硬化性樹脂組成物の製造方法は、特に制限はなく、前記及び後述する各成分を混合し製造すればよいが、湿気及び酸素のない又は少ない(例えば、0.01体積%以下)雰囲気下で混合することが好ましく、不活性ガス雰囲気下で混合することがより好ましい。
 不活性ガスとしては、窒素、アルゴン等が挙げられる。
 また、本発明の光硬化性樹脂組成物の製造方法は、遮光下で行われることが好ましい。
 前記混合方法としては、特に制限はなく、公知の混合方法を用いることができる。
The method for producing the photocurable resin composition of the present invention is not particularly limited and may be produced by mixing the components described above and below, but there is little or no moisture and oxygen (for example, 0.01% by volume or less). ) Mixing under an atmosphere is preferable, and mixing under an inert gas atmosphere is more preferable.
Examples of the inert gas include nitrogen and argon.
Further, the method for producing the photocurable resin composition of the present invention is preferably carried out under light shielding.
The mixing method is not particularly limited, and a known mixing method can be used.
 本発明の光硬化性接着剤組成物は、保存安定性の観点から、ベンゾキノン構造を有する化合物を含まないか、又は、ベンゾキノン構造を有する化合物の含有量が、0ppmを超え4ppm未満であることが好ましく、ベンゾキノン構造を有する化合物を含有しないか、又は、ベンゾキノン構造を有する化合物の含有量が0ppmを超え3ppm以下であることがより好ましく、ベンゾキノン構造を有する化合物を含有しないか、又は、ベンゾキノン構造を有する化合物の含有量が0ppmを超え1.5ppm以下であることが更に好ましい。
 なお、本発明の光硬化性接着剤組成物が2種以上のベンゾキノン構造を有する化合物を含有する場合、前記含有量は、2種以上のベンゾキノン構造を有する化合物の総含有量である。
From the viewpoint of storage stability, the photocurable adhesive composition of the present invention does not contain a compound having a benzoquinone structure, or the content of the compound having a benzoquinone structure is more than 0 ppm and less than 4 ppm. It is preferable that the compound having a benzoquinone structure is not contained, or the content of the compound having a benzoquinone structure is more than 0 ppm and 3 ppm or less, and the compound having a benzoquinone structure is not contained, or the benzoquinone structure is not contained. The content of the compound contained is more preferably more than 0 ppm and 1.5 ppm or less.
In addition, when the photocurable adhesive composition of this invention contains the compound which has 2 or more types of benzoquinone structures, the said content is the total content of the compound which has 2 or more types of benzoquinone structures.
<第8族遷移金属メタロセン化合物>
 本発明の光硬化性接着剤組成物は、第8族遷移金属メタロセン化合物を含有することが好ましい。
 前記第8族遷移金属メタロセン化合物は、光重合開始剤として機能すると推定している。更に、前記第8族遷移金属メタロセン化合物の光吸収波長は、波長500nm以上の長波長側にもあるため、本発明の光硬化性接着剤組成物は、より広い波長領域、即ち紫外線領域及び可視光領域の光でも光硬化が可能である。
<Group 8 transition metal metallocene compound>
The photocurable adhesive composition of the present invention preferably contains a Group 8 transition metal metallocene compound.
It is estimated that the Group 8 transition metal metallocene compound functions as a photopolymerization initiator. Further, since the light absorption wavelength of the Group 8 transition metal metallocene compound is also on the long wavelength side of 500 nm or more, the photocurable adhesive composition of the present invention has a wider wavelength range, that is, an ultraviolet range and a visible range. Light curing is possible even with light in the light range.
 前記第8族遷移金属メタロセン化合物としては、遷移金属が鉄であるフェロセン化合物、オスミウムであるオスモセン化合物、ルテニウムであるルテノセン化合物、コバルトであるコバルトセン化合物、ニッケルであるニッケロセン化合物を始めとする周期律表の第8族遷移金属元素を有するメタロセン化合物を挙げることができる。
 これらの中でも、光硬化性及び保存安定性の観点から、フェロセン化合物及びルテノセン化合物よりなる群から選ばれた少なくとも1種の化合物であることが好ましい。
Examples of the Group 8 transition metal metallocene compound include a ferrocene compound in which the transition metal is iron, an osmocene compound in which osmium is a ruthenocene compound in which ruthenium is a cobaltocene compound in which cobalt is a nickelocene compound. Mention may be made of metallocene compounds having a Group 8 transition metal element in the table.
Among these, at least one compound selected from the group consisting of ferrocene compounds and ruthenocene compounds is preferable from the viewpoint of photocurability and storage stability.
 前記第8族遷移金属メタロセン化合物として、具体的には、例えば、フェロセン、エチルフェロセン、n-ブチルフェロセン、ベンゾイルフェロセン、アセチルフェロセン、t-アミルフェロセン、1,1’-ジメチルフェロセン、1,1’-ジ-n-ブチルフェロセン、1,1’-ジベンゾイルフェロセン、1,1’-ジ(アセチルシクロペンタジエニル)アイロン、ビス(ペンタメチルシクロペンタジエニル)アイロン、ビス(シクロペンタジエニル)オスミウム、ビス(ペンタメチルシクロペンタジエニル)オスミウム、ルテノセン(ビス(シクロペンタジエニル)ルテニウム)、ビス(ペンタメチルシクロペンタジエニル)ルテニウムがあげられる。
 また、前記第8族遷移金属メタロセン化合物としては、特開2003-277422号公報に記載されている芳香族電子系配位子を有する周期律表第8族の遷移金属メタロセン化合物が好ましく使用できる。
 これらの中でも、前記第8族遷移金属メタロセン化合物としては、光硬化性及び保存安定性の観点から、フェロセン、エチルフェロセン、n-ブチルフェロセン、ベンゾイルフェロセン及びルテノセンよりなる群から選ばれた少なくとも1種の化合物であることが好ましく、フェロセン及びルテノセンよりなる群から選ばれた少なくとも1種の化合物であることが特に好ましい。
Specific examples of the Group 8 transition metal metallocene compound include, for example, ferrocene, ethylferrocene, n-butylferrocene, benzoylferrocene, acetylferrocene, t-amylferrocene, 1,1′-dimethylferrocene, 1,1 ′. -Di-n-butylferrocene, 1,1'-dibenzoylferrocene, 1,1'-di (acetylcyclopentadienyl) iron, bis (pentamethylcyclopentadienyl) iron, bis (cyclopentadienyl) Examples thereof include osmium, bis (pentamethylcyclopentadienyl) osmium, ruthenocene (bis (cyclopentadienyl) ruthenium), and bis (pentamethylcyclopentadienyl) ruthenium.
Further, as the Group 8 transition metal metallocene compound, a transition metal metallocene compound of Group 8 of the periodic table having an aromatic electron type ligand described in JP-A-2003-277422 can be preferably used.
Among these, the Group 8 transition metal metallocene compound is at least one selected from the group consisting of ferrocene, ethylferrocene, n-butylferrocene, benzoylferrocene, and ruthenocene, from the viewpoint of photocurability and storage stability. Are preferred, and at least one compound selected from the group consisting of ferrocene and ruthenocene is particularly preferred.
 本発明の光硬化性接着剤組成物は、第8族遷移金属メタロセン化合物を1種単独で含んでいても、2種以上を含んでいてもよい。
 本発明の光硬化性接着剤組成物における第8族遷移金属メタロセン化合物の含有量は、光硬化性、及び、保存安定性の観点から、1ppm~50,000ppmであることが好ましく、10ppm~10,000ppmであることがより好ましく、20ppm~2,000ppmであることが特に好ましい。
The photocurable adhesive composition of the present invention may contain one kind of Group 8 transition metal metallocene compound alone, or may contain two or more kinds thereof.
The content of the Group 8 transition metal metallocene compound in the photocurable adhesive composition of the present invention is preferably 1 ppm to 50,000 ppm, and preferably 10 ppm to 10 ppm, from the viewpoint of photocurability and storage stability. It is more preferably 2,000 ppm, particularly preferably 20 ppm to 2,000 ppm.
<2-シアノアクリレート化合物>
 本発明の光硬化性接着剤組成物は、本発明の製造方法により得られる2-シアノアクリレート化合物を含有する。
 本発明の光硬化性接着剤組成物は、2-シアノアクリレート化合物を1種単独で含んでいても、2種以上を含んでいてもよい。
 本発明の光硬化性接着剤組成物における2-シアノアクリレート化合物の含有量は、硬化性、接着速度、及び、接着強度の観点から、40質量%以上であることが好ましく、60質量%以上であることがより好ましい。
<2-cyanoacrylate compound>
The photocurable adhesive composition of the present invention contains the 2-cyanoacrylate compound obtained by the production method of the present invention.
The photocurable adhesive composition of the present invention may include one type of the 2-cyanoacrylate compound alone or may include two or more types.
The content of the 2-cyanoacrylate compound in the photocurable adhesive composition of the present invention is preferably 40% by mass or more, and more preferably 60% by mass or more, from the viewpoint of curability, adhesion speed, and adhesive strength. More preferably.
<光ラジカル発生剤>
 本発明の光硬化性接着剤組成物は、光硬化性の観点から、光ラジカル発生剤を更に含有することが好ましい。
 前記光ラジカル発生剤としては、ラジカル重合性化合物を光重合させる際に使用される公知の光ラジカル発生剤が使用できる。
 光ラジカル発生剤としては、アシルゲルマン系化合物、アシルホスフィンオキサイド系化合物、ヒドロキシ基、窒素原子及びチオエーテル結合を有しないアセトフェノン系化合物、ヒドロキシ基、窒素原子及びチオエーテル結合を有しないベンゾイン系化合物等が挙げられる。
 中でも、光ラジカル発生剤としては、光硬化性、接着速度、及び、保存安定性の観点から、アシルゲルマン系化合物が好ましい。
<Photo radical generator>
From the viewpoint of photocurability, the photocurable adhesive composition of the present invention preferably further contains a photoradical generator.
As the photo-radical generator, a known photo-radical generator used when photopolymerizing a radical-polymerizable compound can be used.
Examples of the photoradical generator include an acylgermane-based compound, an acylphosphine oxide-based compound, a hydroxy group, an acetophenone-based compound that does not have a nitrogen atom and a thioether bond, and a benzoin-based compound that does not have a hydroxy group, a nitrogen atom, and a thioether bond. To be
Among them, as the photoradical generator, an acylgermane compound is preferable from the viewpoint of photocurability, adhesion speed, and storage stability.
 アシルゲルマン化合物としては、モノアシルゲルマン系化合物、ビスアシルゲルマン系化合物が好ましく挙げられ、ビスアシルゲルマン系化合物がより好ましく挙げられる。
 アシルゲルマン系化合物としては、例えば、Ivocerin(Ivoclar Vivadent社製)が好ましく挙げられる。
The acylgermane compound is preferably a monoacylgermane compound or a bisacylgermane compound, more preferably a bisacylgermane compound.
Preferable examples of the acylgermane compound include Ivocerin (manufactured by Ivoclar Vivadent).
 アシルホスフィンオキサイド系化合物としては、モノアシルホスフィンオキサイド系化合物、ビスアシルホスフィンオキサイド系化合物が好ましく挙げられ、ビスアシルホスフィンオキサイド系化合物がより好ましく挙げられる。
 モノアシルホスフィンオキサイド系化合物としては、下記式(A-1)で表される化合物が好ましく挙げられる。
As the acylphosphine oxide-based compound, monoacylphosphine oxide-based compounds and bisacylphosphine oxide-based compounds are preferable, and bisacylphosphine oxide-based compounds are more preferable.
Preferred examples of the monoacylphosphine oxide compound include compounds represented by the following formula (A-1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(A-1)中、RA1及びRA2はそれぞれ独立に、炭素数1~8のアルキル基、炭素数1~8のアルコキシ基、フェニル基、又は、1~3個の炭素数1~8のアルキル基若しくは炭素数1~8のアルコキシ基で置換されたフェニル基を表し、RA3は未置換若しくはアセチルオキシ基により置換された炭素数1~18の直鎖状若しくは分岐状のアルキル基若しくは炭素数3~12のシクロアルキル基;炭素数1~8のアルキル基、炭素数1~8のアルコキシ基、未置換或いはハロゲン原子により置換されたアリール基;又は下記式(A-2)で表される基を表す。 In formula (A-1), R A1 and R A2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a phenyl group, or 1 to 3 carbon atoms having 1 to 3 carbon atoms. Represents an phenyl group substituted with an alkyl group having 8 or an alkoxy group having 1 to 8 carbon atoms, and R A3 is a linear or branched alkyl group having 1 to 18 carbon atoms, which is unsubstituted or substituted with an acetyloxy group. Or a cycloalkyl group having 3 to 12 carbon atoms; an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an aryl group which is unsubstituted or substituted by a halogen atom; or by the following formula (A-2) Represents a group represented.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(A-2)中、RA4及びRA5はそれぞれ独立に、炭素数1~8のアルキル基、炭素数1~8のアルコキシ基、フェニル基、又は、1~3個の炭素数1~8のアルキル基若しくは炭素数1~8のアルコキシ基で置換されたフェニル基を表し、XA1はp-フェニレン基を表す。 In formula (A-2), R A4 and R A5 each independently represent an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a phenyl group, or 1 to 3 carbon atoms having 1 to 3 carbon atoms. 8 represents a phenyl group substituted by an alkyl group having 8 or an alkoxy group having 1 to 8 carbon atoms, and X A1 represents a p-phenylene group.
 アシルホスフィンオキサイド系化合物としては、メチルイソブチロイルメチルホスフィネート、メチルイソブチロイルフェニルホスフィネート、メチルピバロイルホスフィネート、メチル-2-エチルヘキサノイルホスフィネート、イソプロピル-2-エチルヘキサノイルフェニルホスホネート、メチル-p-トリルフェニルホスフィネート、メチル-o-トリル-フェニルホスフィネート、メチル-2,4-ジメチルベンゾイルフェニルホスフィネート、メチルアシロイルフェニルホスホネート、イソブチロイルジフェニルホスフィンオキシド、2-メチルヘキサノイルジフェニルホスフィンオキシド、o-トルイルジフェニルホスフィンオキシド、p-t-ブチルベンゾイルジフェニルホスフィンオキシド、3-ポリジルカルボニルジフェニルホスフィンオキシド、アクリロイルジフェニルホスフィンオキシド、ベンゾイルジフェニルホスフィンオキシド、アジボイルビス(ジフェニルホスフィンオキシド)等が挙げられる。 Examples of the acylphosphine oxide compounds include methylisobutyroylmethylphosphinate, methylisobutyroylphenylphosphinate, methylpivaloylphosphinate, methyl-2-ethylhexanoylphosphinate, and isopropyl-2-ethylhexanoylphenylphosphonate. , Methyl-p-tolylphenylphosphinate, methyl-o-tolyl-phenylphosphinate, methyl-2,4-dimethylbenzoylphenylphosphinate, methylacryloylphenylphosphonate, isobutyroyldiphenylphosphine oxide, 2-methylhexanoyl Diphenylphosphine oxide, o-toluyldiphenylphosphine oxide, pt-butylbenzoyldiphenylphosphine oxide, 3-polydylcarbonyldi E cycloalkenyl phosphine oxide, acryloyl-diphenyl phosphine oxide, benzoyl diphenylphosphine oxide, and the like Ajiboirubisu (diphenylphosphine oxide).
 ビスホスフィンオキサイド系としては、下記式(A-3)で表される化合物が好ましく挙げられる。 Preferred examples of the bisphosphine oxide-based compound include compounds represented by the following formula (A-3).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(A-3)中のRは、非置換であるか、炭素数1~12のアルキル基、炭素数1~8のアルキルチオ基又はハロゲン原子であり、各Rは同一であっても異なっていてもよい。 R p in the formula (A-3) is unsubstituted, is an alkyl group having 1 to 12 carbon atoms, an alkylthio group having 1 to 8 carbon atoms, or a halogen atom, and each R p is the same. It may be different.
 式(A-3)中のRにおける前記炭素数1~12のアルキル基は、直鎖又は分岐鎖状であってよく、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル又はドデシル基である。好ましくは炭素数が1~6、より好ましくは炭素数1~4のアルキル基である。
 式(A-3)中のRにおける前記炭素数1~8のアルキルチオ基は、直鎖又は分岐鎖状であってよく、例えば、メチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、tert-ブチルチオ、ヘキシルチオ又はオクチルチオが挙げられる。中でも、メチルチオが好ましい。
 ハロゲン原子は、例えば、塩素原子、臭素原子、及び、ヨウ素原子が挙げられる。中でも、塩素原子が好ましい。
The alkyl group having 1 to 12 carbon atoms in R p in formula (A-3) may be linear or branched, and is, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl. , Tert-butyl, pentyl, isopentyl, hexyl, heptyl, octyl, nonyl, decyl or dodecyl groups. It is preferably an alkyl group having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms.
The alkylthio group having 1 to 8 carbon atoms in R p in formula (A-3) may be linear or branched, and examples thereof include methylthio, ethylthio, propylthio, isopropylthio, butylthio, tert-butylthio, Hexylthio or octylthio are mentioned. Of these, methylthio is preferable.
Examples of the halogen atom include chlorine atom, bromine atom, and iodine atom. Of these, chlorine atom is preferable.
 ビスアシルホスフィンオキサイド系化合物としては、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイドなどが挙げられる。 Examples of the bisacylphosphine oxide compound include bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide and bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide.
 アセトフェノン系化合物としては、4-フェノキシジクロロアセトフェノン、4-t-ブチルジクロロアセトフェノン、4-t-ブチルトリクロロアセトフェノン、ジエトキシアセトフェノン等が挙げられる。
 ベンゾイン系化合物としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエ
チルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルメチルケタール等が挙げられる。
Examples of the acetophenone compound include 4-phenoxydichloroacetophenone, 4-t-butyldichloroacetophenone, 4-t-butyltrichloroacetophenone and diethoxyacetophenone.
Examples of the benzoin compound include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, and benzyl methyl ketal.
 これらの中でも、光ラジカル発生剤は、光硬化性、接着速度、及び、保存安定性の観点から、ジベンゾイルジエチルゲルマニウム、ビス(4-メトキシベンゾイル)ジメチルゲルマニウム、ビス(4-メトキシベンゾイル)ジエチルゲルマニウム、フェロセニルアシルゲルマニウム、ベンゾイルジメチルゲルマニウム、ビス(4-メチルベンゾイル)ジエチルゲルマニウム、ビス(4-メチルベンゾイル)ジメチルゲルマニウム及びジベンゾイルジブチルゲルマニウムよりなる群から選択される少なくとも1種の化合物であることが好ましく、ジベンゾイルジエチルゲルマニウム、ビス(4-メトキシベンゾイル)ジメチルゲルマニウム、ビス(4-メトキシベンゾイル)ジエチルゲルマニウム、ビス(4-メチルベンゾイル)ジエチルゲルマニウム、ビス(4-メチルベンゾイル)ジメチルゲルマニウム及びジベンゾイルジブチルゲルマニウムよりなる群から選択される少なくとも1種の化合物であることがより好ましい。 Among these, the photoradical generators are dibenzoyldiethylgermanium, bis (4-methoxybenzoyl) dimethylgermanium, and bis (4-methoxybenzoyl) diethylgermanium from the viewpoints of photocurability, adhesion rate, and storage stability. , At least one compound selected from the group consisting of ferrocenylacylgermanium, benzoyldimethylgermanium, bis (4-methylbenzoyl) diethylgermanium, bis (4-methylbenzoyl) dimethylgermanium and dibenzoyldibutylgermanium. Are preferred, and dibenzoyldiethylgermanium, bis (4-methoxybenzoyl) dimethylgermanium, bis (4-methoxybenzoyl) diethylgermanium, bis (4-methylbenzoyl) diethylgermane Maniumu, more preferably bis (4-methylbenzoyl) at least one compound selected from the group consisting of dimethyl germanium and dibenzo dichloride butyl germanium.
 本発明の光硬化性接着剤組成物は、光ラジカル発生剤を1種単独で含んでいても、2種以上を含んでいてもよい。
 本発明の光硬化性接着剤組成物における光ラジカル発生剤の含有量は、光硬化性、接着速度、及び、保存安定性の観点から、光硬化性接着剤組成物の全質量に対し、0.01質量%~5質量%であることが好ましく、0.05質量%~2質量%であることがより好ましく、0.05質量%~1質量%であることが特に好ましい。
The photocurable adhesive composition of the present invention may contain one type of photoradical generator alone, or may contain two or more types.
The content of the photoradical generator in the photocurable adhesive composition of the present invention is 0 with respect to the total mass of the photocurable adhesive composition from the viewpoint of photocurability, adhesion speed, and storage stability. The amount is preferably 0.01% by mass to 5% by mass, more preferably 0.05% by mass to 2% by mass, and particularly preferably 0.05% by mass to 1% by mass.
<重合禁止剤>
 本発明の光硬化性接着剤組成物は、保存安定性の観点から、重合禁止剤を更に含有することが好ましい。
 前記重合禁止剤としては、公知の重合禁止剤を用いることができる。
<Polymerization inhibitor>
The photocurable adhesive composition of the present invention preferably further contains a polymerization inhibitor from the viewpoint of storage stability.
As the polymerization inhibitor, a known polymerization inhibitor can be used.
 前記重合禁止剤としては、五酸化二リン、SO、p-トルエンスルホン酸、メタンスルホン酸、プロパンサルトン、BF錯体等のハイドロキノン構造を有しないアニオン重合禁止剤が好ましく挙げられる。 Preferred examples of the polymerization inhibitor include diphosphorus pentoxide, SO 2 , p-toluene sulfonic acid, methane sulfonic acid, propane sultone, BF 3 complex and other anionic polymerization inhibitors having no hydroquinone structure.
 また、前記重合禁止剤としては、前記式(1)又は式(2)で表される化合物等の前述したハイドロキノン構造を有しない重合禁止剤等が好ましく挙げられる。
 ハイドロキノン構造を有しない重合禁止剤としては、保存安定性の観点から、メキノール、ブチルヒドロキシアニソール、ジブチルヒドロキシトルエン、ジ-tert-ブチルヒドロキシトルエン、6-tert-ブチル-4-キシレノール、2,6-ジ-tert-ブチルフェノール、2,2’-メチレンビス(6-tert-ブチル-p-クレゾール)、2,2’-メチレンビス(4-エチル-6-tert-ブチル-フェノール)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)モノアクリレート、2,2’-エチレンビス(4,6-ジ-tert-アミルフェノール)モノアクリレート及び2,2’-メチレンビス(6-(1-メチルシクロヘキシル)-p-クレゾール)よりなる群から選択される少なくとも1種であることが好ましい。
Further, as the above-mentioned polymerization inhibitor, the above-mentioned polymerization inhibitor having no hydroquinone structure such as the compound represented by the formula (1) or the formula (2) is preferably exemplified.
As a polymerization inhibitor having no hydroquinone structure, from the viewpoint of storage stability, mequinol, butylhydroxyanisole, dibutylhydroxytoluene, di-tert-butylhydroxytoluene, 6-tert-butyl-4-xylenol, 2,6- Di-tert-butylphenol, 2,2'-methylenebis (6-tert-butyl-p-cresol), 2,2'-methylenebis (4-ethyl-6-tert-butyl-phenol), 2,2'-methylenebis (4-Methyl-6-tert-butylphenol) monoacrylate, 2,2'-ethylenebis (4,6-di-tert-amylphenol) monoacrylate and 2,2'-methylenebis (6- (1-methylcyclohexyl) ) -P-Cresol) It is preferable that the species.
 また、前記重合禁止剤としては、保存安定性の観点から、ハイドロキノン構造を有するラジカル重合禁止剤を含むことが好ましく、1,4-ハイドロキノン構造を有するラジカル重合禁止剤を含むことがより好ましい。
 ハイドロキノン構造を有するラジカル重合禁止剤としては、保存安定性の観点から、1,4-ハイドロキノン、1,2-ハイドロキノン、メチルハイドロキノン、2,6-ジメチルハイドロキノン、2,6-ジ-tert-ブチルハイドロキノン、1,4-ジヒドロキシナフタレン、1,2-ジヒドロキシナフタレン、及び、9,10-ジヒドロキシアントラセンよりなる群から選ばれた少なくとも1種の化合物が好ましく、1,4-ハイドロキノン、1,2-ハイドロキノン、メチルハイドロキノン、メトキシハイドロキノン、2,6-ジメチルハイドロキノン及び2,6-ジ-tert-ブチルハイドロキノンよりなる群から選択される少なくとも1種であることがより好ましく、ハイドロキノン、メチルハイドロキノン及びメトキシハイドロキノンよりなる群から選択される少なくとも1種であることが特に好ましい。
From the viewpoint of storage stability, the polymerization inhibitor preferably contains a radical polymerization inhibitor having a hydroquinone structure, more preferably a radical polymerization inhibitor having a 1,4-hydroquinone structure.
The radical polymerization inhibitor having a hydroquinone structure is 1,4-hydroquinone, 1,2-hydroquinone, methylhydroquinone, 2,6-dimethylhydroquinone, 2,6-di-tert-butylhydroquinone from the viewpoint of storage stability. At least one compound selected from the group consisting of 1,4-dihydroxynaphthalene, 1,2-dihydroxynaphthalene, and 9,10-dihydroxyanthracene is preferable, and 1,4-hydroquinone, 1,2-hydroquinone, More preferably, it is at least one selected from the group consisting of methylhydroquinone, methoxyhydroquinone, 2,6-dimethylhydroquinone and 2,6-di-tert-butylhydroquinone, and hydroquinone, methylhydroquinone and methoxyha are preferred. It is particularly preferred from the group consisting of Dorokinon is at least one selected.
 なお、ハイドロキノン構造を有するラジカル重合禁止剤の添加は、光硬化性接着剤組成物の調製時、又は、原料である2-シアノアクリレート化合物の製造時における蒸留精製後であることがより好ましく、光硬化性接着剤組成物の調製時であることがより好ましい。 The radical polymerization inhibitor having a hydroquinone structure is preferably added after the distillation and purification at the time of preparing the photocurable adhesive composition or at the time of producing the 2-cyanoacrylate compound as a raw material. It is more preferable to prepare the curable adhesive composition.
 本発明の光硬化性接着剤組成物は、重合禁止剤を1種単独で含んでいても、2種以上を含んでいてもよい。中でも、保存安定性の観点から、ハイドロキノン構造を有しないアニオン重合禁止剤を含むことが好ましく、ハイドロキノン構造を有しないラジカル重合禁止剤とハイドロキノン構造を有しないアニオン重合禁止剤とを含有することがより好ましく、ハイドロキノン構造を有するラジカル重合禁止剤とハイドロキノン構造を有しないラジカル重合禁止剤とハイドロキノン構造を有しないアニオン重合禁止剤とを含有することが特に好ましい。
 前記重合禁止剤の含有量は、光硬化性接着剤組成物の全質量に対し、50ppm~1質量%であることが好ましく、20ppm~5,000ppmであることがより好ましい。
 また、ハイドロキノン構造を有するラジカル重合禁止剤の含有量は、10ppm以上1000ppm以下であることが好ましく、20ppm以上500ppm以下であることがより好ましい。
The photocurable adhesive composition of the present invention may contain one type of polymerization inhibitor or two or more types of polymerization inhibitors. Among them, from the viewpoint of storage stability, it is preferable to contain an anionic polymerization inhibitor having no hydroquinone structure, and it is more preferable to contain a radical polymerization inhibitor having no hydroquinone structure and an anionic polymerization inhibitor having no hydroquinone structure. It is particularly preferable to contain a radical polymerization inhibitor having a hydroquinone structure, a radical polymerization inhibitor having no hydroquinone structure, and an anionic polymerization inhibitor having no hydroquinone structure.
The content of the polymerization inhibitor is preferably 50 ppm to 1% by mass, and more preferably 20 ppm to 5,000 ppm, based on the total mass of the photocurable adhesive composition.
Further, the content of the radical polymerization inhibitor having a hydroquinone structure is preferably 10 ppm or more and 1000 ppm or less, and more preferably 20 ppm or more and 500 ppm or less.
<その他の添加剤>
 本発明の光硬化性接着剤組成物は、前述した成分以外のその他の添加剤を含有していてもよい。
 その他の添加剤としては、特に制限はなく、公知の添加剤を用いることができる。
 その他の添加剤としては、例えば、アニオン重合促進剤、可塑剤、増粘剤、ヒュームドシリカ、粒子、充填剤、着色剤、香料、溶剤、強度向上剤等を、目的等に応じて、光接着性接着剤組成物の硬化性及び接着強さ等を損なわない範囲で適量配合することができる。
 その他の添加剤の含有量は、特に制限はないが、光硬化性接着剤組成物の全質量に対し、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。
<Other additives>
The photocurable adhesive composition of the present invention may contain an additive other than the above-mentioned components.
Other additives are not particularly limited, and known additives can be used.
As other additives, for example, anionic polymerization accelerators, plasticizers, thickeners, fumed silica, particles, fillers, colorants, fragrances, solvents, strength improvers, etc., depending on the purpose, etc. An appropriate amount of the adhesive composition can be blended within a range that does not impair the curability and the adhesive strength of the adhesive composition.
The content of other additives is not particularly limited, but is preferably 20% by mass or less, and more preferably 10% by mass or less, based on the total mass of the photocurable adhesive composition.
 アニオン重合促進剤としては、ポリアルキレンオキサイド類、クラウンエーテル類、シラクラウンエーテル類、カリックスアレン類、シクロデキストリン類及びピロガロール系環状化合物類等が挙げられる。ポリアルキレンオキサイド類とは、ポリアルキレンオキサイド及びその誘導体であって、例えば、特公昭60-37836号公報、特公平1-43790号公報、特開昭63-128088号公報、特開平3-167279号公報、米国特許第4386193号明細書、米国特許第4424327号明細書等で開示されているものが挙げられる。具体的には、(1)ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレンオキサイド、(2)ポリエチレングリコールモノアルキルエステル、ポリエチレングリコールジアルキルエステル、ポリプロピレングリコールジアルキルエステル、ジエチレングリコールモノアルキルエーテル、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールモノアルキルエーテル、ジプロピレングリコールジアルキルエーテル等のポリアルキレンオキサイドの誘導体などが挙げられる。クラウンエーテル類としては、例えば、特公昭55-2236号公報、特開平3-167279号公報等で開示されているものが挙げられる。具体的には、12-クラウン-4、15-クラウン-5、18-クラウン-6、ベンゾ-12-クラウン-4、ベンゾ-15-クラウン-5、ベンゾ-18-クラウン-6、ジベンゾ-18-クラウン-6、ジベンゾ-24-クラウン-8、ジベンゾ-30-クラウン-10、トリベンゾ-18-クラウン-6、asym-ジベンゾ-22-クラウン-6、ジベンゾ-14-クラウン-4、ジシクロヘキシル-24-クラウン-8、シクロヘキシル-12-クラウン-4、1,2-デカリル-15-クラウン-5、1,2-ナフト-15-クラウン-5、3,4,5-ナフチル-16-クラウン-5、1,2-メチルベンゾ-18-クラウン-6、1,2-tert-ブチル-18-クラウン-6、1,2-ビニルベンゾ-15-クラウン-5等が挙げられる。シラクラウンエーテル類としては、例えば、特開昭60-168775号公報等で開示されているものが挙げられる。具体的には、ジメチルシラ-11-クラウン-4、ジメチルシラ-14-クラウン-5、ジメチルシラ-17-クラウン-6等が挙げられる。カリックスアレン類としては、例えば、特開昭60-179482号公報、特開昭62-235379号公報、特開昭63-88152号公報等で開示されているものが挙げられる。具体的には、5,11,17,23,29,35-ヘキサ-tert-butyl-37,38,39,40,41,42-ヘキサヒドロオキシカリックス〔6〕アレン、37,38,39,40,41,42-ヘキサヒドロオキシカリックス〔6〕アレン、37,38,39,40,41,42-ヘキサ-(2-オキソ-2-エトキシ)-エトキシカリックス〔6〕アレン、25,26,27,28-テトラ-(2-オキソ-2-エトキシ)-エトキシカリックス〔4〕アレン、テトラキス(4-t-ブチル-2-メチレンフェノキシ)エチルアセテート等が挙げられる。シクロデキストリン類としては、例えば、特表平5-505835号公報等で開示されているものが挙げられる。具体的には、α-、β-又はγ-シクロデキストリン等が挙げられる。ピロガロール系環状化合物類としては、特開2000-191600号公報等で開示されている化合物が挙げられる。具体的には、3,4,5,10,11,12,17,18,19,24,25,26-ドデカエトキシカルボメトキシ-C-1、C-8、C-15、C-22-テトラメチル[14]-メタシクロファン等が挙げられる。これらのアニオン重合促進剤は1種のみ用いてもよく、2種以上を併用してもよい。 Examples of anionic polymerization accelerators include polyalkylene oxides, crown ethers, silacrown ethers, calixarenes, cyclodextrins, and pyrogallol cyclic compounds. The polyalkylene oxides are polyalkylene oxides and derivatives thereof, and include, for example, JP-B-60-37836, JP-B-1-43790, JP-A-63-128088, and JP-A-3-167279. Examples thereof include those disclosed in the gazette, US Pat. No. 4,386,193, US Pat. No. 4,424,327 and the like. Specifically, (1) polyalkylene oxide such as diethylene glycol, triethylene glycol, polyethylene glycol and polypropylene glycol, (2) polyethylene glycol monoalkyl ester, polyethylene glycol dialkyl ester, polypropylene glycol dialkyl ester, diethylene glycol monoalkyl ether, diethylene glycol Examples include polyalkylene oxide derivatives such as dialkyl ether, dipropylene glycol monoalkyl ether, and dipropylene glycol dialkyl ether. Examples of the crown ethers include those disclosed in Japanese Examined Patent Publication No. 55-2236 and Japanese Patent Laid-Open No. 3-167279. Specifically, 12-crown-4, 15-crown-5, 18-crown-6, benzo-12-crown-4, benzo-15-crown-5, benzo-18-crown-6, dibenzo-18. -Crown-6, dibenzo-24-crown-8, dibenzo-30-crown-10, tribenzo-18-crown-6, asym-dibenzo-22-crown-6, dibenzo-14-crown-4, dicyclohexyl-24 -Crown-8, cyclohexyl-12-crown-4,1,2-decalyl-15-crown-5,1,2-naphtho-15-crown-5,3,4,5-naphthyl-16-crown-5 1,2-methylbenzo-18-crown-6,1,2-tert-butyl-18-crown-6,1,2-vinylbenzo-15-crown- Etc. The. Examples of silacrown ethers include those disclosed in JP-A-60-168775. Specific examples thereof include dimethylsila-11-crown-4, dimethylsila-14-crown-5, dimethylsila-17-crown-6 and the like. Examples of the calixarene include those disclosed in JP-A-60-179482, JP-A-62-235379, JP-A-63-88152 and the like. Specifically, 5,11,17,23,29,35-hexa-tert-butyl-37,38,39,40,41,42-hexahydrooxycalix [6] arene, 37,38,39, 40,41,42-hexahydrooxycalix [6] arene, 37,38,39,40,41,42-hexa- (2-oxo-2-ethoxy) -ethoxycalix [6] arene, 25,26, 27,28-tetra- (2-oxo-2-ethoxy) -ethoxycalix [4] arene, tetrakis (4-t-butyl-2-methylenephenoxy) ethyl acetate and the like can be mentioned. Examples of cyclodextrins include those disclosed in JP-A-5-505835. Specific examples include α-, β-, or γ-cyclodextrin. Examples of the pyrogallol cyclic compounds include compounds disclosed in JP 2000-191600 A and the like. Specifically, 3,4,5,10,11,12,17,18,19,24,25,26-dodecaethoxycarbomethoxy-C-1, C-8, C-15, C-22- Tetramethyl [14] -metacyclophane and the like can be mentioned. These anionic polymerization accelerators may be used alone or in combination of two or more.
 可塑剤は、本発明の効果が損なわれない範囲であれば含有させることができる。
 この可塑剤としては、アセチルクエン酸トリエチル、アセチルクエン酸トリブチル、アジピン酸ジメチル、アジピン酸ジエチル、セバシン酸ジメチル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジイソデシル、フタル酸ジヘキシル、フタル酸ジヘプチル、フタル酸ジオクチル、フタル酸ビス(2-エチルヘキシル)、フタル酸ジイソノニル、フタル酸ジイソトリデシル、フタル酸ジペンタデシル、テレフタル酸ジオクチル、イソフタル酸ジイソノニル、トルイル酸デシル、ショウノウ酸ビス(2-エチルヘキシル)、2-エチルヘキシルシクロヘキシルカルボキシレート、フマル酸ジイソブチル、マレイン酸ジイソブチル、カプロン酸トリグリセライド、安息香酸2-エチルヘキシル、ジプロピレングリコールジベンゾエート等が挙げられる。これらの中では、2-シアノアクリル酸エステルとの相溶性が良く、かつ可塑化効率が高いという点から、アセチルクエン酸トリブチル、アジピン酸ジメチル、フタル酸ジメチル、安息香酸2-エチルヘキシル、ジプロピレングリコールジベンゾエートが好ましい。これらの可塑剤は1種のみ用いてもよく、2種以上を併用してもよい。また、可塑剤の含有量は特に限定されないが、2-シアノアクリレート化合物の含有量を100質量部とした場合に、好ましくは3質量部~50質量部、より好ましくは10質量部~45質量部、更に好ましくは20質量部~40質量部である。可塑剤の含有量が3質量部~50質量部であれば、耐冷熱サイクル試験後の接着強さの保持率を向上させることができる。
The plasticizer can be contained within a range that does not impair the effects of the present invention.
Examples of the plasticizer include triethyl acetyl citrate, tributyl acetyl citrate, dimethyl adipate, diethyl adipate, dimethyl sebacate, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diisodecyl phthalate, dihexyl phthalate, and phthalic acid. Diheptyl, dioctyl phthalate, bis (2-ethylhexyl) phthalate, diisononyl phthalate, diisotridecyl phthalate, dipentadecyl phthalate, dioctyl terephthalate, diisononyl isophthalate, decyl toluate, bis (2-ethylhexyl) camphorate, 2- Ethylhexyl cyclohexylcarboxylate, diisobutyl fumarate, diisobutyl maleate, triglyceride caproate, 2-ethylhexyl benzoate, dipropylene glycol dibe Zoeto, and the like. Among these, tributyl acetyl citrate, dimethyl adipate, dimethyl phthalate, 2-ethylhexyl benzoate, and dipropylene glycol are well compatible with 2-cyanoacrylic acid ester and have high plasticization efficiency. Dibenzoate is preferred. These plasticizers may be used alone or in combination of two or more. The content of the plasticizer is not particularly limited, but when the content of the 2-cyanoacrylate compound is 100 parts by mass, preferably 3 parts by mass to 50 parts by mass, more preferably 10 parts by mass to 45 parts by mass. And more preferably 20 to 40 parts by mass. When the content of the plasticizer is 3 parts by mass to 50 parts by mass, it is possible to improve the retention rate of the adhesive strength after the cold and heat cycle test.
 更に、増粘剤としては、ポリメタクリル酸メチル、メタクリル酸メチルとアクリル酸エステルとの共重合体、メタクリル酸メチルとその他のメタクリル酸エステルとの共重合体、アクリルゴム、ポリ塩化ビニル、ポリスチレン、セルロースエステル、ポリアルキル-2-シアノアクリル酸エステル及びエチレン-酢酸ビニル共重合体等が挙げられる。これらの増粘剤は1種のみ用いてもよく、2種以上を併用してもよい。 Further, as the thickener, polymethylmethacrylate, a copolymer of methylmethacrylate and an acrylate ester, a copolymer of methylmethacrylate and another methacrylate ester, acrylic rubber, polyvinyl chloride, polystyrene, Examples thereof include cellulose ester, polyalkyl-2-cyanoacrylic acid ester and ethylene-vinyl acetate copolymer. These thickeners may be used alone or in combination of two or more.
 本発明の光硬化性接着剤組成物には、ヒュームドシリカを含有させることもできる。
 このヒュームドシリカは、超微粉(好ましくは一次粒子径が500nm以下、特に好ましくは1nm~200nm)の無水シリカであり、この無水シリカは、例えば、四塩化ケイ素を原料とし、高温の炎中において気相状態での酸化に起因して生成する超微粉(好ましくは一次粒子径が500nm以下、特に好ましくは1nm~200nm)の無水シリカであって、親水性の高い親水性シリカと、疎水性の高い疎水性シリカとがある。このヒュームドシリカとしては、いずれも用いることができるが、2-シアノアクリレート化合物への分散性がよいという点から、疎水性シリカが好ましい。
The photocurable adhesive composition of the present invention may contain fumed silica.
This fumed silica is an ultrafine powder (preferably having a primary particle size of 500 nm or less, particularly preferably 1 nm to 200 nm) anhydrous silica. For example, this anhydrous silica is made from silicon tetrachloride as a raw material and is heated in a flame at high temperature. An ultrafine powder (preferably having a primary particle size of 500 nm or less, particularly preferably 1 nm to 200 nm) anhydrous silica produced due to oxidation in a gas phase, which is hydrophilic silica having high hydrophilicity and hydrophobic silica With highly hydrophobic silica. Although any of these fumed silicas can be used, hydrophobic silicas are preferable because they have good dispersibility in a 2-cyanoacrylate compound.
 親水性シリカとしては市販の各種の製品を用いることができ、例えば、アエロジル50、130、200、300及び380(以上、商品名であり、日本アエロジル(株)製である)等が挙げられる。これらの親水性シリカの比表面積は、それぞれ50±15m/g、130±25m/g、200±25m/g、300±30m/g、380±30m/gである。また、市販の親水性シリカとしては、レオロシールQS-10、QS-20、QS-30及びQS-40(以上、商品名であり、トクヤマ社製である)等を用いることができる。これらの親水性シリカの比表面積は、それぞれ140±20m/g、220±20m/g、300±30m/g、380±30m/gである。この他、CABOT社製等の市販の親水性シリカを用いることもできる。 As the hydrophilic silica, various commercially available products can be used, and examples thereof include Aerosil 50, 130, 200, 300 and 380 (these are trade names and manufactured by Nippon Aerosil Co., Ltd.). The specific surface areas of these hydrophilic silicas are 50 ± 15 m 2 / g, 130 ± 25 m 2 / g, 200 ± 25 m 2 / g, 300 ± 30 m 2 / g, 380 ± 30 m 2 / g, respectively. Further, as the commercially available hydrophilic silica, Reorosil QS-10, QS-20, QS-30 and QS-40 (these are trade names, manufactured by Tokuyama Corporation) and the like can be used. The specific surface areas of these hydrophilic silicas are 140 ± 20 m 2 / g, 220 ± 20 m 2 / g, 300 ± 30 m 2 / g, and 380 ± 30 m 2 / g, respectively. In addition to these, commercially available hydrophilic silica manufactured by CABOT or the like can also be used.
 更に、疎水性シリカとしては、親水性シリカの表面に存在するヒドロキシ基と反応し、疎水基を形成し得る化合物、又は親水性シリカの表面に吸着され、表面に疎水性の層を形成し得る化合物を、親水性シリカと溶媒の存在下又は不存在下に接触させ、好ましくは加熱し、親水性シリカの表面を処理することで生成する製品を用いることができる。 Further, as the hydrophobic silica, a compound capable of reacting with a hydroxy group existing on the surface of the hydrophilic silica to form a hydrophobic group, or adsorbed on the surface of the hydrophilic silica to form a hydrophobic layer on the surface It is possible to use a product produced by treating the surface of the hydrophilic silica by bringing the compound into contact with the hydrophilic silica in the presence or absence of a solvent, preferably by heating.
 親水性シリカを表面処理して疎水化するのに用いる化合物としては、n-オクチルトリアルコキシシラン等の疎水基を有するアルキル、アリール、アラルキル系の各種のシランカップリング剤、メチルトリクロロシラン、ジメチルジクロロシラン、ヘキサメチルジシラザン等のシリル化剤、ポリジメチルシロキサン等のシリコーンオイル、ステアリルアルコール等の高級アルコール、及びステアリン酸等の高級脂肪酸などが挙げられる。疎水性シリカとしては、いずれの化合物を用いて疎水化された製品を用いてもよい。 Examples of the compound used for surface-treating hydrophilic silica to make it hydrophobic include alkyl-, aryl-, and aralkyl-based silane coupling agents having a hydrophobic group such as n-octyltrialkoxysilane, methyltrichlorosilane, and dimethyldisilane. Examples thereof include silylating agents such as chlorosilane and hexamethyldisilazane, silicone oils such as polydimethylsiloxane, higher alcohols such as stearyl alcohol, and higher fatty acids such as stearic acid. As the hydrophobic silica, a product hydrophobized with any compound may be used.
 市販の疎水性シリカとしては、例えば、シリコーンオイルで表面処理され、疎水化されたアエロジルRY200、R202、ジメチルシリル化剤で表面処理され、疎水化されたアエロジルR974、R972、R976、n-オクチルトリメトキシシランで表面処理され、疎水化されたアエロジルR805、トリメチルシリル化剤で表面処理され、疎水化されたアエロジルR811、R812(以上、商品名であり、日本アエロジル(株)製である)及びメチルトリクロロシランで表面処理され、疎水化されたレオロシールMT-10(商品名であり、(株)トクヤマである)等が挙げられる。これらの疎水性シリカの比表面積は、それぞれ100±20m/g、100±20m/g、170±20m/g、110±20m/g、250±25m/g、150±20m/g、150±20m/g、260±20m/g、120±10m/gである。 Examples of commercially available hydrophobic silica include Aerosil RY200 and R202, which are surface-treated with silicone oil and hydrophobized, and Aerosil R974, R972, R976, and n-octyltril, which are hydrophobized and surface-treated with a dimethylsilylating agent. Aerosil R805 surface-treated with methoxysilane and hydrophobized, Aerosil R811, R812 surface-treated with trimethylsilylating agent and hydrophobized (these are trade names, manufactured by Nippon Aerosil Co., Ltd.) and methyltri Examples include hydrophobically treated Reolosil MT-10 (trade name, manufactured by Tokuyama Corporation) and the like, which is surface-treated with chlorosilane. The specific surface areas of these hydrophobic silicas are 100 ± 20 m 2 / g, 100 ± 20 m 2 / g, 170 ± 20 m 2 / g, 110 ± 20 m 2 / g, 250 ± 25 m 2 / g, 150 ± 20 m 2, respectively. / G, 150 ± 20 m 2 / g, 260 ± 20 m 2 / g, 120 ± 10 m 2 / g.
 本発明の光硬化性接着剤組成物におけるヒュームドシリカの好ましい含有量は、2-シアノアクリレート化合物の含有量を100質量部とした場合に、1質量部~30質量部である。このヒュームドシリカの好ましい含有量は、2-シアノアクリレート化合物の種類、及び、ヒュームドシリカの種類等にもよるが、1質量部~25質量部、特に好ましい含有量は2質量部~20質量部である。ヒュームドシリカの含有量が1質量部~30質量部であれば、光硬化性接着剤組成物の硬化性や接着強さ等を損なわず、作業性も良好な接着剤組成物とすることができる。 The preferable content of fumed silica in the photocurable adhesive composition of the present invention is 1 part by mass to 30 parts by mass when the content of the 2-cyanoacrylate compound is 100 parts by mass. The preferred content of the fumed silica depends on the type of the 2-cyanoacrylate compound, the type of the fumed silica, and the like, but 1 part by mass to 25 parts by mass, and particularly preferred content is 2 parts by mass to 20 parts by mass. It is a department. When the content of fumed silica is 1 part by mass to 30 parts by mass, it is possible to obtain an adhesive composition having good workability without impairing the curability and adhesive strength of the photocurable adhesive composition. it can.
 本発明の光硬化性接着剤組成物の硬化方法は、2-シアノアクリレート化合物による重合硬化が可能であれば、特に制限はなく、光により硬化させても、湿気等の水分により硬化させてもよい。
 本発明の光硬化性接着剤組成物を光により硬化させる場合は、高圧水銀灯、ハロゲンランプ、キセノンランプ、LED(発光ダイオード)ランプ、太陽光等を利用して、紫外線や可視光線を照射することにより硬化させることができる。
The method for curing the photocurable adhesive composition of the present invention is not particularly limited as long as it can be polymerized and cured by a 2-cyanoacrylate compound, and it can be cured by light or moisture such as moisture. Good.
When the photocurable adhesive composition of the present invention is cured by light, it is necessary to irradiate ultraviolet rays or visible light using a high pressure mercury lamp, a halogen lamp, a xenon lamp, an LED (light emitting diode) lamp, sunlight or the like. Can be cured.
 本発明の光硬化性接着剤組成物の保管方法は、公知の保管方法により保管されればよいが、例えば、湿気及び酸素のない又は少ない(例えば、0.01体積%以下)雰囲気下で混合することが好ましく、不活性ガス雰囲気下で混合することがより好ましい。
 不活性ガスとしては、窒素、アルゴン等が挙げられる。
 また、本発明の光硬化性接着剤組成物は、遮光下で保管されることが好ましい。
The method for storing the photocurable adhesive composition of the present invention may be carried out by a known storage method, for example, mixing in an atmosphere without or low in humidity and oxygen (for example, 0.01% by volume or less). It is preferable to mix, and it is more preferable to mix under an inert gas atmosphere.
Examples of the inert gas include nitrogen and argon.
Further, the photocurable adhesive composition of the present invention is preferably stored under light shielding.
 本発明の光硬化性接着剤組成物は、公知の2-シアノアクリレート組成物としての用途や光硬化性接着剤組成物の用途に使用することができる。
 例えば、いわゆる、瞬間接着剤として用いることができ、また、光硬化性瞬間接着剤として用いることができる。
 本発明の光硬化性接着剤組成物は、光硬化性と湿気硬化性とを有し、かつ保存安定性に優れるため、一般用、工業用及び医療用など広範囲の分野において利用することができる。
 具体的には、例えば、電子部品の封止、つり竿におけるリールシートや糸通しガイド等の取付け、コイル等の線材の固定、磁気ヘッドの台座への固定、歯の治療に使用されている充填剤、人工爪の接着や装飾等のような、同種又は異種の物品間の接着や固定、又は、コーティングに好適に用いることができる。
The photocurable adhesive composition of the present invention can be used as a known 2-cyanoacrylate composition and as a photocurable adhesive composition.
For example, it can be used as a so-called instant adhesive, and can also be used as a photocurable instant adhesive.
The photocurable adhesive composition of the present invention has photocurability and moisture curability, and since it has excellent storage stability, it can be used in a wide range of fields such as general use, industrial use, and medical use. .
Specifically, for example, sealing of electronic components, attachment of reel seats and threading guides on fishing rods, fixing of wire materials such as coils, fixing of magnetic heads to pedestals, and filling used for tooth treatment It can be suitably used for adhesion or fixing between the same or different kinds of articles such as adhesive or artificial nail adhesion or decoration, or coating.
 以下、実施例に基づいて本発明を具体的に説明する。なお、本発明は、これらの実施例により限定されるものではない。また、以下において「部」及び「%」は、特に断らない限り、「質量部」及び「質量%」をそれぞれ意味する。 The present invention will be specifically described below based on examples. The present invention is not limited to these examples. Further, in the following, “part” and “%” mean “part by mass” and “mass%”, respectively, unless otherwise specified.
(実施例1)
<2-シアノアクリル酸の2-オクチルエステル(2-OctCA)の製造>
 冷却器及び撹拌機を付属した解重合反応器にシアノ酢酸2-オクチルとパラホルムアルデヒドとの縮合体100質量部を仕込み、p-トルエンスルホン酸(PTS)を前記縮合体100質量部に対し0.9質量部と、スミライザーGS(GS、下記化合物、住友化学(株)製)を前記縮合体100質量部に対し2.1質量部とを加えた。
(Example 1)
<Production of 2-octyl ester of 2-cyanoacrylic acid (2-OctCA)>
A depolymerization reactor equipped with a cooler and a stirrer was charged with 100 parts by mass of a condensate of 2-octyl cyanoacetate and paraformaldehyde, and p-toluenesulfonic acid (PTS) was added in an amount of 0. 9 parts by mass, and 2.1 parts by mass of Sumilizer GS (GS, the following compound, manufactured by Sumitomo Chemical Co., Ltd.) were added to 100 parts by mass of the condensate.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 前記解重合反応器を1,000Pa以下の減圧下、内部温度を150℃~200℃に保ったまま解重合を行った。留分を冷却器により凝縮し、粗製2-OctCAを回収受器に回収した。粗製2-OctCAの留出がなくなった時点で解重合を終了した。 Depolymerization was carried out under a reduced pressure of 1,000 Pa or less in the depolymerization reactor while keeping the internal temperature at 150 ° C to 200 ° C. The fraction was condensed by a cooler, and crude 2-OctCA was collected in a collection receiver. Depolymerization was terminated when the crude 2-OctCA was no longer distilled.
 得られた粗製2-OctCAに、粗製2-OctCA100質量部当たり、PTS0.13質量部とGS0.5質量部とを加えて蒸留し、低沸点の不純物を初留として留去させた後、精製2-OctCAを得た。
 得られた精製2-OctCAに、BF・メタノール錯体を全体に対し20ppm、及び、スミライザーMDP-S(MDP-S、下記化合物、住友化学(株)製)(下記化合物)を全体に対し1,000ppmとなるように添加した。
 なお、前記縮合体からの総収率は、40%であった。
 また、得られた精製2-OctCA1g当たりの酸含有量(酸分(μg当量))は、0.63μgであった。
 なお、酸含有量の測定方法は、中和滴定法により行った。
To the obtained crude 2-OctCA, 0.13 parts by mass of PTS and 0.5 parts by mass of GS were added per 100 parts by mass of crude 2-OctCA, and the mixture was distilled to remove impurities having a low boiling point as an initial distillation, followed by purification. 2-OctCA was obtained.
20 ppm of BF 3 / methanol complex was added to the obtained purified 2-OctCA, and Sumilizer MDP-S (MDP-S, the following compound, manufactured by Sumitomo Chemical Co., Ltd.) (the following compound) was added to 1 of the whole. It was added so that the concentration would be 1,000 ppm.
The total yield from the condensate was 40%.
The acid content (acid content (μg equivalent)) per 1 g of the obtained purified 2-OctCA was 0.63 μg.
The acid content was measured by the neutralization titration method.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
<光硬化性接着剤組成物の製造>
 BF・メタノール錯体及びスミライザーMDP-Sを添加した精製2-OctCAに対し、フェロセン(光重合開始剤、和光純薬工業(株)製)を組成物中に600ppm、及び、Ivocerin(光重合開始剤、下記化合物、Ivoclar Vivadent社製)3,000ppmとなるように混合し、実施例1の光硬化性接着剤組成物を得た。
<Production of photocurable adhesive composition>
Ferrocene (photopolymerization initiator, manufactured by Wako Pure Chemical Industries, Ltd.) was added to the purified 2-OctCA containing BF 3 · methanol complex and Sumilizer MDP-S at 600 ppm in the composition, and Ivocerin (photopolymerization start). Agent, the following compound, manufactured by Ivoclar Vivadent) were mixed so as to be 3,000 ppm to obtain a photocurable adhesive composition of Example 1.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(実施例2)
<2-シアノアクリル酸の2-エトキシエチルエステル(EtOEtCA)の製造>
 冷却器及び撹拌機を付属した解重合反応器にシアノ酢酸2-エトキシエチルとパラホルムアルデヒドとの縮合体100質量部を仕込み、五酸化二リン(P)を前記縮合体100質量部に対し1.1質量部と、GSを前記縮合体100質量部に対し3.5質量部とを加えた。
(Example 2)
<Production of 2-Ethoxyethyl Ester of 2-Cyanoacrylic Acid (EtOEtCA)>
A depolymerization reactor equipped with a condenser and a stirrer was charged with 100 parts by mass of a condensate of 2-ethoxyethyl cyanoacetate and paraformaldehyde, and diphosphorus pentoxide (P 2 O 5 ) was added to 100 parts by mass of the condensate. 1.1 parts by mass and 3.5 parts by mass of GS were added to 100 parts by mass of the condensate.
 前記解重合反応器を1,000Pa以下の減圧下、内部温度を150℃~200℃に保ったまま解重合を行った。留分を冷却器により凝縮し、粗製EtOEtCAを回収受器に回収した。粗製EtOEtCAの留出がなくなった時点で解重合を終了した。 Depolymerization was carried out under a reduced pressure of 1,000 Pa or less in the depolymerization reactor while keeping the internal temperature at 150 ° C to 200 ° C. The fraction was condensed by a cooler, and crude EtOEtCA was recovered in a recovery receiver. The depolymerization was terminated when the crude EtOEtCA was no longer distilled.
 得られた粗製EtOEtCAに、粗製EtOEtCA100質量部当たり、五酸化二リン1.5質量部とPTS0.5質量部とMDP-S3.0質量部とを加えて蒸留し、低沸点の不純物を初留として留去させた後、精製EtOEtCAを得た。
 得られた精製EtOEtCAに、BF・メタノール錯体を全体に対し20ppm、及び、MDP-S(下記化合物)を全体に対し1,000ppmとなるように添加した。
 なお、前記縮合体からの総収率は、35%であった。
 また、得られた精製EtOEtCA1g当たりの酸含有量(酸分(μg当量))は、0.12μgであった。
To 100 parts by mass of the crude EtOEtCA, 1.5 parts by mass of diphosphorus pentoxide, 0.5 parts by mass of PTS and 3.0 parts by mass of MDP-S were added to the obtained crude EtOEtCA for distillation, and impurities having a low boiling point were initially distilled. As a result, purified EtOEtCA was obtained.
To the obtained purified EtOEtCA, BF 3 / methanol complex was added at 20 ppm to the whole, and MDP-S (the following compound) was added at 1000 ppm to the whole.
The total yield from the condensate was 35%.
The acid content (acid content (μg equivalent)) per 1 g of the obtained purified EtOEtCA was 0.12 μg.
<光硬化性接着剤組成物の製造>
 BF・メタノール錯体及びスミライザーMDP-Sを添加した精製2-OctCAの代わりに、BF・メタノール錯体及びスミライザーMDP-Sを添加した精製EtOEtCAを用いた以外は、実施例1と同様な方法により、実施例2の光硬化性接着剤組成物を製造した。
<Production of photocurable adhesive composition>
BF 3 · methanol complex and Sumilizer MDP-S in place of the purified 2-OctCA added with, except for using purified EtOEtCA with added BF 3 · methanol complex and Sumilizer MDP-S is in the same manner as described in Example 1 A photocurable adhesive composition of Example 2 was produced.
(実施例3)
<2-シアノアクリル酸のイソブチルエステル(iBuCA)の製造>
 冷却器及び撹拌機を付属した解重合反応器にシアノ酢酸イソブチルとパラホルムアルデヒドとの縮合体100質量部を仕込み、五酸化二リン(P)を前記縮合体100質量部に対し0.5質量部と、MDP-Sを前記縮合体100質量部に対し1.0質量部とを加えた。
(Example 3)
<Production of isobutyl ester of 2-cyanoacrylic acid (iBuCA)>
A depolymerization reactor equipped with a condenser and a stirrer was charged with 100 parts by mass of a condensate of isobutyl cyanoacetate and paraformaldehyde, and phosphorous pentoxide (P 2 O 5 ) was added to 100 parts by mass of the condensate in an amount of 0. 5 parts by mass and 1.0 part by mass of MDP-S were added to 100 parts by mass of the condensate.
 前記解重合反応器を1,000Pa以下の減圧下、内部温度を150℃~200℃に保ったまま解重合を行った。留分を冷却器により凝縮し、粗製iBuCAを回収受器に回収した。粗製iBuCAの留出がなくなった時点で解重合を終了した。 Depolymerization was carried out under a reduced pressure of 1,000 Pa or less in the depolymerization reactor while keeping the internal temperature at 150 ° C to 200 ° C. The fraction was condensed by a cooler, and the crude iBuCA was recovered in a recovery receiver. Depolymerization was terminated when the crude iBuCA was no longer distilled.
 得られた粗製iBuCAに、粗製iBuCA100質量部当たり、五酸化二リン0.5質量部とMDP-S1.0質量部とを加えて蒸留し、低沸点の不純物を初留として留去させた後、精製iBuCAを得た。
 得られた精製iBuCAに、BF・メタノール錯体を全体に対し20ppm、及び、MDP-S(下記化合物)を全体に対し1,000ppmとなるように添加した。
 なお、前記縮合体からの総収率は、40%であった。
 また、得られた精製iBuCA1g当たりの酸含有量(酸分(μg当量))は、0.19μgであった。
After adding 0.5 parts by mass of diphosphorus pentoxide and 1.0 part by mass of MDP-S to 100 parts by mass of the crude iBuCA, and distilling the obtained crude iBuCA, the low boiling point impurities were distilled off as an initial distillation. , Purified iBuCA were obtained.
To the obtained purified iBuCA, BF 3 / methanol complex was added in an amount of 20 ppm to the whole, and MDP-S (the following compound) was added to the entire amount of 1,000 ppm.
The total yield from the condensate was 40%.
The acid content (acid content (μg equivalent)) per 1 g of the obtained purified iBuCA was 0.19 μg.
<光硬化性接着剤組成物の製造>
 BF・メタノール錯体及びスミライザーMDP-Sを添加した精製2-OctCAの代わりに、BF・メタノール錯体及びスミライザーMDP-Sを添加した精製iBuCAを用いた以外は、実施例1と同様な方法により、実施例3の光硬化性接着剤組成物を製造した。
<Production of photocurable adhesive composition>
BF 3 · methanol complex and Sumilizer MDP-S in place of the purified 2-OctCA added with, except for using purified iBuCA with added BF 3 · methanol complex and Sumilizer MDP-S is in the same manner as described in Example 1 A photocurable adhesive composition of Example 3 was produced.
 実施例1~3における2-シアノアクリレート化合物の製造方法の詳細を表1にまとめて示す。 Table 1 summarizes the details of the method for producing the 2-cyanoacrylate compound in Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(実施例4)
 BF・メタノール錯体及びスミライザーMDP-Sを添加した精製2-OctCAに、ハイドロキノンを組成物全体に対し、40ppmとなるように添加した以外は、実施例1と同様な方法により、実施例4の精製2-OctCA、及び、実施例4の光硬化性接着剤組成物をそれぞれ得た。
(Example 4)
The same procedure as in Example 1 was repeated except that hydroquinone was added to the purified 2-OctCA containing BF 3 · methanol complex and Sumilizer MDP-S so that the content of hydroquinone was 40 ppm. Purified 2-OctCA and the photocurable adhesive composition of Example 4 were obtained.
(実施例5)
 BF・メタノール錯体及びスミライザーMDP-Sを添加した精製EtOEtCAに、ハイドロキノンを組成物全体に対し、40ppmとなるように添加した以外は、実施例2と同様な方法により、実施例5の精製EtOEtCA、及び、実施例5の光硬化性接着剤組成物をそれぞれ得た。
(Example 5)
Purified EtOEtCA of Example 5 was prepared in the same manner as in Example 2 except that hydroquinone was added to the purified EtOEtCA to which BF 3 / methanol complex and Sumilizer MDP-S were added so that the content of hydroquinone was 40 ppm. , And the photocurable adhesive composition of Example 5 were obtained.
(実施例6)
 BF・メタノール錯体及びスミライザーMDP-Sを添加した精製EtOEtCAに、ハイドロキノンを組成物全体に対し、100ppmとなるように添加した以外は、実施例2と同様な方法により、実施例6の精製EtOEtCA、及び、実施例6の光硬化性接着剤組成物をそれぞれ得た。
(Example 6)
Purified EtOEtCA of Example 6 was prepared in the same manner as in Example 2 except that hydroquinone was added to purified EtOEtCA to which BF 3 / methanol complex and Sumilizer MDP-S were added so that the amount of hydroquinone was 100 ppm. , And the photocurable adhesive composition of Example 6 were obtained.
(実施例7)
 BF・メタノール錯体及びスミライザーMDP-Sを添加した精製iBuCAに、ハイドロキノンを組成物全体に対し、40ppmとなるように添加した以外は、実施例3と同様な方法により、実施例7の精製iBuCA、及び、実施例7の光硬化性接着剤組成物をそれぞれ得た。
(Example 7)
The purified iBuCA of Example 7 was prepared in the same manner as in Example 3 except that hydroquinone was added to the purified iBuCA to which BF 3 / methanol complex and Sumilizer MDP-S were added so that the amount of hydroquinone was 40 ppm. , And the photocurable adhesive composition of Example 7 were obtained.
(実施例8)
 BF・メタノール錯体及びスミライザーMDP-Sを添加した精製iBuCAに、ハイドロキノンを組成物全体に対し、100ppmとなるように添加した以外は、実施例3と同様な方法により、実施例8の精製iBuCA、及び、実施例8の光硬化性接着剤組成物をそれぞれ得た。
(Example 8)
Purified iBuCA of Example 8 was prepared in the same manner as in Example 3 except that hydroquinone was added to purified iBuCA to which BF 3 / methanol complex and Sumilizer MDP-S were added so that the amount of hydroquinone was 100 ppm. , And the photocurable adhesive composition of Example 8 were obtained.
<実施例1及び4における保存安定性評価>
 得られた光硬化性接着剤組成物を密封容器に入れ、60℃の恒温室に保管し、初期、並びに、経過時間が4日、7日、14日、21日及び28日の時点の粘度をそれぞれ測定した。
 評価結果を表2にまとめて示す。
<Evaluation of storage stability in Examples 1 and 4>
The obtained photocurable adhesive composition was placed in a hermetically sealed container and stored in a thermostatic chamber at 60 ° C., and the viscosity at the initial stage and after 4 days, 7 days, 14 days, 21 days and 28 days was elapsed. Was measured respectively.
The evaluation results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表2に示すように、実施例1及び4の光硬化性接着剤組成物、及び、得られた2-シアノアクリレート化合物(2-OctCA)は、従来の第8族遷移金属メタロセン化合物と2-シアノアクリレート化合物とを含む光硬化性接着剤組成物よりも、保存安定性に優れる。 As shown in Table 2, the photocurable adhesive compositions of Examples 1 and 4 and the obtained 2-cyanoacrylate compound (2-OctCA) were prepared from conventional Group 8 transition metal metallocene compounds and 2- It has better storage stability than a photocurable adhesive composition containing a cyanoacrylate compound.
<実施例2、5及び6における保存安定性評価>
 得られた光硬化性接着剤組成物を密封容器に入れ、60℃の恒温室に保管し、初期、並びに、経過時間が2日及び6日の時点の粘度をそれぞれ測定した。
 評価結果を表3にまとめて示す。
<Evaluation of storage stability in Examples 2, 5 and 6>
The obtained photocurable adhesive composition was placed in a sealed container and stored in a thermostatic chamber at 60 ° C., and the viscosities at the initial stage and at the elapsed time of 2 days and 6 days were respectively measured.
The evaluation results are summarized in Table 3.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表3に示すように、実施例2、5及び6の光硬化性接着剤組成物、及び、得られた2-シアノアクリレート化合物(EtOEtCA)は、従来の第8族遷移金属メタロセン化合物と2-シアノアクリレート化合物とを含む光硬化性接着剤組成物よりも、保存安定性に優れる。 As shown in Table 3, the photocurable adhesive compositions of Examples 2, 5 and 6 and the obtained 2-cyanoacrylate compound (EtOEtCA) were prepared from conventional Group 8 transition metal metallocene compounds and 2- It has better storage stability than a photocurable adhesive composition containing a cyanoacrylate compound.
<実施例3、7及び8における保存安定性評価>
 得られた光硬化性接着剤組成物を密封容器に入れ、60℃の恒温室に保管し、初期、並びに、経過時間が3日及び24日の時点の粘度をそれぞれ測定した。
 評価結果を表4にまとめて示す。
<Evaluation of storage stability in Examples 3, 7 and 8>
The obtained photocurable adhesive composition was placed in a sealed container and stored in a thermostatic chamber at 60 ° C., and the viscosities at the initial stage and at the elapsed time of 3 days and 24 days were measured, respectively.
The evaluation results are summarized in Table 4.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表4に示すように、実施例3、7及び8の光硬化性接着剤組成物、及び、得られた2-シアノアクリレート化合物(iBuCA)は、従来の第8族遷移金属メタロセン化合物と2-シアノアクリレート化合物とを含む光硬化性接着剤組成物よりも、保存安定性に優れる。 As shown in Table 4, the photocurable adhesive compositions of Examples 3, 7 and 8 and the obtained 2-cyanoacrylate compound (iBuCA) were prepared from conventional Group 8 transition metal metallocene compounds and 2- It has better storage stability than a photocurable adhesive composition containing a cyanoacrylate compound.
 2018年10月23日に出願された日本国特許出願第2018-199573号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び、技術規格は、個々の文献、特許出願、及び、技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2018-199573 filed on Oct. 23, 2018 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually noted to be incorporated by reference. Are incorporated herein by reference.

Claims (7)

  1.  シアノ酢酸エステル化合物とホルムアルデヒド化合物との縮合体である2-シアノアクリレート重縮合体を、重合禁止剤の存在下、かつ加熱減圧条件下で解重合し、粗製2-シアノアクリレートモノマーを得る解重合工程と、
     前記粗製2-シアノアクリレートモノマーを蒸留して、精製2-シアノアクリレートモノマーを得る蒸留精製工程と、を含み、
     前記解重合工程において前記重合禁止剤として用いられるラジカル重合禁止剤が、ハイドロキノン構造を有しない化合物である
     2-シアノアクリレート化合物の製造方法。
    A depolymerization step of depolymerizing a 2-cyanoacrylate polycondensate, which is a condensate of a cyanoacetic acid ester compound and a formaldehyde compound, under the presence of a polymerization inhibitor and under heating and reduced pressure conditions to obtain a crude 2-cyanoacrylate monomer. When,
    A step of distilling the crude 2-cyanoacrylate monomer to obtain a purified 2-cyanoacrylate monomer,
    The method for producing a 2-cyanoacrylate compound, wherein the radical polymerization inhibitor used as the polymerization inhibitor in the depolymerization step is a compound having no hydroquinone structure.
  2.  前記ラジカル重合禁止剤が、下記式(1)で表される化合物を含む、請求項1に記載の2-シアノアクリレート化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001

     式(1)中、R~Rはそれぞれ独立に、水素原子、又は、ヒドロキシ基(但し、フェノール性ヒドロキシ基を除く)以外の、互いに結合して環を形成してもよい置換基を表す。
    The method for producing a 2-cyanoacrylate compound according to claim 1, wherein the radical polymerization inhibitor contains a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001

    In formula (1), R 1 to R 5 are each independently a hydrogen atom or a substituent other than a hydroxy group (excluding a phenolic hydroxy group) which may combine with each other to form a ring. Represent
  3.  前記蒸留精製工程の後に、前記精製2-シアノアクリレートモノマーにラジカル重合禁止剤を添加する重合禁止剤後添加工程を含む、請求項1又は請求項2に記載の2-シアノアクリレート化合物の製造方法。 The method for producing a 2-cyanoacrylate compound according to claim 1 or 2, further comprising a step of adding a polymerization inhibitor after the step of adding a radical polymerization inhibitor to the purified 2-cyanoacrylate monomer after the distillation purification step.
  4.  前記重合禁止剤後添加工程において添加される前記ラジカル重合禁止剤が、フェノール系ラジカル重合禁止剤である、請求項3に記載の2-シアノアクリレート化合物の製造方法。 The method for producing a 2-cyanoacrylate compound according to claim 3, wherein the radical polymerization inhibitor added in the post-addition step of the polymerization inhibitor is a phenolic radical polymerization inhibitor.
  5.  前記重合禁止剤後添加工程において添加される前記ラジカル重合禁止剤が、ハイドロキノン構造を有するラジカル重合禁止剤である、請求項3又は請求項4に記載の2-シアノアクリレート化合物の製造方法。 The method for producing a 2-cyanoacrylate compound according to claim 3 or 4, wherein the radical polymerization inhibitor added in the post-addition step of the polymerization inhibitor is a radical polymerization inhibitor having a hydroquinone structure.
  6.  前記重合禁止剤後添加工程における前記ラジカル重合禁止剤の添加量が、得られる2-シアノアクリレート化合物において、10ppm~1,000ppmである、請求項3~請求項5のいずれか1項に記載の2-シアノアクリレート化合物の製造方法。 6. The amount of the radical polymerization inhibitor added in the post-addition step of the polymerization inhibitor is 10 ppm to 1,000 ppm in the obtained 2-cyanoacrylate compound, according to any one of claims 3 to 5. Method for producing 2-cyanoacrylate compound.
  7.  請求項1~請求項6のいずれか1項に記載の製造方法により得られる2-シアノアクリレート化合物と、第8族遷移金属メタロセン化合物とを混合する混合工程を含む
     光硬化性接着剤組成物の製造方法。
    A photocurable adhesive composition comprising a mixing step of mixing a 2-cyanoacrylate compound obtained by the production method according to any one of claims 1 to 6 with a Group 8 transition metal metallocene compound. Production method.
PCT/JP2019/041400 2018-10-23 2019-10-21 Production method for 2-cyanoacrylate compound and production method for photocurable adhesive composition WO2020085335A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020553409A JP7255606B2 (en) 2018-10-23 2019-10-21 Method for producing 2-cyanoacrylate compound and method for producing photocurable adhesive composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018199573 2018-10-23
JP2018-199573 2018-10-23

Publications (1)

Publication Number Publication Date
WO2020085335A1 true WO2020085335A1 (en) 2020-04-30

Family

ID=70331367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041400 WO2020085335A1 (en) 2018-10-23 2019-10-21 Production method for 2-cyanoacrylate compound and production method for photocurable adhesive composition

Country Status (3)

Country Link
JP (1) JP7255606B2 (en)
TW (1) TWI818104B (en)
WO (1) WO2020085335A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444384A (en) * 2021-07-21 2021-09-28 深圳市希顺有机硅科技有限公司 UV-moisture dual-curing three-proofing paint and preparation method and application thereof
US11891496B2 (en) 2021-03-05 2024-02-06 H.B. Fuller Company Cyanoacrylate composition with hazardless stabilizer

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3510309B1 (en) * 1958-05-02 1960-08-01
JPS5126813A (en) * 1974-08-22 1976-03-05 Toa Gosei Chem Ind Kojundoarufua shianoakurireetono seizohoho
US5455369A (en) * 1994-12-02 1995-10-03 National Starch And Chemical Investment Holding Corporation Process for the manufacture of methyl cyanoacrylate
JPH09249708A (en) * 1995-10-19 1997-09-22 Three Bond Co Ltd Photo-curing composition
JPH11100361A (en) * 1997-08-07 1999-04-13 Merck Patent Gmbh High-purity alkyl 2-cyanoacrylate
JPH11292836A (en) * 1998-04-03 1999-10-26 Toagosei Co Ltd Production of 2-cyanoacrylate
JP2001288157A (en) * 2000-04-10 2001-10-16 Toagosei Co Ltd Method of producing 2-cyanoacrylate
JP2002193907A (en) * 2000-12-21 2002-07-10 Toagosei Co Ltd Method for producing 2-cyanoacrylate
CN101497767A (en) * 2009-03-04 2009-08-05 方薛行 Preparation of alpha-cyanacrylate adhesive
CN102030681A (en) * 2010-11-18 2011-04-27 山东禹王实业有限公司化工分公司 Preparation method of halohydrocarbon-free alpha-cyanoacrylate
CN102775328A (en) * 2012-08-13 2012-11-14 北京康派特医疗器械有限公司 Environment-friendly preparation method of alpha-cyanoacrylate compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2995663A1 (en) 2014-09-12 2016-03-16 Afinitica Technologies, S. L. Fast and elastic adhesive
ES2759052T3 (en) 2014-09-12 2020-05-07 Afinitica Tech S L Fast and universal adhesive

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3510309B1 (en) * 1958-05-02 1960-08-01
JPS5126813A (en) * 1974-08-22 1976-03-05 Toa Gosei Chem Ind Kojundoarufua shianoakurireetono seizohoho
US5455369A (en) * 1994-12-02 1995-10-03 National Starch And Chemical Investment Holding Corporation Process for the manufacture of methyl cyanoacrylate
JPH09249708A (en) * 1995-10-19 1997-09-22 Three Bond Co Ltd Photo-curing composition
JPH11100361A (en) * 1997-08-07 1999-04-13 Merck Patent Gmbh High-purity alkyl 2-cyanoacrylate
JPH11292836A (en) * 1998-04-03 1999-10-26 Toagosei Co Ltd Production of 2-cyanoacrylate
JP2001288157A (en) * 2000-04-10 2001-10-16 Toagosei Co Ltd Method of producing 2-cyanoacrylate
JP2002193907A (en) * 2000-12-21 2002-07-10 Toagosei Co Ltd Method for producing 2-cyanoacrylate
CN101497767A (en) * 2009-03-04 2009-08-05 方薛行 Preparation of alpha-cyanacrylate adhesive
CN102030681A (en) * 2010-11-18 2011-04-27 山东禹王实业有限公司化工分公司 Preparation method of halohydrocarbon-free alpha-cyanoacrylate
CN102775328A (en) * 2012-08-13 2012-11-14 北京康派特医疗器械有限公司 Environment-friendly preparation method of alpha-cyanoacrylate compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891496B2 (en) 2021-03-05 2024-02-06 H.B. Fuller Company Cyanoacrylate composition with hazardless stabilizer
CN113444384A (en) * 2021-07-21 2021-09-28 深圳市希顺有机硅科技有限公司 UV-moisture dual-curing three-proofing paint and preparation method and application thereof

Also Published As

Publication number Publication date
TWI818104B (en) 2023-10-11
JPWO2020085335A1 (en) 2021-09-24
TW202024026A (en) 2020-07-01
JP7255606B2 (en) 2023-04-11

Similar Documents

Publication Publication Date Title
JP4605671B1 (en) Ethyl-2-cyanoacrylate adhesive composition
JP7255606B2 (en) Method for producing 2-cyanoacrylate compound and method for producing photocurable adhesive composition
EP2878591A1 (en) Radically curable compound, method for producing radically curable compound, radically curable composition, cured product thereof, and composition for resist material
JP5046151B2 (en) Manufacturing method for environmentally friendly adhesives
WO2020085334A1 (en) Photocurable adhesive composition
EP3260509B1 (en) 2-cyanoacrylate adhesive composition
JP2010254685A (en) alpha-(UNSATURATED ALKOXYALKYL)ACRYLATE COMPOSITION, AND METHOD FOR PRODUCING THE SAME
JP2013112766A (en) 2-cyanoacrylate adhesive composition
JP2007126632A (en) 2-cyanoacrylate-based adhesive composition
US3355482A (en) Stabilized cyanoacrylate adhesives
JP2019218480A (en) Ultraviolet-curable hot-melt adhesive
JP7293584B2 (en) 2-cyanoacrylate adhesive composition
JP5700840B2 (en) Method for purifying ethyl-2-cyanoacrylate adhesive composition and ethyl-2-cyanoacrylate adhesive composition
JP2017110160A (en) Polymerization inhibitor
JP2962805B2 (en) Curable resin composition
JP2008138034A (en) Method for producing eco-friendly adhesive
JP5000018B1 (en) Method for purifying 2-cyanoacrylate
JP2011137131A (en) Ethyl-2-cyanoacrylate adhesive composition
JP2012246328A (en) Adhesive composition
JP2005325059A (en) Method for producing 2,3-dihydroxypropyl-(meth)acrylamide
TW201402542A (en) Stabilized (meth) acrylic monomers
JP2013103999A (en) 2-cyanoacrylate-based adhesive composition
JP2000273402A (en) Alpha-cyanoacrylate adhesive composition
JPS63241016A (en) Curable composition
TW201237104A (en) Radiation-curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020553409

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19877503

Country of ref document: EP

Kind code of ref document: A1