WO2020085291A1 - 炭素-金属構造体および炭素-金属構造体の製造方法 - Google Patents

炭素-金属構造体および炭素-金属構造体の製造方法 Download PDF

Info

Publication number
WO2020085291A1
WO2020085291A1 PCT/JP2019/041284 JP2019041284W WO2020085291A1 WO 2020085291 A1 WO2020085291 A1 WO 2020085291A1 JP 2019041284 W JP2019041284 W JP 2019041284W WO 2020085291 A1 WO2020085291 A1 WO 2020085291A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
brazing material
cnt
carbon
material layer
Prior art date
Application number
PCT/JP2019/041284
Other languages
English (en)
French (fr)
Inventor
野田 優
紗映 北川
浩太郎 安井
恒志 杉目
大造 高橋
祐市 錦織
隼人 越智
怜那 ▲高▼橋
利眞 深井
Original Assignee
学校法人早稲田大学
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学, 株式会社明電舎 filed Critical 学校法人早稲田大学
Priority to CN201980070030.0A priority Critical patent/CN112930578A/zh
Priority to KR1020217015131A priority patent/KR102565282B1/ko
Priority to US17/288,084 priority patent/US11527378B2/en
Priority to JP2020553385A priority patent/JPWO2020085291A1/ja
Publication of WO2020085291A1 publication Critical patent/WO2020085291A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/064Details of the emitter, e.g. material or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/14Manufacture of electrodes or electrode systems of non-emitting electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • H01J2201/30419Pillar shaped emitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/062Cold cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/061Construction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06341Field emission

Definitions

  • a carbon-metal structure and a method for producing a carbon-metal structure.
  • it relates to a device including a carbon film layer containing fine carbon such as carbon nanotubes.
  • Carbon nanotubes (hereinafter referred to as carbon nanotubes and CNTs; the same applies hereinafter) are applied to various devices (for example, Patent Documents 1 to 3).
  • CNTs are applied, for example, to cold cathode electron emitters.
  • the cold cathode electron emitter is an electron source that emits electrons into a vacuum by an external electric field, and is applied to an electron microscope, an X-ray device, an electron beam exposure device, an information display device, a lighting device, and the like.
  • the cold cathode electron emitter has advantages such as low power consumption, miniaturization, fast response speed, and high electron density as compared with conventional thermionic emission.
  • CNTs with high density are sparsely arranged on the emitter surface.
  • CNT bundle pillar having a height of about 1 ⁇ m to 100 ⁇ m on the emitter surface in a pillar arrangement in which the ratio (H / R) of the height (H) of the pillars to the pillar spacing (R) is about 1/2. It is said that the number of pillars can be increased without weakening the electric field concentration on one pillar. Therefore, in the conventional emitter, a paste containing an organic solvent is printed in a pattern to support the CNTs. When the paste contains an organic solvent, the resistance is high and gas is released in a vacuum.
  • Non-Patent Document 1 a technology is proposed in which a catalyst for forming CNTs is fixed on a heat-resistant concavo-convex substrate for growing CNTs, and CNTs are oriented and grown on the heat-resistant concavo-convex substrate to form concavities and convexities on the CNT surface according to the surface shape of the heat-resistant concavo-convex substrate.
  • Non-Patent Document 1 CNTs are grown on a Si substrate to form a CNT layer.
  • a CNT device can be manufactured in a short time process.
  • the heat-resistant concavo-convex substrate as a mold, CNT devices having the same pattern can be manufactured, and the CNT composite tip shape can be sharpened.
  • the Si substrate on which CNTs are grown has high resistance, is expensive, and is difficult to apply to products. Further, when the Si substrate is incorporated into the device, if the Si substrate is sandwiched and fixed, the Si substrate may be broken, and it is difficult to fix the CNT to the device.
  • the concavo-convex shape of the CNT tip is affected by the growth of the CNTs, which may make it difficult to control the concavities and convexities.
  • Non-Patent Document 2 a technique has been proposed in which CNTs grown on a Si substrate are peeled off and transferred to a copper thin film (for example, Non-Patent Document 2).
  • a CNT layer having an uneven surface is formed according to the surface shape of the heat-resistant uneven substrate on which the CNT is grown.
  • the heat-resistant concavo-convex substrate can be reused, and the manufacturing cost of the CNT device can be reduced.
  • the CNT / Cu composite film in which a copper thin film as a current collector is directly provided on a carbon film layer containing fibrous carbon such as a CNT layer has a small thickness and is extremely difficult to handle when incorporated into a device. That is, since the CNT / Cu composite film is in the form of a film, it may be bent, lose its flatness, or be blown by the wind, and is difficult to handle. Further, when the CNT / Cu composite film is incorporated into the device, a step of cutting the CNT / Cu composite film into a required size is also necessary, which may cause operational difficulties. Although it is conceivable to form a current collector having a certain thickness in the CNT / Cu composite film, forming a current collector to a certain extent in the CNT layer increases the manufacturing cost.
  • the surface of the CNT / Cu composite film connected to the device (that is, the surface of the current collector) has the same unevenness as the unevenness of the CNT layer, and the brazing property between the current collector and the device is high. May be damaged.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique that facilitates handling of a carbon-metal structure including a carbon film layer containing fibrous carbon.
  • One aspect of the carbon-metal structure of the present invention that achieves the above object is to provide a carbon film layer containing fibrous carbon, a brazing material layer directly provided on the carbon film layer, and the carbon material through the brazing material layer. And a metal pedestal provided on the membrane layer, the carbon-metal structure.
  • the carbon film layer may have irregularities with an average height of 1 ⁇ m to 100 ⁇ m and a height / spacing ratio of 1/5 to 5/1.
  • the carbon film layer is a layer previously formed on a substrate
  • the brazing material layer is a layer formed at an end portion of the carbon film layer opposite to the surface in contact with the substrate, Also good.
  • the brazing material layer is a layer formed of a metal brazing material, and a brazing material forming the brazing material layer in the carbon film layer is impregnated at the interface between the carbon film layer and the brazing material layer.
  • a mixed layer may be formed.
  • the brazing material layer includes a first brazing material layer formed on the carbon film layer side and a second brazing material layer formed on the metal pedestal side and having a melting point lower than that of the first brazing material layer. It may have a multilayer structure.
  • the thickness of the brazing material layer may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the electron emitter of the present invention which achieves the above object comprises any of the carbon-metal structures described above.
  • the X-ray tube of the present invention which achieves the above-mentioned object includes the electron emitter.
  • one aspect of the method for producing a carbon-metal structure of the present invention which achieves the above-mentioned object is a step of forming a carbon film layer containing fibrous carbon on a substrate and a carbon film layer formed on the substrate.
  • a carbon-metal structure which includes the steps of forming a material layer, brazing a metal pedestal to the carbon film layer via the brazing material layer, and removing the substrate from the carbon film layer. It is a manufacturing method.
  • the brazing material layer may include a metal brazing material vapor-deposited on the carbon film layer.
  • Another aspect of the method for producing a carbon-metal structure of the present invention that achieves the above object is a step of forming a carbon film layer containing fibrous carbon on a substrate, and a carbon film layer formed on the substrate.
  • the brazing material layer includes a first brazing material layer formed on the carbon film layer side and a second brazing material layer formed on the metal pedestal side and having a melting point lower than that of the first brazing material layer. It may have a multilayer structure.
  • the carbon film layer may be formed on the substrate by a chemical vapor deposition method.
  • the surface of the substrate may have irregularities with an average height of 1 ⁇ m to 100 ⁇ m and a height / spacing ratio of 1/5 to 5/1.
  • the substrate removed from the carbon film layer may be reused as a substrate for forming the carbon film layer of another carbon-metal structure.
  • a plurality of metal pedestals may be brazed to the carbon film layer via the brazing material layer.
  • the carbon-metal structure including the carbon film layer containing fibrous carbon. Further, it is possible to provide a carbon-metal structure which has less degassing, low resistance, and high emission performance.
  • 3B is a view for explaining before and after brazing of the CNT device of Example 1 (thickness of brazing material layer: 3.3 ⁇ m), and (b) is a SEM image of the CNT layer surface of the same CNT device.
  • A A schematic view of an apparatus for evaluating the electrode characteristics of the CNT device, and (b) a characteristic view showing the electrode characteristics (IV characteristics) of the CNT device of Example 1 (thickness of brazing material layer: 3.3 ⁇ m).
  • (C) is a characteristic diagram showing electrode characteristics (cycle characteristics) of the same CNT device. It is a figure explaining the outline of the CNT device of Example 2, (a) The figure before brazing, (b) The figure after brazing.
  • FIG. 9 is a diagram illustrating an outline of a CNT device of Example 4.
  • 9 is a SEM image of the CNT layer surface of the CNT device of Example 4.
  • 16 is a characteristic diagram showing electrode characteristics (IV characteristics) of the CNT device of Example 4.
  • FIG. 7 is a characteristic diagram showing electrode characteristics (cycle characteristics) of the CNT device of Example 4.
  • FIG. 10 is a diagram illustrating an outline of a CNT device of Example 5.
  • 9 is a SEM image of the CNT layer surface of the CNT device of Example 5.
  • 11 is a characteristic diagram showing electrode characteristics (IV characteristics) of the CNT device of Example 5.
  • FIG. 9 is a characteristic diagram showing electrode characteristics (IV characteristics after 100 cycles) of the CNT device of Example 5, and (b) a characteristic diagram showing electrode characteristics (cycle characteristics) of the CNT device of Example 5.
  • FIG. 9 is a diagram illustrating an outline of a CNT device of Example 6. It is explanatory drawing explaining the other example of the manufacturing process of the CNT device which concerns on embodiment of this invention.
  • FIG. 10 is a diagram illustrating an outline of a CNT device of Example 7. It is a figure explaining the CNT device of a comparative example.
  • FIG. 10 is a diagram illustrating an outline of a CNT device of Example 8.
  • a carbon-metal structure according to an embodiment of the present invention a method for manufacturing a carbon-metal structure, and an electron emitter and an X-ray tube including the carbon-metal structure according to an embodiment of the present invention will be described in detail with reference to the drawings.
  • the carbon-metal structure is not limited to the embodiment. It can be applied to a device to which fine carbon is applicable, such as an electrode of an electric double layer capacitor.
  • the carbon film layer constituting the carbon-metal structure includes not only a layer containing CNT but also a layer in which a large number of protrusions made of carbon containing fibrous carbon such as string-like or needle-like are spread out in a plane. Just do it. Further, the carbon film layer is more preferably a layer including a region in which fibrous carbon is arranged in a state of standing in the thickness direction of the film.
  • the CNT device 1 includes a CNT layer 2, a brazing material layer 3, and a metal pedestal 4.
  • a mixed layer 5 is formed between the CNT layer 2 and the brazing material layer 3 and the brazing material forming the brazing material layer 3 is impregnated at the end of the CNT layer 2.
  • the CNT layer 2 is composed of, for example, CNTs formed on the catalyst 7 carried on the heat-resistant concavo-convex substrate 6.
  • the heat-resistant uneven substrate 6 and the catalyst 7 will be described later in detail with reference to FIG.
  • Concavities and convexities corresponding to the concavo-convex surface of the heat-resistant concavo-convex substrate 6 are formed on the surface of the CNT layer 2.
  • a CNT bundle pillar having an average height of 1 ⁇ m to 100 ⁇ m is formed on the emitter surface with a ratio (H / R) of pillar height (H) to pillar spacing (R) of 1 /
  • a pillar arrangement of 5 to 5/1 is preferable.
  • the average height of the pillars is obtained by, for example, observing the cross section of the emitter with a scanning electron microscope or observing the surface with a laser microscope to obtain the height distribution of the pillars, and determining the height of 10 pillars
  • the number of pillars is calculated by calculating the average height of the pillars.
  • the size and density of the CNT bundle pillars are selected according to the electric field concentration of the CNTs and the life of the CNT layer 2. Therefore, the heat-resistant concavo-convex substrate 6 has concavities and convexities having an average height of 1 ⁇ m to 100 ⁇ m and a height / spacing ratio of 1/5 to 5/1.
  • This average height is obtained by the same method as the average height of the pillars of the CNT layer 2.
  • the interval between the irregularities is small. Therefore, the interval between the irregularities is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less. Further, in order to enhance the concentration of the electric field on the emitter, it is preferable that the interval between the irregularities is large. Therefore, the interval between the irregularities is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more.
  • the CNT forming the CNT layer 2 may be a single layer or a multi-layer, and the diameter of the CNT is preferably 30 nm or less.
  • the brazing material layer 3 is formed of a brazing material that joins the CNT layer 2 and the metal pedestal 4.
  • the brazing material may be any brazing material having a melting point lower than that of the metal pedestal 4, and a suitable brazing material is appropriately selected according to the type of the metal pedestal 4.
  • a metal brazing material such as silver (Ag) or an alloy of silver (Ag) and copper (Cu) (Ag—Cu alloy) is preferably used for the metal pedestal 4 of copper (Cu).
  • the ratio of Ag to Cu may be any.
  • an additive element such as tin (Sn) or indium (In), or nickel for improving the wettability of the metal brazing material (for example, silver brazing material). It may contain additional elements such as (Ni), manganese (Mn), and palladium (Pd).
  • a mixed layer 5 for example, a mixed layer of 1 ⁇ m or less in which the brazing material layer 3 is soaked in the CNT layer 2 is formed.
  • the thickness of the brazing material layer 3 is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more. This is because if the thickness of the brazing material layer 3 is less than 1 ⁇ m, the bonding between the CNT layer 2 and the metal pedestal 4 may be poor, and the transfer of the CNT layer 2 may be difficult. On the other hand, when the thickness of the brazing filler metal layer 3 is more than 50 ⁇ m, the CNTs are filled with the brazing filler metal during brazing, which may make it difficult to peel the CNT layer 2 from the heat-resistant concavo-convex substrate 6 for growing the CNT layer 2. is there. Moreover, the CNT pillars transferred to the metal pedestal 4 may be buried in the brazing material.
  • the thickness of the brazing material layer 3 is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and further preferably 10 ⁇ m or less.
  • the thickness of the brazing material layer 3 can be obtained, for example, by dividing the mass of the brazing material per unit area (g / cm 2 ) by the true density of the brazing material (g / cm 3 ).
  • the brazing material layer 3 is not limited to a single layer structure, and may have a multi-layer structure (for example, a two-layer structure having first and second brazing material layers 31 and 32 in FIG. 23 described later). Alternatively, different metal brazing materials may be applied to the respective layers.
  • the metal pedestal 4 is a metal member having conductivity.
  • the metal pedestal 4 is preferably a metal member containing any one or more of copper, tin, zinc, aluminum, magnesium, titanium, iron, cobalt, nickel, chromium, and silver.
  • the metal pedestal 4 preferably has a rigidity that facilitates handling when the CNT device 1 is incorporated into the apparatus, and for example, a metal member having a thickness of 0.02 mm to 10 mm is used.
  • the cylindrical metal pedestal 4 is used, but a metal member having any shape such as a plate shape, a column shape, a cone shape, and a hemispherical shape is used.
  • the metal pedestal 4 it is not necessary that all of the metal pedestal 4 is made of metal as long as it has a conductor layer on the surface to which the CNT layer 2 is brazed.
  • the heat-resistant substrate 6 ′ may be any substrate as long as it has heat resistance, and for example, a substrate made of ceramic, quartz glass, alumina sintered body, SiC sintered body, high heat-resistant alloy, Inconel, stainless steel, or the like is used. In particular, a silicon substrate, a quartz glass substrate, or the like, which is easily available as a high-purity product, is generally used.
  • the texture can be formed by mechanical cutting or chemical etching of the surface of the heat resistant substrate 6 ′.
  • the heat-resistant uneven substrate 6 can be obtained by forming a texture by anisotropically etching with an alkaline solution such as NaOH aqueous solution.
  • an alkaline solution such as NaOH aqueous solution.
  • a regular pyramid-like texture is obtained on a single crystal silicon substrate, and a random-shaped texture is obtained on a polycrystalline silicon substrate.
  • a catalyst 7 for CNT generation is supported on the heat-resistant concavo-convex substrate 6 (STEP 2).
  • the catalyst 7 is carried on the heat-resistant concavo-convex substrate 6 by, for example, RF magnetron sputtering. Iron (Fe), cobalt (Co), nickel (Ni), molybdenum (Mo), or the like is used as a catalyst substance that produces CNTs.
  • a carrier layer 8 for example, aluminum oxide (Al), magnesium oxide (Mg), etc.
  • the average film thickness of the catalyst 7 preferably has a film thickness (for example, 0.1 nm to 5 nm) that provides a catalyst particle size that is optimum for CNT growth.
  • the CNT is synthesized by, for example, a chemical vapor deposition method (Chemical Vapor Deposition, CVD).
  • the carbon source include hydrocarbons such as methane, ethylene and acetylene, carbon monoxide, and alcohols such as ethanol and methanol.
  • the reaction conditions of the CVD method for example, the temperature is selected from the range of 600 ° C. to 1200 ° C., the pressure is selected from the range of 0.001 atm to 1 atm, and the reaction time is usually selected from the range of 1 second to 1 hour.
  • the CNTs are formed in a state of being in contact with the heat-resistant concavo-convex substrate 6 and oriented substantially perpendicular to the surface of the heat-resistant concavo-convex substrate 6.
  • the number density of CNTs growing on the catalyst 7 can be controlled by the amount of the catalyst 7 supported. Note that not only the number distribution of CNTs growing on the heat-resistant concavo-convex substrate 6 but also the diameter and number of layers of CNTs, the thickness of many grown CNT bundles, the degree of entanglement, and the like change depending on the amount of catalyst 7 supported.
  • the brazing material layer 3 is formed on the CNT layer 2 (STEP 4).
  • the brazing material layer 3 is formed by, for example, co-evaporation or sputtering of a substance forming the brazing material.
  • Ag—Cu is used as a brazing material
  • Ag having a high vapor pressure is preferentially evaporated, and a brazing material having a high Ag ratio is deposited on the CNT layer 2.
  • a composition gradient film in which the proportion of Cu is gradually increased is formed.
  • a brazing material adjusted to a predetermined composition ratio may be used, or an individual metal material may be used as a raw material to form the brazing material layer 3 having a predetermined composition ratio.
  • the brazing material layer 3 may be provided on the metal pedestal 4 side.
  • the brazing material layer 3 having a composition gradient opposite to that when the brazing material layer 3 is provided on the CNT layer 2 is formed.
  • the brazing material layer 3 is formed by sputtering which evaporates an element regardless of the vapor pressure, or when the brazing material layer 3 is formed by vapor deposition using a plurality of vapor deposition sources using individual metal materials as raw materials, the composition is A brazing material layer 3 having no inclination is formed.
  • the composition of the brazing material layer 3 to be vapor-deposited may be different from the composition of the brazing material layer 3 of the final device. For example, when Ag is vapor-deposited on the CNT layer 2 as a brazing material, when brazing is performed on the Cu metal pedestal 4, Cu and Ag are mixed to form a brazing material layer 3 containing an Ag—Cu alloy.
  • the metal pedestal 4 is brazed to the CNT layer 2 (STEP 5). Brazing is performed by heating to a temperature at which the brazing material of the brazing material layer 3 melts.
  • the melting point of the Ag-Cu alloy is 779 ° C, so it is preferable to heat the material to 779 ° C or higher for brazing, and when using another brazing material, the brazing material is used. The brazing temperature is adjusted according to the melting point of.
  • the timing for cutting the CNT device 1 into an arbitrary size may be before or after peeling the heat-resistant concavo-convex substrate 6.
  • the brazing material layer 3 is formed on the entire surface of the CNT layer 2 and the metal pedestal 4 is brazed and the heat-resistant concave-convex substrate 6 is peeled off, when the brazing material layer 3 is thin, the brazing material layer 3 and the CNT layer 2 are the metal pedestal. It is automatically cut and transferred according to the shape of 4.
  • the brazing material layer 3 when the brazing material layer 3 is as thin as about 1 ⁇ m to 5 ⁇ m, it is transferred in the shape of the metal pedestal 4, and when the brazing material layer 3 is as thick as 10 ⁇ m or more, the entire brazing material layer 3 is peeled off from the heat-resistant uneven substrate 6. , Is also transferred around the metal pedestal 4. Further, when the brazing material is vapor-deposited on the CNT layer 2, if the brazing material layer 3 is formed in a pattern using a mask, the CNT layer 2 adheres only to the metal pedestal 4 and is adhered to other parts of the CNT layer 2.
  • the brazing material layer 3 does not exist, only the pattern portion of the CNT layer 2 is transferred to the metal pedestal 4 when the metal pedestal 4 and the heat-resistant concavo-convex substrate 6 are separated. Good cut automatically. Also, by forming the brazing material layer 3 on the metal pedestal 4, the CNT layer 2 is automatically cut according to the shape of the metal pedestal 4. Furthermore, when a plurality of metal pedestals 4 are brazed to the CNT layer 2 and the heat-resistant concavo-convex substrate 6 and the metal pedestal 4 are separated, the CNT layer 2 is formed whether the brazing material layer 3 is formed on the entire surface or in a pattern. Are automatically cut according to each metal pedestal 4.
  • Examples 1 to 7 relate to the CNT device manufactured based on the manufacturing method shown in FIG. 2, and show the observation result, evaluation result, etc. of each CNT device.
  • Example 1 of the present invention CNT devices 1a and 1b applicable to the emitter of the X-ray apparatus were manufactured by the CNT device manufacturing method (FIG. 2) according to the embodiment of the present invention.
  • a Si substrate was used as the heat-resistant concavo-convex substrate 6
  • a copper pedestal with a diameter of 6 mm and a thickness of 4.5 mm was used as the metal pedestal 4
  • an Ag—Cu alloy was used as the brazing material.
  • Fe was used for the catalyst 7
  • AlO x was used for the carrier layer 8.
  • a Si substrate whose surface was ground with sandpaper was treated with hydrofluoric acid to remove SiO 2 .
  • a texture of 5 ⁇ m to 10 ⁇ m was formed by anisotropic etching for 30 minutes in a 2 wt% NaOH / 20 vol% isopropyl alcohol aqueous solution at 80 ° C. (STEP 1).
  • Fe 4 nm / Al 15 nm was carried on the surface of the Si substrate by using RF magnetron sputtering (STEP 2). Al was oxidized to AlO x when it contacted with air.
  • the brazing material layers of the CNT devices 1a and 1b were controlled by changing the charged amounts of Ag and Cu of the vapor deposition source, and vapor deposition was carried out until the Ag and Cu of the vapor deposition source were exhausted.
  • the vapor deposition times of the CNT devices 1a and 1b were 60 seconds and 30 seconds, respectively, and the thickness of the brazing material layer 3 was 10.6 ⁇ m and 3.3 ⁇ m, respectively.
  • the metal pedestal 4 was provided on the brazing material layer 3, and the metal pedestal 4 was brazed to the CNT layer 2 by heating for 5 minutes (CNT device 1a) or 11 minutes (CNT device 1b) under the conditions of 780 ° C. and Ar 10 Torr ( STEP 5). As shown in FIGS. 3 and 4, in each of the CNT devices 1 a and 1 b, the CNT layer 2 was peelable, and the CNT layer 2 was transferred to the metal pedestal 4. However, when manufacturing the CNT devices 1a and 1b, the uniform CNT layer 2 may not be transferred to the entire surface of the metal pedestal 4, and there is a problem with reproducibility.
  • FE performance field emission performance
  • the FE performance evaluation was performed using the CNT device 1b as the cathode and the glass substrate 9 with the ITO film (tin oxide-doped indium oxide film) as the anode. Quartz glass having a thickness of 500 ⁇ m is used as a spacer 10 and they are opposed to each other, and a current value is measured when a sweep voltage of 0 to 1000 V is applied for 100 cycles in a vacuum of 10 ⁇ 5 Pa to obtain the FE characteristics of the CNT device 1 b. The life was evaluated. As shown in FIGS.
  • an emission current of 2.5 mA or more (area: 0.28 cm 2 , current density: 8.8 mA / cm) at an electrode distance of 500 ⁇ m, an applied voltage of 1000 V, that is, an electric field strength of 2 V / ⁇ m. 2 or more) was stably obtained, and the CNT device 1b had excellent characteristics and life as an emitter.
  • Example 2 In Example 2, a CNT device 11 having an Ag—Cu brazing material layer thickness of 26.7 ⁇ m was manufactured.
  • a Si substrate was used as the heat-resistant concavo-convex substrate 6, and a copper pedestal having a diameter of 6 mm and a thickness of 4.5 mm was used as the metal pedestal 4.
  • the detailed description of the same steps as the first embodiment (STEP1 to STEP3) is omitted (the same applies to the third to seventh embodiments).
  • STEP 1 to STEP 3 were performed in the same manner as in Example 1 except that the annealing during CNT synthesis was 3 minutes and the C 2 H 2 partial pressure was 0.5 Torr, and CNT was synthesized on the Si substrate. Then, Ag and Cu were co-evaporated on the CNT grown on the Si substrate for 75 seconds to form a brazing material layer 3 (Ag-Cu brazing material layer) on the surface of the CNT layer 2 (STEP 4).
  • the metal pedestal 4 was provided on the brazing material layer 3, and the metal pedestal 4 was brazed to the CNT layer 2 by heating for 5 minutes under the conditions of 800 ° C. and Ar 10 Torr (STEP 5). After brazing, the metal pedestal 4 was peeled off from the Si substrate (heat-resistant concavo-convex substrate 6) to manufacture the CNT device 11 of Example 2 (STEP 6).
  • the CNT layer 2 was transferred onto the metal pedestal 4 (see the upper right figure in FIG. 6B).
  • the Ag—Cu film around the metal pedestal 4 adhered to the side surface of the metal pedestal 4 (see the upper left, lower left, and lower right of FIG. 6B). Further, since the CNT layer 2 was peeled from the heat-resistant concavo-convex substrate 6, the substrate surface of the peeled heat-resistant concavo-convex substrate 6 was exposed (see the upper left diagram of FIG. 6B).
  • Example 3 In Example 3, a CNT device 12 having an Ag brazing material layer thickness of 35.3 ⁇ m was manufactured. In this example, the CNT device 12 was manufactured in the same manner as in Example 2 except that the type of brazing material was different.
  • CNTs were synthesized on a Si substrate by the same method as in STEP 1 to STEP 3 of Example 2. Then, Ag is deposited for 40 seconds in vacuum (for example, 10 ⁇ 4 Pa) on the CNTs grown on the Si substrate to form a brazing material layer 3 (Ag brazing material layer) on the surface of the CNT layer 2. (STEP 4).
  • the metal pedestal 4 was provided on the brazing material layer 3, and the metal pedestal 4 was brazed to the CNT layer 2 by heating for 5 minutes under the conditions of 800 ° C. and Ar 10 Torr (STEP 5). After brazing, the metal pedestal 4 was peeled off from the Si substrate (heat-resistant concavo-convex substrate 6) to manufacture the CNT device 12 of Example 3 (STEP 6).
  • the CNT layer 2 was transferred onto the metal pedestal 4 (see the upper right figure in FIG. 7B).
  • the Ag film around the metal pedestal 4 was attached to the side surface of the metal pedestal 4 (see the upper left, lower left, and lower right of FIG. 7B). Further, since the CNT layer 2 was peeled from the heat-resistant concavo-convex substrate 6, the substrate surface of the peeled heat-resistant concavo-convex substrate 6 was exposed (see the upper left diagram of FIG. 7B).
  • Example 4 In Example 4, three CNT devices 13a to 13c having different brazing times were produced.
  • CNT devices 13a to 13c were manufactured by the same method as in Example 1 except that the thickness of the brazing material layer, the brazing temperature and the brazing time were different.
  • CNTs were synthesized on a Si substrate by the same method as in STEP 1 to STEP 3 of Example 1. Then, Ag and Cu are co-deposited on the CNTs grown on the Si substrate in a vacuum (for example, 10 ⁇ 4 Pa) for 30 seconds, and the brazing filler metal layer 3 (Ag—Cu solder) is formed on the surface of the CNT layer 2. Material layer) was formed (STEP 4). The thicknesses of the brazing material layer 3 of the CNT devices 13a to 13c were 3.6 ⁇ m, 3.4 ⁇ m, and 3.5 ⁇ m, respectively.
  • the metal pedestal 4 is provided on the brazing material layer 3, and the metal pedestal 4 is brazed to the CNT layer 2 by heating at 800 ° C. and Ar 10 Torr for 5 minutes, 3 minutes or 1 minute ( STEP 5). After brazing, the metal pedestal 4 was peeled off from the Si substrate (heat-resistant concavo-convex substrate 6) to manufacture the CNT devices 13a to 13c of Example 4 (STEP 6).
  • the CNT layer 2 was transferred onto the metal pedestal 4 by peeling off the metal pedestal 4 in each of the CNT devices 13a to 13c.
  • the Ag—Cu film and the CNT layer 2 outside the contact surface of the metal pedestal 4 were not transferred to the metal pedestal 4 and remained on the surface of the heat-resistant concavo-convex substrate 6. Further, since the CNT layer 2 was peeled off from the heat-resistant concavo-convex substrate 6 in the shape of the metal pedestal 4, the substrate surface of the portion corresponding to the metal pedestal 4 was exposed in the peeled heat-resistant concavo-convex substrate 6.
  • the FE performance evaluation was performed using any of the CNT devices 13a to 13c as the cathode and the glass substrate 9 with the ITO film as the anode (see FIG. 5 (a)).
  • the quartz glass having a thickness of 500 ⁇ m is used as a spacer 10 and they are opposed to each other, and the current value is measured when a sweep voltage of 0 to 1000 V is applied for 100 cycles in a vacuum of 10 ⁇ 5 Pa to measure the FE of the CNT devices 13a to 13c.
  • the characteristics and life were evaluated.
  • the CNT device 13b had the best results as the emitter characteristics.
  • the brazing conditions temperature and time
  • the brazing temperature and time are appropriately adjusted according to the melting point of the brazing material.
  • Example 5 In Example 5, three CNT devices 14a to 14c having different Ag-Cu brazing material layer thicknesses were manufactured.
  • CNTs were synthesized on a Si substrate by the same method as in STEP 1 to STEP 3 of Example 4. Then, Ag and Cu are co-deposited on the CNTs grown on the Si substrate in a vacuum (for example, 10 ⁇ 4 Pa), and the brazing material layer 3 (Ag—Cu brazing material layer) is formed on the surface of the CNT layer 2. ) Was formed (STEP 4).
  • the vapor deposition times of the brazing material layer 3 of the CNT devices 14a to 14c were 20 seconds, 40 seconds and 50 seconds, respectively, and the thicknesses thereof were 1.3 ⁇ m, 4.8 ⁇ m and 12.5 ⁇ m, respectively.
  • the metal pedestal 4 was provided on the brazing material layer 3, and the metal pedestal 4 was brazed to the CNT layer 2 by heating for 1 minute under the conditions of 800 ° C. and Ar 10 Torr (STEP 5). After brazing, the metal pedestal 4 was peeled off from the Si substrate (heat-resistant concavo-convex substrate 6) to manufacture the CNT devices 14a to 14c of Example 5 (STEP 6).
  • FIG. 13 shows surface SEM images of the CNT layer 2 of the CNT devices 14a to 14c.
  • the brazing material layer 3 and the CNT layer 2 were transferred in the shape of the metal pedestal 4, but the brazing material exuded on most of the surface of the CNT layer 2. From this, it is considered that the brazing material may be easily absorbed by the CNT layer 2 as the brazing material layer 3 becomes thinner.
  • the CNT layer 2 has the shape of the metal pedestal 4 and is uniformly transferred onto the entire surface of the metal pedestal 4.
  • the square CNT layer 2 is transferred to the metal pedestal 4 in a state where the brazing material layer 3 is vapor-deposited, and a part of the CNT layer 2 (and the brazing material layer 3) is It was transcribed so as to cling to the surroundings. That is, in the CNT device 14c, the entire brazing material layer 3 was transferred to the metal pedestal 4. Then, a part where the brazing filler metal exudes was observed on the surface of the transferred CNT layer 2. From this, it is considered that when the thickness of the brazing filler metal layer 3 increases, the brazing filler metal becomes excessive and a part of the brazing filler metal may exude to the surface of the CNT layer 2.
  • FIG. 14 and 15 show the FE performance evaluation results of the CNT devices 14a to 14c. Similar to the FE performance evaluation of Example 1, the FE performance evaluation was performed by using any of the CNT devices 14a to 14c as the cathode and the glass substrate 9 with the ITO film as the anode (see FIG. 5 (a)). . Quartz glass having a thickness of 500 ⁇ m is used as a spacer 10 and they are opposed to each other, and the current value is measured when a sweep voltage of 0 to 1000 V is applied for 100 cycles in a vacuum of 10 ⁇ 5 Pa to measure the FE of the CNT devices 14 a to 14 c. The characteristics and life were evaluated.
  • the CNT device 14a was confirmed by SEM to have a good performance of about 1.1 mA, although the exudation on the surface of the brazing material was confirmed in most of the cases.
  • the CNT device 14b maintained a good performance even after 100 cycles, although a large current initially flowed and the current amount decreased thereafter.
  • the FE performance of the CNT device 14c was about 0.27 mA, which was lower than that of the other CNT devices 14a and 14b.
  • Example 6 In Example 6, two CNT devices 15a and 15b having different brazing temperatures and brazing times were produced.
  • CNTs were synthesized on a Si substrate by the same method as in STEP 1 to STEP 3 of Example 4. Then, Ag and Cu are co-deposited on the CNTs grown on the Si substrate in a vacuum (for example, 10 ⁇ 4 Pa), and the brazing material layer 3 (Ag—Cu brazing material layer) is formed on the surface of the CNT layer 2. ) Was formed (STEP 4).
  • the vapor deposition times of the brazing material layer 3 of the CNT devices 15a and 15b were 20 seconds and 30 seconds, respectively, and the thicknesses thereof were 1.2 ⁇ m and 1.0 ⁇ m, respectively.
  • a metal pedestal 4 was provided on the brazing filler metal layer 3, and the metal pedestal 4 was brazed to the CNT layer 2.
  • the CNT device 15a was heated and brazed for 5 minutes at 820 ° C. and Ar 10 Torr, and the CNT device 15b was heated and brazed for 30 minutes at 800 ° C. and Ar 10 Torr (STEP 5).
  • the metal pedestal 4 was peeled off from the Si substrate (heat-resistant concavo-convex substrate 6) to manufacture the CNT devices 15a and 15b of Example 6 (STEP 6).
  • the brazing material slightly exuded on the surface of the CNT layer 2, but the CNT layer 2 was transferred in the shape of the metal pedestal 4.
  • Example 7 As shown in FIG. 17, the CNT devices 16a and 16b of Example 7 are obtained by arranging a plurality of metal pedestals 4 on the brazing material layer 3 on the CNT layer 2 and brazing the CNT layer 2 to the metal pedestal 4. Is.
  • CNTs were synthesized on a Si substrate by the same method as in STEP 1 to STEP 3 of Example 4. Then, Ag and Cu are co-deposited on the CNTs grown on the Si substrate in a vacuum (for example, 10 ⁇ 4 Pa), and the brazing material layer 3 (Ag—Cu brazing material layer) is formed on the surface of the CNT layer 2. ) Was formed (STEP 4).
  • the vapor deposition times of the brazing material layer 3 of the CNT devices 16a and 16b were 30 seconds and 40 seconds, respectively, and the thicknesses thereof were 4.8 ⁇ m and 4.5 ⁇ m, respectively.
  • a plurality of metal pedestals 4 were provided on the brazing filler metal layer 3, and the CNT layer 2 was brazed to the CNT layer 2 by heating for 1 minute under the conditions of 800 ° C. and Ar 10 Torr (STEP 5). After brazing, the metal pedestal 4 was peeled off from the Si substrate (heat-resistant concavo-convex substrate 6) to manufacture the CNT devices 16a and 16b of Example 7 (STEP 6).
  • the brazing material layer 3 was automatically cut into the shape of the metal pedestal 4, and the CNT layer 2 was transferred on the metal pedestal 4 in accordance with the shape of the metal pedestal 4.
  • the brazing material was slightly exuded on the surface of the CNT layer 2.
  • the CNT layer 2 was transferred onto the entire surface of the metal pedestal 4 without being uniformly projected. No exudation of the brazing material was confirmed on the surface of the CNT layer 2.
  • Table 1 shows the brazing conditions of Examples 1 to 7 and the FE performance evaluation results.
  • the thickness of the brazing filler metal layer 3 is 1 ⁇ m to 50 ⁇ m, preferably 3 ⁇ m to 10 ⁇ m, and the temperature is 780 ° C. to 820 ° C.
  • the time can be selected within 30 minutes.
  • a current collector (copper thin film 18) is directly provided on the surface of the CNT layer 2.
  • a Si substrate whose surface was ground with sandpaper was treated with hydrofluoric acid to remove SiO 2 .
  • the surface of the Si substrate was etched for 30 minutes in a 2 wt% NaOH / 20 vol% isopropyl alcohol aqueous solution at 80 ° C. to form a texture of 5 ⁇ m to 10 ⁇ m.
  • Fe 4 nm / Al 15 nm was carried on the surface of the Si substrate by using RF magnetron sputtering.
  • Cu was vapor-deposited in a vacuum (for example, 10 ⁇ 4 Pa) for 1 minute to form a copper thin film 18 on the surface of the CNT layer 2. Then, the copper thin film 18 was peeled off from the Si substrate to fabricate a CNT device 17 of a comparative example.
  • the CNT device 17 could be manufactured by peeling the copper thin film 18 from the Si substrate (heat-resistant uneven substrate 6) (see the successful example on the left side of FIG. 19).
  • the copper thin film 18 is a thin film having a thickness of about 10 ⁇ m, the copper thin film 18 is easily broken and difficult to handle. Therefore, when the copper thin film 18 is torn when peeling the copper thin film 18 from the heat-resistant uneven substrate 6 (see the upper left and lower left drawings of the failure example in FIG. 19), the copper thin film 18 is broken and the heat-resistant uneven substrate 6 is removed. There was a case where it could not be peeled off (see the upper right figure of the failure example in FIG. 19).
  • the CNT devices 19a and 19b of the reference example have a CNT layer 2'formed on a smooth heat-resistant substrate 6 '.
  • Fe 4 nm / Al 15 nm was carried on the Si substrate surface using RF magnetron sputtering (STEP 2).
  • the thickness of the CNT layer 2 ′ was 10 ⁇ m.
  • the thickness of the CNT layer 2 ′ was 63 ⁇ m.
  • brazing material layer 3 (Ag-Cu brazing material layer) on the surface of the CNT layer 2 '(STEP 4).
  • the film thickness of the brazing material layer 3 of the CNT devices 19a and 19b was 3.5 ⁇ m and 3.3 ⁇ m, respectively.
  • the metal pedestal 4 was provided on the brazing material layer 3, and the metal pedestal 4 was brazed to the CNT layer 2 ′ by heating for 1 minute under the conditions of 800 ° C. and Ar 10 Torr (STEP 5). After brazing, the metal pedestal 4 was peeled off from the Si substrate to manufacture the CNT devices 19a and 19b of the reference example (STEP 6).
  • the CNT layer 2 ′ was transferred to the metal pedestal 4. However, it was difficult to transfer the uniform CNT layer 2 ′ onto the surface of the metal pedestal 4. It is considered that this is because on the smooth heat-resistant substrate 6 ′, the surface of the CNT layer 2 ′ also becomes a smooth surface, and the brazing material layer 3 vapor-deposited thereon is easily peeled off. Further, the surface of the CNT layer 2 ′ after being transferred to the metal pedestal 4 had a flat surface as compared with the CNT layer 2 of the example.
  • the surface of the CNT layer 2 ′ formed on the heat resistant substrate 6 ′ had a flat surface as compared with the CNT layer 2 of the example. Further, cracks were observed in the brazing material layer 3 formed on the CNT layer 2 '. It is considered that this is because the surface of the CNT layer 2'is smooth, so that the brazing material layer 3 is easily separated from the CNT layer 2 '.
  • the FE performance of the CNT devices 19a and 19b of the reference example was one to two digits lower than that of the CNT devices of the examples.
  • the first brazing filler metal layer 31 is formed on the CNT layer 2 after going through the same STEP1 to STEP3 as in FIG. 2 (STEP4a). Then, the second brazing material layer 32 is formed on the first brazing material layer 31 (STEP 4b). As a result, the brazing material layer 3 having a multi-layered structure including the first brazing material layer 31 formed on the CNT layer 2 side and the second brazing material layer 32 formed on the metal pedestal 4 side is formed. The Rukoto.
  • Each of the first and second brazing material layers 31 and 32 can be formed by appropriately applying a method similar to that of the brazing material layer 3 in FIG.
  • the brazing materials having different melting points may be applied.
  • a brazing material having a relatively high melting point (Cu in Example 8 described later) is applied to the first brazing material layer 31 close to the CNT layer 2, and the second brazing material layer separated from the CNT layer 2 is used.
  • a brazing material having a relatively low melting point (Ag—Cu alloy in Example 8 described later) may be applied.
  • the metal pedestal 4 is brazed to the CNT layer 2 (STEP 5a).
  • Brazing is performed by heating to a temperature at which the brazing material of the second brazing material layer 32 melts.
  • the melting point of the Ag-Cu alloy is 779 ° C, so it is preferable to heat the material to 779 ° C or higher for brazing, and to use another brazing material.
  • the brazing temperature is adjusted according to the melting point of the brazing material.
  • the heat-resistant concavo-convex substrate 6 is peeled from the CNT layer 2 to form the CNT device 1 '(STEP 6a).
  • the first and second brazing material layers 31 and 32 may be provided on the metal pedestal 4 side. In this case, first, the second brazing material layer 32 is formed on the metal pedestal 4, and then the first brazing material layer 31 is formed on the second brazing material layer 32.
  • Example 8 below relates to a CNT device manufactured based on the manufacturing method shown in FIG. 23, and shows observation results, evaluation results, etc. of the CNT device.
  • Example 8 In the CNT device 20 of Example 8, as in Example 7, a plurality of metal pedestals 4 are arranged on the brazing material layer 3 (the second brazing material layer 32 in Example 8) on the CNT layer 2 to form a metal pedestal. 4 to which the CNT layer 2 is brazed.
  • CNTs were synthesized on a Si substrate by the same method as in STEP 1 to STEP 3 of Example 1.
  • CNT was synthesized at 700 ° C. for 1 minute.
  • first brazing material layer 31 Cu brazing material layer
  • first brazing material layer 31 Cu brazing material layer
  • Ag—Cu alloy silver braze; BAg-8
  • a brazing material layer 32 Ag—Cu brazing material layer was formed (STEP 4b).
  • the brazing filler metal layer 3 having a two-layer structure (that is, the Cu brazing filler metal layer and the Ag—Cu brazing filler metal layer) is formed on the surface of the CNT layer 2.
  • the deposition time of each of the first and second brazing filler metal layers 31 and 32 of the CNT device 20 was 10 seconds, and the thickness thereof was 0.5 ⁇ m (the total thickness of the brazing filler metal layer 3 was 1.0 ⁇ m). It was
  • a plurality of metal pedestals 4 were provided on the brazing material layer 3 (the second brazing material layer 32 in Example 8), and the CNT was heated for 1 minute under the conditions of 800 ° C. and Ar 10 Torr.
  • the metal pedestal 4 was brazed to the layer 2 (STEP 5a). After brazing, the metal pedestal 4 was peeled off from the Si substrate (heat-resistant concavo-convex substrate 6) to manufacture the CNT device 20 of Example 8 (STEP 6a).
  • the brazing material layer 3 is automatically cut into the shape of the metal pedestal 4, and the CNT layer 2 is transferred by the metal pedestal 4 in accordance with the shape of the metal pedestal 4, as shown in FIG. It was Further, the shape of the brazing material layer 3 on the heat-resistant concavo-convex substrate 6 side was not substantially disturbed, and the CNT layer 2 was transferred onto the entire surface of the metal pedestal 4 without protruding uniformly. No exudation of the brazing material was confirmed on the surface of the CNT layer 2.
  • the reason why the exudation of the brazing filler metal does not occur is that the first brazing filler metal layer 31 of the brazing filler metal layer 3 has a relatively high melting point, so that the first brazing filler metal layer 31 functions as a barrier layer. It was found that the brazing material functions and the excessive penetration of the brazing material into the CNT layer 2 is suppressed.
  • the handling of the CNT device 1 becomes easy. That is, by directly providing the brazing filler metal layer 3 on the CNT layer 2, the CNT formed in a thin film shape can be bonded to an arbitrary component by heat treatment.
  • a mixed layer 5 in which the brazing material is soaked in the CNT is formed between the CNT layer 2 and the brazing material layer 3.
  • the electric resistance between the CNT layer 2 and the brazing material layer 3 is reduced, and the adhesiveness between the CNT layer 2 and the brazing material layer 3 is improved.
  • the brazing material layer 3 and the metal pedestal 4 are brazed, the brazing material layer 3 is melted and the unevenness of the surface of the brazing material layer 3 in contact with the metal pedestal 4 is absorbed.
  • the electric resistance between the brazing material layer 3 and the metal pedestal 4 becomes low, and the joint becomes strong.
  • the conductivity and adhesiveness between the CNT layer 2 and the metal pedestal 4 are improved. Therefore, when the CNT device 1 is applied to the emitter, scattering of the emitter due to a high electric field is suppressed.
  • gas release from the brazing material layer 3 is suppressed even when the CNT device 1 is provided in a vacuum.
  • a first brazing material layer 31 formed on the CNT layer 2 side and a second brazing material layer 32 formed on the metal pedestal 4 side and having a lower melting point than the first brazing material layer 31 In the case of the multi-layered structure having, the excessive penetration of the brazing material into the CNT layer 2 is suppressed.
  • the CNT layer 2 on the heat-resistant concavo-convex substrate 6, the concavity and convexity on the surface of the CNT layer 2 of the CNT device 1 can be easily controlled. As a result, the CNT device 1 having excellent emitter performance can be manufactured. Further, by forming the CNT layer 2 on the heat-resistant uneven substrate 6, the unevenness is formed on the surface of the CNT layer 2 on the heat-resistant uneven substrate 6. By providing the brazing material layer 3 on the uneven surface, the bonding between the CNT layer 2 and the brazing material layer 3 is strengthened, and the transfer of the CNT layer 2 to the metal pedestal 4 becomes good.
  • the metal pedestal 4 fixing the metal pedestal 4 to the CNT layer 2 before peeling the heat-resistant concavo-convex substrate 6 from the CNT layer 2, deformation of the CNT layer 2 can be prevented, and handling at the time of incorporating the CNT device 1 into an apparatus. Will be easier. More specifically, when incorporating the emitter into the X-ray tube, the emitter can be easily incorporated into the X-ray tube by mounting the metal pedestal 4 inside the apparatus. In the case where the copper thin film 18 is directly provided on the CNT layer 2 (see FIG. 19) as in the conventional case, the thickness of the finished device (thickness of the copper thin film 18) is about 10 ⁇ m, which is suitable for X-ray tubes.
  • the CNT device 1 When mounted as an emitter, it was necessary to sandwich and fix the end of the thin film with other components. As a result, an increase in the size of the fixed part is unavoidable, which is a factor that hinders the size reduction of the X-ray tube.
  • the CNT device 1 according to the embodiment of the present invention facilitates the handling (therefore, the fixing portion of the CNT device 1 is simplified), thereby reducing the size of an apparatus such as an X-ray tube. realizable.
  • the plurality of metal pedestals 4 on the CNT layer 2 formed on the heat-resistant concavo-convex substrate 6 with the brazing material layer 3 interposed therebetween it is possible to easily manufacture the plurality of CNT devices 1.
  • the manufacturing cost of the device 1 can be significantly reduced (see, for example, FIG. 17).
  • the CNT device 1 since unevenness corresponding to the surface unevenness of the heat-resistant uneven substrate 6 can be formed on the surface of the CNT layer 2, the surface uneven shape of the CNT layer 2 can be easily controlled. be able to. Further, by using the heat-resistant concavo-convex substrate 6 as a reusable template substrate, the manufacturing cost of the CNT device 1 can be reduced.
  • the CNT layer 2 By forming the CNT layer 2 by CVD, the CNT layer 2 including the CNT aggregate and the CNT aggregate vertically aligned with respect to the heat-resistant concavo-convex substrate 6 (that is, the surface of the CNT layer 2) is formed. You can

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

金属台座(4)上にカーボンナノチューブ層(2)(CNT層2である。以下同じ。)を備えるCNTデバイス(1)(炭素-金属構造体)である。CNT層(2)に、ろう材層(3)を介して金属台座(4)をろう付けする。CNTデバイス(1)を製造する際は、まず、耐熱凹凸基板(6)にCNT層(2)を形成する。次に、耐熱凹凸基板(6)上のCNT層(2)にろう材層(3)を介して金属台座(4)をろう付けする。そして、耐熱凹凸基板(6)から金属台座(4)(およびCNT層2)を剥がして、CNT層(2)を耐熱凹凸基板(6)から金属台座(4)に転写する。

Description

炭素-金属構造体および炭素-金属構造体の製造方法
 炭素-金属構造体および炭素-金属構造体の製造方法に関する。例えば、カーボンナノチューブ等の微細炭素を含む炭素膜層を備える装置に関する。
 カーボンナノチューブ(carbon nanotube、CNTという。以下同じ。)は、様々な装置に適用されている(例えば、特許文献1~3)。CNTは、例えば、冷陰極電子エミッタに適用される。冷陰極電子エミッタは、外部電場により真空中に電子を放出させる電子源であり、電子顕微鏡、X線装置、電子線露光装置、情報表示デバイス、照明装置などへ適用される。冷陰極電子エミッタは、従来の熱電子放出と比較して、消費電力が少ない・小型化可能・応答速度が速い・電子の密度が高いなどの優位性がある。
 CNTをエミッタに適用した場合、エミッタ表面にCNTの密度が高い部分がまばらに配置されていることが好ましい。例えば、エミッタ表面において、高さ1μm~100μm程度のCNT束ピラーを、ピラーの高さ(H)とピラー間隔(R)の比(H/R)が1/2程度のピラー配列とすることで、1本のピラーに対する電界集中が弱まらずに、ピラーの本数を増やすことができるとされている。そこで、従来のエミッタでは、有機系の溶剤を含むペーストをパターン状に印刷して、そこにCNTを支持している。ペーストに有機系の溶剤が含まれている場合、抵抗も高く、真空中でガス放出を起こしてしまう。
 このように、CNTの分野において、CNT層の表面の凹凸面やCNT層の表面におけるCNTの分散状態により製品の性能が異なる場合がある。そこで、CNTを成長させる耐熱凹凸基板にCNTを形成する触媒を固定し、この耐熱凹凸基板にCNTを配向成長させて、CNT表面に耐熱凹凸基板の表面形状に応じた凹凸を形成する技術が提案されている(例えば、非特許文献1)。
 非特許文献1では、Si基板上にCNTを成長させ、CNT層を形成している。この手法では、短時間プロセスでCNTデバイスを作製できる。また、耐熱凹凸基板を鋳型とすることで同一パターンのCNTデバイスを作製でき、CNT複合先端形状がシャープにできる。一方で、CNTを成長させるSi基板は、抵抗が高く、高コストであり、製品に適用することが困難であった。また、Si基板を装置に組み込むときに、Si基板ごと挟み込んで固定すると、Si基板が割れてしまうおそれがあり、装置にCNTを固定することが困難であった。さらに、耐熱凹凸基板にCNTを成長させる場合、CNT先端部の凹凸形状はCNTの成長に影響を受けるため、凹凸の制御が困難となるおそれがある。
 そこで、Si基板上に成長させたCNTを銅薄膜に剥離転写する技術が提案されている(例えば、非特許文献2)。これにより、CNTを成長させる耐熱凹凸基板の表面形状に応じた、凹凸面を有するCNT層が形成される。また、耐熱凹凸基板を再利用することが可能であり、CNTデバイスの製造コストを低減することができる。
特開2009-245672号公報 国際公開第2006/011468号 特開2011-119084号公報
Yosuke SHIRATORI、外7名、"Field Emission Properties of Single-Walled Carbon Nanotubes with a Variety of Emitter Morphologies"、2008年6月13日、The Japan Society of Applied Physics、Japanese Journal of Applied Physics、Volume 47, No.6、pp.4780-4787 北川紗映、外2名、「カーボンナノチューブ‐銅複合体の集合形態制御と、電子エミッタ応用」、2018年3月13日、公益社団法人 化学工学会、化学工学会年会研究発表講演要旨集 83巻、PC254
 CNT層などの繊維状炭素を含む炭素膜層に集電体である銅薄膜を直接設けたCNT/Cu複合膜は、厚さが薄く、装置に組み込む際の取扱いが非常に困難である。すなわち、CNT/Cu複合膜は、膜状であるため、折れ曲がったり、平面度が失われたり、風に飛ばされたりするおそれがあり、取扱いが困難である。また、CNT/Cu複合膜を装置に組み込む際に、必要なサイズにカットする工程も必要であり、作業的な困難が伴うおそれがある。なお、CNT/Cu複合膜において、ある程度の厚さを有する集電体を形成することも考えられるが、CNT層にある程度の集電体を形成すると製造コストが増加することとなる。
 また、CNT/Cu複合膜の装置に接続される面(すなわち、集電体の表面)は、CNT層の凹凸と同様の凹凸を有しており、集電体と装置とのろう付け性が損なわれるおそれがある。
 本発明は、上記事情に鑑みてなされたものであり、繊維状炭素を含む炭素膜層を備える炭素-金属構造体の取扱いを容易とする技術を提供することを目的としている。
 上記目的を達成する本発明の炭素-金属構造体の一態様は、繊維状炭素を含む炭素膜層と、前記炭素膜層に直接備えられるろう材層と、前記ろう材層を介して前記炭素膜層に備えられる金属台座と、を備える炭素-金属構造体である。
 この炭素-金属構造体の一態様において、前記炭素膜層は、表面に平均高さ1μm~100μmで高さ/間隔比が1/5~5/1の凹凸を備える、としても良い。
 また、前記炭素膜層は、予め基板上に形成された層であり、前記ろう材層は、前記炭素膜層の前記基板と接した面と反対側の端部に形成された層である、としても良い。
 また、前記ろう材層は、金属ろう材により形成される層であり、前記炭素膜層と前記ろう材層との界面には、前記炭素膜層に前記ろう材層を形成するろう材がしみ込んだ混合層が形成された、としても良い。
 また、前記ろう材層は、炭素膜層側に形成されている第1ろう材層と、金属台座側に形成され当該第1ろう材層よりも低融点の第2ろう材層と、を有した多層構造としても良い。
 また、前記ろう材層の厚さは、1μm以上であり、50μm以下である、としても良い。
 また、前記目的を達成する本発明の電子エミッタは、前記いずれかの炭素-金属構造体を備えるものである。
 また、前記目的を達成する本発明のX線管は、前記電子エミッタを備えるものである。
 また、前記目的を達成する本発明の炭素-金属構造体の製造方法の一態様は、基板に繊維状炭素を含む炭素膜層を形成する工程と、前記基板に形成された炭素膜層にろう材層を形成する工程と、前記炭素膜層に、前記ろう材層を介して金属台座をろう付けする工程と、前記炭素膜層から前記基板を取り除く工程と、を有する炭素-金属構造体の製造方法である。
 この炭素-金属構造体の製造方法の一態様において、前記ろう材層は、前記炭素膜層に蒸着された金属ろう材を含む、としても良い。
 また、前記目的を達成する本発明の炭素-金属構造体の製造方法の他の態様は、基板に繊維状炭素を含む炭素膜層を形成する工程と、前記基板に形成された炭素膜層を支持する金属台座にろう材層を形成する工程と、前記炭素膜層に、前記ろう材層を介して金属台座をろう付けする工程と、前記炭素膜層から前記基板を取り除く工程と、を有する炭素-金属構造体の製造方法である。
 また、前記ろう材層は、炭素膜層側に形成されている第1ろう材層と、金属台座側に形成され当該第1ろう材層よりも低融点の第2ろう材層と、を有した多層構造としても良い。
 炭素-金属構造体の製造方法の各態様において、前記炭素膜層を、化学気相成長法により前記基板に形成する、としても良い。
 また、前記基板は、表面に平均高さ1μm~100μmで高さ/間隔比が1/5~5/1の凹凸を備える、としても良い。
 また、前記炭素膜層から取り除かれた基板を、他の炭素-金属構造体の炭素膜層を形成する基板として再利用する、としても良い。
 また、前記炭素膜層に、前記ろう材層を介して複数の金属台座をろう付けする、としても良い。
 以上の発明によれば、繊維状炭素を含む炭素膜層を備える炭素-金属構造体の取扱いが容易となる。また、脱ガスが少なく低抵抗でエミッション性能の高い炭素-金属構造体を提供できる。
本発明の実施形態に係るCNTデバイスの概略を説明する説明図であり、(a)CNTデバイスの側面図、(b)CNTデバイスの断面図である。 本発明の実施形態に係るCNTデバイスの製造工程の一例を説明する説明図である。 (a)実施例1のCNTデバイス(ろう材層の厚さ:10.6μm)のろう付け前とろう付け後を説明する図、(b)同CNTデバイスのCNT層表面のSEM像である。 実施例1のCNTデバイス(ろう材層の厚さ:3.3μm)のろう付け前とろう付け後を説明する図、(b)同CNTデバイスのCNT層表面のSEM像である。 (a)CNTデバイスの電極特性を評価する装置の概略図、(b)実施例1のCNTデバイス(ろう材層の厚さ:3.3μm)の電極特性(I-V特性)を示す特性図、(c)同CNTデバイスの電極特性(サイクル特性)を示す特性図である。 実施例2のCNTデバイスの概略を説明する図であり、(a)ろう付け前の図、(b)ろう付け後の図である。 実施例3のCNTデバイスの概略を説明する図であり、(a)ろう付け前の図、(b)ろう付け後の図である。 実施例4のCNTデバイスの概略を説明する図である。 実施例4のCNTデバイスのCNT層表面のSEM像である。 実施例4のCNTデバイスの電極特性(I-V特性)を示す特性図である。 実施例4のCNTデバイスの電極特性(サイクル特性)を示す特性図である。 実施例5のCNTデバイスの概略を説明する図である。 実施例5のCNTデバイスのCNT層表面のSEM像である。 実施例5のCNTデバイスの電極特性(I-V特性)を示す特性図である。 実施例5のCNTデバイスの電極特性(100サイクル後のI-V特性)を示す特性図、(b)実施例5のCNTデバイスの電極特性(サイクル特性)を示す特性図である。 実施例6のCNTデバイスの概略を説明する図である。 本発明の実施形態に係るCNTデバイスの製造工程の他例を説明する説明図である。 実施例7のCNTデバイスの概略を説明する図である。 比較例のCNTデバイスを説明する図である。 (a)参考例のCNTデバイスの概略を説明する図、(b)参考例のCNTデバイス(ろう材層の厚さ:3.5μm)のCNT層表面のSEM像、(c)参考例のCNTデバイス(ろう材層の厚さ:3.3μm)のCNT層表面のSEM像である。 (a)参考例のCNTデバイス(ろう材層の厚さ:3.5μm)のCNT層の拡大断面図および平面図、(b)参考例のCNTデバイス(ろう材層の厚さ:3.3μm)のCNT層の拡大断面図および平面図である。 参考例のCNTデバイス(ろう材層の厚さ:3.5μm)の電極特性(I-V特性)を示す特性図、(b)同CNTデバイスの電極特性(サイクル特性)を示す特性図である。 本発明の実施形態に係るCNTデバイスの製造工程の他例を説明する説明図である。 実施例8のCNTデバイスの概略を説明する図である。
 本発明の実施形態に係る炭素-金属構造体および炭素-金属構造体の製造方法並びに本発明の実施形態に係る炭素-金属構造体を備えた電子エミッタおよびX線管について、図面に基づいて詳細に説明する。なお、実施形態の説明では、炭素-金属構造体を、X線装置などのエミッタに適用した例をあげて説明するが、炭素-金属構造体は、実施形態に限定されるものではなく、例えば、電気二重層キャパシタの電極などの微細炭素が適用可能な装置に適用することができる。また、炭素-金属構造体を構成する炭素膜層は、CNTを含む層だけでなく、ひも状や針状などの繊維状炭素を含み炭素からなる突起が面状に多数展開される層を備えればよい。また、炭素膜層は、繊維状炭素が膜の厚さ方向に立った状態で配列された領域を備える層であることがより好ましい。
 図1(a)に示すように、本発明の実施形態に係るCNTデバイス1は、CNT層2と、ろう材層3と、金属台座4を備える。図1(b)に示すように、CNT層2とろう材層3の間には、CNT層2の端部にろう材層3を構成するろう材がしみ込んだ混合層5が形成される。
 CNT層2は、例えば、耐熱凹凸基板6上に担持された触媒7上に形成されるCNTから構成される。耐熱凹凸基板6および触媒7については、図2を参照して、後に詳細に説明する。CNT層2の表面には、耐熱凹凸基板6の凹凸面に対応した凹凸が形成される。CNTデバイス1を、エミッタに適用する場合、エミッタ表面において、平均高さ1μm~100μmのCNT束ピラーを、ピラーの高さ(H)とピラー間隔(R)の比(H/R)が1/5~5/1のピラー配列とすることが好ましい。ピラーの平均高さは、例えば、エミッタの断面を走査型電子顕微鏡で観察して、または表面をレーザー顕微鏡で観察して、ピラーの高さ分布を取得して、10個(複数であれば任意の数)のピラーの高さの平均値を計算することにより求められる。CNTは、CNTの電界集中やCNT層2の寿命に応じてCNT束ピラーのサイズと密度が選択される。よって、耐熱凹凸基板6には、例えば、平均高さ1μm~100μmで、高さ/間隔比が1/5~5/1の凹凸が形成される。この平均高さは、CNT層2のピラーの平均高さと同様の方法により求められる。エミッタの数を増やすためには凹凸の間隔が小さい方が好ましい。よって、凹凸の間隔は、50μm以下が好ましく、30μm以下がより好ましい。また、エミッタへの電界集中の増強には凹凸の間隔が大きい方が好ましい。よって、凹凸の間隔は、2μm以上が好ましく、3μm以上がより好ましい。なお、CNT層2を形成するCNTは、単層、多層のいずれであってもよく、CNTの直径は30nm以下であることが好ましい。
 ろう材層3は、CNT層2と金属台座4を接合するろう材により形成される。ろう材は、金属台座4の融点より低いろう材であればよく、金属台座4の種類に応じて好適なろう材が適宜選択される。例えば、銅(Cu)の金属台座4には、銀(Ag)や銀(Ag)と銅(Cu)の合金(Ag-Cu合金)などの金属ろう材が好適に用いられる。Ag-Cu合金を用いる場合、AgとCuの比率はいずれであってもよい。例えば、Ag:Cu=72:28のろう材が用いられる。また、金属ろう材(例えば、銀ろう)の融点温度を低下させる元素として錫(Sn)、インジウム(In)などの添加元素や、金属ろう材(例えば、銀ろう)の濡れ性を向上させるニッケル(Ni)、マンガン(Mn)、パラジウム(Pd)などの添加元素を含んでいてもよい。CNT層2にろう材層3を直接設けることで、CNT層2にろう材層3がしみ込んだ混合層5(例えば、1μm以下の混合層)が形成される。
 ろう材層3の厚さは、1μm以上が好ましく、3μm以上がより好ましい。これは、ろう材層3の厚さが1μm未満であると、CNT層2と金属台座4の接合が不良となり、CNT層2の転写が困難となるおそれがあるからである。一方、ろう材層3の厚さが50μmより厚くなると、ろう付け時にCNTがろう材で埋まることで、CNT層2を成長させる耐熱凹凸基板6からCNT層2を剥がすことが困難となるおそれがある。また、金属台座4に転写されたCNTピラーがろう材に埋もれてしまうおそれがある。したがって、ろう材層3の厚さは、50μm以下が好ましく、より好ましくは30μm以下、さらに好ましくは10μm以下である。なお、ろう材層3の厚さは、例えば、単位面積あたりのろう材の質量(g/cm2)をろう材の真密度(g/cm3)で割ることで求められる。
 また、ろう材層3は、単層構造に限定されるものではなく、多層構造(例えば後述の図23では、第1,第2ろう材層31,32を有した2層構造)にしても良く、各層にそれぞれ異なる金属ろう材を適用しても良い。
 金属台座4は、導電性を有する金属部材である。金属台座4は、例えば、銅、錫、亜鉛、アルミニウム、マグネシウム、チタン、鉄、コバルト、ニッケル、クロム、銀のいずれか1以上を含む金属部材であることが好ましい。金属台座4は、CNTデバイス1を装置に組み込む際のハンドリングが容易となる剛性を有することが好ましく、例えば、0.02mm~10mmの厚さの金属部材が用いられる。また、実施形態では、円柱状の金属台座4が用いられているが、板状、柱状、錐状、半球状など任意の形状の金属部材が用いられる。また、金属台座4としては、少なくともCNT層2がろう付けされる表面に導体層を備えていれば、金属台座4のすべてが金属で構成されている必要はない。
 <CNTデバイス1の製造方法の一例>
 次に、図2に基づいて、本発明の実施形態に係るCNTデバイス1の製造方法の一例について、詳細に説明する。
 図2においては、まず、耐熱基板6'にテクスチャを形成して耐熱凹凸基板6を得る(STEP1)。耐熱基板6'は、耐熱性を有する基板であれば何でもよく、例えば、セラミック、石英ガラス、アルミナ焼結体、SiC焼結体、高耐熱合金、インコネル、ステンレスなどの基板が用いられる。特に、高純度品の入手が容易であるシリコン基板や石英ガラス基板などが一般的に用いられる。テクスチャは、耐熱基板6'の表面の機械的な切削や化学的なエッチングなどにより形成することができる。耐熱基板6'にシリコン基板を用いた場合、例えばNaOH水溶液などのアルカリ溶液で異方性エッチングすることなどによりテクスチャを形成し、耐熱凹凸基板6を得ることができる。単結晶シリコン基板では規則正しいピラミッド状テクスチャが、多結晶シリコン基板ではランダム形状のテクスチャが得られる。
 次に、耐熱凹凸基板6にCNT生成のための触媒7を担持する(STEP2)。触媒7は、例えば、RFマグネトロンスパッタなどにより耐熱凹凸基板6上に担持される。CNTを生成する触媒物質として、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、モリブデン(Mo)などが用いられる。また、耐熱凹凸基板6上にて触媒7の活性を良好に発現するために、担体層8(例えば、酸化アルミニウム(Al)、酸化マグネシウム(Mg)など)を担持してもよい。なお、触媒7の平均膜厚は、CNTの成長に最適な触媒粒径となるような膜厚(例えば、0.1nm~5nm)を有していることが好ましい。
 次に、耐熱凹凸基板6上にCNTを成長させ、CNT層2を形成する(STEP3)。CNTは、例えば、化学気相成長法(Chemical Vapor Deposition、CVD)により合成される。炭素源としては、メタン・エチレン・アセチレンなどの炭化水素、一酸化炭素、およびエタノール・メタノールなどのアルコールがあげられる。CVD法の反応条件としては、例えば、温度は600℃~1200℃の範囲から、圧力は0.001気圧~1気圧の範囲から、反応時間は通常1秒~1時間の範囲から選択される。CNTは、耐熱凹凸基板6と接する状態で、耐熱凹凸基板6の表面に対して略垂直方向に配向して形成される。また、触媒7の上に成長するCNTの数は、触媒7の担持量により数密度を制御することができる。なお、触媒7の担持量に応じて、耐熱凹凸基板6上に成長するCNTの数分布だけでなく、CNTの直径と層数、多数成長したCNT束の太さ、絡み具合なども変化する。
 次に、CNT層2上にろう材層3を形成する(STEP4)。ろう材層3は、例えば、ろう材を構成する物質の共蒸着やスパッタリングなどにより形成される。Ag-Cuをろう材として用いた場合、蒸気圧が高いAgが優先的に蒸発し、CNT層2上にAg割合の高いろう材が蒸着される。その後、徐々にCuの割合が増加した組成傾斜膜が形成される。蒸着する際、所定の組成比に調整されたろう材を用いても、個別の金属材料を原料に用いて所定の組成比のろう材層3を形成してもよい。また、ろう材層3は、金属台座4側に設けてもよい。金属台座4側にろう材層3を設けた場合、CNT層2にろう材層3を設けた場合と逆の組成傾斜を有するろう材層3が形成される。なお、蒸気圧によらず元素を蒸発させるスパッタリングによりろう材層3を形成した場合や、個別の金属材料を原料とした複数蒸着源を用いた蒸着によりろう材層3を形成した場合は、組成傾斜のないろう材層3が形成される。また、蒸着するろう材層3の組成は、最終的なデバイスのろう材層3の組成と異なっていてもよい。例えば、ろう材としてCNT層2にAgを蒸着した場合、Cu製の金属台座4にろう付けすると、CuとAgが混合してAg-Cu合金を含むろう材層3が形成される。
 次に、CNT層2に金属台座4をろう付けする(STEP5)。ろう付けは、ろう材層3のろう材が融ける温度に加熱して行われる。Ag-Cu合金をろう材に用いた場合はAg-Cu合金の融点が779℃のため779℃以上に加熱してろう付けするのが好適であり、他のろう材を用いた場合はろう材の融点に応じてろう付け温度が調整される。CNT層2にろう材層3を介して金属台座4をろう付けした後、耐熱凹凸基板6がCNT層2から剥がされ、CNTデバイス1となる(STEP6)。なお、CNTデバイス1を任意のサイズにカットするタイミングは、耐熱凹凸基板6を剥がす前でも後でも良い。CNT層2の全面にろう材層3を形成して金属台座4をろう付けし、耐熱凹凸基板6を剥がすと、ろう材層3が薄い場合は、ろう材層3とCNT層2が金属台座4の形状にあわせて自動的にカットされて転写される。例えば、ろう材層3が1μm~5μm程度と薄い場合は、金属台座4の形状で転写され、ろう材層3が、10μm以上と厚い場合は、ろう材層3全体が耐熱凹凸基板6から剥がれ、金属台座4の周囲にも転写される。また、CNT層2にろう材を蒸着する際、マスクを用いてパターン状にろう材層3を形成すると、CNT層2は金属台座4上にのみ付着して、CNT層2の他の部分にはろう材層3が存在しないので、金属台座4と耐熱凹凸基板6の分離の際にCNT層2はパターン部分のみ金属台座4に転写され、CNT層2は金属台座4の形状にあわせてより良好に自動的にカットされる。また、ろう材層3を金属台座4に形成しておくことでも、CNT層2は金属台座4の形状にあわせて自動的にカットされる。さらに、複数の金属台座4をCNT層2にろう付けし、耐熱凹凸基板6と金属台座4を分離すると、ろう材層3を全面に形成した場合でもパターン状に形成した場合でも、CNT層2は各々の金属台座4に合わせて自動的にカットされる。
 以下の実施例1~7は、図2に示した製造方法に基づいて作製したCNTデバイスに係るものであって、当該各CNTデバイスの観察結果,評価結果等を示すものである。
 (実施例1)
 本発明の実施例1として、本発明の実施形態に係るCNTデバイスの製造方法(図2)より、X線装置のエミッタに適用可能なCNTデバイス1a、1bを製造した。この実施例では、耐熱凹凸基板6としてSi基板、金属台座4としてφ6mm厚さ4.5mmの銅台座、ろう材としてAg-Cu合金を用いた。また、触媒7はFeを用い、担体層8はAlOxを用いた。
 まず、紙やすりで表面を削ったSi基板をフッ酸で処理してSiO2を除去した。その後、80℃の2wt%NaOH/20vol%イソプロピルアルコール水溶液中で30分異方性エッチングにより、5μm~10μmのテクスチャを形成した(STEP1)。次に、Si基板表面に、RFマグネトロンスパッタを用いて、Fe 4nm/Al 15nmを担持した(STEP2)。Alは空気と接触した際に酸化され、AlOxとなった。
 触媒を担持したSi基板を、円管型CVD反応管内に設置して、H2/Ar流通下で700℃まで加熱して10分間アニールした後、C22 1.0Torr/H2 10Torr/Ar balance(Ptotal=76 Torr)を導入し、700℃で1分間CNTを合成した(STEP3)。
 Si基板上に成長させたCNT上に、真空中(例えば、10-4Pa)にてAgとCuを共蒸着させて、CNT層2表面にろう材層3(Ag-Cu合金)を形成した(STEP4)。CNTデバイス1a、1bのろう材層は、蒸着源のAgとCuの仕込み量を変えることで制御し、蒸着源のAgとCuがなくなるまで蒸着を実施した。CNTデバイス1a、1bの蒸着時間はそれぞれ60秒と30秒であり、ろう材層3の厚さはそれぞれ10.6μm、3.3μmであった。
 ろう材層3に金属台座4を設け、780℃、Ar 10Torrの条件で、5分間(CNTデバイス1a)または11分間(CNTデバイス1b)加熱してCNT層2に金属台座4をろう付けした(STEP5)。図3、4に示すように、CNTデバイス1a、1bのいずれも、CNT層2が剥離可能であり、CNT層2が金属台座4に転写された。ただし、CNTデバイス1a、1bの製造時に、金属台座4の表面全体に均一なCNT層2が転写されない場合があり、再現性に対する課題があった。
 次に、CNTデバイス1bのフィールドエミッション性能(以下、FE性能という。)を評価した。
 図5(a)に示すように、FE性能評価は、カソードにCNTデバイス1bを、アノードにITO膜(酸化スズドープ酸化インジウム膜)付きのガラス基板9を用いて行った。厚さ500μmの石英ガラスをスペーサ10として両者を対向させ、10-5Paの真空中で、掃引電圧0-1000Vを100サイクル印加したときの電流値を測定して、CNTデバイス1bのFE特性と寿命の評価を行った。図5(b)、(c)に示すように、電極間距離500μm、印加電圧1000V、すなわち電界強度2V/μmでエミッション電流2.5mA以上(面積0.28cm2、電流密度8.8mA/cm2以上)が安定して得られ、CNTデバイス1bは、エミッタとしての特性および寿命が良好であった。
 (実施例2)
 実施例2では、Ag-Cuろう材層の厚さが26.7μmのCNTデバイス11を作製した。この実施例では、耐熱凹凸基板6としてSi基板、金属台座4としてφ6mm厚さ4.5mmの銅台座を用いた。なお、実施例2の説明において、実施例1と同様の工程(STEP1~STEP3の工程)については、詳細な説明を省略する(実施例3~7も同様である)。
 まず、CNT合成時のアニールが3分間、C22分圧が0.5Torrであったこと以外は、実施例1と同様にSTEP1~STEP3を実施し、Si基板上にCNTを合成した。そして、Si基板上に成長させたCNT上に、AgとCuを75秒間共蒸着させて、CNT層2表面にろう材層3(Ag-Cuろう材層)を形成した(STEP4)。ろう材層3の形成は、Ag:Cu=72:28wt%で原料を用意し、真空中(例えば、10-4Pa)にて行った。
 ろう材層3に金属台座4を設け、800℃、Ar 10Torrの条件で、5分間加熱してCNT層2に金属台座4をろう付けした(STEP5)。ろう付け後、金属台座4をSi基板(耐熱凹凸基板6)から剥がして、実施例2のCNTデバイス11を製造した(STEP6)。
 図6に示すように、金属台座4を剥離することで、金属台座4上にCNT層2が転写された(図6(b)の右上の図参照)。また、金属台座4の周囲のAg-Cu膜は、金属台座4の側面部に付着した(図6(b)の左上、左下および右下の図参照)。また、耐熱凹凸基板6からCNT層2が剥離されたことで、剥離後の耐熱凹凸基板6では、基板表面が露出した状態となった(図6(b)の左上の図参照)。
 (実施例3)
 実施例3では、Agろう材層の厚さが35.3μmのCNTデバイス12を作製した。この実施例では、ろう材の種類が異なることを除いて、実施例2と同様の方法でCNTデバイス12を作製した。
 まず、実施例2のSTEP1~STEP3と同様の方法で、Si基板上にCNTを合成した。そして、Si基板上に成長させたCNT上に、真空中(例えば、10-4Pa)にてAgを40秒間蒸着させて、CNT層2表面にろう材層3(Agろう材層)を形成した(STEP4)。
 ろう材層3に金属台座4を設け、800℃、Ar 10Torrの条件で、5分間加熱してCNT層2に金属台座4をろう付けした(STEP5)。ろう付け後、金属台座4をSi基板(耐熱凹凸基板6)から剥がして、実施例3のCNTデバイス12を製造した(STEP6)。
 図7に示すように、金属台座4を剥離することで、金属台座4上にCNT層2が転写された(図7(b)の右上の図参照)。また、金属台座4の周囲のAg膜は、金属台座4の側面部に付着した(図7(b)の左上、左下および右下の図参照)。また、耐熱凹凸基板6からCNT層2が剥離されたことで、剥離後の耐熱凹凸基板6では、基板表面が露出した状態となった(図7(b)の左上の図参照)。
 (実施例4)
 実施例4では、ろう付け時間の異なる3つのCNTデバイス13a~13cを作製した。この実施例では、ろう材層の厚さとろう付け温度とろう付け時間が異なることを除いて、実施例1と同様の方法でCNTデバイス13a~13cを作製した。
 まず、実施例1のSTEP1~STEP3と同様の方法で、Si基板上にCNTを合成した。そして、Si基板上に成長させたCNT上に、真空中(例えば、10-4Pa)にてAgとCuを30秒間共蒸着させて、CNT層2表面にろう材層3(Ag-Cuろう材層)を形成した(STEP4)。CNTデバイス13a~13cのろう材層3の厚さは、それぞれ3.6μm、3.4μm、3.5μmであった。
 図8に示すように、ろう材層3に金属台座4を設け、800℃、Ar 10Torrの条件で、5分、3分または1分間加熱してCNT層2に金属台座4をろう付けした(STEP5)。ろう付け後、金属台座4をSi基板(耐熱凹凸基板6)から剥がして、実施例4のCNTデバイス13a~13cを製造した(STEP6)。
 CNTデバイス13a~13cのいずれも、金属台座4を剥離することで、金属台座4上にCNT層2が転写された。また、金属台座4の接触面の外側のAg-Cu膜とCNT層2は、金属台座4には転写されずに耐熱凹凸基板6の表面に残った。また、耐熱凹凸基板6からCNT層2が金属台座4の形状で剥離されたことで、剥離後の耐熱凹凸基板6では、金属台座4に対応した部分の基板表面が露出した状態となった。
 図9に示すように、CNTデバイス13a、13bでは、金属台座4上のCNT層2の表面の一部に、ろう材がしみ出した部分が確認されたが、CNTデバイス13cでは、ほぼ見られなかった。つまり、SEM像による表面観察では、CNTデバイス13cが最もきれいにろう付けされたと考えられる。この結果より、ろう付け時間が長くなると、ろう材がCNT層2と耐熱凹凸基板6の界面まで浸透し、転写後のCNT層2の表面の一部がろう材で覆われてしまうおそれがあることがわかる。また、CNT層2の表面にろう材が流れ出しCNTがろう材で埋まってしまうと、CNTデバイスの電子放出性能が低下するおそれがある。
 図10、11に、CNTデバイス13a~13cのFE性能評価結果を示す。FE性能評価は、実施例1のFE性能評価と同様に、カソードにCNTデバイス13a~13cのいずれかを、アノードにITO膜付きのガラス基板9を用いて行った(図5(a)参照)。厚さ500μmの石英ガラスをスペーサ10として両者を対向させ、10-5Paの真空中で、掃引電圧0-1000Vを100サイクル印加したときの電流値を測定して、CNTデバイス13a~13cのFE特性と寿命の評価を行った。図10、11に示すように、エミッタとしての特性は、CNTデバイス13bが最も良い結果となった。この結果より、ろう材がCNT層2表面の一部に露出していても、FE性能に問題がないことがわかる。よって、Ag-Cuろう材を用いた場合は、ろう付け条件は、ろう材層の厚さ1μm~50μmの範囲で、最適となるろう付け条件(温度と時間)が選択される。他のろう材を用いた場合は、ろう材の融点に応じてろう付けの温度と時間が適宜調整される。
 (実施例5)
 実施例5では、Ag-Cuろう材層の厚さの異なる3つのCNTデバイス14a~14cを作製した。
 まず、実施例4のSTEP1~STEP3と同様の方法で、Si基板上にCNTを合成した。そして、Si基板上に成長させたCNT上に、真空中(例えば、10-4Pa)にてAgとCuを共蒸着させて、CNT層2表面にろう材層3(Ag-Cuろう材層)を形成した(STEP4)。CNTデバイス14a~14cのろう材層3の蒸着時間はそれぞれ20秒、40秒、50秒であり、厚さはそれぞれ1.3μm、4.8μm、12.5μmであった。
 図12に示すように、ろう材層3に金属台座4を設け、800℃、Ar 10Torrの条件で、1分間加熱してCNT層2に金属台座4をろう付けした(STEP5)。ろう付け後、金属台座4をSi基板(耐熱凹凸基板6)から剥がして、実施例5のCNTデバイス14a~14cを製造した(STEP6)。
 図13に、CNTデバイス14a~14cのCNT層2の表面SEM像を示す。CNTデバイス14aでは、ろう材層3とCNT層2は、金属台座4の形状で転写されたが、CNT層2の表面の多くにろう材がしみ出した。このことより、ろう材層3の膜厚が薄くなることで、ろう材がCNT層2に吸収されやすくなるおそれがあると考えられる。CNTデバイス14bでは、CNT層2が金属台座4の形状で、金属台座4の全面に均一に転写された。また、CNTデバイス14cでは、正方形のCNT層2が、ろう材層3が蒸着された状態で金属台座4に転写され、CNT層2(およびろう材層3)の一部は、金属台座4の周囲にまとわりつくように転写された。すなわち、CNTデバイス14cでは、ろう材層3全体が金属台座4に転写された。そして、転写されたCNT層2の表面に一部ろう材がしみ出した部分が観察された。このことより、ろう材層3の膜厚が増加すると、ろう材が過剰となり、ろう材の一部がCNT層2の表面にしみ出すおそれがあると考えられる。
 図14、15に、CNTデバイス14a~14cのFE性能評価結果を示す。FE性能評価は、実施例1のFE性能評価と同様に、カソードにCNTデバイス14a~14cのいずれかを、アノードにITO膜付きのガラス基板9を用いて行った(図5(a)参照)。厚さ500μmの石英ガラスをスペーサ10として両者を対向させ、10-5Paの真空中で、掃引電圧0-1000Vを100サイクル印加したときの電流値を測定して、CNTデバイス14a~14cのFE特性と寿命の評価を行った。
 CNTデバイス14aは、SEMによる観察では、大部分でろう材の表面へのしみ出しが確認されたにもかかわらず、1.1mA程度の良好な性能が確認された。CNTデバイス14bは、初期に大電流が流れ、その後電流量が低下したものの、100サイクル後も良好な性能を維持した。CNTデバイス14cは、FE性能が0.27mA程度であり、他のCNTデバイス14a、14bと比較してFE性能が低かった。
 (実施例6)
 実施例6では、ろう付け温度とろう付け時間の異なる2つのCNTデバイス15a、15bを作製した。
 まず、実施例4のSTEP1~STEP3と同様の方法で、Si基板上にCNTを合成した。そして、Si基板上に成長させたCNT上に、真空中(例えば、10-4Pa)にてAgとCuを共蒸着させて、CNT層2表面にろう材層3(Ag-Cuろう材層)を形成した(STEP4)。CNTデバイス15a、15bのろう材層3の蒸着時間はそれぞれ20秒、30秒であり、厚さはそれぞれ1.2μm、1.0μmであった。
 図16に示すように、ろう材層3に金属台座4を設けて、CNT層2に金属台座4をろう付けした。CNTデバイス15aは、820℃、Ar 10Torrの条件で、5分間加熱してろう付けし、CNTデバイス15bは、800℃、Ar 10Torrの条件で、30分間加熱してろう付けした(STEP5)。ろう付け後、金属台座4をSi基板(耐熱凹凸基板6)から剥がして、実施例6のCNTデバイス15a、15bを製造した(STEP6)。
 CNTデバイス15a、15bのいずれも、CNT層2の表面に若干ろう材がしみ出していたが、CNT層2は、金属台座4の形状で転写された。
 (実施例7)
 実施例7のCNTデバイス16a、16bは、図17に示すように、CNT層2上のろう材層3に複数の金属台座4を配置して、金属台座4にCNT層2をろう付けしたものである。
 まず、実施例4のSTEP1~STEP3と同様の方法で、Si基板上にCNTを合成した。そして、Si基板上に成長させたCNT上に、真空中(例えば、10-4Pa)にてAgとCuを共蒸着させて、CNT層2表面にろう材層3(Ag-Cuろう材層)を形成した(STEP4)。CNTデバイス16a、16bのろう材層3の蒸着時間はそれぞれ30秒、40秒であり、厚さはそれぞれ4.8μm、4.5μmであった。
 図18に示すように、ろう材層3に複数の金属台座4を設け、800℃、Ar 10Torrの条件で、1分間加熱してCNT層2に金属台座4をろう付けした(STEP5)。ろう付け後、金属台座4をSi基板(耐熱凹凸基板6)から剥がして、実施例7のCNTデバイス16a、16bを製造した(STEP6)。
 CNTデバイス16aでは、ろう材層3が、金属台座4の形状の形に自動的にカットされ、金属台座4の形に合わせてCNT層2が金属台座4で転写された。CNT層2の表面にろう材が若干しみ出していた。また、CNTデバイス16bでは、耐熱凹凸基板6側のろう材層3の形状が乱れたものの、CNT層2が金属台座4全面に均一にはみださずに転写された。CNT層2の表面にろう材のしみ出しは確認されなかった。
 実施例1から実施例7のろう付け条件と、FE性能評価結果を表1に示す。表1に示すように、Ag-Cuろう材を用いた際は、例えば、ろう材層3の膜厚は1μm~50μm、好ましくは3μm~10μmの範囲で、温度は780℃~820℃の範囲で、時間は30分以内の範囲で選ぶことができる。
Figure JPOXMLDOC01-appb-T000001
 (比較例)
 比較例のCNTデバイス17は、CNT層2の表面に直接集電体(銅薄膜18)を設けたものである。
 まず、紙やすりで表面を削ったSi基板をフッ酸で処理してSiO2を除去した。その後、80℃の2wt%NaOH/20vol%イソプロピルアルコール水溶液中で、Si基板表面を30分エッチングし、5μm~10μmのテクスチャを形成した。次に、Si基板表面に、RFマグネトロンスパッタを用いて、Fe 4nm/Al 15nmを担持した。
 触媒を担持したSi基板を、円管型CVD反応管内に設置して、H2/Ar流通下で700℃まで加熱して3分間アニールした後、C22 0.5Torr/H2 10Torr/Ar balance(Ptotal=76 Torr)を導入し、700℃で1分間CNTを合成した。
 Si基板上に成長させたCNT上に、真空中(例えば、10-4Pa)にてCuを1分間蒸着させて、CNT層2表面に銅薄膜18を形成した。そして、Si基板から銅薄膜18を剥がして、比較例のCNTデバイス17を作製した。
 図19に示すように、銅薄膜18をSi基板(耐熱凹凸基板6)から剥がすことでCNTデバイス17を作製することができた(図19の左側の成功例参照)。しかし、銅薄膜18は、10μm程度の薄膜のため、破れやすく、ハンドリングが困難であった。よって、耐熱凹凸基板6から銅薄膜18を剥がす際に、銅薄膜18が破れてしまう場合(図19の失敗例の左上および左下の図参照)や、銅薄膜18が破れて耐熱凹凸基板6から剥がせない場合(図19の失敗例の右上の図参照)があった。
 (参考例)
 参考例のCNTデバイス19a、19bは、平滑な耐熱基板6'上にCNT層2'を形成したものである。
 まず、Si基板表面に、RFマグネトロンスパッタを用いて、Fe 4nm/Al 15nmを担持した(STEP2)。
 触媒を担持したSi基板を、円管型CVD反応管内に設置して、H2/Ar流通下で700℃まで加熱して10分間アニールした後、C22 1.0Torr/H2 10Torr/Ar balance(Ptotal=76 Torr)を導入し、700℃で1分間または2分間CNTを合成した(STEP3)。1分間CNTを合成したCNTデバイス19aは、CNT層2'の厚さが10μmであった。また、2分間CNTを合成したCNTデバイス19bは、CNT層2'の厚さが63μmであった。
 Si基板上に成長させたCNT上に、AgとCuを30秒間共蒸着させて、CNT層2'表面にろう材層3(Ag-Cuろう材層)を形成した(STEP4)。ろう材層3の形成は、Ag:Cu=72:28wt%で原料を用意し、真空中(例えば、10-4Pa)にて行った。CNTデバイス19a、19bのろう材層3の膜厚は、それぞれ3.5μm、3.3μmであった。
 ろう材層3に金属台座4を設け、800℃、Ar 10Torrの条件で、1分間加熱してCNT層2'に金属台座4をろう付けした(STEP5)。ろう付け後、金属台座4をSi基板から剥がして、参考例のCNTデバイス19a、19bを製造した(STEP6)。
 図20に示すように、参考例のCNTデバイス19a、19bは、金属台座4にCNT層2'が転写された。しかし、金属台座4表面に、均一なCNT層2'を転写することが困難であった。これは、平滑な耐熱基板6'上では、CNT層2'の表面も平滑な表面となり、その上に蒸着されたろう材層3が剥がれやすくなっているからであると考えられる。また、金属台座4に転写後のCNT層2'の表面は、実施例のCNT層2と比較して、平坦な表面を有していた。
 図21に示すように、耐熱基板6'上に形成されたCNT層2'の表面は、実施例のCNT層2と比較して、平坦な表面を有していた。また、CNT層2'上に形成されたろう材層3には、ひび割れが観察された。これは、CNT層2'の表面が平滑であることにより、CNT層2'からろう材層3が剥がれやすくなっていることによるものと考えられる。
 図22に示すように、参考例のCNTデバイス19a、19bは、実施例のCNTデバイスと比較して、FE性能が1桁~2桁低かった。
 <CNTデバイス1の製造方法の他例>
 次に、図23に基づいて、本発明の実施形態に係るCNTデバイス1の製造方法の他例について、詳細に説明する。なお、図2と同様のものには、同一符号を引用する等により詳細な説明を適宜省略し、主に図2との差異点を中心に説明する。
 図23においては、図2と同様のSTEP1~STEP3を経た後、CNT層2上に第1ろう材層31を形成する(STEP4a)。そして、第1ろう材層31上に第2ろう材層32を形成する(STEP4b)。これにより、CNT層2側に形成されている第1ろう材層31と、金属台座4側に形成されている第2ろう材層32と、を有した多層構造のろう材層3が構成されることとなる。
 第1,第2ろう材層31,32それぞれは、図2のろう材層3と同様の手法を適宜適用して形成することが可能である。また、第1,第2ろう材層31,32において、それぞれ異なる組成のろう材を適用する場合、融点の異なるろう材を適用することが挙げられる。具体例としては、CNT層2に近接する第1ろう材層31には比較的高融点のろう材(後述実施例8ではCu)を適用し、当該CNT層2から離反した第2ろう材層32には比較的低融点のろう材(後述実施例8ではAg-Cu合金)を適用することが挙げられる。
 次に、CNT層2に金属台座4をろう付けする(STEP5a)。ろう付けは、第2ろう材層32のろう材が融ける温度に加熱して行われる。第2ろう材32において、Ag-Cu合金を用いた場合はAg-Cu合金の融点が779℃のため779℃以上に加熱してろう付けするのが好適であり、他のろう材を用いた場合はろう材の融点に応じてろう付け温度が調整される。
 そして、CNT層2に第2ろう材層32を介して金属台座4をろう付けした後、耐熱凹凸基板6がCNT層2から剥がされ、CNTデバイス1’となる(STEP6a)。
 第1,第2ろう材層31,32は、金属台座4側に設けてもよい。この場合、まず第2ろう材層32を金属台座4上に形成してから、当該第2ろう材層32上に第1ろう材層31を形成することが挙げられる。
 以下の実施例8は、図23に示した製造方法に基づいて作製したCNTデバイスに係るものであって、当該CNTデバイスの観察結果,評価結果等を示すものである。
 (実施例8)
 実施例8のCNTデバイス20は、実施例7と同様に、CNT層2上のろう材層3(実施例8では第2ろう材層32)に複数の金属台座4を配置して、金属台座4にCNT層2をろう付けしたものである。
 まず、実施例1のSTEP1~STEP3と同様の方法で、Si基板上にCNTを合成した。なお、ステップ3のCNTの合成においては、C22 76Torr/H2 152Torr/Ar balance(Ptotal=760 Torr)を導入し、700℃で1分間CNTを合成したものとする。
 次に、Si基板上に成長させたCNT上に、真空中(例えば、10-4Pa)にてCuを蒸着させて、CNT層2表面に第1ろう材層31(Cuろう材層)を形成した(STEP4a)。そして、第1ろう材層31上に、真空中(例えば、10-4Pa)にてAg-Cu合金(銀ろう;BAg-8)を蒸着させて、第1ろう材層31表面に第2ろう材層32(Ag-Cuろう材層)を形成した(STEP4b)。これにより、CNT層2表面には、2層構造のろう材層3(すなわち、Cuろう材層とAg-Cuろう材層)が形成されている状態である。なお、CNTデバイス20の第1,第2ろう材層31,32の蒸着時間はそれぞれ10秒であり、厚さはそれぞれ0.5μm(ろう材層3の合計厚さは1.0μm)であった。
 次に、実施例7と同様に、ろう材層3(実施例8では第2ろう材層32)に複数の金属台座4を設け、800℃、Ar 10Torrの条件で、1分間加熱してCNT層2に金属台座4をろう付けした(STEP5a)。ろう付け後、金属台座4をSi基板(耐熱凹凸基板6)から剥がして、実施例8のCNTデバイス20を製造した(STEP6a)。
Figure JPOXMLDOC01-appb-T000002
 CNTデバイス20では、ろう材層3が、金属台座4の形状の形に自動的にカットされ、図24に示すように、金属台座4の形に合わせてCNT層2が金属台座4で転写された。また、耐熱凹凸基板6側のろう材層3の形状はほぼ乱れず、CNT層2が金属台座4全面に均一にはみださずに転写された。CNT層2の表面にろう材のしみ出しは確認されなかった。
 前記のように、ろう材のしみ出しが生じなかった理由としては、ろう材層3のうち第1ろう材層31が比較的高融点であるため、当該第1ろう材層31がバリア層として機能することとなり、ろう材のCNT層2への過剰なしみ込みが抑制されたことが判った。
 以上のような、本発明の実施形態に係るCNTデバイス1およびCNTデバイス1の製造方法によれば、CNTデバイス1の取扱いが容易になる。つまり、CNT層2に直接ろう材層3を設けることで、薄膜形状に生成したCNTを熱処理で任意の部品に接合できる。
 CNT層2にろう材層3を直接形成することで、CNT層2とろう材層3の間には、CNTにろう材がしみ込んだ混合層5が形成される。これにより、CNT層2とろう材層3間の電気抵抗が低くなり、CNT層2とろう材層3の接着性が向上する。また、ろう材層3と金属台座4をろう付けする際には、ろう材層3が融解して、ろう材層3の金属台座4と接する面の凹凸が吸収される。これにより、ろう材層3と金属台座4の間の電気抵抗が低くなり、接合も強固になる。結果として、CNT層2と金属台座4の導電性や接着性が向上する。したがって、CNTデバイス1をエミッタに適用した際、高電界によりエミッタが飛散することが抑制される。
 さらに、ろう材層3に、金属ろう材を用いることで、CNTデバイス1が真空中に備えられた場合でもろう材層3からのガス放出が抑制される。
 また、ろう材層3において、CNT層2側に形成された第1ろう材層31と、金属台座4側に形成され当該第1ろう材層31よりも低融点の第2ろう材層32と、を有した多層構造にした場合には、ろう材のCNT層2への過剰なしみ込みが抑制される。
 また、CNT層2を耐熱凹凸基板6上に形成することで、CNTデバイス1のCNT層2表面の凹凸を容易に制御することができる。その結果、エミッタ性能に優れたCNTデバイス1を製造することができる。また、CNT層2を耐熱凹凸基板6上に形成することで、耐熱凹凸基板6上のCNT層2表面に凹凸が形成される。この凹凸面上にろう材層3を設けることで、CNT層2とろう材層3の接合が強固になり、金属台座4へのCNT層2の転写が良好になる。
 また、CNT層2から耐熱凹凸基板6を剥がす前に、CNT層2に金属台座4を固定することで、CNT層2の変形を防止することができ、CNTデバイス1を装置に組み込む際のハンドリングが容易となる。具体的に説明すると、X線管にエミッタを組み込む際には、金属台座4を装置内に取り付けることで、容易にエミッタをX線管に組み込むことができる。また、従来のように、CNT層2に直接銅薄膜18を設けた場合(図19参照)は、出来上がったデバイスの厚さ(銅薄膜18の厚さ)が10μm程度であり、X線管にエミッタとして搭載する際には、他の部品で薄膜の端部を挟み込んで固定するなどする必要があった。その結果、固定部の大型化が避けられず、X線管の小型化を阻害する要因となっていた。これに対して、本発明の実施形態に係るCNTデバイス1は、ハンドリングを容易(延いては、CNTデバイス1の固定部を簡略化)とすることで、X線管などの装置の小型化を実現できる。
 また、耐熱凹凸基板6に形成したCNT層2の上に、ろう材層3を介して複数の金属台座4をろう付けすることで、複数のCNTデバイス1を容易に製造することができ、CNTデバイス1の製造コストを著しく低下させることができる(例えば、図17参照)。
 また、本発明の実施形態に係るCNTデバイス1は、耐熱凹凸基板6の表面凹凸に対応した凹凸をCNT層2表面に形成することができるので、CNT層2の表面凹凸形状を容易に制御することができる。また、耐熱凹凸基板6を、再利用可能な鋳型基板とすることで、CNTデバイス1の製造コストを低減できる。
 また、CVDでCNT層2を形成することで、CNTの集合体や、耐熱凹凸基板6(すなわち、CNT層2表面)に対して垂直配向したCNTの集合体を含むCNT層2を形成することができる。
 以上、具体的な実施形態を示して本発明の炭素-金属構造体および炭素-金属構造体の製造方法について説明したが、本発明の炭素-金属構造体および炭素-金属構造体の製造方法並びに本発明の実施形態に係る炭素-金属構造体を備えた電子エミッタおよびX線管は、実施形態に限定されるものではなく、その特徴を損なわない範囲で適宜設計変更が可能であり、設計変更されたものも、本発明の技術的範囲に属する。

Claims (16)

  1.  繊維状炭素を含む炭素膜層と、
     前記炭素膜層に直接備えられるろう材層と、
     前記ろう材層を介して前記炭素膜層に備えられる金属台座と、を備える炭素-金属構造体。
  2.  前記炭素膜層は、表面に平均高さ1μm~100μmで高さ/間隔比が1/5~5/1の凹凸を備える、請求項1に記載の炭素-金属構造体。
  3.  前記炭素膜層は、予め基板上に形成された層であり、
     前記ろう材層は、前記炭素膜層の前記基板と接した面と反対側の端部に形成された層である、請求項1または請求項2に記載の炭素-金属構造体。
  4.  前記ろう材層は、金属ろう材により形成される層であり、
     前記炭素膜層と前記ろう材層との界面には、前記炭素膜層に前記ろう材層を形成するろう材がしみ込んだ混合層が形成された、請求項1から請求項3のいずれか1項に記載の炭素-金属構造体。
  5.  前記ろう材層は、炭素膜層側に形成されている第1ろう材層と、金属台座側に形成され当該第1ろう材層よりも低融点の第2ろう材層と、を有した多層構造である、請求項1から請求項4の何れか1項に記載の炭素-金属構造体。
  6.  前記ろう材層の厚さは、1μm以上であり、50μm以下である請求項1から請求項5のいずれか1項に記載の炭素-金属構造体。
  7.  請求項1から請求項6のいずれか1項に記載の炭素-金属構造体を備える、電子エミッタ。
  8.  請求項7に記載の電子エミッタを備える、X線管。
  9.  基板に繊維状炭素を含む炭素膜層を形成する工程と、
     前記基板に形成された炭素膜層にろう材層を形成する工程と、
     前記炭素膜層に、前記ろう材層を介して金属台座をろう付けする工程と、
     前記炭素膜層から前記基板を取り除く工程と、を有する炭素-金属構造体の製造方法。
  10.  前記ろう材層は、前記炭素膜層に蒸着された金属ろう材を含む、請求項9に記載の炭素-金属構造体の製造方法。
  11.  基板に繊維状炭素を含む炭素膜層を形成する工程と、
     前記基板に形成された炭素膜層を支持する金属台座にろう材層を形成する工程と、
     前記炭素膜層に、前記ろう材層を介して金属台座をろう付けする工程と、
     前記炭素膜層から前記基板を取り除く工程と、を有する炭素-金属構造体の製造方法。
  12.  前記ろう材層は、炭素膜層側に形成される第1ろう材層と、金属台座側に形成され当該第1ろう材層よりも低融点の第2ろう材層と、を有する多層構造である、請求項9から請求項11の何れか1項に記載の炭素-金属構造体の製造方法。
  13.  前記炭素膜層を、化学気相成長法により前記基板に形成する、請求項9から請求項12のいずれか1項に記載の炭素-金属構造体の製造方法。
  14.  前記基板は、表面に平均高さ1μm~100μmで高さ/間隔比が1/5~5/1の凹凸を備える、請求項9から請求項13のいずれか1項に記載の炭素-金属構造体の製造方法。
  15.  前記炭素膜層から取り除かれた基板を、他の炭素-金属構造体の炭素膜層を形成する基板として再利用する、請求項9から請求項14のいずれか1項に記載の炭素-金属構造体の製造方法。
  16.  前記炭素膜層に、前記ろう材層を介して複数の金属台座をろう付けする、請求項9から請求項15のいずれか1項に記載の炭素-金属構造体の製造方法。
PCT/JP2019/041284 2018-10-26 2019-10-21 炭素-金属構造体および炭素-金属構造体の製造方法 WO2020085291A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980070030.0A CN112930578A (zh) 2018-10-26 2019-10-21 碳-金属结构体以及碳-金属结构体的制造方法
KR1020217015131A KR102565282B1 (ko) 2018-10-26 2019-10-21 탄소 금속 구조체 및 탄소 금속 구조체의 제조 방법
US17/288,084 US11527378B2 (en) 2018-10-26 2019-10-21 Carbon-metal structure and method for manufacturing carbon-metal structure
JP2020553385A JPWO2020085291A1 (ja) 2018-10-26 2019-10-21 炭素−金属構造体および炭素−金属構造体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-201613 2018-10-26
JP2018201613 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020085291A1 true WO2020085291A1 (ja) 2020-04-30

Family

ID=70330514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041284 WO2020085291A1 (ja) 2018-10-26 2019-10-21 炭素-金属構造体および炭素-金属構造体の製造方法

Country Status (5)

Country Link
US (1) US11527378B2 (ja)
JP (1) JPWO2020085291A1 (ja)
KR (1) KR102565282B1 (ja)
CN (1) CN112930578A (ja)
WO (1) WO2020085291A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230070870A (ko) * 2021-11-15 2023-05-23 윈디텍 주식회사 기능이 개선된 해상구조물 및 선박용 방오필름과 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250496A (ja) * 2000-03-06 2001-09-14 Rigaku Corp X線発生装置
JP2003059391A (ja) * 2001-08-21 2003-02-28 Noritake Itron Corp 電子放出源及びその製造方法並びに蛍光表示装置
JP2004214164A (ja) * 2002-12-26 2004-07-29 Samsung Sdi Co Ltd 多層構造で形成された電子放出源を備えた電界放出表示装置
WO2005007571A1 (ja) * 2003-07-18 2005-01-27 Norio Akamatsu カーボンナノチューブ製造装置及びカーボンナノチューブ製造方法
JP2005074472A (ja) * 2003-09-01 2005-03-24 Jfe Engineering Kk カーボンナノチューブの基材へのろう付け方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456691B2 (en) * 2000-03-06 2002-09-24 Rigaku Corporation X-ray generator
JP4558735B2 (ja) 2004-07-27 2010-10-06 大日本スクリーン製造株式会社 カーボンナノチューブデバイス、ならびに、その製造方法
KR100608128B1 (ko) 2004-07-30 2006-08-08 삼성전자주식회사 공기조화기
KR20060133941A (ko) * 2006-01-17 2006-12-27 노리오 아카마쓰 카본 나노 튜브 제조 장치 및 카본 나노 튜브 제조 방법
JP2009245672A (ja) 2008-03-31 2009-10-22 Univ Of Tokyo フィールドエミッション装置、ならびに、その製造方法
JP5021716B2 (ja) 2009-12-02 2012-09-12 マイクロXジャパン株式会社 X線発生装置及び携帯型非破壊検査装置
KR20110119084A (ko) 2010-04-26 2011-11-02 전북대학교산학협력단 석재슬러지를 이용한 콘크리트용 잔골재 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250496A (ja) * 2000-03-06 2001-09-14 Rigaku Corp X線発生装置
JP2003059391A (ja) * 2001-08-21 2003-02-28 Noritake Itron Corp 電子放出源及びその製造方法並びに蛍光表示装置
JP2004214164A (ja) * 2002-12-26 2004-07-29 Samsung Sdi Co Ltd 多層構造で形成された電子放出源を備えた電界放出表示装置
WO2005007571A1 (ja) * 2003-07-18 2005-01-27 Norio Akamatsu カーボンナノチューブ製造装置及びカーボンナノチューブ製造方法
JP2005074472A (ja) * 2003-09-01 2005-03-24 Jfe Engineering Kk カーボンナノチューブの基材へのろう付け方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230070870A (ko) * 2021-11-15 2023-05-23 윈디텍 주식회사 기능이 개선된 해상구조물 및 선박용 방오필름과 이의 제조방법
KR102619697B1 (ko) * 2021-11-15 2024-01-02 윈디텍 주식회사 기능이 개선된 해상구조물 및 선박용 방오필름과 이의 제조방법

Also Published As

Publication number Publication date
US11527378B2 (en) 2022-12-13
KR102565282B1 (ko) 2023-08-09
US20210375572A1 (en) 2021-12-02
CN112930578A (zh) 2021-06-08
KR20210077739A (ko) 2021-06-25
JPWO2020085291A1 (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
JP3740295B2 (ja) カーボンナノチューブデバイス、その製造方法及び電子放出素子
US8389119B2 (en) Composite thermal interface material including aligned nanofiber with low melting temperature binder
JP3768908B2 (ja) 電子放出素子、電子源、画像形成装置
TWI285188B (en) Tape-like substance containing carbon nanotube and method for producing carbon nanotube, and electric field emission type electrode containing tape-link substance, and method for producing the electrode
US7781950B2 (en) Field emission element having carbon nanotube and manufacturing method thereof
CN1959896B (zh) 碳纳米管场发射体及其制备方法
JP4324600B2 (ja) 炭素ナノチューブのマトリックスを利用するフィールドエミッタ及びその製造方法
JP5139457B2 (ja) カーボンナノチューブ構造体の製造方法
JP2004319211A (ja) 電子放出源の製造方法
JP2007123280A (ja) ZnOの突起物を有するカーボンナノチューブ
US10611941B2 (en) Heat radiation sheet, method of manufacturing heat radiation sheet, and method of manufacturing electronic device
JP2006008473A (ja) 配向性カーボンナノチューブのパターン化された柱形状集合体および電界放出型冷陰極の製造方法
WO2020085291A1 (ja) 炭素-金属構造体および炭素-金属構造体の製造方法
JP4333285B2 (ja) カーボンナノチューブの基材へのろう付け方法
JP5182237B2 (ja) 電子源電極の製造方法
JP2007319761A (ja) 炭素系ナノ材料生成用触媒組成物、炭素系ナノ材料デバイス、電子放出素子用カソード基板及びその作製方法、並びに電子放出素子デバイス及びその作製方法
JP2012224507A (ja) カーボンナノチューブの形成方法及び熱拡散装置
WO2022233093A1 (zh) 一种基于碳纳米管的微焦点场发射电子源及其制备方法
JP2005306729A (ja) 複数のカーボンファイバーの製造方法、これを用いた電子放出素子、電子源、画像形成装置の製造方法、及び、2次電池の負極と水素吸蔵体
JP2018177557A (ja) カーボンナノチューブ複合体の製造方法及び積層体
JP3912274B2 (ja) カーボンナノチューブのテープ状集合体およびこれを設置したカーボンナノチューブ設置装置
JP5549027B2 (ja) 粒子状ナノ炭素材料の製造方法及び電子放出素子並びに面発光素子
JP5376197B2 (ja) ナノ炭素材料複合体の製造方法
JP2009104928A (ja) カーボンナノチューブの起毛方法
TWI318774B (en) Field emission device based on carbon nanotube and method for fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553385

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217015131

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19877499

Country of ref document: EP

Kind code of ref document: A1