WO2020085200A1 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
WO2020085200A1
WO2020085200A1 PCT/JP2019/040930 JP2019040930W WO2020085200A1 WO 2020085200 A1 WO2020085200 A1 WO 2020085200A1 JP 2019040930 W JP2019040930 W JP 2019040930W WO 2020085200 A1 WO2020085200 A1 WO 2020085200A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
heating
heating unit
heat
detection surface
Prior art date
Application number
PCT/JP2019/040930
Other languages
French (fr)
Japanese (ja)
Inventor
雅志 渡邉
浩太郎 福田
拓巳 岡本
太郎 小倉
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019147841A external-priority patent/JP7293969B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980069595.7A priority Critical patent/CN112889001B/en
Priority to DE112019005325.6T priority patent/DE112019005325T5/en
Publication of WO2020085200A1 publication Critical patent/WO2020085200A1/en
Priority to US17/229,327 priority patent/US20210235551A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/56Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
    • B60S1/60Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens for signalling devices, e.g. reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/55Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields

Definitions

  • the present disclosure relates to an optical device.
  • a device including a light transmission sensor array arranged on a window glass of a vehicle and a planar overheatable film arranged on the light transmission sensor array (for example, refer to Patent Document 1).
  • This device prevents the dew condensation on the light transmission sensor array by heating the light transmission sensor array by the overheatable film.
  • the flat superheatable film described in Patent Document 1 absorbs heat from both planes of the superheatable film and the three directions of the side surfaces. Be seen. At this time, heat is uniformly taken over the entire surfaces of both flat surfaces of the superheatable film, but heat is taken from the peripheral portion of the superheatable film in the peripheral portion of the superheatable film. For this reason, for example, when the calorific value is reduced, fogging occurs from the peripheral portion of the overheatable film.
  • the present disclosure aims to make it possible to further suppress the occurrence of fogging.
  • an optical device includes a sensor unit that detects light that has passed through a light-transmissive detection surface. Further, the optical device includes a light-transmissive film heater having a heating unit which is disposed adjacent to the optical window having the detection surface and heats the optical window. Then, the light-transmissive film heater has a temperature in an outer region located radially outside with respect to the center line of the detection surface in the heating unit, as compared with a region located closer to the center of the detection surface than the outer region in the heating unit. It has a higher temperature distribution.
  • the temperature of the outer region located radially outside with respect to the center line of the detection surface of the heating portion is closer to the center of the detection surface than the outer region of the heating portion. It has a temperature distribution higher than that of the region located at. Therefore, the generation of fogging from the peripheral portion of the heating unit is suppressed, and the generation of fogging can be further suppressed.
  • an optical device includes a light-transmissive film heater having a heating unit disposed adjacent to a light-transmissive optical window to heat the optical window, and heats a predetermined area. Equipped with a heating part.
  • the light-transmitting film heater includes a first electrode disposed radially outside the center line of a predetermined region of the optical window in the heating unit, and a predetermined region of the optical window together with the first electrode in the heating unit on both sides.
  • the heating unit has a first heating region that generates heat according to a potential difference between the first electrode and the second electrode, and the heating unit is Heat is generated in the outer region located radially outside the center line of the predetermined region of the optical window rather than the one heat generation region.
  • the heating section has the first heating area that generates heat in accordance with the potential difference between the first electrode and the second electrode, and the heating section is located closer to the optical window than the first heating area. Heat is generated in the outer region located radially outside of the center line of the predetermined region. Therefore, the generation of fogging from the peripheral portion of the heating unit is suppressed, and the generation of fogging can be further suppressed.
  • the optical device 1 includes a camera 40, a light transmissive film heater 30, and a controller 50.
  • the optical device 1 of the present embodiment captures an image with the camera 40.
  • the camera 40 includes an optical window 42 and a sensor unit 41.
  • the planar optical window 42 is provided with a light-transmissive detection surface 43.
  • the center line CL of the detection surface 43 is perpendicular to the planar optical window 42.
  • the sensor unit 41 senses the light that has passed through the detection surface 43.
  • the sensor unit 41 includes an image sensor such as a CCD (Charged-Coupled Devices) or a CMOS (Complementary Metal-Oxide-Semiconductor).
  • the camera 40 sends the image captured by the sensor unit 41 to the control unit 50.
  • the light-transmissive film heater 30 has a first electrode 31, a second electrode 32, a heating unit 35, and a heat ray heater 38.
  • the first electrode 31 and the second electrode 32 are made of a conductive metal.
  • the first electrode 31 and the second electrode 32 each have a linear shape.
  • the first electrode 31 and the second electrode 32 are formed on one surface of the heating portion 35 by printing or the like.
  • the first electrode 31 and the second electrode 32 are arranged so as to avoid the detection surface 43.
  • the first electrode 31 and the second electrode 32 are arranged so as to sandwich the detection surface 43 from the outside in the radial direction around the center line CL of the detection surface 43.
  • the first electrode 31 and the second electrode 32 are each connected to the control unit 50.
  • the heating unit 35 is arranged adjacent to the surface of the optical window 42 facing the sensor unit 41 and the surface opposite thereto. That is, the heating unit 35 is arranged adjacent to the optical window 42 having the detection surface 43 and heats the optical window 42.
  • the heating unit 35 can be made of, for example, a transparent conductive film. By supplying electricity to the transparent conductive film through the first electrode 31 and the second electrode 32, the transparent conductive film generates heat.
  • the heating portion 35 has a uniform thickness. Moreover, the heating part 35 is made homogeneous.
  • the heat wire heater 38 is arranged in the outer area on the outer side in the radial direction of the detection surface 43.
  • the hot wire heater 38 is formed along the peripheral portion of the heating unit 35.
  • the heat wire heater 38 has a linear shape.
  • the hot wire heater 38 generates heat due to Joule heat generated when a current flows through the hot wire heater 38.
  • the heat ray heater 38 is formed along the peripheral portion of the heating unit 35, and the temperature of the outer region of the heating unit 35 on the radially outer side of the detection surface 43 is higher than that of the outer region of the heating unit 35. It has a temperature distribution that is higher than the area on the center side of the detection surface 43.
  • the optical device 1 of the present embodiment includes the sensor unit 41 that senses the light that has passed through the light-transmissive detection surface 43.
  • a light-transmissive film heater 30 having a heating unit 35 which is arranged adjacent to the optical window 42 having the detection surface 43 and heats the optical window 42, and a heat ray heater 38 as a heat generating unit which heats a predetermined area are provided. There is.
  • the light-transmissive film heater 30 includes the first electrode 31 arranged radially outside the center line of the detection surface 43 in the heating unit 35 and the detection surface 43 together with the first electrode 31 in the heating unit 35. And a second electrode 32 arranged so as to be sandwiched from both sides.
  • the heating unit 35 also has a first heat generation region E1 that generates heat according to the potential difference between the first electrode 31 and the second electrode 32. Then, the heat ray heater 38 as the heat generating portion heats the outer area located radially outside the first heat generating area E1 with the center line CL of the detection surface 43 as the center.
  • the control unit 50 is configured as a computer including a CPU, a memory, an I / O, etc., and the CPU performs various processes according to a program stored in the memory.
  • the processing of the control unit 50 for example, when it is determined that the detection surface 43 is fogged based on the image input from the camera 40, the first electrode 31 and the second electrode 32 of the light transmissive film heater 30 are detected. There is a process of applying a predetermined voltage during the period and starting energization of the hot wire heater 38.
  • the heating unit 35 When the control unit 50 applies a predetermined voltage between the first electrode 31 and the second electrode 32 of the light transmissive film heater 30, the heating unit 35 generates heat. Further, when the controller 50 starts energizing the hot wire heater 38, the hot wire heater 38 generates heat. The heat wire heater 38 heats the outer area radially outside of the center line of the detection surface 43.
  • the hot wire heater 38 is formed along the peripheral portion of the heating unit 35, and the temperature of the outer region of the heating unit 35 on the outer side in the radial direction of the detection surface 43 is higher than that of the outer region of the heating unit 35 at the center of the detection surface 43. It has a temperature distribution that is higher than the side region. As a result, generation of fogging from the peripheral portion of the heating unit 35 is suppressed.
  • the optical device of the present embodiment includes the sensor unit 41 that senses the light that has passed through the light-transmissive detection surface 43. Further, the light-transmitting film heater 30 is provided which has a heating unit 35 which is arranged adjacent to the optical window 42 having a detection surface and heats the optical window. Further, in the light-transmitting film heater 30, the temperature of the outer region of the heating unit 35, which is located radially outside the center line CL of the detection surface 43, is closer to the center of the detection surface than the outer region of the heating unit 35. It has a temperature distribution that is higher than the area in which it is located.
  • the temperature of the outer region located radially outside the center line CL of the detection surface 43 of the heating unit 35 is detected from the outer region of the heating unit 35. It has a temperature distribution that is higher than the region located on the center side of the surface 43. Therefore, the generation of fogging from the peripheral portion of the heating unit 35 is suppressed, and the generation of fogging can be further suppressed.
  • the light-transmissive film heater 30 is provided with a heat ray heater 38 that heats an outer area on the outer side in the radial direction around the center line of the detection surface 43.
  • the light-transmissive film heater 30 can include the hot wire heater 38 that heats the outer area on the outer side in the radial direction around the center line CL of the detection surface 43.
  • the optical device 1 of the present embodiment includes a light-transmissive film heater 30 having a heating unit 35 arranged adjacent to the light-transmissive optical window 42 for heating the optical window 42, and heat generation for heating a predetermined area.
  • a hot wire heater 38 is provided as a part.
  • the light-transmissive film heater 30 has a first electrode 31 arranged radially outside of the heating section 35 with respect to the center line of a predetermined region of the optical window 42.
  • the heating unit 35 includes the first electrode 31 and the second electrode 32 that is arranged so as to sandwich a predetermined region of the optical window 42 from both sides.
  • the heating unit 35 also has a first heat generation region E1 that generates heat according to the potential difference between the first electrode 31 and the second electrode 32.
  • the heat ray heater 38 causes the outer region located radially outside of the first heat generating region E1 with the center line of the predetermined region of the optical window 42 as the center.
  • the center line of the predetermined area of the optical window 42 coincides with the center line CL of the detection surface 43.
  • the heating unit 35 has the first heat generation area E1 that generates heat according to the potential difference between the first electrode 31 and the second electrode 32. Then, the heat ray heater 38 as a heat generating portion heats the outer region located radially outside the center line CL of the predetermined region of the optical window 42 with respect to the first heat generating region E1, so that the peripheral edge of the heating portion 35. The generation of fogging from the part is suppressed, and the generation of fogging can be further suppressed.
  • the optical device 1 according to the second embodiment will be described with reference to FIGS. 3 to 4.
  • the optical device 1 of the present embodiment includes first to fourth electrodes 31 to 34 and a heating unit 35.
  • the first electrode 31 is arranged radially outside the center line CL of the detection surface 43 of the heating unit 35.
  • the second electrode 32 is arranged in the heating unit 35 so as to sandwich the detection surface 43 from both sides together with the first electrode 31.
  • the third electrode 33 is arranged radially outside the detection surface 43 from the first electrode 31 side in the heating section 35.
  • the fourth electrode 34 is arranged radially outward of the detection surface 43 with respect to the second electrode 32 side in the heating section 35.
  • the first electrode 31 to the fourth electrode 34 each have a linear shape.
  • the first electrode 31 to the fourth electrode 34 are parallel to each other.
  • the distance between the first electrode 31 and the third electrode 33 is the same as the distance between the second electrode 32 and the fourth electrode 34.
  • the distance between the first electrode 31 and the third electrode 33 and the distance between the second electrode 32 and the fourth electrode 34 are smaller than the distance between the first electrode 31 and the second electrode 32, respectively. Is also getting shorter.
  • the potential of the first electrode 31 is controlled to 0 volt
  • the potential of the second electrode 32 is controlled to 12 volt
  • the potential of the third electrode 33 is controlled to 12 volt
  • the potential of the fourth electrode 34 is controlled to 0 volt.
  • the heating unit 35 has a first heat generation area E1 that generates heat according to the potential difference between the first electrode 31 and the second electrode 32.
  • the heating unit 35 also has a second heat generation area E2 that generates heat according to the potential difference between the first electrode 31 and the third electrode 33.
  • the heating unit 35 has a third heat generation region E3 that generates heat according to the potential difference between the second electrode 32 and the fourth electrode 34.
  • the heat generation temperatures of the second heat generation area E2 and the third heat generation area E3 are higher than the heat generation temperature of the first heat generation area E1.
  • the light transmissive film heater of the present embodiment has the first electrode 31 arranged on the heating portion 35 on the outer side in the radial direction around the center line of the detection surface 43. Further, the heating unit 35 has the second electrode 32 arranged so as to sandwich the detection surface 43 from both sides together with the first electrode 31. In addition, the heating unit 35 has a third electrode 33 arranged radially outside the detection surface 43 from the first electrode 31 side. Further, the heating section 35 has a fourth electrode 34 arranged radially outside the detection surface 43 from the second electrode 32 side.
  • the heating unit 35 also has a first heat generation region E1 that generates heat according to the potential difference between the first electrode 31 and the second electrode 32. Further, it has a second heat generation region E2 that generates heat according to the potential difference between the first electrode 31 and the third electrode 33. Further, it has a third heat generation region E3 that generates heat according to the potential difference between the second electrode 32 and the fourth electrode 34. Then, the heat generating portion heats the second heat generating area E2 and the third heat generating area E3 as outer areas.
  • the heat generating portion heats the second heat generating area E2 and the third heat generating area E3 as outer areas, so that generation of fogging from the peripheral portion of the heating portion 35 is suppressed, and more fogging occurs. Can be suppressed.
  • the optical device 1 according to the third embodiment will be described with reference to FIG.
  • the first electrode 31 to the fourth electrode 34 are arranged on the same plane.
  • the first electrode 31 and the third electrode 33 are arranged at different positions in the thickness direction in the heating section 35, and the second electrode 32 and the fourth electrode 34 are further arranged.
  • the heating units 35 are arranged at different positions in the thickness direction.
  • the heating unit 35 is formed in a thin plate shape that extends along the XY plane defined by the X axis and the Y axis.
  • the heating unit 35 has a thickness in the Z-axis direction orthogonal to the XY plane.
  • a protective layer 36 is arranged on one surface of the heating unit 35, and a protective layer 37 is arranged on the opposite surface of the heating unit 35.
  • the first electrode 31 and the second electrode 32 are arranged on the surface of the heating unit 35 on the protective layer 37 side, and the third electrode 33 and the fourth electrode 34 are arranged on the surface of the heating unit 35 on the protective layer 36 side. Are arranged.
  • first electrode 31 and the second electrode 32 are arranged at the same position in the heating portion 35 in the thickness direction.
  • the first electrode 31 and the third electrode 33 are arranged at different positions in the thickness direction of the heating section 35, and the second electrode 32 and the fourth electrode 34 are arranged at different positions of the heating section 35 in the thickness direction. Has been done.
  • the heat generating area that generates heat according to the potential difference between the first electrode 31 and the third electrode 33 and the heat generating area that generates heat according to the potential difference between the second electrode 32 and the fourth electrode 34 are the first The heat generation temperature is higher than the heat generation region that generates heat according to the potential difference between the electrode 31 and the second electrode 32.
  • the light transmissive film heater of the present embodiment has the third electrode 33 arranged in the heating portion 35 on the outer side in the radial direction of the detection surface 43 from the first electrode 31 side. Further, the heating section 35 has a fourth electrode 34 arranged radially outside the detection surface 43 from the second electrode 32 side.
  • the heating unit 35 also has a first heat generation region E1 that generates heat according to the potential difference between the first electrode 31 and the second electrode 32. Further, it has a second heat generation region E2 that generates heat according to the potential difference between the first electrode 31 and the third electrode 33. Further, it has a third heat generation region E3 that generates heat according to the potential difference between the second electrode 32 and the fourth electrode 34.
  • first electrode 31 and the second electrode 32 are arranged at the same position in the thickness direction of the heating section 35.
  • the first electrode 31 and the third electrode 33 are arranged at different positions in the thickness direction of the heating section 35, and the second electrode 32 and the fourth electrode 34 are arranged at different positions of the heating section 35 in the thickness direction.
  • the heat generating portion heats the second heat generating area E2 and the third heat generating area E3 as outer areas.
  • the heat generating portion heats the second heat generating area E2 and the third heat generating area E3 as outer areas, so that generation of fogging from the peripheral portion of the heating portion 35 is suppressed, and more fogging occurs. Can be suppressed.
  • the first electrode 31 and the third electrode 33 are arranged at different positions in the thickness direction in the heating section 35, and the second electrode 32 and the fourth electrode 34 are arranged. Are arranged at different positions in the heating portion 35 in the thickness direction. That is, each of the first electrode 31 to the fourth electrode is three-dimensionally arranged. Therefore, the space of the heating unit 35 can be saved.
  • the optical device 1 according to the fourth embodiment will be described with reference to FIG.
  • the optical device 1 according to the present embodiment includes the first electrode 31 to the fourth electrode 34, and the light-transmissive film heater 30 having the heating portion 35 extending in the XY plane direction.
  • the first electrode 31 is arranged radially outside the center line CL of the detection surface 43 of the heating unit 35.
  • the second electrode 32 is arranged in the heating unit 35 so as to sandwich the detection surface 43 from both sides together with the first electrode 31.
  • the third electrode 33 is arranged radially outside the detection surface 43 from the first electrode 31 side in the heating section 35.
  • the fourth electrode 34 is arranged radially outward of the detection surface 43 with respect to the second electrode 32 side in the heating section 35.
  • the first electrode 31 to the fourth electrode 34 each have an L shape.
  • the distance between the first electrode 31 and the third electrode 33 is the same as the distance between the second electrode 32 and the fourth electrode 34.
  • the distance between the first electrode 31 and the third electrode 33 and the distance between the second electrode 32 and the fourth electrode 34 are smaller than the distance between the first electrode 31 and the second electrode 32, respectively. Is also getting shorter.
  • the potential of the first electrode 31 is controlled to 0 volt
  • the potential of the second electrode 32 is controlled to 12 volt
  • the potential of the third electrode 33 is controlled to 12 volt
  • the potential of the fourth electrode 34 is controlled to 0 volt.
  • the heating unit 35 has a first heating unit 351 that generates heat according to the potential difference between the first electrode 31 and the second electrode 32. Further, the heating unit 35 has a second heating unit 352 that generates heat according to the potential difference between the first electrode 31 and the third electrode 33. The heating unit 35 also includes a third heating unit 353 that generates heat according to the potential difference between the second electrode 32 and the fourth electrode 34. The second heating unit 352 and the third heating unit 353 each have an L shape. The second heating unit 352 and the third heating unit 353 form a U-shaped heating unit. The second heating unit 352 and the third heating unit 353 are arranged so as to surround the first heating unit 351. In addition, in FIG. 6, the 2nd heating part 352 and the 3rd heating part 353 are shown by hatching.
  • the first heating part 351, the second heating part 352, and the third heating part 353 are made of the same material.
  • the temperature of the outer region of the heating unit 35 which is located radially outside the center line CL of the detection face 43, is greater than that of the outer region of the heating unit 35.
  • the temperature distribution is higher than that of the region located on the center side of 43. Therefore, the generation of fogging from the peripheral portion of the heating unit 35 is suppressed, and the generation of fogging can be further suppressed.
  • the distance between the first electrode 31 and the third electrode 33 and the distance between the second electrode 32 and the fourth electrode 34 are smaller than the distance between the first electrode 31 and the second electrode 32, respectively. Is also getting shorter. Therefore, the amount of heat generated by the second heating unit 352 and the third heating unit 353 may become excessively large, which may cause a failure or the like.
  • the resistance value of the second heating unit 352 viewed from the first electrode 31 and the third electrode 33 and the resistance value of the third heating unit 353 viewed from the second electrode 32 and the fourth electrode 34 are It is smaller than the resistance value of the first heating unit 351 viewed from the first electrode 31 and the second electrode 32.
  • the lengths of the second heating part 352 and the third heating part 353 in the thickness direction are shorter than the lengths of the first heating part 351 in the thickness direction.
  • the resistance values of the second heating unit 352 and the third heating unit 353 are smaller than the resistance value of the first heating unit 351, and the heat generation amounts of the second heating unit 352 and the third heating unit 353 are suppressed.
  • the optical device 1 according to the fifth embodiment will be described with reference to FIG. 7.
  • the resistance value of the second heating part 352 viewed from the first electrode 31 and the third electrode 33 and the resistance value of the third heating part 353 viewed from the second electrode 32 and the fourth electrode 34 are the first value.
  • the resistance value of the first heating unit 351 as viewed from the electrode 31 and the second electrode 32 is made larger. Specifically, the lengths of the second heating unit 352 and the third heating unit 353 in the thickness direction are shorter than the lengths of the first heating unit 351 in the thickness direction.
  • the resistance value of the second heating unit 352 viewed from the first electrode 31 and the third electrode 33 and the resistance value of the third heating unit 353 viewed from the second electrode 32 and the fourth electrode 34 are ,
  • the resistance value of the first heating unit 351 as viewed from the first electrode 31 and the second electrode 32 is larger.
  • the second heating unit 352 and the third heating unit 353 are formed with notches 3521 and 3531 for increasing the current path length of the current flowing through the second heating unit 352 and the third heating unit 353. ing.
  • the first electrode 31 to the fourth electrode 34, the second heating unit 352, and the third heating unit 353 are hatched. Moreover, the 1st heating part 351, the 2nd heating part 352, and the 3rd heating part 353 are comprised with the same material.
  • the optical device 1 of the present embodiment forms the film-shaped first heating unit 351, second heating unit 352, and third heating unit 353 of the same material. After that, the notch 3521 is formed in the second heating portion 352 and the notch 3531 is formed in the third heating portion 353 by laser processing. The notch 3521 and the notch 3531 are formed so as to extend in the X-axis direction.
  • the notch 3521 increases the resistance value of the second heating part 352 viewed from the first electrode 31 and the third electrode 33, and the notch 3531 increases the resistance value of the third heating part 353 viewed from the second electrode 32 and the fourth electrode 34. Grows larger.
  • the resistance value of the second heating unit 352 viewed from the first electrode 31 and the third electrode 33 and the resistance value of the third heating unit 353 viewed from the second electrode 32 and the fourth electrode 34 are the same as those of the first electrode 31 and the third electrode. It becomes larger than the resistance value of the first heating unit 351 viewed from the two electrodes 32. Then, the heat generation amounts of the second heating unit 352 and the third heating unit 353 are suppressed.
  • the notch 3521 and the notch 3531 are formed so as to extend in the X-axis direction, but the notch 3521 and the notch 3531 may be formed so as to be bent in a complicated manner like a corridor structure.
  • a high resistance high resistance heating portion 323 is formed on a part of the second electrode 32. That is, the second electrode 32 has a low resistance low resistance portion 321 and a high resistance high resistance heating portion 323.
  • the low resistance portion 321 and the high resistance heating portion 323 are linear and are made of the same material.
  • the line width of the high resistance heating part 323 is shorter than the line width of the low resistance part 321, and the cross-sectional area of the current path of the high resistance heating part 323 is smaller than the cross-sectional area of the current path of the low resistance part 321. Has become.
  • the resistance value of the high resistance heating portion 323 is larger than the resistance value of the low resistance portion 321.
  • the high-resistance heat generating portion 323 is arranged in an outer region located radially outside of the first heat generating region E1 around the center line CL of the detection surface 43, and heats the outer region. That is, the high resistance heating part 323 which is a part of the second electrode 32 functions as a heater.
  • a predetermined voltage is applied between the first electrode 31 and the second electrode 32 of the transparent film heater 30 by the control unit 50, and the control unit 50 is configured via the first electrode 31 and the second electrode 32.
  • the heating part 35 When the transparent conductive film is energized, the heating part 35 generates heat. At this time, a current flows through the high resistance heating portion 323, and the high resistance heating portion 323 also generates heat. The low resistance part 321 does not generate heat. Further, when the controller 50 starts energizing the hot wire heater 38, the hot wire heater 38 also generates heat.
  • part of the second electrode 32 functions as a heater.
  • the size can be reduced as compared with the case where the heater is configured by using another member.
  • a part of the second electrode 32 is configured to function as a heater, but a part of the first electrode 31 may be configured to function as a heater. Moreover, you may comprise so that at least one part of the 1st electrode 31 and the 2nd electrode 32 may function as a heater.
  • the optical device 1 according to the seventh embodiment will be described with reference to FIG.
  • the optical device 1 of the present embodiment is different from the optical device 1 of the sixth embodiment in that the heat ray heater 38 is connected to the first electrode 31 and the second electrode 32.
  • Another difference is that the portion of the high resistance heating portion 323 that functions as a heater in the second electrode 32 is arranged in a part of the periphery of the optical window 42 having light transparency.
  • the heat wire heater 38 is connected between the first electrode 31 and the second electrode 32. That is, the first electrode 31 is connected to one end of the heat ray heater 38, and the second electrode 32 is connected to the other end of the heat ray heater 38.
  • connection portion for supplying a voltage to the first electrode 31 and the heat ray heater 38 can be made common, and the connection portion for supplying a voltage to the second electrode 32 and the heat ray heater 38 can be made common.
  • the optical device can be downsized.
  • a heat ray heater 38 as a heat generating portion is arranged so as to surround the periphery of the detection surface 43 except for a part of the periphery of the optical window 42 having light transparency. Further, in the second electrode 32, the portion of the high resistance heating portion 323 which functions as a heater is arranged in a part of the periphery of the optical window 42 having light transparency.
  • the portion of the high resistance heating portion 323 functioning as a heater heats the portion where the heat ray heater 38 does not surround the optical window 42 having the light transmitting property, so that heating is performed. It is possible to further suppress the occurrence of fogging from the peripheral portion of the portion 35.
  • the optical device 1 according to the eighth embodiment will be described with reference to FIG.
  • the range in which the heating wire heater 38 surrounds the periphery of the detection surface 43 is larger than that of the optical device 1 of the first embodiment.
  • the hot wire heater 38 of the present embodiment is arranged so as to surround almost the entire detection surface 43.
  • an insulating layer (not shown) is arranged between the heat ray heater 38 and the second electrode 32.
  • the hot wire heater 38 and the second electrode 32 are insulated.
  • the heat ray heater 38 can be configured so as to surround almost the entire circumference of the detection surface 43.
  • the optical device 1 according to the ninth embodiment will be described with reference to FIG.
  • the optical device 1 of the present embodiment is different from the optical device 1 of the first embodiment in that the line width of the heat ray heater 38 differs depending on the location.
  • the hot wire heater 38 has a first line width portion 381 having a first electrode width and a second line width portion 382 having a second electrode width that is longer than the first electrode width.
  • the first line width portion 381 and the second line width portion 382 are made of the same material.
  • the second line width part 382 Since the second line width part 382 has a larger heat capacity than the first line width part 381, the temperature around the second line width part 382 becomes higher than the temperature around the second line width part 382. That is, the second line width portion 382 functions as a heater. Therefore, by forming the second line width portion 382 in the low temperature region of the heating unit 35 and arranging the first line width portion 381 in the high temperature region of the heating unit 35, the temperature unevenness of the heating unit 35 can be achieved. Can be suppressed.
  • the optical device 1 according to the tenth embodiment will be described with reference to FIG.
  • the optical device 1 of the present embodiment differs from the optical device of the first embodiment in that the heat ray heater 38 is connected to the first electrode 31 and the second electrode 32, and the first electrode 31 and the second electrode 32.
  • the structure of is different.
  • the heat wire heater 38 is connected between the first electrode 31 and the second electrode 32. That is, the first electrode 31 is connected to one end of the heat ray heater 38, and the second electrode 32 is connected to the other end of the heat ray heater 38.
  • connection portion for supplying a voltage to the first electrode 31 and the heat ray heater 38 can be made common, and the connection portion for supplying a voltage to the second electrode 32 and the heat ray heater 38 can be made common.
  • the optical device can be downsized.
  • the first electrode 31 has a low resistance portion 311 formed of a low resistance material and a high resistance portion 312 formed of a high resistance material having a higher resistance than the low resistance material. .
  • the second electrode 32 has a low resistance portion 321 formed of a low resistance material and a high resistance portion 322 formed of a high resistance material having a higher resistance than the low resistance material. .
  • the high resistance portion 312 formed using the high resistance material of the first electrode 31 functions as a heater, and the high resistance portion 312 formed using the high resistance material of the 32nd electrode functions as a heater.
  • the first electrode 31 and the second electrode 32 by using materials having different resistance values, and to make a portion configured by using a material having a large resistance value function as a heater.
  • the optical device 1 including the camera 40 that captures an image around the vehicle has been described.
  • LIDAR Laser Imaging Detection and Ranging
  • the heating portion 35 is arranged adjacent to the surface of the optical window 42 facing the sensor portion 41 and adjacent to the surface thereof, but adjacent to the surface of the optical window 42 facing the sensor portion 41. You may arrange the heating part 35.
  • the distance between the first electrode 31 and the third electrode 33 is the same as the distance between the second electrode 32 and the fourth electrode 34.
  • the distance between the third electrode 33 and the third electrode 33 may be different from the distance between the second electrode 32 and the fourth electrode 34.
  • the first electrode 31 to the second electrode 32 each have a linear shape
  • the first electrode 31 to the fourth electrode 34 Each has a linear shape
  • the first electrode 31 to the second electrode 32 and the third electrode 33 to the fourth electrode 34 may have shapes other than the linear shape.
  • the first heating part 351, the second heating part 352, and the third heating part 353 are made of the same material, but the second heating part 352 and the third heating part 353 are used. May be made of a material different from that of the first heating unit 351.
  • the control unit 50 determines that the detection surface 43 is fogged based on the image input from the camera 40, the first electrode 31 of the light transmissive film heater 30. A predetermined voltage was applied between the second electrode 32 and the second electrode 32 to start energizing the heat wire heater 38.
  • control unit 50 detects the environmental conditions (temperature, humidity, radiation amount) on both sides or one side of the detection surface 43 and the temperature of the object to be heated, and the detection surface 43 is fogged based on the detected environmental conditions and temperature. You may make it calculate the conditions which occur. Then, when the condition for causing the fogging on the detection surface 43 is satisfied, a predetermined voltage is applied between the first electrode 31 and the second electrode 32 of the light transmissive film heater 30, and energization to the heat ray heater 38 is started. You may do it.
  • environmental conditions temperature, humidity, radiation amount
  • the present disclosure is not limited to the above-described embodiment, and can be modified as appropriate. Further, the above embodiments are not unrelated to each other, and can be appropriately combined unless a combination is obviously impossible. Further, in each of the above-mentioned embodiments, it is needless to say that the elements constituting the embodiment are not necessarily indispensable except when explicitly specified as being indispensable and when it is considered to be indispensable in principle. Yes. Further, in each of the above-mentioned embodiments, when numerical values such as the number of components, numerical values, amounts, ranges, etc. of the embodiments are mentioned, it is clearly limited to a particular number and in principle limited to a specific number. The number is not limited to the specific number, except in the case of being performed.
  • the optical device of the present embodiment includes a sensor unit that senses light that has passed through the light-transmissive detection surface. There is. Further, it is provided with a light-transmissive film heater having a heating portion which is arranged adjacent to the optical window having the detection surface and heats the optical window. Then, the light-transmissive film heater has a temperature of an outer region located radially outside with respect to the center line of the detection surface in the heating unit, as compared with a region located closer to the center of the detection surface than the outer region of the heating unit. It has a higher temperature distribution.
  • the light transmissive film heater has the first electrode arranged radially outside the center line of the detection surface in the heating portion. Also, a second electrode is arranged in the heating unit so as to sandwich the detection surface from both sides together with the first electrode, and a third electrode is arranged in the heating unit radially outside the detection surface from the first electrode side. is doing. Further, the heating section has a fourth electrode arranged radially outside the detection surface with respect to the second electrode side.
  • the heating unit includes a first heating region that generates heat according to the potential difference between the first electrode and the second electrode, and a second heating region that generates heat according to the potential difference between the first electrode and the third electrode. And a third heat generation region that generates heat according to the potential difference between the second electrode and the fourth electrode.
  • the heat generation temperatures of the second heat generation region and the third heat generation region are higher than the heat generation temperature of the first heat generation region.
  • the first electrode and the second electrode are arranged at the same position in the thickness direction in the heating section.
  • the first electrode and the third electrode are arranged at different positions in the thickness direction in the heating section, and the second electrode and the fourth electrode are arranged at different positions in the thickness direction in the heating section.
  • the heat generating area that generates heat according to the potential difference between the first electrode and the third electrode and the heat generating area that generates heat according to the potential difference between the second electrode and the fourth electrode are the first electrode and the second electrode.
  • the heat generation temperature is higher than the heat generation region that generates heat according to the potential difference between the electrodes.
  • the first to fourth electrodes are three-dimensionally arranged. Therefore, it is possible to save space in the heating unit.
  • the light transmissive film heater includes a heat wire heater that heats an outer area on the outer side in the radial direction around the center line of the detection surface.
  • the light-transmitting film heater can be provided with a heat ray heater that heats the outer area on the radially outer side of the center line of the detection surface.
  • the light-transmitting film heater has the first electrode arranged radially outside the center line of the detection surface in the heating section.
  • a second electrode is arranged in the heating unit so as to sandwich the detection surface from both sides together with the first electrode, and a third electrode is arranged in the heating unit radially outside the detection surface from the first electrode side. is doing. Further, the heating section has a fourth electrode arranged radially outside the detection surface with respect to the second electrode side.
  • the heating unit includes a first heating unit that generates heat according to a potential difference between the first electrode and the second electrode, and a second heating unit that generates heat according to a potential difference between the first electrode and the third electrode. And have.
  • the third heating unit that generates heat according to the potential difference between the second electrode and the fourth electrode.
  • the resistance value of the second heating part viewed from the first electrode and the third electrode and the resistance value of the third heating part viewed from the second electrode and the fourth electrode are the first heating part viewed from the first electrode and the second electrode. Is larger than the resistance value of.
  • the resistance value of the second heating part and the third heating part becomes larger than the resistance value of the first heating part, and the heat generation amount of the second heating part and the third heating part can be suppressed.
  • the second heating part and the third heating part are made of the same material as the first heating part, and the lengths in the thickness direction of the second heating part and the third heating part are the same. Is shorter than the length of the first heating portion in the thickness direction.
  • the resistance value of the second heating unit and the third heating unit becomes larger than the resistance value of the first heating unit 351, and the heat generation amount of the second heating unit 352 and the third heating unit can be suppressed.
  • the second heating part and the third heating part are made of the same material as the first heating part. Further, at least one of the second heating section and the third heating section is provided with a notch for increasing the current path length of the current flowing through at least one of the second heating section and the third heating section.
  • the resistance value of the second heating part viewed from the first electrode and the third electrode and the resistance value of the third heating part viewed from the second electrode and the fourth electrode are the first heating value viewed from the first electrode and the second electrode. It becomes larger than the resistance value of the section, and the heat generation amount of the second heating section and the third heating section can be suppressed.
  • the second heating part and the third heating part are made of a material different from that of the first heating part.
  • the second heating part and the third heating part can be made of a material different from that of the first heating part.
  • an optical device includes a light-transmitting film heater having a heating unit which is disposed adjacent to an optical window having light-transmitting properties and which heats the optical window, and a heating unit which heats a predetermined area. Is equipped with. Further, it is provided with a heat generating portion that heats a predetermined area. Further, the light transmissive film heater has a first electrode arranged radially outside the center line of a predetermined region of the optical window in the heating section. In addition, the heating unit has a second electrode arranged so as to sandwich a predetermined region of the optical window from both sides together with the first electrode. Further, the heating unit has a first heat generation region that generates heat according to the potential difference between the first electrode and the second electrode. Further, the heat generating portion heats an outer region located radially outside with respect to the center line of the predetermined region of the optical window.
  • the light transmissive film heater includes a heat wire heater that heats an outer area radially outside of a center of a predetermined area of the optical window, and the heat generating portion is configured by the heat wire heater. There is. In this way, the heat generating portion can be configured by the hot wire heater.
  • the light transmissive film heater has a third electrode arranged radially outside of the first electrode side in the heating unit with a center line of a predetermined region of the optical window as a center. ing. Further, the heating section has a fourth electrode arranged radially outside of the second electrode side with respect to the center line of a predetermined region of the optical window.
  • the heating unit has a first heat generation region and a second heat generation region that generates heat according to the potential difference between the first electrode and the third electrode. In addition, it has a third heat generation region that generates heat according to the potential difference between the second electrode and the fourth electrode. Then, the heat generating portion causes the second heat generating area and the third heat generating area to serve as outer areas to generate heat. In this way, the second heat generating region and the third heat generating region can be used as outer regions to generate heat.
  • the light transmissive film heater has a third electrode arranged radially outside of the first electrode side in the heating unit with a center line of a predetermined region of the optical window as a center. ing. Further, the heating section has a fourth electrode arranged radially outside of the second electrode side with respect to the center line of a predetermined region of the optical window.
  • the heating unit has a first heat generation region and a second heat generation region that generates heat according to the potential difference between the first electrode and the third electrode. In addition, it has a third heat generation region that generates heat according to the potential difference between the second electrode and the fourth electrode.
  • the first electrode and the second electrode are arranged at the same position in the thickness direction in the heating part, and the first electrode and the third electrode are arranged in different positions in the thickness direction in the heating part, and the second electrode and The fourth electrode is arranged at a position different in the thickness direction in the heating section.
  • the first to fourth electrodes are three-dimensionally arranged. Therefore, it is possible to save space in the heating unit.
  • the first electrode is connected to one end of the heat ray heater, and the second electrode is connected to the other end of the heat ray heater.
  • connection part for supplying the voltage to the first electrode and the heat ray heater can be made common, and the connection part for supplying the voltage to the second electrode and the heat ray heater can be made to be common, so that the optical device can be realized. It can be miniaturized.
  • the fourteenth aspect at least a part of the first electrode and the second electrode functions as a heater. Therefore, as a result, the size can be reduced as compared with the case where the heater is configured by using another member.
  • At least one of the first electrode and the second electrode is linear and has a first electrode width and a second electrode width shorter than the first electrode width. Have Then, of at least one of the first electrode and the second electrode, a portion having the second electrode width functions as a heater.
  • the electrode width of the electrode is shortened, and the portion with the shortened electrode width is made to function as a heater, so that the heater can be configured with a simple configuration and low cost can be realized.
  • At least one of the first electrode and the second electrode is formed using a portion formed of a low resistance material and a high resistance material having a higher resistance than the low resistance material. It has a part Then, of at least one of the first electrode and the second electrode, a portion formed of a high resistance material functions as a heater.
  • the heater can be configured with a simple configuration and low cost can be realized.
  • the heat generating portion is arranged so as to surround the periphery of the detection surface except a part of the periphery of the predetermined region of the optical window, and at least one of the first electrode and the second electrode.
  • a portion functioning as a heater is arranged around a part of a predetermined area of the optical window.
  • At least one of the first electrode and the second electrode has the heat generating portion arranged at a portion where the heat ray heater does not surround the periphery of the detection surface, so that fogging from the peripheral portion of the heating portion is prevented. It can be suppressed more.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Rear-View Mirror Devices That Are Mounted On The Exterior Of The Vehicle (AREA)

Abstract

This optical device comprises: a sensor (41) for detecting light passing through a light-transmitting detection surface (43); and a light-transmitting film heater (30) disposed adjacent to an optical window (42) that has the detection surface and having a heating unit (35) for heating the optical window. The light-transmissive film heater has a temperature distribution in which the temperature of an outer region is higher than a region of the heating unit located closer to the center of the detection surface than the outer region, such outer region being located on the radial outer side of the detection surface in the heating unit and having a center line (CL) of the detection surface as the center.

Description

光学装置Optical device 関連出願への相互参照Cross-reference to related application
 本出願は、2018年10月25日に出願された日本特許出願番号2018-200942号と、2019年1月11日に出願された日本特許出願番号2019-3823号と、2019年8月9日に出願された日本特許出願番号2019-147841号とに基づくもので、ここにその記載内容が参照により組み入れられる。 This application includes Japanese Patent Application No. 2018-200942 filed on October 25, 2018, Japanese Patent Application No. 2019-3823 filed on January 11, 2019, and August 9, 2019. Japanese Patent Application No. 2019-147841, which is filed herewith, the contents of which are incorporated herein by reference.
 本開示は、光学装置に関するものである。 The present disclosure relates to an optical device.
 従来、車両の窓ガラスに配置された光透過センサアレイと、この光透過センサアレイ上に配置された平面状の過熱可能膜を備えた装置がある(例えば、特許文献1参照)。この装置は、過熱可能膜によって光透過センサアレイを加熱することにより光透過センサアレイへの結露等を防止している。 Conventionally, there is a device including a light transmission sensor array arranged on a window glass of a vehicle and a planar overheatable film arranged on the light transmission sensor array (for example, refer to Patent Document 1). This device prevents the dew condensation on the light transmission sensor array by heating the light transmission sensor array by the overheatable film.
特表2012-530646号公報Special table 2012-530646
 発明者の検討によれば、上記特許文献1に記載されたような平面状の過熱可能膜は、窓ガラスが冷却されると、過熱可能膜の両平面と、側面の3方向から熱が奪われる。この際、過熱可能膜の両平面については、それぞれ全面にわたって一様に熱が奪われるが、過熱可能膜の周縁部においては過熱可能膜の周縁部から熱が奪われる。このため、例えば、発熱量が低下した際に、過熱可能膜の周縁部から曇りが発生してしまう。本開示は、より曇りの発生を抑制できるようにすることを目的とする。 According to the study by the inventor, when the window glass is cooled, the flat superheatable film described in Patent Document 1 absorbs heat from both planes of the superheatable film and the three directions of the side surfaces. Be seen. At this time, heat is uniformly taken over the entire surfaces of both flat surfaces of the superheatable film, but heat is taken from the peripheral portion of the superheatable film in the peripheral portion of the superheatable film. For this reason, for example, when the calorific value is reduced, fogging occurs from the peripheral portion of the overheatable film. The present disclosure aims to make it possible to further suppress the occurrence of fogging.
 本開示の1つの観点によれば、光学装置は、光透過性を有する検知面を通過した光を感知するセンサ部備えている。また光学装置は、検知面を有する光学窓と隣接して配置され光学窓を加熱する加熱部を有する光透過性フィルムヒータを備えている。そして、光透過性フィルムヒータは、加熱部における検知面の中心線を中心とする径方向外側に位置する外側領域の温度が、加熱部における外側領域より検知面の中心側に位置する領域よりも高くなる温度分布を有している。 According to one aspect of the present disclosure, an optical device includes a sensor unit that detects light that has passed through a light-transmissive detection surface. Further, the optical device includes a light-transmissive film heater having a heating unit which is disposed adjacent to the optical window having the detection surface and heats the optical window. Then, the light-transmissive film heater has a temperature in an outer region located radially outside with respect to the center line of the detection surface in the heating unit, as compared with a region located closer to the center of the detection surface than the outer region in the heating unit. It has a higher temperature distribution.
 このような構成によれば、光透過性フィルムヒータは、加熱部における検知面の中心線を中心とする径方向外側に位置する外側領域の温度が、加熱部における外側領域より検知面の中心側に位置する領域よりも高くなる温度分布を有している。したがって、加熱部の周縁部からの曇りの発生が抑制され、より曇りの発生を抑制することができる。 With such a configuration, in the light-transmissive film heater, the temperature of the outer region located radially outside with respect to the center line of the detection surface of the heating portion is closer to the center of the detection surface than the outer region of the heating portion. It has a temperature distribution higher than that of the region located at. Therefore, the generation of fogging from the peripheral portion of the heating unit is suppressed, and the generation of fogging can be further suppressed.
 また、本開示の他の観点によれば、光学装置は、光透過性を有する光学窓と隣接して配置され光学窓を加熱する加熱部を有する光透過性フィルムヒータと、所定領域を発熱させる発熱部を備えている。また、光透過性フィルムヒータは、加熱部において光学窓の所定領域の中心線を中心とする径方向外側に配置された第1電極と、加熱部において第1電極とともに光学窓の所定領域を両側から挟むように配置された第2電極と、を有し、加熱部は、第1電極と第2電極との間の電位差に応じて発熱する第1発熱領域を有し、発熱部は、第1発熱領域よりも光学窓の所定領域の中心線を中心とする径方向外側に位置する外側領域を発熱させる。 Further, according to another aspect of the present disclosure, an optical device includes a light-transmissive film heater having a heating unit disposed adjacent to a light-transmissive optical window to heat the optical window, and heats a predetermined area. Equipped with a heating part. In addition, the light-transmitting film heater includes a first electrode disposed radially outside the center line of a predetermined region of the optical window in the heating unit, and a predetermined region of the optical window together with the first electrode in the heating unit on both sides. And a second electrode arranged so as to be sandwiched between the first heating region and the second electrode, the heating unit has a first heating region that generates heat according to a potential difference between the first electrode and the second electrode, and the heating unit is Heat is generated in the outer region located radially outside the center line of the predetermined region of the optical window rather than the one heat generation region.
 このような構成によれば、加熱部は、第1電極と第2電極との間の電位差に応じて発熱する第1発熱領域を有し、発熱部は、第1発熱領域よりも光学窓の所定領域の中心線を中心とする径方向外側に位置する外側領域を発熱させる。したがって、加熱部の周縁部からの曇りの発生が抑制され、より曇りの発生を抑制することができる。 According to such a configuration, the heating section has the first heating area that generates heat in accordance with the potential difference between the first electrode and the second electrode, and the heating section is located closer to the optical window than the first heating area. Heat is generated in the outer region located radially outside of the center line of the predetermined region. Therefore, the generation of fogging from the peripheral portion of the heating unit is suppressed, and the generation of fogging can be further suppressed.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that the reference numerals in parentheses attached to the respective components and the like indicate an example of the correspondence relationship between the components and the like and specific components and the like described in the embodiments described later.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that the reference numerals in parentheses attached to the respective components and the like indicate an example of the correspondence relationship between the components and the like and specific components and the like described in the embodiments described later.
第1実施形態に係る光学装置の構成を示した図である。It is a figure showing composition of an optical device concerning a 1st embodiment. 第1実施形態に係る光学装置の光透過性フィルムヒータの構成を示した図である。It is the figure which showed the structure of the transparent film heater of the optical device which concerns on 1st Embodiment. 第2実施形態に係る光学装置の光透過性フィルムヒータの構成を示した図である。It is the figure which showed the structure of the transparent film heater of the optical device which concerns on 2nd Embodiment. 第2実施形態に係る光学装置の発熱領域を示した図である。It is a figure showing a heat generation field of an optical device concerning a 2nd embodiment. 第3実施形態に係る光学装置の光透過性フィルムヒータの構成を示した図である。It is the figure which showed the structure of the transparent film heater of the optical device which concerns on 3rd Embodiment. 第4実施形態に係る光学装置の光透過性フィルムヒータの構成を示した図である。It is a figure showing composition of a transparent film heater of an optical device concerning a 4th embodiment. 第5実施形態に係る光学装置の光透過性フィルムヒータの構成を示した図である。It is the figure which showed the structure of the transparent film heater of the optical apparatus which concerns on 5th Embodiment. 第6実施形態に係る光学装置の光透過性フィルムヒータの構成を示した図である。It is the figure which showed the structure of the transparent film heater of the optical apparatus which concerns on 6th Embodiment. 第7実施形態に係る光学装置の光透過性フィルムヒータの構成を示した図である。It is the figure which showed the structure of the transparent film heater of the optical device which concerns on 7th Embodiment. 第8実施形態に係る光学装置の光透過性フィルムヒータの構成を示した図である。It is the figure which showed the structure of the transparent film heater of the optical device which concerns on 8th Embodiment. 第9実施形態に係る光学装置の光透過性フィルムヒータの構成を示した図である。It is the figure which showed the structure of the transparent film heater of the optical device which concerns on 9th Embodiment. 第10実施形態に係る光学装置の光透過性フィルムヒータの構成を示した図である。It is the figure which showed the structure of the transparent film heater of the optical device which concerns on 10th Embodiment.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, an embodiment of the present disclosure will be described based on the drawings. In the following respective embodiments, the same or equivalent parts are designated by the same reference numerals in the drawings.
 (第1実施形態)
 第1実施形態に係る光学装置について図1~図2を用いて説明する。図1に示すように、光学装置1は、カメラ40、光透過性フィルムヒータ30および制御部50を備えている。本実施形態の光学装置1は、カメラ40により画像を撮影する。
(First embodiment)
The optical device according to the first embodiment will be described with reference to FIGS. As shown in FIG. 1, the optical device 1 includes a camera 40, a light transmissive film heater 30, and a controller 50. The optical device 1 of the present embodiment captures an image with the camera 40.
 カメラ40は、光学窓42およびセンサ部41を備えている。面状の光学窓42には、光透過性を有する検知面43が設けられている。検知面43の中心線CLは、面状の光学窓42に対して垂直となっている。 The camera 40 includes an optical window 42 and a sensor unit 41. The planar optical window 42 is provided with a light-transmissive detection surface 43. The center line CL of the detection surface 43 is perpendicular to the planar optical window 42.
 センサ部41は、検知面43を通過した光を感知する。センサ部41は、CCD(Charged-Coupled Devices)やCMOS(Complementary Metal-Oxide-Semiconductor)等のイメージセンサにより構成されている。カメラ40は、センサ部41により撮影された画像を制御部50に送出する。 The sensor unit 41 senses the light that has passed through the detection surface 43. The sensor unit 41 includes an image sensor such as a CCD (Charged-Coupled Devices) or a CMOS (Complementary Metal-Oxide-Semiconductor). The camera 40 sends the image captured by the sensor unit 41 to the control unit 50.
 光透過性フィルムヒータ30は、第1電極31、第2電極32、加熱部35および熱線ヒータ38を有している。第1電極31および第2電極32は、導電性を有する金属によって構成されている。第1電極31および第2電極32は、それぞれ直線形状を成している。第1電極31および第2電極32は、加熱部35の一面に印刷等によって形成されている。第1電極31および第2電極32は、検知面43を避けるように配置されている。具体的には、第1電極31および第2電極32は、検知面43の中心線CLを中心とする径方向外側から検知面43を挟むように配置されている。第1電極31および第2電極32は、それぞれ制御部50に接続されている。 The light-transmissive film heater 30 has a first electrode 31, a second electrode 32, a heating unit 35, and a heat ray heater 38. The first electrode 31 and the second electrode 32 are made of a conductive metal. The first electrode 31 and the second electrode 32 each have a linear shape. The first electrode 31 and the second electrode 32 are formed on one surface of the heating portion 35 by printing or the like. The first electrode 31 and the second electrode 32 are arranged so as to avoid the detection surface 43. Specifically, the first electrode 31 and the second electrode 32 are arranged so as to sandwich the detection surface 43 from the outside in the radial direction around the center line CL of the detection surface 43. The first electrode 31 and the second electrode 32 are each connected to the control unit 50.
 加熱部35は、光学窓42のセンサ部41と対向する面と反対面と隣接して配置されている。すなわち、加熱部35は、検知面43を有する光学窓42と隣接して配置され光学窓42を加熱する。 The heating unit 35 is arranged adjacent to the surface of the optical window 42 facing the sensor unit 41 and the surface opposite thereto. That is, the heating unit 35 is arranged adjacent to the optical window 42 having the detection surface 43 and heats the optical window 42.
 加熱部35は、例えば、透明導電膜フィルムによって構成することができる。第1電極31および第2電極32を介して透明導電膜フィルムに通電することによって透明導電膜フィルムが発熱する。加熱部35の厚さは、均一となっている。また、加熱部35は、均質とされている。 The heating unit 35 can be made of, for example, a transparent conductive film. By supplying electricity to the transparent conductive film through the first electrode 31 and the second electrode 32, the transparent conductive film generates heat. The heating portion 35 has a uniform thickness. Moreover, the heating part 35 is made homogeneous.
 熱線ヒータ38は、検知面43の径方向外側の外側領域に配置されている。熱線ヒータ38は、加熱部35の周縁部に沿うように形成されている。熱線ヒータ38は、線状を成している。熱線ヒータ38は、該熱線ヒータ38に電流が流れたときに生じるジュール熱によって発熱する。 The heat wire heater 38 is arranged in the outer area on the outer side in the radial direction of the detection surface 43. The hot wire heater 38 is formed along the peripheral portion of the heating unit 35. The heat wire heater 38 has a linear shape. The hot wire heater 38 generates heat due to Joule heat generated when a current flows through the hot wire heater 38.
 光透過性フィルムヒータ30は、加熱部35の周縁部に沿うように熱線ヒータ38が形成され、加熱部35における検知面43の径方向外側の外側領域の温度が、加熱部35における外側領域より検知面43の中心側の領域よりも高くなる温度分布を有している。 In the light-transmitting film heater 30, the heat ray heater 38 is formed along the peripheral portion of the heating unit 35, and the temperature of the outer region of the heating unit 35 on the radially outer side of the detection surface 43 is higher than that of the outer region of the heating unit 35. It has a temperature distribution that is higher than the area on the center side of the detection surface 43.
 また、本実施形態の光学装置1は、光透過性を有する検知面43を通過した光を感知するセンサ部41を備えている。また、検知面43を有する光学窓42と隣接して配置され光学窓42を加熱する加熱部35を有する光透過性フィルムヒータ30と、所定領域を発熱させる発熱部としての熱線ヒータ38を備えている。 Further, the optical device 1 of the present embodiment includes the sensor unit 41 that senses the light that has passed through the light-transmissive detection surface 43. In addition, a light-transmissive film heater 30 having a heating unit 35 which is arranged adjacent to the optical window 42 having the detection surface 43 and heats the optical window 42, and a heat ray heater 38 as a heat generating unit which heats a predetermined area are provided. There is.
 また、光透過性フィルムヒータ30は、加熱部35において検知面43の中心線を中心とする径方向外側に配置された第1電極31と、加熱部35において第1電極31とともに検知面43を両側から挟むように配置された第2電極32と、を有している。また、加熱部35は、第1電極31と第2電極32との間の電位差に応じて発熱する第1発熱領域E1を有している。そして、発熱部としての熱線ヒータ38は、第1発熱領域E1よりも検知面43の中心線CLを中心とする径方向外側に位置する外側領域を発熱させる。 In addition, the light-transmissive film heater 30 includes the first electrode 31 arranged radially outside the center line of the detection surface 43 in the heating unit 35 and the detection surface 43 together with the first electrode 31 in the heating unit 35. And a second electrode 32 arranged so as to be sandwiched from both sides. The heating unit 35 also has a first heat generation region E1 that generates heat according to the potential difference between the first electrode 31 and the second electrode 32. Then, the heat ray heater 38 as the heat generating portion heats the outer area located radially outside the first heat generating area E1 with the center line CL of the detection surface 43 as the center.
 制御部50は、CPU、メモリ、I/O等を備えたコンピュータとして構成されており、CPUは、メモリに記憶されたプログラムに従って各種処理を行う。 The control unit 50 is configured as a computer including a CPU, a memory, an I / O, etc., and the CPU performs various processes according to a program stored in the memory.
 制御部50の処理としては、例えば、カメラ40から入力される画像に基づいて検知面43に曇りが生じたことを判定すると、光透過性フィルムヒータ30の第1電極31と第2電極32との間に所定電圧を印加し、熱線ヒータ38への通電を開始する処理がある。 As the processing of the control unit 50, for example, when it is determined that the detection surface 43 is fogged based on the image input from the camera 40, the first electrode 31 and the second electrode 32 of the light transmissive film heater 30 are detected. There is a process of applying a predetermined voltage during the period and starting energization of the hot wire heater 38.
 制御部50によって光透過性フィルムヒータ30の第1電極31と第2電極32との間に所定電圧が印加されると加熱部35が発熱する。さらに、制御部50によって熱線ヒータ38への通電が開始されると熱線ヒータ38が発熱する。熱線ヒータ38は、検知面43の中心線を中心とする径方向外側の前記外側領域を加熱する。 When the control unit 50 applies a predetermined voltage between the first electrode 31 and the second electrode 32 of the light transmissive film heater 30, the heating unit 35 generates heat. Further, when the controller 50 starts energizing the hot wire heater 38, the hot wire heater 38 generates heat. The heat wire heater 38 heats the outer area radially outside of the center line of the detection surface 43.
 熱線ヒータ38は、加熱部35の周縁部に沿うように形成されており、加熱部35における検知面43の径方向外側の外側領域の温度が、加熱部35における外側領域より検知面43の中心側の領域よりも高くなる温度分布を有している。これにより、加熱部35の周縁部からの曇りの発生が抑制される。 The hot wire heater 38 is formed along the peripheral portion of the heating unit 35, and the temperature of the outer region of the heating unit 35 on the outer side in the radial direction of the detection surface 43 is higher than that of the outer region of the heating unit 35 at the center of the detection surface 43. It has a temperature distribution that is higher than the side region. As a result, generation of fogging from the peripheral portion of the heating unit 35 is suppressed.
 以上、説明したように、本実施形態の光学装置は、光透過性を有する検知面43を通過した光を感知するセンサ部41と、を備えている。また、検知面を有する光学窓42と隣接して配置され光学窓を加熱する加熱部35を有する光透過性フィルムヒータ30を備えている。そして、光透過性フィルムヒータ30は、加熱部35における検知面43の中心線CLを中心とする径方向外側に位置する外側領域の温度が、加熱部35における外側領域より検知面の中心側に位置する領域よりも高くなる温度分布を有している。 As described above, the optical device of the present embodiment includes the sensor unit 41 that senses the light that has passed through the light-transmissive detection surface 43. Further, the light-transmitting film heater 30 is provided which has a heating unit 35 which is arranged adjacent to the optical window 42 having a detection surface and heats the optical window. Further, in the light-transmitting film heater 30, the temperature of the outer region of the heating unit 35, which is located radially outside the center line CL of the detection surface 43, is closer to the center of the detection surface than the outer region of the heating unit 35. It has a temperature distribution that is higher than the area in which it is located.
 上記した構成によれば、光透過性フィルムヒータ30は、加熱部35における検知面43の中心線CLを中心とする径方向外側に位置する外側領域の温度が、加熱部35における外側領域より検知面43の中心側に位置する領域よりも高くなる温度分布を有している。したがって、加熱部35の周縁部からの曇りの発生が抑制され、より曇りの発生を抑制することができる。 According to the above configuration, in the light transmissive film heater 30, the temperature of the outer region located radially outside the center line CL of the detection surface 43 of the heating unit 35 is detected from the outer region of the heating unit 35. It has a temperature distribution that is higher than the region located on the center side of the surface 43. Therefore, the generation of fogging from the peripheral portion of the heating unit 35 is suppressed, and the generation of fogging can be further suppressed.
 また、光透過性フィルムヒータ30は、検知面43の中心線を中心とする径方向外側の外側領域を加熱する熱線ヒータ38を備えている。 Further, the light-transmissive film heater 30 is provided with a heat ray heater 38 that heats an outer area on the outer side in the radial direction around the center line of the detection surface 43.
 このように、光透過性フィルムヒータ30は、検知面43の中心線CLを中心とする径方向外側の外側領域を加熱する熱線ヒータ38を備えることができる。 As described above, the light-transmissive film heater 30 can include the hot wire heater 38 that heats the outer area on the outer side in the radial direction around the center line CL of the detection surface 43.
 また、本実施形態の光学装置1は、光透過性を有する光学窓42と隣接して配置され光学窓42を加熱する加熱部35を有する光透過性フィルムヒータ30と、所定領域を発熱させる発熱部として熱線ヒータ38を備えている。 Further, the optical device 1 of the present embodiment includes a light-transmissive film heater 30 having a heating unit 35 arranged adjacent to the light-transmissive optical window 42 for heating the optical window 42, and heat generation for heating a predetermined area. A hot wire heater 38 is provided as a part.
 また、光透過性フィルムヒータ30は、加熱部35において光学窓42の所定領域の中心線を中心とする径方向外側に配置された第1電極31を有している。また、加熱部35において第1電極31とともに光学窓42の所定領域を両側から挟むように配置された第2電極32と、を有している。また、加熱部35は、第1電極31と第2電極32との間の電位差に応じて発熱する第1発熱領域E1を有している。そして、熱線ヒータ38は、第1発熱領域E1よりも光学窓42の所定領域の中心線を中心とする径方向外側に位置する外側領域を発熱させる。なお、光学窓42の所定領域の中心線は、検知面43の中心線CLと一致している。 Further, the light-transmissive film heater 30 has a first electrode 31 arranged radially outside of the heating section 35 with respect to the center line of a predetermined region of the optical window 42. In addition, the heating unit 35 includes the first electrode 31 and the second electrode 32 that is arranged so as to sandwich a predetermined region of the optical window 42 from both sides. The heating unit 35 also has a first heat generation region E1 that generates heat according to the potential difference between the first electrode 31 and the second electrode 32. Then, the heat ray heater 38 causes the outer region located radially outside of the first heat generating region E1 with the center line of the predetermined region of the optical window 42 as the center. The center line of the predetermined area of the optical window 42 coincides with the center line CL of the detection surface 43.
 このような構成によれば、加熱部35は、第1電極31と第2電極32との間の電位差に応じて発熱する第1発熱領域E1を有している。そして、発熱部としての熱線ヒータ38は、第1発熱領域E1よりも光学窓42の所定領域の中心線CLを中心とする径方向外側に位置する外側領域を発熱させるので、加熱部35の周縁部からの曇りの発生が抑制され、より曇りの発生を抑制することができる。 According to such a configuration, the heating unit 35 has the first heat generation area E1 that generates heat according to the potential difference between the first electrode 31 and the second electrode 32. Then, the heat ray heater 38 as a heat generating portion heats the outer region located radially outside the center line CL of the predetermined region of the optical window 42 with respect to the first heat generating region E1, so that the peripheral edge of the heating portion 35. The generation of fogging from the part is suppressed, and the generation of fogging can be further suppressed.
 (第2実施形態)
 第2実施形態に係る光学装置1について図3~図4を用いて説明する。本実施形態の光学装置1は、第1電極31~第4電極34と、加熱部35を備えている。
(Second embodiment)
The optical device 1 according to the second embodiment will be described with reference to FIGS. 3 to 4. The optical device 1 of the present embodiment includes first to fourth electrodes 31 to 34 and a heating unit 35.
 第1電極31は、加熱部35における検知面43の中心線CLを中心とする径方向外側に配置されている。第2電極32は、加熱部35において第1電極31とともに検知面43を両側から挟むように配置されている。 The first electrode 31 is arranged radially outside the center line CL of the detection surface 43 of the heating unit 35. The second electrode 32 is arranged in the heating unit 35 so as to sandwich the detection surface 43 from both sides together with the first electrode 31.
 また、第3電極33は、加熱部35において第1電極31側より検知面43の径方向外側に配置されている。第4電極34は、加熱部35において第2電極32側より検知面43の径方向外側に配置されている。第1電極31~第4電極34は、それぞれ直線形状を成している。また、第1電極31~第4電極34は、互いに平行となっている。 Further, the third electrode 33 is arranged radially outside the detection surface 43 from the first electrode 31 side in the heating section 35. The fourth electrode 34 is arranged radially outward of the detection surface 43 with respect to the second electrode 32 side in the heating section 35. The first electrode 31 to the fourth electrode 34 each have a linear shape. The first electrode 31 to the fourth electrode 34 are parallel to each other.
 また、第1電極31と第3電極33との間の間隔は、第2電極32と第4電極34との間の間隔と同じになっている。また、第1電極31と第3電極33との間の間隔と、第2電極32と第4電極34との間の間隔は、それぞれ第1電極31と第2電極32との間の間隔よりも短くなっている。 Also, the distance between the first electrode 31 and the third electrode 33 is the same as the distance between the second electrode 32 and the fourth electrode 34. In addition, the distance between the first electrode 31 and the third electrode 33 and the distance between the second electrode 32 and the fourth electrode 34 are smaller than the distance between the first electrode 31 and the second electrode 32, respectively. Is also getting shorter.
 本実施形態では、第1電極31の電位が0ボルト、第2電極32の電位が12ボルト、第3電極33の電位が12ボルト、第4電極34の電位が0ボルトに制御される。 In this embodiment, the potential of the first electrode 31 is controlled to 0 volt, the potential of the second electrode 32 is controlled to 12 volt, the potential of the third electrode 33 is controlled to 12 volt, and the potential of the fourth electrode 34 is controlled to 0 volt.
 加熱部35は、図4に示すように、第1電極31と第2電極32との間の電位差に応じて発熱する第1発熱領域E1を有している。また、加熱部35は、第1電極31と第3電極33との間の電位差に応じて発熱する第2発熱領域E2を有している。また、加熱部35は、第2電極32と第4電極34との間の電位差に応じて発熱する第3発熱領域E3と、を有している。そして、第2発熱領域E2および第3発熱領域E3の発熱温度は、第1発熱領域E1の発熱温度よりも高くなっている。 As shown in FIG. 4, the heating unit 35 has a first heat generation area E1 that generates heat according to the potential difference between the first electrode 31 and the second electrode 32. The heating unit 35 also has a second heat generation area E2 that generates heat according to the potential difference between the first electrode 31 and the third electrode 33. Further, the heating unit 35 has a third heat generation region E3 that generates heat according to the potential difference between the second electrode 32 and the fourth electrode 34. The heat generation temperatures of the second heat generation area E2 and the third heat generation area E3 are higher than the heat generation temperature of the first heat generation area E1.
 このように、光透過性フィルムヒータ30は、加熱部35における検知面43の径方向外側の外側領域の温度が、加熱部35における外側領域より検知面43の中心側の領域よりも高くなる温度分布を有している。したがって、加熱部の周縁部からの曇りの発生が抑制され、より曇りの発生を抑制することができる。 As described above, in the light transmissive film heater 30, the temperature at which the temperature of the outer region of the heating portion 35 on the outer side in the radial direction of the detection surface 43 becomes higher than the temperature of the outer region of the heating portion 35 on the center side of the detection surface 43. Have a distribution. Therefore, the generation of fogging from the peripheral portion of the heating unit is suppressed, and the generation of fogging can be further suppressed.
 また、本実施形態の光透過性フィルムヒータは、加熱部35において検知面43の中心線を中心とする径方向外側に配置された第1電極31を有している。また、加熱部35において第1電極31とともに検知面43を両側から挟むように配置された第2電極32を有している。また、加熱部35において第1電極31側より検知面43の径方向外側に配置された第3電極33を有している。また、加熱部35において第2電極32側より検知面43の径方向外側に配置された第4電極34を有している。 Further, the light transmissive film heater of the present embodiment has the first electrode 31 arranged on the heating portion 35 on the outer side in the radial direction around the center line of the detection surface 43. Further, the heating unit 35 has the second electrode 32 arranged so as to sandwich the detection surface 43 from both sides together with the first electrode 31. In addition, the heating unit 35 has a third electrode 33 arranged radially outside the detection surface 43 from the first electrode 31 side. Further, the heating section 35 has a fourth electrode 34 arranged radially outside the detection surface 43 from the second electrode 32 side.
 また、加熱部35は、第1電極31と第2電極32との間の電位差に応じて発熱する第1発熱領域E1を有している。また、第1電極31と第3電極33との間の電位差に応じて発熱する第2発熱領域E2を有している。また、第2電極32と第4電極34との間の電位差に応じて発熱する第3発熱領域E3を有している。そして、発熱部は、第2発熱領域E2および第3発熱領域E3を外側領域として発熱させる。 The heating unit 35 also has a first heat generation region E1 that generates heat according to the potential difference between the first electrode 31 and the second electrode 32. Further, it has a second heat generation region E2 that generates heat according to the potential difference between the first electrode 31 and the third electrode 33. Further, it has a third heat generation region E3 that generates heat according to the potential difference between the second electrode 32 and the fourth electrode 34. Then, the heat generating portion heats the second heat generating area E2 and the third heat generating area E3 as outer areas.
 このような構成によれば、発熱部は、第2発熱領域E2および第3発熱領域E3を外側領域として発熱させるので、加熱部35の周縁部からの曇りの発生が抑制され、より曇りの発生を抑制することができる。 According to such a configuration, the heat generating portion heats the second heat generating area E2 and the third heat generating area E3 as outer areas, so that generation of fogging from the peripheral portion of the heating portion 35 is suppressed, and more fogging occurs. Can be suppressed.
 本実施形態では、上記第1実施形態と共通の構成から奏される同様の効果を上記第1実施形態と同様に得ることができる。 In the present embodiment, the same effect as that obtained from the configuration common to the first embodiment can be obtained similarly to the first embodiment.
 (第3実施形態)
 第3実施形態に係る光学装置1について図5を用いて説明する。上記第2実施形態の光学装置1は、第1電極31~第4電極34が同一平面上に配置されている。これに対し、本実施形態の光学装置1は、第1電極31と第3電極33が、加熱部35における厚さ方向の異なる位置に配置され、さらに、第2電極32と第4電極34が、加熱部35における厚さ方向の異なる位置に配置されている。
(Third Embodiment)
The optical device 1 according to the third embodiment will be described with reference to FIG. In the optical device 1 of the second embodiment, the first electrode 31 to the fourth electrode 34 are arranged on the same plane. On the other hand, in the optical device 1 of the present embodiment, the first electrode 31 and the third electrode 33 are arranged at different positions in the thickness direction in the heating section 35, and the second electrode 32 and the fourth electrode 34 are further arranged. The heating units 35 are arranged at different positions in the thickness direction.
 加熱部35は、X軸とY軸によって規定されるX-Y平面に沿って拡がる薄板状に形成されている。加熱部35は、X-Y平面と直交するZ軸方向に厚さを有する。 The heating unit 35 is formed in a thin plate shape that extends along the XY plane defined by the X axis and the Y axis. The heating unit 35 has a thickness in the Z-axis direction orthogonal to the XY plane.
 加熱部35の一面には保護層36が配置され、加熱部35の反対面には保護層37が配置されている。 A protective layer 36 is arranged on one surface of the heating unit 35, and a protective layer 37 is arranged on the opposite surface of the heating unit 35.
 加熱部35の保護層37側の面には、第1電極31および第2電極32が配置されており、加熱部35の保護層36側の面には、第3電極33および第4電極34が配置されている。 The first electrode 31 and the second electrode 32 are arranged on the surface of the heating unit 35 on the protective layer 37 side, and the third electrode 33 and the fourth electrode 34 are arranged on the surface of the heating unit 35 on the protective layer 36 side. Are arranged.
 すなわち、第1電極31と第2電極32は、加熱部35における厚さ方向の同じ位置に配置されている。また、第1電極31と第3電極33は、加熱部35における厚さ方向の異なる位置に配置され、第2電極32と第4電極34は、加熱部35における厚さ方向の異なる位置に配置されている。 That is, the first electrode 31 and the second electrode 32 are arranged at the same position in the heating portion 35 in the thickness direction. The first electrode 31 and the third electrode 33 are arranged at different positions in the thickness direction of the heating section 35, and the second electrode 32 and the fourth electrode 34 are arranged at different positions of the heating section 35 in the thickness direction. Has been done.
 そして、第1電極31と第3電極33との間の電位差に応じて発熱する発熱領域と、第2電極32と第4電極34との間の電位差に応じて発熱する発熱領域は、第1電極31と第2電極32との間の電位差に応じて発熱する発熱領域よりも発熱温度が高くなっている。 The heat generating area that generates heat according to the potential difference between the first electrode 31 and the third electrode 33 and the heat generating area that generates heat according to the potential difference between the second electrode 32 and the fourth electrode 34 are the first The heat generation temperature is higher than the heat generation region that generates heat according to the potential difference between the electrode 31 and the second electrode 32.
 このように、光透過性フィルムヒータ30は、加熱部35における検知面43の径方向外側の外側領域の温度が、加熱部35における外側領域より検知面43の中心側の領域よりも高くなる温度分布を有している。したがって、加熱部の周縁部からの曇りの発生が抑制され、より曇りの発生を抑制することができる。 As described above, in the light transmissive film heater 30, the temperature at which the temperature of the outer region of the heating portion 35 on the outer side in the radial direction of the detection surface 43 becomes higher than the temperature of the outer region of the heating portion 35 on the center side of the detection surface 43. Have a distribution. Therefore, the generation of fogging from the peripheral portion of the heating unit is suppressed, and the generation of fogging can be further suppressed.
 また、本実施形態の光透過性フィルムヒータは、加熱部35において第1電極31側より検知面43の径方向外側に配置された第3電極33を有している。また、加熱部35において第2電極32側より検知面43の径方向外側に配置された第4電極34を有している。 Further, the light transmissive film heater of the present embodiment has the third electrode 33 arranged in the heating portion 35 on the outer side in the radial direction of the detection surface 43 from the first electrode 31 side. Further, the heating section 35 has a fourth electrode 34 arranged radially outside the detection surface 43 from the second electrode 32 side.
 また、加熱部35は、第1電極31と第2電極32との間の電位差に応じて発熱する第1発熱領域E1を有している。また、第1電極31と第3電極33との間の電位差に応じて発熱する第2発熱領域E2を有している。また、第2電極32と第4電極34との間の電位差に応じて発熱する第3発熱領域E3を有している。 The heating unit 35 also has a first heat generation region E1 that generates heat according to the potential difference between the first electrode 31 and the second electrode 32. Further, it has a second heat generation region E2 that generates heat according to the potential difference between the first electrode 31 and the third electrode 33. Further, it has a third heat generation region E3 that generates heat according to the potential difference between the second electrode 32 and the fourth electrode 34.
 また、第1電極31と第2電極32は、加熱部35における厚さ方向の同じ位置に配置されている。また、第1電極31と第3電極33は、加熱部35における厚さ方向の異なる位置に配置され、第2電極32と第4電極34は、加熱部35における厚さ方向の異なる位置に配置されている。そして、発熱部は、第2発熱領域E2および第3発熱領域E3を外側領域として発熱させる。 Further, the first electrode 31 and the second electrode 32 are arranged at the same position in the thickness direction of the heating section 35. The first electrode 31 and the third electrode 33 are arranged at different positions in the thickness direction of the heating section 35, and the second electrode 32 and the fourth electrode 34 are arranged at different positions of the heating section 35 in the thickness direction. Has been done. Then, the heat generating portion heats the second heat generating area E2 and the third heat generating area E3 as outer areas.
 このような構成によれば、発熱部は、第2発熱領域E2および第3発熱領域E3を外側領域として発熱させるので、加熱部35の周縁部からの曇りの発生が抑制され、より曇りの発生を抑制することができる。 According to such a configuration, the heat generating portion heats the second heat generating area E2 and the third heat generating area E3 as outer areas, so that generation of fogging from the peripheral portion of the heating portion 35 is suppressed, and more fogging occurs. Can be suppressed.
 本実施形態では、上記第1実施形態と共通の構成から奏される同様の効果を上記第1実施形態と同様に得ることができる。 In the present embodiment, the same effect as that obtained from the configuration common to the first embodiment can be obtained similarly to the first embodiment.
 また、本実施形態の光透過性フィルムヒータ30は、第1電極31と第3電極33が、加熱部35における厚さ方向の異なる位置に配置されるとともに、第2電極32と第4電極34が、加熱部35における厚さ方向の異なる位置に配置されている。すなわち、各第1電極31~第4電極を立体的に配置されている。したがって、加熱部35の省スペース化が可能である。 Further, in the light transmissive film heater 30 of the present embodiment, the first electrode 31 and the third electrode 33 are arranged at different positions in the thickness direction in the heating section 35, and the second electrode 32 and the fourth electrode 34 are arranged. Are arranged at different positions in the heating portion 35 in the thickness direction. That is, each of the first electrode 31 to the fourth electrode is three-dimensionally arranged. Therefore, the space of the heating unit 35 can be saved.
 (第4実施形態)
 第4実施形態に係る光学装置1について図6を用いて説明する。本実施形態の光学装置1は、第1電極31~第4電極34と、X-Y平面方向に拡がる加熱部35を有する光透過性フィルムヒータ30を備えている。
(Fourth Embodiment)
The optical device 1 according to the fourth embodiment will be described with reference to FIG. The optical device 1 according to the present embodiment includes the first electrode 31 to the fourth electrode 34, and the light-transmissive film heater 30 having the heating portion 35 extending in the XY plane direction.
 第1電極31は、加熱部35における検知面43の中心線CLを中心とする径方向外側に配置されている。第2電極32は、加熱部35において第1電極31とともに検知面43を両側から挟むように配置されている。 The first electrode 31 is arranged radially outside the center line CL of the detection surface 43 of the heating unit 35. The second electrode 32 is arranged in the heating unit 35 so as to sandwich the detection surface 43 from both sides together with the first electrode 31.
 また、第3電極33は、加熱部35において第1電極31側より検知面43の径方向外側に配置されている。第4電極34は、加熱部35において第2電極32側より検知面43の径方向外側に配置されている。第1電極31~第4電極34は、それぞれL字形状を成している。 Further, the third electrode 33 is arranged radially outside the detection surface 43 from the first electrode 31 side in the heating section 35. The fourth electrode 34 is arranged radially outward of the detection surface 43 with respect to the second electrode 32 side in the heating section 35. The first electrode 31 to the fourth electrode 34 each have an L shape.
 また、第1電極31と第3電極33との間の間隔は、第2電極32と第4電極34との間の間隔と同じになっている。また、第1電極31と第3電極33との間の間隔と、第2電極32と第4電極34との間の間隔は、それぞれ第1電極31と第2電極32との間の間隔よりも短くなっている。 Also, the distance between the first electrode 31 and the third electrode 33 is the same as the distance between the second electrode 32 and the fourth electrode 34. In addition, the distance between the first electrode 31 and the third electrode 33 and the distance between the second electrode 32 and the fourth electrode 34 are smaller than the distance between the first electrode 31 and the second electrode 32, respectively. Is also getting shorter.
 本実施形態では、第1電極31の電位が0ボルト、第2電極32の電位が12ボルト、第3電極33の電位が12ボルト、第4電極34の電位が0ボルトに制御される。 In this embodiment, the potential of the first electrode 31 is controlled to 0 volt, the potential of the second electrode 32 is controlled to 12 volt, the potential of the third electrode 33 is controlled to 12 volt, and the potential of the fourth electrode 34 is controlled to 0 volt.
 加熱部35は、第1電極31と第2電極32との間の電位差に応じて発熱する第1加熱部351を有している。また、加熱部35は、第1電極31と第3電極33との間の電位差に応じて発熱する第2加熱部352を有している。また、加熱部35は、第2電極32と第4電極34との間の電位差に応じて発熱する第3加熱部353と、を有している。第2加熱部352および第3加熱部353は、それぞれL字形状を成している。また、第2加熱部352および第3加熱部353によりU字形状の加熱部が構成されている。そして、第2加熱部352および第3加熱部353は、第1加熱部351を囲むように配置されている。なお、図6では、第2加熱部352および第3加熱部353をハッチングで示してある。 The heating unit 35 has a first heating unit 351 that generates heat according to the potential difference between the first electrode 31 and the second electrode 32. Further, the heating unit 35 has a second heating unit 352 that generates heat according to the potential difference between the first electrode 31 and the third electrode 33. The heating unit 35 also includes a third heating unit 353 that generates heat according to the potential difference between the second electrode 32 and the fourth electrode 34. The second heating unit 352 and the third heating unit 353 each have an L shape. The second heating unit 352 and the third heating unit 353 form a U-shaped heating unit. The second heating unit 352 and the third heating unit 353 are arranged so as to surround the first heating unit 351. In addition, in FIG. 6, the 2nd heating part 352 and the 3rd heating part 353 are shown by hatching.
 また、第1加熱部351、第2加熱部352および第3加熱部353は、同一材料で構成されている。 The first heating part 351, the second heating part 352, and the third heating part 353 are made of the same material.
 この構成によれば、光透過性フィルムヒータ30は、加熱部35における検知面43の中心線CLを中心とする径方向外側に位置する外側領域の温度が、加熱部35における外側領域より検知面43の中心側に位置する領域よりも高くなる温度分布を有している。したがって、加熱部35の周縁部からの曇りの発生が抑制され、より曇りの発生を抑制することができる。 According to this configuration, in the light-transmissive film heater 30, the temperature of the outer region of the heating unit 35, which is located radially outside the center line CL of the detection face 43, is greater than that of the outer region of the heating unit 35. The temperature distribution is higher than that of the region located on the center side of 43. Therefore, the generation of fogging from the peripheral portion of the heating unit 35 is suppressed, and the generation of fogging can be further suppressed.
 なお、第1電極31と第3電極33との間の間隔と、第2電極32と第4電極34との間の間隔は、それぞれ第1電極31と第2電極32との間の間隔よりも短くなっている。このため、第2加熱部352および第3加熱部353の発熱量が大きくなりすぎてしまい故障等の原因となる可能性がある。 The distance between the first electrode 31 and the third electrode 33 and the distance between the second electrode 32 and the fourth electrode 34 are smaller than the distance between the first electrode 31 and the second electrode 32, respectively. Is also getting shorter. Therefore, the amount of heat generated by the second heating unit 352 and the third heating unit 353 may become excessively large, which may cause a failure or the like.
 そこで、本光学装置1は、第1電極31と第3電極33からみた第2加熱部352の抵抗値および第2電極32と第4電極34からみた第3加熱部353の抵抗値が、第1電極31と第2電極32からみた第1加熱部351の抵抗値よりも小さくなっている。 Therefore, in the optical device 1, the resistance value of the second heating unit 352 viewed from the first electrode 31 and the third electrode 33 and the resistance value of the third heating unit 353 viewed from the second electrode 32 and the fourth electrode 34 are It is smaller than the resistance value of the first heating unit 351 viewed from the first electrode 31 and the second electrode 32.
 具体的には、第2加熱部352および第3加熱部353における厚さ方向の長さは、第1加熱部351における厚さ方向の長さよりも短くなっている。これにより、第2加熱部352および第3加熱部353の抵抗値が、第1加熱部351の抵抗値よりも小さくなり第2加熱部352および第3加熱部353の発熱量が抑制される。 Specifically, the lengths of the second heating part 352 and the third heating part 353 in the thickness direction are shorter than the lengths of the first heating part 351 in the thickness direction. Thereby, the resistance values of the second heating unit 352 and the third heating unit 353 are smaller than the resistance value of the first heating unit 351, and the heat generation amounts of the second heating unit 352 and the third heating unit 353 are suppressed.
 本実施形態では、上記第1実施形態と共通の構成から奏される同様の効果を上記第1実施形態と同様に得ることができる。 In the present embodiment, the same effect as that obtained from the configuration common to the first embodiment can be obtained similarly to the first embodiment.
 (第5実施形態)
 第5実施形態に係る光学装置1について図7を用いて説明する。上記第4実施形態では、第1電極31と第3電極33からみた第2加熱部352の抵抗値および第2電極32と第4電極34からみた第3加熱部353の抵抗値が、第1電極31と第2電極32からみた第1加熱部351の抵抗値よりも大きくなるようにした。具体的には、第2加熱部352および第3加熱部353における厚さ方向の長さが、第1加熱部351における厚さ方向の長さよりも短くなるようにした。
(Fifth Embodiment)
The optical device 1 according to the fifth embodiment will be described with reference to FIG. 7. In the fourth embodiment, the resistance value of the second heating part 352 viewed from the first electrode 31 and the third electrode 33 and the resistance value of the third heating part 353 viewed from the second electrode 32 and the fourth electrode 34 are the first value. The resistance value of the first heating unit 351 as viewed from the electrode 31 and the second electrode 32 is made larger. Specifically, the lengths of the second heating unit 352 and the third heating unit 353 in the thickness direction are shorter than the lengths of the first heating unit 351 in the thickness direction.
 これに対し、本光学装置1は、第1電極31と第3電極33からみた第2加熱部352の抵抗値および第2電極32と第4電極34からみた第3加熱部353の抵抗値が、第1電極31と第2電極32からみた第1加熱部351の抵抗値よりも大きくなっている。具体的には、第2加熱部352および第3加熱部353に、該第2加熱部352および第3加熱部353に流れる電流の電流経路長を長くするための切り欠き3521、3531が形成されている。 On the other hand, in the optical device 1, the resistance value of the second heating unit 352 viewed from the first electrode 31 and the third electrode 33 and the resistance value of the third heating unit 353 viewed from the second electrode 32 and the fourth electrode 34 are , The resistance value of the first heating unit 351 as viewed from the first electrode 31 and the second electrode 32 is larger. Specifically, the second heating unit 352 and the third heating unit 353 are formed with notches 3521 and 3531 for increasing the current path length of the current flowing through the second heating unit 352 and the third heating unit 353. ing.
 なお、図7では、第1電極31~第4電極34、第2加熱部352および第3加熱部353をハッチングで示してある。また、第1加熱部351、第2加熱部352および第3加熱部353は、同一材料で構成されている。 Note that, in FIG. 7, the first electrode 31 to the fourth electrode 34, the second heating unit 352, and the third heating unit 353 are hatched. Moreover, the 1st heating part 351, the 2nd heating part 352, and the 3rd heating part 353 are comprised with the same material.
 本実施形態の光学装置1は、同一材料で膜状の第1加熱部351、第2加熱部352および第3加熱部353を形成する。その後、レーザ加工により第2加熱部352に切り欠き3521を形成するとともに、第3加熱部353に切り欠き3531を形成する。切り欠き3521および切り欠き3531は、それぞれX軸方向に延びるように形成されている。 The optical device 1 of the present embodiment forms the film-shaped first heating unit 351, second heating unit 352, and third heating unit 353 of the same material. After that, the notch 3521 is formed in the second heating portion 352 and the notch 3531 is formed in the third heating portion 353 by laser processing. The notch 3521 and the notch 3531 are formed so as to extend in the X-axis direction.
 切り欠き3521により第1電極31と第3電極33からみた第2加熱部352の抵抗値が大きくなり、切り欠き3531により第2電極32と第4電極34からみた第3加熱部353の抵抗値が大きくなる。 The notch 3521 increases the resistance value of the second heating part 352 viewed from the first electrode 31 and the third electrode 33, and the notch 3531 increases the resistance value of the third heating part 353 viewed from the second electrode 32 and the fourth electrode 34. Grows larger.
 これにより、第1電極31と第3電極33からみた第2加熱部352の抵抗値および第2電極32と第4電極34からみた第3加熱部353の抵抗値が、第1電極31と第2電極32からみた第1加熱部351の抵抗値よりも大きくなる。そして、第2加熱部352および第3加熱部353の発熱量が抑制される。 Accordingly, the resistance value of the second heating unit 352 viewed from the first electrode 31 and the third electrode 33 and the resistance value of the third heating unit 353 viewed from the second electrode 32 and the fourth electrode 34 are the same as those of the first electrode 31 and the third electrode. It becomes larger than the resistance value of the first heating unit 351 viewed from the two electrodes 32. Then, the heat generation amounts of the second heating unit 352 and the third heating unit 353 are suppressed.
 本実施形態では、切り欠き3521および切り欠き3531をX軸方向に延びるように形成したが、回廊構造のように複雑に屈折するように切り欠き3521および切り欠き3531を形成してもよい。 In the present embodiment, the notch 3521 and the notch 3531 are formed so as to extend in the X-axis direction, but the notch 3521 and the notch 3531 may be formed so as to be bent in a complicated manner like a corridor structure.
 (第6実施形態)
 第6実施形態に係る光学装置1について図8を用いて説明する。本実施形態の光学装置1は、第2電極32の一部に、高抵抗の高抵抗発熱部323が形成されている。すなわち、第2電極32は、低抵抗の低抵抗部321と高抵抗の高抵抗発熱部323と、を有している。低抵抗部321および高抵抗発熱部323は、それぞれ線状を成しており、同一の材料によって構成されている。高抵抗発熱部323の線幅は、低抵抗部321の線幅よりも短くなっており、高抵抗発熱部323の電流経路の断面積は、低抵抗部321の電流経路の断面積よりも小さくなっている。これにより、高抵抗発熱部323の抵抗値は、低抵抗部321の抵抗値よりも大きくなっている。
(Sixth Embodiment)
The optical device 1 according to the sixth embodiment will be described with reference to FIG. In the optical device 1 according to the present embodiment, a high resistance high resistance heating portion 323 is formed on a part of the second electrode 32. That is, the second electrode 32 has a low resistance low resistance portion 321 and a high resistance high resistance heating portion 323. The low resistance portion 321 and the high resistance heating portion 323 are linear and are made of the same material. The line width of the high resistance heating part 323 is shorter than the line width of the low resistance part 321, and the cross-sectional area of the current path of the high resistance heating part 323 is smaller than the cross-sectional area of the current path of the low resistance part 321. Has become. As a result, the resistance value of the high resistance heating portion 323 is larger than the resistance value of the low resistance portion 321.
 高抵抗発熱部323は、第1発熱領域E1よりも検知面43の中心線CLを中心とする径方向外側に位置する外側領域に配置され、この外側領域を発熱させる。すなわち、第2電極32の一部である高抵抗発熱部323がヒータとして機能する。 The high-resistance heat generating portion 323 is arranged in an outer region located radially outside of the first heat generating region E1 around the center line CL of the detection surface 43, and heats the outer region. That is, the high resistance heating part 323 which is a part of the second electrode 32 functions as a heater.
 制御部50によって光透過性フィルムヒータ30の第1電極31と第2電極32との間に所定電圧が印加され、第1電極31および第2電極32を介して制御部50を構成している透明導電膜フィルムが通電されると、加熱部35は発熱する。この際、高抵抗発熱部323に電流が流れ、高抵抗発熱部323も発熱する。なお、低抵抗部321は発熱しない。さらに、制御部50によって熱線ヒータ38への通電が開始されると熱線ヒータ38も発熱する。 A predetermined voltage is applied between the first electrode 31 and the second electrode 32 of the transparent film heater 30 by the control unit 50, and the control unit 50 is configured via the first electrode 31 and the second electrode 32. When the transparent conductive film is energized, the heating part 35 generates heat. At this time, a current flows through the high resistance heating portion 323, and the high resistance heating portion 323 also generates heat. The low resistance part 321 does not generate heat. Further, when the controller 50 starts energizing the hot wire heater 38, the hot wire heater 38 also generates heat.
 上記したように、本実施形態の光学装置は、第2電極32の一部がヒータとして機能する。これにより、別部材を用いてヒータを構成する場合と比較して小型化が可能である。 As described above, in the optical device of this embodiment, part of the second electrode 32 functions as a heater. As a result, the size can be reduced as compared with the case where the heater is configured by using another member.
 なお、本実施形態では、第2電極32の一部がヒータとして機能するよう構成したが、第1電極31の一部がヒータとして機能するよう構成してもよい。また、第1電極31および第2電極32の少なくとも一部がヒータとして機能するよう構成してもよい。 In addition, in this embodiment, a part of the second electrode 32 is configured to function as a heater, but a part of the first electrode 31 may be configured to function as a heater. Moreover, you may comprise so that at least one part of the 1st electrode 31 and the 2nd electrode 32 may function as a heater.
 (第7実施形態)
 第7実施形態に係る光学装置1について図9を用いて説明する。本実施形態の光学装置1は、上記第6実施形態の光学装置1に対し、熱線ヒータ38が第1電極31と第2電極32に接続されている点が異なる。また、第2電極32のうちヒータとして機能する高抵抗発熱部323の部位が光透過性を有する光学窓42の周囲の一部に配置されている点も異なる。
(Seventh embodiment)
The optical device 1 according to the seventh embodiment will be described with reference to FIG. The optical device 1 of the present embodiment is different from the optical device 1 of the sixth embodiment in that the heat ray heater 38 is connected to the first electrode 31 and the second electrode 32. Another difference is that the portion of the high resistance heating portion 323 that functions as a heater in the second electrode 32 is arranged in a part of the periphery of the optical window 42 having light transparency.
 熱線ヒータ38は、第1電極31と第2電極32の間に接続されている。すなわち、第1電極31は、熱線ヒータ38の一端に接続され、第2電極32は、熱線ヒータ38の他端に接続されている。 The heat wire heater 38 is connected between the first electrode 31 and the second electrode 32. That is, the first electrode 31 is connected to one end of the heat ray heater 38, and the second electrode 32 is connected to the other end of the heat ray heater 38.
 これによれば、第1電極31と熱線ヒータ38に電圧を供給するための接続部を共通化できるとともに、第2電極32と熱線ヒータ38に電圧を供給するための接続部を共通化できるので、光学装置を小型化することができる。 According to this, the connection portion for supplying a voltage to the first electrode 31 and the heat ray heater 38 can be made common, and the connection portion for supplying a voltage to the second electrode 32 and the heat ray heater 38 can be made common. The optical device can be downsized.
 また、発熱部としての熱線ヒータ38が光透過性を有する光学窓42の周囲の一部を除いて検知面43の周囲を囲むように配置されている。また、第2電極32のうち、ヒータとして機能する高抵抗発熱部323の部位が光透過性を有する光学窓42の周囲の一部に配置されている。 Further, a heat ray heater 38 as a heat generating portion is arranged so as to surround the periphery of the detection surface 43 except for a part of the periphery of the optical window 42 having light transparency. Further, in the second electrode 32, the portion of the high resistance heating portion 323 which functions as a heater is arranged in a part of the periphery of the optical window 42 having light transparency.
 これによれば、第2電極32のうち、ヒータとして機能する高抵抗発熱部323の部位が、熱線ヒータ38が光透過性を有する光学窓42の周囲を囲んでいない部位を発熱させるので、加熱部35の周縁部からの曇りの発生をより抑制することができる。 According to this, in the second electrode 32, the portion of the high resistance heating portion 323 functioning as a heater heats the portion where the heat ray heater 38 does not surround the optical window 42 having the light transmitting property, so that heating is performed. It is possible to further suppress the occurrence of fogging from the peripheral portion of the portion 35.
 (第8実施形態)
 第8実施形態に係る光学装置1について図10を用いて説明する。本実施形態の光学装置1は、上記第1実施形態の光学装置1に対し、熱線ヒータ38が検知面43の周囲を囲んでいる範囲が多くなっている。
(Eighth Embodiment)
The optical device 1 according to the eighth embodiment will be described with reference to FIG. In the optical device 1 of the present embodiment, the range in which the heating wire heater 38 surrounds the periphery of the detection surface 43 is larger than that of the optical device 1 of the first embodiment.
 本実施形態の熱線ヒータ38は、検知面43のほぼ全体を囲むように配置されている。なお、図10において熱線ヒータ38と第2電極32が交差している部位Xにおいては、熱線ヒータ38と第2電極32との間に不図示の絶縁層が配置されており、この絶縁層によって熱線ヒータ38と第2電極32は絶縁されている。 The hot wire heater 38 of the present embodiment is arranged so as to surround almost the entire detection surface 43. In addition, in the portion X where the heat ray heater 38 and the second electrode 32 intersect in FIG. 10, an insulating layer (not shown) is arranged between the heat ray heater 38 and the second electrode 32. The hot wire heater 38 and the second electrode 32 are insulated.
 このように、熱線ヒータ38が検知面43のほぼ全周を囲むように構成することもできる。 In this way, the heat ray heater 38 can be configured so as to surround almost the entire circumference of the detection surface 43.
 (第9実施形態)
 第9実施形態に係る光学装置1について図11を用いて説明する。本実施形態の光学装置1は、上記第1実施形態の光学装置1に対し、熱線ヒータ38の線幅が場所によって異なっている点が異なる。
(9th Embodiment)
The optical device 1 according to the ninth embodiment will be described with reference to FIG. The optical device 1 of the present embodiment is different from the optical device 1 of the first embodiment in that the line width of the heat ray heater 38 differs depending on the location.
 熱線ヒータ38は、第1電極幅を有する第1線幅部381と、第1電極幅よりも線幅の長い第2の電極幅を有する第2線幅部382を有している。第1線幅部381および第2線幅部382は同一の材料を用いて構成されている。 The hot wire heater 38 has a first line width portion 381 having a first electrode width and a second line width portion 382 having a second electrode width that is longer than the first electrode width. The first line width portion 381 and the second line width portion 382 are made of the same material.
 第2線幅部382の方が第1線幅部381よりも熱容量が大きくなるため、第2線幅部382の周囲の温度が第2線幅部382の周囲の温度よりも高くなる。すなわち、第2線幅部382がヒータとして機能する。したがって、加熱部35のうち温度の低い領域に第2線幅部382を形成し、加熱部35のうち温度の高い領域に第1線幅部381を配置することで、加熱部35の温度ムラを抑制することが可能である。 Since the second line width part 382 has a larger heat capacity than the first line width part 381, the temperature around the second line width part 382 becomes higher than the temperature around the second line width part 382. That is, the second line width portion 382 functions as a heater. Therefore, by forming the second line width portion 382 in the low temperature region of the heating unit 35 and arranging the first line width portion 381 in the high temperature region of the heating unit 35, the temperature unevenness of the heating unit 35 can be achieved. Can be suppressed.
 (第10実施形態)
 第10実施形態に係る光学装置1について図12を用いて説明する。本実施形態の光学装置1は、上記第1実施形態の光学装置に対し、熱線ヒータ38が第1電極31と第2電極32に接続されている点と、第1電極31および第2電極32の構造が異なる。
(10th Embodiment)
The optical device 1 according to the tenth embodiment will be described with reference to FIG. The optical device 1 of the present embodiment differs from the optical device of the first embodiment in that the heat ray heater 38 is connected to the first electrode 31 and the second electrode 32, and the first electrode 31 and the second electrode 32. The structure of is different.
 熱線ヒータ38は、第1電極31と第2電極32の間に接続されている。すなわち、第1電極31は、熱線ヒータ38の一端に接続され、第2電極32は、熱線ヒータ38の他端に接続されている。 The heat wire heater 38 is connected between the first electrode 31 and the second electrode 32. That is, the first electrode 31 is connected to one end of the heat ray heater 38, and the second electrode 32 is connected to the other end of the heat ray heater 38.
 これによれば、第1電極31と熱線ヒータ38に電圧を供給するための接続部を共通化できるとともに、第2電極32と熱線ヒータ38に電圧を供給するための接続部を共通化できるので、光学装置を小型化することができる。 According to this, the connection portion for supplying a voltage to the first electrode 31 and the heat ray heater 38 can be made common, and the connection portion for supplying a voltage to the second electrode 32 and the heat ray heater 38 can be made common. The optical device can be downsized.
 また、第1電極31は、低抵抗材料を用いて形成された低抵抗部311と、低抵抗材料よりも高抵抗である高抵抗材料を用いて形成された高抵抗部312を有している。 In addition, the first electrode 31 has a low resistance portion 311 formed of a low resistance material and a high resistance portion 312 formed of a high resistance material having a higher resistance than the low resistance material. .
 また、第2電極32は、低抵抗材料を用いて形成された低抵抗部321と、低抵抗材料よりも高抵抗である高抵抗材料を用いて形成された高抵抗部322を有している。 The second electrode 32 has a low resistance portion 321 formed of a low resistance material and a high resistance portion 322 formed of a high resistance material having a higher resistance than the low resistance material. .
 そして、第1電極31の高抵抗材料を用いて形成された高抵抗部312がヒータとして機能するとともに第32電極の高抵抗材料を用いて形成された高抵抗部312がヒータとして機能する。 The high resistance portion 312 formed using the high resistance material of the first electrode 31 functions as a heater, and the high resistance portion 312 formed using the high resistance material of the 32nd electrode functions as a heater.
 上記したように、抵抗値の異なる材料を用いて第1電極31および第2電極32を構成し、抵抗値の大きな材料を用いて構成された部をヒータとして機能させることができる。 As described above, it is possible to configure the first electrode 31 and the second electrode 32 by using materials having different resistance values, and to make a portion configured by using a material having a large resistance value function as a heater.
 (他の実施形態)
 (1)上記各実施形態では、カメラ40の光学窓42の検知面を光透過性フィルムヒータ30で加熱する例を示した。これに対し、例えば、車両のウィンドウシールドを光学窓42として捉え、この光学窓42の所定領域を光透過性フィルムヒータ30の加熱部35で加熱する構成とすることもできる。
(Other embodiments)
(1) In each of the above-described embodiments, the example in which the light-transmissive film heater 30 heats the detection surface of the optical window 42 of the camera 40 has been shown. On the other hand, for example, the window shield of the vehicle may be regarded as the optical window 42, and a predetermined region of the optical window 42 may be heated by the heating unit 35 of the light transmissive film heater 30.
 (2)本実施形態では、車両周辺の画像を撮影するカメラ40を備えた光学装置1について説明したが、例えば、LIDAR(Laser Imaging Detection and Ranging)と呼ばれる距離センサを備えた光学装置1や、防犯カメラ等を備えた光学装置1として構成することもできる。 (2) In the present embodiment, the optical device 1 including the camera 40 that captures an image around the vehicle has been described. For example, the optical device 1 including a distance sensor called LIDAR (Laser Imaging Detection and Ranging), It can also be configured as the optical device 1 including a security camera or the like.
 (3)上記各実施形態では、光学窓42のセンサ部41と対向する面と反対面と隣接して加熱部35を配置したが、光学窓42のセンサ部41と対向する面と隣接して加熱部35を配置してもよい。 (3) In each of the above-described embodiments, the heating portion 35 is arranged adjacent to the surface of the optical window 42 facing the sensor portion 41 and adjacent to the surface thereof, but adjacent to the surface of the optical window 42 facing the sensor portion 41. You may arrange the heating part 35.
 (4)上記各実施形態では、第1電極31と第3電極33との間の間隔を、第2電極32と第4電極34との間の間隔と同じにしたが、第1電極31と第3電極33との間の間隔を、第2電極32と第4電極34との間の間隔と異なるようにしてもよい。 (4) In each of the above-described embodiments, the distance between the first electrode 31 and the third electrode 33 is the same as the distance between the second electrode 32 and the fourth electrode 34. The distance between the third electrode 33 and the third electrode 33 may be different from the distance between the second electrode 32 and the fourth electrode 34.
 (5)上記第1実施形態では、第1電極31~第2電極32が、それぞれ直線形状を成しており、上記第2~第3実施形態では、第1電極31~第4電極34が、それぞれ直線形状を成している。これに対し、第1電極31~第2電極32、第3電極33~第4電極34を直線形状以外の形状とすることもできる。 (5) In the first embodiment, the first electrode 31 to the second electrode 32 each have a linear shape, and in the second to third embodiments, the first electrode 31 to the fourth electrode 34. , Each has a linear shape. On the other hand, the first electrode 31 to the second electrode 32 and the third electrode 33 to the fourth electrode 34 may have shapes other than the linear shape.
 (6)上記第4~第5実施形態では、第1加熱部351、第2加熱部352および第3加熱部353を、同一材料で構成したが、第2加熱部352および第3加熱部353を、第1加熱部351と異なる材料で構成してもよい。 (6) In the fourth to fifth embodiments described above, the first heating part 351, the second heating part 352, and the third heating part 353 are made of the same material, but the second heating part 352 and the third heating part 353 are used. May be made of a material different from that of the first heating unit 351.
 (7)上記第1実施形態では、カメラ40から入力される画像に基づいて制御部50が検知面43に曇りが生じたことを判定した際に、光透過性フィルムヒータ30の第1電極31と第2電極32との間に所定電圧を印加し、熱線ヒータ38への通電を開始した。 (7) In the first embodiment, when the control unit 50 determines that the detection surface 43 is fogged based on the image input from the camera 40, the first electrode 31 of the light transmissive film heater 30. A predetermined voltage was applied between the second electrode 32 and the second electrode 32 to start energizing the heat wire heater 38.
 これに対し、制御部50が検知面43の両面または片面の環境条件(温度、湿度、輻射量)および加熱したい物体に温度を検出し、検出した環境条件および温度に基づいて検知面43に曇りが生じる条件を算出するようにしてもよい。そして、検知面43に曇りが生じる条件を満たした際に光透過性フィルムヒータ30の第1電極31と第2電極32との間に所定電圧を印加するとともに、熱線ヒータ38への通電を開始するようにしてもよい。 On the other hand, the control unit 50 detects the environmental conditions (temperature, humidity, radiation amount) on both sides or one side of the detection surface 43 and the temperature of the object to be heated, and the detection surface 43 is fogged based on the detected environmental conditions and temperature. You may make it calculate the conditions which occur. Then, when the condition for causing the fogging on the detection surface 43 is satisfied, a predetermined voltage is applied between the first electrode 31 and the second electrode 32 of the light transmissive film heater 30, and energization to the heat ray heater 38 is started. You may do it.
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。 It should be noted that the present disclosure is not limited to the above-described embodiment, and can be modified as appropriate. Further, the above embodiments are not unrelated to each other, and can be appropriately combined unless a combination is obviously impossible. Further, in each of the above-mentioned embodiments, it is needless to say that the elements constituting the embodiment are not necessarily indispensable except when explicitly specified as being indispensable and when it is considered to be indispensable in principle. Yes. Further, in each of the above-mentioned embodiments, when numerical values such as the number of components, numerical values, amounts, ranges, etc. of the embodiments are mentioned, it is clearly limited to a particular number and in principle limited to a specific number. The number is not limited to the specific number, except in the case of being performed. Further, in each of the above-mentioned embodiments, when referring to the material, shape, positional relationship, etc. of the constituent elements, etc., unless specifically stated or in principle limited to a specific material, shape, positional relationship, etc. However, the material, shape, positional relationship, etc. are not limited.
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、本実施形態の光学装置は、光透過性を有する検知面を通過した光を感知するセンサ部と、を備えている。また、検知面を有する光学窓と隣接して配置され光学窓を加熱する加熱部を有する光透過性フィルムヒータを備えている。そして、光透過性フィルムヒータは、加熱部における検知面の中心線を中心とする径方向外側に位置する外側領域の温度が、加熱部における外側領域より検知面の中心側に位置する領域よりも高くなる温度分布を有している。
(Summary)
According to the first aspect shown in part or all of each of the above-described embodiments, the optical device of the present embodiment includes a sensor unit that senses light that has passed through the light-transmissive detection surface. There is. Further, it is provided with a light-transmissive film heater having a heating portion which is arranged adjacent to the optical window having the detection surface and heats the optical window. Then, the light-transmissive film heater has a temperature of an outer region located radially outside with respect to the center line of the detection surface in the heating unit, as compared with a region located closer to the center of the detection surface than the outer region of the heating unit. It has a higher temperature distribution.
 また、第2の観点によれば、光透過性フィルムヒータは、加熱部において検知面の中心線を中心とする径方向外側に配置された第1電極を有している。また、加熱部において第1電極とともに検知面を両側から挟むように配置された第2電極と、加熱部において第1電極側より検知面の径方向外側に配置された第3電極と、を有している。また、加熱部において第2電極側より検知面の径方向外側に配置された第4電極を有している。 Further, according to the second aspect, the light transmissive film heater has the first electrode arranged radially outside the center line of the detection surface in the heating portion. Also, a second electrode is arranged in the heating unit so as to sandwich the detection surface from both sides together with the first electrode, and a third electrode is arranged in the heating unit radially outside the detection surface from the first electrode side. is doing. Further, the heating section has a fourth electrode arranged radially outside the detection surface with respect to the second electrode side.
 そして、加熱部は、第1電極と第2電極との間の電位差に応じて発熱する第1発熱領域と、第1電極と第3電極との間の電位差に応じて発熱する第2発熱領域と、第2電極と第4電極との間の電位差に応じて発熱する第3発熱領域と、を有している。そして、第2発熱領域および第3発熱領域の発熱温度は、第1発熱領域の発熱温度よりも高くなっている。 The heating unit includes a first heating region that generates heat according to the potential difference between the first electrode and the second electrode, and a second heating region that generates heat according to the potential difference between the first electrode and the third electrode. And a third heat generation region that generates heat according to the potential difference between the second electrode and the fourth electrode. The heat generation temperatures of the second heat generation region and the third heat generation region are higher than the heat generation temperature of the first heat generation region.
 したがって、加熱部の周縁部からの曇りの発生が抑制され、より曇りの発生を抑制することができる。 Therefore, it is possible to suppress the occurrence of fogging from the peripheral portion of the heating section, and to further suppress the occurrence of fogging.
 また、第3の観点によれば、第1電極と第2電極は、加熱部における厚さ方向の同じ位置に配置されている。また、第1電極と第3電極は、加熱部における厚さ方向の異なる位置に配置され、第2電極と第4電極は、加熱部における厚さ方向の異なる位置に配置されている。 Also, according to the third aspect, the first electrode and the second electrode are arranged at the same position in the thickness direction in the heating section. The first electrode and the third electrode are arranged at different positions in the thickness direction in the heating section, and the second electrode and the fourth electrode are arranged at different positions in the thickness direction in the heating section.
 そして、第1電極と第3電極との間の電位差に応じて発熱する発熱領域と、第2電極と第4電極との間の電位差に応じて発熱する発熱領域は、第1電極と第2電極との間の電位差に応じて発熱する発熱領域よりも発熱温度が高くなっている。 The heat generating area that generates heat according to the potential difference between the first electrode and the third electrode and the heat generating area that generates heat according to the potential difference between the second electrode and the fourth electrode are the first electrode and the second electrode. The heat generation temperature is higher than the heat generation region that generates heat according to the potential difference between the electrodes.
 すなわち、第1電極~第4電極を立体的に配置されている。したがって、加熱部の省スペース化が可能である。 That is, the first to fourth electrodes are three-dimensionally arranged. Therefore, it is possible to save space in the heating unit.
 また、第4の観点によれば、光透過性フィルムヒータは、検知面の中心線を中心とする径方向外側の外側領域を加熱する熱線ヒータを備えている。 Further, according to the fourth aspect, the light transmissive film heater includes a heat wire heater that heats an outer area on the outer side in the radial direction around the center line of the detection surface.
 このように、光透過性フィルムヒータは、検知面の中心線を中心とする径方向外側の外側領域を加熱する熱線ヒータを備えることができる。 In this way, the light-transmitting film heater can be provided with a heat ray heater that heats the outer area on the radially outer side of the center line of the detection surface.
 また、第5の観点によれば、光透過性フィルムヒータは、加熱部において検知面の中心線を中心とする径方向外側に配置された第1電極を有している。 Further, according to the fifth aspect, the light-transmitting film heater has the first electrode arranged radially outside the center line of the detection surface in the heating section.
 また、加熱部において第1電極とともに検知面を両側から挟むように配置された第2電極と、加熱部において第1電極側より検知面の径方向外側に配置された第3電極と、を有している。また、加熱部において第2電極側より検知面の径方向外側に配置された第4電極を有している。 Also, a second electrode is arranged in the heating unit so as to sandwich the detection surface from both sides together with the first electrode, and a third electrode is arranged in the heating unit radially outside the detection surface from the first electrode side. is doing. Further, the heating section has a fourth electrode arranged radially outside the detection surface with respect to the second electrode side.
 また、加熱部は、第1電極と第2電極との間の電位差に応じて発熱する第1加熱部と、第1電極と第3電極との間の電位差に応じて発熱する第2加熱部と、を有している。 The heating unit includes a first heating unit that generates heat according to a potential difference between the first electrode and the second electrode, and a second heating unit that generates heat according to a potential difference between the first electrode and the third electrode. And have.
 また、第2電極と第4電極との間の電位差に応じて発熱する第3加熱部を有している。そして、第1電極と第3電極からみた第2加熱部の抵抗値および第2電極と第4電極からみた第3加熱部の抵抗値は、第1電極と第2電極からみた第1加熱部の抵抗値よりも大きくなっている。 Also, it has a third heating unit that generates heat according to the potential difference between the second electrode and the fourth electrode. The resistance value of the second heating part viewed from the first electrode and the third electrode and the resistance value of the third heating part viewed from the second electrode and the fourth electrode are the first heating part viewed from the first electrode and the second electrode. Is larger than the resistance value of.
 これにより、第2加熱部および第3加熱部の抵抗値が、第1加熱部の抵抗値よりも大きくなり第2加熱部および第3加熱部の発熱量を抑制することができる。 With this, the resistance value of the second heating part and the third heating part becomes larger than the resistance value of the first heating part, and the heat generation amount of the second heating part and the third heating part can be suppressed.
 また、第6の観点によれば、第2加熱部および第3加熱部は、第1加熱部と同一材料で構成されており、第2加熱部および第3加熱部における厚さ方向の長さは、第1加熱部における厚さ方向の長さよりも短くなっている。 According to a sixth aspect, the second heating part and the third heating part are made of the same material as the first heating part, and the lengths in the thickness direction of the second heating part and the third heating part are the same. Is shorter than the length of the first heating portion in the thickness direction.
 これにより、第2加熱部および第3加熱部の抵抗値が、第1加熱部351の抵抗値よりも大きくなり第2加熱部352および第3加熱部の発熱量を抑制することができる。 With this, the resistance value of the second heating unit and the third heating unit becomes larger than the resistance value of the first heating unit 351, and the heat generation amount of the second heating unit 352 and the third heating unit can be suppressed.
 また、第7の観点によれば、第2加熱部および第3加熱部は、第1加熱部と同一材料で構成されている。また、第2加熱部および第3加熱部の少なくとも一方には、該第2加熱部および第3加熱部の少なくとも一方に流れる電流の電流経路長を長くするための切り欠きが形成されている。 Also, according to the seventh aspect, the second heating part and the third heating part are made of the same material as the first heating part. Further, at least one of the second heating section and the third heating section is provided with a notch for increasing the current path length of the current flowing through at least one of the second heating section and the third heating section.
 これにより、第1電極と第3電極からみた第2加熱部の抵抗値および第2電極と第4電極からみた第3加熱部の抵抗値が、第1電極と第2電極からみた第1加熱部の抵抗値よりも大きくなり第2加熱部および第3加熱部の発熱量を抑制することができる。 As a result, the resistance value of the second heating part viewed from the first electrode and the third electrode and the resistance value of the third heating part viewed from the second electrode and the fourth electrode are the first heating value viewed from the first electrode and the second electrode. It becomes larger than the resistance value of the section, and the heat generation amount of the second heating section and the third heating section can be suppressed.
 また、第8の観点によれば、第2加熱部および第3加熱部は、第1加熱部と異なる材料で構成されている。このように、第2加熱部および第3加熱部を、第1加熱部と異なる材料で構成することもできる。 Also, according to the eighth aspect, the second heating part and the third heating part are made of a material different from that of the first heating part. In this way, the second heating part and the third heating part can be made of a material different from that of the first heating part.
 また、第9の観点によれば、光学装置は、光透過性を有する光学窓と隣接して配置され光学窓を加熱する加熱部を有する光透過性フィルムヒータと、所定領域を発熱させる発熱部を備えている。また、所定領域を発熱させる発熱部を備えている。また、光透過性フィルムヒータは、加熱部において光学窓の所定領域の中心線を中心とする径方向外側に配置された第1電極を有している。また、加熱部において第1電極とともに光学窓の所定領域を両側から挟むように配置された第2電極を有している。また、加熱部は、第1電極と第2電極との間の電位差に応じて発熱する第1発熱領域を有している。また、発熱部は、光学窓の所定領域の中心線を中心とする径方向外側に位置する外側領域を発熱させる。 Further, according to a ninth aspect, an optical device includes a light-transmitting film heater having a heating unit which is disposed adjacent to an optical window having light-transmitting properties and which heats the optical window, and a heating unit which heats a predetermined area. Is equipped with. Further, it is provided with a heat generating portion that heats a predetermined area. Further, the light transmissive film heater has a first electrode arranged radially outside the center line of a predetermined region of the optical window in the heating section. In addition, the heating unit has a second electrode arranged so as to sandwich a predetermined region of the optical window from both sides together with the first electrode. Further, the heating unit has a first heat generation region that generates heat according to the potential difference between the first electrode and the second electrode. Further, the heat generating portion heats an outer region located radially outside with respect to the center line of the predetermined region of the optical window.
 また、第10の観点によれば、光透過性フィルムヒータは、光学窓の所定領域の中心よりも径方向外側の外側領域を加熱する熱線ヒータを備え、発熱部は、熱線ヒータにより構成されている。このように、熱線ヒータにより発熱部を構成することができる。 Further, according to a tenth aspect, the light transmissive film heater includes a heat wire heater that heats an outer area radially outside of a center of a predetermined area of the optical window, and the heat generating portion is configured by the heat wire heater. There is. In this way, the heat generating portion can be configured by the hot wire heater.
 また、第11の観点によれば、光透過性フィルムヒータは、加熱部において第1電極側より光学窓の所定領域の中心線を中心とする径方向外側に配置された第3電極を有している。また、加熱部において第2電極側より光学窓の所定領域の中心線を中心とする径方向外側に配置された第4電極を有している。また、加熱部は、第1発熱領域と、第1電極と第3電極との間の電位差に応じて発熱する第2発熱領域と、を有している。また、第2電極と第4電極との間の電位差に応じて発熱する第3発熱領域を有している。そして、発熱部は、第2発熱領域および第3発熱領域を外側領域として発熱させる。このように、第2発熱領域および第3発熱領域を外側領域として発熱させることができる。 Further, according to an eleventh aspect, the light transmissive film heater has a third electrode arranged radially outside of the first electrode side in the heating unit with a center line of a predetermined region of the optical window as a center. ing. Further, the heating section has a fourth electrode arranged radially outside of the second electrode side with respect to the center line of a predetermined region of the optical window. The heating unit has a first heat generation region and a second heat generation region that generates heat according to the potential difference between the first electrode and the third electrode. In addition, it has a third heat generation region that generates heat according to the potential difference between the second electrode and the fourth electrode. Then, the heat generating portion causes the second heat generating area and the third heat generating area to serve as outer areas to generate heat. In this way, the second heat generating region and the third heat generating region can be used as outer regions to generate heat.
 また、第12の観点によれば、光透過性フィルムヒータは、加熱部において第1電極側より光学窓の所定領域の中心線を中心とする径方向外側に配置された第3電極を有している。また、加熱部において第2電極側より光学窓の所定領域の中心線を中心とする径方向外側に配置された第4電極を有している。また、加熱部は、第1発熱領域と、第1電極と第3電極との間の電位差に応じて発熱する第2発熱領域と、を有している。また、第2電極と第4電極との間の電位差に応じて発熱する第3発熱領域を有している。そして、第1電極と第2電極は、加熱部における厚さ方向の同じ位置に配置され、第1電極と第3電極は、加熱部における厚さ方向の異なる位置に配置され、第2電極と第4電極は、加熱部における厚さ方向の異なる位置に配置されている。 Further, according to a twelfth aspect, the light transmissive film heater has a third electrode arranged radially outside of the first electrode side in the heating unit with a center line of a predetermined region of the optical window as a center. ing. Further, the heating section has a fourth electrode arranged radially outside of the second electrode side with respect to the center line of a predetermined region of the optical window. The heating unit has a first heat generation region and a second heat generation region that generates heat according to the potential difference between the first electrode and the third electrode. In addition, it has a third heat generation region that generates heat according to the potential difference between the second electrode and the fourth electrode. Then, the first electrode and the second electrode are arranged at the same position in the thickness direction in the heating part, and the first electrode and the third electrode are arranged in different positions in the thickness direction in the heating part, and the second electrode and The fourth electrode is arranged at a position different in the thickness direction in the heating section.
 すなわち、第1電極~第4電極を立体的に配置されている。したがって、加熱部の省スペース化が可能である。 That is, the first to fourth electrodes are three-dimensionally arranged. Therefore, it is possible to save space in the heating unit.
 また、第13の観点によれば、第1電極は、熱線ヒータの一端に接続され、第2電極は、熱線ヒータの他端に接続されている。 Further, according to a thirteenth aspect, the first electrode is connected to one end of the heat ray heater, and the second electrode is connected to the other end of the heat ray heater.
 これによれば、第1電極と熱線ヒータに電圧を供給するための接続部を共通化できるとともに、第2電極と熱線ヒータに電圧を供給するための接続部を共通化できるので、光学装置を小型化することができる。 According to this, the connection part for supplying the voltage to the first electrode and the heat ray heater can be made common, and the connection part for supplying the voltage to the second electrode and the heat ray heater can be made to be common, so that the optical device can be realized. It can be miniaturized.
 また、第14の観点によれば、第1電極および第2電極の少なくとも一部がヒータとして機能する。したがって、これにより、別部材を用いてヒータを構成する場合と比較して小型化が可能である。 Further, according to the fourteenth aspect, at least a part of the first electrode and the second electrode functions as a heater. Therefore, as a result, the size can be reduced as compared with the case where the heater is configured by using another member.
 また、第15の観点によれば、第1電極および第2電極の少なくとも一方は、線状を成しており、第1の電極幅と該第1の電極幅より短い第2の電極幅を有している。そして、第1電極および第2電極の少なくとも一方のうち、第2の電極幅となった部位がヒータとして機能する。 Further, according to a fifteenth aspect, at least one of the first electrode and the second electrode is linear and has a first electrode width and a second electrode width shorter than the first electrode width. Have Then, of at least one of the first electrode and the second electrode, a portion having the second electrode width functions as a heater.
 このように、電極の電極幅を短くし、この電極幅を短くした部位をヒータとして機能させるので、簡素な構成でヒータを構成することができ、低コストを実現することができる。 In this way, the electrode width of the electrode is shortened, and the portion with the shortened electrode width is made to function as a heater, so that the heater can be configured with a simple configuration and low cost can be realized.
 また、第16の観点によれば、第1電極および第2電極の少なくとも一方は、低抵抗材料を用いて形成された部位と、低抵抗材料よりも高抵抗である高抵抗材料を用いて形成された部位を有している。そして、第1電極および第2電極の少なくとも一方のうち、高抵抗材料により形成された部位がヒータとして機能する。 Further, according to a sixteenth aspect, at least one of the first electrode and the second electrode is formed using a portion formed of a low resistance material and a high resistance material having a higher resistance than the low resistance material. It has a part Then, of at least one of the first electrode and the second electrode, a portion formed of a high resistance material functions as a heater.
 このように、電極を構成する材料を高抵抗とすることでヒータとして機能させるので、簡素な構成でヒータを構成することができ、低コストを実現することができる。 As described above, since the material forming the electrodes has a high resistance to function as a heater, the heater can be configured with a simple configuration and low cost can be realized.
 また、第17の観点によれば、発熱部は、光学窓の所定領域の周囲の一部を除いて検知面の周囲を囲むように配置され、第1電極および第2電極の少なくとも一方のうち、ヒータとして機能する部位が光学窓の所定領域の周囲の一部に配置されている。 Further, according to a seventeenth aspect, the heat generating portion is arranged so as to surround the periphery of the detection surface except a part of the periphery of the predetermined region of the optical window, and at least one of the first electrode and the second electrode. A portion functioning as a heater is arranged around a part of a predetermined area of the optical window.
 これによれば、第1電極および第2電極の少なくとも一方は、発熱部が、熱線ヒータが検知面の周囲を囲んでいない部位に配置されるので、加熱部の周縁部からの曇りの発生をより抑制することができる。 According to this, at least one of the first electrode and the second electrode has the heat generating portion arranged at a portion where the heat ray heater does not surround the periphery of the detection surface, so that fogging from the peripheral portion of the heating portion is prevented. It can be suppressed more.

Claims (17)

  1.  光透過性を有する検知面(43)を通過した光を感知するセンサ部(41)と、
     前記検知面を有する光学窓(42)と隣接して配置され前記光学窓を加熱する加熱部(35)を有する光透過性フィルムヒータ(30)と、を備え、
     前記光透過性フィルムヒータは、前記加熱部における前記検知面の中心線(CL)を中心とする径方向外側に位置する外側領域の温度が、前記加熱部における前記外側領域より前記検知面の中心側に位置する領域よりも高くなる温度分布を有している光学装置。
    A sensor section (41) for sensing light that has passed through a light-transmissive detection surface (43);
    A light-transmissive film heater (30) having a heating part (35) arranged adjacent to the optical window (42) having the detection surface and heating the optical window,
    In the light-transmissive film heater, the temperature of an outer region located radially outside the center line (CL) of the detection surface in the heating unit is greater than that of the outer region of the heating unit in the detection surface center. An optical device having a temperature distribution that is higher than the region located on the side.
  2.  前記光透過性フィルムヒータは、
     前記加熱部において前記検知面の中心線を中心とする径方向外側に配置された第1電極(31)と、
     前記加熱部において前記第1電極とともに前記検知面を両側から挟むように配置された第2電極(32)と、
     前記加熱部において前記第1電極側より前記検知面の径方向外側に配置された第3電極(33)と、
     前記加熱部において前記第2電極側より前記検知面の径方向外側に配置された第4電極(34)と、を有し、
     前記加熱部は、前記第1電極と前記第2電極との間の電位差に応じて発熱する第1発熱領域(E1)と、前記第1電極と前記第3電極との間の電位差に応じて発熱する第2発熱領域(E2)と、前記第2電極と前記第4電極との間の電位差に応じて発熱する第3発熱領域(E3)と、を有し、前記第2発熱領域および前記第3発熱領域の発熱温度は、前記第1発熱領域の発熱温度よりも高くなっている請求項1に記載の光学装置。
    The transparent film heater,
    A first electrode (31) arranged radially outside of the heating section with the center line of the detection surface as a center;
    A second electrode (32) arranged so as to sandwich the detection surface from both sides together with the first electrode in the heating section;
    A third electrode (33) arranged radially outward of the detection surface from the first electrode side in the heating section;
    A fourth electrode (34) arranged radially outward of the detection surface from the second electrode side in the heating section,
    The heating unit is configured to generate a first heat generation region (E1) that generates heat according to a potential difference between the first electrode and the second electrode, and a potential difference between the first electrode and the third electrode. A second heat generating area (E2) that generates heat and a third heat generating area (E3) that generates heat according to a potential difference between the second electrode and the fourth electrode, and the second heat generating area and the second heat generating area The optical device according to claim 1, wherein the heat generation temperature of the third heat generation region is higher than the heat generation temperature of the first heat generation region.
  3.  前記第1電極と前記第2電極は、前記加熱部における厚さ方向の同じ位置に配置され、
     前記第1電極と前記第3電極は、前記加熱部における厚さ方向の異なる位置に配置され、前記第2電極と前記第4電極は、前記加熱部における厚さ方向の異なる位置に配置されている請求項2に記載の光学装置。
    The first electrode and the second electrode are arranged at the same position in the thickness direction of the heating unit,
    The first electrode and the third electrode are arranged at different positions in the thickness direction of the heating section, and the second electrode and the fourth electrode are arranged at different positions of the heating section in the thickness direction. The optical device according to claim 2.
  4.  前記光透過性フィルムヒータは、前記検知面の中心線を中心とする径方向外側の前記外側領域を加熱する熱線ヒータ(38)を備えた請求項1ないし3のいずれか1つに記載の光学装置。 4. The optical device according to claim 1, wherein the light-transmissive film heater includes a heat ray heater (38) that heats the outer region radially outside with respect to a center line of the detection surface. apparatus.
  5.  前記光透過性フィルムヒータは、
     前記加熱部において前記検知面の中心線を中心とする径方向外側に配置された第1電極(31)と、
     前記加熱部において前記第1電極とともに前記検知面を両側から挟むように配置された第2電極(32)と、
     前記加熱部において前記第1電極側より前記検知面の径方向外側に配置された第3電極(33)と、
     前記加熱部において前記第2電極側より前記検知面の径方向外側に配置された第4電極(34)と、を有し、
     前記加熱部は、前記第1電極と前記第2電極との間の電位差に応じて発熱する第1加熱部(351)と、前記第1電極と前記第3電極との間の電位差に応じて発熱する第2加熱部(352)と、前記第2電極と前記第4電極との間の電位差に応じて発熱する第3加熱部(353)と、を有し、前記第1電極と前記第3電極からみた前記第2加熱部の抵抗値および前記第2電極と前記第4電極からみた前記第3加熱部の抵抗値は、前記第1電極と前記第2電極からみた前記第1加熱部の抵抗値よりも大きくなっている請求項1に記載の光学装置。
    The transparent film heater,
    A first electrode (31) arranged radially outside of the heating section with the center line of the detection surface as a center;
    A second electrode (32) arranged so as to sandwich the detection surface from both sides together with the first electrode in the heating section;
    A third electrode (33) arranged radially outward of the detection surface from the first electrode side in the heating section;
    A fourth electrode (34) arranged radially outward of the detection surface from the second electrode side in the heating section,
    The heating unit is configured to generate heat according to a potential difference between the first electrode and the second electrode, and a first heating unit (351) that generates heat according to a potential difference between the first electrode and the third electrode. A second heating unit (352) that generates heat, and a third heating unit (353) that generates heat according to the potential difference between the second electrode and the fourth electrode, and the first electrode and the first electrode The resistance value of the second heating unit viewed from the three electrodes and the resistance value of the third heating unit viewed from the second electrode and the fourth electrode are the first heating unit viewed from the first electrode and the second electrode. The optical device according to claim 1, wherein the resistance value is larger than the resistance value.
  6.  前記第2加熱部および前記第3加熱部は、前記第1加熱部と同一材料で構成されており、前記第2加熱部および前記第3加熱部における厚さ方向の長さは、前記第1加熱部における厚さ方向の長さよりも短くなっている請求項5に記載の光学装置。 The second heating unit and the third heating unit are made of the same material as the first heating unit, and the lengths in the thickness direction of the second heating unit and the third heating unit are the same as those of the first heating unit. The optical device according to claim 5, wherein the length is shorter than the length of the heating portion in the thickness direction.
  7.  前記第2加熱部および前記第3加熱部は、前記第1加熱部と同一材料で構成されており、前記第2加熱部および前記第3加熱部の少なくとも一方には、該第2加熱部および前記第3加熱部の少なくとも一方に流れる電流の電流経路長を長くするための切り欠き(3521、3531)が形成されている請求項5または6に記載の光学装置。 The second heating unit and the third heating unit are made of the same material as the first heating unit, and at least one of the second heating unit and the third heating unit has the second heating unit and the third heating unit. The optical device according to claim 5, wherein notches (3521, 3531) for increasing a current path length of a current flowing through at least one of the third heating units are formed.
  8.  前記第2加熱部および前記第3加熱部は、前記第1加熱部と異なる材料で構成されている請求項5に記載の光学装置。 The optical device according to claim 5, wherein the second heating unit and the third heating unit are made of a material different from that of the first heating unit.
  9.  光透過性を有する光学窓(42)と隣接して配置され前記光学窓を加熱する加熱部(35)を有する光透過性フィルムヒータ(30)と、所定領域を発熱させる発熱部(38、E2、E3)を備え、
     前記光透過性フィルムヒータは、
     前記加熱部において前記光学窓の所定領域の中心線(CL)を中心とする径方向外側に配置された第1電極(31)と、
     前記加熱部において前記第1電極とともに前記光学窓の所定領域を両側から挟むように配置された第2電極(32)と、を有し、
     前記加熱部は、前記第1電極と前記第2電極との間の電位差に応じて発熱する第1発熱領域(E1)を有し、
     前記発熱部は、前記光学窓の所定領域の中心線を中心とする径方向外側に位置する外側領域を発熱させる光学装置。
    A light-transmissive film heater (30) having a heating part (35) disposed adjacent to the light-transmissive optical window (42) for heating the optical window, and a heat-generating part (38, E2) for generating heat in a predetermined area. , E3),
    The transparent film heater,
    A first electrode (31) arranged radially outside of a center line (CL) of a predetermined region of the optical window in the heating unit;
    A second electrode (32) arranged so as to sandwich a predetermined region of the optical window from both sides together with the first electrode in the heating section,
    The heating unit has a first heat generation region (E1) that generates heat according to a potential difference between the first electrode and the second electrode,
    The heat generating unit is an optical device that heats an outer region located radially outside with respect to a center line of a predetermined region of the optical window.
  10.  前記発熱部は、熱線ヒータにより構成されている請求項9に記載の光学装置。 The optical device according to claim 9, wherein the heat generating portion is configured by a heat ray heater.
  11.  前記光透過性フィルムヒータは、
     前記加熱部において前記第1電極側より前記光学窓の所定領域の中心線を中心とする径方向外側に配置された第3電極(33)と、
     前記加熱部において前記第2電極側より前記光学窓の所定領域の中心線を中心とする径方向外側に配置された第4電極(34)と、を有し、
     前記加熱部は、前記第1発熱領域(E1)と、前記第1電極と前記第3電極との間の電位差に応じて発熱する第2発熱領域(E2)と、前記第2電極と前記第4電極との間の電位差に応じて発熱する第3発熱領域(E3)と、を有し、
     前記発熱部は、前記第2発熱領域(E2)および前記第3発熱領域(E3)を前記外側領域として発熱させる請求項9に記載の光学装置。
    The transparent film heater,
    A third electrode (33) arranged radially outside of the first electrode side in the heating section with a center line of a predetermined region of the optical window as a center;
    A fourth electrode (34) arranged radially outward from the second electrode side with respect to the center line of a predetermined region of the optical window in the heating unit;
    The heating unit includes the first heating area (E1), a second heating area (E2) that generates heat according to a potential difference between the first electrode and the third electrode, the second electrode and the second heating area. A third heat generation region (E3) that generates heat according to the potential difference between the four electrodes,
    The optical device according to claim 9, wherein the heat generating portion causes the second heat generating area (E2) and the third heat generating area (E3) to generate heat as the outer area.
  12.  前記光透過性フィルムヒータは、
     前記加熱部において前記第1電極側より前記光学窓の所定領域の中心線を中心とする径方向外側に配置された第3電極(33)と、
     前記加熱部において前記第2電極側より前記光学窓の所定領域の中心線を中心とする径方向外側に配置された第4電極(34)と、を有し、
     前記加熱部は、前記第1発熱領域(E1)と、前記第1電極と前記第3電極との間の電位差に応じて発熱する第2発熱領域(E2)と、前記第2電極と前記第4電極との間の電位差に応じて発熱する第3発熱領域(E3)と、を有し、
     前記第1電極と前記第2電極は、前記加熱部における厚さ方向の同じ位置に配置され、
     前記第1電極と前記第3電極は、前記加熱部における厚さ方向の異なる位置に配置され、前記第2電極と前記第4電極は、前記加熱部における厚さ方向の異なる位置に配置されている請求項9に記載の光学装置。
    The transparent film heater,
    A third electrode (33) arranged radially outside of the first electrode side in the heating section with a center line of a predetermined region of the optical window as a center;
    A fourth electrode (34) arranged radially outward from the second electrode side with respect to the center line of a predetermined region of the optical window in the heating unit;
    The heating unit includes the first heating area (E1), a second heating area (E2) that generates heat according to a potential difference between the first electrode and the third electrode, the second electrode and the second heating area. A third heat generation region (E3) that generates heat according to the potential difference between the four electrodes,
    The first electrode and the second electrode are arranged at the same position in the thickness direction of the heating unit,
    The first electrode and the third electrode are arranged at different positions in the thickness direction of the heating section, and the second electrode and the fourth electrode are arranged at different positions of the heating section in the thickness direction. The optical device according to claim 9.
  13.  前記熱線ヒータは、線状を成し、
     前記第1電極は、前記熱線ヒータの一端に接続され、前記第2電極は、前記熱線ヒータの他端に接続されている請求項10に記載の光学装置。
    The hot wire heater has a linear shape,
    The optical device according to claim 10, wherein the first electrode is connected to one end of the heat ray heater, and the second electrode is connected to the other end of the heat ray heater.
  14.  前記第1電極および前記第2電極の少なくとも一部がヒータとして機能する請求項9ないし13のいずれか1つに記載の光学装置。 The optical device according to any one of claims 9 to 13, wherein at least a part of the first electrode and the second electrode functions as a heater.
  15.  前記第1電極および前記第2電極の少なくとも一方は、線状を成しており、第1の電極幅と該第1の電極幅より短い第2の電極幅を有し、
     前記第1電極および前記第2電極の少なくとも一方のうち、前記第2の電極幅となった部位が前記ヒータとして機能する請求項14に記載の光学装置。
    At least one of the first electrode and the second electrode is linear and has a first electrode width and a second electrode width shorter than the first electrode width,
    The optical device according to claim 14, wherein a portion having at least the second electrode width of at least one of the first electrode and the second electrode functions as the heater.
  16.  前記第1電極および前記第2電極の少なくとも一方は、低抵抗材料を用いて形成された部位と、前記低抵抗材料よりも高抵抗である高抵抗材料を用いて形成された部位を有し、
     前記第1電極および前記第2電極の少なくとも一方のうち、前記高抵抗材料により形成された部位が前記ヒータとして機能する請求項14に記載の光学装置。
    At least one of the first electrode and the second electrode has a portion formed using a low resistance material and a portion formed using a high resistance material having a higher resistance than the low resistance material,
    The optical device according to claim 14, wherein at least one of the first electrode and the second electrode, a portion formed of the high resistance material functions as the heater.
  17.  前記発熱部は、前記光学窓の所定領域の周囲の一部を除いて前記光学窓の所定領域の周囲を囲むように配置され、
     前記第1電極および前記第2電極の少なくとも一方のうち、前記ヒータとして機能する部位が前記光学窓の所定領域の周囲の一部に配置されている請求項14に記載の光学装置。
    The heat generating portion is arranged so as to surround a predetermined area of the optical window except a part of the circumference of the predetermined area of the optical window,
    The optical device according to claim 14, wherein, of at least one of the first electrode and the second electrode, a portion functioning as the heater is arranged in a part of a periphery of a predetermined region of the optical window.
PCT/JP2019/040930 2018-10-25 2019-10-17 Optical device WO2020085200A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980069595.7A CN112889001B (en) 2018-10-25 2019-10-17 Heating device
DE112019005325.6T DE112019005325T5 (en) 2018-10-25 2019-10-17 Optical device
US17/229,327 US20210235551A1 (en) 2018-10-25 2021-04-13 Heater device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-200942 2018-10-25
JP2018200942 2018-10-25
JP2019-003823 2019-01-11
JP2019003823 2019-01-11
JP2019147841A JP7293969B2 (en) 2018-10-25 2019-08-09 heater device
JP2019-147841 2019-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/229,327 Continuation US20210235551A1 (en) 2018-10-25 2021-04-13 Heater device

Publications (1)

Publication Number Publication Date
WO2020085200A1 true WO2020085200A1 (en) 2020-04-30

Family

ID=70332053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040930 WO2020085200A1 (en) 2018-10-25 2019-10-17 Optical device

Country Status (1)

Country Link
WO (1) WO2020085200A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309011A (en) * 2005-04-28 2006-11-09 Citizen Watch Co Ltd Imaging lens and camera module
JP2011113674A (en) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd Light-emitting device using liquid crystal lens
JP2017220308A (en) * 2016-06-03 2017-12-14 株式会社東海理化電機製作所 Heating element
JP2018116121A (en) * 2017-01-17 2018-07-26 株式会社東海理化電機製作所 Imaging device
JP2018117223A (en) * 2017-01-17 2018-07-26 株式会社東海理化電機製作所 Heating device and imaging apparatus for imaging means

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309011A (en) * 2005-04-28 2006-11-09 Citizen Watch Co Ltd Imaging lens and camera module
JP2011113674A (en) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd Light-emitting device using liquid crystal lens
JP2017220308A (en) * 2016-06-03 2017-12-14 株式会社東海理化電機製作所 Heating element
JP2018116121A (en) * 2017-01-17 2018-07-26 株式会社東海理化電機製作所 Imaging device
JP2018117223A (en) * 2017-01-17 2018-07-26 株式会社東海理化電機製作所 Heating device and imaging apparatus for imaging means

Similar Documents

Publication Publication Date Title
KR102354605B1 (en) Camera Module
US20190041630A1 (en) Camera module thin film heater and camera module having same
CN109910775B (en) Imaging device for vehicle
WO2020195900A1 (en) Heater device
US20210235551A1 (en) Heater device
US20220256656A1 (en) Film heater
JP5092872B2 (en) Surface temperature sensor
WO2020085200A1 (en) Optical device
TW201303271A (en) Infrared sensor
JP6274049B2 (en) Vehicle imaging device
JP2011033358A (en) Temperature sensor
JP2020112775A5 (en) Heater device
US20220185236A1 (en) Defogging device
JP6528654B2 (en) Heater system
JP2013113692A (en) Infrared sensor
JP6432695B2 (en) Heater device and method for manufacturing heater device
WO2023276464A1 (en) Planar heating element, optical device, and method for manufacturing planar heating element
WO2023276463A1 (en) Planar heating element, optical device, and method for manufacturing planar heating element
US11867573B2 (en) Temperature detection device, display device, and head up display
WO2017131166A1 (en) Infrared sensor
WO2021014817A1 (en) Film member
WO2020026751A1 (en) Heat-generating member
JP2010051141A (en) Electric motor with position detector
CN112987221A (en) Laser field lens and laser scanning system thereof
JP2023006584A (en) Planar heating element and optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876262

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19876262

Country of ref document: EP

Kind code of ref document: A1