WO2020085089A1 - Electromagnetic radiation detector - Google Patents
Electromagnetic radiation detector Download PDFInfo
- Publication number
- WO2020085089A1 WO2020085089A1 PCT/JP2019/039789 JP2019039789W WO2020085089A1 WO 2020085089 A1 WO2020085089 A1 WO 2020085089A1 JP 2019039789 W JP2019039789 W JP 2019039789W WO 2020085089 A1 WO2020085089 A1 WO 2020085089A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electromagnetic wave
- unit
- detection device
- wave detection
- search
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
Definitions
- the present invention relates to an electromagnetic wave detection device.
- Patent Document 1 a device that detects an electromagnetic wave by radiating the electromagnetic wave radiated by each part of a target region of a measurement target to a photoelectric converter side by a part of pixels in a spatial modulation element such as a DMD.
- the electromagnetic wave detection device is The emission direction that maximizes the intensity can be changed, and the emission part that emits electromagnetic waves, A first detection unit that detects a reflected wave of the electromagnetic wave with which the target is irradiated; A plurality of pixels are arranged along a reference plane, and a traveling direction capable of switching a traveling direction of an electromagnetic wave incident on the reference plane from the object for each pixel to a detection direction in which the first detecting unit is arranged, , A storage unit that stores a correspondence relationship between the radiation direction and the coordinates of the pixel that advances in the detection direction; In the correspondence relationship, for any value of one of the radial direction and the coordinate, using a plurality of search correspondence relationships in which a plurality of search values having different sizes are added to the other, to the advancing unit, The correspondence relationship is based on a plurality of detection signals corresponding to a plurality of search values, which are detected by the first detection unit by switching the pixel to the detection direction and causing the emission unit to emit the electromagnetic wave.
- FIG. 1 It is a block diagram which shows schematic structure of the electromagnetic wave detection apparatus which concerns on this embodiment. It is a conceptual diagram which shows the correspondence of the radiation direction and the coordinate of the pixel in the advancing part. It is a table which shows the corresponding relationship tabulated.
- 3 is a timing chart showing the timing of emission of electromagnetic waves and the timing of detection for explaining the principle of distance measurement by a distance measurement sensor configured by the radiation unit, the first detection unit, and the control unit of FIG. 1.
- 9 is a table showing a plurality of search correspondences tabulated in a configuration in which a search value is a displacement amount to a coordinate.
- 9 is a table showing a plurality of search correspondences tabulated in a configuration in which a search value is a variation amount in a radial direction.
- 7 is a flowchart for explaining a correspondence relationship calibration process by the first method executed by the control unit of FIG. 1.
- 7 is a flowchart for explaining a correspondence calibration process by a second method executed by the control unit of FIG. 1. It is a block diagram which shows schematic structure of the modification of the electromagnetic wave detection apparatus which concerns on this embodiment.
- An electromagnetic wave detection device to which the present invention is applied will be described below with reference to the drawings.
- An electromagnetic wave detection device is provided that includes an advancing unit that advances an incident electromagnetic wave to the detection unit. In such an electromagnetic wave detection device, the emission position of the electromagnetic wave on the target and the arrival position of the electromagnetic wave emitted from the emission position on the traveling portion correspond to each other.
- the electromagnetic wave detection device it is possible to improve the detection accuracy of the electromagnetic wave by determining the pixel that advances the incident electromagnetic wave to the detection unit according to the radiation position and controlling the traveling unit and the radiation unit.
- the correspondence relationship between the radiation position of the electromagnetic wave estimated based on the control of the radiation part and the pixel that advances toward the detection part. May change.
- the pixel at a position different from the arrival position on the traveling part of the electromagnetic wave scattered at the actual radiation position on the target can be switched so as to cause the electromagnetic wave to travel to the detection part.
- the electromagnetic wave detection device to which the present invention is applied scatters the electromagnetic wave reaching the pixel at the arrival position on the traveling part of the electromagnetic wave scattered at the actual radiation position, or reaching any pixel, based on the detection result of the detection part. By estimating the actual radiation position on the target and adjusting the correspondence, the detection accuracy of electromagnetic waves can be maintained.
- an electromagnetic wave detection device 10 includes a radiation unit 11, a pre-stage optical system 12, a separation unit 13, a traveling unit 14, a post-stage optical system 15, and a first detection unit 16.
- the second detection unit 17, the storage unit 18, and the control unit 19 are included.
- each functional block shows the flow of control signals or information to be communicated.
- the communication indicated by the broken line may be wired communication or wireless communication.
- the solid line protruding from each functional block indicates a beam-shaped electromagnetic wave.
- the radiating unit 11 can change the radiating direction that maximizes the intensity and radiates electromagnetic waves.
- the radiation unit 11 is configured to include, for example, the radiation source 20 and the scanning unit 21.
- the scanning unit 21 changes the radiation direction of the electromagnetic wave emitted by the radiation source 20.
- the radiation source 20 emits at least one of infrared rays, visible light rays, ultraviolet rays, and radio waves, for example. In the present embodiment, the radiation source 20 emits infrared rays.
- the radiation source 20 radiates the radiated electromagnetic wave toward the target ob, directly or indirectly via the scanning unit 21. In the present embodiment, the radiation source 20 indirectly radiates the radiated electromagnetic wave toward the target ob through the scanning unit 21.
- the radiation source 20 emits a beam-shaped electromagnetic wave having a narrow width, for example, 0.5 °. Further, in the first embodiment, the electromagnetic wave emitted from the radiation source 20 has an elliptical cross-sectional shape having a long axis and a short axis. In addition, in the present embodiment, the radiation source 20 can radiate electromagnetic waves in a pulse shape.
- the radiation source 20 includes, for example, a Fabry-Perot laser diode, an LED (Light Emitting Diode), a VCSEL (Vertical Cavity Surface Emitting LASER), a photonic crystal laser, a gas laser, and a fiber laser.
- the radiation source 20 switches between radiating and stopping the electromagnetic wave under the control of the control unit 19 described later.
- the scanning unit 21 has, for example, a reflecting surface that reflects electromagnetic waves, and changes the radiation direction of the electromagnetic waves by reflecting the electromagnetic waves emitted from the radiation source 20 while changing the direction of the reflecting surface.
- the scanning unit 21 changes the emission direction of the electromagnetic wave, the emission position of the electromagnetic wave with which the target ob is irradiated changes. That is, the scanning unit 21 scans the target ob using the electromagnetic waves emitted from the radiation source 20.
- the scanning unit 21 changes the radiation direction of the electromagnetic wave in a direction perpendicular to the first rotation axis, for example, by rotating the reflection surface around the first rotation axis.
- the scanning unit 21 scans the object ob in a one-dimensional direction by rotating the reflection surface around only the first rotation axis. Further, the scanning unit 21 rotates the reflection surface around a second rotation axis different from the first rotation axis, so that the electromagnetic wave is emitted in the direction perpendicular to the second rotation axis.
- the direction of radiation may be changed.
- the scanning unit 21 scans the object ob in a two-dimensional direction by rotating the reflecting surface around the first rotation axis and the second rotation axis. In the present embodiment, the scanning unit 21 scans the target ob in the two-dimensional direction.
- the scanning unit 21 may be arranged such that the first rotation axis is parallel to the elliptical long axis of the electromagnetic wave emitted by the radiation source 20.
- the scanning unit 21 may be arranged such that the first rotation axis and the second rotation axis are parallel to the elliptical major axis and the minor axis of the electromagnetic wave emitted by the radiation source 20, respectively. .
- the scanning unit 21 is configured such that at least a part of the irradiation area of the electromagnetic waves emitted and reflected from the radiation source 20 is included in the electromagnetic wave detection range of the electromagnetic wave detection device 10. Therefore, at least a part of the electromagnetic waves emitted to the target ob via the scanning unit 21 can be detected by the electromagnetic wave detection device 10.
- the scanning unit 21 includes, for example, a MEMS (Micro Electro Mechanical Systems) mirror, a polygon mirror, a galvano mirror, a grating, and the like.
- the scanning unit 21 includes a MEMS mirror.
- the scanning unit 21 changes the direction in which electromagnetic waves are reflected under the control of the control unit 19 described later.
- the control unit 19 can calculate the radiation direction based on the drive signal input to the scanning unit 21 to change the direction in which the electromagnetic wave is reflected.
- the pre-stage optical system 12 includes, for example, at least one of a lens and a mirror, and forms an image of the object ob as a subject.
- the separation unit 13 is provided between the pre-stage optical system 12 and a primary image forming position which is an image forming position of the pre-stage optical system 12 for an image of the object ob which is separated from the pre-stage optical system 12 at a predetermined position. ing.
- the separating unit 13 separates electromagnetic waves traveling in the incident direction di so as to travel in the first separating direction dd1 and the second separating direction dd2.
- the incident direction di may be parallel to the optical axis of the pre-stage optical system 12, for example.
- the separating unit 13 may move a part of the electromagnetic wave traveling in the incident direction di in the first separating direction dd1 and another part of the electromagnetic wave in the second separating direction dd2.
- Part of the electromagnetic waves that travel in the first separation direction dd1 may be electromagnetic waves of a specific wavelength among electromagnetic waves that travel in the incident direction di, and electromagnetic waves that travel in the second separation direction dd2 may be electromagnetic waves of other wavelengths. May be
- the separating unit 13 may specifically advance the electromagnetic wave in the infrared band in the first separating direction dd1 and the electromagnetic wave in the visible light band in the second separating direction dd2. Conversely, the separating unit 13 may cause the electromagnetic waves in the visible light band to travel in the first separating direction dd1 and the electromagnetic waves in the infrared band to travel in the second separating direction dd2. Further, the separating unit 13 may cause the electromagnetic wave of short wavelength to travel in the first separating direction dd1 and the electromagnetic wave of long wavelength to travel in the second separating direction dd2. On the contrary, the separation unit 13 may cause the electromagnetic waves of long wavelength to travel in the first separation direction dd1 and the electromagnetic waves of short wavelength to travel in the second separation direction dd2.
- the separation unit 13 transmits a part of the electromagnetic wave traveling in the incident direction di in the first separation direction dd1 and reflects another part of the electromagnetic wave in the second separation direction dd2.
- the separation unit 13 may transmit a part of the electromagnetic wave traveling in the incident direction di in the first separation direction dd1 and another part of the electromagnetic wave in the second separation direction dd2.
- the separating unit 13 may refract a part of the electromagnetic wave traveling in the incident direction di in the first separating direction dd1 and another part of the electromagnetic wave in the second separating direction dd2.
- the separation unit 13 includes, for example, any one of a visible light reflection coating, a half mirror, a beam splitter, a dichroic mirror, a cold mirror, a hot mirror, a metasurface, and a deflecting element.
- the traveling unit 14 is located on the path of the electromagnetic wave traveling from the separating unit 13 in the first separating direction dd1. Further, the advancing unit 14 determines the primary imaging position of the image of the object ob which is separated from the pre-stage optical system 12 at a predetermined position by the pre-stage optical system 12 in the first separating direction dd1 from the separating unit 13 or the primary coupling. It is provided near the image position.
- the advancing unit 14 is provided at the image forming position.
- the traveling section 14 has a reference surface ss on which the electromagnetic waves that have passed through the pre-stage optical system 12 and the separating section 13 are incident.
- the reference plane ss is composed of a plurality of pixels px arranged along a two-dimensional shape.
- the reference surface ss is a surface that causes an action such as reflection and transmission of electromagnetic waves in at least one of a first state and a second state described later.
- the traveling unit 14 has an electromagnetic wave traveling in the first separation direction dd1 and incident on the reference surface ss in a first state in which the electromagnetic wave travels in the detection direction don and a second state in which the electromagnetic wave travels in the non-detection direction doff. It is possible to switch for each pixel px.
- the first state is a first reflection state in which the electromagnetic wave incident on the reference surface ss is reflected in the detection direction don.
- the second state is a second reflection state in which the electromagnetic wave incident on the reference surface ss is reflected in the non-detection direction doff.
- the traveling unit 14 includes a reflection surface that reflects an electromagnetic wave for each pixel px.
- the advancing unit 14 switches the first reflection state and the second reflection state for each pixel px by changing the direction of the reflection surface for each pixel px.
- the advancing unit 14 includes, for example, a DMD (Digital Micro mirror Device).
- the DMD can switch the reflection surface for each pixel px to any one of + 12 ° and ⁇ 12 ° with respect to the reference surface ss by driving a minute reflection surface that constitutes the reference surface ss. is there.
- the reference surface ss is parallel to the plate surface of the substrate on which the minute reflecting surface of the DMD is placed.
- the DMD traveling unit 14 is arranged such that the rotation axis that inclines the reflection surface corresponds to the changing direction of the electromagnetic wave emission direction by the first rotation axis of the scanning unit 21.
- the displacement direction of the arrival position of the electromagnetic wave on the reference plane ss in response to the change of the radiation direction by the rotation of the reflection surface of the scanning unit 21 only around the first rotation axis tilts the reflection surface. It may be parallel to the axis of rotation.
- the advancing unit 14 switches the first state and the second state for each pixel px based on the control of the control unit 19 described later. For example, the advancing unit 14 may simultaneously switch some of the pixels px to the first state to cause the electromagnetic waves incident on the pixels px to travel in the detection direction don, and to move the other pixels px to the second position. By switching to the state, the electromagnetic wave incident on the pixel px can proceed in the non-detection direction doff.
- the post-stage optical system 15 is provided in the detection direction don from the traveling unit 14.
- the rear optical system 15 includes, for example, at least one of a lens and a mirror.
- the post-stage optical system 15 forms an image of the object ob as an electromagnetic wave whose traveling direction is switched in the traveling unit 14.
- the first detection unit 16 is provided on the path of an electromagnetic wave that travels in the detection direction don by the traveling unit 14 and then travels via the post-stage optical system 15.
- the first detection unit 16 detects an electromagnetic wave that has passed through the rear optical system 15, that is, an electromagnetic wave that travels in the detection direction don.
- the first detection unit 16 is configured such that at least a part of the emission area of the electromagnetic wave emitted from the emission unit 11 is included in the detection range. Therefore, in the present embodiment, the first detection unit 16 can detect at least a part of the electromagnetic waves emitted from the emission unit 11 to the target ob.
- the first detection unit 16 is an active sensor that detects a reflected wave from the target ob of the electromagnetic wave radiated from the radiation unit 11 toward the target ob. Therefore, the first detection unit 16 detects, for example, at least one of infrared rays, visible rays, ultraviolet rays, and radio waves. In the present embodiment, the first detection unit 16 detects infrared rays. Further, in the present embodiment, the first detection unit 16 forms a scanning sensor in cooperation with the radiation unit 11 that can change the radiation direction.
- the first detection unit 16 more specifically includes an element that constitutes a distance measuring sensor.
- the first detection unit 16 includes a single element such as an APD (Avalanche PhotoDiode), a PD (PhotoDiode), and a distance measurement image sensor.
- the first detection unit 16 may include an element array such as an APD array, a PD array, a ranging imaging array, and a ranging image sensor.
- the first detection unit 16 may include an element forming an image sensor or a thermosensor.
- the first detection unit 16 transmits the detection information indicating that the reflected wave from the subject is detected to the control unit 19 as a signal.
- the first detection unit 16 is not required to be imaged on the detection surface as long as it can detect an electromagnetic wave in the configuration that is the single element that constitutes the distance measurement sensor described above. Therefore, the first detection unit 16 does not have to be provided at the secondary image forming position which is the image forming position of the post optical system 15. That is, in this configuration, the first detection unit 16 moves the post-stage optical system 15 to the post-stage optical system 15 after traveling in the detection direction don by the traveling unit 14 at a position where electromagnetic waves from all angles of view can be incident on the detection surface. It may be placed anywhere on the path of the electromagnetic wave traveling through.
- the second detection unit 17 is provided on the path of the electromagnetic wave traveling from the separation unit 13 in the second separation direction dd2. Further, the second detection unit 17 forms an image of the image of the object ob separated from the pre-stage optical system 12 at a predetermined position by the pre-stage optical system 12 in the second separation direction dd2 from the separation unit 13 or the relevant position. It is provided near the image formation position. The second detection unit 17 detects the electromagnetic wave traveling from the separation unit 13 in the second separation direction dd2.
- the second detection unit 17 is a passive sensor.
- the second detector 17 more specifically includes an element array.
- the second detection unit 17 includes an image sensor such as an image sensor or an imaging array, captures an image of an electromagnetic wave formed on the detection surface, and generates image information corresponding to the captured object ob.
- the second detection unit 17 more specifically captures an image of visible light.
- the second detector 17 sends the generated image information as a signal to the controller 19.
- the second detection unit 17 may capture images other than visible light, such as infrared, ultraviolet, and radio wave images. Therefore, the second detection unit 17 detects an electromagnetic wave that is different from or the same as that of the first detection unit 16.
- the second detection unit 17 may include a distance measuring sensor. In this configuration, the electromagnetic wave detection device 10 can acquire image-like distance information by the second detection unit 17. In addition, the second detection unit 17 may include a thermosensor or the like. In this configuration, the electromagnetic wave detection device 10 can acquire image-like temperature information by the second detection unit 17. Therefore, in the present embodiment, the second detection unit 17 may be a sensor different from or the same as the first detection unit 16.
- the storage unit 18 includes one or more memories.
- the memory is, for example, a semiconductor memory, a magnetic memory, an optical memory, or the like, but is not limited to these.
- Each memory included in the storage unit 18 may function as, for example, a main storage device, an auxiliary storage device, or a cache memory.
- the storage unit 18 stores arbitrary information used for the operation of the electromagnetic wave detection device 10.
- the storage unit 18 may store, for example, a system program, an application program, a correspondence relationship, a search value, and the like. The search value will be described later.
- the correspondence relationship indicates a direct or indirect correspondence between an arbitrary radiation direction of the electromagnetic wave emitted by the radiation unit 11 and the coordinates of the pixel px that switches the electromagnetic wave incident on the reference surface ss to the detection direction don.
- the indirect correspondence is a correspondence between the radial direction and the coordinate, which corresponds to both the radial direction and the coordinate, for example, via the coordinate on the virtual plane on which the electromagnetic wave emitted from the radiation unit 11 is irradiated. .
- the electromagnetic wave radiated from the radiating unit 11 in an arbitrary radiating direction is applied to a small area fa on the target ob.
- the irradiated electromagnetic wave is reflected in the minute area fa.
- the reflected electromagnetic wave is focused by the front optical system 12 and reaches the pixel px at some coordinates on the reference plane ss of the traveling unit 14.
- the coordinates of the pixel px reaching the traveling portion 14 of the reflected electromagnetic wave also change according to the change in the position of the minute area fa.
- the storage unit 18 has a correspondence relationship in which the coordinates of the pixel px, which the electromagnetic waves reflected in an arbitrary radiation direction reach, associated with the arbitrary radiation direction are designed in advance and, if necessary, calibrated during manufacturing, It is stored in.
- the correspondence relationship is, for example, as shown in FIG. 3, a table in which the coordinates co1, co2, co3, ... Are associated with each discrete radial direction dr1, dr2, dr3 ,. It is stored in the storage unit 18 as Tc.
- the coordinates associated with each of the discrete radiation directions may be the coordinates of a single pixel px or the coordinates of a plurality of pixels px adjacent to each other.
- the control unit 19 includes one or more processors and memories.
- the processor may include at least one of a general-purpose processor that loads a specific program and executes a specific function, and a dedicated processor that is specialized for a specific process.
- the dedicated processor may include an application-specific IC (ASIC; Application Specific Integrated Circuit).
- the processor may include a programmable logic device (PLD; Programmable Logic Device).
- the PLD may include an FPGA (Field-Programmable Gate Array).
- the control unit 19 may include at least one of SoC (System-on-a-Chip) and SiP (System In a Package) in which one or more processors cooperate.
- the control unit 19 acquires information about the surroundings of the electromagnetic wave detection device 10 based on the electromagnetic waves detected by the first detection unit 16 and the second detection unit 17, respectively.
- the information about the surroundings is, for example, image information, distance information, and temperature information.
- the control unit 19 uses the ToF (Time-of-Flight) method to irradiate the irradiation unit 11 with the irradiation position based on the detection information detected by the first detection unit 16, as described later. Get distance information for.
- the control unit 19 acquires the electromagnetic waves detected by the second detection unit 17 as an image as image information.
- the control unit 19 causes the radiation source 20 to emit a pulsed electromagnetic wave by inputting the electromagnetic radiation signal to the radiation source 20 (see the “electromagnetic radiation signal” column).
- the radiation source 20 radiates an electromagnetic wave based on the inputted electromagnetic wave radiation signal (see the "radiation section radiation amount” column).
- the electromagnetic wave emitted by the radiation source 20 and reflected by the scanning unit 21 and emitted to an arbitrary minute area fa is reflected in the minute area fa.
- the control unit 19 switches at least some of the pixels px in the image formation region in the traveling unit 14 by the upstream optical system 12 of the reflected wave of the minute region fa to the first state and sets the other pixels px to the second state. Switch to the state. Then, when detecting the electromagnetic wave reflected in the minute area fa (see the “electromagnetic wave detection amount” column), the first detection unit 16 notifies the control unit 19 of the detection information as described above.
- the control unit 19 has, for example, a time measurement LSI (Large Scale Integrated circuit), and acquires detection information from the time T1 when the radiation source 20 emits an electromagnetic wave (see the "Detection information acquisition" column). The time ⁇ T to T2 is measured. The control unit 19 calculates the distance to the radiation position by multiplying the time ⁇ T by the speed of light and dividing by 2.
- LSI Large Scale Integrated circuit
- the control unit 19 Before causing the radiation source 20 to radiate an electromagnetic wave, the control unit 19 applies a drive signal to cause the scanning unit 21 to radiate the electromagnetic wave in an arbitrary radiation direction so that the electromagnetic wave can be emitted in the arbitrary radiation direction.
- the part 21 drives the reflecting surface.
- the control unit 19 gives the drive signal to the advancing unit 14 to switch some of the pixels px in the coordinates corresponding to the arbitrary radiation direction to the first state in the correspondence relationship read from the storage unit 18.
- the control unit 19 applies the drive signal to the traveling unit 14 to switch some of the pixels px having a corresponding relationship with the arbitrary radiation direction to the first state, and then, as described above, the radiation source.
- the emission of electromagnetic waves by 20 and the acquisition of detection information by the first detection unit 16 are executed.
- the control unit 19 calculates the position of the minute area fa irradiated with the electromagnetic wave based on the drive signal given to the scanning unit 21.
- the control unit 19 creates image-like distance information by calculating the distance to each micro area fa while changing the radiation direction.
- the control unit 19 has a calibration mode for calibrating the correspondence as an operation mode, as described below.
- the control unit 19 sets a plurality of search values having different magnitudes to the other associated value with respect to any one of the radial direction and the coordinate associated with each other in the corresponding relationship.
- a plurality of search correspondences are created.
- the control unit 19 adds a plurality of displacement amounts ⁇ co1 to ⁇ con having different magnitudes as search values to the coordinates associated with the arbitrary radiation direction by the correspondence relationship.
- a plurality of search correspondences Tcco1 to Tccon are created.
- the control unit 19 sets, as search values, a plurality of variable angle amounts ⁇ dr1 to ⁇ drn having different sizes in the radial direction associated with the arbitrary coordinates by the correspondence relationship. By adding each, a plurality of search correspondences Tcdr1 to Tcdrn are created.
- -Multiple search values may change the radial direction or coordinate in the correspondence relationship along a single direction.
- the plurality of search values change the value of the original coordinate along one direction on the reference plane ss.
- the plurality of search values changes the original radial direction along one direction.
- the plurality of search values may change the radial direction or the coordinate in the correspondence relationship along two different directions. In the present embodiment, the plurality of search values change the radial direction or the coordinate in the correspondence relationship along a single direction.
- the single direction further corresponds to the elliptical short axis of the electromagnetic wave emitted by the radiation source 20. You can do it.
- the single direction is parallel to the short axis of the image of the elliptical electromagnetic wave formed on the reference surface ss and reflected by the electromagnetic wave emitted by the radiation source 20 on the reference surface ss. .
- the plurality of search values are added to the value associated with the other one of the arbitrary values of the radial direction and the coordinates associated with each other in the correspondence relationship, but may be directly added. , May be added indirectly.
- Indirectly added means, for example, that the correspondence is the first partial correspondence of the radiation direction and the coordinates on the virtual plane on which the electromagnetic wave is irradiated, and the coordinates on the virtual plane on which the electromagnetic wave is irradiated and the coordinates of the traveling unit 14.
- the search value is added to the overall correspondence of the radial direction and the coordinates of the traveling portion 14 by synthesizing the first partial correspondence and the second partial correspondence. Is equivalent to
- the control unit 19 corresponds to each of the plurality of search values by causing the advancing unit 14 to switch the pixel px in the detection direction don and causing the emitting unit 11 to emit an electromagnetic wave in the emitting direction using the plurality of search correspondences. Then, the detection signal detected by the first detection unit 16 is acquired.
- the control unit 19 drives the scanning unit 21 so that the radiation unit 11 can emit an electromagnetic wave in an arbitrary radiation direction. Further, the control unit 19 drives the advancing unit 14 so as to switch the pixel px of the coordinates corresponding to the arbitrary radial direction in the single search correspondence relationship to the first state. In this state, the control unit 19 causes the radiation source 20 to emit an electromagnetic wave, and acquires the detection signal detected by the first detection unit 16. Similarly, the control unit 19 acquires the detection signal in each of the other search correspondences.
- the control unit 19 drives the advancing unit 14 so as to switch the pixel px at an arbitrary coordinate to the first state. Further, the control unit 19 drives the scanning unit 21 so that the electromagnetic waves can be emitted in the emission direction corresponding to the arbitrary coordinates in the single search correspondence. In this state, the control unit 19 causes the radiation source 20 to emit an electromagnetic wave, and acquires the detection signal detected by the first detection unit 16. Similarly, the control unit 19 acquires the detection signal in each of the other search correspondences.
- the control unit 19 calibrates the correspondence relationship based on a plurality of detection signals corresponding to a plurality of search values. More specifically, the control unit 19 determines, as the search value to be used for calibration, a single search value that maximizes the signal intensity among the plurality of acquired detection signals. The control unit 19 calibrates the correspondence by adding the search value used for the calibration to the correspondence. The control unit 19 stores the calibrated correspondence relationship in the storage unit 18 as a correspondence relationship used for subsequent distance measurement.
- the control unit 19 may create a search correspondence by using a search value whose absolute value is within the upper limit value.
- the upper limit value may be set to the maximum value of the shift that is considered to occur in the correspondence relationship due to thermal deformation, change over time, or the like.
- the plurality of search values may or may not be an integral multiple of the search value having the smallest absolute value among the plurality of search values.
- control unit 19 may create a plurality of search correspondences after determining the polarity of the search value used for calibration, that is, whether the search value is positive or negative, as described below.
- the control unit 19 switches the pixel px of an arbitrary coordinate to the first state via the advancing unit 14 by using the correspondence, as in the distance measurement, and associates the arbitrary coordinate with the correspondence.
- the radiation source 20 is caused to emit an electromagnetic wave in a state in which the electromagnetic wave can be emitted in the given radiation direction, and the detection signal is acquired as a reference signal.
- the control unit 19 creates a search correspondence including an initial search value.
- the initial search value is, for example, a search value corresponding to the minimum adjustment amount that can be adjusted by the control unit 19, that is, a search value having a minimum absolute value.
- the initial search value is the interval between two adjacent pixels.
- the initial search value is the minimum variable amount of the signal strength of the drive signal to the scanning unit 21.
- the minimum fluctuable amount is the minimum amount that the control unit 19 can adjust the fluctuation as a difference in signal strength between two drive signals having different signal strengths.
- the control unit 19 switches the pixel px at an arbitrary coordinate to the first state via the advancing unit 14 using the search correspondence including the initial search value, and associates the pixel px with the arbitrary coordinate in a corresponding relationship.
- the radiation source 20 is caused to radiate an electromagnetic wave in a state capable of radiating the electromagnetic wave in the given radiation direction, and a detection signal is acquired as an initial signal.
- the control unit 19 compares the signal strengths of the reference signal and the initial signal.
- the control unit 19 determines that the polarity of the initial search value matches the polarity of the search value used for calibration.
- the control unit 19 adds a plurality of search values having the same polarity as the initial search value in ascending order of the absolute values, thereby performing a plurality of searches. Create correspondence relationship. Further, the control unit 19 switches the pixel px of an arbitrary coordinate to the first state via the advancing unit 14 using each of the created plurality of search correspondences, and the search correspondence to the arbitrary coordinates.
- a plurality of detection signals are acquired by causing the radiation source 20 to emit an electromagnetic wave in a state in which the electromagnetic wave can be emitted in the radiation directions associated with each other.
- the control unit 19 calibrates the correspondence relationship based on the plurality of detection signals as described above.
- the control unit 19 determines that the polarity of the initial search value is different from the polarity of the search value used for calibration.
- the control unit 19 adds a plurality of search values in which the polarities of the initial search value are inverted in the order of increasing absolute value, Create a search correspondence of. Further, the control unit 19 switches the pixel px of an arbitrary coordinate to the first state via the advancing unit 14 using each of the created plurality of search correspondences, and the search correspondence to the arbitrary coordinates.
- a plurality of detection signals are acquired by causing the radiation source 20 to emit an electromagnetic wave in a state in which the electromagnetic wave can be emitted in the radiation directions associated with each other.
- the control unit 19 calibrates the correspondence relationship based on the plurality of detection signals as described above.
- the control unit 19 when the control unit 19 adds the search values in ascending order of the absolute value and the signal strength of the detection signal to be acquired turns to decrease, as described below. Then, the calibration of the correspondence may be finished.
- the control unit 19 After acquiring the initial signal or the detection signal, the control unit 19 creates a search correspondence by adding a search value whose absolute value is next larger than the search value used when detecting the previous detection signal.
- the control unit 19 switches the pixel px of an arbitrary coordinate to the first state via the advancing unit 14 using the created search correspondence, and associates the arbitrary coordinate with the search correspondence.
- the detection signal is acquired by causing the radiation source 20 to emit the electromagnetic wave in a state where the electromagnetic wave can be emitted in the radiation direction.
- the control unit 19 continuously acquires and compares the detection signal by adding a search value having the next largest absolute value.
- the control unit 19 determines the search value corresponding to the previously acquired detection signal as the search value used for calibration, and calibrates the correspondence relationship. To finish.
- the plurality of search values used in the calibration mode may or may not be an integer multiple of the initial search value.
- the control unit 19 may calibrate the correspondence for each discrete value in the radial direction or each coordinate. Alternatively, the control unit 19 may perform all discrete values in the radial direction or all coordinates. Performing on the entire radial direction or the entire coordinate means adding the same search value to all the discrete values in the radial direction or all the coordinates in the correspondence relationship.
- the control unit 19 starts the correspondence calibration process by the first method when detecting an input that starts the calibration mode.
- step S100 the control unit 19 reads the correspondence relationship from the storage unit 18. After reading the correspondence, the process proceeds to step S101.
- step S101 the control unit 19 recognizes a single search value.
- the control unit 19 may recognize the search value by reading it out of the search values stored in the storage unit 18 or by calculating it based on the previous search value. After recognition, the process proceeds to step S102.
- step S102 the control unit 19 creates a search correspondence by adding the search value recognized in step S101 to the correspondence read in step S100. Further, the control unit 19 drives the scanning unit 21 and the traveling unit 14 using the search correspondence. Further, the control unit 19 causes the radiation source 20 to emit an electromagnetic wave to acquire a detection signal from the first detection unit 16. After obtaining the detection signal, the process proceeds to step S103.
- step S103 the control unit 19 determines whether or not detection signals have been acquired for all search values whose absolute value is less than or equal to the upper limit value. If no detection signal has been obtained for all search values, the process returns to step S100. If the detection signals have been acquired for all the search values, the process proceeds to step S104.
- step S104 the control unit 19 determines the maximum value of the signal strength among the detection signals corresponding to each of the plurality of search values. After determining the maximum value, the process proceeds to step S105.
- step S105 the control unit 19 determines the search value corresponding to the detection signal having the maximum signal strength in step S104 as the search value for calibration. After the determination, the process proceeds to step S106.
- step S106 the control unit 19 calibrates the correspondence relationship by adding the search value for calibration determined in step S105 to the correspondence relationship stored in the storage unit 18. Further, the control unit 19 stores the calibrated correspondence relationship in the storage unit 18. After the storage, the correspondence calibration process according to the first method ends.
- the control unit 19 starts the correspondence calibration process by the second method when detecting the input that starts the calibration mode.
- step S200 the control unit 19 reads the correspondence relationship from the storage unit 18. After reading the correspondence, the process proceeds to step S201.
- step S201 the control unit 19 drives the scanning unit 21 and the advancing unit 14 using the correspondence relationship read in step S200. Further, the control unit 19 acquires the reference signal from the first detection unit 16 by causing the radiation source 20 to emit an electromagnetic wave. After obtaining the reference signal, the process proceeds to step S202.
- step S202 the control unit 19 recognizes the initial search value.
- the control unit 19 recognizes, for example, the initial search value by reading it from the search values stored in the storage unit 18. After recognition, the process proceeds to step S203.
- step S203 the control unit 19 creates a search correspondence by adding the initial search value recognized in step S202 to the correspondence read in step S200. Further, the control unit 19 drives the scanning unit 21 and the traveling unit 14 using the search correspondence. Furthermore, the control unit 19 acquires an initial signal from the first detection unit 16 by causing the radiation source 20 to emit an electromagnetic wave. After obtaining the initial signal, the process proceeds to step S204.
- step S204 the control unit 19 determines whether or not the signal intensities of the reference signal acquired in step S201 and the initial signal acquired in step S203 are equal. When the signal strengths are equal, the correspondence calibration process according to the second method ends. If the signal strengths are different, the process proceeds to step S205.
- step S205 the control unit 19 determines whether the signal strength of the reference signal acquired in step S201 is larger than the signal strength of the initial signal acquired in step S203. If the signal strength of the reference signal is greater than the signal strength of the initial signal, the process proceeds to step S206. If the signal strength of the reference signal is less than the signal strength of the initial signal, the process proceeds to step S207.
- step S206 the control unit 19 determines to maintain the polarity of the initial search value, in other words, to use the search value having the same polarity as the initial search value thereafter. After the determination, the process proceeds to step S208.
- step S207 the control unit 19 determines to invert the polarity of the initial search value, in other words, to use the search value in which the polarity of the initial search value is inverted thereafter. After determination, the process proceeds to step S208
- step S208 the control unit 19 reads the correspondence relationship from the storage unit 18. After reading the correspondence, the process proceeds to step S209.
- step S209 the control unit 19 recognizes the next search value.
- the control unit 19 may recognize the next search value by reading it from the search values stored in the storage unit 18 or by calculating it based on the previous search value. After recognition, the process proceeds to step S210.
- step S210 the control unit 19 creates a search correspondence by adding the next search value recognized in step S209 to the correspondence read in step S208. Further, the control unit 19 drives the scanning unit 21 and the traveling unit 14 using the search correspondence. Further, the control unit 19 causes the radiation source 20 to emit an electromagnetic wave to acquire a detection signal from the first detection unit 16. After obtaining the detection signal, the process proceeds to step S211.
- step S211 the control unit 19 determines that the detection signal acquired in the previous step S210 or the latest step S210 is the first time, which is higher than the signal strength of the latest detection signal acquired in step S210. If the signal strength of the initial signal obtained in S203 is not large, the process returns to step S208. If the signal strength of the detection signal acquired this time is higher than the signal strength of the detection signal or the initial signal acquired last time, the process proceeds to step S212.
- step S212 the control unit 19 sets the search value corresponding to the detection signal having a larger signal strength out of the two detection signals (including the case where one is the initial signal) of which the sizes are compared in step S211. Determine the search value for calibration. After the determination, the process proceeds to step S213.
- step S213 the control unit 19 calibrates the correspondence relationship by adding the calibration search value determined in step S212 to the correspondence relationship stored in the storage unit 18. Further, the control unit 19 stores the calibrated correspondence relationship in the storage unit 18. After the storage, the correspondence calibration process by the second method ends.
- the electromagnetic wave detection device 10 includes a plurality of search values detected by the first detection unit 16 using the search correspondence based on the plurality of search values.
- the correspondence is calibrated based on the detection signal.
- the intensity of the reflected wave in the micro area fa irradiated with the electromagnetic wave is maximum at the actual arrival position on the reference surface ss, and the intensity of the reflected wave decreases as the distance from the arrival position on the reference surface ss increases. Therefore, the detection signal for switching the pixel px corresponding to the actual arrival position to the first state and detecting it is higher than the detection signal for detecting the pixel px corresponding to the position other than the arrival position by switching to the first state.
- the maximum signal strength is provided.
- the electromagnetic wave detection device 10 can correct the correspondence relationship stored in the storage unit 18 so as to respond to a change in the actual correspondence relationship due to thermal deformation, aging, or the like. Therefore, the electromagnetic wave detection device 10 can maintain the electromagnetic wave detection accuracy even if thermal deformation or temporal change occurs.
- the electromagnetic wave detection device 10 of the present exemplary embodiment compares the signal strengths of the reference signal acquired using the correspondence relationship and the initial signal acquired using the search correspondence relationship based on the initial search value to determine the polarity of the search value. You can tell. With such a configuration, the electromagnetic wave detection device 10 can reduce the number of times of detecting the detection signal for calibrating the correspondence relationship, and thus can shorten the time required to calibrate the correspondence relationship.
- the electromagnetic wave detection device 10 of the present embodiment ends the calibration of the correspondence relationship when the signal strength of the detection signal to be acquired starts to decrease while adding the search values in the order of increasing absolute value.
- the electromagnetic wave detection device 10 can further reduce the number of times of detecting the detection signal for the calibration of the correspondence relationship, so that the time required for the calibration of the correspondence relationship can be further shortened.
- an upper limit value may be set for the absolute values of the plurality of search values.
- the actual change in correspondence caused by thermal deformation, change over time, etc. is minute. Therefore, even if the range of the search value is set, the change in the actual correspondence can be reflected. Therefore, by having the above-described configuration, the electromagnetic wave detection device 10 detects the detection signal with the search value having a limited range, so that the time required for the calibration of the correspondence relationship can be shortened.
- the plurality of search values are obtained by changing the radiation direction or the coordinate along a single direction corresponding to the short axis of the elliptical shape of the electromagnetic wave emitted by the radiation unit 11.
- the electromagnetic wave detection device 10 may use a radiation source 20 of a type that emits a beam-shaped electromagnetic wave having an elliptical cross section. The correspondence tends to become large in the direction along the short axis of the image of the electromagnetic wave formed on the reference surface ss of the traveling portion 14.
- the electromagnetic wave detection device 10 calibrates the correspondence relationship by specializing in a direction in which the correspondence relationship is likely to be large, and therefore the maintenance of the detection accuracy of electromagnetic waves and the calibration are required. A balance with shortening of time can be achieved.
- the electromagnetic wave detection device 10 is configured to generate distance information by Direct ToF which directly measures the time until the laser beam is emitted and returned, as described above.
- the electromagnetic wave detection device 10 is not limited to such a configuration.
- the electromagnetic wave detection device 10 radiates an electromagnetic wave at a constant cycle, and based on the phase difference between the radiated electromagnetic wave and the returned electromagnetic wave, indirectly measures the time until the electromagnetic wave is returned to the distance information by Flash ToF. May be created.
- the electromagnetic wave detection device 10 may create the distance information by another ToF method, for example, Phased ToF.
- the traveling unit 14 can switch the traveling directions of the electromagnetic waves incident on the reference surface ss to two directions, but can switch to not less than two directions but to three or more directions. May be
- the first state and the second state are the first reflection state in which the electromagnetic wave incident on the reference surface ss is reflected in the detection direction don and the non-detection direction doff, respectively.
- it is the second reflection state in which the light is reflected on the other side, other modes may be used.
- the first state may be a transmissive state in which an electromagnetic wave incident on the reference surface ss is transmitted to proceed in the detection direction don.
- the traveling unit 140 may include a shutter having a reflection surface that reflects the electromagnetic wave in the non-detection direction doff for each pixel px.
- the transmission state as the first state and the reflection state as the second state can be switched for each pixel px by opening and closing the shutter for each pixel px.
- an advancing unit including a MEMS shutter in which a plurality of shutters that can be opened and closed are arranged in an array is cited.
- an advancing unit including a liquid crystal shutter capable of switching between a reflective state of reflecting electromagnetic waves and a transmissive state of transmitting electromagnetic waves according to liquid crystal alignment is cited.
- the transmissive state as the first state and the reflective state as the second state can be switched for each pixel px.
- the electromagnetic wave detection device 10 causes the scanning unit 21 to scan the beam-shaped electromagnetic waves emitted from the radiation source 20, thereby causing the first detection unit 16 to cooperate with the scanning unit 21 to perform scanning. It has a configuration to function as an active sensor of.
- the electromagnetic wave detection device 10 is not limited to such a configuration.
- a scanning-type active sensor is provided without a scanning unit. Even with a functioning configuration, similar effects to those of the present embodiment can be obtained.
- the electromagnetic wave detection device 10 has a configuration in which the first detection unit 16 is an active sensor and the second detection unit 17 is a passive sensor.
- the electromagnetic wave detection device 10 is not limited to such a configuration.
- the emission units 11 that emit electromagnetic waves to the target ob may be different or the same.
- the different radiating units 11 may radiate different kinds or same kinds of electromagnetic waves, respectively.
- a system is disclosed as having various modules and / or units that perform a specific function, and these modules and units are schematically illustrated in order to briefly describe their functionality. It should be noted that the indications are not necessarily indicative of particular hardware and / or software. In that sense, these modules, units, and other components may be hardware and / or software implemented to substantially perform the particular functions described herein. The various functions of the different components may be any combination or separation of hardware and / or software, which may be used separately or in any combination. Also, input / output or I / O devices or user interfaces, including but not limited to keyboards, displays, touch screens, pointing devices, etc., should be connected to the system either directly or through intervening I / O controllers. You can Thus, the various aspects of this disclosure can be implemented in many different aspects, all of which are within the scope of this disclosure.
- Electromagnetic wave detection device 11 Radiation part 12 Pre-stage optical system 13 Separation part 14 Progression part 15 Post-stage optical system 16 First detection part 17 Second detection part 18 Storage part 19 Control part 20 Radiation source 21 Scanning part dd1, dd2 1st Separation direction, second separation direction di incident direction doff non-detection direction don detection direction minute area fa ob target px pixel ss reference plane
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
An electromagnetic radiation detector 10 according to the present invention comprises an emission unit 11, a first detector unit 16, a propagation unit 14, a storage unit 18, and a control unit 19. The emission unit 11 emits electromagnetic radiation. The direction in which electromagnetic radiation is emitted can be modified by the emission unit 11. The first detector unit 16 detects reflected radiation of electromagnetic radiation irradiated onto an object ob. The propagation unit 14 is capable of switching the electromagnetic radiation propagation direction to the detection direction for each pixel px. The first detector unit 16 is disposed in the detection direction. The storage unit 18 stores correspondences. With respect to an arbitrary value for either emission direction or coordinates pertaining to a correspondence, the control unit 19 respectively adds a plurality of search values of different magnitudes to the other value. The control unit 19 calibrates the correspondence on the basis of a plurality of detection signals that use a plurality of searching correspondences to which the plurality of search values have been respectively added.
Description
本出願は、2018年10月25日に日本国に特許出願された特願2018-201215の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。
This application claims the priority of Japanese Patent Application No. 2018-201215, which was filed as a patent application in Japan on October 25, 2018, and the entire disclosure of the previous application is incorporated herein by reference.
本発明は、電磁波検出装置に関するものである。
The present invention relates to an electromagnetic wave detection device.
近年、測定対象の対象領域の部分別に放射した電磁波を、DMDなどの空間変調素子における一部の画素で、光電変換器側に反射させて、電磁波を検出する装置が知られている(特許文献1参照)。
2. Description of the Related Art In recent years, there is known a device that detects an electromagnetic wave by radiating the electromagnetic wave radiated by each part of a target region of a measurement target to a photoelectric converter side by a part of pixels in a spatial modulation element such as a DMD (Patent Document 1).
第1の観点による電磁波検出装置は、
強度が最大となる放射方向を変更可能で、電磁波を放射する放射部と、
対象に照射された前記電磁波の反射波を検出する第1の検出部と、
基準面に沿って複数の画素が配置され、前記対象から前記基準面に入射した電磁波の進行方向を前記画素毎に、前記第1の検出部が配置される検出方向に切替え可能な進行部と、
前記放射方向と、前記検出方向に進行させる前記画素の座標との対応関係を記憶する記憶部と、
前記対応関係における、前記放射方向および前記座標の一方の任意の値に対して、他方に大きさの異なる複数の探索値をそれぞれ加えた複数の探索用対応関係を用いて、前記進行部に前記画素を前記検出方向に切替えさせ且つ前記放射部に前記電磁波を放射させることにより前記第1の検出部に検出される、複数の探索値それぞれに対応する複数の検出信号に基づいて、前記対応関係を較正する制御部と、を備える。 The electromagnetic wave detection device according to the first aspect is
The emission direction that maximizes the intensity can be changed, and the emission part that emits electromagnetic waves,
A first detection unit that detects a reflected wave of the electromagnetic wave with which the target is irradiated;
A plurality of pixels are arranged along a reference plane, and a traveling direction capable of switching a traveling direction of an electromagnetic wave incident on the reference plane from the object for each pixel to a detection direction in which the first detecting unit is arranged, ,
A storage unit that stores a correspondence relationship between the radiation direction and the coordinates of the pixel that advances in the detection direction;
In the correspondence relationship, for any value of one of the radial direction and the coordinate, using a plurality of search correspondence relationships in which a plurality of search values having different sizes are added to the other, to the advancing unit, The correspondence relationship is based on a plurality of detection signals corresponding to a plurality of search values, which are detected by the first detection unit by switching the pixel to the detection direction and causing the emission unit to emit the electromagnetic wave. And a control unit for calibrating.
強度が最大となる放射方向を変更可能で、電磁波を放射する放射部と、
対象に照射された前記電磁波の反射波を検出する第1の検出部と、
基準面に沿って複数の画素が配置され、前記対象から前記基準面に入射した電磁波の進行方向を前記画素毎に、前記第1の検出部が配置される検出方向に切替え可能な進行部と、
前記放射方向と、前記検出方向に進行させる前記画素の座標との対応関係を記憶する記憶部と、
前記対応関係における、前記放射方向および前記座標の一方の任意の値に対して、他方に大きさの異なる複数の探索値をそれぞれ加えた複数の探索用対応関係を用いて、前記進行部に前記画素を前記検出方向に切替えさせ且つ前記放射部に前記電磁波を放射させることにより前記第1の検出部に検出される、複数の探索値それぞれに対応する複数の検出信号に基づいて、前記対応関係を較正する制御部と、を備える。 The electromagnetic wave detection device according to the first aspect is
The emission direction that maximizes the intensity can be changed, and the emission part that emits electromagnetic waves,
A first detection unit that detects a reflected wave of the electromagnetic wave with which the target is irradiated;
A plurality of pixels are arranged along a reference plane, and a traveling direction capable of switching a traveling direction of an electromagnetic wave incident on the reference plane from the object for each pixel to a detection direction in which the first detecting unit is arranged, ,
A storage unit that stores a correspondence relationship between the radiation direction and the coordinates of the pixel that advances in the detection direction;
In the correspondence relationship, for any value of one of the radial direction and the coordinate, using a plurality of search correspondence relationships in which a plurality of search values having different sizes are added to the other, to the advancing unit, The correspondence relationship is based on a plurality of detection signals corresponding to a plurality of search values, which are detected by the first detection unit by switching the pixel to the detection direction and causing the emission unit to emit the electromagnetic wave. And a control unit for calibrating.
以下、本発明を適用した電磁波検出装置の実施形態について、図面を参照して説明する。対象への放射位置を変更可能に電磁波を放射する放射部と、対象において反射散乱する電磁波を検出する検出部と、対象側から進行する電磁波に対して複数の画素の切替により一部の画素に入射する電磁波を検出部に進行させる進行部とを備える電磁波検出装置が構成されている。このような電磁波検出装置では、対象上の電磁波の放射位置と当該放射位置から放射される電磁波の進行部上での到達位置は対応している。それゆえ、電磁波検出装置では、放射位置に対応させて、入射させる電磁波を検出部に進行させる画素を決めて、進行部および放射部を制御することが、電磁波の検出精度を向上させ得る。しかし、放射部や進行部などの電磁波検出装置の構成部品における熱変形や経時変化などにより、放射部の制御に基づいて推定される電磁波の放射位置と検出部方向へ進行させる画素との対応関係が変化することがある。このように対応関係が変化すると、対象上の実際の放射位置において散乱した電磁波の進行部上の到達位置とは異なる位置の画素が電磁波を検出部に進行させるように切替えられうる。その結果、放射した電磁波の検出精度を維持できず、検出精度が低下しうる。そこで、本発明を適用した電磁波検出装置は、検出部の検出結果に基づいて、実際の放射位置において散乱した電磁波の進行部上の到達位置の画素、または任意の画素に到達する電磁波を散乱する対象上の実際の放射位置を推定し、対応関係を調整することにより、電磁波の検出精度を維持し得る。
An embodiment of an electromagnetic wave detection device to which the present invention is applied will be described below with reference to the drawings. A radiation part that emits electromagnetic waves so that the radiation position to the target can be changed, a detection part that detects electromagnetic waves reflected and scattered in the target, and some of the pixels can be switched by switching multiple pixels with respect to the electromagnetic waves traveling from the target side. An electromagnetic wave detection device is provided that includes an advancing unit that advances an incident electromagnetic wave to the detection unit. In such an electromagnetic wave detection device, the emission position of the electromagnetic wave on the target and the arrival position of the electromagnetic wave emitted from the emission position on the traveling portion correspond to each other. Therefore, in the electromagnetic wave detection device, it is possible to improve the detection accuracy of the electromagnetic wave by determining the pixel that advances the incident electromagnetic wave to the detection unit according to the radiation position and controlling the traveling unit and the radiation unit. However, due to thermal deformation and changes over time in the components of the electromagnetic wave detection device such as the radiation part and the traveling part, the correspondence relationship between the radiation position of the electromagnetic wave estimated based on the control of the radiation part and the pixel that advances toward the detection part. May change. When the correspondence changes in this way, the pixel at a position different from the arrival position on the traveling part of the electromagnetic wave scattered at the actual radiation position on the target can be switched so as to cause the electromagnetic wave to travel to the detection part. As a result, the detection accuracy of the radiated electromagnetic wave cannot be maintained, and the detection accuracy may decrease. Therefore, the electromagnetic wave detection device to which the present invention is applied scatters the electromagnetic wave reaching the pixel at the arrival position on the traveling part of the electromagnetic wave scattered at the actual radiation position, or reaching any pixel, based on the detection result of the detection part. By estimating the actual radiation position on the target and adjusting the correspondence, the detection accuracy of electromagnetic waves can be maintained.
図1に示すように、本開示の一実施形態に係る電磁波検出装置10は、放射部11、前段光学系12、分離部13、進行部14、後段光学系15、第1の検出部16、第2の検出部17、記憶部18、および制御部19を含んで構成されている。
As illustrated in FIG. 1, an electromagnetic wave detection device 10 according to an embodiment of the present disclosure includes a radiation unit 11, a pre-stage optical system 12, a separation unit 13, a traveling unit 14, a post-stage optical system 15, and a first detection unit 16. The second detection unit 17, the storage unit 18, and the control unit 19 are included.
以後の図において、各機能ブロックを結ぶ破線は、制御信号または通信される情報の流れを示す。破線が示す通信は有線通信であってもよいし、無線通信であってもよい。また、各機能ブロックから突出する実線は、ビーム状の電磁波を示す。
In the following figures, the broken line connecting each functional block shows the flow of control signals or information to be communicated. The communication indicated by the broken line may be wired communication or wireless communication. The solid line protruding from each functional block indicates a beam-shaped electromagnetic wave.
放射部11は、強度が最大となる放射方向を変更可能で、電磁波を放射する。本実施形態において、放射部11は、例えば、放射源20および走査部21を含んで構成されている。本実施形態においては、放射源20が放射する電磁波の放射方向を、走査部21が変更する。
The radiating unit 11 can change the radiating direction that maximizes the intensity and radiates electromagnetic waves. In the present embodiment, the radiation unit 11 is configured to include, for example, the radiation source 20 and the scanning unit 21. In the present embodiment, the scanning unit 21 changes the radiation direction of the electromagnetic wave emitted by the radiation source 20.
放射源20は、例えば、赤外線、可視光線、紫外線、および電波の少なくともいずれかを放射する。本実施形態において、放射源20は、赤外線を放射する。放射源20は、放射する電磁波を、対象obに向けて、直接または走査部21を介して間接的に、放射する。本実施形態においては、放射源20は、放射する電磁波を、対象obに向けて、走査部21を介して間接的に放射する。
The radiation source 20 emits at least one of infrared rays, visible light rays, ultraviolet rays, and radio waves, for example. In the present embodiment, the radiation source 20 emits infrared rays. The radiation source 20 radiates the radiated electromagnetic wave toward the target ob, directly or indirectly via the scanning unit 21. In the present embodiment, the radiation source 20 indirectly radiates the radiated electromagnetic wave toward the target ob through the scanning unit 21.
本実施形態においては、放射源20は、幅の細い、例えば0.5°のビーム状の電磁波を放射する。また、第1の実施形においては、放射源20が放射する電磁波は、長軸および短軸を有する楕円形状の断面形状を有する。また、本実施形態において、放射源20は電磁波をパルス状に放射可能である。
In the present embodiment, the radiation source 20 emits a beam-shaped electromagnetic wave having a narrow width, for example, 0.5 °. Further, in the first embodiment, the electromagnetic wave emitted from the radiation source 20 has an elliptical cross-sectional shape having a long axis and a short axis. In addition, in the present embodiment, the radiation source 20 can radiate electromagnetic waves in a pulse shape.
放射源20は、例えば、ファブリペローレーザダイオード、LED(Light Emitting Diode)、VCSEL(Vertical Cavity Surface Emitting LASER)、フォトニック結晶レーザ、ガスレーザ、およびファイバーレーザなどを含む。放射源20は、後述する制御部19の制御に基づいて、電磁波の放射および停止を切替える。
The radiation source 20 includes, for example, a Fabry-Perot laser diode, an LED (Light Emitting Diode), a VCSEL (Vertical Cavity Surface Emitting LASER), a photonic crystal laser, a gas laser, and a fiber laser. The radiation source 20 switches between radiating and stopping the electromagnetic wave under the control of the control unit 19 described later.
走査部21は、例えば、電磁波を反射する反射面を有し、放射源20から放射された電磁波を、反射面の向きを変更しながら反射することにより、電磁波の放射方向を変更する。走査部21が電磁波の放射方向を変更することにより、対象obに照射される電磁波の放射位置が変わる。すなわち、走査部21は、放射源20から放射される電磁波を用いて、対象obを走査する。
The scanning unit 21 has, for example, a reflecting surface that reflects electromagnetic waves, and changes the radiation direction of the electromagnetic waves by reflecting the electromagnetic waves emitted from the radiation source 20 while changing the direction of the reflecting surface. When the scanning unit 21 changes the emission direction of the electromagnetic wave, the emission position of the electromagnetic wave with which the target ob is irradiated changes. That is, the scanning unit 21 scans the target ob using the electromagnetic waves emitted from the radiation source 20.
走査部21は、例えば、反射面を第1の回動軸の周りに回動させることにより、第1の回動軸に垂直な方向に電磁波の放射方向を変更する。走査部21は、反射面を第1の回動軸のみの周りに回動させることにより、一次元方向に対象obを走査する。さらに、走査部21は、例えば、反射面を第1の回動軸とは異なる第2の回動軸の周りに回動させることにより、第2の回動軸に垂直な方向にも電磁波の放射方向を変更してよい。走査部21は、反射面を第1の回動軸および第2の回動軸の周りに回動させることにより、二次元方向に対象obを走査する。本実施形態においては、走査部21は、二次元方向に対象obを走査する。
The scanning unit 21 changes the radiation direction of the electromagnetic wave in a direction perpendicular to the first rotation axis, for example, by rotating the reflection surface around the first rotation axis. The scanning unit 21 scans the object ob in a one-dimensional direction by rotating the reflection surface around only the first rotation axis. Further, the scanning unit 21 rotates the reflection surface around a second rotation axis different from the first rotation axis, so that the electromagnetic wave is emitted in the direction perpendicular to the second rotation axis. The direction of radiation may be changed. The scanning unit 21 scans the object ob in a two-dimensional direction by rotating the reflecting surface around the first rotation axis and the second rotation axis. In the present embodiment, the scanning unit 21 scans the target ob in the two-dimensional direction.
走査部21は、第1の回動軸が放射源20の放射する電磁波の楕円形状の長軸に平行となるように、配置されていてよい。または、走査部21は、第1の回動軸および第2の回動軸それぞれが放射源20の放射する電磁波の楕円形状の長軸および短軸に平行となるように、配置されていてよい。
The scanning unit 21 may be arranged such that the first rotation axis is parallel to the elliptical long axis of the electromagnetic wave emitted by the radiation source 20. Alternatively, the scanning unit 21 may be arranged such that the first rotation axis and the second rotation axis are parallel to the elliptical major axis and the minor axis of the electromagnetic wave emitted by the radiation source 20, respectively. .
走査部21は、放射源20から放射されて反射した電磁波の照射領域の少なくとも一部が、電磁波検出装置10における電磁波の検出範囲に含まれるように、構成されている。したがって、走査部21を介して対象obに照射される電磁波の少なくとも一部は、電磁波検出装置10において検出され得る。
The scanning unit 21 is configured such that at least a part of the irradiation area of the electromagnetic waves emitted and reflected from the radiation source 20 is included in the electromagnetic wave detection range of the electromagnetic wave detection device 10. Therefore, at least a part of the electromagnetic waves emitted to the target ob via the scanning unit 21 can be detected by the electromagnetic wave detection device 10.
走査部21は、例えば、MEMS(Micro Electro Mechanical Systems)ミラー、ポリゴンミラー、ガルバノミラー、グレーティングなどを含む。本実施形態においては、走査部21は、MEMSミラーを含む。
The scanning unit 21 includes, for example, a MEMS (Micro Electro Mechanical Systems) mirror, a polygon mirror, a galvano mirror, a grating, and the like. In the present embodiment, the scanning unit 21 includes a MEMS mirror.
走査部21は、後述する制御部19の制御に基づいて、電磁波を反射する向きを変える。なお、制御部19は、走査部21に電磁波を反射する向きを変えさせるために入力する駆動信号に基づいて放射方向を算出し得る。
The scanning unit 21 changes the direction in which electromagnetic waves are reflected under the control of the control unit 19 described later. The control unit 19 can calculate the radiation direction based on the drive signal input to the scanning unit 21 to change the direction in which the electromagnetic wave is reflected.
前段光学系12は、例えば、レンズおよびミラーの少なくとも一方を含み、被写体となる対象obの像を結像させる。
The pre-stage optical system 12 includes, for example, at least one of a lens and a mirror, and forms an image of the object ob as a subject.
分離部13は、前段光学系12と、前段光学系12から所定の位置をおいて離れた対象obの像の、前段光学系12による結像位置である一次結像位置との間に設けられている。
The separation unit 13 is provided between the pre-stage optical system 12 and a primary image forming position which is an image forming position of the pre-stage optical system 12 for an image of the object ob which is separated from the pre-stage optical system 12 at a predetermined position. ing.
分離部13は、入射方向diに進行する電磁波を分離して、第1の分離方向dd1および第2の分離方向dd2に進行するように分離する。入射方向diは、例えば、前段光学系12の光軸に平行であってよい。分離部13は、入射方向diに進行する電磁波の一部を第1の分離方向dd1に進行させ、電磁波の別の一部を第2の分離方向dd2に進行させてよい。第1の分離方向dd1に進行させる一部の電磁波は、入射方向diに進行する電磁波のうち特定の波長の電磁波であってよく、第2の分離方向dd2に進行させる電磁波は他の波長の電磁波であってよい。
The separating unit 13 separates electromagnetic waves traveling in the incident direction di so as to travel in the first separating direction dd1 and the second separating direction dd2. The incident direction di may be parallel to the optical axis of the pre-stage optical system 12, for example. The separating unit 13 may move a part of the electromagnetic wave traveling in the incident direction di in the first separating direction dd1 and another part of the electromagnetic wave in the second separating direction dd2. Part of the electromagnetic waves that travel in the first separation direction dd1 may be electromagnetic waves of a specific wavelength among electromagnetic waves that travel in the incident direction di, and electromagnetic waves that travel in the second separation direction dd2 may be electromagnetic waves of other wavelengths. May be
例えば、分離部13は、具体的には、赤外帯域の電磁波を第1の分離方向dd1に進行させ、可視光帯域の電磁波を第2の分離方向dd2に進行させてよい。逆に、分離部13は、可視光帯域の電磁波を第1の分離方向dd1に進行させ、赤外帯域の電磁波を第2の分離方向dd2に進行させてよい。また、分離部13は、短波長の電磁波を第1の分離方向dd1に進行させ、長波長の電磁波を第2の分離方向dd2に進行させてよい。逆に、分離部13は、長波長の電磁波を第1の分離方向dd1に進行させ、短波長の電磁波を第2の分離方向dd2に進行させてよい。
For example, the separating unit 13 may specifically advance the electromagnetic wave in the infrared band in the first separating direction dd1 and the electromagnetic wave in the visible light band in the second separating direction dd2. Conversely, the separating unit 13 may cause the electromagnetic waves in the visible light band to travel in the first separating direction dd1 and the electromagnetic waves in the infrared band to travel in the second separating direction dd2. Further, the separating unit 13 may cause the electromagnetic wave of short wavelength to travel in the first separating direction dd1 and the electromagnetic wave of long wavelength to travel in the second separating direction dd2. On the contrary, the separation unit 13 may cause the electromagnetic waves of long wavelength to travel in the first separation direction dd1 and the electromagnetic waves of short wavelength to travel in the second separation direction dd2.
本実施形態においては、分離部13は、入射方向diに進行する電磁波の一部を第1の分離方向dd1に透過し、電磁波の別の一部を第2の分離方向dd2に反射する。分離部13は、入射方向diに進行する電磁波の一部を第1の分離方向dd1に透過し、電磁波の別の一部を第2の分離方向dd2に透過してもよい。また、分離部13は、入射方向diに進行する電磁波の一部を第1の分離方向dd1に屈折させ、電磁波の別の一部を第2の分離方向dd2に屈折させてもよい。分離部13は、例えば、可視光反射コーティング、ハーフミラー、ビームスプリッタ、ダイクロイックミラー、コールドミラー、ホットミラー、メタサーフェス、および偏向素子のいずれかを含む。
In the present embodiment, the separation unit 13 transmits a part of the electromagnetic wave traveling in the incident direction di in the first separation direction dd1 and reflects another part of the electromagnetic wave in the second separation direction dd2. The separation unit 13 may transmit a part of the electromagnetic wave traveling in the incident direction di in the first separation direction dd1 and another part of the electromagnetic wave in the second separation direction dd2. The separating unit 13 may refract a part of the electromagnetic wave traveling in the incident direction di in the first separating direction dd1 and another part of the electromagnetic wave in the second separating direction dd2. The separation unit 13 includes, for example, any one of a visible light reflection coating, a half mirror, a beam splitter, a dichroic mirror, a cold mirror, a hot mirror, a metasurface, and a deflecting element.
進行部14は、分離部13から第1の分離方向dd1に進行する電磁波の経路上に位置する。さらに、進行部14は、前段光学系12から所定の位置をおいて離れた対象obの像の、分離部13から第1の分離方向dd1における前段光学系12による一次結像位置または当該一次結像位置近傍に、設けられている。
The traveling unit 14 is located on the path of the electromagnetic wave traveling from the separating unit 13 in the first separating direction dd1. Further, the advancing unit 14 determines the primary imaging position of the image of the object ob which is separated from the pre-stage optical system 12 at a predetermined position by the pre-stage optical system 12 in the first separating direction dd1 from the separating unit 13 or the primary coupling. It is provided near the image position.
本実施形態においては、進行部14は、当該結像位置に設けられている。進行部14は、前段光学系12および分離部13を通過した電磁波が入射する基準面ssを有している。基準面ssは、2次元状に沿って配置される複数の画素pxによって構成されている。基準面ssは、後述する第1の状態および第2の状態の少なくともいずれかにおいて、電磁波に、例えば、反射および透過などの作用を生じさせる面である。
In the present embodiment, the advancing unit 14 is provided at the image forming position. The traveling section 14 has a reference surface ss on which the electromagnetic waves that have passed through the pre-stage optical system 12 and the separating section 13 are incident. The reference plane ss is composed of a plurality of pixels px arranged along a two-dimensional shape. The reference surface ss is a surface that causes an action such as reflection and transmission of electromagnetic waves in at least one of a first state and a second state described later.
進行部14は、第1の分離方向dd1に進行して基準面ssに入射する電磁波を、検出方向donに進行させる第1の状態と、非検出方向doffに進行させる第2の状態とに、画素px毎に切替可能である。本実施形態において、第1の状態は、基準面ssに入射する電磁波を、検出方向donに反射する第1の反射状態である。また、第2の状態は、基準面ssに入射する電磁波を、非検出方向doffに反射する第2の反射状態である。
The traveling unit 14 has an electromagnetic wave traveling in the first separation direction dd1 and incident on the reference surface ss in a first state in which the electromagnetic wave travels in the detection direction don and a second state in which the electromagnetic wave travels in the non-detection direction doff. It is possible to switch for each pixel px. In the present embodiment, the first state is a first reflection state in which the electromagnetic wave incident on the reference surface ss is reflected in the detection direction don. Further, the second state is a second reflection state in which the electromagnetic wave incident on the reference surface ss is reflected in the non-detection direction doff.
本実施形態において、進行部14は、さらに具体的には、画素px毎に電磁波を反射する反射面を含んでいる。進行部14は、画素px毎の反射面の向きを変更することにより、第1の反射状態および第2の反射状態を画素px毎に切替える。
In this embodiment, more specifically, the traveling unit 14 includes a reflection surface that reflects an electromagnetic wave for each pixel px. The advancing unit 14 switches the first reflection state and the second reflection state for each pixel px by changing the direction of the reflection surface for each pixel px.
本実施形態において、進行部14は、例えばDMD(Digital Micro mirror Device:デジタルマイクロミラーデバイス)を含む。DMDは、基準面ssを構成する微小な反射面を駆動することにより、画素px毎に当該反射面を基準面ss上に対して+12°および-12°のいずれかの傾斜状態に切替可能である。なお、基準面ssは、DMDにおける微小な反射面を載置する基板の板面に平行である。
In this embodiment, the advancing unit 14 includes, for example, a DMD (Digital Micro mirror Device). The DMD can switch the reflection surface for each pixel px to any one of + 12 ° and −12 ° with respect to the reference surface ss by driving a minute reflection surface that constitutes the reference surface ss. is there. The reference surface ss is parallel to the plate surface of the substrate on which the minute reflecting surface of the DMD is placed.
本実施形態において、DMDである進行部14は、反射面を傾斜させる回動軸が、走査部21の第1の回動軸による電磁波の放射方向の変更方向に対応するように、配置されていてよい。言い換えると、走査部21の反射面を第1の回動軸の周りのみの回動による放射方向の変更に応じた、電磁波の基準面ss上の到達位置の変位方向が、反射面を傾斜させる回動軸に平行であってよい。
In the present embodiment, the DMD traveling unit 14 is arranged such that the rotation axis that inclines the reflection surface corresponds to the changing direction of the electromagnetic wave emission direction by the first rotation axis of the scanning unit 21. You may In other words, the displacement direction of the arrival position of the electromagnetic wave on the reference plane ss in response to the change of the radiation direction by the rotation of the reflection surface of the scanning unit 21 only around the first rotation axis tilts the reflection surface. It may be parallel to the axis of rotation.
進行部14は、後述する制御部19の制御に基づいて、第1の状態および第2の状態を、画素px毎に切替える。例えば、進行部14は、同時に、一部の画素pxを第1の状態に切替えることにより当該画素pxに入射する電磁波を検出方向donに進行させ得、別の一部の画素pxを第2の状態に切替えることにより当該画素pxに入射する電磁波を非検出方向doffに進行させ得る。
The advancing unit 14 switches the first state and the second state for each pixel px based on the control of the control unit 19 described later. For example, the advancing unit 14 may simultaneously switch some of the pixels px to the first state to cause the electromagnetic waves incident on the pixels px to travel in the detection direction don, and to move the other pixels px to the second position. By switching to the state, the electromagnetic wave incident on the pixel px can proceed in the non-detection direction doff.
後段光学系15は、進行部14から検出方向donに設けられている。後段光学系15は、例えば、レンズおよびミラーの少なくとも一方を含む。後段光学系15は、進行部14において進行方向を切替えられた電磁波としての対象obの像を結像させる。
The post-stage optical system 15 is provided in the detection direction don from the traveling unit 14. The rear optical system 15 includes, for example, at least one of a lens and a mirror. The post-stage optical system 15 forms an image of the object ob as an electromagnetic wave whose traveling direction is switched in the traveling unit 14.
第1の検出部16は、進行部14による検出方向donに進行した後に後段光学系15を経由して進行する電磁波の経路上に設けられている。第1の検出部16は、後段光学系15を経由した電磁波、すなわち検出方向donに進行した電磁波を検出する。
The first detection unit 16 is provided on the path of an electromagnetic wave that travels in the detection direction don by the traveling unit 14 and then travels via the post-stage optical system 15. The first detection unit 16 detects an electromagnetic wave that has passed through the rear optical system 15, that is, an electromagnetic wave that travels in the detection direction don.
なお、本実施形態において、第1の検出部16は、放射部11から放射された電磁波の放射領域の少なくとも一部が、検出範囲に含まれるように、構成されている。したがって、本実施形態において、第1の検出部16は、放射部11から対象obに放射される電磁波の少なくとも一部を検出し得る。
Note that, in the present embodiment, the first detection unit 16 is configured such that at least a part of the emission area of the electromagnetic wave emitted from the emission unit 11 is included in the detection range. Therefore, in the present embodiment, the first detection unit 16 can detect at least a part of the electromagnetic waves emitted from the emission unit 11 to the target ob.
本実施形態において、第1の検出部16は、放射部11から対象obに向けて放射された電磁波の当該対象obからの反射波を検出するアクティブセンサである。したがって、第1の検出部16は、例えば、赤外線、可視光線、紫外線、および電波の少なくともいずれかを検出する。本実施形態において、第1の検出部16は、赤外線を検出する。さらに、本実施形態において、第1の検出部16は、放射方向を変更可能な放射部11と協同して、走査型のセンサを構成する。
In the present embodiment, the first detection unit 16 is an active sensor that detects a reflected wave from the target ob of the electromagnetic wave radiated from the radiation unit 11 toward the target ob. Therefore, the first detection unit 16 detects, for example, at least one of infrared rays, visible rays, ultraviolet rays, and radio waves. In the present embodiment, the first detection unit 16 detects infrared rays. Further, in the present embodiment, the first detection unit 16 forms a scanning sensor in cooperation with the radiation unit 11 that can change the radiation direction.
本実施形態において、第1の検出部16は、さらに具体的には、測距センサを構成する素子を含む。例えば、第1の検出部16は、APD(Avalanche PhotoDiode)、PD(PhotoDiode)および測距イメージセンサなどの単一の素子を含む。また、第1の検出部16は、APDアレイ、PDアレイ、測距イメージングアレイ、および測距イメージセンサなどの素子アレイを含むものであってもよい。または、第1の検出部16は、イメージセンサまたはサーモセンサを構成する素子を含んでもよい。
In the present embodiment, the first detection unit 16 more specifically includes an element that constitutes a distance measuring sensor. For example, the first detection unit 16 includes a single element such as an APD (Avalanche PhotoDiode), a PD (PhotoDiode), and a distance measurement image sensor. The first detection unit 16 may include an element array such as an APD array, a PD array, a ranging imaging array, and a ranging image sensor. Alternatively, the first detection unit 16 may include an element forming an image sensor or a thermosensor.
本実施形態において、第1の検出部16は、被写体からの反射波を検出したことを示す検出情報を信号として制御部19に送信する。
In the present embodiment, the first detection unit 16 transmits the detection information indicating that the reflected wave from the subject is detected to the control unit 19 as a signal.
なお、第1の検出部16は、上述した測距センサを構成する単一の素子である構成において、電磁波を検出できればよく、検出面において結像される必要はない。それゆえ、第1の検出部16は、後段光学系15による結像位置である二次結像位置に設けられなくてもよい。すなわち、この構成において、第1の検出部16は、すべての画角からの電磁波が検出面上に入射可能な位置であれば、進行部14により検出方向donに進行した後に後段光学系15を経由して進行する電磁波の経路上のどこに配置されてもよい。
Note that the first detection unit 16 is not required to be imaged on the detection surface as long as it can detect an electromagnetic wave in the configuration that is the single element that constitutes the distance measurement sensor described above. Therefore, the first detection unit 16 does not have to be provided at the secondary image forming position which is the image forming position of the post optical system 15. That is, in this configuration, the first detection unit 16 moves the post-stage optical system 15 to the post-stage optical system 15 after traveling in the detection direction don by the traveling unit 14 at a position where electromagnetic waves from all angles of view can be incident on the detection surface. It may be placed anywhere on the path of the electromagnetic wave traveling through.
第2の検出部17は、分離部13から第2の分離方向dd2に進行する電磁波の経路上に、設けられている。さらに、第2の検出部17は、前段光学系12から所定の位置をおいて離れた対象obの像の、分離部13から第2の分離方向dd2における前段光学系12による結像位置または当該結像位置近傍に、設けられている。第2の検出部17は、分離部13から第2の分離方向dd2に進行した電磁波を検出する。
The second detection unit 17 is provided on the path of the electromagnetic wave traveling from the separation unit 13 in the second separation direction dd2. Further, the second detection unit 17 forms an image of the image of the object ob separated from the pre-stage optical system 12 at a predetermined position by the pre-stage optical system 12 in the second separation direction dd2 from the separation unit 13 or the relevant position. It is provided near the image formation position. The second detection unit 17 detects the electromagnetic wave traveling from the separation unit 13 in the second separation direction dd2.
本実施形態において、第2の検出部17は、パッシブセンサである。本実施形態において、第2の検出部17は、さらに具体的には、素子アレイを含む。例えば、第2の検出部17は、イメージセンサまたはイメージングアレイなどの撮像素子を含み、検出面において結像した電磁波による像を撮像して、撮像した対象obに相当する画像情報を生成する。
In the present embodiment, the second detection unit 17 is a passive sensor. In the present embodiment, the second detector 17 more specifically includes an element array. For example, the second detection unit 17 includes an image sensor such as an image sensor or an imaging array, captures an image of an electromagnetic wave formed on the detection surface, and generates image information corresponding to the captured object ob.
なお、本実施形態において、第2の検出部17は、さらに具体的には可視光の像を撮像する。第2の検出部17、生成した画像情報を信号として制御部19に送信する。
Note that in the present embodiment, the second detection unit 17 more specifically captures an image of visible light. The second detector 17 sends the generated image information as a signal to the controller 19.
なお、第2の検出部17は、赤外線、紫外線、および電波の像など、可視光以外の像を撮像してもよい。したがって、第2の検出部17は、第1の検出部16とは異種または同種の電磁波を検出する。
Note that the second detection unit 17 may capture images other than visible light, such as infrared, ultraviolet, and radio wave images. Therefore, the second detection unit 17 detects an electromagnetic wave that is different from or the same as that of the first detection unit 16.
また、第2の検出部17は測距センサを含んでいてもよい。この構成において、電磁波検出装置10は、第2の検出部17により画像状の距離情報を取得し得る。また、第2の検出部17はサーモセンサなどを含んでいてもよい。この構成において、電磁波検出装置10は、第2の検出部17により画像状の温度情報を取得し得る。したがって、本実施形態において、第2の検出部17は、第1の検出部16と異種または同種のセンサであってよい。
Also, the second detection unit 17 may include a distance measuring sensor. In this configuration, the electromagnetic wave detection device 10 can acquire image-like distance information by the second detection unit 17. In addition, the second detection unit 17 may include a thermosensor or the like. In this configuration, the electromagnetic wave detection device 10 can acquire image-like temperature information by the second detection unit 17. Therefore, in the present embodiment, the second detection unit 17 may be a sensor different from or the same as the first detection unit 16.
記憶部18は、1つ以上のメモリを含む。本実施形態において、メモリは、例えば、半導体メモリ、磁気メモリ、又は光メモリ等であるが、これらに限られない。記憶部18に含まれる各メモリは、例えば、主記憶装置、補助記憶装置、またはキャッシュメモリとして機能してもよい。記憶部18は、電磁波検出装置10の動作に用いられる任意の情報を記憶する。記憶部18は、例えば、システムプログラム、アプリケーションプログラム、対応関係、探索値などを記憶してもよい。探索値については後に説明する。
The storage unit 18 includes one or more memories. In the present embodiment, the memory is, for example, a semiconductor memory, a magnetic memory, an optical memory, or the like, but is not limited to these. Each memory included in the storage unit 18 may function as, for example, a main storage device, an auxiliary storage device, or a cache memory. The storage unit 18 stores arbitrary information used for the operation of the electromagnetic wave detection device 10. The storage unit 18 may store, for example, a system program, an application program, a correspondence relationship, a search value, and the like. The search value will be described later.
なお、対応関係とは、放射部11が放射する電磁波の任意の放射方向と、基準面ssに入射する電磁波を検出方向donに切替える画素pxの座標との直接的または間接的な対応を示す。間接的な対応関係とは、放射方向および座標の間に、放射方向および座標の両者に対応する、例えば放射部11から放射される電磁波が照射される仮想平面における座標を介した対応関係である。
The correspondence relationship indicates a direct or indirect correspondence between an arbitrary radiation direction of the electromagnetic wave emitted by the radiation unit 11 and the coordinates of the pixel px that switches the electromagnetic wave incident on the reference surface ss to the detection direction don. The indirect correspondence is a correspondence between the radial direction and the coordinate, which corresponds to both the radial direction and the coordinate, for example, via the coordinate on the virtual plane on which the electromagnetic wave emitted from the radiation unit 11 is irradiated. .
対応関係について、以下に説明する。図2に示すように、放射部11から任意の放射方向に放射された電磁波は、対象ob上の一部の微小領域faに照射される。微小領域faにおいて、照射された電磁波は反射する。反射した電磁波が、前段光学系12により集束し、進行部14の基準面ss上の一部の座標の画素pxに到達する。放射方向を変えることにより、電磁波が照射される対象ob上の微小領域faの位置が変化する。微小領域faの位置の変化に応じて、反射した電磁波の進行部14に到達する画素pxの座標も変化する。任意の放射方向に対して反射した電磁波が到達する画素pxの座標が、当該任意の放射方向と対応付けられた対応関係が、予め設計され、必要あれば、製造時に較正されて、記憶部18に格納されている。本実施形態において、対応関係は、例えば、図3に示すように、離散的な放射方向dr1、dr2、dr3、・・・毎に、座標co1、co2、co3、・・・を対応付けたテーブルTcとして記憶部18に記憶されている。なお、離散的な放射方向それぞれに対応付けられる座標は、単一の画素pxの座標でも、互いに隣接する複数の画素pxの座標であってもよい。
The correspondence relationship is explained below. As shown in FIG. 2, the electromagnetic wave radiated from the radiating unit 11 in an arbitrary radiating direction is applied to a small area fa on the target ob. The irradiated electromagnetic wave is reflected in the minute area fa. The reflected electromagnetic wave is focused by the front optical system 12 and reaches the pixel px at some coordinates on the reference plane ss of the traveling unit 14. By changing the radiation direction, the position of the minute area fa on the object ob irradiated with the electromagnetic wave changes. The coordinates of the pixel px reaching the traveling portion 14 of the reflected electromagnetic wave also change according to the change in the position of the minute area fa. The storage unit 18 has a correspondence relationship in which the coordinates of the pixel px, which the electromagnetic waves reflected in an arbitrary radiation direction reach, associated with the arbitrary radiation direction are designed in advance and, if necessary, calibrated during manufacturing, It is stored in. In the present embodiment, the correspondence relationship is, for example, as shown in FIG. 3, a table in which the coordinates co1, co2, co3, ... Are associated with each discrete radial direction dr1, dr2, dr3 ,. It is stored in the storage unit 18 as Tc. The coordinates associated with each of the discrete radiation directions may be the coordinates of a single pixel px or the coordinates of a plurality of pixels px adjacent to each other.
制御部19は、1以上のプロセッサおよびメモリを含む。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、および特定の処理に特化した専用のプロセッサの少なくともいずれかを含んでよい。専用のプロセッサは、特定用途向けIC(ASIC;Application Specific Integrated Circuit)を含んでよい。プロセッサは、プログラマブルロジックデバイス(PLD;Programmable Logic Device)を含んでよい。PLDは、FPGA(Field-Programmable Gate Array)を含んでよい。制御部19は、1つまたは複数のプロセッサが協働するSoC(System-on-a-Chip)、およびSiP(System In a Package)の少なくともいずれかを含んでもよい。
The control unit 19 includes one or more processors and memories. The processor may include at least one of a general-purpose processor that loads a specific program and executes a specific function, and a dedicated processor that is specialized for a specific process. The dedicated processor may include an application-specific IC (ASIC; Application Specific Integrated Circuit). The processor may include a programmable logic device (PLD; Programmable Logic Device). The PLD may include an FPGA (Field-Programmable Gate Array). The control unit 19 may include at least one of SoC (System-on-a-Chip) and SiP (System In a Package) in which one or more processors cooperate.
制御部19は、第1の検出部16および第2の検出部17がそれぞれ検出した電磁波に基づいて、電磁波検出装置10の周囲に関する情報を取得する。周囲に関する情報は、例えば画像情報、距離情報、および温度情報などである。本実施形態において、制御部19は、第1の検出部16が検出する検出情報に基づいて、後述するように、ToF(Time-of-Flight)方式により、放射部11に照射される照射位置の距離情報を取得する。また、本実施形態において、制御部19は、前述のように、第2の検出部17が画像として検出した電磁波を画像情報として取得する。
The control unit 19 acquires information about the surroundings of the electromagnetic wave detection device 10 based on the electromagnetic waves detected by the first detection unit 16 and the second detection unit 17, respectively. The information about the surroundings is, for example, image information, distance information, and temperature information. In the present embodiment, the control unit 19 uses the ToF (Time-of-Flight) method to irradiate the irradiation unit 11 with the irradiation position based on the detection information detected by the first detection unit 16, as described later. Get distance information for. Further, in the present embodiment, as described above, the control unit 19 acquires the electromagnetic waves detected by the second detection unit 17 as an image as image information.
図4に示すように、制御部19は、放射源20に電磁波放射信号を入力することにより、放射源20にパルス状の電磁波を放射させる(“電磁波放射信号”欄参照)。放射源20は、入力された当該電磁波放射信号に基づいて電磁波を放射する(“放射部放射量”欄参照)。放射源20が放射し且つ走査部21が反射して任意の微小領域faに放射された電磁波は、当該微小領域faにおいて反射する。制御部19は、当該微小領域faの反射波の前段光学系12による進行部14における結像領域の中の少なくとも一部の画素pxを第1の状態に切替え、他の画素pxを第2の状態に切替える。そして、第1の検出部16は、当該微小領域faにおいて反射された電磁波を検出するとき(“電磁波検出量”欄参照)、前述のように、検出情報を制御部19に通知する。
As shown in FIG. 4, the control unit 19 causes the radiation source 20 to emit a pulsed electromagnetic wave by inputting the electromagnetic radiation signal to the radiation source 20 (see the “electromagnetic radiation signal” column). The radiation source 20 radiates an electromagnetic wave based on the inputted electromagnetic wave radiation signal (see the "radiation section radiation amount" column). The electromagnetic wave emitted by the radiation source 20 and reflected by the scanning unit 21 and emitted to an arbitrary minute area fa is reflected in the minute area fa. The control unit 19 switches at least some of the pixels px in the image formation region in the traveling unit 14 by the upstream optical system 12 of the reflected wave of the minute region fa to the first state and sets the other pixels px to the second state. Switch to the state. Then, when detecting the electromagnetic wave reflected in the minute area fa (see the “electromagnetic wave detection amount” column), the first detection unit 16 notifies the control unit 19 of the detection information as described above.
制御部19は、例えば、時間計測LSI(Large Scale Integrated circuit)を有しており、放射源20に電磁波を放射させた時期T1から、検出情報を取得(“検出情報取得”欄参照)した時期T2までの時間ΔTを計測する。制御部19は、当該時間ΔTに、光速を乗算し、且つ2で除算することにより、放射位置までの距離を算出する。
The control unit 19 has, for example, a time measurement LSI (Large Scale Integrated circuit), and acquires detection information from the time T1 when the radiation source 20 emits an electromagnetic wave (see the "Detection information acquisition" column). The time ΔT to T2 is measured. The control unit 19 calculates the distance to the radiation position by multiplying the time ΔT by the speed of light and dividing by 2.
制御部19は、放射源20に電磁波を放射させる前に、任意の放射方向に放射させる駆動信号を走査部21に付与して、当該任意の放射方向に電磁波を放射可能となるように、走査部21に反射面を駆動させる。さらに、制御部19は、記憶部18から読出した対応関係において、当該任意の放射方向と対応する座標にある一部の画素pxを第1の状態に切替える駆動信号を進行部14に付与する。制御部19は、進行部14に当該駆動信号を付与することにより、当該任意の放射方向と対応関係を有する一部の画素pxが第1の状態に切替えられた後、上述のように放射源20による電磁波の放射および第1の検出部16による検出情報の取得を実行する。制御部19は、走査部21に付与した駆動信号に基づいて、電磁波を照射した微小領域faの位置を算出する。制御部19は、放射方向を変えながら、各微小領域faまでの距離を算出することにより、画像状の距離情報を作成する。
Before causing the radiation source 20 to radiate an electromagnetic wave, the control unit 19 applies a drive signal to cause the scanning unit 21 to radiate the electromagnetic wave in an arbitrary radiation direction so that the electromagnetic wave can be emitted in the arbitrary radiation direction. The part 21 drives the reflecting surface. Furthermore, the control unit 19 gives the drive signal to the advancing unit 14 to switch some of the pixels px in the coordinates corresponding to the arbitrary radiation direction to the first state in the correspondence relationship read from the storage unit 18. The control unit 19 applies the drive signal to the traveling unit 14 to switch some of the pixels px having a corresponding relationship with the arbitrary radiation direction to the first state, and then, as described above, the radiation source. The emission of electromagnetic waves by 20 and the acquisition of detection information by the first detection unit 16 are executed. The control unit 19 calculates the position of the minute area fa irradiated with the electromagnetic wave based on the drive signal given to the scanning unit 21. The control unit 19 creates image-like distance information by calculating the distance to each micro area fa while changing the radiation direction.
制御部19は、以下に説明するように、対応関係を較正する較正モードを動作モードとして有する。較正モードにおいて、制御部19は、対応関係において互いに対応付けられている放射方向および座標の一方の任意の値に対して、他方の対応付けられた値に大きさの異なる複数の探索値をそれぞれ加えた、複数の探索用対応関係を作成する。
The control unit 19 has a calibration mode for calibrating the correspondence as an operation mode, as described below. In the calibration mode, the control unit 19 sets a plurality of search values having different magnitudes to the other associated value with respect to any one of the radial direction and the coordinate associated with each other in the corresponding relationship. In addition, a plurality of search correspondences are created.
図5に示すように、制御部19は、例えば、任意の放射方向に対して、対応関係により対応付けられた座標に、大きさの異なる複数の変位量Δco1~Δconを探索値としてそれぞれ加えることにより、複数の探索用対応関係Tcco1~Tcconを作成する。または、図6に示すように、制御部19は、例えば、任意の座標に対して、対応関係により対応付けられた放射方向に、大きさの異なる複数の変角量Δdr1~Δdrnを探索値としてそれぞれ加えることにより、複数の探索用対応関係Tcdr1~Tcdrnを作成する。
As shown in FIG. 5, for example, the control unit 19 adds a plurality of displacement amounts Δco1 to Δcon having different magnitudes as search values to the coordinates associated with the arbitrary radiation direction by the correspondence relationship. Thus, a plurality of search correspondences Tcco1 to Tccon are created. Alternatively, as shown in FIG. 6, for example, the control unit 19 sets, as search values, a plurality of variable angle amounts Δdr1 to Δdrn having different sizes in the radial direction associated with the arbitrary coordinates by the correspondence relationship. By adding each, a plurality of search correspondences Tcdr1 to Tcdrn are created.
複数の探索値は、対応関係における放射方向または座標を単一の方向に沿って変化させてよい。例えば、探索値が座標を変位させる変位量Δco1~Δconである構成においては、複数の探索値は、元の座標の値を、基準面ss上の一方向に沿って変化させる。または、例えば、探索値が放射方向を変角させる変角量Δdr1~Δdrnである構成においては、複数の探索値は、元の放射方向を、一方向にそって変化させる。または、複数の探索値は、対応関係における放射方向または座標を互いに異なる二方向に沿って変化させてもよい。本実施形態においては、複数の探索値は、対応関係における放射方向または座標を単一の方向に沿って変化させる。
-Multiple search values may change the radial direction or coordinate in the correspondence relationship along a single direction. For example, in the configuration in which the search value is the displacement amount Δco1 to Δcon that displaces the coordinate, the plurality of search values change the value of the original coordinate along one direction on the reference plane ss. Alternatively, for example, in a configuration in which the search value is the amount of change Δdr1 to Δdrn that changes the radial direction, the plurality of search values changes the original radial direction along one direction. Alternatively, the plurality of search values may change the radial direction or the coordinate in the correspondence relationship along two different directions. In the present embodiment, the plurality of search values change the radial direction or the coordinate in the correspondence relationship along a single direction.
複数の探索値が対応関係における放射方向または座標を単一の方向に沿って変化させる構成においては、さらに、当該単一の方向が、放射源20の放射する電磁波の楕円形状の短軸に対応していてよい。言い換えると、当該単一の方向が、基準面ss上に形成される、放射源20が放射した電磁波の反射波が基準面ss上に形成する楕円形状の電磁波の像の短軸に平行である。
In the configuration in which the plurality of search values change the radiation direction or the coordinate in the correspondence relationship along a single direction, the single direction further corresponds to the elliptical short axis of the electromagnetic wave emitted by the radiation source 20. You can do it. In other words, the single direction is parallel to the short axis of the image of the elliptical electromagnetic wave formed on the reference surface ss and reflected by the electromagnetic wave emitted by the radiation source 20 on the reference surface ss. .
なお、複数の探索値は、対応関係において互いに対応付けられている放射方向および座標の一方の任意の値に対して、他方の対応付けられた値に加えられるが、直接的に加えられても、間接的に加えられていてもよい。間接的に加えられるとは、例えば、対応関係が、放射方向および電磁波が照射される仮想平面における座標の第1の部分対応関係と、電磁波が照射される仮想平面における座標および進行部14の座標の第2の部分対応関係を含む構成において、いずれか一方の対応関係に加えられることを含む。間接的に加えられる構成においても、第1の部分対応関係および第2の部分対応関係を合成することにより、放射方向および進行部14の座標の全体の対応関係に対して、探索値を加えることと同等である。
It should be noted that the plurality of search values are added to the value associated with the other one of the arbitrary values of the radial direction and the coordinates associated with each other in the correspondence relationship, but may be directly added. , May be added indirectly. Indirectly added means, for example, that the correspondence is the first partial correspondence of the radiation direction and the coordinates on the virtual plane on which the electromagnetic wave is irradiated, and the coordinates on the virtual plane on which the electromagnetic wave is irradiated and the coordinates of the traveling unit 14. In the configuration including the second partial correspondence relationship of, the addition to any one of the correspondence relationships is included. Even in the configuration that is indirectly added, the search value is added to the overall correspondence of the radial direction and the coordinates of the traveling portion 14 by synthesizing the first partial correspondence and the second partial correspondence. Is equivalent to
制御部19は、複数の探索用対応関係を用いて、進行部14に画素pxを検出方向donに切替えさせ且つ放射部11に放射方向に電磁波を放射させることにより、複数の探索値それぞれに対応する、第1の検出部16が検出する検出信号を取得する。
The control unit 19 corresponds to each of the plurality of search values by causing the advancing unit 14 to switch the pixel px in the detection direction don and causing the emitting unit 11 to emit an electromagnetic wave in the emitting direction using the plurality of search correspondences. Then, the detection signal detected by the first detection unit 16 is acquired.
座標に探索値を加える構成において、制御部19は、放射部11に任意の放射方向に電磁波を放射可能となるように、走査部21を駆動する。さらに、制御部19は、当該任意の放射方向に対して単一の探索用対応関係において対応している座標の画素pxを第1の状態に切替えるように進行部14を駆動する。この状態で、制御部19は、放射源20に電磁波を放射させ、第1の検出部16が検出する検出信号を取得する。制御部19は、同様に、他の探索用対応関係それぞれにおける検出信号を取得する。
In the configuration in which the search value is added to the coordinates, the control unit 19 drives the scanning unit 21 so that the radiation unit 11 can emit an electromagnetic wave in an arbitrary radiation direction. Further, the control unit 19 drives the advancing unit 14 so as to switch the pixel px of the coordinates corresponding to the arbitrary radial direction in the single search correspondence relationship to the first state. In this state, the control unit 19 causes the radiation source 20 to emit an electromagnetic wave, and acquires the detection signal detected by the first detection unit 16. Similarly, the control unit 19 acquires the detection signal in each of the other search correspondences.
または、放射方向に探索値を加える構成において、制御部19は、任意の座標の画素pxを第1の状態に切替えるよう進行部14を駆動する。さらに、制御部19は、当該任意の座標に対して単一の探索用対応関係において対応している放射方向に電磁波を放射可能となるように、走査部21を駆動する。この状態で、制御部19は、放射源20に電磁波を放射させ、第1の検出部16が検出する検出信号を取得する。制御部19は、同様に、他の探索用対応関係それぞれにおける検出信号を取得する。
Alternatively, in the configuration in which the search value is added in the radial direction, the control unit 19 drives the advancing unit 14 so as to switch the pixel px at an arbitrary coordinate to the first state. Further, the control unit 19 drives the scanning unit 21 so that the electromagnetic waves can be emitted in the emission direction corresponding to the arbitrary coordinates in the single search correspondence. In this state, the control unit 19 causes the radiation source 20 to emit an electromagnetic wave, and acquires the detection signal detected by the first detection unit 16. Similarly, the control unit 19 acquires the detection signal in each of the other search correspondences.
制御部19は、複数の探索値それぞれに対応する複数の検出信号に基づいて、対応関係を較正する。さらに具体的に説明すると、制御部19は、取得した複数の検出信号の中で信号強度が最大となる単一の探索値を較正に用いる探索値に決定する。制御部19は、較正に用いる探索値を対応関係に加えることにより、対応関係を較正する。制御部19は、較正した対応関係を、以後の距離の測定に用いる対応関係として記憶部18に格納する。
The control unit 19 calibrates the correspondence relationship based on a plurality of detection signals corresponding to a plurality of search values. More specifically, the control unit 19 determines, as the search value to be used for calibration, a single search value that maximizes the signal intensity among the plurality of acquired detection signals. The control unit 19 calibrates the correspondence by adding the search value used for the calibration to the correspondence. The control unit 19 stores the calibrated correspondence relationship in the storage unit 18 as a correspondence relationship used for subsequent distance measurement.
制御部19は、絶対値が上限値以内である探索値を用いて、探索用対応関係を作成してよい。上限値は、熱変形や経時変化などにより対応関係に生じると考えられるズレの最大値に定められてよい。
The control unit 19 may create a search correspondence by using a search value whose absolute value is within the upper limit value. The upper limit value may be set to the maximum value of the shift that is considered to occur in the correspondence relationship due to thermal deformation, change over time, or the like.
なお、複数の探索値は、当該複数の探索値の中で絶対値が最小である探索値の整数倍であっても、整数倍でなくてもよい。
Note that the plurality of search values may or may not be an integral multiple of the search value having the smallest absolute value among the plurality of search values.
または、制御部19は、以下に説明するように、較正に用いる探索値の極性、すなわち当該探索値の正負を判別してから、複数の探索用対応関係を作成してよい。制御部19は、距離の測定時と同様に、対応関係を用いて、進行部14を介して任意の座標の画素pxを第1の状態に切替させ、当該任意の座標に対応関係で対応付けられている放射方向に電磁波を放射可能な状態で、放射源20に電磁波を放射させ、検出信号を基準信号として取得する。
Alternatively, the control unit 19 may create a plurality of search correspondences after determining the polarity of the search value used for calibration, that is, whether the search value is positive or negative, as described below. The control unit 19 switches the pixel px of an arbitrary coordinate to the first state via the advancing unit 14 by using the correspondence, as in the distance measurement, and associates the arbitrary coordinate with the correspondence. The radiation source 20 is caused to emit an electromagnetic wave in a state in which the electromagnetic wave can be emitted in the given radiation direction, and the detection signal is acquired as a reference signal.
次に、制御部19は、初期探索値を加えた探索用対応関係を作成する。初期探索値は、例えば、制御部19が調整可能な最小の調整量に相当する探索値、すなわち絶対値が最小である探索値である。例えば、座標に探索値を加える構成において、初期探索値は、互いに隣接する2画素間の間隔である。または放射方向に探索値を加える構成において、初期探索値は、走査部21への駆動信号の信号強度の最小変動可能量である。最小変動可能量とは、信号強度の異なる2つの駆動信号において信号強度の差分として制御部19が変動の調整し得る最小の量である。
Next, the control unit 19 creates a search correspondence including an initial search value. The initial search value is, for example, a search value corresponding to the minimum adjustment amount that can be adjusted by the control unit 19, that is, a search value having a minimum absolute value. For example, in the configuration in which the search value is added to the coordinates, the initial search value is the interval between two adjacent pixels. Alternatively, in the configuration in which the search value is added in the radial direction, the initial search value is the minimum variable amount of the signal strength of the drive signal to the scanning unit 21. The minimum fluctuable amount is the minimum amount that the control unit 19 can adjust the fluctuation as a difference in signal strength between two drive signals having different signal strengths.
制御部19は、初期探索値を加えた探索用対応関係を用いて、進行部14を介して任意の座標の画素pxを第1の状態に切替させ、当該任意の座標に対応関係で対応付けられている放射方向に電磁波を放射可能な状態で、放射源20に電磁波を放射させ、検出信号を初期信号として取得する。制御部19は、基準信号および初期信号の信号強度を比較する。
The control unit 19 switches the pixel px at an arbitrary coordinate to the first state via the advancing unit 14 using the search correspondence including the initial search value, and associates the pixel px with the arbitrary coordinate in a corresponding relationship. The radiation source 20 is caused to radiate an electromagnetic wave in a state capable of radiating the electromagnetic wave in the given radiation direction, and a detection signal is acquired as an initial signal. The control unit 19 compares the signal strengths of the reference signal and the initial signal.
制御部19は、基準信号の信号強度が初期信号の信号強度より小さい場合、初期探索値の極性が、較正に用いる探索値の極性と一致すると判別する。制御部19は、初期探索値の極性が較正に用いる探索値の極性と一致すると判別する場合、初期探索値と同じ極性の複数の探索値を絶対値が小さい順番に加えることにより、複数の探索用対応関係を作成する。さらに、制御部19は、作成した複数の探索用対応関係それぞれを用いて、進行部14を介して任意の座標の画素pxを第1の状態に切替させ、当該任意の座標に探索用対応関係で対応付けられている放射方向に電磁波を放射可能な状態で、放射源20に電磁波を放射させることにより、複数の検出信号を取得する。制御部19は、複数の検出信号を取得すると、上述のように、当該複数の検出信号に基づいて、対応関係を較正する。
When the signal strength of the reference signal is smaller than the signal strength of the initial signal, the control unit 19 determines that the polarity of the initial search value matches the polarity of the search value used for calibration. When the control unit 19 determines that the polarity of the initial search value matches the polarity of the search value used for calibration, the control unit 19 adds a plurality of search values having the same polarity as the initial search value in ascending order of the absolute values, thereby performing a plurality of searches. Create correspondence relationship. Further, the control unit 19 switches the pixel px of an arbitrary coordinate to the first state via the advancing unit 14 using each of the created plurality of search correspondences, and the search correspondence to the arbitrary coordinates. A plurality of detection signals are acquired by causing the radiation source 20 to emit an electromagnetic wave in a state in which the electromagnetic wave can be emitted in the radiation directions associated with each other. When acquiring the plurality of detection signals, the control unit 19 calibrates the correspondence relationship based on the plurality of detection signals as described above.
制御部19は、基準信号の信号強度が初期信号の信号強度より大きい場合、初期探索値の極性が、較正に用いる探索値の極性と異なると判別する。制御部19は、初期探索値の極性が較正に用いる探索値の極性と異なると判別する場合、初期探索値の極性を反転させた複数の探索値を絶対値が小さい順番に加えることにより、複数の探索用対応関係を作成する。さらに、制御部19は、作成した複数の探索用対応関係それぞれを用いて、進行部14を介して任意の座標の画素pxを第1の状態に切替させ、当該任意の座標に探索用対応関係で対応付けられている放射方向に電磁波を放射可能な状態で、放射源20に電磁波を放射させることにより、複数の検出信号を取得する。制御部19は、複数の検出信号を取得すると、上述のように、当該複数の検出信号に基づいて、対応関係を較正する。
When the signal strength of the reference signal is larger than the signal strength of the initial signal, the control unit 19 determines that the polarity of the initial search value is different from the polarity of the search value used for calibration. When the control unit 19 determines that the polarity of the initial search value is different from the polarity of the search value used for calibration, the control unit 19 adds a plurality of search values in which the polarities of the initial search value are inverted in the order of increasing absolute value, Create a search correspondence of. Further, the control unit 19 switches the pixel px of an arbitrary coordinate to the first state via the advancing unit 14 using each of the created plurality of search correspondences, and the search correspondence to the arbitrary coordinates. A plurality of detection signals are acquired by causing the radiation source 20 to emit an electromagnetic wave in a state in which the electromagnetic wave can be emitted in the radiation directions associated with each other. When acquiring the plurality of detection signals, the control unit 19 calibrates the correspondence relationship based on the plurality of detection signals as described above.
制御部19は、較正に用いる探索値の極性を判別する構成においては、以下に説明するように、探索値を絶対値が小さい順番に加えながら、取得する検出信号の信号強度が減少に転じるときに、対応関係の較正を終了してもよい。制御部19は、初期信号または検出信号の取得後、前回の検出信号を検出させる場合に用いた探索値よりも絶対値が次に大きな探索値を加えることにより探索用対応関係を作成する。制御部19は、作成した探索用対応関係を用いて、進行部14を介して任意の座標の画素pxを第1の状態に切替させ、当該任意の座標に探索用対応関係で対応付けられている放射方向に電磁波を放射可能な状態で、放射源20に電磁波を放射させることにより検出信号を取得する。制御部19は、当該検出信号の信号強度が、前回取得した検出信号の信号強度より大きい場合、引き続き、絶対値が次に大きな探索値を加えることによる検出信号の取得および比較を行う。制御部19は、新規に取得した検出信号の信号強度が前回取得した検出信号より小さい場合、前回取得した検出信号に対応する探索値を、較正に用いる探索値に決定して、対応関係の較正を終了する。
In the configuration for determining the polarity of the search value used for calibration, when the control unit 19 adds the search values in ascending order of the absolute value and the signal strength of the detection signal to be acquired turns to decrease, as described below. Then, the calibration of the correspondence may be finished. After acquiring the initial signal or the detection signal, the control unit 19 creates a search correspondence by adding a search value whose absolute value is next larger than the search value used when detecting the previous detection signal. The control unit 19 switches the pixel px of an arbitrary coordinate to the first state via the advancing unit 14 using the created search correspondence, and associates the arbitrary coordinate with the search correspondence. The detection signal is acquired by causing the radiation source 20 to emit the electromagnetic wave in a state where the electromagnetic wave can be emitted in the radiation direction. When the signal strength of the detection signal is larger than the signal strength of the previously acquired detection signal, the control unit 19 continuously acquires and compares the detection signal by adding a search value having the next largest absolute value. When the signal intensity of the newly acquired detection signal is smaller than the previously acquired detection signal, the control unit 19 determines the search value corresponding to the previously acquired detection signal as the search value used for calibration, and calibrates the correspondence relationship. To finish.
なお、構成に用いる探索値の極性を判別する構成において、較正モードで用いる複数の探索値は、初期探索値の整数倍であってもよく、整数倍でなくてもよい。
Note that in the configuration that determines the polarity of the search value used in the configuration, the plurality of search values used in the calibration mode may or may not be an integer multiple of the initial search value.
制御部19は、対応関係の較正を、放射方向の離散的な値別、または座標別に対して行ってよい。または、制御部19は、放射方向の離散的な値全体、または座標全体に対して行ってよい。放射方向全体または座標全体に対して行うとは、対応関係における、放射方向の離散的な値すべて、または座標すべてに対して同じ探索値を加えることを意味する。
The control unit 19 may calibrate the correspondence for each discrete value in the radial direction or each coordinate. Alternatively, the control unit 19 may perform all discrete values in the radial direction or all coordinates. Performing on the entire radial direction or the entire coordinate means adding the same search value to all the discrete values in the radial direction or all the coordinates in the correspondence relationship.
次に、本実施形態において制御部19が実行する、第1の方法による対応関係較正処理について、図7のフローチャートを用いて説明する。制御部19は、絶対値が上限値内である複数の探索値を用いて較正を行う構成において、較正モードを開始する入力を検出する場合、第1の方法による対応関係較正処理を開始する。
Next, the correspondence calibration processing by the first method executed by the control unit 19 in the present embodiment will be described using the flowchart of FIG. 7. In a configuration in which calibration is performed using a plurality of search values whose absolute values are within the upper limit value, the control unit 19 starts the correspondence calibration process by the first method when detecting an input that starts the calibration mode.
ステップS100において、制御部19は、記憶部18から対応関係を読出す。対応関係の読出し後、プロセスはステップS101に進む。
In step S100, the control unit 19 reads the correspondence relationship from the storage unit 18. After reading the correspondence, the process proceeds to step S101.
ステップS101では、制御部19は、単一の探索値を認識する。制御部19は、探索値を、記憶部18に記憶した探索値の中から読出すことによって認識しても、前回の探索値に基づく算出によって認識してもよい。認識後、プロセスはステップS102に進む。
In step S101, the control unit 19 recognizes a single search value. The control unit 19 may recognize the search value by reading it out of the search values stored in the storage unit 18 or by calculating it based on the previous search value. After recognition, the process proceeds to step S102.
ステップS102では、制御部19は、ステップS100において読出した対応関係に、ステップS101において認識した探索値を加えることにより探索対応関係を作成する。さらに、制御部19は、当該探索対応関係を用いて、走査部21および進行部14を駆動する。さらに、制御部19は、放射源20に電磁波を放射させることにより、第1の検出部16から検出信号を取得する。検出信号の取得後、プロセスはステップS103に進む。
In step S102, the control unit 19 creates a search correspondence by adding the search value recognized in step S101 to the correspondence read in step S100. Further, the control unit 19 drives the scanning unit 21 and the traveling unit 14 using the search correspondence. Further, the control unit 19 causes the radiation source 20 to emit an electromagnetic wave to acquire a detection signal from the first detection unit 16. After obtaining the detection signal, the process proceeds to step S103.
ステップS103では、制御部19は、絶対値が上限値以下であるすべての探索値に対して検出信号を取得しているか否かを判別する。すべての探索値に対して検出信号を取得していない場合、プロセスはステップS100に戻る。すべての探索値に対して検出信号を取得している場合、プロセスはステップS104に進む。
In step S103, the control unit 19 determines whether or not detection signals have been acquired for all search values whose absolute value is less than or equal to the upper limit value. If no detection signal has been obtained for all search values, the process returns to step S100. If the detection signals have been acquired for all the search values, the process proceeds to step S104.
ステップS104では、制御部19は、複数の探索値それぞれに対応する検出信号の中で信号強度の最大値を判別する。最大値の判別後、プロセスはステップS105に進む。
In step S104, the control unit 19 determines the maximum value of the signal strength among the detection signals corresponding to each of the plurality of search values. After determining the maximum value, the process proceeds to step S105.
ステップS105では、制御部19は、ステップS104において最大値の信号強度である検出信号に対応する探索値を、較正用の探索値に決定する。決定後、プロセスはステップS106に進む。
In step S105, the control unit 19 determines the search value corresponding to the detection signal having the maximum signal strength in step S104 as the search value for calibration. After the determination, the process proceeds to step S106.
ステップS106では、制御部19は、記憶部18に記憶した対応関係に、ステップS105において決定した較正用の探索値を加えることにより対応関係を較正する。さらに、制御部19は、較正した対応関係を記憶部18に格納する。格納後、第1の方法による対応関係較正処理は終了する。
In step S106, the control unit 19 calibrates the correspondence relationship by adding the search value for calibration determined in step S105 to the correspondence relationship stored in the storage unit 18. Further, the control unit 19 stores the calibrated correspondence relationship in the storage unit 18. After the storage, the correspondence calibration process according to the first method ends.
次に、本実施形態において制御部19が実行する、第2の方法による対応関係較正処理について、図8のフローチャートを用いて説明する。制御部19は、較正に用いる探索値の極性を判別する構成において、較正モードを開始する入力を検出する場合、第2の方法による対応関係較正処理を開始する。
Next, the correspondence calibration process by the second method executed by the control unit 19 in the present embodiment will be described with reference to the flowchart of FIG. In the configuration that determines the polarity of the search value used for calibration, the control unit 19 starts the correspondence calibration process by the second method when detecting the input that starts the calibration mode.
ステップS200において、制御部19は、記憶部18から対応関係を読出す。対応関係の読出し後、プロセスはステップS201に進む。
In step S200, the control unit 19 reads the correspondence relationship from the storage unit 18. After reading the correspondence, the process proceeds to step S201.
ステップS201では、制御部19は、ステップS200において読出した対応関係を用いて、走査部21および進行部14を駆動する。さらに、制御部19は、放射源20に電磁波を放射させることにより、第1の検出部16から基準信号を取得する。基準信号の取得後、プロセスはステップS202に進む。
In step S201, the control unit 19 drives the scanning unit 21 and the advancing unit 14 using the correspondence relationship read in step S200. Further, the control unit 19 acquires the reference signal from the first detection unit 16 by causing the radiation source 20 to emit an electromagnetic wave. After obtaining the reference signal, the process proceeds to step S202.
ステップS202では、制御部19は、初期探索値を認識する。制御部19は、例えば、初期探索値を、記憶部18に記憶した探索値の中から読出すことによって認識する。認識後、プロセスはステップS203に進む。
In step S202, the control unit 19 recognizes the initial search value. The control unit 19 recognizes, for example, the initial search value by reading it from the search values stored in the storage unit 18. After recognition, the process proceeds to step S203.
ステップS203では、制御部19は、ステップS200において読出した対応関係に、ステップS202において認識した初期探索値を加えることにより探索対応関係を作成する。さらに、制御部19は、当該探索対応関係を用いて、走査部21および進行部14を駆動する。さらに、制御部19は、放射源20に電磁波を放射させることにより、第1の検出部16から初期信号を取得する。初期信号の取得後、プロセスはステップS204に進む。
In step S203, the control unit 19 creates a search correspondence by adding the initial search value recognized in step S202 to the correspondence read in step S200. Further, the control unit 19 drives the scanning unit 21 and the traveling unit 14 using the search correspondence. Furthermore, the control unit 19 acquires an initial signal from the first detection unit 16 by causing the radiation source 20 to emit an electromagnetic wave. After obtaining the initial signal, the process proceeds to step S204.
ステップS204では、制御部19は、ステップS201において取得した基準信号、およびステップS203において取得した初期信号の信号強度が等しいか否かを判別する。信号強度が等しい場合、第2の方法による対応関係較正処理は終了する。信号強度が異なる場合、プロセスはステップS205に進む。
In step S204, the control unit 19 determines whether or not the signal intensities of the reference signal acquired in step S201 and the initial signal acquired in step S203 are equal. When the signal strengths are equal, the correspondence calibration process according to the second method ends. If the signal strengths are different, the process proceeds to step S205.
ステップS205では、制御部19は、ステップS201において取得した基準信号の信号強度が、ステップS203において取得した初期信号の信号強度より大きいか否かを判別する。基準信号の信号強度が初期信号の信号強度より大きい場合、プロセスはステップS206に進む。基準信号の信号強度が初期信号の信号強度より小さい場合、プロセスはステップS207に進む。
In step S205, the control unit 19 determines whether the signal strength of the reference signal acquired in step S201 is larger than the signal strength of the initial signal acquired in step S203. If the signal strength of the reference signal is greater than the signal strength of the initial signal, the process proceeds to step S206. If the signal strength of the reference signal is less than the signal strength of the initial signal, the process proceeds to step S207.
ステップS206では、制御部19は、初期探索値の極性を維持すること、言い換えると、以後、初期探索値と同じ極性の探索値を用いることを決定する。決定後、プロセスはステップS208に進む。
In step S206, the control unit 19 determines to maintain the polarity of the initial search value, in other words, to use the search value having the same polarity as the initial search value thereafter. After the determination, the process proceeds to step S208.
ステップS207では、制御部19は、初期探索値の極性を反転すること、言い換えると、以後、初期探索値の極性を反転させた探索値を用いることを決定する。決定後、プロセスはステップS208に進む
In step S207, the control unit 19 determines to invert the polarity of the initial search value, in other words, to use the search value in which the polarity of the initial search value is inverted thereafter. After determination, the process proceeds to step S208
ステップS208では、制御部19は、記憶部18から対応関係を読出す。対応関係の読出し後、プロセスはステップS209に進む。
In step S208, the control unit 19 reads the correspondence relationship from the storage unit 18. After reading the correspondence, the process proceeds to step S209.
ステップS209では、制御部19は、次の探索値を認識する。制御部19は、次の探索値を、記憶部18に記憶した探索値の中から読出すことによって認識しても、前回の探索値に基づく算出によって認識してもよい。認識後、プロセスはステップS210に進む。
In step S209, the control unit 19 recognizes the next search value. The control unit 19 may recognize the next search value by reading it from the search values stored in the storage unit 18 or by calculating it based on the previous search value. After recognition, the process proceeds to step S210.
ステップS210では、制御部19は、ステップS208において読出した対応関係に、ステップS209において認識した次の探索値を加えることにより探索対応関係を作成する。さらに、制御部19は、当該探索対応関係を用いて、走査部21および進行部14を駆動する。さらに、制御部19は、放射源20に電磁波を放射させることにより、第1の検出部16から検出信号を取得する。検出信号の取得後、プロセスはステップS211に進む。
In step S210, the control unit 19 creates a search correspondence by adding the next search value recognized in step S209 to the correspondence read in step S208. Further, the control unit 19 drives the scanning unit 21 and the traveling unit 14 using the search correspondence. Further, the control unit 19 causes the radiation source 20 to emit an electromagnetic wave to acquire a detection signal from the first detection unit 16. After obtaining the detection signal, the process proceeds to step S211.
ステップS211では、制御部19は、直近の、言い換えると今回のステップS210で取得した検出信号の信号強度よりも、前回のステップS210において取得した検出信号、または直近のステップS210が初回である場合ステップS203において取得した初期信号の信号強度が大きくない場合、プロセスはステップS208に戻る。今回に取得した検出信号の信号強度よりも前回に取得した検出信号または初期信号の信号強度より大きい場合、プロセスはステップS212に進む。
In step S211, the control unit 19 determines that the detection signal acquired in the previous step S210 or the latest step S210 is the first time, which is higher than the signal strength of the latest detection signal acquired in step S210. If the signal strength of the initial signal obtained in S203 is not large, the process returns to step S208. If the signal strength of the detection signal acquired this time is higher than the signal strength of the detection signal or the initial signal acquired last time, the process proceeds to step S212.
ステップS212では、制御部19は、ステップS211において大きさを比較した2つの検出信号(一方が初期信号である場合も含む。)の内、信号強度がより大きな検出信号に対応する探索値を、較正用の探索値に決定する。決定後、プロセスはステップS213に進む。
In step S212, the control unit 19 sets the search value corresponding to the detection signal having a larger signal strength out of the two detection signals (including the case where one is the initial signal) of which the sizes are compared in step S211. Determine the search value for calibration. After the determination, the process proceeds to step S213.
ステップS213では、制御部19は、記憶部18に記憶した対応関係に、ステップS212において決定した較正用の探索値を加えることにより対応関係を較正する。さらに、制御部19は、較正した対応関係を記憶部18に格納する。格納後、第2の方法による対応関係較正処理は終了する。
In step S213, the control unit 19 calibrates the correspondence relationship by adding the calibration search value determined in step S212 to the correspondence relationship stored in the storage unit 18. Further, the control unit 19 stores the calibrated correspondence relationship in the storage unit 18. After the storage, the correspondence calibration process by the second method ends.
以上のような構成の本実施形態の電磁波検出装置10は、複数の探索値に基づく探索用対応関係を用いて第1の検出部16により検出される、複数の探索値それぞれに対応する複数の検出信号に基づいて対応関係を較正する。電磁波が照射される微小領域faにおける反射波の、基準面ss上の実際の到達位置において反射波の強度は最大となり、基準面ss上において当該到達位置から離れるほど反射波の強度は低下する。したがって、実際の到達位置に相当する画素pxを第1の状態に切替えて検出する検出信号は、当該到達位置以外の位置に相当する画素pxを第1の状態に切替えて検出する検出信号に比べて最大の信号強度となる。したがって、上述の構成を有することにより、電磁波検出装置10は、熱変形や経時変化などに起因する実際の対応関係の変化に応じるように、記憶部18に記憶した対応関係を修正し得る。したがって、電磁波検出装置10は、熱変形や経時変化などが生じても、電磁波の検出精度を維持し得る。
The electromagnetic wave detection device 10 according to the present exemplary embodiment having the above-described configuration includes a plurality of search values detected by the first detection unit 16 using the search correspondence based on the plurality of search values. The correspondence is calibrated based on the detection signal. The intensity of the reflected wave in the micro area fa irradiated with the electromagnetic wave is maximum at the actual arrival position on the reference surface ss, and the intensity of the reflected wave decreases as the distance from the arrival position on the reference surface ss increases. Therefore, the detection signal for switching the pixel px corresponding to the actual arrival position to the first state and detecting it is higher than the detection signal for detecting the pixel px corresponding to the position other than the arrival position by switching to the first state. The maximum signal strength. Therefore, by having the above-described configuration, the electromagnetic wave detection device 10 can correct the correspondence relationship stored in the storage unit 18 so as to respond to a change in the actual correspondence relationship due to thermal deformation, aging, or the like. Therefore, the electromagnetic wave detection device 10 can maintain the electromagnetic wave detection accuracy even if thermal deformation or temporal change occurs.
また、本実施形態の電磁波検出装置10は、対応関係を用いて取得した基準信号と初期探索値に基づく探索対応関係を用いて取得した初期信号の信号強度を比較して、探索値の極性を判別しうる。このような構成により、電磁波検出装置10は、対応関係の較正のための検出信号の検出回数を低減し得るので、対応関係の較正にかかる時間を短縮し得る。
Further, the electromagnetic wave detection device 10 of the present exemplary embodiment compares the signal strengths of the reference signal acquired using the correspondence relationship and the initial signal acquired using the search correspondence relationship based on the initial search value to determine the polarity of the search value. You can tell. With such a configuration, the electromagnetic wave detection device 10 can reduce the number of times of detecting the detection signal for calibrating the correspondence relationship, and thus can shorten the time required to calibrate the correspondence relationship.
また、本実施形態の電磁波検出装置10は、探索値を絶対値が小さい順番で加えながら取得する検出信号の信号強度が減少に転じるときに対応関係の較正を終了する。このような構成により、電磁波検出装置10は、対応関係の較正のための検出信号の検出回数をさらに低減し得るので、対応関係の較正にかかる時間をいっそう短縮し得る。
Further, the electromagnetic wave detection device 10 of the present embodiment ends the calibration of the correspondence relationship when the signal strength of the detection signal to be acquired starts to decrease while adding the search values in the order of increasing absolute value. With such a configuration, the electromagnetic wave detection device 10 can further reduce the number of times of detecting the detection signal for the calibration of the correspondence relationship, so that the time required for the calibration of the correspondence relationship can be further shortened.
また、本実施形態の電磁波検出装置10では、複数の探索値の絶対値に上限値が定められうる。一般的に、熱変形や経時変化などに起因する実際の対応関係の変化は微小である。それゆえ、探索値の範囲を定めても実際の対応関係の変化の反映は可能である。そこで、上述の構成を有することにより、電磁波検出装置10は、範囲の限定された探索値で検出信号を検出するため、対応関係の較正にかかる時間を短縮し得る。
In addition, in the electromagnetic wave detection device 10 of the present exemplary embodiment, an upper limit value may be set for the absolute values of the plurality of search values. In general, the actual change in correspondence caused by thermal deformation, change over time, etc. is minute. Therefore, even if the range of the search value is set, the change in the actual correspondence can be reflected. Therefore, by having the above-described configuration, the electromagnetic wave detection device 10 detects the detection signal with the search value having a limited range, so that the time required for the calibration of the correspondence relationship can be shortened.
また、本実施形態の電磁波検出装置10では、複数の探索値は、放射方向または座標を、放射部11が放射する電磁波の楕円形状の短軸に対応する単一の方向に沿って変化させている。電磁波検出装置10には、断面が楕円形状であるビーム状の電磁波を放射する種類の放射源20が用いられることがある。進行部14の基準面ss上に形成される電磁波の像の短軸に沿った方向において対応関係はズレが大きくなりやすい。このような事象に対して、上述の構成を有する電磁波検出装置10は、対応関係のズレが大きくなりやすい方向に特化して、対応関係を較正するので、電磁波の検出精度の維持と較正にかかる時間の短縮化とのバランスを図り得る。
Further, in the electromagnetic wave detection device 10 of the present exemplary embodiment, the plurality of search values are obtained by changing the radiation direction or the coordinate along a single direction corresponding to the short axis of the elliptical shape of the electromagnetic wave emitted by the radiation unit 11. There is. The electromagnetic wave detection device 10 may use a radiation source 20 of a type that emits a beam-shaped electromagnetic wave having an elliptical cross section. The correspondence tends to become large in the direction along the short axis of the image of the electromagnetic wave formed on the reference surface ss of the traveling portion 14. In response to such an event, the electromagnetic wave detection device 10 having the above-described configuration calibrates the correspondence relationship by specializing in a direction in which the correspondence relationship is likely to be large, and therefore the maintenance of the detection accuracy of electromagnetic waves and the calibration are required. A balance with shortening of time can be achieved.
本発明を諸図面および実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形および修正を行うことが容易であることに注意されたい。従って、これらの変形および修正は本発明の範囲に含まれることに留意されたい。
Although the present invention has been described based on the drawings and the embodiments, it should be noted that those skilled in the art can easily make various variations and modifications based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention.
なお、本実施形態において、電磁波検出装置10は、上述のように、レーザ光を放射して、返ってくるまでの時間を直接測定するDirect ToFにより距離情報を作成する構成である。しかし、電磁波検出装置10は、このような構成に限られない。例えば、電磁波検出装置10は、電磁波を一定の周期で放射し、放射された電磁波と返ってきた電磁波との位相差から、返ってくるまでの時間を間接的に測定するFlash ToFにより距離情報を作成してもよい。また、電磁波検出装置10は、他のToF方式、例えば、Phased ToFにより距離情報を作成してもよい。
Note that, in the present embodiment, the electromagnetic wave detection device 10 is configured to generate distance information by Direct ToF which directly measures the time until the laser beam is emitted and returned, as described above. However, the electromagnetic wave detection device 10 is not limited to such a configuration. For example, the electromagnetic wave detection device 10 radiates an electromagnetic wave at a constant cycle, and based on the phase difference between the radiated electromagnetic wave and the returned electromagnetic wave, indirectly measures the time until the electromagnetic wave is returned to the distance information by Flash ToF. May be created. Further, the electromagnetic wave detection device 10 may create the distance information by another ToF method, for example, Phased ToF.
また、本実施形態において、進行部14は、基準面ssに入射する電磁波の進行方向を2方向に切替え可能であるが、2方向のいずれかへの切替えでなく、3以上の方向に切替可能であってよい。
Further, in the present embodiment, the traveling unit 14 can switch the traveling directions of the electromagnetic waves incident on the reference surface ss to two directions, but can switch to not less than two directions but to three or more directions. May be
また、本実施形態の進行部14において、第1の状態および第2の状態は、基準面ssに入射する電磁波を、それぞれ、検出方向donに反射する第1の反射状態、および非検出方向doffに反射する第2の反射状態であるが、他の態様であってもよい。
In the traveling unit 14 of the present embodiment, the first state and the second state are the first reflection state in which the electromagnetic wave incident on the reference surface ss is reflected in the detection direction don and the non-detection direction doff, respectively. Although it is the second reflection state in which the light is reflected on the other side, other modes may be used.
例えば、図9に示すように、第1の状態が、基準面ssに入射する電磁波を、透過させて検出方向donに進行させる透過状態であってもよい。進行部140は、さらに具体的には、画素px毎に電磁波を非検出方向doffに反射する反射面を有するシャッタを含んでいてもよい。このような構成の進行部140においては、画素px毎のシャッタを開閉することにより、第1の状態としての透過状態および第2の状態としての反射状態を画素px毎に切替え得る。
For example, as shown in FIG. 9, the first state may be a transmissive state in which an electromagnetic wave incident on the reference surface ss is transmitted to proceed in the detection direction don. More specifically, the traveling unit 140 may include a shutter having a reflection surface that reflects the electromagnetic wave in the non-detection direction doff for each pixel px. In the advancing unit 140 having such a configuration, the transmission state as the first state and the reflection state as the second state can be switched for each pixel px by opening and closing the shutter for each pixel px.
このような構成の進行部140として、例えば、開閉可能な複数のシャッタがアレイ状に配列されたMEMSシャッタを含む進行部が挙げられる。また、進行部140として、電磁波を反射する反射状態と電磁波を透過する透過状態とを液晶配向に応じて切替え可能な液晶シャッタを含む進行部が挙げられる。このような構成の進行部140においては、画素px毎の液晶配向を切替えることにより、第1の状態としての透過状態および第2の状態としての反射状態を画素px毎に切替え得る。
As the advancing unit 140 having such a configuration, for example, an advancing unit including a MEMS shutter in which a plurality of shutters that can be opened and closed are arranged in an array is cited. Further, as the advancing unit 140, there is an advancing unit including a liquid crystal shutter capable of switching between a reflective state of reflecting electromagnetic waves and a transmissive state of transmitting electromagnetic waves according to liquid crystal alignment. In the advancing unit 140 having such a configuration, by switching the liquid crystal alignment for each pixel px, the transmissive state as the first state and the reflective state as the second state can be switched for each pixel px.
また、本実施形態において、電磁波検出装置10は、放射源20から放射されるビーム状の電磁波を走査部21に走査させることにより、第1の検出部16を走査部21と協同させて走査型のアクティブセンサとして機能させる構成を有する。しかし、電磁波検出装置10は、このような構成に限られない。例えば、放射状の電磁波を放射可能な複数の放射源を有する放射部において、放射時期をずらしながら各放射源から電磁波を放射させるフェイズドスキャン方式により、走査部を備えることなく、走査型のアクティブセンサとして機能させる構成でも、本実施形態と類似の効果が得られる。
In addition, in the present embodiment, the electromagnetic wave detection device 10 causes the scanning unit 21 to scan the beam-shaped electromagnetic waves emitted from the radiation source 20, thereby causing the first detection unit 16 to cooperate with the scanning unit 21 to perform scanning. It has a configuration to function as an active sensor of. However, the electromagnetic wave detection device 10 is not limited to such a configuration. For example, in a radiation unit having a plurality of radiation sources capable of radiating radial electromagnetic waves, by a phased scan method of radiating electromagnetic waves from each radiation source while shifting the radiation timing, a scanning-type active sensor is provided without a scanning unit. Even with a functioning configuration, similar effects to those of the present embodiment can be obtained.
また、本実施形態において、電磁波検出装置10は、第1の検出部16がアクティブセンサであり、第2の検出部17がパッシブセンサである構成を有する。しかし、電磁波検出装置10は、このような構成に限られない。例えば、電磁波検出装置10において、第1の検出部16および第2の検出部17が共にアクティブセンサである構成でも、本実施形態と類似の効果が得られる。第1の検出部16および第2の検出部17が共にアクティブセンサである構成において、対象obに電磁波を放射する放射部11は異なっていても、同一であってもよい。さらに、異なる放射部11は、それぞれ異種または同種の電磁波を放射してよい。
Further, in the present embodiment, the electromagnetic wave detection device 10 has a configuration in which the first detection unit 16 is an active sensor and the second detection unit 17 is a passive sensor. However, the electromagnetic wave detection device 10 is not limited to such a configuration. For example, in the electromagnetic wave detection device 10, even when both the first detection unit 16 and the second detection unit 17 are active sensors, the same effect as the present embodiment can be obtained. In the configuration in which both the first detection unit 16 and the second detection unit 17 are active sensors, the emission units 11 that emit electromagnetic waves to the target ob may be different or the same. Further, the different radiating units 11 may radiate different kinds or same kinds of electromagnetic waves, respectively.
なお、ここでは、特定の機能を実行する種々のモジュール及び/またはユニットを有するものとしてのシステムを開示しており、これらのモジュール及びユニットは、その機能性を簡略に説明するために模式的に示されたものであって、必ずしも、特定のハードウェア及び/またはソフトウェアを示すものではないことに留意されたい。その意味において、これらのモジュール、ユニット、その他の構成要素は、ここで説明された特定の機能を実質的に実行するように実装されたハードウェア及び/またはソフトウェアであればよい。異なる構成要素の種々の機能は、ハードウェア及び/もしくはソフトウェアのいかなる組合せまたは分離したものであってもよく、それぞれ別々に、またはいずれかの組合せにより用いることができる。また、キーボード、ディスプレイ、タッチスクリーン、ポインティングデバイス等を含むがこれらに限られない入力/出力もしくはI/Oデバイスまたはユーザインターフェースは、システムに直接にまたは介在するI/Oコントローラを介して接続することができる。このように、本開示内容の種々の側面は、多くの異なる態様で実施することができ、それらの態様はすべて本開示内容の範囲に含まれる。
It should be noted that here, a system is disclosed as having various modules and / or units that perform a specific function, and these modules and units are schematically illustrated in order to briefly describe their functionality. It should be noted that the indications are not necessarily indicative of particular hardware and / or software. In that sense, these modules, units, and other components may be hardware and / or software implemented to substantially perform the particular functions described herein. The various functions of the different components may be any combination or separation of hardware and / or software, which may be used separately or in any combination. Also, input / output or I / O devices or user interfaces, including but not limited to keyboards, displays, touch screens, pointing devices, etc., should be connected to the system either directly or through intervening I / O controllers. You can Thus, the various aspects of this disclosure can be implemented in many different aspects, all of which are within the scope of this disclosure.
10 電磁波検出装置
11 放射部
12 前段光学系
13 分離部
14 進行部
15 後段光学系
16 第1の検出部
17 第2の検出部
18 記憶部
19 制御部
20 放射源
21 走査部
dd1、dd2 第1の分離方向、第2の分離方向
di 入射方向
doff 非検出方向
don 検出方向
微小領域 fa
ob 対象
px 画素
ss 基準面 DESCRIPTION OFSYMBOLS 10 Electromagnetic wave detection device 11 Radiation part 12 Pre-stage optical system 13 Separation part 14 Progression part 15 Post-stage optical system 16 First detection part 17 Second detection part 18 Storage part 19 Control part 20 Radiation source 21 Scanning part dd1, dd2 1st Separation direction, second separation direction di incident direction doff non-detection direction don detection direction minute area fa
ob target px pixel ss reference plane
11 放射部
12 前段光学系
13 分離部
14 進行部
15 後段光学系
16 第1の検出部
17 第2の検出部
18 記憶部
19 制御部
20 放射源
21 走査部
dd1、dd2 第1の分離方向、第2の分離方向
di 入射方向
doff 非検出方向
don 検出方向
微小領域 fa
ob 対象
px 画素
ss 基準面 DESCRIPTION OF
ob target px pixel ss reference plane
Claims (31)
- 強度が最大となる放射方向を変更可能で、電磁波を放射する放射部と、
対象に照射された前記電磁波の反射波を検出する第1の検出部と、
基準面に沿って複数の画素が配置され、前記対象から前記基準面に入射した電磁波の進行方向を前記画素毎に、前記第1の検出部が配置される検出方向に切替え可能な進行部と、
前記放射方向と、前記検出方向に進行させる前記画素の座標との対応関係を記憶する記憶部と、
前記対応関係における、前記放射方向および前記座標の一方の任意の値に対して、他方に大きさの異なる複数の探索値をそれぞれ加えた複数の探索用対応関係を用いて、前記進行部に前記画素を前記検出方向に切替えさせ且つ前記放射部に前記電磁波を放射させることにより前記第1の検出部に検出される、複数の探索値それぞれに対応する複数の検出信号に基づいて、前記対応関係を較正する制御部と、を備える
電磁波検出装置。 The emission direction that maximizes the intensity can be changed, and the emission part that emits electromagnetic waves,
A first detection unit that detects a reflected wave of the electromagnetic wave with which the target is irradiated;
A plurality of pixels are arranged along a reference plane, and a traveling direction capable of switching a traveling direction of an electromagnetic wave incident on the reference plane from the object for each pixel to a detection direction in which the first detecting unit is arranged, ,
A storage unit that stores a correspondence relationship between the radiation direction and the coordinates of the pixel that advances in the detection direction;
In the correspondence relationship, for any value of one of the radial direction and the coordinate, using a plurality of search correspondence relationship to which the plurality of search values having different sizes are respectively added to the other, to the advancing unit to the The correspondence relationship is based on a plurality of detection signals corresponding to a plurality of search values, which are detected by the first detection unit by switching the pixel to the detection direction and causing the emission unit to emit the electromagnetic wave. An electromagnetic wave detection device comprising: a controller for calibrating the electromagnetic wave. - 請求項1に記載の電磁波検出装置において、
前記制御部は、
前記対応関係を用いて前記進行部に前記画素を前記検出方向に切替えさせて前記放射部
に前記電磁波を放射させることにより前記第1の検出部に検出される基準信号の信号強度
が、前記複数の探索値の中で絶対値が最小である初期探索値を加えた前記探索用対応関係
を用いて前記進行部に前記画素を前記検出方向に切替えさせて前記放射部に前記電磁波を
放射させることにより前記第1の検出部に検出される初期信号の信号強度より小さい場合
、前記複数の探索値の中の前記初期探索値と同じ極性の一部の該探索値を絶対値が小さい
順番で加えた前記探索用対応関係それぞれを用いて前記進行部に前記画素を前記検出方向
に切替えさせて前記放射部に前記電磁波を放射させることにより前記第1の検出部に検出
される検出信号に基づいて、前記対応関係を較正し、
前記基準信号の信号強度が前記初期信号の信号強度より大きい場合、前記複数の探索値
の中の前記初期探索値の極性を反転させた一部の該探索値を絶対値が小さい順番で加えた
前記探索用対応関係それぞれを用いて前記進行部に前記画素を前記検出方向に切替えさせ
て前記放射部に前記電磁波を放射させることにより前記第1の検出部に検出される検出信
号に基づいて、前記対応関係を較正する
電磁波検出装置。 The electromagnetic wave detection device according to claim 1,
The control unit is
The signal intensity of the reference signal detected by the first detection unit by causing the advancing unit to switch the pixel in the detection direction by using the correspondence and causing the emission unit to emit the electromagnetic wave is Of the search values by adding the initial search value having the smallest absolute value among the search values, the advancing section is caused to switch the pixel in the detection direction to cause the emitting section to emit the electromagnetic wave. When the signal strength of the initial signal detected by the first detection unit is smaller than the above, a part of the search values having the same polarity as the initial search value among the plurality of search values is added in the order of smaller absolute values. Based on the detection signal detected by the first detection unit by switching the pixel to the detection direction in the traveling unit using each of the search correspondences and causing the emission unit to emit the electromagnetic wave. ,Previous To calibrate the correspondence relationship,
When the signal strength of the reference signal is larger than the signal strength of the initial signal, a part of the search values obtained by inverting the polarity of the initial search value among the plurality of search values is added in the order of increasing absolute value. Based on a detection signal detected by the first detection unit by causing the traveling unit to switch the pixel in the detection direction by using each of the search correspondences and causing the emission unit to emit the electromagnetic wave, An electromagnetic wave detection device for calibrating the correspondence. - 請求項2に記載の電磁波検出装置において、
前記制御部は、前記対応関係の較正において、前記探索値を絶対値が小さい順番で加え
ながら、前記探索用対応関係を用いて前記進行部に前記画素を前記検出方向に切替えさせ
て前記放射部に前記電磁波を放射させることにより前記第1の検出部に検出される検出信
号の信号強度が減少に転じるときに、対応関係の較正を終了する
電磁波検出装置。 The electromagnetic wave detection device according to claim 2,
In the calibration of the correspondence relation, the control unit causes the advancing unit to switch the pixel in the detection direction by using the correspondence relation for search while adding the search values in the order of smaller absolute values. An electromagnetic wave detection device for terminating the calibration of the correspondence relationship when the signal intensity of the detection signal detected by the first detection unit starts to decrease by radiating the electromagnetic wave to the. - 請求項1に記載の電磁波検出装置において、
前記複数の探索値の絶対値には、上限値が定められている
電磁波検出装置。 The electromagnetic wave detection device according to claim 1,
An electromagnetic wave detection device in which an upper limit value is set for the absolute values of the plurality of search values. - 請求項1から4のいずれか1項に記載の電磁波検出装置において、
前記制御部は、前記対応関係の較正を、前記放射方向の離散的な値別、または座標別に
行う
電磁波検出装置。 The electromagnetic wave detection device according to any one of claims 1 to 4,
An electromagnetic wave detection device in which the control unit calibrates the correspondence relationship for each discrete value of the radiation direction or for each coordinate. - 請求項1から4のいずれか1項に記載の電磁波検出装置において、
前記制御部は、前記対応関係の較正を、前記放射方向の離散的な値全体、または座標全
体に対して行う
電磁波検出装置。 The electromagnetic wave detection device according to any one of claims 1 to 4,
The electromagnetic wave detecting device, wherein the control unit calibrates the correspondence relationship with respect to all discrete values in the radiation direction or all coordinates. - 請求項1から6のいずれか1項に記載の電磁波検出装置において、
前記複数の探索値は、前記放射方向または前記座標を、単一の方向に沿って変化させる
電磁波検出装置。 The electromagnetic wave detection device according to any one of claims 1 to 6,
The electromagnetic wave detection device, wherein the plurality of search values changes the radial direction or the coordinates along a single direction. - 請求項7に記載の電磁波検出装置において、
前記放射部は、長軸および短軸を有する形状の電磁波を放射し、
前記単一の方向は、前記短軸に対応する
電磁波検出装置。 The electromagnetic wave detection device according to claim 7,
The radiating unit radiates an electromagnetic wave having a shape with a long axis and a short axis,
An electromagnetic wave detection device in which the single direction corresponds to the short axis. - 請求項1から6のいずれか1項に記載の電磁波検出装置において、
前記複数の探索値は、前記放射方向または前記座標を、互いに異なる2方向に沿って変
化させる
電磁波検出装置。 The electromagnetic wave detection device according to any one of claims 1 to 6,
An electromagnetic wave detection device in which the plurality of search values change the radiation direction or the coordinates along two different directions. - 請求項1から9のいずれか1項に記載の電磁波検出装置において、
入射方向に進行する電磁波を分離して、第1の分離方向および第2の分離方向に進行さ
せる分離部と、
前記第2の分離方向に進行した前記電磁波を検出する第2の検出部をさらに備え、
前記進行部は、前記第1の分離方向に位置する
電磁波検出装置。 The electromagnetic wave detection device according to any one of claims 1 to 9,
A separation unit that separates electromagnetic waves that travel in the incident direction and travels in the first separation direction and the second separation direction;
Further comprising a second detector for detecting the electromagnetic wave traveling in the second separation direction,
The traveling section is an electromagnetic wave detection device located in the first separation direction. - 請求項10に記載の電磁波検出装置において、
前記分離部は、前記入射方向へ進行する電磁波のうち特定の波長の電磁波を前記第1の
分離方向へ進行させ、他の波長の電磁波を前記第2の分離方向へ進行させる
電磁波検出装置。 The electromagnetic wave detection device according to claim 10,
An electromagnetic wave detection device in which the separation unit causes an electromagnetic wave having a specific wavelength to propagate in the first separation direction among electromagnetic waves traveling in the incident direction, and causes an electromagnetic wave having another wavelength to propagate in the second separation direction. - 請求項10または11に記載の電磁波検出装置において、
前記分離部は、可視光反射コーティング、ハーフミラー、ビームスプリッタ、ダイクロ
イックミラー、コールドミラー、ホットミラー、メタサーフェス、および偏向素子の少な
くともいずれかを含む
電磁波検出装置。 The electromagnetic wave detection device according to claim 10 or 11,
The electromagnetic wave detection device, wherein the separation unit includes at least one of a visible light reflection coating, a half mirror, a beam splitter, a dichroic mirror, a cold mirror, a hot mirror, a metasurface, and a deflection element. - 請求項10から12のいずれか1項に記載の電磁波検出装置において、
前記第1の検出部および前記第2の検出部は、異種または同種のセンサを含む
電磁波検出装置。 The electromagnetic wave detection device according to any one of claims 10 to 12,
The electromagnetic wave detection device in which the first detection unit and the second detection unit include sensors of different types or the same type. - 請求項10から13のいずれか1項に記載の電磁波検出装置において、
前記第1の検出部および前記第2の検出部は、同種または異種の電磁波を検出する
電磁波検出装置。 The electromagnetic wave detection device according to any one of claims 10 to 13,
An electromagnetic wave detection device in which the first detection unit and the second detection unit detect electromagnetic waves of the same type or different types. - 請求項10から14のいずれか1項に記載の電磁波検出装置において、
前記第1の検出部および前記第2の検出部の少なくとも一方は、前記放射部から対象に
向けて放射された電磁波の前記対象からの反射波を検出するアクティブセンサを含む
電磁波検出装置。 The electromagnetic wave detection device according to any one of claims 10 to 14,
An electromagnetic wave detection device in which at least one of the first detection unit and the second detection unit includes an active sensor that detects a reflected wave from the target of the electromagnetic wave radiated from the radiation unit toward the target. - 請求項1から15のいずれか1項に記載の電磁波検出装置において、
前記第1の検出部は、測距センサ、イメージセンサ、およびサーモセンサの少なくとも
いずれかを含む
電磁波検出装置。 The electromagnetic wave detection device according to any one of claims 1 to 15,
The electromagnetic wave detection device in which the first detection unit includes at least one of a distance measurement sensor, an image sensor, and a thermosensor. - 請求項1から16のいずれか1項に記載の電磁波検出装置において、
前記第1の検出部は、赤外線、可視光線、紫外線、および電波の少なくともいずれかを
検出する
電磁波検出装置。 The electromagnetic wave detection device according to any one of claims 1 to 16,
The first detection unit is an electromagnetic wave detection device that detects at least one of infrared rays, visible rays, ultraviolet rays, and radio waves. - 請求項1から17のいずれか1項に記載の電磁波検出装置において、
前記放射部は、赤外線、可視光線、紫外線、および電波のいずれかを放射する
電磁波検出装置。 The electromagnetic wave detection device according to any one of claims 1 to 17,
The radiation unit is an electromagnetic wave detection device that emits any one of infrared rays, visible rays, ultraviolet rays, and radio waves. - 請求項1から18のいずれか1項に記載の電磁波検出装置において、
前記放射部は、フェイズドスキャン方式により前記放射方向を変更する
電磁波検出装置。 The electromagnetic wave detection device according to any one of claims 1 to 18,
The said radiation | emission part is an electromagnetic wave detection apparatus which changes the said radiation direction by a phased scan system. - 請求項1から19のいずれか1項に記載の電磁波検出装置において、
前記放射部は、電磁波を放射する放射源、および前記放射源が放射する電磁波の前記放
射方向を変更する走査部とを有する
電磁波検出装置。 The electromagnetic wave detection device according to any one of claims 1 to 19,
The electromagnetic wave detecting device includes: the radiation unit having a radiation source that emits an electromagnetic wave; and a scanning unit that changes the radiation direction of the electromagnetic wave emitted by the radiation source. - 請求項20に記載の電磁波検出装置において、
前記走査部は、電磁波を反射する反射面を含み、前記放射部から放射される電磁波を、
前記反射面の向きを変更しながら前記反射面に反射させることにより、走査する
電磁波検出装置。 The electromagnetic wave detection device according to claim 20,
The scanning unit includes a reflection surface that reflects electromagnetic waves, the electromagnetic waves emitted from the radiation unit,
An electromagnetic wave detection device for scanning by causing the reflection surface to reflect while changing the direction of the reflection surface. - 請求項20または21に記載の電磁波検出装置において、
前記走査部は、MEMSミラー、ポリゴンミラー、ガルバノミラーのいずれかを含む
電磁波検出装置。 The electromagnetic wave detection device according to claim 20 or 21,
The electromagnetic wave detecting device, wherein the scanning unit includes any one of a MEMS mirror, a polygon mirror, and a galvano mirror. - 請求項1から22のいずれか1項に記載の電磁波検出装置において、
前記進行部は、前記基準面に入射した電磁波を、前記検出方向に反射する第1の反射状
態と、非検出方向に反射する第2の反射状態とに、前記画素毎に切替える
電磁波検出装置。 The electromagnetic wave detection device according to any one of claims 1 to 22,
The electromagnetic wave detection device, wherein the traveling unit switches, for each pixel, the electromagnetic wave incident on the reference surface into a first reflection state in which the electromagnetic wave is reflected in the detection direction and a second reflection state in which the electromagnetic wave is reflected in the non-detection direction. - 請求項23に記載の電磁波検出装置において、
前記進行部は、電磁波を反射する反射面を前記画素毎に含み、前記反射面の向きを前記
画素毎に変更することにより前記第1の反射状態と前記第2の反射状態とを、切替える
電磁波検出装置。 The electromagnetic wave detection device according to claim 23,
The traveling unit includes a reflective surface that reflects electromagnetic waves for each pixel, and switches the orientation of the reflective surface for each pixel to switch between the first reflective state and the second reflective state. Detection device. - 請求項23または24に記載の電磁波検出装置において、
前記進行部は、デジタルマイクロミラーデバイスを含む
電磁波検出装置。 The electromagnetic wave detection device according to claim 23 or 24,
The electromagnetic wave detection device, wherein the traveling unit includes a digital micromirror device. - 請求項1から25のいずれか1項に記載の電磁波検出装置において、
前記進行部は、前記基準面に入射した電磁波を、前記検出方向に透過する透過状態と、
非検出方向に反射させる反射状態とに、前記画素毎に切替える
電磁波検出装置。 The electromagnetic wave detection device according to any one of claims 1 to 25,
The traveling section transmits the electromagnetic wave incident on the reference surface in a transmission state in the detection direction,
An electromagnetic wave detection device that switches each of the pixels to a reflection state that reflects light in a non-detection direction. - 請求項26に記載の電磁波検出装置において、
前記進行部は、電磁波を反射する反射面を含むシャッタを前記画素毎に含み、前記シャ
ッタを前記画素毎に開閉することにより前記反射状態と前記透過状態とに、切替える
電磁波検出装置。 The electromagnetic wave detection device according to claim 26,
The electromagnetic wave detection device, wherein the traveling unit includes a shutter including a reflection surface that reflects electromagnetic waves, for each of the pixels, and opens and closes the shutter for each of the pixels to switch between the reflective state and the transmissive state. - 請求項27に記載の電磁波検出装置において、
前記進行部は、前記シャッタがアレイ状に配列されたMEMSシャッタを含む
電磁波検出装置。 The electromagnetic wave detection device according to claim 27,
The electromagnetic wave detection device, wherein the traveling unit includes a MEMS shutter in which the shutters are arranged in an array. - 請求項26または27に記載の電磁波検出装置において、
前記進行部は、電磁波を反射する反射状態および透過する透過状態を液晶配向に応じて
前記画素毎に切替え可能な液晶シャッタを含む
電磁波検出装置。 The electromagnetic wave detection device according to claim 26 or 27,
The electromagnetic wave detecting device, wherein the traveling unit includes a liquid crystal shutter capable of switching between a reflective state for reflecting electromagnetic waves and a transmissive state for transmitting the electromagnetic waves for each pixel according to liquid crystal alignment. - 請求項1から29のいずれか1項に記載の電磁波検出装置において、
前記制御部は、前記第1の検出部の検出結果に基づいて、周囲に関する情報を取得する
電磁波検出装置。 The electromagnetic wave detection device according to any one of claims 1 to 29,
The electromagnetic wave detection device, wherein the control unit acquires information about the surroundings based on the detection result of the first detection unit. - 請求項30に記載の電磁波検出装置において、
前記制御部は、前記周囲に関する情報として、画像情報、距離情報、および温度情報の
少なくともいずれかを取得する
電磁波検出装置。
The electromagnetic wave detection device according to claim 30,
The electromagnetic wave detection device, wherein the control unit acquires at least one of image information, distance information, and temperature information as the information about the surroundings.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018201215A JP2020067403A (en) | 2018-10-25 | 2018-10-25 | Electromagnetic wave detection device |
JP2018-201215 | 2018-10-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020085089A1 true WO2020085089A1 (en) | 2020-04-30 |
Family
ID=70331183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/039789 WO2020085089A1 (en) | 2018-10-25 | 2019-10-09 | Electromagnetic radiation detector |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020067403A (en) |
WO (1) | WO2020085089A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114460578B (en) * | 2022-02-11 | 2023-01-10 | 北京博识广联科技有限公司 | Radiation source screening method based on multi-dimensional signals |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000056018A (en) * | 1998-08-05 | 2000-02-25 | Denso Corp | Distance measuring device |
US7224384B1 (en) * | 1999-09-08 | 2007-05-29 | 3Dv Systems Ltd. | 3D imaging system |
JP2008096714A (en) * | 2006-10-12 | 2008-04-24 | National Institute Of Advanced Industrial & Technology | Method and device for adjusting optical axis of optical transmission path |
US20150156479A1 (en) * | 2013-12-04 | 2015-06-04 | Samsung Electronics Co., Ltd. | Wavelength separation device and 3-dimensional image acquisition apparatus including the same |
WO2018186153A1 (en) * | 2017-04-06 | 2018-10-11 | 京セラ株式会社 | Electromagnetic wave detection device, program, and electromagnetic wave detection system |
JP2018163020A (en) * | 2017-03-24 | 2018-10-18 | 京セラ株式会社 | Electromagnetic wave detection device, program, and electromagnetic wave detection system |
-
2018
- 2018-10-25 JP JP2018201215A patent/JP2020067403A/en active Pending
-
2019
- 2019-10-09 WO PCT/JP2019/039789 patent/WO2020085089A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000056018A (en) * | 1998-08-05 | 2000-02-25 | Denso Corp | Distance measuring device |
US7224384B1 (en) * | 1999-09-08 | 2007-05-29 | 3Dv Systems Ltd. | 3D imaging system |
JP2008096714A (en) * | 2006-10-12 | 2008-04-24 | National Institute Of Advanced Industrial & Technology | Method and device for adjusting optical axis of optical transmission path |
US20150156479A1 (en) * | 2013-12-04 | 2015-06-04 | Samsung Electronics Co., Ltd. | Wavelength separation device and 3-dimensional image acquisition apparatus including the same |
JP2018163020A (en) * | 2017-03-24 | 2018-10-18 | 京セラ株式会社 | Electromagnetic wave detection device, program, and electromagnetic wave detection system |
WO2018186153A1 (en) * | 2017-04-06 | 2018-10-11 | 京セラ株式会社 | Electromagnetic wave detection device, program, and electromagnetic wave detection system |
Also Published As
Publication number | Publication date |
---|---|
JP2020067403A (en) | 2020-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11719790B2 (en) | Electromagnetic wave detection apparatus and information acquisition system | |
WO2019198568A1 (en) | Electromagnetic wave detection device and information acquisition system | |
JP6850173B2 (en) | Electromagnetic wave detectors, programs, and electromagnetic wave detection systems | |
US11675052B2 (en) | Electromagnetic wave detection apparatus, program, and electromagnetic wave detection system | |
WO2018155212A1 (en) | Electromagnetic wave detection device, program, and electromagnetic wave detection system | |
WO2020085089A1 (en) | Electromagnetic radiation detector | |
WO2019220978A1 (en) | Electromagnetic wave detection device and information acquisition system | |
US11573316B2 (en) | Electromagnetic wave detection apparatus and information acquisition system | |
WO2018225659A1 (en) | Electromagnetic wave detection device, electromagnetic detection system, and program | |
WO2020105419A1 (en) | Electromagnetic wave detection device and information acquisition system | |
JP7037609B2 (en) | Electromagnetic wave detectors and programs | |
JP7194709B2 (en) | rangefinder | |
JP2019144219A (en) | Electromagnetic wave detection device and information acquisition system | |
JP7004632B2 (en) | Electromagnetic wave detection device | |
JP2020073895A (en) | Electromagnetic wave detection device and information acquisition system | |
JP2020073894A (en) | Electromagnetic wave detection device and information acquisition system | |
WO2019220974A1 (en) | Electromagnetic wave detection device and information acquisition system | |
WO2020090553A1 (en) | Electromagnetic wave detection device and information acquisition system | |
JP2019002847A (en) | Electromagnetic wave detector and information acquisition system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19877403 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19877403 Country of ref document: EP Kind code of ref document: A1 |