WO2020084786A1 - Heat exchanger and refrigeration cycle device using same - Google Patents

Heat exchanger and refrigeration cycle device using same Download PDF

Info

Publication number
WO2020084786A1
WO2020084786A1 PCT/JP2018/039965 JP2018039965W WO2020084786A1 WO 2020084786 A1 WO2020084786 A1 WO 2020084786A1 JP 2018039965 W JP2018039965 W JP 2018039965W WO 2020084786 A1 WO2020084786 A1 WO 2020084786A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
fins
heat transfer
region
longitudinal direction
Prior art date
Application number
PCT/JP2018/039965
Other languages
French (fr)
Japanese (ja)
Inventor
綾 河島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020552495A priority Critical patent/JP7112053B2/en
Priority to CN201890000662.0U priority patent/CN211290633U/en
Priority to PCT/JP2018/039965 priority patent/WO2020084786A1/en
Publication of WO2020084786A1 publication Critical patent/WO2020084786A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to a heat exchanger and a refrigeration cycle device using the heat exchanger.
  • a plurality of plate-shaped fins arranged so as to be stacked at a preset interval, and a plurality of heat transfer tubes penetrating along the direction in which these fins are arranged in parallel
  • a fin-and-tube type heat exchanger having
  • the heat transfer tubes used in such heat exchangers have, for example, a perfect circular cross section or a flat shape such as an elliptical shape or an oval shape.
  • a plurality of openings such as through holes or notches corresponding to the shape of the heat transfer tube are formed in the plurality of fins, and the heat transfer tube is inserted into these openings.
  • the plurality of heat transfer tubes are assembled with the fins penetrating along the direction in which the fins are arranged in parallel.
  • fins are formed with fin collars that are cut and raised perpendicularly to the heat transfer tubes, and the fin collars are brazed in the furnace or adhered to the heat transfer tubes by using an adhesive to form heat transfer tubes. Adhesion with the fin can be improved.
  • each heat transfer tube is connected to a distribution pipe or header that forms a refrigerant flow path together with the heat transfer tube. Then, in the heat exchanger, heat is exchanged between the heat exchange fluid such as air or gas flowing between the fins and the heat exchanged fluid such as water or refrigerant flowing in the heat transfer tube.
  • the heat exchange fluid such as air or gas flowing between the fins
  • the heat exchanged fluid such as water or refrigerant flowing in the heat transfer tube.
  • a heat exchanger in which a cut-and-raised part called a slit or a louver that opens in the direction in which air mainly flows is formed, or a scratch or a waffle that protrudes in the direction in which air mainly flows.
  • Heat exchangers are known in which so-called protrusions are formed.
  • the cut-and-raised portion or the protruding portion is provided to increase the surface area for heat exchange, thereby improving the heat exchange performance.
  • heat exchangers in which a plurality of flow paths are formed inside the heat transfer tube, or heat exchangers in which grooves are formed on the inner surface of the heat transfer tube are known. Even in such a heat exchanger, the heat exchange performance is improved by providing a plurality of flow paths or grooves to increase the surface area for heat exchange.
  • the heat exchanger when the heat exchanger is installed in an outdoor unit and used as an evaporator, water in the air becomes frost and adheres to the heat exchanger. Therefore, in an air conditioner or a refrigerator including a heat exchanger, the frost adhering to the heat exchanger is melted by performing a defrosting operation, and the frost that has been melted into water droplets is removed from the surface of the fins and the heat transfer tubes. Then, it is hung down in the longitudinal direction and discharged below the heat exchanger.
  • Patent Document 1 a heat exchanger is proposed in which the entire fin region except for the annular portion formed around the insertion hole through which the heat transfer tube is inserted has a wave shape including peaks and valleys extending in the vertical direction. There is.
  • the present invention is to solve the above-mentioned problems, and even if the heat transfer tube has a flat shape, it is possible to improve the heat exchange performance while ensuring drainage, and a heat exchanger using the same. It is an object of the present invention to provide a refrigeration cycle device that has been used.
  • a heat exchanger according to the present invention and a refrigeration cycle apparatus using the heat exchanger are inserted into a plurality of plate-shaped fins arranged side by side in a front-back direction at preset intervals, and insertion holes formed in the fins.
  • a plurality of heat transfer tubes each having a flat cross section and arranged side by side in the longitudinal direction of the fins at predetermined intervals with respect to the fins, and the heat transfer tubes retain hydrophilicity on the outer peripheral surface.
  • the fin has an uneven shape provided adjacent to each other in the lateral direction orthogonal to the longitudinal direction, has a groove portion extending in the longitudinal direction, and retains hydrophilicity. It has been processed.
  • the heat exchanger and the refrigeration cycle apparatus using the same by collecting the water droplets adhering to the fin surface in the groove portion of the fin, the water droplet can be promptly guided downward in the longitudinal direction to be drained. it can.
  • the water droplets that have accumulated on the upper surface of the heat transfer tube wet and spread, so that even with a flat heat transfer tube, the water droplets can be guided downward in the longitudinal direction and drained without water droplets accumulating on the upper surface of the heat transfer tube.
  • the water droplets on the fin surface can be quickly and surely drained, and thus the heat exchange performance can be improved while ensuring drainage. .
  • FIG. 4 is a sectional view showing an AA section of FIG. 3.
  • FIG. 3 is a perspective view illustrating a main part of the outdoor heat exchanger of FIG. 2, which is used for explaining a step of inserting a heat transfer tube and fins.
  • 5 is an enlarged view of a main part of the heat exchanger according to Comparative Example 1.
  • FIG. 5 is an enlarged view of a main part showing water droplets on the surface of the heat exchanger according to Comparative Example 1.
  • FIG. 6 is an enlarged view of a main part of a heat exchanger according to Comparative Example 2.
  • FIG. 6 is an enlarged view of a main part showing drainage of water droplets on the surface of the heat exchanger according to Comparative Example 2.
  • FIG. 3 is an enlarged view of a main part showing drainage of water droplets on the surface of the heat exchanger according to the first embodiment. It is a principal part enlarged view of the heat exchanger which concerns on Embodiment 2 of this invention. It is sectional drawing which shows the BB cross section of FIG. It is a principal part enlarged view in the heat exchanger of FIG.
  • FIG. 17 is a cross-sectional view showing a CC cross section of FIG. 16. It is a principal part enlarged view which shows the drainage of the water droplet of the surface in the heat exchanger which concerns on Embodiment 3 of this invention. It is a principal part enlarged view which shows the drainage of the water droplet of the surface in the heat exchanger which concerns on Embodiment 3 of this invention.
  • FIG. 1 is a refrigerant circuit diagram showing an example of a refrigeration cycle device according to Embodiment 1 of the present invention.
  • the flow of the refrigerant during the cooling operation is indicated by a dashed arrow
  • the flow of the refrigerant during the heating operation is indicated by a solid arrow.
  • the refrigeration cycle apparatus 1 includes a compressor 2, a four-way valve 3, an indoor heat exchanger 4, an indoor fan 5, an expansion device 6, an outdoor fan 7, and an outdoor heat exchanger 10.
  • the compressor 2, the four-way valve 3, the indoor heat exchanger 4, the expansion device 6, and the outdoor heat exchanger 10 are connected by a refrigerant pipe to form a refrigerant circuit.
  • the compressor 2 compresses the refrigerant.
  • the refrigerant compressed by the compressor 2 is discharged and sent to the four-way valve 3.
  • the compressor 2 can be configured by, for example, a rotary compressor, a scroll compressor, a screw compressor, a reciprocating compressor, or the like.
  • the indoor heat exchanger 4 functions as a condenser during heating operation and as an evaporator during cooling operation.
  • the indoor heat exchanger 4 is, for example, a fin-and-tube heat exchanger, a microchannel heat exchanger, a shell-and-tube heat exchanger, a heat pipe heat exchanger, a double-tube heat exchanger, or a plate heat exchanger. It can be configured with a container or the like.
  • the expansion device 6 expands and decompresses the refrigerant that has passed through the indoor heat exchanger 4 or the outdoor heat exchanger 10.
  • the expansion device 6 can be composed of, for example, an electric expansion valve capable of adjusting the flow rate of the refrigerant.
  • an electric expansion valve capable of adjusting the flow rate of the refrigerant.
  • a mechanical expansion valve having a diaphragm as a pressure receiving portion, a capillary tube, or the like can be applied.
  • the outdoor heat exchanger 10 functions as an evaporator during heating operation and as a condenser during cooling operation.
  • the outdoor heat exchanger 10 will be described in detail later.
  • the four-way valve 3 switches the flow of refrigerant between heating operation and cooling operation. That is, the four-way valve 3 connects the discharge port of the compressor 2 to the indoor heat exchanger 4 and the refrigerant flow so as to connect the suction port of the compressor 2 to the outdoor heat exchanger 10 during the heating operation. Switch. Further, the four-way valve 3 connects the discharge port of the compressor 2 with the outdoor heat exchanger 10 and the refrigerant flow so as to connect the suction port of the compressor 2 with the indoor heat exchanger 4 during the cooling operation. Switch.
  • the indoor fan 5 is attached to the indoor heat exchanger 4 and supplies air, which is a heat exchange fluid, to the indoor heat exchanger 4.
  • the outdoor fan 7 is attached to the outdoor heat exchanger 10 and supplies air as a heat exchange fluid to the outdoor heat exchanger 10.
  • the high-temperature and high-pressure gas-state refrigerant is discharged from the compressor 2.
  • the refrigerant flows according to the broken line arrow.
  • the high-temperature and high-pressure gas refrigerant (single phase) discharged from the compressor 2 flows into the outdoor heat exchanger 10 functioning as a condenser via the four-way valve 3.
  • the outdoor heat exchanger 10 heat is exchanged between the flowing high-temperature and high-pressure gas refrigerant and the air supplied by the outdoor fan 7, the high-temperature and high-pressure gas refrigerant is condensed, and the high-pressure liquid refrigerant (single Phase).
  • the high-pressure liquid refrigerant sent from the outdoor heat exchanger 10 becomes a two-phase refrigerant of low-pressure gas refrigerant and liquid refrigerant by the expansion device 6.
  • the two-phase state refrigerant flows into the indoor heat exchanger 4 that functions as an evaporator.
  • the indoor heat exchanger 4 heat is exchanged between the two-phase state refrigerant that has flowed in and the air supplied by the indoor fan 5, and the liquid refrigerant of the two-phase state refrigerant evaporates to form a low-pressure gas. It becomes a refrigerant (single phase). Due to this heat exchange, the inside of the room is cooled.
  • the low-pressure gas refrigerant sent from the indoor heat exchanger 4 flows into the compressor 2 via the four-way valve 3, is compressed into a high-temperature high-pressure gas refrigerant, and is discharged from the compressor 2 again. Hereinafter, this cycle is repeated.
  • the compressor 2 As shown in FIG. 1, by driving the compressor 2, the high-temperature and high-pressure gas-state refrigerant is discharged from the compressor 2. Hereafter, the refrigerant flows according to the solid arrow.
  • the indoor heat exchanger 4 heat is exchanged between the flowing high-temperature and high-pressure gas refrigerant and the air supplied by the indoor fan 5, and the high-temperature and high-pressure gas refrigerant is condensed to form a high-pressure liquid refrigerant (single-phase). )become.
  • the heat exchange heats the room.
  • the high-pressure liquid refrigerant sent from the indoor heat exchanger 4 becomes a two-phase refrigerant of low-pressure gas refrigerant and liquid refrigerant by the expansion device 6.
  • the two-phase refrigerant flows into the outdoor heat exchanger 10 that functions as an evaporator.
  • heat exchange is performed between the two-phase refrigerant that has flowed in and the air supplied by the outdoor fan 7, and the liquid refrigerant of the two-phase refrigerant evaporates to form a low-pressure gas. It becomes a refrigerant (single phase).
  • the low-pressure gas refrigerant sent from the outdoor heat exchanger 10 flows into the compressor 2 via the four-way valve 3, is compressed into a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 2 again. Hereinafter, this cycle is repeated.
  • the refrigerant flowing out from the indoor heat exchanger 4 during the cooling operation or the outdoor heat exchanger 10 during the heating operation is a gas refrigerant (single phase).
  • the evaporator when heat exchange is performed between the air supplied from the fan and the refrigerant flowing inside the heat transfer tube forming the evaporator, water in the air is condensed and evaporated. Water drops form on the surface of the vessel. The water droplets generated on the surface of the evaporator travel along the surfaces of the fins and the heat transfer tubes and are dropped downward, and are discharged as drain water below the evaporator.
  • the refrigeration cycle apparatus 1 performs the “defrosting operation” for removing frost when the outside air has a certain temperature (for example, 0 ° C.) or less.
  • the "defrosting operation” is to supply hot gas (high-temperature high-pressure gas refrigerant) from the compressor 2 to the outdoor heat exchanger 10 in order to prevent frost from adhering to the outdoor heat exchanger 10 that functions as an evaporator. It is driving.
  • the defrosting operation may be executed when the duration of the heating operation reaches a predetermined value (for example, 30 minutes). In addition, the defrosting operation may be performed before the heating operation when the outdoor heat exchanger 10 has a constant temperature (for example, -6 ° C) or less. The frost and ice attached to the outdoor heat exchanger 10 are melted by the hot gas supplied to the outdoor heat exchanger 10 during the defrosting operation.
  • a bypass refrigerant pipe (not shown) is provided between the outlet of the compressor 2 and the outdoor heat exchanger 10 so that hot gas can be directly supplied from the compressor 2 to the outdoor heat exchanger 10 during the defrosting operation. ) May be used for connection.
  • the discharge port of the compressor 2 is connected to the outdoor heat exchanger 10 via a refrigerant flow path switching device (for example, a four-way valve 3) so that hot gas can be supplied from the compressor 2 to the outdoor heat exchanger 10. It may be configured to.
  • FIG. 2 is a perspective view showing an example of the outdoor heat exchanger in the refrigeration cycle device according to Embodiment 1 of the present invention.
  • FIG. 3 is an enlarged view of a main part of the outdoor heat exchanger of FIG.
  • FIG. 4 is a sectional view showing an AA section of FIG.
  • FIG. 5 is a perspective view showing a main part of the outdoor heat exchanger of FIG. 2 and is used for explaining a step of inserting the heat transfer tubes and the fins.
  • the x direction is the depth direction of the outdoor heat exchanger 10, and indicates the width direction that is short in the fins 11 of the outdoor heat exchanger 10.
  • the y direction is the width direction of the outdoor heat exchanger 10, and shows the direction in which the fins 11 that are the depth (thickness) direction in the fins 11 are arranged in parallel.
  • the z direction is the longitudinal direction (vertical direction) of the outdoor heat exchanger 10, and represents the height direction of the fins 11.
  • the white arrow K represents the ventilation direction of the air supplied from the outdoor fan 7 to the outdoor heat exchanger 10.
  • the outdoor heat exchanger 10 according to the first embodiment is supplied with air from the outdoor fan 7 shown in FIG. 1 in the ventilation direction K (x direction of the fins 11).
  • FIG. 3 shows a main part when the outdoor heat exchanger 10 is observed in the y direction.
  • FIG. 4 shows an AA cross section in the fin 11 of FIG.
  • the outdoor heat exchanger 10 is, for example, a two-row structure heat exchanger, and includes a windward heat exchanger 10A and a leeward heat exchanger 10B.
  • the windward side heat exchanger 10A and the leeward side heat exchanger 10B are fin-and-tube type heat exchangers, and the ventilation direction K of the air supplied from the outdoor fan 7 shown in FIG. 1, that is, the outdoor heat exchanger 10 is shown.
  • the windward side heat exchanger 10A is arranged on the windward side in the ventilation direction K of the air supplied from the outdoor fan 7, and the leeward side heat exchanger 10B is the leeward side in the ventilation direction K of the air supplied from the outdoor fan 7. It is located in.
  • One end of the heat transfer pipe 12 of the windward heat exchanger 10A is connected to the windward header collecting pipe 10C.
  • One end of the heat transfer pipe 12 of the leeward heat exchanger 10B is connected to the leeward header collecting pipe 10D.
  • the other end of the heat transfer tube 12 of the windward heat exchanger 10A and the other end of the heat transfer tube 12 of the leeward heat exchanger 10B are connected to the inter-row connection member 10E.
  • one of the windward heat exchanger 10A and the leeward heat exchanger 10B is transferred from one of the windward header collecting pipe 10C and the leeward header collecting pipe 10D.
  • the refrigerant is distributed to the heat pipe 12.
  • the refrigerant distributed to the one heat transfer tube 12 of the upwind heat exchanger 10A or the downwind heat exchanger 10B passes through the inter-row connection member 10E, and the downwind heat exchanger 10B or the upwind heat exchanger 10A. Flows into the other heat transfer tube 12.
  • the refrigerant flowing into the other heat transfer pipe 12 of the leeward heat exchanger 10B or the windward heat exchanger 10A merges with the other of the leeward header collecting pipe 10D or the leeward header collecting pipe 10C, and the compressor 2 It flows toward the suction port or the throttling device 6.
  • the windward heat exchanger 10A and the leeward heat exchanger 10B have the same configuration. Therefore, the windward heat exchanger 10A will be described below as a representative of both.
  • the windward heat exchanger 10A and the leeward heat exchanger 10B are simply referred to as the heat exchanger 13.
  • the heat exchanger 10 may be configured.
  • the heat exchanger 13 includes a plurality of fins 11 and a plurality of heat transfer tubes 12.
  • the fins 11 are rectangular plate-shaped members extending in the longitudinal direction (z direction), and as shown in FIG. 5, the fins 11 are arranged in the same outdoor heat exchanger 10 in the front-back direction at predetermined intervals. It is arranged. In the case of the first embodiment, the fins 11 are arranged in the same outdoor heat exchanger 10 side by side in the y direction at a prescribed fin pitch interval FP.
  • a plurality of insertion holes 14 into which the heat transfer tubes 12 are inserted are formed in the fins 11 above and below in the longitudinal direction of the fins 11 at predetermined intervals.
  • the fin 11 has a plurality of concavo-convex shapes provided adjacent to each other along the ventilation direction K of the air from the outdoor fan 7 in a region excluding the insertion holes 14, and has a groove portion 15 extending in the longitudinal direction.
  • the region excluding the insertion hole 14 of the fin 11 is the entire region excluding the insertion hole 14 including the first region P where the insertion hole 14 does not exist in the longitudinal direction.
  • the air flow direction K of the air from the outdoor fan 7 indicates the same direction as the x direction as the lateral direction orthogonal to the z direction as the longitudinal direction.
  • the uneven space RSm is preferably 5 mm or less. This is because, as a result of the study, it is clear that when the diameter of the water droplets is about 5 mm, the water droplets are dropped in the longitudinal direction by its own weight, and the effect of aggregating the water droplets due to the uneven shape is expected to be 5 mm or less. Further, the unevenness height Ra is preferably about 1/3 of the fin pitch interval FP (FIG. 5) in order to prevent the fins from contacting each other.
  • Such a concavo-convex shape can be formed by a method of imparting a concavo-convex shape to a press or rolling roll and transferring the roll.
  • a cut-and-raised portion or a protruding portion may be further formed to increase the surface area for heat exchange and improve the heat exchange performance.
  • FIGS. 3 and 5 two heat transfer tubes 12 located above and below in the z direction are shown as representatives. As shown in FIG. 3, the upper heat transfer tube 12 and the lower heat transfer tube 12 are inserted into the insertion holes 14 formed in the fin 11, and the length of the fin 11 is increased at predetermined intervals with respect to the fin 11. They are arranged side by side.
  • the heat transfer tube 12 extends in the y direction, which is the direction in which the plurality of fins 11 are arranged in parallel, and the end portions of the insertion holes 14 formed in the plurality of fins 11 are formed. 14a is inserted in the x direction. Thereby, the plurality of fins 11 hold the heat transfer tube 12 in a state where the heat transfer tube 12 penetrates the insertion hole 14.
  • the heat transfer tube 12 is a flat tube whose cross section orthogonal to the longitudinal direction has a flat shape.
  • the fins 11 and the heat transfer tubes 12 according to the first embodiment are subjected to a treatment for keeping their surfaces hydrophilic.
  • the contact angle between the surfaces of the fins 11 and the heat transfer tubes 12 is preferably 30 ° or less. Further, it is desirable that the fins 11 have higher hydrophilicity than the heat transfer tubes 12.
  • the surface of the fins 11 and the heat transfer tubes 12 is made hydrophilic by post-coating with a flux or a hydrophilic agent used when brazing the fins 11 and the heat transfer tubes 12. A conductive coating can be formed.
  • FIG. 6 is an enlarged view of a main part of the heat exchanger 100 according to Comparative Example 1.
  • the contact angle between the surfaces of the fin 101 and the heat transfer tube 102 of Comparative Example 1 is about 80 °.
  • the heat exchanger 100 is different from the heat exchanger 13 according to the first embodiment in that the heat exchanger 100 does not have the groove portion 15 formed on the surface of the fin 11 shown in FIG. It is not hydrophilic.
  • 7: is a principal part enlarged view which shows the water droplet of the surface of the heat exchanger 100 which concerns on the comparative example 1.
  • FIG. 8 is an enlarged view of a main part of the heat exchanger 110 according to Comparative Example 2.
  • FIG. 9 is an enlarged view of an essential part showing drainage of water droplets on the surface of the heat exchanger 110 according to Comparative Example 2.
  • the contact angle between the surfaces of the fin 111 and the heat transfer tube 112 of Comparative Example 2 is about 10 °.
  • the heat exchanger 110 is different from the heat exchanger 13 according to the first embodiment in that it does not have the groove portion 15 formed on the surface of the fin 11 shown in FIG. 3. In the heat exchanger 110 of Comparative Example 2, as shown in FIG.
  • the water droplet H is drained to the lower side of the heat exchanger 110 by repeating the draining process of flowing to the lower surface of the heat transfer tube 112 along the outer peripheral surface of the heat transfer tube 112 (FIG. 9). Therefore, although it takes time, the residual water in the heat exchanger 110 can be made smaller than that in Comparative Example 1.
  • the water droplets H on the upper surface of the heat transfer tube 112 wet and spread along the outer peripheral surface of the heat transfer tube 112 to the lower surface "whole area" of the heat transfer tube 112, and are further drained to the upper surface "whole area” of the heat transfer tube 112. Therefore, the drainage path is longer than that of the heat exchanger 13 of the first embodiment described later, and it takes time to drain the heat exchanger 110 below the heat exchanger 110.
  • the surfaces of the fins 11 and the heat transfer tubes 12 are each hydrophilic, the water droplets H collected on the upper surface of the heat transfer tubes 12 spread along the outer peripheral surface of the heat transfer tubes 12 without accumulating on the upper surfaces of the heat transfer tubes 12. . Then, the water droplets H are guided to the groove portion 15 by the hydrophilic property of the fins 11 and then drained downward along the groove portion 15 in the longitudinal direction.
  • FIG. 10 is an enlarged view of an essential part showing drainage of water droplets on the surface of the heat exchanger according to the first embodiment. Since the insertion hole 14 is formed in a region of the fin 11 where the heat transfer tube 12 exists in the longitudinal direction, the groove portion 15 is cut off at the position of the insertion hole 14.
  • the water droplets H attached to the surfaces of the fins 11 can be collected in the groove portions 15 and quickly drained downward in the longitudinal direction of the heat exchanger 13. it can. Further, by allowing the water droplets H accumulated on the upper surface of the heat transfer tube 12 to spread, the water droplets H do not accumulate on the upper surface of the heat transfer tube 12 even if the heat transfer tube 12 has a flat shape, and the water droplets H move downward in the longitudinal direction. It can be led to and drained.
  • the water droplets H accumulated on the upper surface of the heat transfer tube 12 can be mainly drained in the first region P where drainage is easy in the longitudinal direction of the fin 11 without the insertion hole 14. Therefore, the condensed water of the entire heat exchanger 13 or the water droplets H such as dissolved water due to the defrosting operation can be drained much more rapidly. Therefore, even in the heat exchanger 13 using the flat heat transfer tube 12, the water droplets H on the surfaces of the fins 11 can be quickly and surely drained, thus improving drainage and heat exchange performance. Can be planned.
  • Embodiment 2 Next, a refrigeration cycle apparatus 1 (FIG. 1) according to Embodiment 2 of the present invention will be described. Specifically, in the above-described first embodiment, the case where the groove portion 15 is provided on the entire surface of the fin 11 in the x direction has been described (see FIGS. 3 to 5, 10 and the like). On the other hand, in the refrigeration cycle apparatus 1 according to the second embodiment, as shown in FIG. 11 described later, the fins 21 of the heat exchanger 20 have different regions in which the groove portions 25 extending in the longitudinal direction are provided, The other configurations are the same. For this reason, in the second embodiment, a specific configuration of the heat exchanger 20 will be described, and other redundant description will be omitted.
  • FIG. 11 is an enlarged view of a main part of the heat exchanger 20 according to Embodiment 2 of the present invention.
  • FIG. 12 is a cross-sectional view showing a BB cross section of FIG.
  • FIG. 13 is an enlarged view of a main part of the heat exchanger 20 of FIG.
  • the groove portion 25 is provided in the area where the heat transfer tube 22 (insertion hole 24) does not exist in the z direction on the surface of the fin 21.
  • the fin 21 is located on the first region P where the insertion hole 24 does not exist in the longitudinal direction and on the center side in the lateral direction of the first region P in the longitudinal direction, and in the lateral direction of the insertion hole 24.
  • the groove portion 25 is provided in the second region Q including the end portion 24a on the side of the first region P in.
  • the second region Q includes the vicinity of the boundary between the groove 24 and the end 24 a of the heat transfer tube 22 on the first region P side in the insertion hole 24.
  • the second region Q has an RSm of RSm from the end 24a on the first region P side of the insertion hole 24 toward the center side of the insertion hole 24 in the lateral direction. It is desirable that the area is twice as wide.
  • the second area Q is an area having a width twice as large as RSm from the end portion 24a on the first area P side of the insertion hole 24 toward the center side of the insertion hole 24 in the lateral direction. This is to secure the groove portion 25 that functions as a drainage path for the water droplets H attached to the upper surface of the.
  • a width of one RSm corresponds to either a concave portion or a convex portion of the unevenness forming the groove 25, and makes the groove function as a drainage path for the water droplets H attached to the upper surface of the heat transfer tube 22. 25 cannot always be secured. Therefore, by making the region twice the width of RSm, it is possible to surely hold the groove portion 25 that has both the concave and convex shapes that form the groove portion 25 and that functions as the drainage path of the water droplets H.
  • the same effect as that of the first embodiment can be obtained by only providing the groove portion 25 extending in the longitudinal direction only in the first region P and the second region Q. Obtainable. That is, in the heat exchanger 20 according to the second embodiment, the water droplets H accumulated on the surfaces of the fins 21 and the upper surfaces of the heat transfer tubes 22 are moved downward in the longitudinal direction via the groove portions 25 of the first region P and the second region Q. It is possible to drain water quickly and surely. Therefore, not only the heat exchange performance can be improved while ensuring the drainage property of the heat exchanger 20, but the formation region of the groove 25 in the fin 21 can be reduced to simplify the configuration.
  • FIG. 14 is an enlarged view of a main part in the first modification of the heat exchanger 20 according to the second embodiment of the present invention.
  • a third region R which is on the center side in the lateral direction with respect to the second region Q and is a flat face in which the insertion hole 24 exists in the longitudinal direction of the fin 21, projects from the flat face.
  • the cut-and-raised portion 26, the protruding portion 27, or both may be provided. In this case, the heat exchange performance can be further improved by increasing the surface area of the fin 21 for heat exchange.
  • the opposite end of the end 24a on the first region P side in the insertion hole 24 is formed in a notched state.
  • the present invention is not limited to this.
  • FIG. 15 is an enlarged view of a main part in the second modification of the heat exchanger 20 according to the second embodiment of the present invention.
  • the end portion on the opposite side of the end portion 24a on the first region P side of the insertion hole 240 formed in the fin 210 may not be in the notched state.
  • the fin 210 of the heat exchanger 200 has an insertion hole 240 corresponding to the heat transfer tube 220 opened at the center of the fin 210.
  • the insertion hole 240 includes an end portion 240a on the first region T side located upstream of the air ventilation direction K and an opposite end portion 240b located downstream of the air ventilation direction K opposite thereto.
  • the region corresponding to the first region P is the first region T
  • the region corresponding to the second region Q is the second region U
  • the region corresponding to the third region R is the third region V
  • the holes 240 are formed symmetrically in the lateral direction around the hole 240.
  • the heat exchanger 200 like the heat exchanger 20 described above, water droplets (not shown) accumulated on the surfaces of the fins 210 and the upper surfaces of the heat transfer tubes 220 are formed in the groove portions of the first region T and the second region U.
  • the groove 250 is not provided in the entire area of the surface of the fin 210 in the x direction, but is provided in the first region T and the second region U to the minimum necessary. Can be simplified.
  • the insertion hole 240 is opened in the center of the fin 210 in a flat shape corresponding to the heat transfer tube 220 without notching the opposite end portion 240b, it is remarkably compared with the case having the notch.
  • the heat transfer tube 220 can be stably held.
  • Embodiment 3 Next, a refrigeration cycle apparatus 1 (FIG. 1) according to Embodiment 3 of the present invention will be described. Specifically, in the above-described first embodiment, the case where the extending direction of the groove portion 15 on the surface of the fin 11 is parallel to the upper and lower sides in the longitudinal direction has been described (see FIGS. 3 to 5, 10 and the like). On the other hand, in the refrigeration cycle apparatus 1 according to the third embodiment, as shown in FIGS. 16 to 19 described later, the extending direction of the groove 35 in the fin 31 of the heat exchanger 30 is the longitudinal direction of the fin 31. Other than that the point is inclined with respect to the direction, the others are configured similarly.
  • the region corresponding to the first region P in the above-described first embodiment is the first region Pa, and the end portion 14a of the insertion hole 14 on the first region P side is the first region Pa side in the insertion hole 34. End portion 34a.
  • FIG. 16 is an enlarged view of a main part of the heat exchanger 30 according to the third embodiment of the present invention.
  • FIG. 17 is a cross-sectional view showing a CC cross section of FIG.
  • the groove portion 35 in the heat exchanger 30 of the third embodiment, in the z direction on the surface of the fin 31, when the groove portion 35 is arranged with the longitudinal direction facing up and down in the gravity direction, the groove portion is arranged.
  • the inclining direction of 35 inclines downward toward the first region Pa.
  • the groove portion 35 extends in a state in which the groove 35 is inclined in the downward direction opposite to the ventilation direction K of the air flowing between the fins 31. .
  • FIG. 18 is an enlarged view of an essential part showing drainage of water droplets on the surface of the heat exchanger 30 according to the third embodiment of the present invention.
  • FIG. 19 is an enlarged view of an essential part showing drainage of water droplets on the surface of the heat exchanger 30 according to Embodiment 3 of the present invention.
  • the water droplets H accumulated on the upper surface of the heat transfer tube 32 in the insertion hole 34 spread wet along the outer peripheral surface of the hydrophilic heat transfer tube 32, and the heat transfer tube 32.
  • the water is drained along the groove 35A on the surface of the fin 31 that first intersects with the upper drainage path.
  • the groove portion 35A extends toward the end of the fin 31 on the side of the first region Pa, the drained water droplet H does not come into contact with the heat transfer pipe 32 below and the first region Pa where drainage is easy. Be led up to.
  • each groove 35 is arranged such that the height position of the one groove 35 on the surface of the fin 31 on the first region Pa side where the heat transfer tube 32 does not exist is lower than the height position on the insertion side of the heat transfer tube 32. Has been extended.
  • the extending direction of the groove portion 35 provided on the surface of the fin 31 is defined as the ventilation direction K of the air flowing between the fins 31 in the z direction. Tilts in the opposite downward direction. Thereby, it becomes possible to further promote the drainage in the first region Pa where the drainage is easy, and the drainage can be carried out much more rapidly than in the first embodiment described above.
  • 1 refrigeration cycle device 2 compressor, 3 four-way valve, 4 indoor heat exchanger, 5 indoor fan, 6 expansion device, 7 outdoor fan, 10 indoor heat exchanger, 10A windward heat exchanger, 10B leeward heat exchanger 10C leeward header collecting pipe, 10D leeward header collecting pipe, 10E inter-row connecting member, 11, 21, 31, 101, 111, 210 fins, 12, 22, 32, 102, 112, 220 heat transfer pipes, 13, 20, 30, 100, 110, 200 heat exchanger, 14, 24, 34, 104, 114, 240 insertion hole, 14a, 24a, 34a, 240a, 240b end, 15, 15A, 25, 35, 35A, 35B , 250 groove part, 26 cut and raised part, 27 protruding part, H water drop, K air ventilation direction, P, Pa, T first area, Q, U second area , R, V third region.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The present invention comprises: a plurality of plate-shaped fins disposed so as to be arranged side by side in the front and rear directions at preset intervals; and a plurality of heat transfer tubes that have flat-shaped cross sections and are disposed so as to be arranged side by side in the long-side direction of the fins at preset intervals with respect to the fins. The heat transfer tubes have been subjected to a surface treatment for retaining hydrophilicity on the outer peripheral surfaces thereof. The fins have groove sections which extend in the long-side direction and which are composed of uneven shapes provided so as to be adjacent in the short-side direction that is orthogonal to the long-side direction, and the fins have been subjected to a surface treatment for retaining hydrophilicity. This makes it possible to improve heat exchange performance while ensuring drainage characteristics, even if the heat transfer tubes are flat shapes.

Description

熱交換器及びそれを用いた冷凍サイクル装置Heat exchanger and refrigeration cycle apparatus using the same
 本発明は、熱交換器及びそれを用いた冷凍サイクル装置に関する。 The present invention relates to a heat exchanger and a refrigeration cycle device using the heat exchanger.
 この種の熱交換器としては、予め設定された間隔で積層するように配置される板状の複数のフィンと、これらフィンを並列させた方向に沿って貫通して配置される複数の伝熱管と、を備えたフィンアンドチューブ型の熱交換器が知られている。 As this type of heat exchanger, a plurality of plate-shaped fins arranged so as to be stacked at a preset interval, and a plurality of heat transfer tubes penetrating along the direction in which these fins are arranged in parallel And a fin-and-tube type heat exchanger having
 このような熱交換器に用いられる伝熱管は、例えば、断面が真円形状をなしているか、又は楕円形状もしくは長円形状等の扁平形状をなしている。これに対し、複数のフィンには伝熱管の形状に対応した貫通孔又は切り欠き等の開口部が複数形成され、これらの開口部に伝熱管が挿入される。これにより、複数の伝熱管は、複数のフィンが並列する方向に沿ってこれらフィンを貫通した状態で組み付けられる。 The heat transfer tubes used in such heat exchangers have, for example, a perfect circular cross section or a flat shape such as an elliptical shape or an oval shape. On the other hand, a plurality of openings such as through holes or notches corresponding to the shape of the heat transfer tube are formed in the plurality of fins, and the heat transfer tube is inserted into these openings. As a result, the plurality of heat transfer tubes are assembled with the fins penetrating along the direction in which the fins are arranged in parallel.
 また、フィンには伝熱管に対して垂直に切り起こされたフィンカラーが形成されており、このフィンカラーが炉中ロウ付け又は接着剤を用いて伝熱管に接着されることにより、伝熱管とフィンとの密着性を向上させることができる。 Further, fins are formed with fin collars that are cut and raised perpendicularly to the heat transfer tubes, and the fin collars are brazed in the furnace or adhered to the heat transfer tubes by using an adhesive to form heat transfer tubes. Adhesion with the fin can be improved.
 また、各伝熱管の端部は、伝熱管と共に冷媒流路を形成する分配管又はヘッダに接続されている。そして、熱交換器において、フィンの間を流動する空気又はガス等の熱交換流体と、伝熱管内を流動する水又は冷媒等の被熱交換流体との間で熱が交換される。 Also, the end of each heat transfer tube is connected to a distribution pipe or header that forms a refrigerant flow path together with the heat transfer tube. Then, in the heat exchanger, heat is exchanged between the heat exchange fluid such as air or gas flowing between the fins and the heat exchanged fluid such as water or refrigerant flowing in the heat transfer tube.
 また、空気が主に流れる方向に向けて開口したスリットもしくはルーバー等と呼称される切起こし部が形成されている熱交換器、又は、空気が主に流れる方向に対し突出したスクラッチもしくはワッフル等と呼称される突出部が形成されている熱交換器が知られている。このような熱交換器では、切起こし部又は突出部を設けることにより、熱交換のための表面積を増やすことで、熱交換性能の向上を図っている。 In addition, a heat exchanger in which a cut-and-raised part called a slit or a louver that opens in the direction in which air mainly flows is formed, or a scratch or a waffle that protrudes in the direction in which air mainly flows. Heat exchangers are known in which so-called protrusions are formed. In such a heat exchanger, the cut-and-raised portion or the protruding portion is provided to increase the surface area for heat exchange, thereby improving the heat exchange performance.
 さらに、伝熱管の内部に複数の流路が形成された熱交換器、又は、伝熱管の内面に溝が形成された熱交換器等が知られている。このような熱交換器においても、複数の流路又は溝を設けることにより、熱交換のための表面積を増やすことで、熱交換性能の向上を図っている。 Furthermore, heat exchangers in which a plurality of flow paths are formed inside the heat transfer tube, or heat exchangers in which grooves are formed on the inner surface of the heat transfer tube are known. Even in such a heat exchanger, the heat exchange performance is improved by providing a plurality of flow paths or grooves to increase the surface area for heat exchange.
 ところで、熱交換器を蒸発器として用いる場合、空気中の水分が凝縮水として熱交換器に付着する。そのため、熱交換器に付着した凝縮水は、フィン及び伝熱管の表面を伝って長手方向へ垂下し、熱交換器の下方にて排出される。このとき、フィンに凝縮水が付着することで、通風抵抗が増大して熱交換性能が低下するため、フィンに付着した凝縮水を長手方向へと速やかに排水させる必要がある。 By the way, when the heat exchanger is used as an evaporator, water in the air adheres to the heat exchanger as condensed water. Therefore, the condensed water adhering to the heat exchanger travels along the surfaces of the fins and the heat transfer tubes, hangs down in the longitudinal direction, and is discharged below the heat exchanger. At this time, since condensed water adheres to the fins, ventilation resistance increases and heat exchange performance deteriorates. Therefore, it is necessary to quickly discharge the condensed water adhered to the fins in the longitudinal direction.
 また、熱交換器を室外機に設置して蒸発器として用いる場合、空気中の水分が霜となって熱交換器に付着する。そのため、熱交換器を備える空気調和機又は冷凍機等では、除霜運転を行うことで熱交換器に付着した霜を溶かし、融解されて水滴となった霜を、フィン及び伝熱管の表面を伝って長手方向へ垂下させ、熱交換器の下方にて排出させる。 Also, when the heat exchanger is installed in an outdoor unit and used as an evaporator, water in the air becomes frost and adheres to the heat exchanger. Therefore, in an air conditioner or a refrigerator including a heat exchanger, the frost adhering to the heat exchanger is melted by performing a defrosting operation, and the frost that has been melted into water droplets is removed from the surface of the fins and the heat transfer tubes. Then, it is hung down in the longitudinal direction and discharged below the heat exchanger.
 なお、除霜運転が終了し、暖房運転が開始された後も水滴が残留している場合、水滴は再び氷結して成長し、前述したような通風抵抗の増大及び熱交換性能の悪化を招くため、これらの水滴は確実に除去しなければならない。その反面、かかる熱交換器では、水滴を確実に排水するべく除霜運転の時間を延長することで、当該除霜運転を行う一定時間において平均暖房能力の低下を招くため、排水時間の短縮を図る必要がある。 When the defrosting operation is finished and the water droplets remain after the heating operation is started, the water droplets are frozen again and grow, which causes the increase of ventilation resistance and the deterioration of the heat exchange performance as described above. Therefore, these water drops must be reliably removed. On the other hand, in such a heat exchanger, by extending the time of the defrosting operation in order to reliably drain the water droplets, the average heating capacity is reduced in a certain time during which the defrosting operation is performed, so the drainage time is shortened. It is necessary to plan.
 そこで、例えば特許文献1では、伝熱管を挿通する挿通孔の周囲に形成された環状部を除くフィン全域を上下方向に延在する山及び谷から成る波形状とする熱交換器が提案されている。 Therefore, for example, in Patent Document 1, a heat exchanger is proposed in which the entire fin region except for the annular portion formed around the insertion hole through which the heat transfer tube is inserted has a wave shape including peaks and valleys extending in the vertical direction. There is.
特開平6-82189号公報Japanese Patent Laid-Open No. 6-82189
 しかしながら、特許文献1の熱交換器では、扁平形状の伝熱管を用いた場合、当該伝熱管の上部及び下部で排水が停滞し、速やか且つ確実に排水を行うことが困難となる問題があった。 However, in the heat exchanger of Patent Document 1, when a flat heat transfer tube is used, there is a problem in that drainage is stagnant at the upper and lower portions of the heat transfer tube, making it difficult to quickly and reliably perform drainage. .
 すなわち、特許文献1の熱交換器に扁平形状の伝熱管を用いた場合、フィンに付着した凝縮水又は融解した霜等の水滴は、扁平形状の伝熱管の上面に落下し、伝熱管の外周に沿って伝熱管の下面に回り込んだ後、下方に配置された伝熱管上面へと垂下する。このように、扁平形状の伝熱管では、真円形状の伝熱管には存在しない平らな部分が伝熱管外周に存在する分、当該伝熱管外周に付着する水滴を長手方向に移動させる際に妨げとなる領域を有することとなる。このため、扁平形状の伝熱管では、伝熱管外周に付着した水滴の排水速度が低下するばかりか、排水されずに伝熱管の上面及び下面に停滞する水滴の量も増加し、結果として熱交換性能が低下するという問題があった。 That is, when a flat heat transfer tube is used in the heat exchanger of Patent Document 1, condensed water adhering to the fins or water droplets such as melted frost fall on the upper surface of the flat heat transfer tube, and the outer circumference of the heat transfer tube After wrapping around along the bottom surface of the heat transfer tube, it hangs down to the upper surface of the heat transfer tube arranged below. As described above, in the flat heat transfer tube, a flat portion, which does not exist in the perfect circular heat transfer tube, exists on the outer circumference of the heat transfer tube, so that water droplets attached to the outer circumference of the heat transfer tube are prevented from moving in the longitudinal direction. Will have a region that becomes. For this reason, with a flat heat transfer tube, not only the drainage rate of water droplets adhering to the outer periphery of the heat transfer tube decreases, but also the amount of water droplets that are not drained and stagnant on the upper and lower surfaces of the heat transfer tube increases, resulting in heat exchange. There was a problem that performance deteriorated.
 本発明は、上記課題を解決するためのものであり、伝熱管が扁平形状であっても、排水性を確保しつつ、熱交換性能の向上を図ることが可能な熱交換器及びそれを用いた冷凍サイクル装置を提供することを目的とする。 The present invention is to solve the above-mentioned problems, and even if the heat transfer tube has a flat shape, it is possible to improve the heat exchange performance while ensuring drainage, and a heat exchanger using the same. It is an object of the present invention to provide a refrigeration cycle device that has been used.
 本発明に係る熱交換器及びそれを用いた冷凍サイクル装置は、予め設定された間隔で表裏方向に並んで配置された板状の複数のフィンと、前記フィンに形成された挿入孔に挿入され、当該フィンに対して予め設定された間隔で前記フィンの長手方向に並んで配置された断面が扁平形状の複数の伝熱管と、を備え、前記伝熱管は、外周面に親水性を保持する表面処理が施されており、前記フィンは、前記長手方向と直交する短手方向に隣接して設けられる凹凸形状からなり、前記長手方向に延在する溝部を有し、親水性を保持する表面処理が施されてなる。 A heat exchanger according to the present invention and a refrigeration cycle apparatus using the heat exchanger are inserted into a plurality of plate-shaped fins arranged side by side in a front-back direction at preset intervals, and insertion holes formed in the fins. And a plurality of heat transfer tubes each having a flat cross section and arranged side by side in the longitudinal direction of the fins at predetermined intervals with respect to the fins, and the heat transfer tubes retain hydrophilicity on the outer peripheral surface. A surface that has been subjected to a surface treatment, the fin has an uneven shape provided adjacent to each other in the lateral direction orthogonal to the longitudinal direction, has a groove portion extending in the longitudinal direction, and retains hydrophilicity. It has been processed.
 本発明に係る熱交換器及びそれを用いた冷凍サイクル装置によれば、フィン表面に付着した水滴をフィンの溝部に集めることで、この水滴を速やかに長手方向下方へと導いて排水させることができる。また、伝熱管上面に溜まった水滴が濡れ広がることで、扁平形状の伝熱管であっても当該伝熱管上面に水滴が溜まることなく、当該水滴を長手方向下方へと導いて排水させることが可能となる。従って、扁平形状の伝熱管を用いた熱交換器においても、フィン表面の水滴を速やかに且つ確実に排水させることができ、かくして排水性を確保しつつ、熱交換性能の向上を図ることができる。 According to the heat exchanger and the refrigeration cycle apparatus using the same according to the present invention, by collecting the water droplets adhering to the fin surface in the groove portion of the fin, the water droplet can be promptly guided downward in the longitudinal direction to be drained. it can. In addition, the water droplets that have accumulated on the upper surface of the heat transfer tube wet and spread, so that even with a flat heat transfer tube, the water droplets can be guided downward in the longitudinal direction and drained without water droplets accumulating on the upper surface of the heat transfer tube. Becomes Therefore, even in the heat exchanger using the flat heat transfer tube, the water droplets on the fin surface can be quickly and surely drained, and thus the heat exchange performance can be improved while ensuring drainage. .
本発明の実施の形態1に係る冷凍サイクル装置の一例を示す冷媒回路図である。It is a refrigerant circuit diagram showing an example of a refrigerating cycle device concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍サイクル装置における室外熱交換器の一例を示す斜視図である。It is a perspective view showing an example of the outdoor heat exchanger in the refrigerating cycle device concerning Embodiment 1 of the present invention. 図2の室外熱交換器における要部拡大図である。It is a principal part enlarged view in the outdoor heat exchanger of FIG. 図3のA-A断面を示す断面図である。FIG. 4 is a sectional view showing an AA section of FIG. 3. 図2の室外熱交換器における要部であり、伝熱管とフィンを挿入する工程の説明に供する斜視図である。FIG. 3 is a perspective view illustrating a main part of the outdoor heat exchanger of FIG. 2, which is used for explaining a step of inserting a heat transfer tube and fins. 比較例1に係る熱交換器の要部拡大図である。5 is an enlarged view of a main part of the heat exchanger according to Comparative Example 1. FIG. 比較例1に係る熱交換器の表面の水滴を示す要部拡大図である。5 is an enlarged view of a main part showing water droplets on the surface of the heat exchanger according to Comparative Example 1. FIG. 比較例2に係る熱交換器の要部拡大図である。6 is an enlarged view of a main part of a heat exchanger according to Comparative Example 2. FIG. 比較例2に係る熱交換器の表面の水滴の排水を示す要部拡大図である。6 is an enlarged view of a main part showing drainage of water droplets on the surface of the heat exchanger according to Comparative Example 2. FIG. 実施例1に係る熱交換器の表面の水滴の排水を示す要部拡大図である。FIG. 3 is an enlarged view of a main part showing drainage of water droplets on the surface of the heat exchanger according to the first embodiment. 本発明の実施の形態2に係る熱交換器の要部拡大図である。It is a principal part enlarged view of the heat exchanger which concerns on Embodiment 2 of this invention. 図11のB-B断面を示す断面図である。It is sectional drawing which shows the BB cross section of FIG. 図11の熱交換器における要部拡大図である。It is a principal part enlarged view in the heat exchanger of FIG. 本発明の実施の形態2に係る熱交換器の変形例1における要部拡大図である。It is a principal part enlarged view in the modification 1 of the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る熱交換器の変形例2における要部拡大図である。It is a principal part enlarged view in the modification 2 of the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る熱交換器における要部拡大図である。It is a principal part enlarged view in the heat exchanger which concerns on Embodiment 3 of this invention. 図16のC-C断面を示す断面図である。FIG. 17 is a cross-sectional view showing a CC cross section of FIG. 16. 本発明の実施の形態3に係る熱交換器における表面の水滴の排水を示す要部拡大図である。It is a principal part enlarged view which shows the drainage of the water droplet of the surface in the heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る熱交換器における表面の水滴の排水を示す要部拡大図である。It is a principal part enlarged view which shows the drainage of the water droplet of the surface in the heat exchanger which concerns on Embodiment 3 of this invention.
 以下、図面に基づいて本発明の実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、断面図においては、視認性に鑑みて適宜ハッチングを省略している。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。また、室外機としては、空気調和装置、低温機器、又は、給湯機器等に配備される室外機を広く適用できる。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In each drawing, the same reference numerals are the same or equivalent to each other, and this is common to all the texts in the specification. Further, in the cross-sectional views, hatching is omitted as appropriate in view of visibility. Further, the forms of the constituent elements shown in the entire specification are merely examples and are not limited to these descriptions. Further, as the outdoor unit, an outdoor unit installed in an air conditioner, a low temperature device, a hot water supply device or the like can be widely applied.
実施の形態1.
<冷凍サイクル装置1の構成>
 はじめに、本発明の実施の形態1に係る冷凍サイクル装置1について説明する。図1は、本発明の実施の形態1に係る冷凍サイクル装置の一例を示す冷媒回路図である。なお、図1では、冷房運転時の冷媒の流れを破線矢印で示し、暖房運転時の冷媒の流れを実線矢印で示している。
Embodiment 1.
<Structure of refrigeration cycle apparatus 1>
First, the refrigeration cycle apparatus 1 according to Embodiment 1 of the present invention will be described. FIG. 1 is a refrigerant circuit diagram showing an example of a refrigeration cycle device according to Embodiment 1 of the present invention. In addition, in FIG. 1, the flow of the refrigerant during the cooling operation is indicated by a dashed arrow, and the flow of the refrigerant during the heating operation is indicated by a solid arrow.
 図1に示すように、冷凍サイクル装置1は、圧縮機2、四方弁3、室内熱交換器4、室内ファン5、絞り装置6、室外ファン7、及び室外熱交換器10を備えている。圧縮機2、四方弁3、室内熱交換器4、絞り装置6、及び室外熱交換器10が冷媒配管によって接続され、冷媒回路が形成されている。 As shown in FIG. 1, the refrigeration cycle apparatus 1 includes a compressor 2, a four-way valve 3, an indoor heat exchanger 4, an indoor fan 5, an expansion device 6, an outdoor fan 7, and an outdoor heat exchanger 10. The compressor 2, the four-way valve 3, the indoor heat exchanger 4, the expansion device 6, and the outdoor heat exchanger 10 are connected by a refrigerant pipe to form a refrigerant circuit.
 圧縮機2は、冷媒を圧縮するものである。圧縮機2で圧縮された冷媒は、吐出されて四方弁3へ送られる。圧縮機2は、例えば、ロータリー圧縮機、スクロール圧縮機、スクリュー圧縮機、又は往復圧縮機等で構成することができる。 The compressor 2 compresses the refrigerant. The refrigerant compressed by the compressor 2 is discharged and sent to the four-way valve 3. The compressor 2 can be configured by, for example, a rotary compressor, a scroll compressor, a screw compressor, a reciprocating compressor, or the like.
 室内熱交換器4は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能するものである。室内熱交換器4は、例えば、フィンアンドチューブ型熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、又はプレート熱交換器等で構成することができる。 The indoor heat exchanger 4 functions as a condenser during heating operation and as an evaporator during cooling operation. The indoor heat exchanger 4 is, for example, a fin-and-tube heat exchanger, a microchannel heat exchanger, a shell-and-tube heat exchanger, a heat pipe heat exchanger, a double-tube heat exchanger, or a plate heat exchanger. It can be configured with a container or the like.
 絞り装置6は、室内熱交換器4又は室外熱交換器10を経由した冷媒を膨張させて減圧するものである。絞り装置6は、例えば冷媒の流量を調整可能な電動膨張弁で構成することができる。なお、絞り装置6としては、電動膨張弁だけでなく、受圧部にダイアフラムを採用した機械式膨張弁、又はキャピラリーチューブ等を適用することも可能である。 The expansion device 6 expands and decompresses the refrigerant that has passed through the indoor heat exchanger 4 or the outdoor heat exchanger 10. The expansion device 6 can be composed of, for example, an electric expansion valve capable of adjusting the flow rate of the refrigerant. As the expansion device 6, not only an electric expansion valve, but also a mechanical expansion valve having a diaphragm as a pressure receiving portion, a capillary tube, or the like can be applied.
 室外熱交換器10は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能するものである。室外熱交換器10については、後段で詳細に説明する。 The outdoor heat exchanger 10 functions as an evaporator during heating operation and as a condenser during cooling operation. The outdoor heat exchanger 10 will be described in detail later.
 四方弁3は、暖房運転と冷房運転とにおいて冷媒の流れを切り替えるものである。つまり、四方弁3は、暖房運転時、圧縮機2の吐出口と室内熱交換器4とを接続すると共に、圧縮機2の吸入口と室外熱交換器10とを接続するように冷媒の流れを切り替える。また、四方弁3は、冷房運転時、圧縮機2の吐出口と室外熱交換器10とを接続すると共に、圧縮機2の吸入口と室内熱交換器4とを接続するように冷媒の流れを切り替える。 The four-way valve 3 switches the flow of refrigerant between heating operation and cooling operation. That is, the four-way valve 3 connects the discharge port of the compressor 2 to the indoor heat exchanger 4 and the refrigerant flow so as to connect the suction port of the compressor 2 to the outdoor heat exchanger 10 during the heating operation. Switch. Further, the four-way valve 3 connects the discharge port of the compressor 2 with the outdoor heat exchanger 10 and the refrigerant flow so as to connect the suction port of the compressor 2 with the indoor heat exchanger 4 during the cooling operation. Switch.
 室内ファン5は、室内熱交換器4に付設されており、室内熱交換器4に熱交換流体である空気を供給するものである。
 室外ファン7は、室外熱交換器10に付設されており、室外熱交換器10に熱交換流体である空気を供給するものである。
The indoor fan 5 is attached to the indoor heat exchanger 4 and supplies air, which is a heat exchange fluid, to the indoor heat exchanger 4.
The outdoor fan 7 is attached to the outdoor heat exchanger 10 and supplies air as a heat exchange fluid to the outdoor heat exchanger 10.
<冷凍サイクル装置1の動作>
 次に、冷凍サイクル装置1の動作について、冷媒の流れと共に説明する。まず、冷凍サイクル装置1が実行する冷房運転について説明する。なお、冷房運転時の冷媒の流れは、図1に破線矢印で示している。ここでは、熱交換流体が空気であり、被熱交換流体が冷媒である場合を例に、冷凍サイクル装置1の動作について説明する。
<Operation of Refrigeration Cycle Device 1>
Next, the operation of the refrigeration cycle apparatus 1 will be described together with the flow of the refrigerant. First, the cooling operation performed by the refrigeration cycle apparatus 1 will be described. The flow of the refrigerant during the cooling operation is indicated by the broken line arrow in FIG. Here, the operation of the refrigeration cycle apparatus 1 will be described, taking as an example the case where the heat exchange fluid is air and the heat exchanged fluid is a refrigerant.
 図1に示すように、圧縮機2を駆動させることによって、圧縮機2から高温高圧のガス状態の冷媒が吐出する。以下、破線矢印にしたがって冷媒が流れる。圧縮機2から吐出した高温高圧のガス冷媒(単相)は、四方弁3を介して凝縮器として機能する室外熱交換器10に流れ込む。室外熱交換器10では、流れ込んだ高温高圧のガス冷媒と、室外ファン7によって供給される空気との間で熱交換が行われて、高温高圧のガス冷媒が凝縮して高圧の液冷媒(単相)になる。 As shown in FIG. 1, by driving the compressor 2, the high-temperature and high-pressure gas-state refrigerant is discharged from the compressor 2. Hereinafter, the refrigerant flows according to the broken line arrow. The high-temperature and high-pressure gas refrigerant (single phase) discharged from the compressor 2 flows into the outdoor heat exchanger 10 functioning as a condenser via the four-way valve 3. In the outdoor heat exchanger 10, heat is exchanged between the flowing high-temperature and high-pressure gas refrigerant and the air supplied by the outdoor fan 7, the high-temperature and high-pressure gas refrigerant is condensed, and the high-pressure liquid refrigerant (single Phase).
 室外熱交換器10から送り出された高圧の液冷媒は、絞り装置6によって低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、蒸発器として機能する室内熱交換器4に流れ込む。室内熱交換器4では、流れ込んだ二相状態の冷媒と、室内ファン5によって供給される空気との間で熱交換が行われ、二相状態の冷媒のうち液冷媒が蒸発して低圧のガス冷媒(単相)になる。この熱交換によって、室内が冷却されることになる。室内熱交換器4から送り出された低圧のガス冷媒は、四方弁3を介して圧縮機2に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機2から吐出する。以下、このサイクルが繰り返される。 The high-pressure liquid refrigerant sent from the outdoor heat exchanger 10 becomes a two-phase refrigerant of low-pressure gas refrigerant and liquid refrigerant by the expansion device 6. The two-phase state refrigerant flows into the indoor heat exchanger 4 that functions as an evaporator. In the indoor heat exchanger 4, heat is exchanged between the two-phase state refrigerant that has flowed in and the air supplied by the indoor fan 5, and the liquid refrigerant of the two-phase state refrigerant evaporates to form a low-pressure gas. It becomes a refrigerant (single phase). Due to this heat exchange, the inside of the room is cooled. The low-pressure gas refrigerant sent from the indoor heat exchanger 4 flows into the compressor 2 via the four-way valve 3, is compressed into a high-temperature high-pressure gas refrigerant, and is discharged from the compressor 2 again. Hereinafter, this cycle is repeated.
 次に、冷凍サイクル装置1が実行する暖房運転について説明する。なお、暖房運転時の冷媒の流れは、図1に実線矢印で示している。 Next, the heating operation performed by the refrigeration cycle apparatus 1 will be described. The flow of the refrigerant during the heating operation is shown by the solid arrow in FIG.
 図1に示すように、圧縮機2を駆動させることによって圧縮機2から高温高圧のガス状態の冷媒が吐出する。以下、実線矢印にしたがって冷媒が流れる。 As shown in FIG. 1, by driving the compressor 2, the high-temperature and high-pressure gas-state refrigerant is discharged from the compressor 2. Hereafter, the refrigerant flows according to the solid arrow.
 圧縮機2から吐出した高温高圧のガス冷媒(単相)は、四方弁3を介して凝縮器として機能する室内熱交換器4に流れ込む。室内熱交換器4では、流れ込んだ高温高圧のガス冷媒と、室内ファン5によって供給される空気との間で熱交換が行われ、高温高圧のガス冷媒が凝縮して高圧の液冷媒(単相)になる。この熱交換によって、室内が暖房されることになる。 The high-temperature and high-pressure gas refrigerant (single phase) discharged from the compressor 2 flows into the indoor heat exchanger 4 functioning as a condenser via the four-way valve 3. In the indoor heat exchanger 4, heat is exchanged between the flowing high-temperature and high-pressure gas refrigerant and the air supplied by the indoor fan 5, and the high-temperature and high-pressure gas refrigerant is condensed to form a high-pressure liquid refrigerant (single-phase). )become. The heat exchange heats the room.
 室内熱交換器4から送り出された高圧の液冷媒は、絞り装置6によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、蒸発器として機能する室外熱交換器10に流れ込む。室外熱交換器10では、流れ込んだ二相状態の冷媒と、室外ファン7によって供給される空気との間で熱交換が行われ、二相状態の冷媒のうち液冷媒が蒸発して低圧のガス冷媒(単相)になる。 The high-pressure liquid refrigerant sent from the indoor heat exchanger 4 becomes a two-phase refrigerant of low-pressure gas refrigerant and liquid refrigerant by the expansion device 6. The two-phase refrigerant flows into the outdoor heat exchanger 10 that functions as an evaporator. In the outdoor heat exchanger 10, heat exchange is performed between the two-phase refrigerant that has flowed in and the air supplied by the outdoor fan 7, and the liquid refrigerant of the two-phase refrigerant evaporates to form a low-pressure gas. It becomes a refrigerant (single phase).
 室外熱交換器10から送り出された低圧のガス冷媒は、四方弁3を介して圧縮機2に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機2から吐出する。以下、このサイクルが繰り返される。 The low-pressure gas refrigerant sent from the outdoor heat exchanger 10 flows into the compressor 2 via the four-way valve 3, is compressed into a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 2 again. Hereinafter, this cycle is repeated.
 上述した冷房運転及び暖房運転の際、圧縮機2に冷媒が液状態で流入すると、液圧縮を起こし、圧縮機2の故障の原因となってしまう。そのため、冷房運転時の室内熱交換器4、又は、暖房運転時の室外熱交換器10から流出する冷媒は、ガス冷媒(単相)となっていることが望ましい。 During the above-described cooling operation and heating operation, if the refrigerant flows into the compressor 2 in a liquid state, liquid compression occurs, causing a failure of the compressor 2. Therefore, it is desirable that the refrigerant flowing out from the indoor heat exchanger 4 during the cooling operation or the outdoor heat exchanger 10 during the heating operation is a gas refrigerant (single phase).
 ここで、蒸発器では、ファンから供給される空気と、蒸発器を構成している伝熱管の内部を流動する冷媒との間で熱交換が行われる際に空気中の水分が凝縮し、蒸発器の表面に水滴が生ずる。蒸発器の表面に生じた水滴は、フィン及び伝熱管の表面を伝って下方に滴下し、ドレン水として蒸発器の下方にて排出される。 Here, in the evaporator, when heat exchange is performed between the air supplied from the fan and the refrigerant flowing inside the heat transfer tube forming the evaporator, water in the air is condensed and evaporated. Water drops form on the surface of the vessel. The water droplets generated on the surface of the evaporator travel along the surfaces of the fins and the heat transfer tubes and are dropped downward, and are discharged as drain water below the evaporator.
 また、室外熱交換器10は、低外気温状態となっている暖房運転時、蒸発器として機能するため、空気中の水分が室外熱交換器10に着霜することがある。そのため、冷凍サイクル装置1では、外気が一定温度(例えば、0℃)以下となったときに霜を除去するための「除霜運転」を行う。 Also, since the outdoor heat exchanger 10 functions as an evaporator during heating operation in a low outdoor temperature state, moisture in the air may frost on the outdoor heat exchanger 10. Therefore, the refrigeration cycle apparatus 1 performs the “defrosting operation” for removing frost when the outside air has a certain temperature (for example, 0 ° C.) or less.
 「除霜運転」とは、蒸発器として機能する室外熱交換器10に霜が付着するのを防ぐために、圧縮機2から室外熱交換器10にホットガス(高温高圧のガス冷媒)を供給する運転のことである。なお、除霜運転を、暖房運転の継続時間が所定値(例えば、30分)に達した場合に実行するようにしてもよい。また、除霜運転を、室外熱交換器10が一定温度(例えば、マイナス6℃)以下の場合に、暖房運転を行う前に実行するようにしてもよい。室外熱交換器10に付着した霜及び氷は、除霜運転時に室外熱交換器10に供給されるホットガスによって融解される。 The "defrosting operation" is to supply hot gas (high-temperature high-pressure gas refrigerant) from the compressor 2 to the outdoor heat exchanger 10 in order to prevent frost from adhering to the outdoor heat exchanger 10 that functions as an evaporator. It is driving. The defrosting operation may be executed when the duration of the heating operation reaches a predetermined value (for example, 30 minutes). In addition, the defrosting operation may be performed before the heating operation when the outdoor heat exchanger 10 has a constant temperature (for example, -6 ° C) or less. The frost and ice attached to the outdoor heat exchanger 10 are melted by the hot gas supplied to the outdoor heat exchanger 10 during the defrosting operation.
 例えば、除霜運転時に圧縮機2から室外熱交換器10にホットガスを直接的に供給できるように、圧縮機2の吐出口と室外熱交換器10との間をバイパス冷媒配管(図示せず)で接続するようにしてもよい。また、圧縮機2から室外熱交換器10にホットガスを供給できるように、圧縮機2の吐出口を、冷媒流路切替装置(例えば、四方弁3)を介して室外熱交換器10に接続する構成としてもよい。 For example, a bypass refrigerant pipe (not shown) is provided between the outlet of the compressor 2 and the outdoor heat exchanger 10 so that hot gas can be directly supplied from the compressor 2 to the outdoor heat exchanger 10 during the defrosting operation. ) May be used for connection. Further, the discharge port of the compressor 2 is connected to the outdoor heat exchanger 10 via a refrigerant flow path switching device (for example, a four-way valve 3) so that hot gas can be supplied from the compressor 2 to the outdoor heat exchanger 10. It may be configured to.
<室外熱交換器10について>
 図2は、本発明の実施の形態1に係る冷凍サイクル装置における室外熱交換器の一例を示す斜視図である。図3は、図2の室外熱交換器における要部拡大図である。図4は、図3のA-A断面を示す断面図である。図5は、図2の室外熱交換器における要部であり、伝熱管とフィンを挿入する工程の説明に供する斜視図である。
 なお、図2以降において、x方向は室外熱交換器10の奥行方向であり、室外熱交換器10のフィン11において短手となる幅方向を示している。また、y方向は室外熱交換器10の幅方向であり、同フィン11において奥行(厚み)方向となるフィン11が並列される方向を示している。さらに、z方向は室外熱交換器10の長手方向(上下方向)であり、同フィン11における高さ方向を表している。そして、白抜き矢印Kは、室外ファン7から室外熱交換器10へと供給される空気の通風方向を表している。図2からわかるように、本実施の形態1に係る室外熱交換器10は、図1に示す室外ファン7から通風方向K(フィン11のx方向)に空気が供給される。また、図3は、y方向に室外熱交換器10を観察した際の、要部を示している。また、図4は、図3のフィン11におけるA-A断面を示している。
<About the outdoor heat exchanger 10>
FIG. 2 is a perspective view showing an example of the outdoor heat exchanger in the refrigeration cycle device according to Embodiment 1 of the present invention. FIG. 3 is an enlarged view of a main part of the outdoor heat exchanger of FIG. FIG. 4 is a sectional view showing an AA section of FIG. FIG. 5 is a perspective view showing a main part of the outdoor heat exchanger of FIG. 2 and is used for explaining a step of inserting the heat transfer tubes and the fins.
In FIG. 2 and subsequent figures, the x direction is the depth direction of the outdoor heat exchanger 10, and indicates the width direction that is short in the fins 11 of the outdoor heat exchanger 10. Further, the y direction is the width direction of the outdoor heat exchanger 10, and shows the direction in which the fins 11 that are the depth (thickness) direction in the fins 11 are arranged in parallel. Furthermore, the z direction is the longitudinal direction (vertical direction) of the outdoor heat exchanger 10, and represents the height direction of the fins 11. The white arrow K represents the ventilation direction of the air supplied from the outdoor fan 7 to the outdoor heat exchanger 10. As can be seen from FIG. 2, the outdoor heat exchanger 10 according to the first embodiment is supplied with air from the outdoor fan 7 shown in FIG. 1 in the ventilation direction K (x direction of the fins 11). Further, FIG. 3 shows a main part when the outdoor heat exchanger 10 is observed in the y direction. Further, FIG. 4 shows an AA cross section in the fin 11 of FIG.
 室外熱交換器10は、例えば二列構造の熱交換器であり、風上側熱交換器10A及び風下側熱交換器10Bを備えている。これら風上側熱交換器10A及び風下側熱交換器10Bは、フィンアンドチューブ型熱交換器であり、図1に示す室外ファン7から供給される空気の流れる通風方向K、すなわち室外熱交換器10の奥行x方向に沿って並設されている。風上側熱交換器10Aは、室外ファン7から供給される空気の通風方向Kにおいて風上側に配置され、風下側熱交換器10Bは、室外ファン7から供給される空気の通風方向Kにおいて風下側に配置されている。風上側熱交換器10Aの伝熱管12の一端は、風上側ヘッダ集合管10Cに接続されている。風下側熱交換器10Bの伝熱管12の一端は、風下側ヘッダ集合管10Dに接続されている。また、風上側熱交換器10Aの伝熱管12の他端と、風下側熱交換器10Bの伝熱管12の他端とは、列間接続部材10Eに接続されている。 The outdoor heat exchanger 10 is, for example, a two-row structure heat exchanger, and includes a windward heat exchanger 10A and a leeward heat exchanger 10B. The windward side heat exchanger 10A and the leeward side heat exchanger 10B are fin-and-tube type heat exchangers, and the ventilation direction K of the air supplied from the outdoor fan 7 shown in FIG. 1, that is, the outdoor heat exchanger 10 is shown. Are juxtaposed along the depth x direction. The windward side heat exchanger 10A is arranged on the windward side in the ventilation direction K of the air supplied from the outdoor fan 7, and the leeward side heat exchanger 10B is the leeward side in the ventilation direction K of the air supplied from the outdoor fan 7. It is located in. One end of the heat transfer pipe 12 of the windward heat exchanger 10A is connected to the windward header collecting pipe 10C. One end of the heat transfer pipe 12 of the leeward heat exchanger 10B is connected to the leeward header collecting pipe 10D. The other end of the heat transfer tube 12 of the windward heat exchanger 10A and the other end of the heat transfer tube 12 of the leeward heat exchanger 10B are connected to the inter-row connection member 10E.
 つまり、本実施の形態1に係る室外熱交換器10は、風上側ヘッダ集合管10C又は風下側ヘッダ集合管10Dの一方から、風上側熱交換器10A又は風下側熱交換器10Bの一方の伝熱管12に冷媒が分配される。そして、風上側熱交換器10A又は風下側熱交換器10Bの一方の伝熱管12に分配された冷媒は、列間接続部材10Eを介して、風下側熱交換器10B又は風上側熱交換器10Aの他方の伝熱管12に流入する。その後、風下側熱交換器10B又は風上側熱交換器10Aの他方の伝熱管12に流入した冷媒は、風下側ヘッダ集合管10D又は風上側ヘッダ集合管10Cの他方で合流し、圧縮機2の吸入口又は絞り装置6の方へ流れていく。 That is, in the outdoor heat exchanger 10 according to the first embodiment, one of the windward heat exchanger 10A and the leeward heat exchanger 10B is transferred from one of the windward header collecting pipe 10C and the leeward header collecting pipe 10D. The refrigerant is distributed to the heat pipe 12. Then, the refrigerant distributed to the one heat transfer tube 12 of the upwind heat exchanger 10A or the downwind heat exchanger 10B passes through the inter-row connection member 10E, and the downwind heat exchanger 10B or the upwind heat exchanger 10A. Flows into the other heat transfer tube 12. After that, the refrigerant flowing into the other heat transfer pipe 12 of the leeward heat exchanger 10B or the windward heat exchanger 10A merges with the other of the leeward header collecting pipe 10D or the leeward header collecting pipe 10C, and the compressor 2 It flows toward the suction port or the throttling device 6.
 なお、本実施の形態1では、風上側熱交換器10A及び風下側熱交換器10Bが同様の構成を有している。このため、以下では、双方を代表して、風上側熱交換器10Aについて説明する。以下、風上側熱交換器10A及び風下側熱交換器10Bを、単に熱交換器13と称する。なお、風上側熱交換器10A又は風下側熱交換器10Bの一方で室外熱交換器10の熱交換負荷を賄える場合、風上側熱交換器10A又は風下側熱交換器10Bの一方のみで室外熱交換器10を構成してもよい。 In the first embodiment, the windward heat exchanger 10A and the leeward heat exchanger 10B have the same configuration. Therefore, the windward heat exchanger 10A will be described below as a representative of both. Hereinafter, the windward heat exchanger 10A and the leeward heat exchanger 10B are simply referred to as the heat exchanger 13. In addition, when the heat exchange load of the outdoor heat exchanger 10 can be covered by one of the windward side heat exchanger 10A or the leeward side heat exchanger 10B, only one of the windward side heat exchanger 10A and the leeward side heat exchanger 10B can be used to generate the outdoor heat. The exchanger 10 may be configured.
 図3、図4及び図5に示すように、熱交換器13は、複数のフィン11及び複数の伝熱管12を備えている。フィン11は、長手方向(z方向)に延在した矩形状の板状部材からなり、図5に示されるように、同一の室外熱交換器10において予め設定された間隔で表裏方向に並んで配置されている。本実施の形態1の場合、フィン11は、同一の室外熱交換器10において規定のフィンピッチ間隔FPでy方向に並んで配置されている。 As shown in FIGS. 3, 4, and 5, the heat exchanger 13 includes a plurality of fins 11 and a plurality of heat transfer tubes 12. The fins 11 are rectangular plate-shaped members extending in the longitudinal direction (z direction), and as shown in FIG. 5, the fins 11 are arranged in the same outdoor heat exchanger 10 in the front-back direction at predetermined intervals. It is arranged. In the case of the first embodiment, the fins 11 are arranged in the same outdoor heat exchanger 10 side by side in the y direction at a prescribed fin pitch interval FP.
 また、フィン11には伝熱管12が挿入される挿入孔14が、当該フィン11の長手方向の上下に予め設定された間隔で複数形成されている。そして、フィン11は、これら挿入孔14を除く領域において、室外ファン7からの空気の通風方向Kに沿って隣接して設けられる複数の凹凸形状からなり、長手方向に延在する溝部15を有する。本実施の形態1の場合、フィン11の挿入孔14を除く領域とは、長手方向において挿入孔14が存在しない第一領域Pを含み、当該挿入孔14を除く全域である。また、室外ファン7からの空気の通風方向Kとは、長手方向としてのz方向と直交する短手方向としてのx方向と同一の方向を示す。 Further, a plurality of insertion holes 14 into which the heat transfer tubes 12 are inserted are formed in the fins 11 above and below in the longitudinal direction of the fins 11 at predetermined intervals. Then, the fin 11 has a plurality of concavo-convex shapes provided adjacent to each other along the ventilation direction K of the air from the outdoor fan 7 in a region excluding the insertion holes 14, and has a groove portion 15 extending in the longitudinal direction. . In the case of the first embodiment, the region excluding the insertion hole 14 of the fin 11 is the entire region excluding the insertion hole 14 including the first region P where the insertion hole 14 does not exist in the longitudinal direction. The air flow direction K of the air from the outdoor fan 7 indicates the same direction as the x direction as the lateral direction orthogonal to the z direction as the longitudinal direction.
 このとき、凹凸形状の延在方向は長手方向に対して平行であり、図4に示すように凹凸間隔RSmは、5mm以下であることが望ましい。これは、水滴が直径5mm程度になれば、自重で長手方向へ滴下することが検討の結果明らかとなり、凹凸形状による水滴を凝集させる効果が期待できるのは、5mm以下と考えられるためである。また、凹凸高さRaは、フィン同士の接触を防ぐために、フィンピッチ間隔FP(図5)の1/3程度であることが望ましい。このような凹凸形状は、プレス加工又は圧延加工のロールに凹凸形状を持たせ転写する方式で形成できる。なお、ここでは図示省略するが、フィン11表面に凹凸形状を形成した後、熱交換される表面積を増やし、熱交換性能を向上するために、切起こし部又は突出部を更に形成しても良い。 At this time, the extending direction of the uneven shape is parallel to the longitudinal direction, and as shown in FIG. 4, the uneven space RSm is preferably 5 mm or less. This is because, as a result of the study, it is clear that when the diameter of the water droplets is about 5 mm, the water droplets are dropped in the longitudinal direction by its own weight, and the effect of aggregating the water droplets due to the uneven shape is expected to be 5 mm or less. Further, the unevenness height Ra is preferably about 1/3 of the fin pitch interval FP (FIG. 5) in order to prevent the fins from contacting each other. Such a concavo-convex shape can be formed by a method of imparting a concavo-convex shape to a press or rolling roll and transferring the roll. Although not shown here, after forming a concavo-convex shape on the surface of the fin 11, a cut-and-raised portion or a protruding portion may be further formed to increase the surface area for heat exchange and improve the heat exchange performance. .
 複数の伝熱管について、図3及び図5では、z方向上方と下方とに位置する2つの伝熱管12を代表して図示している。図3に示されるように、上方の伝熱管12及び下方の伝熱管12は、フィン11に形成された挿入孔14に挿入され、当該フィン11に対して予め設定された間隔でフィン11の長手方向に並んで配置されている。 Regarding a plurality of heat transfer tubes, in FIGS. 3 and 5, two heat transfer tubes 12 located above and below in the z direction are shown as representatives. As shown in FIG. 3, the upper heat transfer tube 12 and the lower heat transfer tube 12 are inserted into the insertion holes 14 formed in the fin 11, and the length of the fin 11 is increased at predetermined intervals with respect to the fin 11. They are arranged side by side.
 図5に示されるように、伝熱管12は、それぞれ複数のフィン11の並設方向であるy方向に向けて延在した状態で、当該複数のフィン11に形成された挿入孔14の端部14aに向けてx方向に挿入されている。これにより、複数のフィン11は、伝熱管12を挿入孔14に貫通させた状態で保持している。なお、伝熱管12は、長手方向と直交する断面が扁平形状をなす扁平管である。 As shown in FIG. 5, the heat transfer tube 12 extends in the y direction, which is the direction in which the plurality of fins 11 are arranged in parallel, and the end portions of the insertion holes 14 formed in the plurality of fins 11 are formed. 14a is inserted in the x direction. Thereby, the plurality of fins 11 hold the heat transfer tube 12 in a state where the heat transfer tube 12 penetrates the insertion hole 14. The heat transfer tube 12 is a flat tube whose cross section orthogonal to the longitudinal direction has a flat shape.
 さらに、本実施の形態1に係るフィン11及び伝熱管12は、表面に親水性を保持するための処理が施されている。これらフィン11及び伝熱管12の表面の接触角は、特に30°以下であることが望ましい。また、フィン11の方が伝熱管12よりも親水性能が高いことが望ましい。フィン11及び伝熱管12の表面における親水性を保つため、フィン11と伝熱管12をロウ付けする際に使用するフラックス又は親水剤をポストコートする方法によって、フィン11及び伝熱管12の表面に親水性被膜を形成することができる。 Furthermore, the fins 11 and the heat transfer tubes 12 according to the first embodiment are subjected to a treatment for keeping their surfaces hydrophilic. The contact angle between the surfaces of the fins 11 and the heat transfer tubes 12 is preferably 30 ° or less. Further, it is desirable that the fins 11 have higher hydrophilicity than the heat transfer tubes 12. In order to maintain the hydrophilicity on the surfaces of the fins 11 and the heat transfer tubes 12, the surface of the fins 11 and the heat transfer tubes 12 is made hydrophilic by post-coating with a flux or a hydrophilic agent used when brazing the fins 11 and the heat transfer tubes 12. A conductive coating can be formed.
<室外熱交換器10の着霜作用及び排水作用>
 続いて、本実施の形態1に係る熱交換器13の着霜作用及び排水作用について説明する。なお、本実施の形態1に係る熱交換器13の効果の理解を容易とするため、以下では、まず比較例1、比較例2及び本実施の形態1を用いた実施例1の順に、本実施の形態1に係る室外熱交換器10の着霜作用及び排水作用を説明する。
<Frosting action and drainage action of the outdoor heat exchanger 10>
Subsequently, the frosting action and the drainage action of the heat exchanger 13 according to the first embodiment will be described. In addition, in order to facilitate understanding of the effect of the heat exchanger 13 according to the first embodiment, in the following, first, the comparative example 1, the comparative example 2, and the example 1 using the first embodiment will be described in this order. The frosting action and the drainage action of the outdoor heat exchanger 10 according to the first embodiment will be described.
<比較例1>
 図6は、比較例1に係る熱交換器100の要部拡大図である。比較例1のフィン101及び伝熱管102の表面の接触角は、約80°である。熱交換器100が、本実施の形態1に係る熱交換器13と異なる点は、図3に示されているフィン11の表面に形成された溝部15を有していない点、及び、表面が親水性ではない点である。図7は、比較例1に係る熱交換器100の表面の水滴を示す要部拡大図である。比較例1の熱交換器100においては、図7に示すように、凝縮水又は除霜運転で溶融した水滴Hが挿入孔104における伝熱管102の上下面に保持され、さらにフィン101の表面にも水滴Hとして残り、完全に排水できない。
<Comparative Example 1>
FIG. 6 is an enlarged view of a main part of the heat exchanger 100 according to Comparative Example 1. The contact angle between the surfaces of the fin 101 and the heat transfer tube 102 of Comparative Example 1 is about 80 °. The heat exchanger 100 is different from the heat exchanger 13 according to the first embodiment in that the heat exchanger 100 does not have the groove portion 15 formed on the surface of the fin 11 shown in FIG. It is not hydrophilic. 7: is a principal part enlarged view which shows the water droplet of the surface of the heat exchanger 100 which concerns on the comparative example 1. FIG. In the heat exchanger 100 of Comparative Example 1, as shown in FIG. 7, condensed water or water droplets H melted in the defrosting operation are held on the upper and lower surfaces of the heat transfer tube 102 in the insertion hole 104, and further on the surface of the fin 101. Also remains as water drops H and cannot be completely drained.
<比較例2>
 図8は、比較例2に係る熱交換器110の要部拡大図である。図9は、比較例2に係る熱交換器110の表面の水滴の排水を示す要部拡大図である。比較例2のフィン111及び伝熱管112の表面の接触角は、約10°である。熱交換器110が本実施の形態1に係る熱交換器13と異なる点は、図3に示されているフィン11の表面に形成された溝部15を有していない点である。比較例2の熱交換器110においては、図9に示すように、フィン111及び伝熱管112の表面が親水性であるため、挿入孔114における伝熱管112の上面に排水された水滴Hは伝熱管112の上面に溜まることなく伝熱管112の外周面に沿って濡れ広がる。伝熱管112の上面の水滴Hは、伝熱管112の外周面に沿って伝熱管112の下面へと流れ、親水性のフィン111に導かれて下方の伝熱管112の上面へと排水される。そして、水滴Hは、伝熱管112の外周面に沿って伝熱管112の下面へと流れる排水工程を繰り返し、熱交換器110の下方へと排水される(図9)。そのため、時間は要するものの、熱交換器110内の残水は比較例1よりも少なくすることが可能である。但し、伝熱管112上面の水滴Hは伝熱管112の外周面に沿って伝熱管112下面「全域」へと濡れ広がり、さらに伝熱管112の上面「全域」へと排水される。このため、排水経路が後述する本実施の形態1の熱交換器13と比較して長く、熱交換器110の下方へと排水されるまでに時間を要する。
<Comparative example 2>
FIG. 8 is an enlarged view of a main part of the heat exchanger 110 according to Comparative Example 2. FIG. 9 is an enlarged view of an essential part showing drainage of water droplets on the surface of the heat exchanger 110 according to Comparative Example 2. The contact angle between the surfaces of the fin 111 and the heat transfer tube 112 of Comparative Example 2 is about 10 °. The heat exchanger 110 is different from the heat exchanger 13 according to the first embodiment in that it does not have the groove portion 15 formed on the surface of the fin 11 shown in FIG. 3. In the heat exchanger 110 of Comparative Example 2, as shown in FIG. 9, since the surfaces of the fins 111 and the heat transfer tubes 112 are hydrophilic, the water droplets H drained to the upper surfaces of the heat transfer tubes 112 in the insertion holes 114 are transferred. It spreads along the outer peripheral surface of the heat transfer tube 112 without accumulating on the upper surface of the heat tube 112. The water droplets H on the upper surface of the heat transfer tube 112 flow to the lower surface of the heat transfer tube 112 along the outer peripheral surface of the heat transfer tube 112, are guided by the hydrophilic fins 111, and are drained to the upper surface of the lower heat transfer tube 112. Then, the water droplet H is drained to the lower side of the heat exchanger 110 by repeating the draining process of flowing to the lower surface of the heat transfer tube 112 along the outer peripheral surface of the heat transfer tube 112 (FIG. 9). Therefore, although it takes time, the residual water in the heat exchanger 110 can be made smaller than that in Comparative Example 1. However, the water droplets H on the upper surface of the heat transfer tube 112 wet and spread along the outer peripheral surface of the heat transfer tube 112 to the lower surface "whole area" of the heat transfer tube 112, and are further drained to the upper surface "whole area" of the heat transfer tube 112. Therefore, the drainage path is longer than that of the heat exchanger 13 of the first embodiment described later, and it takes time to drain the heat exchanger 110 below the heat exchanger 110.
<実施例1>
 図3及び図4に示すように、実施例1に係る熱交換器13において、フィン11及び伝熱管12における表面の接触角は約10°であり、凹凸間隔RSmは0.5mmであり、凹凸高さRaは0.3mm(FP=1.0mm)である。実施例1の場合、フィン11の長手方向において挿入孔14が存在しない第一領域Pにおいて、除霜運転で融解された水滴Hが、フィン11の表面に形成された溝部15に集められ、この溝部15に沿って速やかに排水されることが確認できた。
<Example 1>
As shown in FIG. 3 and FIG. 4, in the heat exchanger 13 according to the first embodiment, the contact angle of the surfaces of the fins 11 and the heat transfer tubes 12 is about 10 °, and the unevenness interval RSm is 0.5 mm. The height Ra is 0.3 mm (FP = 1.0 mm). In the case of the first embodiment, in the first region P where the insertion hole 14 does not exist in the longitudinal direction of the fin 11, water droplets H melted by the defrosting operation are collected in the groove portion 15 formed on the surface of the fin 11, It was confirmed that the water was quickly drained along the groove 15.
 また、フィン11及び伝熱管12の表面がそれぞれ親水性であるため、伝熱管12の上面に集合した水滴Hは、伝熱管12の上面に溜まることなく伝熱管12の外周面に沿って濡れ広がる。そして、水滴Hはフィン11の親水性能によって溝部15に導かれた後、当該溝部15に沿って長手方向の下方へと排水される。 Further, since the surfaces of the fins 11 and the heat transfer tubes 12 are each hydrophilic, the water droplets H collected on the upper surface of the heat transfer tubes 12 spread along the outer peripheral surface of the heat transfer tubes 12 without accumulating on the upper surfaces of the heat transfer tubes 12. . Then, the water droplets H are guided to the groove portion 15 by the hydrophilic property of the fins 11 and then drained downward along the groove portion 15 in the longitudinal direction.
 このとき、伝熱管12の上面から排水された水滴Hの殆どは、図10に示すように、フィン11の複数の溝部15のうち、伝熱管12上の水滴Hが長手方向の下方へと排水される排水経路において最初に交わる溝部15Aに沿って排水される。図10は、実施例1に係る熱交換器の表面の水滴の排水を示す要部拡大図である。フィン11において長手方向に伝熱管12が存在する領域では、挿入孔14が形成されているため、この挿入孔14の部位において溝部15が断絶されることとなる。よって、伝熱管12の下面及び下方の伝熱管12の上面へは水滴Hが直接的に伝わり難く、z方向に向かって挿入孔14(つまり、伝熱管12)の存在しない第一領域Pの溝部15Aにて主に排水が行われる。従って、扁平形状の伝熱管12を用いた熱交換器13の排水において特に懸念される伝熱管12の上面及び下面での水滴Hの滞留状態を最小限に抑え、排水の容易な第一領域Pにて排水を積極的に実施することが可能となる。 At this time, most of the water droplets H drained from the upper surface of the heat transfer tube 12 are, as shown in FIG. 10, the water droplets H on the heat transfer tube 12 among the plurality of groove portions 15 of the fin 11 drain downward in the longitudinal direction. The water is drained along the groove portion 15A that first intersects in the drainage path. FIG. 10 is an enlarged view of an essential part showing drainage of water droplets on the surface of the heat exchanger according to the first embodiment. Since the insertion hole 14 is formed in a region of the fin 11 where the heat transfer tube 12 exists in the longitudinal direction, the groove portion 15 is cut off at the position of the insertion hole 14. Therefore, it is difficult for the water droplets H to directly propagate to the lower surface of the heat transfer tube 12 and the upper surface of the lower heat transfer tube 12, and the groove portion of the first region P where the insertion hole 14 (that is, the heat transfer tube 12) does not exist in the z direction. Drainage is mainly performed at 15A. Therefore, the retention state of the water droplets H on the upper surface and the lower surface of the heat transfer tube 12 which is of particular concern in the drainage of the heat exchanger 13 using the flat heat transfer tube 12 is minimized, and the drainage is facilitated in the first region P. It becomes possible to actively carry out drainage.
<実施の形態1の効果>
 以上のように、本実施の形態1に係る冷凍サイクル装置1では、フィン11表面に付着した水滴Hを溝部15に集合させ、熱交換器13の長手方向における下方へと速やかに排水させることができる。また、伝熱管12の上面に溜まった水滴Hを濡れ広がらせることで、扁平形状の伝熱管12であっても当該伝熱管12の上面に水滴Hが溜まることなく、当該水滴Hを長手方向下方へと導いて排水させることができる。このとき、伝熱管12の上面に溜まった水滴Hを、フィン11の長手方向において挿入孔14が存在することなく排水が容易な第一領域Pにて主に排水させることができる。このため、熱交換器13全体の凝縮水または除霜運転による溶解水等の水滴Hの排水を格段と速やかに実施することができる。従って、扁平形状の伝熱管12を用いた熱交換器13においても、フィン11表面の水滴Hを速やかに且つ確実に排水させることができ、かくして排水性を確保しつつ、熱交換性能の向上を図ることができる。
<Effect of Embodiment 1>
As described above, in the refrigeration cycle device 1 according to the first embodiment, the water droplets H attached to the surfaces of the fins 11 can be collected in the groove portions 15 and quickly drained downward in the longitudinal direction of the heat exchanger 13. it can. Further, by allowing the water droplets H accumulated on the upper surface of the heat transfer tube 12 to spread, the water droplets H do not accumulate on the upper surface of the heat transfer tube 12 even if the heat transfer tube 12 has a flat shape, and the water droplets H move downward in the longitudinal direction. It can be led to and drained. At this time, the water droplets H accumulated on the upper surface of the heat transfer tube 12 can be mainly drained in the first region P where drainage is easy in the longitudinal direction of the fin 11 without the insertion hole 14. Therefore, the condensed water of the entire heat exchanger 13 or the water droplets H such as dissolved water due to the defrosting operation can be drained much more rapidly. Therefore, even in the heat exchanger 13 using the flat heat transfer tube 12, the water droplets H on the surfaces of the fins 11 can be quickly and surely drained, thus improving drainage and heat exchange performance. Can be planned.
実施の形態2.
 次に、本発明の実施の形態2に係る冷凍サイクル装置1(図1)について説明する。具体的に、上述した実施の形態1では、フィン11の表面におけるx方向全域に溝部15を設けた場合について述べた(図3~図5及び図10等参照)。これに対し、本実施の形態2に係る冷凍サイクル装置1では、後述する図11に示すように、熱交換器20のフィン21における長手方向に延在した溝部25を設ける領域が異なっており、その他の構成については同様である。このため、本実施の形態2では、熱交換器20の具体的な構成について説明し、その他の重複する説明は割愛するものとする。
Embodiment 2.
Next, a refrigeration cycle apparatus 1 (FIG. 1) according to Embodiment 2 of the present invention will be described. Specifically, in the above-described first embodiment, the case where the groove portion 15 is provided on the entire surface of the fin 11 in the x direction has been described (see FIGS. 3 to 5, 10 and the like). On the other hand, in the refrigeration cycle apparatus 1 according to the second embodiment, as shown in FIG. 11 described later, the fins 21 of the heat exchanger 20 have different regions in which the groove portions 25 extending in the longitudinal direction are provided, The other configurations are the same. For this reason, in the second embodiment, a specific configuration of the heat exchanger 20 will be described, and other redundant description will be omitted.
 図11は、本発明の実施の形態2に係る熱交換器20の要部拡大図である。図12は、図11のB-B断面を示す断面図である。図13は、図11の熱交換器20における要部拡大図である。図11に示すように、本実施の形態2における熱交換器20では、フィン21の表面におけるz方向において、伝熱管22(挿入孔24)が存在しない領域に溝部25が設けられている。 FIG. 11 is an enlarged view of a main part of the heat exchanger 20 according to Embodiment 2 of the present invention. FIG. 12 is a cross-sectional view showing a BB cross section of FIG. FIG. 13 is an enlarged view of a main part of the heat exchanger 20 of FIG. As shown in FIG. 11, in the heat exchanger 20 according to the second embodiment, the groove portion 25 is provided in the area where the heat transfer tube 22 (insertion hole 24) does not exist in the z direction on the surface of the fin 21.
 具体的に、このフィン21は、長手方向において挿入孔24が存在しない第一領域Pと、当該長手方向において第一領域Pより短手方向の中心側であって、挿入孔24の短手方向における第一領域P側の端部24aを含む第二領域Qとに溝部25が設けられている。ここで、第二領域Qとは、挿入孔24における伝熱管22の第一領域P側の端部24aと溝部25との境界近傍を含んでいる。 Specifically, the fin 21 is located on the first region P where the insertion hole 24 does not exist in the longitudinal direction and on the center side in the lateral direction of the first region P in the longitudinal direction, and in the lateral direction of the insertion hole 24. The groove portion 25 is provided in the second region Q including the end portion 24a on the side of the first region P in. Here, the second region Q includes the vicinity of the boundary between the groove 24 and the end 24 a of the heat transfer tube 22 on the first region P side in the insertion hole 24.
 より具体的に、図11と図13とに示すように、第二領域Qは、挿入孔24の第一領域P側の端部24aから挿入孔24の短手方向の中心側へ向かうRSmの2倍の幅の領域であることが望ましい。ここで、第二領域Qを挿入孔24の第一領域P側の端部24aから挿入孔24の短手方向の中心側へ向かうRSmの2倍の幅の領域としたのは、伝熱管22の上面に付着する水滴Hの排水経路として機能させる溝部25を確保するためである。すなわち、1つ分のRSmの幅であると、溝部25を形成する凹凸のうちの凹部または凸部のいずれかに相当し、伝熱管22の上面に付着する水滴Hの排水経路として機能させる溝部25を必ずしも確保できるとは限らない。従って、RSmの2倍の幅の領域とすることで、溝部25を形成する凹凸形状の両方を備え、前記水滴Hの排水経路として機能させる溝部25を確実に保持することができる。 More specifically, as shown in FIG. 11 and FIG. 13, the second region Q has an RSm of RSm from the end 24a on the first region P side of the insertion hole 24 toward the center side of the insertion hole 24 in the lateral direction. It is desirable that the area is twice as wide. Here, the second area Q is an area having a width twice as large as RSm from the end portion 24a on the first area P side of the insertion hole 24 toward the center side of the insertion hole 24 in the lateral direction. This is to secure the groove portion 25 that functions as a drainage path for the water droplets H attached to the upper surface of the. That is, a width of one RSm corresponds to either a concave portion or a convex portion of the unevenness forming the groove 25, and makes the groove function as a drainage path for the water droplets H attached to the upper surface of the heat transfer tube 22. 25 cannot always be secured. Therefore, by making the region twice the width of RSm, it is possible to surely hold the groove portion 25 that has both the concave and convex shapes that form the groove portion 25 and that functions as the drainage path of the water droplets H.
<実施の形態2の効果>
 このように、本実施の形態2に係る熱交換器20では、第一領域P及び第二領域Qのみに長手方向に延在する溝部25を設けるだけで、実施の形態1と同様の効果を得ることができる。すなわち、本実施の形態2に係る熱交換器20では、フィン21表面及び伝熱管22の上面に溜まった水滴Hを、第一領域P及び第二領域Qの溝部25を介して長手方向の下方へと速やかに且つ確実に排水させることができる。よって、熱交換器20における排水性を確保しつつ、熱交換性能の向上を図ることができるばかりか、フィン21における溝部25の形成領域を低減して構成を簡易化できる。
<Effect of Embodiment 2>
As described above, in the heat exchanger 20 according to the second embodiment, the same effect as that of the first embodiment can be obtained by only providing the groove portion 25 extending in the longitudinal direction only in the first region P and the second region Q. Obtainable. That is, in the heat exchanger 20 according to the second embodiment, the water droplets H accumulated on the surfaces of the fins 21 and the upper surfaces of the heat transfer tubes 22 are moved downward in the longitudinal direction via the groove portions 25 of the first region P and the second region Q. It is possible to drain water quickly and surely. Therefore, not only the heat exchange performance can be improved while ensuring the drainage property of the heat exchanger 20, but the formation region of the groove 25 in the fin 21 can be reduced to simplify the configuration.
<実施の形態2の変形例>
 なお、本実施の形態2に係る熱交換器20としては、上述した構成に限ることはない。図14は、本発明の実施の形態2に係る熱交換器20の変形例1における要部拡大図である。図14に示すように、第二領域Qよりも短手方向の中心側であって、フィン21の長手方向において挿入孔24が存在する平坦面からなる第三領域Rに、当該平坦面から突出する切起こし部26もしくは突出部27、またはその両方を設けるようにしてもよい。
 この場合、フィン21における熱交換用の表面積を増やすことで熱交換性能を更に向上させることが可能となる。
<Modification of Second Embodiment>
The heat exchanger 20 according to the second embodiment is not limited to the above-mentioned configuration. FIG. 14 is an enlarged view of a main part in the first modification of the heat exchanger 20 according to the second embodiment of the present invention. As shown in FIG. 14, a third region R, which is on the center side in the lateral direction with respect to the second region Q and is a flat face in which the insertion hole 24 exists in the longitudinal direction of the fin 21, projects from the flat face. The cut-and-raised portion 26, the protruding portion 27, or both may be provided.
In this case, the heat exchange performance can be further improved by increasing the surface area of the fin 21 for heat exchange.
 また、本実施の形態2に係る熱交換器20では、図11に示すように、挿入孔24における前述した第一領域P側の端部24aの反対側端部が切欠き状態で形成されている場合について図示したが、本発明はこれに限ることはない。 In addition, in the heat exchanger 20 according to the second embodiment, as shown in FIG. 11, the opposite end of the end 24a on the first region P side in the insertion hole 24 is formed in a notched state. However, the present invention is not limited to this.
 図15は、本発明の実施の形態2に係る熱交換器20の変形例2における要部拡大図である。例えば、図15に示す熱交換器200のように、フィン210に形成される挿入孔240の第一領域P側の端部24aの反対側端部が、切欠き状態でなくてもよい。この場合、熱交換器200のフィン210には、伝熱管220に対応した挿入孔240がフィン210の中心に開口されてなる。この挿入孔240は、空気の通風方向Kの上流側に位置する第一領域T側の端部240aと、これとは反対の空気の通風方向Kの下流側に位置する反対側端部240bとが切欠くことなく、伝熱管220に対応した扁平形状をなしている。このとき、第一領域Pに対応する領域が第一領域Tであり、第二領域Qに対応する領域が第二領域U、第三領域Rに対応する領域が第三領域Vであり、挿入孔240を中心とする短手方向に左右対称で形成されている。 FIG. 15 is an enlarged view of a main part in the second modification of the heat exchanger 20 according to the second embodiment of the present invention. For example, as in the heat exchanger 200 shown in FIG. 15, the end portion on the opposite side of the end portion 24a on the first region P side of the insertion hole 240 formed in the fin 210 may not be in the notched state. In this case, the fin 210 of the heat exchanger 200 has an insertion hole 240 corresponding to the heat transfer tube 220 opened at the center of the fin 210. The insertion hole 240 includes an end portion 240a on the first region T side located upstream of the air ventilation direction K and an opposite end portion 240b located downstream of the air ventilation direction K opposite thereto. Has a flat shape corresponding to the heat transfer tube 220 without being cut out. At this time, the region corresponding to the first region P is the first region T, the region corresponding to the second region Q is the second region U, the region corresponding to the third region R is the third region V, and the insertion The holes 240 are formed symmetrically in the lateral direction around the hole 240.
 このような熱交換器200では、前述した熱交換器20と同様に、フィン210表面及び伝熱管220の上面に溜まった水滴(図示せず)を、第一領域T及び第二領域Uの溝部250を介して長手方向の下方へと速やかに且つ確実に排水させることができる。しかも、溝部250をフィン210の表面におけるx方向全域に設けることなく、必要最低限、第一領域T及び第二領域Uに設けることで、フィン210における溝部250の形成領域を低減して構成を簡易化できる。さらに、挿入孔240が、反対側端部240bを切欠くことなく、伝熱管220に対応した扁平形状でフィン210の中心に開口されているので、切欠きを有する場合と比較して、格段と安定して伝熱管220を保持することができる。 In the heat exchanger 200 as described above, like the heat exchanger 20 described above, water droplets (not shown) accumulated on the surfaces of the fins 210 and the upper surfaces of the heat transfer tubes 220 are formed in the groove portions of the first region T and the second region U. Through 250, it is possible to quickly and surely drain downward in the longitudinal direction. Moreover, the groove 250 is not provided in the entire area of the surface of the fin 210 in the x direction, but is provided in the first region T and the second region U to the minimum necessary. Can be simplified. Further, since the insertion hole 240 is opened in the center of the fin 210 in a flat shape corresponding to the heat transfer tube 220 without notching the opposite end portion 240b, it is remarkably compared with the case having the notch. The heat transfer tube 220 can be stably held.
実施の形態3.
 次に、本発明の実施の形態3に係る冷凍サイクル装置1(図1)について説明する。具体的に、上述した実施の形態1では、フィン11の表面における溝部15の延在方向が、長手方向における上下と平行である場合について述べた(図3~図5及び図10等参照)。これに対し、本実施の形態3に係る冷凍サイクル装置1では、後述する図16~図19に示すように、熱交換器30のフィン31における溝部35の延在する方向が、フィン31の長手方向に対して傾斜している点が異なる以外、その他は同様に構成されている。このため、本実施の形態3では、熱交換器30の具体的な構成について説明し、その他の重複する説明は割愛するものとする。なお、前述した実施の形態1における第一領域Pに対応する領域が第一領域Pa、挿入孔14における第一領域P側の端部14aに対応するのが挿入孔34における第一領域Pa側の端部34aである。
Embodiment 3.
Next, a refrigeration cycle apparatus 1 (FIG. 1) according to Embodiment 3 of the present invention will be described. Specifically, in the above-described first embodiment, the case where the extending direction of the groove portion 15 on the surface of the fin 11 is parallel to the upper and lower sides in the longitudinal direction has been described (see FIGS. 3 to 5, 10 and the like). On the other hand, in the refrigeration cycle apparatus 1 according to the third embodiment, as shown in FIGS. 16 to 19 described later, the extending direction of the groove 35 in the fin 31 of the heat exchanger 30 is the longitudinal direction of the fin 31. Other than that the point is inclined with respect to the direction, the others are configured similarly. For this reason, in the third embodiment, the specific configuration of the heat exchanger 30 will be described, and other redundant description will be omitted. The region corresponding to the first region P in the above-described first embodiment is the first region Pa, and the end portion 14a of the insertion hole 14 on the first region P side is the first region Pa side in the insertion hole 34. End portion 34a.
 図16は、本発明の実施の形態3に係る熱交換器30における要部拡大図である。図17は、図16のC-C断面を示す断面図である。図16及び図17に示すように、本実施の形態3の熱交換器30では、フィン31の表面におけるz方向において、溝部35が、長手方向を重力方向の上下に向けて配置した際、溝部35の傾斜する方向が、第一領域Paに向かって下り方向に傾斜している。換言すれば、本実施の形態3に係る熱交換器30において、溝部35は、フィン31の間を流通する空気の通風方向Kとは逆向きの下り方向に傾斜した状態で延在している。 FIG. 16 is an enlarged view of a main part of the heat exchanger 30 according to the third embodiment of the present invention. FIG. 17 is a cross-sectional view showing a CC cross section of FIG. As shown in FIGS. 16 and 17, in the heat exchanger 30 of the third embodiment, in the z direction on the surface of the fin 31, when the groove portion 35 is arranged with the longitudinal direction facing up and down in the gravity direction, the groove portion is arranged. The inclining direction of 35 inclines downward toward the first region Pa. In other words, in the heat exchanger 30 according to the third embodiment, the groove portion 35 extends in a state in which the groove 35 is inclined in the downward direction opposite to the ventilation direction K of the air flowing between the fins 31. .
 図18は、本発明の実施の形態3に係る熱交換器30における表面の水滴の排水を示す要部拡大図である。図19は、本発明の実施の形態3に係る熱交換器30における表面の水滴の排水を示す要部拡大図である。この場合、本実施の形態3の熱交換器30において、挿入孔34における伝熱管32の上面に溜まった水滴Hは、親水性である伝熱管32の外周面に沿って濡れ広がり、伝熱管32上の排水経路で最初に交わるフィン31表面の溝部35Aに沿って排水される。このとき、溝部35Aが、第一領域Pa側のフィン31の端部に向けて伸びているため、排水された水滴Hは下方の伝熱管32と触れることなく、排水の容易な第一領域Paまで導かれる。 FIG. 18 is an enlarged view of an essential part showing drainage of water droplets on the surface of the heat exchanger 30 according to the third embodiment of the present invention. FIG. 19 is an enlarged view of an essential part showing drainage of water droplets on the surface of the heat exchanger 30 according to Embodiment 3 of the present invention. In this case, in the heat exchanger 30 according to the third embodiment, the water droplets H accumulated on the upper surface of the heat transfer tube 32 in the insertion hole 34 spread wet along the outer peripheral surface of the hydrophilic heat transfer tube 32, and the heat transfer tube 32. The water is drained along the groove 35A on the surface of the fin 31 that first intersects with the upper drainage path. At this time, since the groove portion 35A extends toward the end of the fin 31 on the side of the first region Pa, the drained water droplet H does not come into contact with the heat transfer pipe 32 below and the first region Pa where drainage is easy. Be led up to.
 また、本実施の形態3の熱交換器30において、溝部35B上の凝縮水は伝熱管32の上面に溜まることなく、第一領域Paまで導かれる。このとき、フィン31表面の1つの溝部35における、伝熱管32の存在しない第一領域Pa側の高さ位置が、伝熱管32の挿入側の高さ位置よりも低くなるように、各溝部35が延在している。 Further, in the heat exchanger 30 of the third embodiment, the condensed water on the groove 35B is guided to the first region Pa without accumulating on the upper surface of the heat transfer pipe 32. At this time, each groove 35 is arranged such that the height position of the one groove 35 on the surface of the fin 31 on the first region Pa side where the heat transfer tube 32 does not exist is lower than the height position on the insertion side of the heat transfer tube 32. Has been extended.
<実施の形態3の効果>
 以上のように、本実施の形態3に係る熱交換器30では、フィン31表面に設けられた溝部35の延在する方向を、z方向においてフィン31の間を流通する空気の通風方向Kとは逆向きの下り方向に傾斜させる。これにより、排水の容易な第一領域Paでの排水をさらに促すことが可能となり、前述した実施の形態1よりも一段と速やかに排水できる。
<Effect of Embodiment 3>
As described above, in the heat exchanger 30 according to the third embodiment, the extending direction of the groove portion 35 provided on the surface of the fin 31 is defined as the ventilation direction K of the air flowing between the fins 31 in the z direction. Tilts in the opposite downward direction. Thereby, it becomes possible to further promote the drainage in the first region Pa where the drainage is easy, and the drainage can be carried out much more rapidly than in the first embodiment described above.
 1 冷凍サイクル装置、2 圧縮機、3 四方弁、4 室内熱交換器、5 室内ファン、6 絞り装置、7 室外ファン、10 室内熱交換器、10A 風上側熱交換器、10B 風下側熱交換器、10C 風上側ヘッダ集合管、10D 風下側ヘッダ集合管、10E 列間接続部材、11、21、31、101、111、210 フィン、12、22、32、102、112、220 伝熱管、13、20、30、100、110、200 熱交換器、14、24、34、104、114、240 挿入孔、14a、24a、34a、240a、240b 端部、15、15A、25、35、35A、35B、250 溝部、26 切起こし部、27 突出部、H 水滴、K 空気の通風方向、P、Pa、T 第一領域、Q、U 第二領域、R、V 第三領域。 1 refrigeration cycle device, 2 compressor, 3 four-way valve, 4 indoor heat exchanger, 5 indoor fan, 6 expansion device, 7 outdoor fan, 10 indoor heat exchanger, 10A windward heat exchanger, 10B leeward heat exchanger 10C leeward header collecting pipe, 10D leeward header collecting pipe, 10E inter-row connecting member, 11, 21, 31, 101, 111, 210 fins, 12, 22, 32, 102, 112, 220 heat transfer pipes, 13, 20, 30, 100, 110, 200 heat exchanger, 14, 24, 34, 104, 114, 240 insertion hole, 14a, 24a, 34a, 240a, 240b end, 15, 15A, 25, 35, 35A, 35B , 250 groove part, 26 cut and raised part, 27 protruding part, H water drop, K air ventilation direction, P, Pa, T first area, Q, U second area , R, V third region.

Claims (6)

  1.  予め設定された間隔で表裏方向に並んで配置された板状の複数のフィンと、
     前記フィンに形成された挿入孔に挿入され、当該フィンに対して予め設定された間隔で前記フィンの長手方向に並んで配置された断面が扁平形状の複数の伝熱管と、を備え、
     前記伝熱管は、外周面に親水性を保持する表面処理が施されており、
     前記フィンは、
     前記長手方向と直交する短手方向に隣接して設けられる凹凸形状からなり、前記長手方向に延在する溝部を有し、親水性を保持する表面処理が施されてなる熱交換器。
    A plurality of plate-shaped fins arranged side by side in the front and back direction at a preset interval,
    A plurality of heat transfer tubes that are inserted into the insertion holes formed in the fins and have a flat cross section arranged side by side in the longitudinal direction of the fins at preset intervals with respect to the fins;
    The heat transfer tube, the outer peripheral surface is subjected to a surface treatment for maintaining hydrophilicity,
    The fins are
    A heat exchanger, which is formed of concavo-convex shapes adjacent to each other in the lateral direction orthogonal to the longitudinal direction, has a groove portion extending in the longitudinal direction, and is subjected to a surface treatment for maintaining hydrophilicity.
  2.  前記フィンは、
     前記溝部を有する領域として、
     前記フィンの長手方向において前記挿入孔が存在しない第一領域と、
     前記フィンの長手方向において前記第一領域より前記短手方向の中心側であって、前記挿入孔の前記短手方向における前記第一領域側の端部を含む第二領域と、
    を有する請求項1に記載の熱交換器。
    The fins are
    As the region having the groove,
    A first region in which the insertion hole does not exist in the longitudinal direction of the fin,
    A second region that is closer to the center in the lateral direction than the first region in the longitudinal direction of the fin, and includes an end portion on the first region side in the lateral direction of the insertion hole,
    The heat exchanger according to claim 1, further comprising:
  3.  前記フィンは、
     前記第二領域よりも前記短手方向の中心側であって、前記長手方向において前記挿入孔が存在する平坦面からなる第三領域に、前記平坦面から突出する切起こし部または突出部が設けられている請求項2に記載の熱交換器。
    The fins are
    A cut-and-raised portion or a protruding portion protruding from the flat surface is provided in a third area, which is on the center side in the lateral direction with respect to the second area and is formed of a flat surface in which the insertion hole exists in the longitudinal direction. The heat exchanger according to claim 2, which is provided.
  4.  前記フィンは、
     前記溝部の延在する方向が、前記長手方向に対して傾斜している請求項1~3のいずれか一項に記載の熱交換器。
    The fins are
    The heat exchanger according to any one of claims 1 to 3, wherein the extending direction of the groove is inclined with respect to the longitudinal direction.
  5.  前記フィンは、
     前記長手方向を重力方向における上下に向けて配置した際、
     前記溝部の傾斜する方向が、前記第一領域に向かって下り方向に傾斜している請求項4に記載の熱交換器。
    The fins are
    When the longitudinal direction is arranged vertically in the direction of gravity,
    The heat exchanger according to claim 4, wherein the groove is inclined in a downward direction toward the first region.
  6.  請求項1~5のいずれか一項に記載の熱交換器を備え、前記熱交換器を蒸発器として使用する冷凍サイクル装置。 A refrigeration cycle apparatus comprising the heat exchanger according to any one of claims 1 to 5, and using the heat exchanger as an evaporator.
PCT/JP2018/039965 2018-10-26 2018-10-26 Heat exchanger and refrigeration cycle device using same WO2020084786A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020552495A JP7112053B2 (en) 2018-10-26 2018-10-26 Heat exchanger and refrigeration cycle device using the same
CN201890000662.0U CN211290633U (en) 2018-10-26 2018-10-26 Heat exchanger and refrigeration cycle device using same
PCT/JP2018/039965 WO2020084786A1 (en) 2018-10-26 2018-10-26 Heat exchanger and refrigeration cycle device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/039965 WO2020084786A1 (en) 2018-10-26 2018-10-26 Heat exchanger and refrigeration cycle device using same

Publications (1)

Publication Number Publication Date
WO2020084786A1 true WO2020084786A1 (en) 2020-04-30

Family

ID=70330682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039965 WO2020084786A1 (en) 2018-10-26 2018-10-26 Heat exchanger and refrigeration cycle device using same

Country Status (3)

Country Link
JP (1) JP7112053B2 (en)
CN (1) CN211290633U (en)
WO (1) WO2020084786A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100859A1 (en) * 2021-12-02 2023-06-08 東芝キヤリア株式会社 Heat exchanger
US11988462B2 (en) 2020-08-31 2024-05-21 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner using the heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108576A (en) * 1997-10-02 1999-04-23 Nippon Light Metal Co Ltd Heat exchanger
JP2012233680A (en) * 2011-04-22 2012-11-29 Mitsubishi Electric Corp Fin tube heat exchanger, and refrigeration cycle apparatus
JP2013120044A (en) * 2011-12-09 2013-06-17 Panasonic Corp Fin tube heat exchanger and method for manufacturing same
JP2013200119A (en) * 2013-07-02 2013-10-03 Mitsubishi Electric Corp Finned tube heat exchanger and refrigeration cycle apparatus using the same
WO2017017789A1 (en) * 2015-07-28 2017-02-02 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4958184B2 (en) 2007-01-25 2012-06-20 国立大学法人 東京大学 Heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108576A (en) * 1997-10-02 1999-04-23 Nippon Light Metal Co Ltd Heat exchanger
JP2012233680A (en) * 2011-04-22 2012-11-29 Mitsubishi Electric Corp Fin tube heat exchanger, and refrigeration cycle apparatus
JP2013120044A (en) * 2011-12-09 2013-06-17 Panasonic Corp Fin tube heat exchanger and method for manufacturing same
JP2013200119A (en) * 2013-07-02 2013-10-03 Mitsubishi Electric Corp Finned tube heat exchanger and refrigeration cycle apparatus using the same
WO2017017789A1 (en) * 2015-07-28 2017-02-02 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11988462B2 (en) 2020-08-31 2024-05-21 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner using the heat exchanger
WO2023100859A1 (en) * 2021-12-02 2023-06-08 東芝キヤリア株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP7112053B2 (en) 2022-08-03
JPWO2020084786A1 (en) 2021-06-03
CN211290633U (en) 2020-08-18

Similar Documents

Publication Publication Date Title
US11226164B2 (en) Stacked header, heat exchanger, and air-conditioning apparatus
US10712104B2 (en) Heat exchanger and refrigeration cycle apparatus
JP6790077B2 (en) Heat exchanger
JP6701371B2 (en) Heat exchanger and refrigeration cycle device
EP3156752B1 (en) Heat exchanger
JP6590948B2 (en) Heat exchanger and refrigeration cycle equipment
US10557652B2 (en) Heat exchanger and air conditioner
US10914499B2 (en) Outdoor unit and refrigeration cycle apparatus including the same
CN114641663A (en) Heat exchanger and refrigeration cycle device
WO2020084786A1 (en) Heat exchanger and refrigeration cycle device using same
JP6692495B2 (en) Heat exchanger and refrigeration cycle device
JP6628879B2 (en) Heat exchanger and heat pump device provided with this heat exchanger
JP6918131B2 (en) Heat exchanger and refrigeration cycle equipment
JP2005201492A (en) Heat exchanger
JP2004271113A (en) Heat exchanger
US11573056B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
JP6584668B2 (en) Refrigeration cycle equipment
WO2020110301A1 (en) Refrigeration cycle apparatus
JP2011247499A (en) Air heat exchanger and refrigeration cycle apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020552495

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937971

Country of ref document: EP

Kind code of ref document: A1