JP2011247499A - Air heat exchanger and refrigeration cycle apparatus - Google Patents

Air heat exchanger and refrigeration cycle apparatus Download PDF

Info

Publication number
JP2011247499A
JP2011247499A JP2010121546A JP2010121546A JP2011247499A JP 2011247499 A JP2011247499 A JP 2011247499A JP 2010121546 A JP2010121546 A JP 2010121546A JP 2010121546 A JP2010121546 A JP 2010121546A JP 2011247499 A JP2011247499 A JP 2011247499A
Authority
JP
Japan
Prior art keywords
heat exchanger
fin
air heat
air
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010121546A
Other languages
Japanese (ja)
Inventor
Yuji Ono
裕司 大野
Takashi Hatada
崇史 畠田
Atsushi Tanabe
厚 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2010121546A priority Critical patent/JP2011247499A/en
Publication of JP2011247499A publication Critical patent/JP2011247499A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such problems in a refrigeration cycle apparatus equipped with an air heat exchanger that when defrosting operation is carried out, frost does not completely melt on a surface of fins of the air heat exchanger subjected to water-repellent surface treatment, but drops off in a form of ice droplets into an upstream side of an air flow in the air heat exchanger and accumulates to form a barrier wall of an ice block, and the barrier wall of the ice block reduces an inflow air amount to the air heat exchanger and causes reduction in the performance of the refrigeration cycle apparatus or failure in an outdoor unit of a heat source unit.SOLUTION: In the air heat exchanger having a plurality rows of fins arranged in an air flow direction, the surfaces of air-upstream-side fins of the air heat exchanger are hydrophilized, while surfaces of air-downstream-side fins of the air heat exchanger are made water-repellent.

Description

本発明の実施形態は、空気熱交換器と冷凍サイクル装置に関する。   Embodiments described herein relate generally to an air heat exchanger and a refrigeration cycle apparatus.

例えば空気調和機やヒートポンプ給湯機などの、冷凍サイクル装置には、室内を暖房、又は貯湯するための熱交換器と、室外の空気と熱交換するための空気熱交換器が備えられている。
空気調和機における暖房運転、又はヒートポンプ給湯機における貯湯運転の際、外気温が低いと室外の空気熱交換器のフィン表面に霜が発生し、空気熱交換器の隣接するフィン間の空気流路を狭くする。これにより、空気熱交換器の熱交換効率が低下する。
For example, refrigeration cycle apparatuses such as an air conditioner and a heat pump water heater are provided with a heat exchanger for heating or storing hot water in the room and an air heat exchanger for exchanging heat with outdoor air.
During heating operation in an air conditioner or hot water storage operation in a heat pump water heater, if the outside air temperature is low, frost is generated on the fin surface of the outdoor air heat exchanger, and the air flow path between adjacent fins of the air heat exchanger To narrow. Thereby, the heat exchange efficiency of an air heat exchanger falls.

これに対し、特許文献1のように、空気熱交換器の空気流通方向の風上側のフィン表面に撥水性の表面処理を施して着霜を抑制し、空気熱交換器の凍結を遅延させることが知られている。   On the other hand, as in Patent Document 1, water-repellent surface treatment is applied to the windward fin surface in the air circulation direction of the air heat exchanger to suppress frost formation and delay the freezing of the air heat exchanger. It has been known.

特開昭63−3182号JP-A-63-3182

しかし、低温下で長時間の暖房運転を行うと、撥水性表面処理を施した空気熱交換器のフィン表面においても霜が成長し、滴状の氷塊が発生するため、従来の冷凍サイクル装置では適宜除霜運転を行い霜(氷塊)を融解させる必要がある。   However, when heating operation is performed for a long time at a low temperature, frost grows on the fin surface of the air heat exchanger that has been subjected to the water-repellent surface treatment, and drop-shaped ice blocks are generated. It is necessary to perform a defrosting operation appropriately to melt the frost (ice block).

そこで、上述した特許文献1の空気熱交換器を備えた冷凍サイクル装置において除霜運転を行った場合、撥水性の表面処理を施した空気熱交換器のフィンでは、霜が完全に融解せず、滴状の氷塊となって空気熱交換器の風上側に脱落する。この脱落した氷塊が積層することによって氷塊の障壁が形成される。
この氷塊の障壁によって空気熱交換器への流入空気量が減少し、冷凍サイクル装置の性能低下や故障を引き起こす不具合が生じる。
Therefore, when the defrosting operation is performed in the refrigeration cycle apparatus including the air heat exchanger of Patent Document 1 described above, the frost is not completely melted in the fins of the air heat exchanger subjected to the water-repellent surface treatment. Then, it becomes a drop-shaped ice mass and falls to the windward side of the air heat exchanger. The dropped ice blocks are stacked to form an ice block barrier.
This ice block barrier reduces the amount of air flowing into the air heat exchanger, resulting in a malfunction that causes performance degradation and failure of the refrigeration cycle apparatus.

上述の課題を解決するため、本発明の実施形態によれば、複数枚のプレートフィンから成るフィン列と前記フィン列に貫通して設けられた伝熱管からなるクロスフィンチューブ型の空気熱交換器において、前記フィン列は空気流通方向に複数列配置されており、空気流通方向の風上側のフィン列のフィン表面を親水性とし、風下側のフィン列のフィン表面を撥水性とすることを特徴とする空気熱交換器、又は、複数枚のプレートフィンから成るフィン列と前記フィン列に貫通して設けられた伝熱管からなる、クロスフィンチューブ型の空気熱交換器において、前記フィン列は空気流通方向に少なくとも3列以上配置されており、空気流通方向の最も風上側及び最も風下側のフィン列のフィン表面を親水性とし、前記両者の間に位置するフィン列のフィン表面を撥水性とすることを特徴とする空気熱交換器を、冷凍サイクル装置に設ける。   In order to solve the above-mentioned problems, according to an embodiment of the present invention, a cross fin tube type air heat exchanger comprising a fin row composed of a plurality of plate fins and a heat transfer tube provided through the fin row. The fin rows are arranged in a plurality of rows in the air flow direction, the fin surface of the fin row on the windward side in the air flow direction is hydrophilic, and the fin surface of the fin row on the leeward side is water repellent. Or a cross fin tube type air heat exchanger comprising a fin row composed of a plurality of plate fins and a heat transfer tube provided through the fin row. Fins arranged in at least three rows in the flow direction, wherein the fin surface of the fin row on the most windward side and the most leeward side in the air flow direction is hydrophilic and located between the two The fin surface air heat exchanger, characterized in that a water-repellent, is provided in the refrigeration cycle apparatus.

本発明の実施形態に係る冷凍サイクル装置の概略図。1 is a schematic diagram of a refrigeration cycle apparatus according to an embodiment of the present invention. 第1の実施形態に係る空気熱交換器の斜視図。The perspective view of the air heat exchanger which concerns on 1st Embodiment. 親水性の表面処理が施された空気熱交換器の着霜状態を示す図。The figure which shows the frost formation state of the air heat exchanger with which the hydrophilic surface treatment was performed. 撥水性の表面処理が施された空気熱交換器の着霜状態を示す図。The figure which shows the frost formation state of the air heat exchanger with which the water-repellent surface treatment was performed. 第1の実施形態に係る空気熱交換器を空気上流方向に傾斜させた図。The figure which inclined the air heat exchanger which concerns on 1st Embodiment in the air upstream direction. 第2の実施形態に係る空気熱交換器の斜視図。The perspective view of the air heat exchanger which concerns on 2nd Embodiment.

本発明の実施形態について、図1乃至図6を用いて説明する。   An embodiment of the present invention will be described with reference to FIGS.

(第1の実施形態)
第1実施形態に係る冷凍サイクル装置1の構成を、図1を用いて説明する。
冷凍サイクル装置1は、例えば空気調和機やヒートポンプ給湯機に用いられ、その構成は圧縮機2、四方弁3、室外側熱交換器である空気熱交換器4、膨張弁5、室内側熱交換器6を冷媒配管20で順次接続してなる。
また、空気熱交換器4の近傍には、外気と熱交換させるための送風機25が備えられている。
(First embodiment)
The configuration of the refrigeration cycle apparatus 1 according to the first embodiment will be described with reference to FIG.
The refrigeration cycle apparatus 1 is used, for example, in an air conditioner or a heat pump water heater, and the configuration thereof includes a compressor 2, a four-way valve 3, an air heat exchanger 4 that is an outdoor heat exchanger, an expansion valve 5, and an indoor heat exchange. The vessel 6 is sequentially connected by a refrigerant pipe 20.
A blower 25 for exchanging heat with the outside air is provided in the vicinity of the air heat exchanger 4.

空気調和機の暖房運転又はヒートポンプ給湯機の貯湯運転は次のように行われる。   The heating operation of the air conditioner or the hot water storage operation of the heat pump water heater is performed as follows.

圧縮機2が駆動し冷媒を高温高圧に圧縮して吐出すると、冷媒は図1中実線矢印で示すように、四方弁3から室内側熱交換器6に導かれて凝縮し、凝縮熱を放出する。この凝縮熱が室内を暖房、又は湯を沸す熱源となる。   When the compressor 2 is driven to compress and discharge the refrigerant to a high temperature and high pressure, the refrigerant is led from the four-way valve 3 to the indoor heat exchanger 6 to condense as shown by the solid line arrow in FIG. To do. This condensation heat becomes a heat source for heating the room or boiling hot water.

そして冷媒は、膨張弁5において減圧膨張し、空気熱交換器4内に送られる。このとき送風機25の駆動により送風された外気から吸熱し、空気熱交換器4内の冷媒が蒸発する。   The refrigerant expands under reduced pressure at the expansion valve 5 and is sent into the air heat exchanger 4. At this time, heat is absorbed from the outside air blown by driving the blower 25, and the refrigerant in the air heat exchanger 4 evaporates.

さらに、冷媒は空気熱交換器4から四方弁3を介して圧縮機1に吸込まれ、圧縮されて再び上述の径路を循環する。   Further, the refrigerant is sucked into the compressor 1 from the air heat exchanger 4 through the four-way valve 3, is compressed, and circulates again in the above-described path.

外気温が低い状態で上述の暖房運転又は貯湯運転を長時間行うと、空気熱交換器4の表面に霜(氷塊)が付着し空気熱交換器4が凍結することがある。このような場合には、霜を取除くための除霜運転が行われる。   If the above-described heating operation or hot water storage operation is performed for a long time in a state where the outside air temperature is low, frost (ice block) may adhere to the surface of the air heat exchanger 4 and the air heat exchanger 4 may freeze. In such a case, a defrosting operation for removing frost is performed.

この除霜運転は、四方弁2を切換え、冷媒が図1の破線矢印で示す経路を循環することで行われる。   This defrosting operation is performed by switching the four-way valve 2 so that the refrigerant circulates along a path indicated by a broken-line arrow in FIG.

詳しくは、圧縮機2が駆動し、冷媒を高温高圧に圧縮して吐出すると、冷媒は図1中破線矢印で示すように、四方弁3から空気熱交換器4に導かれて凝縮し、凝縮熱を放出する。この凝縮熱が霜を融解させる熱源となる。   Specifically, when the compressor 2 is driven and the refrigerant is compressed and discharged at a high temperature and a high pressure, the refrigerant is led from the four-way valve 3 to the air heat exchanger 4 to condense and condense, as indicated by broken line arrows in FIG. Release heat. This condensation heat becomes a heat source for melting frost.

その後、冷媒は膨張弁5において減圧膨張し、室内側熱交換器6で蒸発する。
続いて冷媒は室内熱交換器6から四方弁3を介して圧縮機1に吸込まれ、圧縮されて再び上述の径路を循環する。
Thereafter, the refrigerant expands under reduced pressure in the expansion valve 5 and evaporates in the indoor heat exchanger 6.
Subsequently, the refrigerant is sucked into the compressor 1 from the indoor heat exchanger 6 through the four-way valve 3, is compressed, and circulates again in the above-described path.

空気熱交換器4の構成について、図2を用いて説明する。
空気熱交換器4はクロスフィンチューブ型の熱交換器であり、熱交換面を形成する多数のプレートフィン10と、内部を冷媒が流通する伝熱管11を有している。
プレートフィン10は長手方向が上下方向となるよう配置され、矢印で示す空気流通方向に直交する方向に、互いに間隔をあけ多数枚並設されており、フィン列12を形成している。
このフィン列12のプレートフィン10に対して伝熱管11が貫通して設けられている。
The configuration of the air heat exchanger 4 will be described with reference to FIG.
The air heat exchanger 4 is a cross fin tube type heat exchanger, and includes a large number of plate fins 10 forming a heat exchange surface and a heat transfer tube 11 through which a refrigerant flows.
The plate fins 10 are arranged such that the longitudinal direction thereof is the vertical direction, and a large number of plate fins 10 are arranged in parallel in the direction perpendicular to the air flow direction indicated by the arrows to form a fin row 12.
A heat transfer tube 11 is provided penetrating the plate fin 10 of the fin row 12.

伝熱管11はプレートフィン10の長手方向に沿って等間隔に複数配置されている。   A plurality of heat transfer tubes 11 are arranged at equal intervals along the longitudinal direction of the plate fin 10.

また、フィン列12は空気流通方向に2列設けられており、風上側の伝熱管11を含むフィン列12を風上側空気熱交換要素4aとし、風下側の伝熱管を含むフィン列12を風下側空気熱交換要素4bとする。   The fin rows 12 are provided in two rows in the air flow direction. The fin row 12 including the windward heat transfer tubes 11 is used as the windward air heat exchange element 4a, and the fin row 12 including the leeward heat transfer tubes is leeward. Let it be the side air heat exchange element 4b.

ここで、風上側空気熱交換要素4aのプレートフィン10表面には親水性の表面処理がなされており、風下側空気熱交換要素4bのプレートフィン10表面には撥水性の表面処理がなされている。   Here, the surface of the plate fin 10 of the windward air heat exchange element 4a is subjected to hydrophilic surface treatment, and the surface of the plate fin 10 of the leeward air heat exchange element 4b is subjected to water repellent surface treatment. .

空気熱交換器4の下方には空気熱交換器4から流下する水滴や氷塊を受けるドレンパン26が設けられている。   Below the air heat exchanger 4, a drain pan 26 that receives water droplets and ice blocks flowing down from the air heat exchanger 4 is provided.

以上説明した第1の実施形態によれば、着霜後に行われる除霜運転の際に霜(氷塊)を取除くことができる。   According to the first embodiment described above, frost (ice block) can be removed during the defrosting operation performed after frost formation.

空気熱交換器4に着霜した場合、風上側空気熱交換要素4aはそのプレートフィン10表面に親水性の表面処理が施されているため、図3に示すようにプレートフィン10全体に膜状の霜(氷塊)15aが形成される。一方、風下側空気熱交換要素4bはそのプレートフィン10に撥水性の表面処理が施されているため図4に示すようにプレートフィン10表面に滴状の霜(氷塊)15bが形成される。   When the air heat exchanger 4 is frosted, the windward air heat exchange element 4a is subjected to hydrophilic surface treatment on the surface of the plate fin 10, so that the entire plate fin 10 is film-like as shown in FIG. Frost (ice block) 15a is formed. On the other hand, since the leeward air heat exchange element 4b has a water-repellent surface treatment applied to the plate fin 10, a drop-like frost (ice block) 15b is formed on the surface of the plate fin 10 as shown in FIG.

この状態で、冷凍サイクル装置1の除霜運転を行うと、風上側空気熱交換要素4aの、プレートフィン10の表面が親水性であるため、プレートフィン10と接している霜の境界部分が融解しても氷塊が脱落せずプレートフィン10の表面にとどまり、完全に融解してドレン水となり、空気熱交換器4の下部に設けられたドレンパン26に流下する。   In this state, when the defrosting operation of the refrigeration cycle apparatus 1 is performed, since the surface of the plate fin 10 of the upwind air heat exchange element 4a is hydrophilic, the boundary portion of the frost in contact with the plate fin 10 is melted. Even if the ice block does not fall off, it stays on the surface of the plate fin 10, completely melts to become drain water, and flows down to the drain pan 26 provided at the lower part of the air heat exchanger 4.

これに対して、風下側空気熱交換要素4bのプレートフィン10の表面は撥水性であるため、除霜運転時にプレートフィン10と接している霜の境界部分が融解し、氷塊が完全に融解する前に空気熱交換器4下部のドレンパン26へ落下する。   On the other hand, since the surface of the plate fin 10 of the leeward side air heat exchange element 4b is water-repellent, the boundary portion of the frost in contact with the plate fin 10 during the defrosting operation melts, and the ice block completely melts. It falls to the drain pan 26 below the air heat exchanger 4 before.

このとき、氷塊は伝熱管11に衝突しつつフィン列11の風上側及び風下側に落下する。この風上側へ落下しようとする氷塊は風上側空気熱交換要素4aの親水性のプレートフィン10表面に付着され、風上側空気熱交換要素4aより風上側へ落下することなく、全て融解しドレン水となってドレンパン26へ流下し室外機外部へ排出される。
さらに、除霜運転中に送風機25を駆動させることで、風下側空気熱交換要素4bより風下側へ落下した氷塊は、凝縮熱を奪った空気流の熱により融解する。
At this time, the ice block falls on the windward side and the leeward side of the fin row 11 while colliding with the heat transfer tube 11. The ice blocks to be dropped to the windward side are attached to the hydrophilic plate fin 10 surface of the windward air heat exchange element 4a, and are all melted and drained without falling to the windward side from the windward air heat exchange element 4a. It flows down to the drain pan 26 and is discharged outside the outdoor unit.
Further, by driving the blower 25 during the defrosting operation, the ice blocks that have fallen to the leeward side from the leeward side air heat exchange element 4b are melted by the heat of the airflow that has taken away the heat of condensation.

また、図5に示すように、空気熱交換器4のフィン列12は、プレートフィンの長手方向の上端部が下端部よりも空気流入方向の風上側に位置するように傾斜して設けられて配置されても良い。このように配置することで、氷塊が風下側空気熱交換要素4bの下流方向へ落下又は飛散せず、上流方向へ落下し風上側空気熱交換要素4aのプレートフィン10表面に付着する。付着した氷塊は完全に融解し、ドレン水となってドレンパン26へ流下し室外機外部へ排出される。   Further, as shown in FIG. 5, the fin row 12 of the air heat exchanger 4 is provided so as to be inclined so that the upper end portion in the longitudinal direction of the plate fin is located on the windward side in the air inflow direction from the lower end portion. It may be arranged. By arranging in this way, the ice mass does not fall or scatter in the downstream direction of the leeward air heat exchange element 4b, but falls in the upstream direction and adheres to the surface of the plate fin 10 of the windward air heat exchange element 4a. The adhering ice mass is completely melted, becomes drain water, flows down to the drain pan 26, and is discharged outside the outdoor unit.

空気熱交換器4を上述の構成とすることで、空気熱交換器4の空気の流通を妨げる氷塊を残らず取除くことができ、熱交換効率の低下を抑えることができる。   By setting the air heat exchanger 4 to the above-described configuration, it is possible to remove all the ice blocks that hinder the air flow in the air heat exchanger 4 and to suppress a decrease in heat exchange efficiency.

(第2の実施形態)
以下に第2実施形態について説明する。尚、第1実施形態と同一の部分については同一の符号を付して、説明を省略する。冷凍サイクル装置1の構成は図1に示すものと同じである。
第1実施形態と異なる構成として、図6に示すように、本第2の実施形態の空気熱交換器14は空気流通方向へ3列のフィン列12が並設されており、最も風上側のフィン列12である風上側空気熱交換要素14aと、最も風下側のフィン列12である風下側空気熱交換要素14cと、前記両者の間に位置するフィン列12である中間空気熱交換要素14bで構成されている。
(Second Embodiment)
The second embodiment will be described below. In addition, about the part same as 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted. The configuration of the refrigeration cycle apparatus 1 is the same as that shown in FIG.
As a configuration different from the first embodiment, as shown in FIG. 6, the air heat exchanger 14 of the second embodiment has three rows of fin rows 12 arranged in parallel in the air circulation direction, The leeward air heat exchange element 14a, which is the fin row 12, the leeward air heat exchange element 14c, which is the most leeward fin row 12, and the intermediate air heat exchange element 14b, which is the fin row 12 positioned between the two. It consists of

この風上側空気熱交換要素14aと風下側空気熱交換要素14cのプレートフィン10表面には親水性の表面処理が施されており、中間空気熱交換要素14bのプレートフィン10表面には撥水性の表面処理が施されている。   The surfaces of the plate fins 10 of the windward side air heat exchange element 14a and the leeward side air heat exchange element 14c are subjected to hydrophilic surface treatment, and the surface of the plate fins 10 of the intermediate air heat exchange element 14b is water repellent. Surface treatment is applied.

上述の構成とすることで、着霜後に行われる除霜運転の際、第1の実施形態同様に風上側空気熱交換要素14aの風上側に氷塊が落下することがない。   By setting it as the above-mentioned structure, at the time of the defrost operation performed after frost formation, an ice block does not fall to the windward side of the windward air heat exchange element 14a like 1st Embodiment.

さらに、中間側空気熱交換要素14bの風下側へ落下又は飛散する氷塊は、風下側空気熱交換要素14cの親水性表面処理を施したプレートフィン10の表面に接触し付着する。これにより、空気熱交換器14の風下側への氷塊の落下や飛散を抑えることができ、凝縮器である空気熱交換器14の熱で全て融解しドレンパン26へ流下して室外機外部へ排出される。   Further, the ice mass falling or scattering to the leeward side of the intermediate air heat exchange element 14b contacts and adheres to the surface of the plate fin 10 subjected to the hydrophilic surface treatment of the leeward air heat exchange element 14c. As a result, it is possible to suppress the falling and scattering of ice blocks to the leeward side of the air heat exchanger 14, all of which is melted by the heat of the air heat exchanger 14 that is a condenser, flows down to the drain pan 26, and is discharged outside the outdoor unit. Is done.

ここで、フィン列12は3列以上並設されても良く、中間空気熱交換要素14bは複数列設けられても良い。   Here, three or more fin rows 12 may be arranged in parallel, and a plurality of rows of intermediate air heat exchange elements 14b may be provided.

以上説明した実施形態によれば、外気温が低い状態での冷凍サイクル装置の運転において、空気熱交換器の熱交換効率を低下させることなく、冷凍サイクル装置の故障を防止することができる。   According to the embodiment described above, failure of the refrigeration cycle apparatus can be prevented without reducing the heat exchange efficiency of the air heat exchanger in the operation of the refrigeration cycle apparatus in a state where the outside air temperature is low.

1…冷凍サイクル装置、2…圧縮機、3…四方弁、4…空気熱交換器、4a…上流側熱交換要素、4b…下流側熱交換要素、5…膨張弁、6…室内側熱交換器、10…プレートフィン、11…伝熱管、12…フィン列、14…空気熱交換器、14a…上流側熱交換要素、14b…中間熱交換要素、14c…風下側熱交換要素、15…霜(氷塊)、15a…霜(氷塊)、15b…霜(氷塊)、20…冷媒配管、25…送風機、26…ドレンパン 1 ... Refrigeration cycle device, 2 ... Compressor, 3 ... Four-way valve, 4 ... Air heat exchanger, 4a ... Upstream heat exchange element, 4b ... Downstream heat exchange element, 5 ... Expansion valve, 6 ... Indoor heat exchange 10 ... plate fins, 11 ... heat transfer tubes, 12 ... fin rows, 14 ... air heat exchangers, 14a ... upstream heat exchange elements, 14b ... intermediate heat exchange elements, 14c ... leeward heat exchange elements, 15 ... frost (Ice block), 15a ... frost (ice block), 15b ... frost (ice block), 20 ... refrigerant piping, 25 ... blower, 26 ... drain pan

Claims (4)

複数枚のプレートフィンから成るフィン列と前記フィン列に貫通して設けられた伝熱管からなるクロスフィンチューブ型の空気熱交換器において、前記フィン列は空気流通方向に複数列配置されており、空気流通方向の風上側のフィン列のフィン表面を親水性とし、風下側のフィン列のフィン表面を撥水性とすることを特徴とする空気熱交換器。   In a cross fin tube type air heat exchanger comprising a fin row composed of a plurality of plate fins and a heat transfer tube provided penetrating through the fin row, the fin rows are arranged in a plurality of rows in the air flow direction, An air heat exchanger characterized in that the fin surface of the fin array on the leeward side in the air circulation direction is hydrophilic and the fin surface of the fin array on the leeward side is water repellent. 複数枚のプレートフィンから成るフィン列と前記フィン列に貫通して設けられた伝熱管からなる、クロスフィンチューブ型の空気熱交換器において、前記フィン列は空気流通方向に少なくとも3列以上配置されており、空気流通方向の最も風上側及び最も風下側のフィン列のフィン表面を親水性とし、前記両者の間に位置する少なくとも1列のフィン列のフィン表面を撥水性とすることを特徴とする空気熱交換器。   In a cross fin tube type air heat exchanger comprising a fin row composed of a plurality of plate fins and a heat transfer tube provided penetrating the fin row, at least three or more rows of the fin rows are arranged in the air flow direction. The fin surface of the fin row on the most windward side and the most leeward side in the air circulation direction is hydrophilic, and the fin surface of at least one fin row located between the two is water repellent. Air heat exchanger. 前記各フィン列はプレートフィンの長手方向の上端部が下端部よりも空気流通方向の風上側に位置するように傾斜して設けられたことを特徴とする請求項1又は2に記載の空気熱交換器。   3. The air heat according to claim 1, wherein each fin row is provided so as to be inclined so that an upper end portion in a longitudinal direction of the plate fin is located on an upwind side in an air flow direction with respect to a lower end portion. Exchanger. 請求項1乃至3のいずれかに記載の空気熱交換器を備えたことを特徴とする冷凍サイクル装置。   A refrigeration cycle apparatus comprising the air heat exchanger according to any one of claims 1 to 3.
JP2010121546A 2010-05-27 2010-05-27 Air heat exchanger and refrigeration cycle apparatus Pending JP2011247499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010121546A JP2011247499A (en) 2010-05-27 2010-05-27 Air heat exchanger and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010121546A JP2011247499A (en) 2010-05-27 2010-05-27 Air heat exchanger and refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
JP2011247499A true JP2011247499A (en) 2011-12-08

Family

ID=45412975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010121546A Pending JP2011247499A (en) 2010-05-27 2010-05-27 Air heat exchanger and refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP2011247499A (en)

Similar Documents

Publication Publication Date Title
WO2006025169A1 (en) Refrigeration unit
JP6710205B2 (en) Heat exchanger and refrigeration cycle device
US9958194B2 (en) Refrigeration cycle apparatus with a heating unit for melting frost occurring in a heat exchanger
JP6701371B2 (en) Heat exchanger and refrigeration cycle device
US10082344B2 (en) Fin-and-tube heat exchanger and refrigeration cycle apparatus including the same
JP4659863B2 (en) Heat exchanger unit and air conditioner indoor unit using the same
JP6466631B1 (en) Heat exchanger and air conditioner equipped with the same
US20130205823A1 (en) Air conditioner
JP2004177040A (en) Outdoor heat exchanger for heat pump
JP7112053B2 (en) Heat exchanger and refrigeration cycle device using the same
JP2005201492A (en) Heat exchanger
JP2004271113A (en) Heat exchanger
JP2005024187A (en) Outdoor heat exchanger for heat pump
JP6918131B2 (en) Heat exchanger and refrigeration cycle equipment
JP2011247499A (en) Air heat exchanger and refrigeration cycle apparatus
JP6932262B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle equipment
WO2020121615A1 (en) Indoor unit and air conditioner
JPH1130494A (en) Heat exchange device and air conditioner using the device
KR101669970B1 (en) Air conditioner
JP6584668B2 (en) Refrigeration cycle equipment
JP6608946B2 (en) Air conditioner and outdoor unit of air conditioner
JP6921323B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle equipment
JP2006132847A (en) Heat exchanger, and outdoor unit for air conditioner equipped with the same
JP2005308252A (en) Heat exchanger and air-conditioner outdoor unit equipped therewith
JP2004144344A (en) Heat pump hot water supply device