WO2020084725A1 - 空気冷媒式冷凍システム - Google Patents

空気冷媒式冷凍システム Download PDF

Info

Publication number
WO2020084725A1
WO2020084725A1 PCT/JP2018/039593 JP2018039593W WO2020084725A1 WO 2020084725 A1 WO2020084725 A1 WO 2020084725A1 JP 2018039593 W JP2018039593 W JP 2018039593W WO 2020084725 A1 WO2020084725 A1 WO 2020084725A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
refrigeration system
temperature
expansion turbine
refrigerant
Prior art date
Application number
PCT/JP2018/039593
Other languages
English (en)
French (fr)
Inventor
吉田 純
雄三 佐藤
剛嗣 渡邊
Original Assignee
株式会社日立プラントメカニクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立プラントメカニクス filed Critical 株式会社日立プラントメカニクス
Priority to PCT/JP2018/039593 priority Critical patent/WO2020084725A1/ja
Publication of WO2020084725A1 publication Critical patent/WO2020084725A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point

Definitions

  • the present invention is an air-refrigerant refrigeration system that does not contain ozone-depleting components (such as CFC refrigerants), which has improved operability and practical use.
  • ozone-depleting components such as CFC refrigerants
  • an air-refrigerant using an expansion turbine compressor for example, an air-refrigerant using an expansion turbine compressor.
  • Type refrigeration system for example, an air-refrigerant using an expansion turbine compressor.
  • Air-refrigerant refrigeration systems using expansion turbine compressors have been proposed and put into practical use because they have the advantage of not containing ozone-depleting components (such as CFC refrigerants) (see Patent Documents 1 and 2, for example). .).
  • the conventional air-refrigerant refrigeration system employs an open circuit that directly supplies the low-temperature air generated in the expansion turbine to the frozen product, the temperature of the target refrigeration load (generally ⁇ 40 ° C. or higher), Since the effective range of the air-refrigerant refrigeration system is different, there is a problem that the thermal efficiency (COP) of the system is disadvantageous. Further, in the case of an open cycle, a dehumidifying device that removes water in the circulating air was essential.
  • the air-refrigerant refrigeration system using the conventional expansion turbine compressor has the following problems. (1) Since the temperature of the target refrigeration load (generally ⁇ 40 ° C. or higher) and the effective range of the air-refrigerant refrigeration system are different, the system thermal efficiency (COP) is disadvantageous. (2) In the case of an open cycle, a dehumidifying device that removes water from the circulating air was essential. (3) The expansion turbine compressor alone with electric assist cannot raise the expansion turbine inlet pressure sufficiently, so that the system thermal efficiency (COP) is disadvantageous. (4) The expansion turbine compressor with electric assist is complicated in structure and costly. (5) The process for actively recovering low temperature cold heat is not in place.
  • the present invention solves the above problems (1) to (5) to improve the system thermal efficiency (COP). It is an object of the present invention to provide an air-refrigerant refrigeration system made possible.
  • the air-refrigerant refrigeration system of the present invention uses air as a working fluid, and in an air-refrigerant refrigeration system that generates necessary cold in the process of adiabatic expansion, the temperature of the refrigerating unit in a predetermined temperature range. It is characterized in that a regenerator for operation is provided in the heat exchange section between the freezing section and the outlet side of the adiabatic expansion process.
  • the transfer of cold heat in the cold storage tank can be performed by absorbing the latent heat of the cold storage medium.
  • heat is exchanged between the return air from the heat exchange section and the brake line connecting the compressor of the expansion turbine compressor unit and the expansion turbine with a heat exchanger to lower the temperature on the outlet side of the expansion turbine and at the same time
  • the temperature of the return air from the exchange section can be raised.
  • return air from the heat exchange section can be introduced into the compressor of the expansion turbine compressor unit via the air compressor.
  • FIG. 1 to 4 show an embodiment of the air-refrigerant refrigeration system of the present invention.
  • This air-refrigerant refrigeration system uses an air as a working fluid, and uses an expansion turbine compressor unit 1 in an air-refrigerant refrigeration system that generates necessary refrigeration in the process of adiabatic expansion, and the temperature of a refrigerating section 9 is set within a predetermined temperature range.
  • the cold storage tank 5 for operation is provided in the heat exchange section between the freezing section 9 and the outlet side of the process of adiabatic expansion of the expansion turbine 2.
  • air that does not contain ozone layer depleting components such as CFC refrigerant
  • dry air with low humidity is used. Since this air-refrigerant refrigeration system has a completely closed cycle as a whole, low-temperature air is not blown and circulated directly into a large refrigerating warehouse space as in the past. Therefore, no equipment such as a dehumidifying device is provided in the suction line because it does not suck in and recirculate the outside air.
  • Normal temperature hereinafter, temperature and the like (the same applies to other temperatures and pressures)
  • the circulating air of 1) is pressurized by the external compressor 4, cooled to 40 ° C. or lower by the air-cooled or water-cooled before cooler 10, and enters the expansion turbine compressor unit 1.
  • the external compressor 4 a general-purpose compressor such as a screw compressor can be used.
  • the expansion turbine compressor unit 1 is composed of an integrally rotating rotating body composed of an expansion turbine 2 provided with an impeller and a compressor (or a brake) 3 on the opposite side thereof, and by adiabatically expanding by the expansion turbine 2, The enthalpy drop (temperature drop) of the fluid is performed by taking out the energy of the fluid as external work.
  • the circulating air whose pressure has been raised by the compressor 3 and whose temperature has risen is primarily cooled by an air-cooled or water-cooled aftercooler 7 and heat-exchanged with the return air from the low-temperature portion in the low-temperature recovery heat exchanger 6 to reach the expansion turbine inlet temperature. And enters the expansion turbine 2, and due to adiabatic expansion, the temperature drops to the freezing section temperature.
  • This expansion turbine inlet temperature can be set to about 30 ° C to 5 ° C depending on the system design. As an example, when 9 ata of air at 30 ° C. is supplied to the expansion turbine 2, the expansion turbine outlet temperature drops to ⁇ 74.4 ° C. at an efficiency of 75%.
  • the circulating air having a low temperature is guided to the cold storage tank 5 and is stored at a low temperature.
  • a refrigeration load is applied to this, and the amount of cold heat equivalent to the received heat is released from the cold storage tank 5, and the enthalpy corresponding to that amount is increased in the entire system of the cold storage tank 5.
  • cold heat is stored at a temperature (for example, -60 ° C to -75 ° C) lower than the required temperature (for example, -40 ° C) of the freezing unit 9 on the demand side, which is required by the demand side.
  • the amount of cold heat according to the refrigeration load is sequentially released to transfer heat.
  • the temperature of the return air from the cold storage tank is recovered by the low temperature recovery heat exchanger 6 (cooling of the expansion turbine inlet side air), but the outside air temperature is increased in order to exhaust more heat from the expansion turbine compressor unit 1 side.
  • the temperature is recovered up to the above.
  • This return air is effectively exhausted by cooling water or the like in the suction cooler 8 of the external compressor 4 so that the intake air temperature becomes optimum for the external compressor 4.
  • FIG. 2 is an explanatory diagram of a system process of this air-refrigerant refrigeration system
  • FIG. 3 is an explanatory diagram of an example of a cold recovery process of the air-refrigerant refrigeration system
  • FIG. 4 is a comparison diagram of system thermal efficiency (COP). ) Is shown.
  • COP system thermal efficiency
  • an air-refrigerant refrigeration system cannot utilize latent heat of the refrigerant as compared with a conventional CFC refrigerant system, and therefore the thermal efficiency (COP) as a refrigerator is inferior at a refrigeration temperature of ⁇ 60 ° C. or higher.
  • the cold storage tank 5 is provided in order to make the efficiency as good as possible in the operation region of -60 ° C or higher.
  • the system thermal efficiency (COP) can be improved by using the cold storage tank 5 and the external compressor 4 together.
  • COP system thermal efficiency
  • the dehumidifying device that removes the moisture of the circulating air can be omitted by using a closed circulation circuit.
  • a buffer tank (not shown) that absorbs the difference in density of air at high and low temperatures.
  • the external compressor 4 is provided and the expansion turbine compressor unit 1 itself has a simple structure, whereby the overall efficiency is improved and the cost is suppressed. In particular, a sufficient increase in the air pressure by the external compressor 4 has a great effect on improving the system efficiency. Further, the expansion turbine compressor unit 1 established by the technology such as the air separation device so far can be applied as it is.
  • the problem (5) by providing the low-temperature recovery heat exchanger 6, the energy taken out by the expansion turbine compressor unit 1 can be released to the outside (water cooling or air cooling) in a higher temperature region, so that the system efficiency (COP) is improved.
  • the present invention is not limited to the configurations described in the above embodiments, and instead of the expansion turbine compressor unit 1, for example. It is also applicable to a system using a general expander (reciprocating, rotary, scroll-type expander, etc.), and its configuration can be appropriately changed without departing from the spirit thereof. .
  • the air-refrigerant refrigeration system of the present invention has a characteristic that the system thermal efficiency (COP) can be increased, it can be suitably used for various air-refrigerant refrigeration system applications.
  • COP system thermal efficiency
  • Expansion turbine compressor unit 2 Expansion turbine 3 Compressor (brake) 4 External compressor 5 Cooling storage tank 6 Low temperature recovery heat exchanger 7 After cooler 8 Suction cooler 9 Refrigerator 10 Before cooler

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)

Abstract

システム熱効率(COP)を高めることができるようにした空気冷媒式冷凍システムを提供するため、空気を作動流体とし、断熱膨張のプロセスで必要寒冷を発生させる空気冷媒式冷凍システムにおいて、膨張タービンコンプレッサユニット1を用い、冷凍部9の温度を所定の温度領域で運転させるための蓄冷槽5を、冷凍部9と膨張タービン2の断熱膨張のプロセスの出口側との熱交換部に備える。

Description

空気冷媒式冷凍システム
 本発明は、オゾン層破壊成分(フロン冷媒等)を含まない空気冷媒式冷凍システムにおいて、運用性や実用を向上させたことを特徴とするシステムであり、例えば、膨張タービンコンプレッサを用いた空気冷媒式冷凍システムに関するものである。
 膨張タービンコンプレッサを用いた空気冷媒式冷凍システムは、オゾン層破壊成分(フロン冷媒等)を含まない利点を有することから、数多く提案され、実用に供されている(例えば、特許文献1~2参照。)。
 ところで、従来の空気冷媒式冷凍システムは、膨張タービンで発生した低温空気を直接冷凍物へ供給するオープン回路を採用しているため、対象とする冷凍負荷の温度(一般に-40℃以上)と、空気冷媒式冷凍システムの有効な範囲が異なるため、システムの熱効率(COP)が不利であるという問題があった。
 また、オープンなサイクルの場合は、循環空気の水分を除去する脱湿装置が必須であった。
 また、特許文献2のように、膨張タービンコンプレッサに電動機機能を持たせてモータアシストにより、空気を昇圧する空気冷媒式冷凍システムでは、空気の圧量上昇に限界があり、結果として膨張タービンの膨張比が稼げず、冷凍能力が不利になるという問題があった。
 さらに、対象とする冷凍負荷の温度(一般に-40℃以上)に合わせた運転を行うと、膨張タービンの膨張効率点から外れることと、低温からの戻り空気が高い温度となるため、寒冷エネルギを使って膨張タービン入口温度を下げることはできないため、システムの熱効率(COP)が不利であるという問題があった。
特開2006-118773号公報 特開2007-71507号公報
 このように、上記従来の膨張タービンコンプレッサを用いた空気冷媒式冷凍システムにおいては、以下の課題があった。
(1)対象とする冷凍負荷の温度(一般に-40℃以上)と、空気冷媒式冷凍システムの有効な範囲が異なるため、システム熱効率(COP)が不利である。
(2)オープンなサイクルの場合は、循環空気に水分を除去する脱湿装置が必須であった。
(3)電動アシスト付の膨張タービンコンプレッサ単独では、膨張タービン入口圧力が十分に上げられないため、システム熱効率(COP)が不利である。
(4)電動アシスト付の膨張タービンコンプレッサは構造が複雑になりコスト高になる。
(5)積極的に低温冷熱を回収するプロセスになっていない。
 本発明は、上記従来の膨張タービンコンプレッサを用いた空気冷媒式冷凍システムの有する問題点に鑑み、上記(1)~(5)の課題を解消することで、システム熱効率(COP)を高めることができるようにした空気冷媒式冷凍システムを提供することを目的とする。
 上記目的を達成するため、本発明の空気冷媒式冷凍システムは、空気を作動流体とし、断熱膨張のプロセスで必要寒冷を発生させる空気冷媒式冷凍システムにおいて、冷凍部の温度を所定の温度領域で運転させるための蓄冷槽を、冷凍部と断熱膨張のプロセスの出口側との熱交換部に備えてなることを特徴とする。
 この場合において、蓄冷槽での冷熱の授受を、蓄冷媒体の潜熱吸収で行うことができる。
 また、熱交換部からの戻り空気と、膨張タービンコンプレッサユニットのコンプレッサと膨張タービンとを繋ぐブレーキラインとの間で熱交換器により熱交換させ、膨張タービン出口側の温度を降下させると同時に、熱交換部からの戻り空気の温度を上昇させることができる。
 また、熱交換部からの戻り空気を空気圧縮機を介して、膨張タービンコンプレッサユニットのコンプレッサに導入するようにすることができる。
 本発明の空気冷媒式冷凍システムによれば、上記(1)~(5)の課題を解消することで、システム熱効率(COP)を高めることができるようにした空気冷媒式冷凍システムを提供することができる。
本発明の空気冷媒式冷凍システムのシステムフローの概念図である。 同空気冷媒式冷凍システムのシステムプロセスの説明図である。 同空気冷媒式冷凍システムの寒冷回収プロセスの事例の説明図表である。 システム熱効率(COP)の比較図表である。
 以下、本発明の空気冷媒式冷凍システムの実施の形態を、図面に基づいて説明する。
 図1~図4に、本発明の空気冷媒式冷凍システムの一実施例を示す。
 この空気冷媒式冷凍システムは、空気を作動流体とし、断熱膨張のプロセスで必要寒冷を発生させる空気冷媒式冷凍システムにおいて、膨張タービンコンプレッサユニット1を用い、冷凍部9の温度を所定の温度領域で運転させるための蓄冷槽5を、冷凍部9と膨張タービン2の断熱膨張のプロセスの出口側との熱交換部に備えるようにしている。
 空気冷媒式冷凍システムを循環する冷媒には、オゾン層破壊成分(フロン冷媒等)を含まない空気、より具体的には、低湿度の乾燥空気を用いるようにしている。
 この空気冷媒式冷凍システムは、全体を完全クローズサイクルとしているため、従来のような、大きな冷凍倉庫空間に対して、直接、低温空気を吹き出し循環するものではない。したがって、外気を吸気し再循環するものではないため、吸入ラインに脱湿装置等の設備は設けていない。
 常温(以下、温度等(他の温度や圧力も同様。)は、あくまでも一例であって、本発明の空気冷媒式冷凍システムの稼働条件は、記載の温度等に限定されるものいではない。)の循環空気は、外部圧縮機4により昇圧され、空冷又は水冷のビフォアークーラー10によって40℃以下に冷却され、膨張タービンコンプレッサユニット1に入る。
 ここで、外部圧縮機4には、スクリュー式圧縮機等の汎用の圧縮機を用いることができる。
 膨張タービンコンプレッサユニット1は、インペラを備えた膨張タービン2と、その反対側にコンプレッサ(又はブレーキ)3とで構成された一体に回転する回転体からなり、膨張タービン2で断熱膨張することにより、流体のエネルギを外部仕事として取り出すことで、流体のエンタルピ降下(温度降下)を行うものである。
 コンプレッサ3で昇圧され、温度上昇した循環空気は、空冷又は水冷のアフタークーラー7によって一次冷却され、低温回収熱交換器6で、低温部分からの戻り空気と熱交換し、膨張タービン入口温度となって膨張タービン2に入り、断熱膨張により、冷凍部温度まで温度降下する。
 この膨張タービン入口温度は、システムの設計により、30℃~5℃程度にすることが可能である。一例として、30℃の9ataの空気が膨張タービン2に供給された場合、効率75%では、膨張タービン出口温度は-74.4℃まで温度降下する。
 低温になった循環空気は、蓄冷槽5に導かれ、低温蓄冷される。ここに冷凍負荷がかかり、蓄冷槽5から受熱分の冷熱量が放出され、蓄冷槽5の全体系においてその分のエンタルピだけ上昇する。
 蓄冷槽5においては、需要側の冷凍部9の要求温度(例えば、-40℃。)より低い温度(例えば、-60℃~-75℃。)で冷熱が蓄えられており、需要側の必要冷凍負荷に応じた冷熱量を順次放出して熱輸送を行う。
 この部位に、蓄冷槽の媒体として、低温での固相/液相の融解潜熱を利用した蓄冷材を用いることにより、より多くの冷熱の吸収/放出を行うことができる。
 したがって、より広い温度範囲で効率的な冷凍運転と、より広い冷凍運転温度範囲を実現することが可能となる。
 蓄冷槽からの戻り空気は、低温回収熱交換器6にて温度回復(膨張タービン入口側空気の冷却)がなされるが、膨張タービンコンプレッサユニット1側からより多くの排熱を行うために外気温度以上まで温度回復させる。
 この戻り空気は、外部圧縮機4のサクションクーラー8にて、冷却水等で有効に排熱され、外部圧縮機4に最適な吸入空気温度になるようにする。
 図2に、この空気冷媒式冷凍システムのシステムプロセスの説明図、図3に同空気冷媒式冷凍システムの寒冷回収プロセスの事例の説明図、図4に、システム熱効率(COP)の比較図(図表)を示す。
 一般に空気冷媒式冷凍システムは、従来のフロン冷媒方式に対し、冷媒の潜熱を利用できないことから、冷凍機としての熱効率(COP)は、冷凍温度が-60℃以上では、その冷凍効率が劣る。これを、-60℃以上の運用領域で少しでも効率を遜色ないものにするために、蓄冷槽5を設けるようにしている。
 熱負荷に対して時間積分的に十分な容量を持つ蓄冷槽5を組み込むようにすることによって、膨張タービン2による冷媒温度が-70℃~-90℃であっても、冷熱を-40℃程度で取り出すことで、システム的に有効性を確保することができるようにしたものである。
 さらに、図3~図4に示すように、システムの最低温度(膨張タービン出口温度)が低いほど、従来式より優位なCOP点での運転ができるため、組み込む膨張タービンの最適な点での運転を行うことができるものとなる。
 以下、この空気冷媒式冷凍システムの作用効果について、上記の課題(1)~(5)に対応させて記載する。
 課題(1)については、蓄冷槽5及び外部圧縮機4の併用により、システム熱効率(COP)を改善することができる。
 特に、蓄冷槽5の媒体に、低温での固相/液相の融解潜熱を利用した蓄冷材を用いることにより、より多くの冷熱の吸収/放出を行うことができる。したがってより広い温度範囲で効率的な冷凍運転を実現することが可能となる。
 課題(2)については、クローズな循環回路にすることにより、循環空気の水分を除去する脱湿装置を省略することができる。なお、空気の高低温の密度差を吸収するバッファータンク(図示省略)を設けることが好ましい。
 課題(3)及び(4)については、外部圧縮機4を設け、膨張タービンコンプレッサユニット1自体をシンプルな構造にすることで、全体の効率アップとコスト抑制が図られる。特に、外部圧縮機4による十分な空気圧の上昇が、システム効率向上に寄与する効果は大きい。また、これまでの空気分離装置等の技術で確立された膨張タービンコンプレッサユニット1をそのまま適用することができる。
 課題(5)については、低温回収熱交換器6を設けることで、膨張タービンコンプレッサユニット1で取り出したエネルギをより温度の高い領域で外部に放出(水冷又は空冷)できるため、よりシステム効率(COP)上有利になるシステムを提供することができる。さらに、低温部からの戻り空気側の出口温度を外気温度以上にすることで、よりタービン入口温度の降下に寄与すると同時に、より高温で外部排熱できるため、システム効率(COP)を向上することができる。
 以上、本発明の空気冷媒式冷凍システムについて、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、例えば、膨張タービンコンプレッサユニット1に代えて、一般の膨張機(往復動、ロータリー、スクロール式等の膨張機)を使用したシステムにも応用が可能である等、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。
 本発明の空気冷媒式冷凍システムは、システム熱効率(COP)を高めることができるという特性を有していることから、各種の空気冷媒式冷凍システムの用途に好適に用いることができる。
 1 膨張タービンコンプレッサユニット
 2 膨張タービン
 3 コンプレッサ(ブレーキ)
 4 外部圧縮機
 5 蓄冷槽
 6 低温回収熱交換器
 7 アフタークーラー
 8 サクションクーラー
 9 冷凍部
 10 ビフォアークーラー

Claims (4)

  1.  空気を作動流体とし、断熱膨張のプロセスで必要寒冷を発生させる空気冷媒式冷凍システムにおいて、冷凍部の温度を所定の温度領域で運転させるための蓄冷槽を、冷凍部と断熱膨張のプロセスの出口側との熱交換部に備えてなることを特徴とする空気冷媒式冷凍システム。
  2.  請求項1に記載の空気冷媒式冷凍システムにおいて、蓄冷槽での冷熱の授受を、蓄冷媒体の潜熱吸収で行うことを特徴とする空気冷媒式冷凍システム。
  3.  請求項1又は2に記載の空気冷媒式冷凍システムにおいて、熱交換部からの戻り空気と、膨張タービンコンプレッサユニットのコンプレッサと膨張タービンとを繋ぐブレーキラインとの間で熱交換器により熱交換させ、膨張タービン出口側の温度を降下させると同時に、熱交換部からの戻り空気の温度を上昇させることを特徴とする空気冷媒式冷凍システム。
  4.  請求項1、2又は3に記載の空気冷媒式冷凍システムにおいて、熱交換部からの戻り空気を空気圧縮機を介して、膨張タービンコンプレッサユニットのコンプレッサに導入するようにすることを特徴とする空気冷媒式冷凍システム。
PCT/JP2018/039593 2018-10-25 2018-10-25 空気冷媒式冷凍システム WO2020084725A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/039593 WO2020084725A1 (ja) 2018-10-25 2018-10-25 空気冷媒式冷凍システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/039593 WO2020084725A1 (ja) 2018-10-25 2018-10-25 空気冷媒式冷凍システム

Publications (1)

Publication Number Publication Date
WO2020084725A1 true WO2020084725A1 (ja) 2020-04-30

Family

ID=70331967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039593 WO2020084725A1 (ja) 2018-10-25 2018-10-25 空気冷媒式冷凍システム

Country Status (1)

Country Link
WO (1) WO2020084725A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1047829A (ja) * 1996-07-29 1998-02-20 Nippon Sanso Kk 冷凍倉庫における被冷凍物の冷凍方法及び装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1047829A (ja) * 1996-07-29 1998-02-20 Nippon Sanso Kk 冷凍倉庫における被冷凍物の冷凍方法及び装置

Similar Documents

Publication Publication Date Title
CN103221760B (zh) 制冷装置
CN110044093B (zh) 双级压缩中间补气co2三级回热冷却热泵/制冷系统
JP4553964B2 (ja) 通信装備用冷房装置及びその制御方法
CN1928461A (zh) 冷却系统
CN101366185B (zh) 通信装置用制冷设备及其控制方法
JP2010271000A (ja) 蓄熱式冷凍システム
JP5323023B2 (ja) 冷凍装置
JP2009300000A (ja) 冷凍冷蔵庫及び冷却庫
WO2016058365A1 (zh) 空调机组及运行方法
WO2021089000A1 (zh) 一种跨临界二氧化碳制冷方法及其装置
JP2007278666A (ja) 二元冷凍装置
JP2007178072A (ja) 車両用空調装置
JP2007051841A (ja) 冷凍サイクル装置
KR101105518B1 (ko) 친환경 에너지절약 사계절용 냉방시스템
WO2020084725A1 (ja) 空気冷媒式冷凍システム
JP2007051788A (ja) 冷凍装置
CA3065989A1 (en) Cooling system
KR100756880B1 (ko) 냉장고의 냉각장치
US9810457B2 (en) Air conditioner
KR100634606B1 (ko) 연료전지 시스템 및 연료전지 스택 냉각장치
CN210128524U (zh) 一种用于内藏式展示柜的多级换热风冷散热系统
JP2010249444A (ja) 冷凍冷蔵庫
JP6613404B2 (ja) 冷凍システム
CN114963600B (zh) 一种多模式切换的co2热管冷却系统及控制方法
CN114440490B (zh) 一种冷水机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP