WO2020083826A1 - Procede de coordination de consignes de suralimentation et de recirculation des gaz d'echappement dans un dispositif de traction pour vehicule automobile - Google Patents

Procede de coordination de consignes de suralimentation et de recirculation des gaz d'echappement dans un dispositif de traction pour vehicule automobile Download PDF

Info

Publication number
WO2020083826A1
WO2020083826A1 PCT/EP2019/078548 EP2019078548W WO2020083826A1 WO 2020083826 A1 WO2020083826 A1 WO 2020083826A1 EP 2019078548 W EP2019078548 W EP 2019078548W WO 2020083826 A1 WO2020083826 A1 WO 2020083826A1
Authority
WO
WIPO (PCT)
Prior art keywords
setpoint
engine
gas recirculation
exhaust gas
turbocharger
Prior art date
Application number
PCT/EP2019/078548
Other languages
English (en)
Inventor
Cedric LEFEVRE
Vincent-Pierre AVONS
Luc Pereira
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Publication of WO2020083826A1 publication Critical patent/WO2020083826A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/32Air-fuel ratio control in a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2700/00Mechanical control of speed or power of a single cylinder piston engine
    • F02D2700/02Controlling by changing the air or fuel supply
    • F02D2700/0217Controlling by changing the air or fuel supply for mixture compressing engines using liquid fuel
    • F02D2700/022Controlling the air or the mixture supply as well as the fuel supply
    • F02D2700/0223Engines with fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/07Mixed pressure loops, i.e. wherein recirculated exhaust gas is either taken out upstream of the turbine and reintroduced upstream of the compressor, or is taken out downstream of the turbine and reintroduced downstream of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates, in general, to the supercharging and recirculation of exhaust gases in a traction device of a motor vehicle.
  • the invention relates to a method for coordinating boost instructions and exhaust gas recirculation instructions in a motor vehicle traction device comprising an internal combustion engine operating in lean mixture, in particular a combustion engine. diesel type, and a turbocharger.
  • Supercharging consists in promoting the filling rate of the cylinders by introducing air into the intake manifold at a pressure higher than atmospheric pressure thanks to a turbocharger, and results in the increase of the engine power at a speed of similar rotation.
  • an exhaust gas recirculation technique called “EGR” from the English “Exhaust Gas Recirculation” consists in redirecting part of the exhaust gas to the intake manifold, which lowers the combustion temperature and reduces the amount of oxygen in the cylinders and, therefore, reduces NOx emissions.
  • the operation of the engine in particular its speed and its torque, can be regulated by the amount of air admitted into the intake manifold, by compressing the gases more or less thanks to the turbocharger, by the amount of exhaust gas. recycled to the engine intake, by controlling a valve, and by the quantity of fuel injected into the cylinders by controlling the opening of the injectors.
  • turbocharger is subjected to thermomechanical constraints limiting its compression capacity and thus limiting the boost pressure and / or the compression ratio.
  • the intake temperature T coi is likely to increase, leading to a decrease in the density of the air admitted. It is therefore necessary to increase the boost pressure P coi in order to keep a constant admitted air mass for the production of a torque and in order to maintain a constant level of richness guaranteeing a controlled NOx emission.
  • the exhaust back pressure can in particular vary with the soot loading of the particulate filter with which the traction device of the motor vehicle can be fitted, downstream of a turbine of the turbocharger. It is therefore appropriate to maintain the same mass of air admitted for the production of the torque and to ensure a constant level of richness guaranteeing a controlled emission, to have a constant compression rate.
  • this increase in compression ratio ends up coming up against limits of the turbocharger relating to thermomechanical constraints linked, for example: to the maximum rotation speed of the turbocharger, with the risk for the turbocharger to return in a so-called pumping area; at the maximum compression ratio, with a risk of overspeed which can cause mechanical breakage; at the maximum temperature downstream of the compressor, with a risk of oil coking and a risk of resistance of the air ducts located downstream of the compressor; at the temperature upstream of the turbocharger turbine.
  • This increase in the compression ratio can also come up against limits linked to the maximum pressure upstream of the turbine which can cause the engine exhaust valves to re-open if it is exceeded.
  • the supercharging instructions as well as the method for coordinating the supercharging and exhaust gas recirculation instructions must be adapted to the limits of the turbocharger.
  • the invention therefore relates to a method for coordinating the supercharging instructions and the gas recirculation instructions taking into account the thermomechanical limits of the turbocharger.
  • a method for coordinating instructions for supercharging and recirculating exhaust gases in a traction device for a motor vehicle comprising an internal combustion engine operating in lean mixture and a turbocharger, the method comprising: establishing '' a setpoint for the mass of fresh air entering the engine; the establishment of an exhaust gas recirculation rate setpoint; establishing a setpoint for the quantity of fuel injected into one or more cylinders of the engine; determining a boost pressure setpoint in an engine intake manifold, determined as a function of the fresh air mass setpoint entering the engine and the exhaust gas recirculation rate setpoint, for applying a predetermined power to the engine; establishing a maximum allowable wealth deposit; and adjusting the exhaust gas recirculation rate setpoint when the boost pressure is lower than the determined boost pressure setpoint, in order to maintain a wealth value less than or equal to the maximum admissible wealth setpoint.
  • the method of coordinating instructions for supercharging and recirculation of the exhaust gases comprises the establishment of a setpoint for a minimum rate of recirculation of the exhaust gases and the reduction of the setpoint for the quantity of fuel injected when the adjusted exhaust gas recirculation rate setpoint has reached the minimum exhaust gas recirculation rate setpoint.
  • the value of the minimum exhaust gas recirculation rate setpoint is defined as a function of the engine speed and torque, of the type of partial recycling of the exhaust gases at the intake which is used ( high pressure and / or low pressure) and the minimum flow rate of said recycled gases which can be controlled by the corresponding adjustment actuator (s) (valves). It can possibly be equal to zero.
  • the method can comprise the determination of a maximum boost pressure setpoint which can be generated by the turbocharger from the setpoints of mass of fresh air entering the engine, rate of recirculation of exhaust gases, quantity injected fuel, maximum admissible richness and as a function of at least one parameter limiting the operation of the turbocharger.
  • the maximum boost pressure is determined as a function of at least one parameter limiting the operation of the turbocharger from: the ambient temperature, the altitude and the exhaust back pressure.
  • the method may include calculating an air flow rate actually admitted by the engine as a function of the current boost pressure and the current exhaust gas recirculation rate.
  • the method may include adjusting the quantity of injected fuel as a function of the air flow rate actually admitted. calculated and the adjusted exhaust gas recirculation rate setpoint.
  • FIG. 1 illustrates a traction device for a motor vehicle comprising a diesel engine and a turbocharger
  • FIG. 2 illustrates a method of coordinating instructions for supercharging and recirculation of exhaust gases in an engine for a motor vehicle comprising a turbocharger, according to the invention
  • FIGS. 3a, 3b, 3c and 3d illustrate respectively, the evolution of the mass of fresh air entering the engine, the boost pressure, the richness and the recirculation rate of the exhaust gases, in function of time, during different stages of a method of coordinating instructions for supercharging and recirculation of exhaust gases, under conditions of progressive incapacitation of the turbocharger.
  • FIG. 1 illustrates a traction device for a motor vehicle comprising a combustion engine 1 and a turbocharger 2.
  • the engine is a four-cylinder diesel engine comprising a variable geometry turbocharger.
  • the engine is an engine which operates in a lean mixture, that is to say more precisely, at a richness of less than 1, the engine torque being adjusted by adjusting a more or less quantity of fuel injected into the engine, in proportions relative to the quantity of air which are less than the stoichiometric proportions.
  • Each cylinder is advantageously equipped with a fuel injector for injecting a quantity of fuel Q ln j into the engine.
  • An intake circuit 3 allows the admission of air into the cylinders of the engine 1 and an exhaust circuit 4 allows the exhaust of the gases produced after combustion.
  • a compressor 5 of the turbocharger is arranged upstream of the cylinders and is configured to compress the air passing through it.
  • An air cooler can be placed downstream of the compressor to cool the air whose temperature has increased during its compression.
  • An intake flap 7 makes it possible to control the admission of air into an intake manifold 8 of the intake circuit 3 where there is a boost pressure P coi and a temperature T coi .
  • the exhaust gases leave in an exhaust manifold 9 of the exhaust circuit 4 and go to a turbine 6 of the turbocharger, arranged downstream of the cylinders and configured to relax the air passing through it.
  • depollution devices such as a catalyst 10 and a particle filter 11 are also arranged, downstream of the turbine 6.
  • the traction device comprises at least one exhaust gas recirculation circuit, EGR.
  • the traction device comprises a high-pressure exhaust gas recirculation circuit 12 configured to take at least part of the exhaust gases from the exhaust manifold, downstream of the engine 1 and upstream turbine 6, and redirect them upstream of engine 1 and downstream of compressor 5.
  • the traction device also comprises a low pressure exhaust gas recirculation circuit 13 configured to take at least part of the exhaust gases from the exhaust manifold, downstream of the turbine 6, and advantageously in downstream of the pollution control devices, and redirect them upstream of the compressor 5.
  • a low pressure exhaust gas recirculation circuit 13 configured to take at least part of the exhaust gases from the exhaust manifold, downstream of the turbine 6, and advantageously in downstream of the pollution control devices, and redirect them upstream of the compressor 5.
  • the quantity of gases redirected via the high-pressure 12 and low-pressure recirculation circuits 13 is advantageously controlled by a valve, respectively 14 and 15.
  • the quantity of low-pressure exhaust gases recycled at the intake can also be controlled by a valve at the engine exhaust, that is to say by a valve mounted in the exhaust circuit 4 of the engine, at a point located downstream of the point of sampling said gases low pressure exhaust recycled to intake. The closing of such a valve is capable of creating an exhaust back pressure and of forcing the circulation of said gases in the low pressure recirculation circuit 13.
  • FIG. 2 illustrates a method for coordinating instructions for supercharging and recirculating exhaust gases.
  • the method comprises establishing a setpoint for the mass of fresh air entering the engine Q a ir, a setpoint for the rate of recirculation of the exhaust gases z egr and a setpoint for the quantity of fuel injected Q ln j in the engine cylinders 1.
  • setpoint is meant an imposed value of a parameter to which it is applied.
  • a boost pressure setpoint P coi in the intake manifold 8 of the engine 1 is determined as a function of the setpoints for the mass of fresh air entering the engine Q a; r and the recirculation rate of the exhaust gases.
  • z egr exhaust for applying a predetermined power to engine 1.
  • a maximum admissible richness setpoint Ri max not to be exceeded is also established and, when the boost pressure P coi is lower than the boost pressure setpoint P coi determined, the method comprises the determination 16 of a rate setpoint of exhaust gas recirculation z egr adjusted to maintain the richness value less than or equal to the maximum admissible richness setpoint Ri max .
  • the value of the exhaust gas recirculation rate z egr is advantageously reduced to a minimum rate, which can be determined according to the engine speed and torque, the type of recirculation circuit 12, 13 and the minimum flow rate of said recycled gas which can be controlled by a valve 14, 15. It corresponds to a maximum admissible quantity of NOx.
  • the maximum admissible richness setpoint Ri max can be adjusted according to the engine operating point and the character dynamic or static, in other words, whether the engine operating point is a transient or stabilized point.
  • the coordination method comprises the establishment of a setpoint for the minimum rate of recirculation of the exhaust gases T eg rmin.
  • the method comprises determining 17 an amount of fuel injected Q ln j adjusted.
  • the value of the quantity of fuel Q ln j is advantageously reduced.
  • the value of the minimum exhaust gas recirculation rate setpoint r eg rmin is strictly greater than zero.
  • the coordination method comprises the determination of a maximum boost pressure setpoint P coimax that can be generated by the turbocharger 2 by taking into account at least one parameter capable of affecting the operation of the turbocharger 2.
  • This maximum boost pressure setpoint P C oimax achievable taking into account the limitations of the turbocharger 2 can advantageously be calculated from the setpoints of mass of fresh air passing through the compressor and entering the engine Q a ir, of gas recirculation rate exhaust r egr , quantity of fuel injected Q inj, and maximum admissible richness Ri max .
  • the maximum boost pressure P co im ax is preferably determined as a function of at least one parameter limiting the operation of the turbocharger 2.
  • FIG. 3 illustrates an embodiment of a method for coordinating instructions for supercharging and gas recirculation exhaust in conditions of limitations of the operation of the turbocharger 2 and in particular illustrates different stages implemented according to the progressive incapacity of the turbocharger 2 facing, for example, at altitude, ambient temperature or back pressure at the exhaust which increases compared to standard conditions in which for example the ambient temperature is equal to 20 ° C and the altitude of zero meters at sea level.
  • the turbocharger 2 compensates for the limiting conditions and maintains a setpoint of mass of fresh air entering the engine Q a; r similar to a setpoint of mass of fresh air entering the engine Q a; r in standard conditions, as can be seen in Figure 3a.
  • the boost pressure P coi is maintained at a maximum boost pressure P co imax, in solid lines, or increased if necessary up to the maximum boost pressure P co imax, in dotted lines.
  • the richness is maintained at a value lower than the maximum admissible richness setpoint Ri max and the exhaust gas recirculation rate setpoint z egr , visible in FIG. 3d is maintained similar to a operation of the traction device under standard conditions. NOx emission is under control.
  • a second step 19 the conditions move further away from the standard conditions, and begin to limit the operation of the turbocharger 2, the mass of fresh air entering the engine Q a; r decreases as well as the boost pressure P coi which deviate from the maximum boost pressure setpoint P coimax -
  • a third step 20 under increasingly restrictive conditions of the operation of the turbocharger 2, the mass of fresh air entering the engine Q a; r and the boost pressure P coi have decreased, so that the richness has increased and reached the maximum admissible wealth setpoint Ri max .
  • the z egr exhaust gas recirculation rate setpoint is then adjusted and limited so that the richness is maintained at a value which does not exceed the maximum admissible richness setpoint
  • a fourth step 21 the conditions have become even more limiting and the mass of fresh air entering the engine Q a; r and the boost pressure P coi have further decreased.
  • the minimum gas recirculation rate setpoint e grmin is reached.
  • the gas recirculation rate setpoint T eg rmin can no longer be reduced.
  • the quantity of fuel injected Qi nj is then reduced, which results, in the last resort, in a reduction in the torque of the engine 1.
  • the set quantity of fuel injected Q ln j may be adjusted as a function of the calculated actual air flow calculated and of the current exhaust gas recirculation rate setpoint T eg r in order to best take into account the limitations of the turbocharger 2.
  • the method of coordinating the supercharging and recirculation of exhaust gas setpoints makes it possible to correlate the exhaust gas recirculation setpoint T egr and the supercharging capacity of the turbocharger 2 through a target of maximum richness admissible at not exceed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Un procédé de coordination de consignes de suralimentation et de recirculation des gaz d'échappement dans un dispositif de traction pour véhicule automobile comportant un moteur fonctionnant en mélange pauvre et un turbocompresseur, le procédé comprenant : l'établissement d'une consigne de masse d'air frais entrant dans le moteur (Qair); l'établissement d'une consigne de taux de recirculation des gaz d'échappement (T,,,); l'établissement d'une consigne de quantité de carburant injecté (Qinj) dans un ou plusieurs cylindres du moteur; la détermination d'une consigne de pression de suralimentation (Pcoi) dans un collecteur d'admission du moteur, déterminée en fonction de la consigne de masse d'air frais entrant dans le moteur (Qair) et de la consigne de taux de recirculation des gaz d'échappement (xegr), pour l'application d'une puissance prédéterminée au moteur; l'établissement d'une consigne de richesse maximale admissible (Rimax); et l'ajustement (16) de la consigne de taux de recirculation des gaz d'échappement (Tegr) lorsque la pression de suralimentation (Pcoi) est inférieure à la consigne de pression de suralimentation (Pcoi) déterminée, afin de maintenir une valeur de richesse inférieure ou égale à la consigne de richesse maximale admissible (Rimax).

Description

PROCEDE DE COORDINATION DE CONSIGNES DE SURALIMENTATION ET DE RECIRCULATION DES GAZ D'ECHAPPEMENT DANS UN DISPOSITIF DE
TRACTION POUR VEHICULE AUTOMOBILE
La présente invention se rapporte, de manière générale, à la suralimentation et à la recirculation des gaz d’échappement dans un dispositif de traction de véhicule automobile.
Plus précisément, l’invention se rapporte à un procédé de coordination de consignes de suralimentation et de consignes de recirculation des gaz d’échappement dans un dispositif de traction de véhicule automobile comprenant un moteur à combustion interne fonctionnant en mélange pauvre, notamment un moteur de type diesel, et un turbocompresseur.
Dans un véhicule automobile, il est fréquent d’augmenter les performances d’un moteur à combustion en procédant à sa suralimentation. La suralimentation consiste à favoriser le taux de remplissage des cylindres par introduction d’air dans le collecteur d’admission à une pression supérieure à la pression atmosphérique grâce à un turbocompresseur, et se traduit par l’augmentation de la puissance du moteur à une vitesse de rotation similaire.
Par ailleurs, les normes de dépollution courantes imposent un contrôle des émissions d’oxydes d’azote (NOx). A cet égard, une technique de recirculation des gaz d’échappement, dite « EGR » de l’anglais « Exhaust Gaz Recirculation », consiste en la redirection d’une partie des gaz d’échappement vers le collecteur d’admission, ce qui permet d’abaisser la température de combustion et de réduire la quantité d’oxygène dans les cylindres et, par conséquent, de diminuer les émissions de NOx.
Classiquement, le fonctionnement du moteur, notamment son régime et son couple, peuvent être réglés par la quantité d’air admise dans le collecteur d’admission, en comprimant plus ou moins les gaz grâce au turbocompresseur, par la quantité de gaz d’échappement recyclés à l’admission du moteur, en pilotant une vanne, et par la quantité de carburant injectée dans les cylindres en pilotant l’ouverture des injecteurs.
Cependant, les deux procédés de suralimentation et de recirculation des gaz d’échappement interagissent et leur mise en œuvre combinée est complexe.
De plus, le turbocompresseur est soumis à des contraintes thermomécaniques limitant sa capacité de compression et limitant ainsi la pression de suralimentation et/ou le taux de compression.
En effet, en altitude, la pression de l’air admis dans le moteur diminue. Afin de conserver la même masse d’air admise pour la production d’un couple identique à un couple obtenu à une altitude située au niveau de la mer (i. e. à une pression égale à 1 bar), et afin d’assurer un niveau de richesse constant garant d’un niveau d’émission de NOx maîtrisée, il est nécessaire d’augmenter le rapport de compression du compresseur du turbocompresseur afin de rester à une pression de suralimentation Pcoi constante.
En outre, par forte température ambiante, la température d’admission Tcoi est susceptible d’augmenter, conduisant à une baisse de la densité de l’air admis. Il convient donc d’augmenter la pression de suralimentation Pcoi afin de conserver une masse d’air admise constante pour la production d’un couple et afin de conserver un niveau de richesse constant garant d’une émission de NOx maîtrisée.
Enfin, la contre-pression à l’échappement, peut notamment varier avec le chargement en suies du filtre à particules dont le dispositif de traction du véhicule automobile peut être équipé, en aval d’une turbine du turbocompresseur. Il convient alors pour maintenir la même masse d’air admise pour la production du couple et assurer un niveau de richesse constant garant d’une émission maîtrisé, d’avoir un taux de compression constant.
Cependant, cette hausse de rapport de compression finit par se heurter à des limites du turbocompresseur relatives à des contraintes thermomécaniques liées, par exemple : au régime de rotation maximal du turbocompresseur, avec le risque pour le turbocompresseur de rentrer dans une zone dite de pompage ; au rapport de compression maximal, avec un risque de survitesse pouvant engendrer une casse mécanique ; à la température maximale en aval du compresseur, avec un risque de cokéfaction d’huile et un risque de résistance des conduits d’air situés en aval du compresseur ; à la température en amont de la turbine du turbocompresseur. Cette hausse du rapport de compression peut encore se heurter à des limites liées à la pression maximale en amont de la turbine pouvant engendrer la ré-ouverture des soupapes d’échappement du moteur si elle est dépassée.
Par conséquent, les consignes de suralimentation ainsi que le procédé de coordination des consignes de suralimentation et de recirculation des gaz d’échappement doivent être adaptées aux limites du turbocompresseur.
L’invention concerne alors un procédé permettant de coordonner les consignes de suralimentation et les consignes de recirculation des gaz en tenant compte des limites thermomécaniques du turbocompresseur.
Il est donc proposé un procédé de coordination de consignes de suralimentation et de recirculation des gaz d’échappement dans un dispositif de traction pour véhicule automobile comportant un moteur à combustion interne fonctionnant en mélange pauvre et un turbocompresseur, le procédé comprenant : l’établissement d’une consigne de masse d’air frais entrant dans le moteur ; l’établissement d’une consigne de taux de recirculation des gaz d’échappement ; l’établissement d’une consigne de quantité de carburant injecté dans un ou plusieurs cylindres du moteur ; la détermination d’une consigne de pression de suralimentation dans un collecteur d’admission du moteur, déterminée en fonction de la consigne de masse d’air frais entrant dans le moteur et de la consigne de taux de recirculation des gaz d’échappement, pour l’application d’une puissance prédéterminée au moteur ; l’établissement d’une consigne de richesse maximale admissible ; et l’ajustement de la consigne de taux de recirculation des gaz d’échappement lorsque la pression de suralimentation est inférieure à la consigne de pression de suralimentation déterminée, afin de maintenir une valeur de richesse inférieure ou égale à la consigne de richesse maximale admissible.
De préférence, le procédé de coordination de consignes de suralimentation et de recirculation des gaz d’échappement comprend l’établissement d’une consigne de taux minimal de recirculation des gaz d’échappement et la diminution de la consigne de quantité de carburant injecté lorsque la consigne de taux de recirculation des gaz d’échappement ajustée a atteint la consigne de taux minimal de recirculation des gaz d’échappement.
Selon un mode de réalisation, la valeur de la consigne de taux minimal de recirculation des gaz d’échappement est définie en fonction du régime et du couple moteur, du type de recyclage partiel des gaz d’échappement à l’admission qui est utilisé (à haute pression et/ou à basse pression) et du débit minimal desdits gaz recyclés qui soit contrôlables par le ou les actionneurs de réglage correspondants (vannes). Elle peut éventuellement être égale à zéro.
Avantageusement, le procédé peut comprendre la détermination d’une consigne de pression de suralimentation maximale pouvant être générée par le turbocompresseur à partir des consignes de masse d’air frais entrant dans le moteur, de taux de recirculation des gaz d’échappement, de quantité de carburant injecté, de richesse maximale admissible et en fonction d’au moins un paramètre limitant le fonctionnement du turbocompresseur.
De préférence, la pression de suralimentation maximale est déterminée en fonction d’au moins un paramètre limitant le fonctionnement du turbocompresseur parmi : la température ambiante, l’altitude et la contre-pression à l’échappement.
En outre, le procédé peut comprendre le calcul d’un débit d’air réellement admis par le moteur en fonction de la pression de suralimentation courante et du taux de recirculation des gaz d’échappement courant.
De plus, le procédé peut comprendre l’ajustement de la consigne de quantité de carburant injecté en fonction du débit d’air réellement admis calculé et de la consigne de taux de recirculation des gaz d’échappement ajustée.
D’autres buts, avantages et caractéristiques ressortiront de la description qui va suivre, donnée à titre d’exemple purement illustratif et faite en référence aux dessins annexés sur lesquels :
- La figure 1 illustre un dispositif de traction pour véhicule automobile comprenant un moteur diesel et un turbocompresseur ;
- La figure 2 illustre un procédé de coordination de consignes de suralimentation et de recirculation des gaz d’échappement dans un moteur pour véhicule automobile comportant un turbocompresseur, selon l’invention ; et
- Les figures 3 a, 3b, 3c et 3d illustrent respectivement, l’évolution de la masse d’air frais entrant dans le moteur, de la pression de suralimentation, de la richesse et le taux de recirculation des gaz d’échappement, en fonction du temps, lors de différentes étapes d’un procédé de coordination de consignes de suralimentation et de recirculation des gaz d’échappement, dans des conditions d’incapacité progressive du turbocompresseur.
La figure 1 illustre un dispositif de traction pour véhicule automobile comprenant un moteur à combustion 1 et un turbocompresseur 2.
Dans l’exemple illustré, le moteur est un moteur diesel à quatre cylindres comprenant un turbocompresseur à géométrie variable.
Selon l’invention, le moteur est un moteur qui fonctionne en mélange pauvre, c’est-à-dire plus précisément, à une richesse inférieure à 1 , le couple moteur étant ajusté en réglant une quantité plus ou moins grande de carburant injecté dans le moteur, dans des proportions par rapport à la quantité d’air qui sont inférieures aux proportions stoechiométriques.
Chaque cylindre est avantageusement équipé d’un injecteur de carburant pour l’injection d’une quantité de carburant Q l nj dans le moteur. Un circuit d’admission 3 permet l’admission d’air dans les cylindres du moteur 1 et un circuit d’échappement 4 permet l’échappement des gaz produits après combustion.
Un compresseur 5 du turbocompresseur est disposé en amont des cylindres et est configuré pour comprimer l’air qui le traverse. Un refroidisseur d’air peut être placé en aval du compresseur afin de refroidir l’air dont la température a augmenté lors de sa compression.
Un volet d’admission 7 permet de contrôler l’admission d’air dans un collecteur d’admission 8 du circuit d’admission 3 où régnent une pression de suralimentation Pcoi et une température Tcoi.
Après combustion, les gaz d’échappement sortent dans un collecteur d’échappement 9 du circuit d’échappement 4 et se dirigent vers une turbine 6 du turbocompresseur, disposée en aval des cylindres et configurée pour détendre l’air qui la traverse.
Avantageusement, sont également disposés des dispositifs de dépollution tels qu’un catalyseur 10 et un filtre à particules 1 1 , en aval de la turbine 6.
En outre, le dispositif de traction comprend au moins un circuit de recirculation des gaz d’échappement, EGR.
Dans l’exemple illustré, le dispositif de traction comprend un circuit de recirculation des gaz d’échappement à haute pression 12 configuré pour prélever une partie au moins des gaz d’échappement du collecteur d’échappement, en aval du moteur 1 et en amont de la turbine 6, et les rediriger en amont du moteur 1 et en aval du compresseur 5.
De préférence, le dispositif de traction comprend également un circuit de recirculation des gaz d’échappement à basse pression 13 configuré pour prélever une partie au moins des gaz d’échappement du collecteur d’échappement, en aval de la turbine 6, et avantageusement en aval des dispositifs de dépollution, et les rediriger en amont du compresseur 5.
La quantité des gaz redirigés via les circuits de recirculation à haute pression 12 et à basse pression 13 est avantageusement contrôlée par une vanne, respectivement 14 et 15. Dans un mode de réalisation non représenté, la quantité de gaz d’échappement à basse pression recyclés à l’admission peut aussi être contrôlée par une vanne à l’échappement du moteur, c’est-à-dire par une vanne montée dans le circuit d’échappement 4 du moteur, en un point situé en aval du point de prélèvement desdits gaz d’échappement à basse pression recyclés à l’admission. La fermeture d’une telle vanne est apte à créer une contrepression à l’échappement et à forcer la circulation desdits gaz dans le circuit de recirculation à basse pression 13.
La figure 2, illustre un procédé de coordination de consignes de suralimentation et de recirculation des gaz d’échappement.
Le procédé comprend l’établissement d’une consigne de masse d’air frais entrant dans le moteur Q air , d’une consigne de taux de recirculation des gaz d’échappement zegr et d’une consigne de quantité de carburant injecté Q l nj dans les cylindres du moteur 1 .
Par consigne, on entend, une valeur imposée d’un paramètre auquel elle est appliquée.
De plus, une consigne de pression de suralimentation Pcoi dans le collecteur d’admission 8 du moteur 1 est déterminée en fonction des consignes de masse d’air frais entrant dans le moteur Qa;r et de taux de recirculation des gaz d’échappement zegr, pour l’application d’une puissance prédéterminée au moteur 1 .
Une consigne de richesse maximale admissible Rimax à ne pas dépasser est également établie et, lorsque la pression de suralimentation P coi est inférieure à la consigne de pression de suralimentation Pcoi déterminée, le procédé comprend la détermination 16 d’une consigne de taux de recirculation des gaz d’échappement zegr ajustée afin de maintenir la valeur de richesse inférieure ou égale à la consigne de richesse maximale admissible Rimax. La valeur de taux de recirculation des gaz d’échappement zegr est avantageusement diminuée jusqu’à un taux minimal, qui peut être déterminé en fonction du régime et du couple moteur, du type de circuit de recirculation 12, 13 et du débit minimal desdits gaz recyclés qui soit contrôlable par une vanne 14, 15. Il correspond une quantité maximale admissible de NOx.
La consigne de richesse maximale admissible Rimax peut être ajustée en fonction du point de fonctionnement du moteur et du caractère dynamique ou statique, en d’autres termes, du fait que le point de fonctionnement du moteur soit un point transitoire ou stabilisé.
De préférence, le procédé de coordination comprend l’établissement d’une consigne de taux minimal de recirculation des gaz d’échappement Te grmin .
Lorsque la consigne de taux de recirculation des gaz d’échappement regr ajustée a atteint la valeur de la consigne de taux minimal de recirculation des gaz d’échappement T e grmin et ne peut plus être diminuée, sauf à entraîner des émissions de NOx inacceptables, le procédé comprend la détermination 17 d’une quantité de carburant injecté Q l nj ajusté. La valeur de la quantité de carburant Q l nj est avantageusement diminuée.
Dans l’exemple illustré, la valeur de la consigne de taux minimal de recirculation des gaz d’échappement re grmin est strictement supérieure à zéro.
De préférence, le procédé de coordination comprend la détermination d’une consigne de pression de suralimentation maximale P coimax pouvant être générée par le turbocompresseur 2 en prenant en compte au moins un paramètre susceptible d’affecter le fonctionnement du turbocompresseur 2.
Cette consigne de pression de suralimentation maximale P Coimax réalisable tenant compte des limitations du turbocompresseur 2 peut avantageusement être calculée à partir des consignes de masse d’air frais traversant le compresseur et entrant dans le moteur Q air , de taux de recirculation des gaz d’échappement regr, de quantité de carburant injecté Q inj , et de richesse maximale admissible Rimax.
La pression de suralimentation maximale P c o imax est, de préférence, déterminée en fonction d’au moins un paramètre limitant le fonctionnement du turbocompresseur 2.
Parmi ces paramètres limitants, on prendra, de préférence, en compte : la température ambiante, l’altitude et la contre-pression à l’échappement.
La figure 3 illustre un mode de réalisation d’un procédé de coordination de consignes de suralimentation et de recirculation des gaz d’échappement dans des conditions de limitations du fonctionnement du turbocompresseur 2 et illustre notamment différentes étapes mises en œuvre en fonction de l’incapacité progressive du turbocompresseur 2 face, par exemple, à l’altitude, la température ambiante ou la contre- pression à l’échappement qui augmente par rapport à des conditions standards dans lesquelles par exemple la température ambiante est égale à 20°C et l’altitude de zéro mètre au niveau de la mer.
Dans une première étape 18, le turbocompresseur 2 compense les conditions limitantes et maintient une consigne de masse d’air frais entrant dans le moteur Qa;r similaire à une consigne de masse d’air frais entrant dans le moteur Qa;r dans des conditions standards, comme on peut le voir à la figure 3a.
On peut voir à la figure 3b que la pression de suralimentation P c o i est maintenue à une pression de suralimentation maximale P co imax , en trait plein, ou augmentée si nécessaire jusqu’à la pression de suralimentation maximale P co imax , en pointillé.
Comme cela est illustré à la figure 3c, la richesse est maintenue à une valeur inférieure à la consigne de richesse maximale admissible Rimax et la consigne de taux recirculation des gaz d’échappement zegr, visible à la figure 3d est maintenue similaire à un fonctionnement du dispositif de traction dans des conditions standards. L’émission de NOx est maîtrisée.
Dans une deuxième étape 19, les conditions s’éloignent plus encore des conditions standards, et commencent à limiter le fonctionnement du turbocompresseur 2, la masse d’air frais entrant dans le moteur Qa;r diminue ainsi que la pression de suralimentation P c o i qui s’éloignent de la consigne de pression de suralimentation maximale Pcoimax-
Dans ces conditions, la richesse augmente, ainsi donc que la production de suies, mais reste inférieure à la consigne de richesse maximale admissible Rimax au-dessus de laquelle la production de suies n’est plus acceptable. La consigne de recirculation des gaz d’échappement zegr est donc maintenue égale à la consigne de taux de recirculation des gaz d’échappement zegr dans des conditions standards. Dans une troisième étape 20, sous des conditions de plus en plus limitantes du fonctionnement du turbocompresseur 2, la masse d’air frais entrant dans le moteur Qa;r et la pression de suralimentation Pcoi ont diminué, de sorte que la richesse a augmenté et a atteint la consigne de richesse maximale admissible Rimax.
La consigne de taux de recirculation des gaz d’échappement zegr est alors ajustée et limitée de sorte que la richesse soit maintenue à une valeur qui ne dépasse pas la consigne de richesse maximale admissible
Rimax ·
Dans une quatrième étape 21 , les conditions sont devenues plus limitantes encore et la masse d’air frais entrant dans le moteur Qa;r et la pression de suralimentation Pcoi ont plus encore diminué.
De plus, la consigne de taux minimal de recirculation des gaz egrmin, strictement supérieure à zéro dans l’exemple illustré, est atteinte. La consigne de taux de recirculation des gaz T e grmin ne peut plus être diminuée.
La quantité de carburant injecté Qinj est alors diminuée, ce qui a pour conséquence, en dernier ressort, une diminution du couple du moteur 1 .
On pourra prévoir que le dispositif de traction du véhicule automobile comprenne un catalyseur de réduction sélective de réductions des NOx ou d’ajuster la quantité de réducteur si le véhicule en est déjà équipé, de manière à compenser l’absence de recirculation des gaz d’échappement et de manière à réduire les émissions de NOx lorsque la consigne de recirculation des gaz d’échappement zegr est égale à un taux minimal donné et ne peut plus être diminuée.
Dans un mode de réalisation du procédé de coordination des consignes de suralimentation et de recirculation des gaz d’échappement, on pourra également prévoir qu’il comprenne le calcul d’un débit d’air réellement admis par le moteur en fonction de la pression de suralimentation courante Pcoi et du taux courant de recirculation des gaz d’échappement zegr.
Avantageusement, la consigne de quantité de carburant injecté Q l nj pourra être ajustée en fonction du débit d’air réellement admis calculé et de la consigne de taux de recirculation des gaz d’échappement courant Te gr afin de tenir compte au mieux des limitations du turbocompresseur 2.
Le procédé de coordination des consignes de suralimentation et de recirculation des gaz d’échappement permet de corréler la consigne de recirculation des gaz d’échappement Tegr et la capacité de suralimentation du turbocompresseur 2 au travers d’une cible de richesse maximale admissible à ne pas dépasser.

Claims

REVENDICATIONS
1 . Procédé de coordination de consignes de suralimentation et de recirculation des gaz d’échappement dans un dispositif de traction pour véhicule automobile comportant un moteur à combustion interne fonctionnant en mélange pauvre et un turbocompresseur, le procédé comprenant :
l’établissement d’une consigne de masse d’air frais entrant dans le moteur ( Q air) ;
l’établissement d’une consigne de taux de recirculation des gaz d’échappement (regr) ;
l’établissement d’une consigne de quantité de carburant injecté ( Q inj ) dans un ou plusieurs cylindres du moteur ; et
la détermination d’une consigne de pression de suralimentation (Pcoi) dans un collecteur d’admission du moteur, déterminée en fonction de la consigne de masse d’air frais entrant dans le moteur ( Q air) et de la consigne de taux de recirculation des gaz d’échappement (regr) , pour l’application d’une puissance prédéterminée au moteur ;
l’établissement d’une consigne de richesse maximale admissible (Rimax) ; et
l’ajustement ( 16) de la consigne de taux de recirculation des gaz d’échappement (r egr) lorsque la pression de suralimentation (P coi) est inférieure à la consigne de pression de suralimentation (P c oi ) déterminée, afin de maintenir une valeur de richesse inférieure ou égale à la consigne de richesse maximale admissible (Rimax).
2. Procédé selon la revendication 1 , caractérisé en ce qu’il comprend :
l’établissement d’une consigne de taux minimal de recirculation des gaz d’échappement (regrmin) ; et
la diminution ( 17) de la consigne de quantité de carburant injecté ( Q inj ) lorsque la consigne de taux de recirculation des gaz d’échappement (x e gr) ajustée a atteint la consigne de taux minimal de recirculation des gaz d’échappement (Te grmin) .
3. Procédé selon la revendication 2, caractérisé en ce que la valeur de la consigne de taux minimal de recirculation des gaz d’échappement (r e grmin) est déterminée en fonction du régime et du couple moteur, du type de recirculation des gaz et du débit minimal des gaz recyclés qui soit contrôlable.
4. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comprend la détermination d’une consigne de pression de suralimentation maximale (P co imax) pouvant être générée par le turbocompresseur à partir des consignes de masse d’air frais entrant dans le moteur ( Q air) , de taux de recirculation des gaz d’échappement (r e gr) , de quantité de carburant injecté ( Q inj ) , de richesse maximale admissible (Rimax) et en fonction d’au moins un paramètre limitant le fonctionnement du turbocompresseur.
5. Procédé selon la revendication 4, caractérisé en ce que la pression de suralimentation maximale (P Co im ax) est déterminée en fonction d’au moins un paramètre limitant le fonctionnement du turbocompresseur parmi : la température ambiante, l’altitude et la contre-pression à l’échappement.
6. Procédé selon l’une des revendications 4 ou 5 , caractérisé en ce qu’il comprend le calcul d’un débit d’air réellement admis par le moteur en fonction de la pression de suralimentation courante (Pcoi) et du taux de recirculation des gaz d’échappement courant (re gr) .
7. Procédé selon la revendication 6, caractérisé en ce qu’il comprend l’ajustement de la consigne de quantité de carburant injecté ( Q inj ) en fonction du débit d’air réellement admis calculé et du taux de recirculation des gaz d’échappement courant (re gr) .
PCT/EP2019/078548 2018-10-24 2019-10-21 Procede de coordination de consignes de suralimentation et de recirculation des gaz d'echappement dans un dispositif de traction pour vehicule automobile WO2020083826A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1859814A FR3087844B1 (fr) 2018-10-24 2018-10-24 Procede de coordination de consignes de suralimentation et de recirculation des gaz d'echappement dans un dispositif de traction pour vehicule automobile
FR1859814 2018-10-24

Publications (1)

Publication Number Publication Date
WO2020083826A1 true WO2020083826A1 (fr) 2020-04-30

Family

ID=65444057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/078548 WO2020083826A1 (fr) 2018-10-24 2019-10-21 Procede de coordination de consignes de suralimentation et de recirculation des gaz d'echappement dans un dispositif de traction pour vehicule automobile

Country Status (2)

Country Link
FR (1) FR3087844B1 (fr)
WO (1) WO2020083826A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545873A (zh) * 2021-12-28 2022-05-27 四川红华实业有限公司 一种产品丰度调整控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1077319A2 (fr) * 1999-08-16 2001-02-21 Mazda Motor Corporation Méthode et dispositif pour contrôler un moteur diesel
FR2923544A1 (fr) * 2007-11-09 2009-05-15 Renault Sas Moteur a combustion interne du type diesel suralimente et procede de commande du debit d'air et du taux de gaz d'echappement recycle dans un tel moteur
JP4453143B2 (ja) * 2000-01-31 2010-04-21 マツダ株式会社 エンジンの制御装置
US20150101578A1 (en) * 2013-10-14 2015-04-16 GM Global Technology Operations LLC Method of estimating the boost capability of a turbocharged internal combustion engine
DE102014216399A1 (de) * 2014-08-19 2016-02-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors mit Abgasrückführung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1077319A2 (fr) * 1999-08-16 2001-02-21 Mazda Motor Corporation Méthode et dispositif pour contrôler un moteur diesel
JP4453143B2 (ja) * 2000-01-31 2010-04-21 マツダ株式会社 エンジンの制御装置
FR2923544A1 (fr) * 2007-11-09 2009-05-15 Renault Sas Moteur a combustion interne du type diesel suralimente et procede de commande du debit d'air et du taux de gaz d'echappement recycle dans un tel moteur
US20150101578A1 (en) * 2013-10-14 2015-04-16 GM Global Technology Operations LLC Method of estimating the boost capability of a turbocharged internal combustion engine
DE102014216399A1 (de) * 2014-08-19 2016-02-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors mit Abgasrückführung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545873A (zh) * 2021-12-28 2022-05-27 四川红华实业有限公司 一种产品丰度调整控制方法及装置
CN114545873B (zh) * 2021-12-28 2024-03-19 四川红华实业有限公司 一种产品丰度调整控制方法及装置

Also Published As

Publication number Publication date
FR3087844A1 (fr) 2020-05-01
FR3087844B1 (fr) 2021-05-07

Similar Documents

Publication Publication Date Title
WO2020083826A1 (fr) Procede de coordination de consignes de suralimentation et de recirculation des gaz d'echappement dans un dispositif de traction pour vehicule automobile
WO2018083400A1 (fr) Système d'injection d'air dans un circuit d'échappement de gaz d'un moteur thermique suralimenté
EP1877657B1 (fr) Procede de commande d'un moteur de vehicule pour reguler la temperature d'un filtre a particules
EP3574194B1 (fr) Procede de controle des emissions d'oxydes d'azote a l'echappement d'un moteur a combustion interne
FR2860830A1 (fr) Procede de commande pour la regeneration d'un filtre a particules
FR3058472B1 (fr) Procede de commande d'un moteur thermique suralimente equipe d'un mecanisme de deconnexion de cylindres.
EP1650420B1 (fr) Système et procédé de régularisation de la régénération d'un filtre à particules de moteur à combustion interne
EP1314875B2 (fr) Système de contrôle du fonctionnement d'un moteur diesel de véhicule automobile
EP2452060B1 (fr) Procede de controle d'un debit d'air injecte dans un moteur, ensemble comprenant un calculateur mettant en uvre le procede et un vehicule comprenant l'ensemble
EP1106804B1 (fr) Procédé de commande d'un groupe motopropulseur de véhicules automobile pour augmenter la richesse des gaz d'échappement en phase de régénération d'un piège à oxydes d'azote.
FR3088957A1 (fr) Dispositif et procédé de commande de la régénération d'un filtre à particules d'une ligne d'échappement d'un moteur à combustion interne
EP3816416B1 (fr) Procédé de régénération d'un piège à oxydes d azote de moteur à combustion interne équipé d'un catalyseur de réduction sélective des oxydes d azote
FR3058471A1 (fr) Procede de commande d'un moteur thermique suralimente comprenant une ligne de recirculation des gaz d'echappement.
EP2324222B1 (fr) Moteur a injection de carburant divisee en deux phases
EP2299094A1 (fr) Procédé de commande d'un moteur diesel suralimenté à recirculation de gaz d'échappement à basse pression
FR2874970A1 (fr) Procede de regeneration d'un systeme de motorisation a filtre a particules
EP3330521B1 (fr) Procédé de purge d'un piège à oxydes d'azote d'un moteur à combustion interne
FR3041705A1 (fr) Procede de controle d’un debit d’air injecte dans un moteur turbocompresse
EP2562400A1 (fr) Procédé de régénération d'un filtre à particules de moteur à combustion interne
EP3910185A1 (fr) Procédé de contrôle d'un moteur à combustion interne associé à un rail commun d'injection
EP4045783A1 (fr) Procédé de gestion du couple d'un véhicule automobile comportant un moteur à combustion interne
EP4301970A1 (fr) Procédé et système de commande d'un moteur à combustion interne à allumage commandé en phase de levé de pied
FR2983531A1 (fr) Alimentation en mode riche d'un moteur a combustion interne a double pre-injection
FR2925590A3 (fr) Systeme et procede de regulation de la pression de suralimentation d'un moteur
EP2250360A1 (fr) Systeme de controle d'un moteur thermique a recirculation des gaz d'echappement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19789684

Country of ref document: EP

Kind code of ref document: A1