WO2020083348A1 - 一种带宽部分的配置方法及装置 - Google Patents

一种带宽部分的配置方法及装置 Download PDF

Info

Publication number
WO2020083348A1
WO2020083348A1 PCT/CN2019/113098 CN2019113098W WO2020083348A1 WO 2020083348 A1 WO2020083348 A1 WO 2020083348A1 CN 2019113098 W CN2019113098 W CN 2019113098W WO 2020083348 A1 WO2020083348 A1 WO 2020083348A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
bandwidth part
information
bandwidth
configuring
Prior art date
Application number
PCT/CN2019/113098
Other languages
English (en)
French (fr)
Inventor
梁津垚
张宏平
酉春华
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020083348A1 publication Critical patent/WO2020083348A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method and device for configuring a bandwidth part.
  • BWP bandwidth part
  • NR R15 version 15
  • BWP has two states, active (activated state) and deactivated (deactivated state). Switching between two states of BWP will cause the function circuit to frequently turn on and off. For example, on the active BWP of the UE, the UE needs to turn on all functional circuits to receive the downlink channels, such as: physical downlink shared channel (PDSCH), physical downlink control channel (PDCCH), and measure 2.
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • Report channel quality indication (channel quality indication, CQI); UE needs to shut down all functional circuits on the deactivated BWP, does not receive the downlink channels PDSCH, PDCCH, and does not measure or report CQI. In this way, switching the BWP between the two states will cause the functional circuit to be fully open to be fully closed, or the functional circuit to be fully closed to be fully open.
  • the functional circuit is fully closed to fully open, or when the BWP is switched from the activated state to the deactivated state, the functional circuit is fully turned to fully closed. The switch of this functional circuit There will be a high delay in the conversion, and at the same time it will consume more power for the terminal equipment.
  • the embodiments of the present application provide a method and a device for configuring a bandwidth part, which can reduce time delay and save power consumption of a terminal device.
  • a method for configuring a bandwidth part is provided.
  • the method for configuring a bandwidth part can be applied to a terminal device or a chip that can be used for a terminal device.
  • the method for configuring the bandwidth part provided by the embodiment of the present application is: the terminal device receives the first information from the access network device; and determines whether to switch the first bandwidth part from the first state to the second state according to the first information, wherein, One of the first state and the second state is a state in which the first bandwidth is partially turned on, and another state is a state in which the first bandwidth is partially turned on or turned off. In the embodiments of the present application, there is a state different from the activated state and the deactivated state.
  • the first bandwidth part turns on some functions; then, when the terminal device transitions from other states to this state , Or when transitioning from this state to another state, there is no need to turn off or turn on all the functions of the first bandwidth part, so it can reduce the time delay and save the power consumption of the terminal device.
  • the first information includes a wakeup indication WUS.
  • WUS can be signaling, sequence or pilot.
  • the first information may include the timeout time of the first timer.
  • the first information includes the first duration, and the first duration is the timeout time of the first timer; determine whether to divide the first bandwidth part according to the first information
  • Switching from the first state to the second state includes: the first state is a state where the first bandwidth is partially turned on, and the second state is a state where the first bandwidth is partially turned on, and when the first timer expires, it is determined
  • the first bandwidth part is switched from the first state to the second state.
  • the trigger condition for starting the first timer includes: when it is determined that there is no data transmission on the first bandwidth part, the first timer is started; or, when it is determined that the first bandwidth part enters the first state, the first timer is started.
  • the trigger condition for starting the second timer includes: when it is determined that the first bandwidth part enters the first state, the second timer is started.
  • the state switching of the first bandwidth part is combined with the bandwidth part switching, and the first information can simultaneously control the bandwidth part switching and the bandwidth part state switching.
  • the method further includes: determining to switch from the first bandwidth to the second according to the first information The bandwidth part.
  • the first state is a state in which the first bandwidth part is partially enabled
  • the second state is a state in which the first bandwidth part is fully enabled
  • the method further includes: determining to switch from the second bandwidth part to the first bandwidth part according to the first information .
  • the switching of the bandwidth part can also be controlled by the second information different from the first information.
  • the method further includes: receiving second information from the access network device; according to the second information It is determined to switch from the first bandwidth portion to the second bandwidth portion, where the second bandwidth portion is in a state where all functions are turned on.
  • the second information includes WUS.
  • the second information includes a third duration
  • the third duration is the timeout time of the third timer
  • determining to switch from the first bandwidth part to the second bandwidth part according to the second information includes: when the third timer times out, determine Switch from the first bandwidth part to the second bandwidth part.
  • the starting condition of the third timer is: when it is determined that there is no data transmission on the first bandwidth part, the third timer is started.
  • the switching of the bandwidth part may also be controlled by third information different from the first information.
  • the method further includes: receiving third information from the access network device; according to the third information It is determined to switch from the second bandwidth part to the first bandwidth part.
  • the third information includes WUS.
  • only one bandwidth part in the dormant state may be reserved in the same cell or center frequency point.
  • the other bandwidth part in the sleep state in the same cell or the same center frequency point as the first bandwidth part is switched to the deactivated state; or, when the first bandwidth part When entering the activated state, the other bandwidth part in the activated state at the same cell or the same center frequency point as the first bandwidth part is switched to the deactivated state.
  • a device for configuring a bandwidth part may be a terminal device or a chip that can be used for the terminal device.
  • the configuration device of the bandwidth section includes a receiving module and a processing module.
  • the functions implemented by each unit module provided in this application are specifically as follows: a receiving module, configured to receive first information from an access network device; a processing module, configured to determine whether to remove the first bandwidth part from the first information received by the receiving module The first state is switched to the second state, wherein one of the first state and the second state is a state where the first bandwidth part is partially turned on, and the other state is the first bandwidth part is turned on or all functions are turned off status.
  • the first information includes a wakeup indication WUS.
  • the first information includes a first duration, and the first duration is the timeout period of the first timer; the processing module is specifically used in a first state where the first bandwidth is partially enabled, and a second state where the first bandwidth When the partial function is partially turned on, when the first timer times out, it is determined to switch the first bandwidth part from the first state to the second state.
  • the processing module is used to start the first timer when it is determined that there is no data transmission on the first bandwidth part; or, when it is determined that the first bandwidth part enters the first state.
  • the first information includes a second duration
  • the second duration is the timeout period of the second timer
  • the processing module is specifically used in a first state where the first bandwidth is partially turned on, and a second state is where all functions are turned off When the second timer expires, it is determined to switch the first bandwidth part from the first state to the second state.
  • the processing module is used to start a second timer when it is determined that the first bandwidth part enters the first state.
  • the processing module is also used to determine whether to switch from the first bandwidth to The second bandwidth part.
  • the processing module is also used to determine whether to switch from the second bandwidth to The first bandwidth part.
  • the first state is a state where the first bandwidth is partially turned on
  • the second state is a state where the first bandwidth is partially turned on
  • the receiving module is also used to receive second information from the access network device; the processing module It is also used to determine to switch from the first bandwidth part to the second bandwidth part according to the second information received by the receiving module, where the second bandwidth part is in a state where all functions are turned on.
  • the second information includes WUS.
  • the second information includes a third duration
  • the third duration is the timeout time of the third timer
  • the processing module is specifically configured to determine to switch from the first bandwidth portion to the third bandwidth when the third timer times out. 2.
  • the bandwidth part is specifically configured to determine to switch from the first bandwidth portion to the third bandwidth when the third timer times out.
  • the processing module is used to start a third timer when it is determined that there is no data transmission on the first bandwidth part.
  • the first state is a state in which the first bandwidth is partially enabled
  • a second state is a state in which the first bandwidth is partially enabled
  • the receiving module is also used to receive third information from the access network device; the processing module It is also used to determine to switch from the second bandwidth part to the first bandwidth part according to the third information received by the receiving module.
  • the third information includes WUS.
  • a method for configuring a bandwidth part is provided.
  • the method for configuring a bandwidth part can be applied to an access network device or a chip of the access network device.
  • the method for configuring the bandwidth part provided by the embodiment of the present application is: the access network device determines the first information, and the first information is used by the terminal device to determine whether to switch the first bandwidth part from the first state to the second state, wherein, One of the first state and the second state is the state where the first bandwidth part is partially turned on, and the other state is the state where the first bandwidth part is turned on or all functions are turned off; the first information is sent to the terminal device .
  • the first bandwidth part turns on some functions; then, when the terminal device transitions from other states to this state , Or when transitioning from this state to another state, there is no need to turn off or turn on all the functions of the first bandwidth part, so it can reduce the time delay and save the power consumption of the terminal device.
  • the first information includes a first duration, and the first duration is a timeout period of the first timer; or, the first information includes a second duration, and the second duration is a timeout period of the second timer.
  • the first state is a state where all functions are enabled in the first bandwidth part
  • the second state is a state where some functions are enabled in the first bandwidth part
  • the first information is also used for the terminal device to determine to switch from the first bandwidth part to the first 2.
  • the bandwidth part is also used for the terminal device to determine to switch from the first bandwidth part to the first 2.
  • the first state is a state in which the first bandwidth is partially enabled
  • the second state is a state in which the first bandwidth is partially enabled
  • the first information is also used by the terminal device to determine to switch from the second bandwidth to the One bandwidth part.
  • the method further includes determining second information, which is used by the terminal device to determine Switch from the first bandwidth part to the second bandwidth part, where the second bandwidth part is in a state where all functions are turned on; send the second information to the terminal device.
  • the second information includes a third duration
  • the third duration is the timeout period of the third timer.
  • the first state is a state in which the first bandwidth is partially turned on
  • the method further includes determining third information, which is used for the terminal device Determine to switch from the second bandwidth part to the first bandwidth part; send the third information to the terminal device.
  • an apparatus for configuring a bandwidth part may be an access network device or may be a chip that can be used for the access network device.
  • the configuration device of the bandwidth part includes a processing module and a sending module.
  • each unit module provided by the present application are specifically as follows: a processing module is used to determine first information, and the first information is used by the terminal device to determine whether to switch the first bandwidth part from the first state to the second state, Among them, one of the first state and the second state is the state where the first bandwidth is partially turned on, and the other state is the state where the first bandwidth is partially turned on or all functions are turned off; the sending module is used to process The first information determined by the module is sent to the terminal device.
  • the first information includes a first duration, and the first duration is a timeout period of the first timer; or, the first information includes a second duration, and the second duration is a timeout period of the second timer.
  • the first state is a state where all functions are enabled in the first bandwidth part
  • the second state is a state where some functions are enabled in the first bandwidth part
  • the first information is also used for the terminal device to determine to switch from the first bandwidth part to the first 2.
  • the bandwidth part is also used for the terminal device to determine to switch from the first bandwidth part to the first 2.
  • the first state is a state in which the first bandwidth is partially enabled
  • the second state is a state in which the first bandwidth is partially enabled
  • the first information is also used by the terminal device to determine to switch from the second bandwidth to the One bandwidth part.
  • the first state is a state where the first bandwidth is partially turned on
  • the processing module is also used to determine the second information, and the second information is used for the terminal device It is determined to switch from the first bandwidth part to the second bandwidth part, where the second bandwidth part is in a state where all functions are turned on; the sending module is also used to send the second information determined by the processing module to the terminal device.
  • the second information includes a third duration
  • the third duration is the timeout period of the third timer.
  • the first state is a state in which the first bandwidth is partially turned on, and the second state is when the first bandwidth is partially turned on, the processing module is also used to determine third information, and the third information is used for terminal device determination Switching from the second bandwidth part to the first bandwidth part; the sending module is also used to send the third information determined by the processing module to the terminal device.
  • a device for configuring a bandwidth portion includes: one or more processors and a communication interface.
  • the communication interface is coupled with one or more processors;
  • the configuration device of the bandwidth part communicates with other devices through the communication interface, and the processor is used to execute computer program code in the memory, and the computer program code includes instructions to cause the configuration device of the bandwidth part to execute
  • the method for configuring the bandwidth part as described in the first aspect or the third aspect and various possible implementation manners thereof.
  • a computer-readable storage medium having instructions stored therein; when it runs on the configuration device of the bandwidth section, the configuration device of the bandwidth section is caused to perform the first aspect or The configuration method of the bandwidth part described in the third aspect and various possible implementation manners thereof.
  • a computer program product including instructions that, when run on the configuration device of the bandwidth part, causes the configuration device of the bandwidth part to perform the first and third aspects as described above and various possible implementations thereof The configuration method of the bandwidth section.
  • an embodiment of the present application further provides a chip system.
  • the chip system includes a processor, and a configuration device for supporting a bandwidth part implements the above-mentioned bandwidth part configuration method.
  • the chip system also includes a memory.
  • the memory is used to store the program instructions and data of the configuration device of the bandwidth part.
  • the memory may not be in the chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices, which is not specifically limited in the embodiments of the present application.
  • a communication system including a terminal device and an access network device, wherein the terminal device includes any one of the bandwidth portion configuration devices provided in the second aspect; the access network device includes a fourth In any aspect, a device for configuring a bandwidth portion.
  • the name of the configuration device in the bandwidth section does not limit the device or function module itself. In actual implementation, these devices or function modules may appear under other names. As long as the functions of each device or functional module are similar to this application, they fall within the scope of the claims of this application and their equivalent technologies.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an access network device provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of signaling interaction of a method for configuring a bandwidth part according to an embodiment of the present application
  • FIG. 5 is a schematic diagram 1 of a method for configuring a bandwidth part according to an embodiment of the present application
  • FIG. 6 is a second schematic diagram of a configuration method of a bandwidth part provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram 3 of a configuration method of a bandwidth part provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram 4 of a configuration method of a bandwidth part provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram 5 of a method for configuring a bandwidth part according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram 6 of a method for configuring a bandwidth part according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram 7 of a method for configuring a bandwidth part provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device according to another embodiment of this application.
  • FIG. 13 is a schematic structural diagram of an access network device according to another embodiment of this application.
  • the "first" and “second” etc. described in the embodiments of the present application are used to distinguish different objects, or to distinguish different treatments of the same object Instead of describing the specific order of objects.
  • the first state and the second state are different states.
  • the first state when a terminal device turns on some functions on the first bandwidth portion of the first state, the first state may be called a sleep state; the terminal device is in the first state When all functions are enabled on the first bandwidth part of the state, the first state may be called an activated state; when the terminal device disables all functions on the first bandwidth part of the first state, the first state may be called a deactivated state; similarly, the terminal When the device turns on some functions on the first bandwidth part of the second state, the second state may be called a sleep state; when the terminal device turns on all functions on the first bandwidth part of the second state, the second state may be called an activated state; When the device turns off all functions on the first bandwidth part of the second state, the second state may be called a deactivated state.
  • the above active state (dormant) and deactivated / inactive state are only exemplary illustrations.
  • the activated state may also be called awake state in some embodiments
  • the sleep state may also be called a standby state in some embodiments
  • the deactivated state may also be called in some embodiments. It can be called idle state and so on.
  • the names of the above states are just to distinguish that the corresponding bandwidth part is in different states. For the specific meaning, please refer to the definition of the function of each state.
  • the functions that are turned on or off in each state can include but are not limited to: monitoring the downlink channel, receiving the downlink channel, sending the uplink channel, measuring, reporting the measurement result, receiving the downlink signal (such as pilot), and sending the uplink signal (such as pilot )and many more.
  • the downlink channels include: physical downlink shared channel (physical downlink shared channel, PDSCH), physical downlink control channel (physical downlink control channel, PDCCH), PHICH (Physical hybrid ARQ indicator), PCFICH (physical control format indicator channel), physical multicast channel (physical multicast channel, PMCH), physical broadcast channel (physical broadcast channel, PBCH), etc.
  • the uplink channel includes: physical uplink shared channel (physical uplink shared channel, PUSCH), physical uplink control channel (physical uplink control channel, PUCCH), physical random access channel (physical random access channel, PRACH) and so on.
  • Measurements include: layer 1 (lay1, physical layer) measurement, such as channel state information (channel) information (CSI), channel quality indication (channel quality indication, CQI) measurement; layer 2 (lay2, data link layer) measurement, Such as radio resource management (radio resource management, RRM) measurement; layer 3 (lay3, network layer) measurement, such as RRM measurement and so on.
  • the reported measurement results include: layer 1 measurement result reporting, such as CSI, CQI reporting; layer 2 or layer 3 measurement result reporting, such as reference signal received power (reference signal received power, RSRP), reference signal received quality (reference signal reception quality, RSRQ) reporting and so on.
  • Downlink signals include demodulation reference signal (DMRS), phase-tracking reference signal (PTRS), channel state information reference signal (channel-state information reference signal, CSI-RS), cell reference Signal (cell specific reference, CRS), etc.
  • Uplink signals include: DMRS, sounding reference signal (SRS), etc.
  • the terminal device enables all functions on the activated bandwidth portion, for example: the terminal device enables all functional circuits on the activated bandwidth portion to receive downlink channels, such as PDSCH and PDCCH, and measures and reports CQI; the terminal device Turn off all functions on the deactivated bandwidth part, for example: the terminal device needs to turn off all functional circuits on the deactivated bandwidth part, do not receive the downlink channels PDSCH, PDCCH, and will not measure or report CQI; the terminal device is in the sleep state
  • Some functions are enabled on the bandwidth part of the device, for example, the terminal device enables some functional circuits on the dormant bandwidth part, does not receive the downlink channels PDSCH and PDCCH, but will measure and report CQI.
  • the above is only an example.
  • the function that the terminal device is enabled in the bandwidth part is used to process the signals transmitted on the bandwidth part. These signals can be data or control signaling.
  • the purpose of saving energy consumption of the terminal device can be in the bandwidth part. Turn off some functions on the top, so that compared with turning on all functions on the bandwidth part, the power consumption of the terminal device can be reduced.
  • the state of the terminal device on the bandwidth part is divided into the above three states. In the embodiment, when some functions are not enabled for the bandwidth part, the specific functions that should be specifically enabled are limited.
  • the bandwidth part provided by the embodiment of the present application refers to that the terminal device uses a part of the bandwidth of the link to transmit data.
  • this part of the bandwidth can be adaptively changed, and therefore bandwidth adaptive can also be used to refer to the bandwidth part BWP technology.
  • the bandwidth part is simply referred to as BWP.
  • the bandwidth of the terminal device is consistent with the bandwidth of the system, and the master information block (MIB) information is decoded and the bandwidth remains unchanged after configuration.
  • the bandwidth of the terminal equipment can change dynamically. For example, at the first moment, the terminal's traffic is large, and the access network device configures the terminal device with a large bandwidth (BWP1); at the second moment, the terminal device's traffic is small, and the access network device configures the terminal device A small bandwidth (BWP2) is sufficient to meet the basic communication needs; at the third moment, the access network device finds that there is a wide range of frequency selective fading in the bandwidth where BWP1 is located, or the resources in the frequency range where BWP1 is relatively scarce, and it can also The device is configured with a new bandwidth (BWP3).
  • each BWP has a different frequency point and bandwidth, and optionally, each BWP may also correspond to a different configuration.
  • each BWP subcarrier interval, cyclic prefix (CP) type, synchronization signal block (synchronisation signal block, SSB; SSB includes: primary synchronization signal block (primary synchronization signal block, PSS block), auxiliary synchronization Signal block (secondary synchronization signal block, SSS block) and physical broadcast channel block (physical broadcast channel block, PBCH block) cycle can be configured differently to adapt to different services.
  • the embodiment of the present application is applied to the communication system shown in FIG. 1.
  • the communication system includes a terminal device 12 (12-1 to 12-n) and an access network device 11, where the access network device may be a transceiver node, a mobility management node (MME) or a base station (gNB).
  • MME mobility management node
  • gNB base station
  • the communication system of the present application can be applied to the architecture of 5G (NR) standalone (SA) networking, or the architecture of LTE / 5GC non-standalone (NSA) networking, or other system architectures that evolve in the future.
  • the access network device may configure at least one bandwidth part for the terminal device for signal transmission.
  • BWP has two states, active (activated state) and deactivated (deactivated state).
  • NR supports a BWP to switch between two states, that is, a BWP can be switched from an activated state to a deactivated state, or from a deactivated state to an activated state; also supports a UE in different BWP
  • the mechanism of switching between For example, a UE sends and receives data on a BWP.
  • the BWP is in the active state.
  • a timer is started.
  • the timer value bwp-InactivityTimer (BWP deactivation time) is the network. Side configuration.
  • the NR also supports a mechanism for the UE to switch between different BWPs based on the network-side signaling configuration. For example, a UE sends and receives data on a BWP, and the BWP is activated. The UE receives the downlink resource control signaling DCI delivered by the network side on this BWP, and the DCI indicates the BWP identifier, then the UE will switch to the BWP indicated in the DCI.
  • the UE will switch to BWP2.
  • switching the BWP between the two states will cause the function circuit to frequently turn on and off frequently. In this way, switching the BWP between the two states will cause the functional circuit to be fully open to be fully closed, or the functional circuit to be fully closed to be fully open, which consumes more power for the UE and has a longer delay.
  • embodiments of the present application provide a method for configuring a bandwidth part, including: receiving first information from an access network device; determining whether to switch the first bandwidth part from a first state to a second state according to the first information, Among them, one of the first state and the second state is a state where the first bandwidth is partially turned on, and another state is a state where the first bandwidth is partially turned on or all functions are turned off. In the embodiment of the present application, a state in which the first bandwidth part is located is added.
  • the first bandwidth part turns on some functions; then, when the terminal device transitions from other states to the state, or from When this state transitions to other states, there is no need to turn off or turn on all the functions of the first bandwidth part, so it is possible to reduce the time delay and save the power consumption of the terminal device.
  • the terminal device in the embodiment of the present application may refer to a UE capable of implementing information interaction with a base station, for example: a mobile phone (phone 200 as shown in FIG. 2), tablet computer, personal computer PC, personal digital assistant PDA, smart watch, netbook , Wearable electronic devices, etc., the embodiments of the present application do not specifically limit the specific form of the device.
  • the access network device may be: a transceiver node, a mobile management node, or a base station (the base station shown in FIG. 3).
  • the mobile phone 200 may specifically include: a processor 201, a radio frequency RF circuit 202, a memory 203, a touch screen 204, a Bluetooth device 205, one or more sensors 206, wireless fidelity Wi-Fi device 207, positioning device 208, audio circuit 209, peripheral interface 210, power supply device 211 and other components. These components can communicate through one or more communication buses or signal lines (not shown in FIG. 2). Those skilled in the art may understand that the hardware structure shown in FIG. 2 does not constitute a limitation on the mobile phone, and the mobile phone 200 may include more or fewer components than those illustrated, or combine certain components, or arrange different components.
  • the processor 201 is the control center of the mobile phone 200, and uses various interfaces and lines to connect various parts of the mobile phone 200, and executes the mobile phone 200 by running or executing application programs stored in the memory 203, and calling data stored in the memory 203. Various functions and processing data.
  • the processor 201 may include one or more processing units.
  • the processor 201 may further include a fingerprint verification chip, which is used to verify the collected fingerprints.
  • the radio frequency circuit 202 can be used to receive and send wireless signals during the process of receiving and sending information or talking.
  • the radio frequency circuit 202 may receive the downlink data of the base station and process it to the processor 201; in addition, send the data related to the uplink to the base station.
  • the radio frequency circuit includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency circuit 202 can also communicate with other devices through wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to global mobile communication system, general packet radio service, code division multiple access, broadband code division multiple access, long-term evolution, e-mail, and short message service.
  • the memory 203 is used to store application programs and data, and the processor 201 executes various functions and data processing of the mobile phone 200 by running the application programs and data stored in the memory 203.
  • the memory 203 mainly includes a storage program area and a storage data area, wherein the storage program area can store an operating system and at least one function required application programs (such as sound playback function, image processing function, etc.); the storage data area can store according to the use of mobile phones Data created at 200 (such as audio data, phone book, etc.).
  • the memory 203 may include a high-speed random access memory (RAM), and may also include a non-volatile memory, such as a magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the memory 203 may store various operating systems, for example, iOS operating system, Android operating system, and the like.
  • the memory 203 may be independent and connected to the processor 201 through the communication bus; the memory 203 may also be integrated with the processor 201.
  • the touch screen 204 may specifically include a touch panel 204-1 and a display 204-2.
  • the touchpad 204-1 can collect touch events on or near the user of the mobile phone 200 (such as the user using a finger, a stylus, or any other suitable object on the touchpad 204-1 or on the touchpad 204 -1 near operation), and send the collected touch information to other devices (such as the processor 201).
  • the user's touch event near the touchpad 204-1 can be called floating touch; floating touch can mean that the user does not need to directly touch the touchpad in order to select, move, or drag a target (such as an icon, etc.) , And only requires the user to be near the device to perform the desired function.
  • the touch panel 204-1 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the display (also referred to as a display screen) 204-2 may be used to display information input by the user or provided to the user and various menus of the mobile phone 200.
  • the display 204-2 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the touchpad 204-1 can be overlaid on the display 204-2. When the touchpad 204-1 detects a touch event on or near it, it is transmitted to the processor 201 to determine the type of touch event, and then the processor 201 may provide corresponding visual output on the display 204-2 according to the type of touch event.
  • the touchpad 204-1 and the display screen 204-2 are used as two independent components to realize the input and output functions of the mobile phone 200, in some embodiments, the touchpad 204- 1 Integrated with the display screen 204-2 to realize the input and output functions of the mobile phone 200.
  • the touch screen 204 is formed by stacking multiple layers of materials. Only the touch panel (layer) and the display screen (layer) are shown in the embodiments of the present application, and other layers are not described in the embodiments of the present application. .
  • the touchpad 204-1 can be arranged on the front of the mobile phone 200 in the form of a full-scale board
  • the display screen 204-2 can also be arranged on the front of the mobile phone 200 in the form of a full-scale board, so that no border can be realized on the front of the phone Structure.
  • the mobile phone 200 may also have a fingerprint recognition function.
  • the fingerprint reader 212 may be disposed on the back of the mobile phone 200 (for example, below the rear camera), or on the front of the mobile phone 200 (for example, below the touch screen 204).
  • the fingerprint collection device 212 may be configured in the touch screen 204 to implement the fingerprint recognition function, that is, the fingerprint collection device 212 may be integrated with the touch screen 204 to implement the fingerprint recognition function of the mobile phone 200.
  • the fingerprint collecting device 212 is configured in the touch screen 204, and may be a part of the touch screen 204, or may be configured in the touch screen 204 in other ways.
  • the main component of the fingerprint collecting device 222 in the embodiment of the present application is a fingerprint sensor, which may use any type of sensing technology, including but not limited to optical, capacitive, piezoelectric, or ultrasonic sensing technology.
  • the mobile phone 200 may also include a Bluetooth device 205 for data exchange between the mobile phone 200 and other short-range devices (such as mobile phones, smart watches, etc.).
  • the Bluetooth device in the embodiment of the present application may be an integrated circuit or a Bluetooth chip.
  • the mobile phone 200 may further include at least one sensor 206, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display of the touch screen 204 according to the brightness of the ambient light, and the proximity sensor may turn off the power of the display when the mobile phone 200 moves to the ear .
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when at rest, and can be used to identify mobile phone gesture applications (such as horizontal and vertical screen switching, related Games, magnetometer posture calibration), vibration recognition related functions (such as pedometer, tap), etc.
  • other sensors such as gyroscopes, barometers, hygrometers, thermometers, infrared sensors, etc. can be configured here. Repeat again.
  • the Wi-Fi device 207 is used to provide the mobile phone 200 with network access following Wi-Fi related standard protocols.
  • the mobile phone 200 can be connected to a Wi-Fi access point through the Wi-Fi device 207, thereby helping users to send and receive emails, Browsing web pages and accessing streaming media, etc., it provides users with wireless broadband Internet access.
  • the Wi-Fi device 207 may also serve as a Wi-Fi wireless access point, and may provide Wi-Fi network access for other devices.
  • the positioning device 208 is used to provide a geographic location for the mobile phone 200. It can be understood that the positioning device 208 may specifically be a receiver of a positioning system such as a global positioning system (GPS) or a Beidou satellite navigation system, a Russian GLONASS, and the like. After receiving the geographical position sent by the positioning system, the positioning device 208 sends the information to the processor 201 for processing, or sends it to the memory 203 for storage. In some other embodiments, the positioning device 208 may also be a receiver of the auxiliary global satellite positioning system AGPS. The AGPS system assists the positioning device 208 in performing ranging and positioning services by acting as an auxiliary server.
  • the auxiliary The positioning server communicates with a positioning device 208 (ie, GPS receiver) of a device such as a mobile phone 200 through a wireless communication network to provide positioning assistance.
  • a positioning device 208 ie, GPS receiver
  • the positioning device 208 may also be a positioning technology based on Wi-Fi access points. Because each Wi-Fi access point has a globally unique MAC address, the device can scan and collect the broadcast signals of the surrounding Wi-Fi access points when Wi-Fi is turned on, so Wi-Fi can be obtained.
  • the MAC address broadcast by the Fi access point the device sends the data (such as the MAC address) that can mark the Wi-Fi access point to the location server through the wireless communication network, and the location server retrieves each Wi-Fi access point
  • the geographic location of the device combined with the strength of the Wi-Fi broadcast signal, calculates the geographic location of the device and sends it to the positioning device 208 of the device.
  • the audio circuit 209, the speaker 213, and the microphone 214 may provide an audio interface between the user and the mobile phone 200.
  • the audio circuit 209 can transmit the converted electrical signal of the received audio data to the speaker 213, which converts the speaker 213 into a sound signal output; on the other hand, the microphone 214 converts the collected sound signal into an electrical signal, which is converted by the audio circuit 209 After receiving, it is converted into audio data, and then the audio data is output to the RF circuit 202 to be sent to, for example, another mobile phone, or the audio data is output to the memory 203 for further processing.
  • the peripheral interface 210 is used to provide various interfaces for external input / output devices (such as a keyboard, a mouse, an external display, an external memory, a user identification module card, etc.). For example, it is connected to the mouse through a universal serial bus USB interface, and connected to the SIM card of the user identification module card provided by the telecommunications operator through the metal contacts on the card slot of the user identification module card.
  • the peripheral interface 210 may be used to couple the above-mentioned external input / output peripheral devices to the processor 201 and the memory 203.
  • the mobile phone 200 can communicate with other devices in the device group through the peripheral interface 210, for example, the display data sent by other devices can be received through the peripheral interface 210 for display, etc. No restrictions.
  • the mobile phone 200 may further include a power supply device 211 (such as a battery and a power management chip) that supplies power to various components, and the battery may be logically connected to the processor 201 through the power management chip, thereby managing charge, discharge, and power consumption management through the power supply device 211 And other functions.
  • a power supply device 211 such as a battery and a power management chip
  • the battery may be logically connected to the processor 201 through the power management chip, thereby managing charge, discharge, and power consumption management through the power supply device 211 And other functions.
  • the mobile phone 200 may further include a camera (front camera and / or rear camera), a flash, a micro-projection device, a near field communication NFC device, etc., which will not be repeated here.
  • FIG. 3 is a schematic diagram of the composition of a base station according to an embodiment of the present application.
  • the base station may include at least one processor 31 and a transceiver 32.
  • the processor 31 is a control center of the base station, and may be a processor or a collective name of multiple processing elements.
  • the processor 31 is a CPU, and may also be a specific integrated circuit ASIC, or one or more integrated circuits configured to implement the embodiments of the present application, for example, one or more microprocessors DSP, or, one or Multiple field programmable gate array FPGAs.
  • the base station may also include a memory 33.
  • the processor 31 can independently perform the functions of the base station in this application, and can also execute various functions of the base station by running or executing the software program stored in the memory 43 and calling the data stored in the memory 33.
  • the processor 31 may include one or more CPUs, such as CPU 0 and CPU 1 shown in FIG. 3.
  • the base station may include multiple processors, such as the processor 31 and the processor 35 shown in FIG. 3.
  • processors may be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor herein may refer to one or more devices, circuits, and / or processing cores for processing data (eg, computer program instructions).
  • the memory 33 may be a read-only memory ROM or other types of static storage devices that can store static information and instructions, a random access memory RAM or other types of dynamic storage devices that can store information and instructions, or may be electrically erasable and programmable ROM, CD-ROM or other optical disk storage, optical disk storage (including compact disk, laser disk, optical disk, digital versatile disk, Blu-ray disk, etc.), magnetic disk storage media or other magnetic storage devices, or can be used for Any other medium that carries or stores the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 33 may exist independently, and is connected to the processor 31 through the bus 34.
  • the memory 33 may also be integrated with the processor 31.
  • the memory 33 is used to store a software program that executes the solution of the present application, and is controlled and executed by the processor 31.
  • the transceiver 32 is used to communicate with other devices or communication networks. Such as used to communicate with Ethernet, wireless access network RAN, wireless local area network WLAN and other communication networks.
  • the transceiver 32 may include all or part of the baseband processor, and may optionally include an RF processor.
  • the RF processor is used to send and receive RF signals, and the baseband processor is used to process the baseband signal converted from the RF signal or the baseband signal to be converted to the RF signal.
  • the bus 34 may be an industrial standard architecture ISA bus, an external device interconnect PCI bus, or an extended industrial standard architecture EISA bus.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only a thick line is used in FIG. 3, but it does not mean that there is only one bus or one type of bus.
  • the device structure shown in FIG. 3 does not constitute a limitation to the base station, and may include more or fewer components than shown, or combine some components, or a different component arrangement.
  • the embodiments of the present application provide a method for configuring a bandwidth part. Refer to Figure 4 and include the following steps:
  • the access network device determines the first information.
  • the first information is used by the terminal device to determine whether to switch the first bandwidth part from the first state to the second state, where one of the first state and the second state is a state in which the first bandwidth part turns on some functions, and the other One state is a state in which all functions are turned on or turned off in the first bandwidth part.
  • the access network device sends the first information to the terminal device.
  • the terminal device receives the first information from the access network device.
  • the terminal device determines whether to switch the first bandwidth part from the first state to the second state according to the first information.
  • one of the first state and the second state is a state where the first bandwidth is partially turned on, and another state is a state where the first bandwidth is partially turned on or all functions are turned off.
  • the first bandwidth part turns on some functions; then, when the terminal device transitions from other states to this state , Or when transitioning from this state to another state, there is no need to turn off or turn on all the functions of the first bandwidth part, so it can reduce the time delay and save the power consumption of the terminal device.
  • the state switching of the first bandwidth part is combined with the bandwidth part switching, for example, when the first bandwidth part is switched to the second bandwidth part, the state switching of the first bandwidth part occurs and / or State switching occurs in the second bandwidth part.
  • the first information can control the switching of the bandwidth part and the switching of the state of the bandwidth part at the same time, for example: the first state is a state in which the first bandwidth part turns on all functions, and the second state is a part in which the first bandwidth part turns on some functions In the state of, it also includes: determining to switch from the first bandwidth part to the second bandwidth part according to the first information. For another example: when the first state is a state in which the first bandwidth is partially enabled, and the second state is a state in which the first bandwidth is partially enabled, the method further includes: determining to switch from the second bandwidth to the first bandwidth according to the first information section.
  • the state switching of the bandwidth part may also be controlled by the first information, and the switching of the bandwidth part may be controlled by the second information or the third information.
  • the first state is a state in which the first bandwidth part turns on all functions.
  • the second state is the state where the first bandwidth part is partially enabled, it also includes: receiving second information from the access network device; determining to switch from the first bandwidth part to the second bandwidth part according to the second information, where the second bandwidth part is The state of turning on all functions.
  • the method further includes: receiving third information from the access network device; and determining according to the third information Switch from the second bandwidth part to the first bandwidth part.
  • the configuration method of the bandwidth part of the present application will be exemplified below with reference to specific forms of the first information, the second information, and the third information.
  • the first information may only be used to control the state switching of the bandwidth part.
  • the first information may be information that controls the state switching of the bandwidth part, which has duality.
  • the first information is a 1-bit information, and the first information indicates the meaning of yes or no.
  • the meaning of yes or no can be clearly indicated according to the bits of the first information, for example, 1 means yes, 0 means no.
  • the meaning of yes or no can also be determined according to the indication form of the first information, for example, if the first information is an optional information element (optional information element, optional IE), then the first information is allocated to the terminal device and The indicated content indicates "Yes", and if this indication information is not configured for the terminal device, it indicates "No".
  • the bandwidth part may include three states: a state where some functions are turned on, a state where all functions are turned on, and a state where all functions are turned off.
  • a state where some functions are turned on is called a sleep state
  • a state where all functions are turned on is called an activated state
  • a state where all functions are turned off is called a deactivated state.
  • three states can be defined to switch in a fixed order, for example: activated state-> sleep state-> deactivated state-> activated state, for example, for a sleep state BWP
  • the terminal device determines according to the first information If state switching is required, the terminal device must switch the state of this BWP from the sleep state to the deactivated state.
  • the switching order of the three states is not defined, that is, if the three states can be switched randomly, then the first information may contain the state identifier, for example: 00 means: activated state, 01 means: dormant state, 10 means: deactivated state , 11 means: reserved, then the first message may contain 2 bits to indicate to which state the BWP is to be switched.
  • the terminal device on the BWP has received a MAC-CE signaling. If the command indicates 01, it means that the state of the BWP is switched to sleep.
  • the status identifier is only an example, and does not constitute a limitation on the present application. In some embodiments, other methods such as more or fewer bits may also be used as the status identifier.
  • the first information may include an indication of "the state to be switched" and an identification of the state to be switched to, or the first information may only include the The indication of the status, that is, the indication of "switching status required" may be adopted in a default manner. When the identification of the switched status is received, it indicates that the switch status is required by default.
  • the first information may be transmitted to the terminal device on an activated BWP. If the current BWP is in the active state, the first information may be transmitted through the current BWP, and the first information may only include information indicating the state switching, which defaults to the state switching indication of the current BWP.
  • the first information may also be transmitted through any BWP in an activated state, and in this case, the first information may further include an identifier of the BWP indicating the state switching. Therefore, the first information may also include an identifier of BWP, and an indicator indicating state switching. That is, the first information indicates which BWP needs to switch states.
  • the first information may be a 3-bit field configured in DCI signaling.
  • the first 2 bits indicate which BWP (ie, the ID of the BWP is indicated), and the last 1 bit indicates whether the BWP needs to switch state or not. status.
  • the first information may include the BWP identifier and the status identifier.
  • the first signaling may include 4 bits, and the protocol may specify the first 2 bits.
  • the above uses 3 bits to simultaneously indicate the BWP logo and the status switching indication, and using 4 bits to simultaneously indicate the BWP indication and the switching status indication is only an example, and does not constitute a limitation on the present application.
  • separate bits can also be used to indicate the BWP logo and the status switch indication or the status switch indication, of course, other division methods can also be used, for example, in consecutive multiple bits, the front bit indication The indication of state switching or the identification of the state of switching, the following bits indicate the identification of BWP, etc.
  • the first information may include a timeout period of the timer, and when the timer expires, it is determined to switch the first bandwidth part from the first state to the second state.
  • the state switching of the bandwidth part may be configured directly by the timer, or the state switching of the bandwidth part may be controlled by combining the timer with the previously described indication information and state flag.
  • the switching of the bandwidth part from the active state to the sleep state can be controlled by a timer.
  • the access network device configures the timeout period of the first timer to a first duration through configuration information.
  • the The configuration information may be pre-defined or delivered through broadcast.
  • the terminal device controls the state of the BWP to switch from the active state to the sleep state.
  • the state of the BWP is switched from which state to which state, which may be agreed, for example, stipulated in the agreement.
  • the terminal device originally transmits data on the BWP, that is, the BWP is in the active state.
  • the terminal device When it is determined that there is no data transmission on the BWP or when there is no data transmission for a predetermined duration, the terminal device starts the first timer, and when the first timer expires, The terminal device switches the state of the BWP from the active state to the sleep state. For another example, when the BWP enters the active state, the first timer is started, and when the first timer expires, the BWP switches from the active state to the sleep state.
  • the first information may be sent by the access network device to the UE by a broadcast message or RRC signaling.
  • the terminal device receives the first information for instructing to perform state switching (of course, the first information may be the indication including the "need to switch state" and / or the identifier of the state to be switched to in the above embodiment After the first timer expires, the BWP switches state.
  • the switching of the bandwidth part from the sleep state to the deactivated state can be controlled by a timer.
  • the access network device configures the second duration of the second timer through configuration information, for example, the configuration information It may be pre-defined or delivered through broadcast.
  • the terminal device controls the state of the BWP to switch from the sleep state to the active state.
  • the second timer is started.
  • the terminal device receives the first information for instructing to perform state switching (of course, the first information may be the indication including the "need to switch state" and / or the identifier of the state to be switched to in the above embodiment After the second timer expires, the BWP switches the state.
  • the state switching of the BWP is accompanied by the switching of the BWP, and the instruction to control the switching of the BWP may use the first information, or use other information different from the first information.
  • the switching of the bandwidth part and the switching of the state of the bandwidth part can be simultaneously controlled by the first information.
  • the first information may be transmitted through the current BWP.
  • the first information may include information indicating the partial switching of the bandwidth. The default is to switch the current BWP to another BWP such as fallback to the default BWP or the initial BWP; It is understood that the first information may also be transmitted through any active BWP. At this time, the first information may also include the identifier of the BWP.
  • the terminal device switches from the current BWP to the first information.
  • the BWP in the logo corresponds to the BWP. For example, as shown in FIG.
  • the terminal device receives the first information sent by the access network device on BWP1, for example, RRC signaling, or MAC-CE signaling, or DCI signaling.
  • the first information sent by the access network device also indicates that the state of BWP1 needs to be changed, for example, from the active state to the sleep state.
  • the state of BWP2 needs to be switched to the active state.
  • BWP2 can be in a dormant state, or in a deactivated state or an activated state, then the state of BWP2 will be switched to an activated state. Of course, if BWP2 itself is in the activated state, then keep it in the activated state.
  • the access network device configures the duration of the first timer through configuration information. For example, the configuration information may be predefined or delivered through broadcast.
  • the terminal device The bandwidth part is switched to the second bandwidth part, and at the same time, the terminal device switches the state of the first bandwidth part from the active state to the sleep state.
  • the terminal device UE originally transmits data on BWP1.
  • the terminal device When it is determined that there is no data transmission on BWP1, the terminal device starts the first timer. When the first timer expires, the terminal device falls back to BWP0 (BWP0 is an access The default BWP configured by the network device; if the access network device is not configured with the default BWP, then BWP0 refers to the initial BWP configured by the access network device). The state of BWP1 is switched from the active state to the sleep state, and the state of BWP0 is switched to the active state.
  • the terminal device starts the first timer after receiving the first information indicating that the bandwidth part is switched (of course, the first information may include information indicating the bandwidth part is switched).
  • the first timer expires, the BWP switching.
  • the switching from the second bandwidth part to the first bandwidth part may be determined according to the first information.
  • the terminal device receives the first information sent by the access network device on BWP2, for example, RRC signaling, or MAC-CE signaling, or DCI signaling.
  • BWP ID 1, then the terminal device will switch from BWP2 to BWP1, meaning that the terminal device will transmit data on BWP1.
  • the first information sent by the access network device also indicates that the state of BWP1 is switched to the active state, of course, it can be whatever the current state of BWP1 is (for example, it can be in a sleep state or a deactivated state or an activated state), then It is necessary to switch the state of BWP1 to the activated state. Of course, if BWP1 itself is in the activated state, it is kept in the activated state.
  • the terminal device receives second information from the access network device; it is determined according to the second information Switch from the first bandwidth part to the second bandwidth part.
  • the terminal device receives the second information sent by the access network device on BWP1, for example, RRC signaling, or MAC-CE signaling, or DCI signaling, and includes a BWP in the configured first information.
  • the terminal device will switch from BWP1 to BWP2, which means that the terminal device will transmit data on BWP2.
  • the terminal device receives the first information sent by the access network device on BWP1, such as RRC signaling, or MAC-CE signaling, or DCI signaling.
  • the terminal device UE since data needs to be transmitted on BWP2, no matter what state BWP2 is currently in (for example, sleep state or deactivated state or activated state), you need to switch the state of BWP2 to activated state. Of course, if BWP2 itself is in Active state, keep it in active state.
  • the first information and the second information may be sent separately or carried in the same information.
  • the second information may include the timeout time of the third timer.
  • the access network device uses the second information to configure the timeout time of the third timer to a third duration. When the third timer timer expires, the terminal device will The first bandwidth part is switched to the second bandwidth part.
  • the terminal device UE originally transmits data on BWP1.
  • the terminal device When it is determined that there is no data transmission on BWP1 or there is no data transmission for a predetermined duration, the terminal device starts the third timer, and when the third timer expires, the terminal device rolls back To BWP0 (BWP0 is the default BWP configured by the access network device; if the access network device is not configured with the default BWP, then BWP0 refers to the initial BWP configured by the access network device). BWP state switching and BWP switching are often combined. Exemplarily, the terminal device times out on BWP1 according to the third timer, and judges that the terminal device should switch from BWP1 to BWP0. A message, such as WUS, determines how to switch the state of BWP1.
  • BWP1 when the terminal device transmits data on BWP1, BWP1 is in an activated state. When there is no data transmission on BWP1, the terminal device starts the third timer. When the third timer expires, the terminal device will fall back to BWP0. When the third timer expires, or before the third timer expires, the terminal device detects WUS on BWP1. If the WUS detection result indicates that the state of BWP1 needs to be switched, then the state of BWP1 is switched from the active state to the sleep state. And, the terminal device switches from BWP1 to BWP0. When the third timer expires, or before the third timer expires, the terminal device detects WUS on BWP1.
  • the terminal device switches from BWP1 to BWP0.
  • the first information includes the timeout time of the first timer
  • the second timer includes the timeout time of the third timer
  • the first information includes the timeout time of the first timer timer1 (first time duration)
  • the second information Including the timeout time timer3 (third duration) of the third timer; then, the terminal device switches from BWP1 to BWP0 according to the timeout of the third timer.
  • the terminal device switches BWP1 from the active state to the sleep state according to the timeout of the first timer.
  • both the first timer and the third timer are started from BWP1 entering the activated state, or the first timer and the third timer are both started from BWP1 when it is determined that there is no data transmission or no data transmission for a predetermined duration.
  • timer1 may be greater than timer3. In this way, when the third timer expires, it switches from BWP1 to BWP0, and BWP1 remains in the active state for a period of time. After the first timer expires, BWP1 switches from the active state to the sleep state.
  • the value of Timer1 may be related to the value of timer3.
  • Timer1 is equal to the value of Timer3, then the terminal switches the state of BWP while switching BWP. Or, it may be that the terminal device starts the third timer after receiving the second information indicating that the bandwidth part is switched (of course, the second information may include information indicating the bandwidth part is switched). BWP switching.
  • the first state is a state in which the first bandwidth is partially turned on
  • a second state is a state in which the first bandwidth is partially turned on
  • the terminal device receives third information from the access network device; it is determined according to the third information Switch from the second bandwidth part to the first bandwidth part.
  • the terminal device receives the third information sent by the access network device on BWP2, for example, RRC signaling, or MAC-CE signaling, or DCI signaling.
  • the third information configured includes a BWP ID, such as BWPID 1, then the terminal device will switch from BWP2 to BWP1, meaning that the terminal device will transmit data on BWP1.
  • the terminal device receives the first information sent by the access network device on BWP1, such as RRC signaling, or MAC-CE signaling, or DCI signaling.
  • BWPID a BWP identifier
  • the first message sent by the access network device indicates that the state of BWP1 is switched to the active state .
  • BWP1 itself is in activated state, keep it in activated state .
  • the BWP2 is switched from the active state to the sleep state, where the first information and the third information may be sent separately or carried in the same information.
  • the above-mentioned first information may be in the form of a wake-up indication (wake up signal (WUS), exemplary: WUS may be in the form of signaling, such as DCI signaling, medium access control cells (medium access control) control-CE, MAC-CE) signaling or radio resource control (radio resource control, RRC) signaling.
  • WUS wake up signal
  • signaling such as DCI signaling, medium access control cells (medium access control) control-CE, MAC-CE) signaling or radio resource control (radio resource control, RRC) signaling.
  • the information in the DCI indicates that the BWP needs to be switched or not switched. For example, it can be 1 bit of information or more than 1 bit of information.
  • the form of the information in this application is not limited; optional
  • DCI may also indicate the BWP identifier through several bits. For another example, there is one bit in MAC-CE indicating that BWP needs to switch state or not, or there are several bits in MAC-CE indicating the state of BWP; optionally, refer to the above example MAC-CE It is also possible to indicate the BWP identification through several bits.
  • RRC there is 1 bit in RRC indicating that BWP needs to switch state or not, or there are several bits in RRC indicating the state of BWP; optionally, referring to the above example, RRC can also indicate by several bits BWP logo.
  • the first information may also be in other forms, such as a sequence or a pilot.
  • the first information may be a WUS in the form of a sequence
  • the sequence may be a ZC (Zadoff-chu) sequence, or a longest linear shift register sequence (abbreviated as m sequence).
  • the terminal device can detect the specific mask result by detecting the ZC sequence.
  • the protocol can define that mask 1 corresponds to the state where BWP needs to be switched, and mask 2 corresponds to the state where BWP does not need to be switched. Then, if the terminal device detects the mask 1 through the ZC sequence, the state of the BWP needs to be switched.
  • the pilot may be WUS, and the pilot may be, for example, CSI-RS, tracking reference signals (TRS), or DMRS.
  • the pilot may be WUS, and the pilot may be, for example, CSI-RS, tracking reference signals (TRS), or DMRS.
  • the access network device configures at least one terminal device through RRC signaling (or RRC signaling combined with DCI signaling, or RRC signaling combined with MAC-CE signaling, etc.) CSI-RS configuration information.
  • the CSI-RS configuration information includes at least one of the following: CSI-RS pattern information, CSI-RS time domain information, CSI-RS frequency domain information, CSI-RS power information, and so on.
  • the terminal device detects the CSI-RS according to the CSI-RS configuration information, and if the CSI-RS is detected (for example, the CSI-RS can be judged according to the level of the detected CSI-RS, or the auto-correlation of the detected CSI-RS Judging that the CSI-RS is detected), it means that the BWP needs to switch states. If no CSI-RS is detected, it means that BWP does not need to switch states. For another example, the WUS is received by the terminal device on an activated BWP. Therefore, the WUS needs to indicate: which BWP and whether the state needs to be switched.
  • the pattern number of the CSI-RS can be associated with the BWP ID, and then, according to whether the CSI-RS can be detected, it is determined whether the BWP needs to switch the state.
  • the state of BWP1 is already in the sleep state, and the terminal device transmits data on BWP0.
  • the terminal device receives the first information sent by the access network device on BWP0, for example, WUS in the form of CSI-RS.
  • the access network device is configured with various CSI-RS patterns for the terminal device, such as patterns 1, 2, 3, each pattern represents a specific time-frequency resource, and the terminal device is indicated in CSI-RS is detected on time-frequency resources.
  • the terminal device determines the BWP ID according to pattern 1.
  • the corresponding relationship between the pattern logo and the BWP logo may be predefined by the protocol, for example, the pattern logo is equal to the BWP logo.
  • the UE detects CSI-RS on pattern 1 it means that the state of BWP1 needs to be switched, which is equivalent to the state of BWP1 switched from the sleep state to the deactivated state.
  • the form of the second information and the third information may also be WUS, and for specific functions, reference may be made to the description of the first information described above, which will not be repeated.
  • the solutions provided in the above embodiments are applicable to downlink BWP and uplink BWP, and can also be applied to sidelink BWP (sidelink BWP).
  • sidelink BWP sidelink BWP
  • the terminal device may support one activated BWP on different carriers, or may support only one activated BWP on all carriers.
  • the terminal device may support one activated upstream BWP on different upstream carriers, or it may support only one activated upstream BWP on all upstream carriers.
  • the downstream BWP and the sidelink BWP and the upstream BWP is similar.
  • a normal uplink (UL) carrier may contain one or more uplink BWPs on the carrier.
  • the carrier may contain one or more upstream BWPs on the carrier. If a terminal device can only support one activated uplink BWP, the UE can send uplink data on the activated uplink BWP on the UL, and the uplink BWP on the SUL needs to be switched to the sleep state.
  • the terminal device on the sleep uplink BWP can Send SRS or take measurements.
  • the BWP in the sleep state may be switched according to the information for controlling BWP switching, for example, the terminal device switches from the upstream BWP on the SUL according to the information for switching the BWP (which may be the duration of the timer or specific information indicating BWP switching) To the uplink BWP on the UL, the state of the uplink BWP on the SUL is switched to the sleep state, and the state of the uplink BWP on the UL is switched to the active state.
  • the BWP in the sleep state may also switch the state according to the information indicating the state switch. For example, the terminal device switches the state of the uplink BWP on the SUL to sleep according to DCI signaling, MAC-CE signaling, RRC signaling, or WUS.
  • the above is only an example, and the specific method for switching the upstream BWP is the same as the method for switching the BWP described above, and will not be described in detail.
  • the specific method for switching the state of the upstream BWP is the same as the method for switching the state of the BWP described above, and will not be described in detail.
  • the above only uses the upstream BWP as an example for description, and the downlink BWP and the side link BWP are similar.
  • the information to control the switching of the BWP may be information to control the switching of the upstream BWP (for example, the duration of the timer), or it may be information to control the switching of the downstream BWP; the information to control the status of switching the upstream BWP may be to control the switching of the upstream BWP.
  • the status information that is, the upstream BWP and the downstream BWP use the same information to control the switching of the BWP, and the upstream BWP and the downstream BWP use the same information to control the switching of the BWP status.
  • only one bandwidth part in the sleep state or only one bandwidth part in the active state may be reserved for the terminal device. For example: when the first bandwidth part enters the sleep state, the other bandwidth part of the UE may be switched to the deactivated state; or, when the first bandwidth part enters the activated state, the other bandwidth part of the UE may be switched to the deactivated state .
  • the terminal device switches sequentially on the three BWPs, for example, when the terminal device switches from BWP1 to BWP2, BWP1 switches to the sleep state, BWP2 switches to the activated state, and BWP3 is deactivated. Then, when the terminal device switches from BWP2 to BWP3, the scenario may be: BWP1 is still in the sleep state, BWP2 is switched to the sleep state, and BWP3 is switched to the active state. At this time, both BWP1 and BWP2 are dormant.
  • the other sleep state BWP except the latest BWP that is switched to the sleep state is switched to the deactivated state.
  • the state of BWP1 needs to be switched from sleep to deactivated.
  • the states of the three BWPs are: deactivated state, sleep state, and activated state.
  • BWP1-3 are all the same terminal device, and the terminal device can judge and decide the status of each BWP.
  • the second corresponding to the BWP in the sleep state needs to be stopped Timer and reset the second timer.
  • the switching of the BWP from the sleep state to the deactivated state is determined according to the timeout of the second timer described above.
  • This second timer is configured by per BWP (that is, the second timer is configured separately for each BWP), that is, the timeout duration of the second timer corresponding to each BWP may be the same or different. As shown in FIG.
  • BWP1 switches from the activated state to the sleep state, and starts the second timer of BWP1; BWP2 switches from the sleep state or the deactivated state to the activated state; then the terminal device When switching from BWP2 to BWP3, BWP2 switches from the active state to the sleep state and starts the second timer of BWP2; BWP3 switches from the sleep state or the deactivated state to the active state; at this time, if the second timer of BWP1 has not yet When it times out, BWP1, 2, and 3 are respectively: the sleep state, the sleep state, and the active state, the second timer of BWP1 is still counting, and the second timer of BWP2 is still counting.
  • the terminal switches the state of BWP1 from the sleep state to the deactivated state, it also needs to stop the second timer of BWP1, or stop and reset. In this case, the state of BWP1 is deactivated.
  • the second timer of BWP2 is still counting, so the state of BWP2 is the sleep state, and the state of BWP3 is the active state, thereby reducing the power consumption of the terminal device.
  • the terminal device needs to stop the first corresponding to the BWP in the activated state when switching the BWP of the other activated state to the deactivated state Timer and reset the first timer. This is equivalent to prohibiting other BWPs from entering the sleep state, and also equivalent to keeping only one BWP in the sleep state.
  • the switching of the BWP from the active state to the sleep state is determined according to the above-mentioned first timer timeout.
  • This first timer is configured by per BWP (that is, the first timer is configured separately for each BWP), that is, the supermarket duration of the first timer corresponding to each BWP may be the same or different.
  • BWP can leave the active state according to the control of the first timer, then when the terminal device leaves BWP1 (for example, the terminal device switches from BWP1 to BWP2), the state of BWP1 may remain active until BWP1 'S first timer expires.
  • BWP1, 2, 3 are respectively: activated state, activated state, activated state, the first timer of BWP1 is counting, the first of BWP2 The timer is also timing, and the terminal device transmits data on BWP3. Then, the terminal device directly switches the states of BWP1 and BWP2 from the activated state to the deactivated state, and the terminal device stops the first timers of BWP1 and BWP2, or stops and resets.
  • BWP1, 2 BWP1
  • BWP3 the activated state
  • BWP can leave the activated state according to the control of the first timer, then when the terminal device leaves BWP1 (for example, the terminal device switches from BWP1 to BWP2), the state of BWP1 may remain activated until The first timer of BWP1 expires.
  • the terminal device switches the state of BWP1 to the active state, the first timer of BWP1 is started, and when the terminal device switches the switching BWP from BWP2 to BWP3, the state of BWP3 is switched to the active state, then the state of BWP2 also needs to be based on BWP2.
  • BWP1 and 2 And 3 are: activated state, dormant state, and activated state, the first timer of BWP1 is timing, the second timer of BWP2 is also timing, and the terminal device transmits data on BWP3.
  • the terminal device directly switches the state of BWP1 from the activated state to the deactivated state, and the terminal device stops the first timer of BWP1, or, stops and resets.
  • BWP1 BWP1
  • the terminal device stops the first timer of BWP1, or, stops and resets.
  • BWP1 BWP1
  • the state of BWP2 is the sleep state
  • the state of BWP3 is the active state
  • An embodiment of the present application provides an apparatus for configuring a bandwidth part.
  • the apparatus for configuring a bandwidth part may be a terminal device or may be a chip of the terminal device.
  • the apparatus for configuring the bandwidth part is used to execute the method corresponding to the terminal device in the method for configuring the bandwidth part provided in the above embodiment.
  • the apparatus for configuring the bandwidth part provided by the embodiment of the present application may include modules corresponding to corresponding steps.
  • the embodiments of the present application may divide the functional modules of the configuration device of the bandwidth part according to the configuration method of the bandwidth part provided in the embodiment corresponding to FIG. 4, for example, each functional module may be divided corresponding to each function, or two or two More than one function is integrated in one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions, and there may be other division manners in actual implementation.
  • a method for dividing the function module by a configuration device of a bandwidth part including: a receiving module 41 and a processing module 42.
  • the functions implemented by the modules provided in this application may be as follows: the receiving module 41 is used to receive the first information from the access network device; the processing module 42 is used to receive the first information received by the receiving module 41 The information determines whether to switch the first bandwidth part from the first state to the second state, wherein one of the first state and the second state is a state where the first bandwidth part is turned on, and the other state is the first The state that the bandwidth part turns on all functions or turns off all functions.
  • the first information includes a wakeup indication WUS.
  • the first information includes a first duration, and the first duration is a timeout period of the first timer; the processing module 42 is specifically used for the first state to be a state where the first bandwidth is partially enabled, and the second state to be the first In the state where the bandwidth part is partially turned on, when the first timer times out, it is determined to switch the first bandwidth part from the first state to the second state.
  • the processing module 42 is used to start a first timer when it is determined that there is no data transmission on the first bandwidth part; or, when it is determined that the first bandwidth part enters the first state.
  • the first information includes a second duration, and the second duration is the timeout period of the second timer; the processing module 42 is specifically used for the first state to be a state where the first bandwidth is partially turned on, and the second state is to turn off all In the state of the function, when the second timer expires, it is determined to switch the first bandwidth part from the first state to the second state.
  • the processing module 42 is configured to start the second timer when it is determined that the first bandwidth part enters the first state.
  • the processing module 42 is further configured to determine the first bandwidth from the first bandwidth according to the first information when the first state is a state where the first bandwidth is partially turned on, and when the second state is a state where the first bandwidth is partially turned on. Partially switch to the second bandwidth part.
  • the processing module 42 is further configured to determine the second bandwidth based on the first information when the first state is a state in which the first bandwidth is partially turned on, and the second state is a state in which the first bandwidth is partially turned on. Partially switch to the first bandwidth part.
  • the first state is a state in which the first bandwidth is partially enabled with all functions
  • the second state is a state in which the first bandwidth is partially enabled
  • the receiving module 41 is further configured to receive second information from the access network device;
  • the module 42 is also used to determine to switch from the first bandwidth part to the second bandwidth part according to the second information received by the receiving module 41, where the second bandwidth part is in a state where all functions are turned on.
  • the second information includes WUS.
  • the second information includes a third duration
  • the third duration is the timeout period of the third timer
  • the processing module 42 is specifically configured to determine to switch from the first bandwidth part to when the third timer expires The second bandwidth part.
  • the processing module 42 is used to start a third timer when it is determined that there is no data transmission on the first bandwidth part.
  • the receiving module 41 is further configured to receive third information from the access network device;
  • the module 42 is also used to determine to switch from the second bandwidth part to the first bandwidth part according to the third information received by the receiving module 41.
  • the third information includes WUS.
  • the apparatus for the bandwidth part provided by the embodiment of the present application includes but is not limited to the above-mentioned modules, for example, the apparatus for the bandwidth part may further include a storage module.
  • the storage module may be used to store the program code of the device of the bandwidth portion.
  • all relevant content of each step involved in the above method embodiments can be referred to the function description of the corresponding function module, which will not be repeated here.
  • the processing module 42 may be the processor 201 in FIG. 2; the receiving module 41 may be the communication interface 210 or the radio frequency circuit 202 in FIG. 2.
  • the apparatus for configuring the bandwidth part performs the steps performed by the terminal device in the embodiment corresponding to FIG. 4 described above.
  • An embodiment of the present application provides an apparatus for configuring a bandwidth part.
  • the apparatus for configuring a bandwidth part may be an access network device or may be a chip of the access network device.
  • the apparatus for configuring the bandwidth part is used to execute the method corresponding to the access network device in the method for configuring the bandwidth part provided in the above embodiment.
  • the apparatus for configuring the bandwidth part provided by the embodiment of the present application may include modules corresponding to corresponding steps.
  • the embodiments of the present application may divide the functional modules of the configuration device of the bandwidth part according to the configuration method of the bandwidth part provided in the embodiment corresponding to FIG. 4, for example, each functional module may be divided corresponding to each function, or two or two More than one function is integrated in one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions, and there may be other division manners in actual implementation.
  • a method for dividing the function module by the configuration device of the bandwidth part including: a processing module 51 and a sending module 52.
  • the functions implemented by each unit module provided by the present application are specifically as follows: the processing module 51 is used to determine first information, and the first information is used by the terminal device to determine whether to switch the first bandwidth part from the first state to the second state, wherein , One of the first state and the second state is the state where the first bandwidth is partially turned on, and the other state is the state where the first bandwidth is partially turned on or turned off; the sending module 52 is used to process The first information determined by the module 51 is sent to the terminal device.
  • the first information includes a first duration, and the first duration is a timeout period of the first timer; or, the first information includes a second duration, and the second duration is a timeout period of the second timer.
  • the first state is a state where all functions are enabled in the first bandwidth part
  • the second state is a state where some functions are enabled in the first bandwidth part
  • the first information is also used for the terminal device to determine to switch from the first bandwidth part to the first 2.
  • the bandwidth part is also used for the terminal device to determine to switch from the first bandwidth part to the first 2.
  • the first state is a state in which the first bandwidth part is partially turned on, and in the second state when the first bandwidth part is turned on in all functions, the first information is also used by the terminal device to determine to switch from the second bandwidth part to the second One bandwidth part.
  • the first state is a state in which the first bandwidth is partially enabled with all functions
  • the second state is a state in which the first bandwidth is partially enabled
  • the processing module 51 is also used to determine second information
  • the second information is used for the terminal
  • the device determines to switch from the first bandwidth part to the second bandwidth part, where the second bandwidth part is in a state where all functions are turned on; the sending module 52 is also used to send the second information determined by the processing module 51 to the terminal device.
  • the second information includes a third duration
  • the third duration is the timeout period of the third timer.
  • the first state is a state where the first bandwidth is partially turned on
  • the processing module 51 is also used to determine third information, and the third information is used to
  • the terminal device determines to switch from the second bandwidth part to the first bandwidth part; the sending module 52 is also used to send the third information determined by the processing module 51 to the terminal device.
  • the apparatus for configuring the bandwidth part includes but is not limited to the above-mentioned modules, for example, the apparatus for configuring the bandwidth part may further include a storage unit.
  • the storage unit may be used to store the program code of the configuration device of the bandwidth section.
  • the processing module may be the processor 31 or processor 35 in FIG. 3; the sending module may be the transceiver 32 in FIG. .
  • the configuration device of the bandwidth part performs the steps performed by the access network device in the embodiment corresponding to FIG. 4 described above.
  • Another embodiment of the present application further provides a computer-readable storage medium that stores instructions, and when the instructions are executed, the method for configuring the bandwidth portion of the foregoing embodiment is implemented.
  • a computer program product includes computer-executable instructions, the computer-executed instructions are stored in a computer-readable storage medium; at least one processor of the configuration device of the bandwidth portion
  • the computer-executable instructions may be read from a computer-readable storage medium, and the execution of the computer-executable instructions by at least one processor causes the configuration device of the bandwidth portion to implement the configuration method of the bandwidth portion of the above-described embodiment.
  • An embodiment of the present application further provides a chip system.
  • the chip system includes a processor, and a configuration device for supporting a bandwidth part implements the above-mentioned bandwidth part configuration method.
  • the chip system also includes a memory.
  • the memory is used to store the program instructions and data of the configuration device of the bandwidth part.
  • the memory may not be in the chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices, which is not specifically limited in the embodiments of the present application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions can be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website, computer, server, or data center via a cable (e.g.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data terminal device including one or more available medium integrated servers, data centers, and the like.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), or the like.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the modules or units is only a division of logical functions.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed in multiple different places . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units are integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or software function unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种带宽部分的配置方法及装置,涉及通信技术领域,能够降低时延。该方法包括:从接入网设备接收第一信息;根据第一信息确定是否将第一带宽部分从第一状态切换至第二状态,其中,第一状态和第二状态中的一种状态为第一带宽部分开启部分功能的状态,另一种状态为第一带宽部分开启全部功能或者关闭全部功能的状态。

Description

一种带宽部分的配置方法及装置
本申请要求于2018年10月26日提交国家知识产权局、申请号为201811256581.X、申请名称为“一种带宽部分的配置方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请的实施例涉及通信技术领域,尤其涉及一种带宽部分的配置方法及装置。
背景技术
下一代接入网新空口(new radio,NR)中为了能够更精确的适配数据所用带宽并且节省终端设备耗电,引入了带宽部分(bandwidth part,BWP)。在NR R15(版本15)中,BWP有两种状态,active(激活态)和deactivated(去激活态)。BWP在2种状态间切换,会使功能电路频繁全开、全关。例如,UE在激活态的BWP上,需要开启全部功能电路实现接收下行信道,如:物理下行共享信道(physical downlink shared channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH),并且测量、上报信道质量指示(channel quality indication,CQI);UE在去激活态的BWP上需要关闭全部功能电路,不接收下行信道PDSCH、PDCCH,也不会测量、上报CQI。这样,BWP在2种状态间切换,会使功能电路全开转换为全关,或者功能电路全关转换为全开。而BWP在状态由去激活态切换至激活态时功能电路全关转换为全开,或者BWP在状态由激活态切换至去激活态时功能电路全开转换为全关,这种功能电路的开关转换会存在较高的时延,同时对终端设备来说也比较耗电。
发明内容
本申请的实施例提供一种带宽部分的配置方法及装置,能够降低时延,并节省终端设备的耗电。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种带宽部分的配置方法,该带宽部分的配置方法,可应用于终端设备或可用于终端设备的芯片。例如,本申请实施例提供的带宽部分的配置方法为:终端设备从接入网设备接收第一信息;根据第一信息确定是否将第一带宽部分从第一状态切换至第二状态,其中,第一状态和第二状态中的一种状态为第一带宽部分开启部分功能的状态,另一种状态为第一带宽部分开启全部功能或者关闭全部功能的状态。在本申请的实施例中,存在一种不同于激活态和去激活态的一种状态,在该状态下,第一带宽部分开启部分功能;则,当终端设备在从其他状态转换到该状态,或者从该状态转换到其他状态时,无需关闭或者开启第一带宽部分的全部功能,因此能够降低时延,并节省终端设备的耗电。
可选的,第一信息包括唤醒指示WUS。其中,WUS可以为信令、序列或者导频。
可选的,第一信息可以包含第一定时器的超时时间,比如,第一信息包含第一时长,第一时长为第一定时器的超时时间;根据第一信息确定是否将第一带宽部分从第一状态切换至第二状态,包括:第一状态为第一带宽部分开启全部功能的状态,第二 状态为第一带宽部分开启部分功能的状态时,当第一定时器超时时,确定将第一带宽部分从第一状态切换至第二状态。其中,第一定时器启动的触发条件包括:当确定第一带宽部分上无数据传输时,启动第一定时器;或者,当确定第一带宽部分进入第一状态时,启动第一定时器。又比如:第一信息包含第二时长,第二时长为第二定时器的超时时间;根据第一信息确定是否将第一带宽部分从第一状态切换至第二状态,包括:第一状态为第一带宽部分开启部分功能的状态,第二状态为关闭全部功能的状态时,当第二定时器超时时,确定将第一带宽部分从第一状态切换至第二状态。其中,第二定时器启动的触发条件包括:当确定第一带宽部分进入第一状态时,启动第二定时器。
可选的,第一带宽部分的状态切换是与带宽部分切换相结合的,第一信息可以同时控制带宽部分的切换以及带宽部分的状态切换。例如:第一状态为第一带宽部分开启全部功能的状态,第二状态为第一带宽部分开启部分功能的状态时,该方法还包括:根据第一信息确定从第一带宽部分切换至第二带宽部分。第一状态为第一带宽部分开启部分功能的状态,第二状态为第一带宽部分开启全部功能的状态时,该方法还包括:根据第一信息确定从第二带宽部分切换至第一带宽部分。
可选的,还可以通过区别于第一信息的第二信息控制带宽部分的切换。例如:第一状态为第一带宽部分开启全部功能的状态,第二状态为第一带宽部分开启部分功能的状态时,该方法还包括:从接入网设备接收第二信息;根据第二信息确定从第一带宽部分切换至第二带宽部分,其中第二带宽部分为开启全部功能的状态。其中,第二信息包括WUS。或者,第二信息包含第三时长,第三时长为第三定时器的超时时间;根据第二信息确定从第一带宽部分切换至第二带宽部分,包含:当第三定时器超时时,确定从第一带宽部分切换至第二带宽部分。第三定时器的启动条件为:当确定第一带宽部分上无数据传输时,启动第三定时器。
可选的,还可以通过区别于第一信息的第三信息控制带宽部分的切换。例如,第一状态为第一带宽部分开启部分功能的状态,第二状态为第一带宽部分开启全部功能的状态时,该方法还包括:从接入网设备接收第三信息;根据第三信息确定从第二带宽部分切换至第一带宽部分。其中,第三信息包括WUS。
此外,可选的,为降低终端设备功耗,在同一小区或中心频点下可以只保留一个处于休眠态的带宽部分。具体的,当第一带宽部分进入休眠态时,将与第一带宽部分同一个小区或者同一个中心频点下的其他处于休眠态的带宽部分切换至去激活态;或者,当第一带宽部分进入激活态时,将与第一带宽部分同一个小区或者同一个中心频点下的其他处于激活态的带宽部分切换至去激活态。
第二方面,提供提供一种带宽部分的配置装置,该带宽部分的配置装置可以为终端设备或者可用于终端设备的芯片。例如,带宽部分的配置装置包括接收模块和处理模块。本申请提供的各个单元模块所实现的功能具体如下:接收模块,用于从接入网设备接收第一信息;处理模块,用于根据接收模块接收的第一信息确定是否将第一带宽部分从第一状态切换至第二状态,其中,第一状态和第二状态中的一种状态为第一带宽部分开启部分功能的状态,另一种状态为第一带宽部分开启全部功能或者关闭全部功能的状态。
可选的,所述第一信息包括唤醒指示WUS。
可选的,第一信息包含第一时长,第一时长为第一定时器的超时时间;处理模块具体用于第一状态为第一带宽部分开启全部功能的状态,第二状态为第一带宽部分开启部分功能的状态时,当第一定时器超时时,确定将第一带宽部分从第一状态切换至第二状态。
可选的,所述处理模块用于当确定第一带宽部分上无数据传输时,启动第一定时器;或者,当确定第一带宽部分进入第一状态时,启动第一定时器。
可选的,第一信息包含第二时长,第二时长为第二定时器的超时时间;处理模块具体用于第一状态为第一带宽部分开启部分功能的状态,第二状态为关闭全部功能的状态时,当第二定时器超时时,确定将第一带宽部分从第一状态切换至第二状态。
可选的,处理模块用于当确定第一带宽部分进入第一状态时,启动第二定时器。
可选的,处理模块还用于第一状态为第一带宽部分开启全部功能的状态,第二状态为第一带宽部分开启部分功能的状态时,根据第一信息确定从第一带宽部分切换至第二带宽部分。
可选的,处理模块还用于第一状态为第一带宽部分开启部分功能的状态,第二状态为第一带宽部分开启全部功能的状态时,根据第一信息确定从第二带宽部分切换至第一带宽部分。
可选的,第一状态为第一带宽部分开启全部功能的状态,第二状态为第一带宽部分开启部分功能的状态时,接收模块还用于从接入网设备接收第二信息;处理模块还用于根据接收模块接收的第二信息确定从第一带宽部分切换至第二带宽部分,其中第二带宽部分为开启全部功能的状态。
可选的,第二信息包括WUS。
可选的,第二信息包含第三时长,第三时长为第三定时器的超时时间;所述处理模块具体用于当所述第三定时器超时时,确定从第一带宽部分切换至第二带宽部分。
可选的,所述处理模块用于当确定第一带宽部分上无数据传输时,启动第三定时器。
可选的,第一状态为第一带宽部分开启部分功能的状态,第二状态为第一带宽部分开启全部功能的状态时,接收模块还用于从接入网设备接收第三信息;处理模块还用于根据接收模块接收的第三信息确定从第二带宽部分切换至第一带宽部分。
可选的,第三信息包括WUS。
第三方面,提供一种带宽部分的配置方法,该带宽部分的配置方法,可应用于接入网设备或可应用于接入网设备的芯片。例如,本申请实施例提供的带宽部分的配置方法为:接入网设备确定第一信息,第一信息用于终端设备确定是否将第一带宽部分从第一状态切换至第二状态,其中,第一状态和第二状态中的一种状态为第一带宽部分开启部分功能的状态,另一种状态为第一带宽部分开启全部功能或者关闭全部功能的状态;将第一信息发送至终端设备。在本申请的实施例中,存在一种不同于激活态和去激活态的一种状态,在该状态下,第一带宽部分开启部分功能;则,当终端设备在从其他状态转换到该状态,或者从该状态转换到其他状态时,无需关闭或者开启第一带宽部分的全部功能,因此能够降低时延,并节省终端设备的耗电。
可选的,第一信息包含第一时长,第一时长为第一定时器的超时时间;或者,第一信息包含第二时长,第二时长为第二定时器的超时时间。
可选的,第一状态为第一带宽部分开启全部功能的状态,第二状态为第一带宽部分开启部分功能的状态时,第一信息还用于终端设备确定从第一带宽部分切换至第二带宽部分。
可选的,第一状态为第一带宽部分开启部分功能的状态,第二状态为第一带宽部分开启全部功能的状态时,第一信息还用于终端设备确定从第二带宽部分切换至第一带宽部分。
可选的,第一状态为第一带宽部分开启全部功能,第二状态为第一带宽部分开启部分功能的状态时,所述方法还包括,确定第二信息,第二信息用于终端设备确定从第一带宽部分切换至第二带宽部分,其中第二带宽部分为开启全部功能的状态;将第二信息发送至终端设备。
可选的,第二信息包含第三时长,第三时长为第三定时器的超时时间。
可选的,第一状态为第一带宽部分开启部分功能的状态,第二状态为第一带宽部分开启全部功能的状态时,该方法还包括,确定第三信息,第三信息用于终端设备确定从第二带宽部分切换至第一带宽部分;将第三信息发送至终端设备。
第四方面,提供提供一种带宽部分的配置装置,该带宽部分的配置装置可以为接入网设备或者可以可用于所述接入网设备的芯片。例如,带宽部分的配置装置包括处理模块和发送模块。本申请提供的各个单元模块所实现的功能具体如下:处理模块,用于确定第一信息,所述第一信息用于终端设备确定是否将第一带宽部分从第一状态切换至第二状态,其中,第一状态和第二状态中的一种状态为第一带宽部分开启部分功能的状态,另一种状态为第一带宽部分开启全部功能或者关闭全部功能的状态;发送模块用于将处理模块确定的第一信息发送至终端设备。
可选的,第一信息包含第一时长,第一时长为第一定时器的超时时间;或者,第一信息包含第二时长,第二时长为第二定时器的超时时间。
可选的,第一状态为第一带宽部分开启全部功能的状态,第二状态为第一带宽部分开启部分功能的状态时,第一信息还用于终端设备确定从第一带宽部分切换至第二带宽部分。
可选的,第一状态为第一带宽部分开启部分功能的状态,第二状态为第一带宽部分开启全部功能的状态时,第一信息还用于终端设备确定从第二带宽部分切换至第一带宽部分。
可选的,第一状态为第一带宽部分开启全部功能的状态,第二状态为第一带宽部分开启部分功能的状态时,处理模块还用于确定第二信息,第二信息用于终端设备确定从第一带宽部分切换至第二带宽部分,其中第二带宽部分为开启全部功能的状态;发送模块还用于将处理模块确定的第二信息发送至终端设备。
可选的,第二信息包含第三时长,第三时长为第三定时器的超时时间。
可选的,第一状态为第一带宽部分开启部分功能的状态,第二状态为第一带宽部分开启全部功能时,处理模块,还用于确定第三信息,第三信息用于终端设备确定从第二带宽部分切换至第一带宽部分;发送模块,还用于将处理模块确定的第三信息发 送至终端设备。
第五方面,提供一种带宽部分的配置装置,该带宽部分的配置装置包括:一个或多个处理器、通信接口。其中,通信接口与一个或多个处理器耦合;带宽部分的配置装置通过通信接口与其他设备通信,处理器用于执行存储器中的计算机程序代码,计算机程序代码包括指令,使得带宽部分的配置装置执行如上述第一方面或者第三方面及其各种可能的实现方式所述的带宽部分的配置方法。
第六方面,还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令;当其在带宽部分的配置装置上运行时,使得带宽部分的配置装置执行如上述第一方面或者第三方面及其各种可能的实现方式所述的带宽部分的配置方法。
第七方面,还提供一种包括指令的计算机程序产品,当其在带宽部分的配置装置上运行时,使得带宽部分的配置装置执行如上述第一、三方面方面及其各种可能的实现方式所述的带宽部分的配置方法。
第八方面,本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持带宽部分的配置装置实现上述带宽部分的配置方法。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存带宽部分的配置装置的程序指令和数据。当然,存储器也可以不在芯片系统中。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
第九方面,提供了一种通信系统,包括终端设备和接入网设备,其中所述终端设备包含第二方面提供的任一一种带宽部分的配置装置;所述接入网设备包括第四方面提供的任一一种带宽部分的配置装置。
在本申请中,上述带宽部分的配置装置的名字对设备或功能模块本身不构成限定,在实际实现中,这些设备或功能模块可以以其他名称出现。只要各个设备或功能模块的功能和本申请类似,属于本申请权利要求及其等同技术的范围之内。
本申请中第五方面、第六方面、第七方面、第八方面、第九方面及其各种实现方式的具体描述,可以参考第一方面至第四方面及其各种实现方式中的详细描述;并且,第五方面、第六方面、第七方面、第八方面、第九方面及其各种实现方式的有益效果,可以参考第一方面至第四方面及其各种实现方式中的有益效果分析,此处不再赘述。
本申请的这些方面或其他方面在以下的描述中会更加简明易懂。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。
图1为本申请的实施例提供的一种通信系统的结构示意图;
图2为本申请的实施例提供的一种终端设备的结构示意图;
图3为本申请的实施例提供的一种接入网设备的结构示意图;
图4为本申请的实施例提供的一种带宽部分的配置方法的信令交互示意图;
图5为本申请的实施例提供的一种带宽部分的配置方法示意图一;
图6为本申请的实施例提供的一种带宽部分的配置方法示意图二;
图7为本申请的实施例提供的一种带宽部分的配置方法示意图三;
图8为本申请的实施例提供的一种带宽部分的配置方法示意图四;
图9为本申请的实施例提供的一种带宽部分的配置方法示意图五;
图10为本申请的实施例提供的一种带宽部分的配置方法示意图六;
图11为本申请的实施例提供的一种带宽部分的配置方法示意图七;
图12为本申请的另一实施例提供的一种终端设备的结构示意图;
图13为本申请的另一实施例提供的一种接入网设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。
另外,为了便于清楚描述本申请实施例的技术方案,本申请实施例中所述的“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。例如,在本申请中,第一状态和第二状态是不同状态,例如,终端设备在第一状态的第一带宽部分上开启部分功能时,第一状态可以叫做休眠态;终端设备在第一状态的第一带宽部分上开启全部功能时,第一状态可以叫做激活态;终端设备在第一状态的第一带宽部分上关闭全部功能时,第一状态可以叫做去激活态;类似的,终端设备在第二状态的第一带宽部分上开启部分功能时,第二状态可以叫做休眠态;终端设备在第二状态的第一带宽部分上开启全部功能时,第二状态可以叫做激活态;终端设备在第二状态的第一带宽部分上关闭全部功能时,第二状态可以叫做去激活态。当然以上激活态(active)、休眠态(dormant)以及去激活态(deactivated/inactive)只是一种示例性的说明。在一些方案中还可以有其他的叫法,例如,激活态在一些实施例中也可以称作唤醒态,休眠态在一些实施例中也可以叫做待机态,去激活态在一些实施例中也可以称作闲置态等等,以上各个状态的名称只是为了区别其对应的带宽部分处于不同的状态,其具体含义可以参考对各个状态的功能的定义。其中在各状态中开启或者关闭的功能可以包括但不限于:监听下行信道、接收下行信道、发送上行信道、测量、上报测量结果、接收下行信号(如导频)、发送上行信号(如导频)等等。其中,下行信道包括:物理下行共享信道(physical downlink shared channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)、PHICH(Physical hybrid ARQ indicator channel,物理混合自动重传指示信道),PCFICH(physical control format indicator channel,物理控制格式指示信道)、物理多播信道(physical multicast channel,PMCH)、物理广播信道(physical broadcast channel,PBCH)等等。其中,上行信道包括:物理上行共享信道(physical uplink shared channel,PUSCH)、理上行控制信道(physical uplink control channel,PUCCH)、物理随机接入信道(physical random access channel,PRACH)等等。测量包括:层1(lay1,物理层)测量,如,信道状态信息(channel state information,CSI)、信道质量指示(channel quality indication,CQI)测量;层2(lay2,数据链路层)测量,如无线资源管理(radio resource management,RRM)测量;层3(lay3,网络层)测量, 如RRM测量等等。上报测量结果包括:层1测量结果上报,如CSI、CQI上报;层2或层3测量结果上报,如参考信号接收功率(reference signal received power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)上报等等。下行信号包括:解调参考信号(demodulation reference signal,DMRS),相位跟踪参考信号(phase-tracking reference signal,PTRS),信道状态信息参考信号(channel-state information reference signal,CSI-RS),小区参考信号(cell specific reference signal,CRS)等等。上行信号包括:DMRS,探测参考信号(sounding reference signal,SRS)等等。示例性的,终端设备在激活态的带宽部分上开启全部功能,例如:终端设备在激活态的带宽部分开启全部功能电路实现接收下行信道,如:PDSCH、PDCCH,并且测量、上报CQI;终端设备在去激活的带宽部分上关闭全部功能,例如:终端设备在去激活态的带宽部分上需要关闭全部功能电路,不接收下行信道PDSCH、PDCCH,也不会测量、上报CQI;终端设备在休眠态的带宽部分上开启部分功能,例如:终端设备在休眠态的带宽部分上开启部分功能电路,不接收下行信道PDSCH、PDCCH,但是会测量、上报CQI。以上仅是一种示例,终端设备在带宽部分开启的功能用于处理该带宽部分上传输的信号,这些信号可以是数据或控制信令,当然以节省终端设备的能耗为目的可以在带宽部分上关闭部分功能,这样相对于在带宽部分上开启全部功能,可以降低终端设备的功耗,据此原理将终端设备在带宽部分上所处的状态分为上述的三个状态,其中本申请的实施例中不对带宽部分开启部分功能时,具体应该开启的部分功能做限定。
其中,本申请的实施例提供的带宽部分指终端设备使用链路的一部分带宽传输数据。一种可能的方式中,这一部分带宽可以自适应变化,因此也可以用带宽自适应变化(bandwidth adaptation)指代带宽部分BWP技术,以下实施例中将带宽部分简称为BWP。
在LTE中,终端设备的带宽跟系统的带宽保持一致,解码主信息块(master information blocks,MIB)信息配置带宽后便保持不变。在NR中,终端设备的带宽可以动态的变化。例如,在第一时刻,终端的业务量较大,接入网设备给终端设备配置一个大带宽(BWP1);第二时刻,终端设备的业务量较小,接入网设备给终端设备配置了一个小带宽(BWP2),满足基本的通信需求即可;第三时刻,接入网设备发现BWP1所在带宽内有大范围频率选择性衰落,或者BWP1所在频率范围内资源较为紧缺,还可以给终端设备配置了一个新的带宽(BWP3)。
一种可能的方式中,每个BWP频点和带宽不同,可选的,每个BWP还可以对应不同的配置。比如,每个BWP的子载波间隔,循环前缀(cyclic prefix,CP)类型,同步信号块(synchronisation signal block,SSB;其中SSB包括:主同步信号块(primary synchronization signal block,PSS block)、辅同步信号块(secondary synchronization signal block,SSS block)以及物理广播信道块(physical broadcast channel block,PBCH block)周期等都可以差异化配置,以适应不同的业务。
本申请的实施例应用于图1所示的通信系统。该通信系统包括终端设备12(12-1~12-n)和接入网设备11,其中接入网设备可以为收发节点、移动管理节点(mobility management entity,MME)或者基站(gNB)。本申请的的通信系统可以 应用于5G(NR)独立(standalone,SA)组网的架构,或者LTE/5GC非独立(non-standalone,NSA)组网的架构,或者后续演进的其他系统架构。在该通信系统中,接入网设备可以为终端设备配置至少一个带宽部分用于信号的传输。
目前的现有技术中,BWP有两种状态,active(激活态)和deactivated(去激活态)。在NR中,支持一个BWP在2种状态间的切换,即,一个BWP可以从激活态切换为去激活态,也可以从去激活态切换为激活态;还支持了一个UE在不同的BWP之间切换的机制。比如,一个UE在一个BWP上收发数据,这个BWP是激活态,UE处于这个BWP上时,就会开启一个计时器(timer),这个timer的值bwp-InactivityTimer(BWP的去激活时间)是网络侧配置的。当这个timer到期时,UE会回到一个默认BWP上,而不会再位于这个BWP上,默认BWP是网络侧配置的。如果网络侧没有配置,那么UE会回到初始BWP上(初始BWP也是网络侧配置的)。NR中还支持基于网络侧信令配置而UE在不同的BWP之间切换的机制。比如,一个UE在一个BWP上收发数据,这个BWP是激活态。UE在这个BWP上接收了网络侧下发的下行资源控制信令DCI,该DCI中指示出了BWP的标识,那么UE会切换到DCI中指示的BWP上。比如,UE在BWP1上收发数据,UE在BWP1上收到了DCI,该DCI中指示了BWP ID=2,那么UE就会切换到BWP2上。然而,BWP在2种状态间切换,会使功能电路频繁全开、全关。这样,BWP在2种状态间切换,会使功能电路全开转换为全关,或者功能电路全关转换为全开,对UE来说比较耗电,而且时延较长。
针对上述问题,本申请实施例提供一种带宽部分的配置方法,包括:从接入网设备接收第一信息;根据第一信息确定是否将第一带宽部分从第一状态切换至第二状态,其中,第一状态和第二状态中的一种状态为第一带宽部分开启部分功能的状态,另一种状态为第一带宽部分开启全部功能或者关闭全部功能的状态。在本申请的实施例中,增加了一种第一带宽部分所处的状态,在该状态下,第一带宽部分开启部分功能;则,当终端设备在从其他状态转换到该状态,或者从该状态转换到其他状态时,无需关闭或者开启第一带宽部分的全部功能,因此能够降低时延,并节省终端设备的耗电。
本申请实施例中的终端设备可以是指能够与基站实现信息交互的UE,例如:手机(如图2所示的手机200)、平板电脑、个人计算机PC、个人数字助理PDA、智能手表、上网本、可穿戴电子设备等,本申请实施例对该设备的具体形式不做特殊限制。接入网设备可以为:收发节点、移动管理节点或者基站(如图3所示的基站)。
如图2所示,以手机200作为上述终端设备举例,手机200具体可以包括:处理器201、射频RF电路202、存储器203、触摸屏204、蓝牙装置205、一个或多个传感器206、无线保真Wi-Fi装置207、定位装置208、音频电路209、外设接口210以及电源装置211等部件。这些部件可通过一根或多根通信总线或信号线(图2中未示出)进行通信。本领域技术人员可以理解,图2中示出的硬件结构并不构成对手机的限定,手机200可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图2对手机200的各个部件进行具体的介绍:
处理器201是手机200的控制中心,利用各种接口和线路连接手机200的各个部分,通过运行或执行存储在存储器203内的应用程序,以及调用存储在存储器203内 的数据,执行手机200的各种功能和处理数据。在一些实施例中,处理器201可包括一个或多个处理单元。在本申请实施例一些实施例中,上述处理器201还可以包括指纹验证芯片,用于对采集到的指纹进行验证。
射频电路202可用于在收发信息或通话过程中,无线信号的接收和发送。特别地,射频电路202可以将基站的下行数据接收后,给处理器201处理;另外,将涉及上行的数据发送至基站。通常,射频电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频电路202还可以通过无线通信和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统、通用分组无线服务、码分多址、宽带码分多址、长期演进、电子邮件、短消息服务等。
存储器203用于存储应用程序以及数据,处理器201通过运行存储在存储器203的应用程序以及数据,执行手机200的各种功能以及数据处理。存储器203主要包括存储程序区以及存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像处理功能等);存储数据区可以存储根据使用手机200时所创建的数据(比如音频数据、电话本等)。此外,存储器203可以包括高速随机存取存储器(RAM),还可以包括非易失存储器,例如磁盘存储器件、闪存器件或其他易失性固态存储器件等。存储器203可以存储各种操作系统,例如,iOS操作系统,Android操作系统等。上述存储器203可以是独立的,通过上述通信总线与处理器201相连接;存储器203也可以和处理器201集成在一起。
触摸屏204具体可以包括触控板204-1和显示器204-2。
其中,触控板204-1可采集手机200的用户在其上或附近的触摸事件(比如用户使用手指、触控笔等任何适合的物体在触控板204-1上或在触控板204-1附近的操作),并将采集到的触摸信息发送至其他器件(例如处理器201)。其中,用户在触控板204-1附近的触摸事件可以称之为悬浮触控;悬浮触控可以是指,用户无需为了选择、移动或拖动目标(例如图标等)而直接接触触控板,而只需用户位于设备附近以便执行所想要的功能。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型来实现触控板204-1。
显示器(也称为显示屏)204-2可用于显示由用户输入的信息或提供给用户的信息以及手机200的各种菜单。可以采用液晶显示器、有机发光二极管等形式来配置显示器204-2。触控板204-1可以覆盖在显示器204-2之上,当触控板204-1检测到在其上或附近的触摸事件后,传送给处理器201以确定触摸事件的类型,随后处理器201可以根据触摸事件的类型在显示器204-2上提供相应的视觉输出。虽然在图2中,触控板204-1与显示屏204-2是作为两个独立的部件来实现手机200的输入和输出功能,但是在某些实施例中,可以将触控板204-1与显示屏204-2集成而实现手机200的输入和输出功能。可以理解的是,触摸屏204是由多层的材料堆叠而成,本申请实施例中只展示出了触控板(层)和显示屏(层),其他层在本申请实施例中不予记载。另外,触控板204-1可以以全面板的形式配置在手机200的正面,显示屏204-2也可以以全面板的形式配置在手机200的正面,这样在手机的正面就能够实现无边框的结构。
另外,手机200还可以具有指纹识别功能。例如,可以在手机200的背面(例如 后置摄像头的下方)配置指纹识别器212,或者在手机200的正面(例如触摸屏204的下方)配置指纹识别器212。又例如,可以在触摸屏204中配置指纹采集器件212来实现指纹识别功能,即指纹采集器件212可以与触摸屏204集成在一起来实现手机200的指纹识别功能。在这种情况下,该指纹采集器件212配置在触摸屏204中,可以是触摸屏204的一部分,也可以以其他方式配置在触摸屏204中。本申请实施例中的指纹采集器件222的主要部件是指纹传感器,该指纹传感器可以采用任何类型的感测技术,包括但不限于光学式、电容式、压电式或超声波传感技术等。
手机200还可以包括蓝牙装置205,用于实现手机200与其他短距离的设备(例如手机、智能手表等)之间的数据交换。本申请实施例中的蓝牙装置可以是集成电路或者蓝牙芯片等。
手机200还可以包括至少一种传感器206,比如光传感器、运动传感器以及其他传感器。具体的,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节触摸屏204的显示器的亮度,接近传感器可在手机200移动到耳边时,关闭显示器的电源。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机200还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
Wi-Fi装置207,用于为手机200提供遵循Wi-Fi相关标准协议的网络接入,手机200可以通过Wi-Fi装置207接入到Wi-Fi接入点,进而帮助用户收发电子邮件、浏览网页和访问流媒体等,它为用户提供了无线的宽带互联网访问。在其他一些实施例中,该Wi-Fi装置207也可以作为Wi-Fi无线接入点,可以为其他设备提供Wi-Fi网络接入。
定位装置208,用于为手机200提供地理位置。可以理解的是,该定位装置208具体可以是全球定位系统(global positioning system,GPS)或北斗卫星导航系统、俄罗斯GLONASS等定位系统的接收器。定位装置208在接收到上述定位系统发送的地理位置后,将该信息发送至处理器201进行处理,或者发送至存储器203进行保存。在另外的一些实施例中,该定位装置208还可以是辅助全球卫星定位系统AGPS的接收器,AGPS系统通过作为辅助服务器来协助定位装置208完成测距和定位服务,在这种情况下,辅助定位服务器通过无线通信网络与设备例如手机200的定位装置208(即GPS接收器)通信而提供定位协助。在另外的一些实施例中,该定位装置208也可以是基于Wi-Fi接入点的定位技术。由于每一个Wi-Fi接入点都有一个全球唯一的MAC地址,设备在开启Wi-Fi的情况下即可扫描并收集周围的Wi-Fi接入点的广播信号,因此可以获取到Wi-Fi接入点广播出来的MAC地址;设备将这些能够标示Wi-Fi接入点的数据(例如MAC地址)通过无线通信网络发送至位置服务器,由位置服务器检索出每一个Wi-Fi接入点的地理位置,并结合Wi-Fi广播信号的强弱程度,计算出该设备的地理位置并发送到该设备的定位装置208中。
音频电路209、扬声器213、麦克风214可提供用户与手机200之间的音频接口。音频电路209可将接收到的音频数据转换后的电信号,传输到扬声器213,由扬声器 213转换为声音信号输出;另一方面,麦克风214将收集的声音信号转换为电信号,由音频电路209接收后转换为音频数据,再将音频数据输出至RF电路202以发送至比如另一手机,或者将音频数据输出至存储器203以便进一步处理。
外设接口210,用于为外部的输入/输出设备(例如键盘、鼠标、外接显示器、外部存储器、用户识别模块卡等)提供各种接口。例如通过通用串行总线USB接口与鼠标连接,通过用户识别模块卡卡槽上的金属触点与电信运营商提供的用户识别模块卡SIM卡进行连接。外设接口210可以被用来将上述外部的输入/输出外围设备耦接到处理器201和存储器203。
在本申请实施例中,手机200可通过外设接口210与设备组内的其他设备进行通信,例如,通过外设接口210可接收其他设备发送的显示数据进行显示等,本申请实施例对此不作任何限制。
手机200还可以包括给各个部件供电的电源装置211(比如电池和电源管理芯片),电池可以通过电源管理芯片与处理器201逻辑相连,从而通过电源装置211实现管理充电、放电、以及功耗管理等功能。
尽管图2未示出,手机200还可以包括摄像头(前置摄像头和/或后置摄像头)、闪光灯、微型投影装置、近场通信NFC装置等,在此不再赘述。
图3为本申请实施例提供的一种基站的组成示意图,如图3所示,基站可以包括至少一个处理器31、收发器32。
下面结合图3对基站的各个构成部件进行具体的介绍:
处理器31是基站的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器31是一个CPU,也可以是特定集成电路ASIC,或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA。当然,该基站还可以包括存储器33。
其中,处理器31可以独立执行本申请中基站的功能,也可以通过运行或执行存储在存储器43内的软件程序,以及调用存储在存储器33内的数据,执行基站的各种功能。
在具体的实现中,作为一种实施例,处理器31可以包括一个或多个CPU,例如图3中所示的CPU 0和CPU 1。
在具体实现中,作为一种实施例,基站可以包括多个处理器,例如图3中所示的处理器31和处理器35。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器33可以是只读存储器ROM或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器EEPROM、只读光盘CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器33可以是独立存在,通过总线34与处理器31相连接。存储器33也可以和处理器31集成在一起。
其中,存储器33用于存储执行本申请方案的软件程序,并由处理器31来控制执行。
收发器32,用于与其他设备或通信网络通信。如用于与以太网,无线接入网RAN,无线局域网WLAN等通信网络通信。收发器32可以包括基带处理器的全部或部分,以及还可选择性地包括RF处理器。RF处理器用于收发RF信号,基带处理器则用于实现由RF信号转换的基带信号或即将转换为RF信号的基带信号的处理。
总线34,可以是工业标准体系结构ISA总线、外部设备互连PCI总线或扩展工业标准体系结构EISA总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图3中示出的设备结构并不构成对基站的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于上述的网络系统以及硬件,本申请的实施例提供一种带宽部分的配置方法。参照图4所示,包括如下步骤:
101、接入网设备确定第一信息。
第一信息用于终端设备确定是否将第一带宽部分从第一状态切换至第二状态,其中,第一状态和第二状态中的一种状态为第一带宽部分开启部分功能的状态,另一种状态为第一带宽部分开启全部功能或者关闭全部功能的状态。
102、接入网设备将第一信息发送至终端设备。
103、终端设备从接入网设备接收第一信息。
104、终端设备根据第一信息确定是否将第一带宽部分从第一状态切换至第二状态。
其中,第一状态和第二状态中的一种状态为第一带宽部分开启部分功能的状态,另一种状态为第一带宽部分开启全部功能或者关闭全部功能的状态。
在本申请的实施例中,存在一种不同于激活态和去激活态的一种状态,在该状态下,第一带宽部分开启部分功能;则,当终端设备在从其他状态转换到该状态,或者从该状态转换到其他状态时,无需关闭或者开启第一带宽部分的全部功能,因此能够降低时延,并节省终端设备的耗电。
另外,在一些实施例中,第一带宽部分的状态切换是与带宽部分切换相结合的,例如,当第一带宽部分切换至第二带宽部分时,第一带宽部分发生状态的切换和/或第二带宽部分发生状态的切换。
在一些实施例中,第一信息可以同时控制带宽部分的切换以及带宽部分的状态切换,比如:第一状态为第一带宽部分开启全部功能的状态,第二状态为第一带宽部分开启部分功能的状态时,还包括:根据第一信息确定从第一带宽部分切换至第二带宽部分。又比如:第一状态为第一带宽部分开启部分功能的状态,第二状态为第一带宽部分开启全部功能的状态时,还包括:根据第一信息确定从第二带宽部分切换至第一带宽部分。
在一些实施例中,还可以通过第一信息控制带宽部分的状态切换,通过第二信息或第三信息控制带宽部分的切换,比如:第一状态为第一带宽部分开启全部功能的状态,第二状态为第一带宽部分开启部分功能的状态时,还包括:从接入网设备接收第二信息;根据第二信息确定从第一带宽部分切换至第二带宽部分,其中第二带宽部分 为开启全部功能的状态。又比如:第一状态为第一带宽部分开启部分功能的状态,第二状态为第一带宽部分开启全部功能的状态时,还包括:从接入网设备接收第三信息;根据第三信息确定从第二带宽部分切换至第一带宽部分。
下面结合第一信息、第二信息以及第三信息的具体形式对本申请的带宽部分的配置方法进行举例说明。
在一些实施例中,第一信息可以仅用于控制带宽部分的状态切换。可选的,第一信息可以为控制带宽部分的状态切换的信息,其具有二象性,例如:第一信息是个1bit的信息,第一信息指示出的是:是或否的含义。是或否的含义可以根据第一信息的比特明确指示出来,比如,1表示是,0表示否。是或否的含义还可以根据第一信息的指示形式而确定出来,比如,这个第一信息是可选的信元(optional information element,optional IE),那么这个第一信息配置给了终端设备并且有指示的内容则表示“是”,如果这个指示信息没有被配置给终端设备则表示“否”。
可以理解的,带宽部分可以包括三种状态:开启部分功能的状态、开启全部功能的状态、以及关闭全部功能的状态。以下实施例中将开启部分功能的状态称作休眠态,将开启全部功能的状态称作激活态,将关闭全部功能的状态称作去激活态。
本申请实施例中,可以定义三种状态按照固定顺序切换,例如:激活态->休眠态->去激活态->激活态,比如,对于一个休眠态的BWP,终端设备根据第一信息确定需要进行状态切换,那么终端设备将这个BWP的状态一定是从休眠态切换到去激活态。如果未定义三种状态的切换顺序,即三种状态可以随机切换的话,那么第一信息中可以包含状态的标识,例如:00表示:激活态,01表示:休眠态,10表示:去激活态,11表示:预留,那么第一信息中可以包含2个bit(比特),用来指示BWP要切换到哪个状态去,比如,当前BWP上终端设备接收到了一个MAC-CE信令,该信令指示了01,则表示该BWP的状态切换为休眠。当然,采用2个bit作为状态的标识仅是一种示例,并不构成对本申请的限制,在一些实施例中还可以采用其他方式例如更多或者更少的bit作为状态的标识。需要说明的是,在未定义三种状态的切换顺序时,第一信息中可以包含“需要切换状态”的指示以及将切换至的状态的标识,或者,第一信息可以仅包含将切换至的状态的标识,即“需要切换状态”的指示可以采用缺省的方式,当收到切换至的状态的标识时,即表示默认需要切换状态。
一种可能的方式中,第一信息可以是在一个激活态的BWP上传输至终端设备的。如果当前BWP处于激活态时,可以通过当前BWP传输第一信息,第一信息可以仅包含指示状态切换的信息,其默认为对当前BWP的状态的切换指示。可选的,第一信息也可以是通过任一处于激活态的BWP传输,此时第一信息还可以包含指示状态切换的BWP的标识。因此,第一信息中还可以包含BWP的标识,以及指示状态切换的标识。即,通过第一信息指示:哪个BWP需要切换状态。比如,第一信息可以为在DCI信令中配置的3个bit的字段,前2个bit指示哪个BWP(即,指示BWP的ID),后1个bit指示BWP需要切换状态需或不需要切换状态。示例性的:BWP1的状态已处于休眠态,终端设备在BWP0上传输数据。终端设备在BWP0上接收到了接入网设备发送的第一信息,例如,DCI信令,该DCI信令里指示了BWP ID=1及需要切换的状态(共3个bit指示:011),则该DCI表示了BWP1需要切换状态,相当于BWP1 的状态从休眠态切换为去激活态。一种可能的方式中,第一信息中可以包含BWP的标识以及状态的标识,例如,当三种状态按照可以随机切换时,第一信令中可以包括4个bit,协议中可以规定前2个bit指示了BWP的标识,后2个bit指示了状态的标识,那么0110则表示了ID=1的BWP的状态切换为去激活态。当然,以上采用3个bit同时指示BWP的标识以及状态切换的指示,采用4个bit同时指示BWP的指示以及切换的状态的标识仅是一种示例,并不构成对本申请的限制,在一些实施例中,还可以用分开的bit分别指示BWP的标识以及状态切换的指示或者切换的状态的标识,当然也可以采用其他的划分方式,例如在连续的多个bit中,采用前边的若干bit指示状态切换的指示或者切换的状态的标识,后边的若干bit指示BWP的标识等等。
又一种可能的方式中,第一信息可以包含定时器的超时时间,则在定时器超时时,确定将第一带宽部分从第一状态切换至第二状态。可以理解的是,可以是直接通过定时器配置带宽部分的状态切换,也可以是将定时器和前面所描述的指示信息、状态标识进行结合控制带宽部分的状态切换。例如:
第一、可以通过定时器控制带宽部分在激活态到休眠态的切换,比如,如图5所示,接入网设备通过配置信息配置第一定时器的超时时间为第一时长,例如,该配置信息可以为预定义的,或者通过广播下发的,则第一计时器超时时,终端设备控制BWP的状态从激活态切换为休眠态。其中,BWP的状态是从哪个状态切换到哪个状态,可以是约定的,例如协议规定好的。例如,终端设备本来在BWP上传输数据,即BWP为激活态,当确定BWP上无数据传输时或者持续预定时长无数据传输时,终端设备启动第一定时器,当第一定时器超时时,终端设备将BWP的状态从激活态切换为休眠态。又比如,BWP进入激活态时,启动第一定时器,当第一定时器超时时,这个BWP从激活态切换为休眠态。其中第一信息可以是接入网设备由广播消息或者RRC信令发送给UE的。又比如,可以是终端设备收到用于指示进行状态切换的第一信息(当然该第一信息可以为上述实施例中的包含“需要切换状态”的指示和/或将切换至的状态的标识的第一信息)后启动该第一定时器,在第一定时器超时时,对BWP进行状态切换。
第二,可以通过定时器控制带宽部分在休眠态到去激活态的切换,比如,如图6所示,接入网设备通过配置信息配置第二定时器的第二时长,例如,该配置信息可以为预定义的,或者通过广播下发的,则第二定时器超时时,终端设备控制BWP的状态从休眠态切换为激活态。其中,BWP进入休眠态时,启动第二定时器。又比如,可以是终端设备收到用于指示进行状态切换的第一信息(当然该第一信息可以为上述实施例中的包含“需要切换状态”的指示和/或将切换至的状态的标识的第一信息)后启动该第二定时器,在第二定时器超时时,对BWP进行状态切换。
通常,在一些实施例中,BWP的状态切换伴随BWP的切换,则控制BWP切换的指令可以采用第一信息,或者采用与第一信息区别的其他信息。
在一种实施例中,可以通过第一信息同时控制带宽部分的切换以及带宽部分的状态切换。如果当前BWP处于激活态时,可以通过当前BWP传输第一信息,第一信息可以包含指示带宽部分切换的信息,其默认为将当前BWP切换为其他BWP例如回退到默认BWP或者初始BWP;可以理解的,第一信息也可以是通过任一处于激活态的 BWP传输,此时第一信息还可以包含BWP的标识,则终端设备在接收到该第一信息后从当前BWP切换至第一信息中的BWP的标识对应的BWP。比如:如图7所示,终端设备在BWP1上接收到了接入网设备发送的第一信息,如,RRC信令,或者,MAC-CE信令,或者DCI信令,在配置的第一信息中包括了一个BWP的标识,比如,通过BWP ID表示BWP的标识,比如BWP ID=2,那么终端设备将从BWP1切换到BWP2,意味着,终端设备将在BWP2上传输数据。则接入网设备发送的第一信息也同时指示了,BWP1的状态需要转换,例如从激活态变为休眠态。另外,由于需要在BWP2上传输数据,则需要将BWP2的状态切换为激活态。BWP2可以处于休眠态,也可以处于去激活态或者激活态,那么BWP2的状态将切换为激活态。当然,若BWP2本身处于激活态,则保持其处于激活态。又比如:接入网设备通过配置信息配置了第一定时器的时长,例如,该配置信息可以为预定义的,或者通过广播下发的,则第一定时器超时时,终端设备将第一带宽部分切换至第二带宽部分,同时终端设备将第一带宽部分的状态从激活态切换到休眠态。示例性的,终端设备UE本来在BWP1上传输数据,当确定BWP1上无数据传输时,终端设备开启第一定时器,当第一定时器超时时,终端设备回退到BWP0(BWP0是接入网设备配置的默认BWP;如果接入网设备没有配置默认BWP,那么BWP0指接入网设备配置的初始BWP)。BWP1的状态从激活态切换为休眠态,BWP0的状态切换为激活态。
或者,可以是终端设备收到用于指示带宽部分切换的第一信息(当然该第一信息可以包含指示带宽部分切换的信息)后启动该第一定时器,在第一定时器超时时,对BWP切换。
在另一种实施例中,通过第一信息同时控制带宽部分的切换以及带宽部分的状态切换时,可以根据第一信息确定从第二带宽部分切换至第一带宽部分。比如:如图8所示,终端设备在BWP2上接收到了接入网设备发送的第一信息,如,RRC信令,或者,MAC-CE信令,或者DCI信令,在配置的第一信息中包括了一个BWP的标识,比如BWP ID=1,那么终端设备将从BWP2切换到BWP1,意味着,终端设备将在BWP1上传输数据。则接入网设备发送的第一信息也同时指示了,BWP1的状态切换为激活态,当然,可以为无论BWP1当前处于何种状态(例如可以是休眠态或者去激活态或者激活态),则需要将BWP1的状态切换为激活态,当然,若BWP1本身处于激活态,则保持其处于激活态。
在一些实施例中,可以采用与第一信息区别的其他信息控制带宽部分之间的切换。示例性的,第一状态为第一带宽部分开启全部功能的状态,第二状态为第一带宽部分开启部分功能的状态时,终端设备从接入网设备接收第二信息;根据第二信息确定从第一带宽部分切换至第二带宽部分。比如,终端设备在BWP1上接收到了接入网设备发送的第二信息,如,RRC信令,或者,MAC-CE信令,或者DCI信令,在配置的第一信息中包括了一个BWP的标识,比如BWP ID=2,那么终端设备将从BWP1切换到BWP2,意味着,终端设备将在BWP2上传输数据。此时,通常会结合BWP1的状态切换,则终端设备在BWP1上接收到了接入网设备发送的第一信息,如,RRC信令,或者,MAC-CE信令,或者DCI信令,在配置的第一信息中包括了一个BWP的标识,比如BWP ID=2,则意味着,终端设备将在BWP2上传输数据,则接入网设备发送的 第一信息指示了BWP1的状态从激活态变为休眠态。另外,由于需要在BWP2上传输数据,则无论BWP2当前处于何种状态(例如可以是休眠态或者去激活态或者激活态),则需要将BWP2的状态切换为激活态,当然,若BWP2本身处于激活态,则保持其处于激活态。其中第一信息和第二信息可以分别发送或携带在同一个信息中发送。又比如,第二信息可以包含第三定时器的超时时间,接入网设备通过第二信息配置第三定时器的超时时间为第三时长,则第三定时器计时器超时时,终端设备将第一带宽部分切换至第二带宽部分。示例性的,终端设备UE本来在BWP1上传输数据,当确定BWP1上无数据传输或者持续预定时长无数据传输时,终端设备开启第三定时器,当第三定时器超时时,终端设备回退到BWP0(BWP0是接入网设备配置的默认BWP;如果接入网设备没有配置默认BWP,那么BWP0指接入网设备配置的初始BWP)。BWP状态切换和BWP切换往往是结合的,示例性,终端设备在BWP1上根据第三定时器超时,判断终端设备要从BWP1切换到BWP0,终端设备在BWP1上还要接收控制BWP状态切换的第一信息,如WUS,判断BWP1的状态如何切换。具体的,终端设备在BWP1上传输数据时BWP1处于激活态,当BWP1上无数据传输时,终端设备开启第三定时器,当第三定时器超时时,终端设备将会回退到BWP0。当第三定时器超时时,或者,在第三定时器超时之前,终端设备在BWP1上检测到WUS,如果WUS检测结果表示BWP1的状态需要切换,那么BWP1的状态从激活态切换为休眠态,并且,终端设备从BWP1切换到BWP0。当第三定时器超时时,或者,在第三定时器超时之前,终端设备在BWP1上检测WUS,如果WUS检测结果表示BWP1的状态不需要切换,那么BWP1的状态保持为激活态,并且,终端设备从BWP1切换到BWP0。再比如,第一信息包含第一定时器的超时时间,第二定时器包含第三定时器的超时时间,如第一信息包含第一定时器的超时时间timer1(第一时长),第二信息包含第三定时器的超时时间timer3(第三时长);则,终端设备根据第三定时器超时,从BWP1切换到BWP0。终端设备根据第一定时器超时,将BWP1从激活态切换至休眠态。其中,第一定时器和第三定时器均从BWP1进入激活态启动,或者第一定时器和第三定时器均从BWP1上确定无数据传输或者持续预定时长无数据传输时启动。另外,timer1可以大于timer3,这样,当第三定时器超时后,从BWP1切换到BWP0,BWP1仍然保持一段时间为激活态,之后第一定时器超时后,BWP1从激活态切换至休眠态。Timer1的值可以和timer3的值有关联关系,例如,Timer1的值等于Timer3的值,那么终端在切换BWP的同时将BWP的状态进行了转换。或者,可以是终端设备收到用于指示带宽部分切换的第二信息(当然该第二信息可以包含指示带宽部分切换的信息)后启动该第三定时器,在第三定时器超时时,对BWP切换。
示例性的,第一状态为第一带宽部分开启部分功能的状态,第二状态为第一带宽部分开启全部功能的状态时,终端设备从接入网设备接收第三信息;根据第三信息确定从第二带宽部分切换至第一带宽部分。
比如,终端设备在BWP2上接收到了接入网设备发送的第三信息,如,RRC信令,或者,MAC-CE信令,或者DCI信令,在配置的第三信息中包括了一个BWP的标识,比如BWP ID=1,那么终端设备将从BWP2切换到BWP1,意味着,终端设备将在BWP1上传输数据。此时,通常会结合BWP1的状态切换,则终端设备在BWP1上接收到了 接入网设备发送的第一信息,如,RRC信令,或者,MAC-CE信令,或者DCI信令,在配置的第一信息中包括了一个BWP的标识,比如BWP ID=1,则意味着,终端设备将在BWP1上传输数据,则接入网设备发送的第一信息指示了BWP1的状态切换为激活态,则无论BWP1当前处于何种状态(例如可以是休眠态或者去激活态或者激活态),都需要将BWP1的状态切换为激活态,当然,若BWP1本身处于激活态,则保持其处于激活态。另外,将BWP2从激活态切换至休眠态,其中第一信息和第三信息可以分别发送或携带在同一个信息中发送。
一种可能的方式中,上述第一信息的形式可以为唤醒指示(wake up signal,WUS),示例性的:WUS的形式可以是信令,如DCI信令,介质访问控制信元(medium access control-CE,MAC-CE)信令或无线资源控制(radio resource control,RRC)信令。
比如,DCI中的信息指示了BWP需要切换状态或不需要切换状态,例如,可以是1bit的信息,也可以是多于1个bit的信息,本申请中对信息的形式不作限定;可选的,参照上述的示例DCI中还可以通过若干bit指示BWP的标识。又比如,MAC-CE中有1个bit指示了BWP需要切换状态或不需要切换状态,或者MAC-CE中有若干个bit指示了BWP的状态;可选的,参照上述的示例MAC-CE中还可以通过若干bit指示BWP的标识。再比如,RRC中有1个bit指示了BWP需要切换状态或不需要切换状态,或者RRC中有若干个bit指示了BWP的状态;可选的,参照上述的示例RRC中还可以通过若干bit指示BWP的标识。
此外,第一信息还可以是其他的形式,例如可以是序列或者导频。
比如,第一信息可以是序列形式的WUS,而序列可以是如ZC(Zadoff-chu)序列,或者,最长线性移位寄存器序列(简称,m序列)。
比如,根据ZC序列的掩码监测结果,指示BWP是否需要切换状态。具体来说,终端设备通过检测ZC序列,可以检测出来具体的掩码结果,协议可以定义掩码1对应的是BWP需要切换状态,掩码2对应的是BWP不需要切换状态。那么,如果终端设备通过ZC序列检测到了掩码1,则BWP的状态需要切换。
或者比如,可以是导频形式的WUS,而导频比如可以是如CSI-RS、跟踪参考信号(tracking reference signals,TRS)、或者DMRS等。
比如,根据CSI-RS是否存在,指示BWP是否需要切换状态。一种可能的方式中,接入网设备通过RRC信令(或者,RRC信令再结合DCI信令,或者,RRC信令再结合MAC-CE信令,等等)为终端设备配置了至少一种CSI-RS配置信息。CSI-RS配置信息中至少包括以下一种:CSI-RS的图样信息,CSI-RS的时域信息,CSI-RS的频域信息,CSI-RS的功率信息等等。终端设备根据CSI-RS配置信息检测CSI-RS,如果检测到了CSI-RS(比如,可以根据检测CSI-RS的电平判断检测到了CSI-RS,或者,根据检测的CSI-RS的自相关性判断检测到了CSI-RS),那么意味着BWP需要切换状态。如果没有检测到CSI-RS,那么意味着BWP不需要切换状态。又比如,WUS是在一个激活态的BWP上被终端设备接收到的,因此,这个WUS需要指示出:哪个BWP、是否需要切换状态。比如,CSI-RS的图样编号可以和BWP ID有关联关系,再根据是否可以检测出来CSI-RS,来确定该BWP是否需要切换状态。示例性的,BWP1的状态已处于休眠态,终端设备在BWP0上传输数据。终端设备在BWP0上接收到了接入 网设备发送的第一信息,例如,形式为CSI-RS的WUS。接入网设备为终端设备配置了多种CSI-RS图样,比如图样1、2、3,每种图样代表了一种特定的时频资源,终端设备分别在图样1、2、3所指示的时频资源上检测CSI-RS。如果终端设备在图样1所指示的时频资源上检测到了CSI-RS,那么终端设备根据图样1确定BWP ID。图样标识和BWP标识的对应关系可以是协议预定义的,例如,图样标识等于BWP标识。UE在图样1上检测到了CSI-RS意味着BWP1的状态需要切换,相当于BWP1的状态从休眠态切换为去激活态。此外,第二信息以及第三信息的形式也可以为WUS,具体功能可以参照上述第一信息的描述不再赘述。
此外,上述实施例提供的方案适用于下行BWP、上行BWP,还可以适用于边链路BWP(sidelink BWP),本申请的实施例不做限定。对上行BWP或下行BWP或边链路BWP,终端设备可能在不同的载波上各支持一个激活的BWP,也可以在所有载波上只支持一个激活的BWP。例如,对上行BWP,终端设备可能在不同的上行载波上各支持一个激活的上行BWP,也可以在所有上行载波上只支持一个激活的上行BWP,对于下行BWP、边链路BWP的情况与上行BWP类似。
对于支持补充上行链路(supplementary uplink,SUL)的终端设备来说,在普通上行链路(normal UL,简称为UL)载波上可以包含了该载波上的1个或多个上行BWP,在SUL载波上,可以包含了该载波上的1个或多个上行BWP。假如一个终端设备只能支持一个激活的上行BWP,那么UE可以在UL上的激活上行BWP上发送上行数据,而SUL上的上行BWP需要被切换为休眠态,休眠态的上行BWP上终端设备可以发送SRS或者进行测量。该休眠态的BWP可以是根据控制BWP切换的信息而切换了状态,例如,终端设备根据切换BWP的信息(可以为定时器的时长或者具体的指示BWP切换的信息)从SUL上的上行BWP切换到UL上的上行BWP上,那么SUL上的上行BWP的状态切换到休眠态,UL上的上行BWP的状态切换为激活态。该休眠态的BWP也可以是根据指示状态切换的信息切换了状态,例如,终端设备根据DCI信令或者MAC-CE信令或者RRC信令或者WUS,将SUL上的上行BWP的状态切换为休眠态。以上仅是一种示例,切换上行BWP的的具体方法和上文所述的切换BWP的方法一致,不再赘述。切换上行BWP的状态的具体方法和上文所述的切换BWP的状态的方法一致,不再赘述。以上仅以上行BWP为例进行说明,下行BWP以及边链路BWP也是类似的。在一些实施例中,控制切换BWP的信息可以是控制切换上行BWP的信息(例如定时器时长),也可以是控制切换下行BWP的信息;控制切换上行BWP的状态的信息可以是控制切换上行BWP的状态的信息,即上行BWP及下行BWP采用同一个信息控制BWP的切换,上行BWP及下行BWP采用同一个信息控制BWP的状态的切换。
在一些实施例中,为了降低终端设备的功耗,可以为终端设备只保留一个处于休眠态的带宽部分或者只保留一个处于激活态的带宽部分。例如:当第一带宽部分进入休眠态时,可以将该UE的其他带宽部分切换至去激活态;或者,当第一带宽部分进入激活态时,将该UE的其他带宽部分切换至去激活态。
一种可能的方式中,在同一个小区或者同一中心频点下至少存在两个不同的带宽部分的场景下:当第一带宽部分进入休眠态时,可以将与第一带宽部分同一个小区或 者同一个中心频点下的其他处于休眠态的带宽部分切换至去激活态;或者,当第一带宽部分进入激活态时,可以将与第一带宽部分同一个小区或者同一个中心频点下的其他处于激活态的带宽部分切换至去激活态。
示例性的,终端设备在3个BWP上依次切换,例如:当终端设备从BWP1切换到BWP2时,BWP1切换至休眠态,BWP2切换至激活态,BWP3为去激活态。然后,当终端设备从BWP2切换到BWP3时,可能造成的场景是:BWP1仍为休眠态,BWP2的状态切换为休眠态,BWP3切换为激活态。这时,BWP1和BWP2均为休眠态。则,当同一个小区或同一个频点上有多于1个BWP处于休眠态时,将除最新切换为休眠态的BWP之外的其他休眠态BWP切换为去激活态。这意味着,BWP1的状态需要从休眠切换为去激活,这样,3个BWP的状态分别为:去激活态、休眠态、激活态。当然,由于BWP1-3都是同一个终端设备的,并且终端设备可以判断并决定每个BWP的状态。
在另一个示例中,如果BWP是根据第二定时器超时从休眠态切换为去激活态,那么在将其他休眠态的BWP切换为去激活态时,需要停止处于休眠态的BWP对应的第二定时器,并重置第二定时器。相当于,只保留1个休眠态的BWP。例如:BWP从休眠态切换为去激活态是根据上述的第二定时器超时而确定的。这个第二定时器是per BWP(即针对每个BWP单独配置第二定时器)配置的,即每个BWP对应的第二定时器的超时时长可以相同或者不同。如图9所示,在终端设备从BWP1切换至BWP2时,BWP1从激活态切换至休眠态,并启动BWP1的第二定时器;BWP2从休眠态或者去激活态切换至激活态;然后终端设备从BWP2切换至BWP3,则BWP2从激活态切换至休眠态,并启动BWP2的第二定时器;BWP3从休眠态或者去激活态切换至激活态;此时,若BWP1的第二定时器还未超时,则BWP1、2、3分别为:休眠态、休眠态、激活态,BWP1的第二定时器仍在计时,BWP2的第二定时器仍在计时。那么,终端将BWP1的状态从休眠态切换为去激活态时,还要将BWP1的第二定时器停止,或者,停止并重置。这样的话,BWP1的状态为去激活。BWP2的第二定时器还在计时,所以BWP2的状态为休眠态,BWP3的状态为激活态,从而降低了终端设备的功耗。
在另外一个示例中,如果BWP是根据第一定时器从激活态切换为休眠态,那么终端设备在将其他激活态的BWP切换为去激活态时,需要停止处于激活态的BWP对应的第一定时器,并重置第一定时器。相当于,禁止其他BWP进入休眠态,也相当于只保留1个休眠态的BWP。
BWP从激活态切换为休眠态是根据上述的第一定时器超时而确定的。这个第一定时器是per BWP(即针对每个BWP单独配置第一定时器)配置的,即每个BWP对应的第一定时器的超市时长可以相同或者不同。例如,如图10所示,BWP可以根据第一定时器的控制而离开激活态,那么终端设备离开BWP1时(例如终端设备从BWP1切换到BWP2),BWP1的状态可能还会为激活态直至BWP1的第一定时器超时。这可能会造成:终端设备在将BWP1的状态切换至激活态时,启动BWP1的第一定时器,终端设备将切换BWP从BWP2切换至BWP3,BWP3的状态切换至激活态,则BWP2的状态也需要根据BWP2的第一定时器是否超时来判断合适离开激活态,例如,切换 至休眠态。则当BWP1的第一定时器以及BWP2的第一定时器均未超时时,BWP1、2、3分别为:激活态、激活态、激活态,BWP1的第一定时器在计时,BWP2的第一定时器也在计时,终端设备在BWP3上传输数据。那么,终端设备将BWP1和BWP2的状态从激活态直接切换为去激活态,并且,终端设备将BWP1和BWP2的第一定时器停止,或者,停止并重置。这样的话,相当于禁止多余1个BWP(BWP1、2)处于激活态,也相当于,禁止BWP1、2进入休眠态,直接将BWP1、2切换为去激活态,所以BWP1、2的状态为去激活态,BWP3的状态为激活态,从而降低了终端设备的功耗。
又比如:如图11所示,BWP可以根据第一定时器的控制而离开激活态,那么终端设备离开BWP1时(例如终端设备从BWP1切换到BWP2),BWP1的状态可能还会为激活态直至BWP1的第一定时器超时。终端设备在将BWP1的状态切换至激活态时,启动BWP1的第一定时器,终端设备将切换BWP从BWP2切换至BWP3时,BWP3的状态切换至激活态,则BWP2的状态也需要根据BWP2的第一定时器是否超时来判断合适离开激活态,例如,切换至休眠态。则当BWP1的第一定时器以及BWP2的第一定时器均未超时时,若BWP2的第一定时器先超时,则BWP2进入休眠态,并且启动BWP2的第二定时器,此时BWP1、2、3分别为:激活态、休眠态、激活态,BWP1的第一定时器在计时,BWP2的第二定时器也在计时,终端设备在BWP3上传输数据。那么,终端设备将BWP1的状态从激活态直接切换为去激活态,并且,终端设备将BWP1的第一定时器停止,或者,停止并重置。这样的话,相当于禁止多余1个BWP(BWP1)处于激活态,也相当于,禁止BWP1进入休眠态,直接将BWP1切换为去激活态,所以BWP2的状态为休眠态,BWP3的状态为激活态,从而降低了终端设备的功耗。
本申请实施例提供一种带宽部分的配置装置,该带宽部分的配置装置可以为终端设备或者可以为终端设备的芯片。该带宽部分的配置装置用于执行以上实施例提供的带宽部分的配置方法中与终端设备对应的方法。本申请实施例提供的带宽部分的配置装置可以包括相应步骤所对应的模块。
本申请实施例可以根据上述图4对应的实施例提供的带宽部分的配置方法对带宽部分的配置装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,参照图12所示,提供一种带宽部分的配置装置进行功能模块划分的方式,包括:接收模块41和处理模块42。
一种可能的方式中,本申请提供的各个模块所实现的功能可以如下:接收模块41,用于从接入网设备接收第一信息;处理模块42,用于根据接收模块41接收的第一信息确定是否将第一带宽部分从第一状态切换至第二状态,其中,第一状态和第二状态中的一种状态为第一带宽部分开启部分功能的状态,另一种状态为第一带宽部分开启全部功能或者关闭全部功能的状态。
可选的,所述第一信息包括唤醒指示WUS。
可选的,第一信息包含第一时长,第一时长为第一定时器的超时时间;处理模块 42具体用于第一状态为第一带宽部分开启全部功能的状态,第二状态为第一带宽部分开启部分功能的状态时,当第一定时器超时时,确定将第一带宽部分从第一状态切换至第二状态。
可选的,所述处理模块42用于当确定第一带宽部分上无数据传输时,启动第一定时器;或者,当确定第一带宽部分进入第一状态时,启动第一定时器。
可选的,第一信息包含第二时长,第二时长为第二定时器的超时时间;处理模块42具体用于第一状态为第一带宽部分开启部分功能的状态,第二状态为关闭全部功能的状态时,当第二定时器超时时,确定将第一带宽部分从第一状态切换至第二状态。
可选的,所述处理模块42用于当确定所述第一带宽部分进入所述第一状态时,启动所述第二定时器。
可选的,所述处理模块42还用于第一状态为第一带宽部分开启全部功能的状态,第二状态为第一带宽部分开启部分功能的状态时,根据第一信息确定从第一带宽部分切换至第二带宽部分。
可选的,所述处理模块42还用于第一状态为第一带宽部分开启部分功能的状态,第二状态为第一带宽部分开启全部功能的状态时,根据第一信息确定从第二带宽部分切换至第一带宽部分。
可选的,第一状态为第一带宽部分开启全部功能的状态,第二状态为第一带宽部分开启部分功能的状态时,接收模块41还用于从接入网设备接收第二信息;处理模块42还用于根据接收模块41接收的第二信息确定从第一带宽部分切换至第二带宽部分,其中第二带宽部分为开启全部功能的状态。
可选的,第二信息包括WUS。
可选的,第二信息包含第三时长,所述第三时长为第三定时器的超时时间;处理模块42具体用于当所述第三定时器超时时,确定从第一带宽部分切换至第二带宽部分。
可选的,处理模块42用于当确定第一带宽部分上无数据传输时,启动第三定时器。
可选的,第一状态为第一带宽部分开启部分功能的状态,第二状态为第一带宽部分开启全部功能的状态时,接收模块41还用于从接入网设备接收第三信息;处理模块42还用于根据接收模块41接收的第三信息确定从第二带宽部分切换至第一带宽部分。
可选的,所述第三信息包括WUS。
当然,本申请实施例提供的带宽部分的装置包括但不限于上述模块,例如带宽部分的装置还可以包括存储模块。存储模块可以用于存储带宽部分的装置的程序代码。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
当带宽部分的装置为终端设备或者终端设备的芯片时,上述处理模块42可以是图2中的处理器201;接收模块41可以是图2中的通信接口210或射频电路202。该带宽部分的配置装置执行上述图4对应的实施例中终端设备执行的步骤。
本申请实施例提供一种带宽部分的配置装置,该带宽部分的配置装置可以为接入网设备或者可以为接入网设备的芯片。该带宽部分的配置装置用于执行以上实施例提供的带宽部分的配置方法中与接入网设备对应的方法。本申请实施例提供的带宽部分的配置装置可以包括相应步骤所对应的模块。
本申请实施例可以根据上述图4对应的实施例提供的带宽部分的配置方法对带宽部分的配置装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,参照图13所示,提供一种带宽部分的配置装置进行功能模块划分的方式,包括:处理模块51和发送模块52。本申请提供的各个单元模块所实现的功能具体如下:处理模块51,用于确定第一信息,第一信息用于终端设备确定是否将第一带宽部分从第一状态切换至第二状态,其中,第一状态和第二状态中的一种状态为第一带宽部分开启部分功能的状态,另一种状态为第一带宽部分开启全部功能或者关闭全部功能的状态;发送模块52用于将处理模块51确定的第一信息发送至终端设备。
可选的,第一信息包含第一时长,第一时长为第一定时器的超时时间;或者,第一信息包含第二时长,第二时长为第二定时器的超时时间。
可选的,第一状态为第一带宽部分开启全部功能的状态,第二状态为第一带宽部分开启部分功能的状态时,第一信息还用于终端设备确定从第一带宽部分切换至第二带宽部分。
可选的,第一状态为第一带宽部分开启部分功能的状态,第二状态上第一带宽部分开启全部功能的状态时,第一信息还用于终端设备确定从第二带宽部分切换至第一带宽部分。
可选的,第一状态为第一带宽部分开启全部功能的状态,第二状态为第一带宽部分开启部分功能的状态时,处理模块51还用于确定第二信息,第二信息用于终端设备确定从第一带宽部分切换至第二带宽部分,其中第二带宽部分为开启全部功能的状态;发送模块52还用于将处理模块51确定的第二信息发送至终端设备。
可选的,第二信息包含第三时长,第三时长为第三定时器的超时时间。
可选的,第一状态为第一带宽部分开启部分功能的状态,第二状态为第一带宽部分开启全部功能的状态时,处理模块51,还用于确定第三信息,第三信息用于终端设备确定从第二带宽部分切换至第一带宽部分;发送模块52,还用于将处理模块51确定的第三信息发送至终端设备。
当然,本申请实施例提供的带宽部分的配置装置包括但不限于上述模块,例如带宽部分的配置装置还可以包括存储单元。存储单元可以用于存储带宽部分的配置装置的程序代码。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
当带宽部分的配置装置为接入网设备或可用于接入网设备的芯片时,上述处理模块可以是图3中的处理器31或处理器35;发送模块可以是图3中的收发器32。当带宽部分的配置装置运行时,该带宽部分的配置装置执行上述图4对应的实施例中接入网设备执行的步骤。
本申请另一实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令被运行时,实现上述的实施例的带宽部分的配置方法。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;带宽部分的配置装置的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得带宽部分的配置装置实施执行上述的实施例的带宽部分的配置方法。
本申请实施例还提供了芯片系统,该芯片系统包括处理器,用于支持带宽部分的配置装置实现上述带宽部分的配置方法。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存带宽部分的配置装置的程序指令和数据。当然,存储器也可以不在芯片系统中。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分的通过软件,硬件,固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式出现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据终端设备。该可用介质可以是磁性介质,(例如,软盘,硬盘、磁带)、光介质(例如,DVD)或者半导体介质(例如固态硬盘solid state disk(SSD))等。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种带宽部分的配置方法,其特征在于,包括:
    从接入网设备接收第一信息;
    根据所述第一信息确定是否将第一带宽部分从第一状态切换至第二状态,其中,所述第一状态和第二状态中的一种状态为所述第一带宽部分开启部分功能的状态,另一种状态为所述第一带宽部分开启全部功能或者关闭全部功能的状态。
  2. 根据权利要求1所述的带宽部分的配置方法,其特征在于,所述第一信息包括唤醒指示WUS。
  3. 根据权利要求1或2所述的带宽部分的配置方法,其特征在于,所述第一信息包含第一时长,所述第一时长为第一定时器的超时时间;
    所述根据所述第一信息确定是否将第一带宽部分从第一状态切换至第二状态,包括:
    所述第一状态为所述第一带宽部分开启全部功能的状态,所述第二状态为所述第一带宽部分开启部分功能的状态时,当所述第一定时器超时时,确定将第一带宽部分从第一状态切换至第二状态。
  4. 根据权利要求3所述的带宽部分的配置方法,其特征在于,当确定所述第一带宽部分上无数据传输时,启动所述第一定时器;
    或者,当确定所述第一带宽部分进入所述第一状态时,启动所述第一定时器。
  5. 根据权利要求1所述的带宽部分的配置方法,其特征在于,所述第一信息包含第二时长,所述第二时长为第二定时器的超时时间;
    所述根据所述第一信息确定是否将第一带宽部分从第一状态切换至第二状态,包括:
    所述第一状态为所述第一带宽部分开启部分功能的状态,所述第二状态为所述第一带宽部分关闭全部功能的状态时,当所述第二定时器超时时,确定将第一带宽部分从第一状态切换至第二状态。
  6. 根据权利要求5所述的带宽部分的配置方法,其特征在于,当确定所述第一带宽部分进入所述第一状态时,启动所述第二定时器。
  7. 根据权利要求1-4任一项所述的带宽部分的配置方法,其特征在于,所述第一状态为所述第一带宽部分开启全部功能的状态,所述第二状态为所述第一带宽部分开启部分功能的状态时,所述方法还包括:根据所述第一信息确定从所述第一带宽部分切换至第二带宽部分。
  8. 根据权利要求1或2所述的带宽部分的配置方法,其特征在于,所述第一状态为所述第一带宽部分开启部分功能的状态,所述第二状态为所述第一带宽部分开启全部功能的状态时,所述方法还包括:根据所述第一信息确定从第二带宽部分切换至所述第一带宽部分。
  9. 根据权利要求1所述的带宽部分的配置方法,其特征在于,所述第一状态为所述第一带宽部分开启全部功能的状态,所述第二状态为所述第一带宽部分开启部分功能的状态时,所述方法还包括:
    从接入网设备接收第二信息;
    根据所述第二信息确定从所述第一带宽部分切换至第二带宽部分,其中所述第二带宽部分为开启全部功能的状态。
  10. 根据权利要求9所述的带宽部分的配置方法,其特征在于,所述第二信息包括WUS。
  11. 根据权利要求9所述的带宽部分的配置方法,其特征在于,所述第二信息包含第三时长,所述第三时长为第三定时器的超时时间;
    根据所述第二信息确定从所述第一带宽部分切换至第二带宽部分,包含:
    当所述第三定时器超时时,确定从所述第一带宽部分切换至第二带宽部分。
  12. 根据权利要求11所述的带宽部分的配置方法,其特征在于,当确定所述第一带宽部分上无数据传输时,启动所述第三定时器。
  13. 根据权利要求1所述的带宽部分的配置方法,其特征在于,所述第一状态为所述第一带宽部分开启部分功能的状态,所述第二状态为所述第一带宽部分开启全部功能的状态时,所述方法还包括:
    从接入网设备接收第三信息;
    根据所述第三信息确定从第二带宽部分切换至第一带宽部分。
  14. 根据权利要求13所述的带宽部分的配置方法,其特征在于,所述第三信息包括WUS。
  15. 一种带宽部分的配置方法,其特征在于,包括:
    确定第一信息,所述第一信息用于终端设备确定是否将第一带宽部分从第一状态切换至第二状态,其中,所述第一状态和第二状态中的一种状态为所述第一带宽部分开启部分功能的状态,另一种状态为所述第一带宽部分开启全部功能或者关闭全部功能的状态;
    将所述第一信息发送至所述终端设备。
  16. 根据权利要求15所述的带宽部分的配置方法,其特征在于,所述第一信息包含第一时长,所述第一时长为第一定时器的超时时间;
    或者,所述第一信息包含第二时长,所述第二时长为第二定时器的超时时间。
  17. 根据权利要求15或16所述的带宽部分的配置方法,其特征在于,所述第一状态为所述第一带宽部分开启全部功能的状态,所述第二状态为所述第一带宽部分开启部分功能的状态时,所述第一信息还用于所述终端设备确定从所述第一带宽部分切换至第二带宽部分。
  18. 根据权利要求15所述的带宽部分的配置方法,其特征在于,所述第一状态为所述第一带宽部分开启部分功能的状态,所述第二状态为所述第一带宽部分开启全部功能的状态时,所述第一信息还用于所述终端设备确定从第二带宽部分切换至第一带宽部分。
  19. 根据权利要求15或16所述的带宽部分的配置方法,其特征在于,所述第一状态为所述第一带宽部分开启全部功能的状态,所述第二状态为所述第一带宽部分开启部分功能的状态时,所述方法还包括,确定第二信息,所述第二信息用于所述终端设备确定从所述第一带宽部分切换至第二带宽部分,其中所述第二带宽部分为开启全部功能的状态;
    将所述第二信息发送至所述终端设备。
  20. 根据权利要求19所述的带宽部分的配置方法,其特征在于,所述第二信息包含第三时长,所述第三时长为第三定时器的超时时间。
  21. 根据权利要求15所述的带宽部分的配置方法,其特征在于,所述第一状态为所述第一带宽部分开启部分功能的状态,所述第二状态为所述第一带宽部分开启全部功能的状态时,所述方法还包括,确定第三信息,所述第三信息用于所述终端设备确定从第二带宽部分切换至第一带宽部分;
    将所述第三信息发送至所述终端设备。
  22. 一种带宽部分的配置装置,用于实现如权利要求1-21任一项所述的带宽部分的配置方法。
  23. 一种带宽部分的配置装置,其特征在于,该带宽部分的配置装置包括:一个或多个处理器、通信接口;其中,所述通信接口与一个或多个所述处理器耦合;所述带宽部分的配置装置通过所述通信接口与其他设备通信,所述处理器用于执行存储器中的计算机程序代码,计算机程序代码包括指令,使得所述带宽部分的配置装置执行如权利要求1-21任一项所述的带宽部分的配置装置方法。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令;当其在带宽部分的配置装置上运行时,使得带宽部分的配置装置执行如权利要求1-21任一项所述的带宽部分的配置方法。
  25. 一种计算机程序产品,其特征在于,包括指令,当所述指令在带宽部分的配置装置上运行时,使得所述带宽部分的配置装置执行如权利要求1-21任一项所述的带宽部分的配置方法。
PCT/CN2019/113098 2018-10-26 2019-10-24 一种带宽部分的配置方法及装置 WO2020083348A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811256581.X 2018-10-26
CN201811256581.XA CN111107612B (zh) 2018-10-26 2018-10-26 一种带宽部分的配置方法及装置

Publications (1)

Publication Number Publication Date
WO2020083348A1 true WO2020083348A1 (zh) 2020-04-30

Family

ID=70330278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113098 WO2020083348A1 (zh) 2018-10-26 2019-10-24 一种带宽部分的配置方法及装置

Country Status (2)

Country Link
CN (1) CN111107612B (zh)
WO (1) WO2020083348A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022006750A1 (en) * 2020-07-07 2022-01-13 Qualcomm Incorporated Positioning for secondary cell dormancy
US20220330153A1 (en) * 2021-04-09 2022-10-13 Qualcomm Incorporated Duty cycle configuration for power saving

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230254881A1 (en) * 2020-07-14 2023-08-10 Beijing Xiaomi Mobile Software Co., Ltd. Activated resource switching method, communication device, and storage medium
CN114765832B (zh) * 2021-01-13 2024-06-07 维沃移动通信有限公司 省电处理方法、装置及终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066923A1 (en) * 2016-10-07 2018-04-12 Lg Electronics Inc. Method and apparatus for supporting energy saving mechanisms for nr in wireless communication system
WO2018184534A1 (en) * 2017-04-07 2018-10-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for configuring resource, user equipment, network device and computer storage medium
WO2018194352A1 (en) * 2017-04-17 2018-10-25 Samsung Electronics Co., Ltd. Method and device for uplink power control

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401526B (zh) * 2018-01-26 2021-08-31 北京小米移动软件有限公司 信息配置方法及装置、时频位置的确定方法及装置和基站
KR102512908B1 (ko) * 2018-03-29 2023-03-22 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 정보를 보고하는 방법 및 장치, 대역폭 파트에 기초한 동작 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066923A1 (en) * 2016-10-07 2018-04-12 Lg Electronics Inc. Method and apparatus for supporting energy saving mechanisms for nr in wireless communication system
WO2018184534A1 (en) * 2017-04-07 2018-10-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for configuring resource, user equipment, network device and computer storage medium
WO2018194352A1 (en) * 2017-04-17 2018-10-25 Samsung Electronics Co., Ltd. Method and device for uplink power control

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022006750A1 (en) * 2020-07-07 2022-01-13 Qualcomm Incorporated Positioning for secondary cell dormancy
US20220330153A1 (en) * 2021-04-09 2022-10-13 Qualcomm Incorporated Duty cycle configuration for power saving
US11770773B2 (en) * 2021-04-09 2023-09-26 Qualcomm Incorporated Duty cycle configuration for power saving

Also Published As

Publication number Publication date
CN111107612B (zh) 2021-10-15
CN111107612A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
CN110830198B (zh) 一种控制信息的传输方法及设备
JP7430642B2 (ja) 情報報告方法、端末及びネットワーク機器
US20220046541A1 (en) Channel monitoring method, terminal, and network device
CN109842937B (zh) 信息传输方法、网络设备、终端及计算机可读存储介质
WO2020083348A1 (zh) 一种带宽部分的配置方法及装置
TWI795555B (zh) 信號傳輸方法及裝置
US11350321B2 (en) Measurement configuration method and related product
EP4123942A1 (en) Methods for sending, configuring and measuring srs, and positioning method and device
WO2019179317A1 (zh) 信息传输方法、终端及网络设备
EP4188010A1 (en) Signal transmission method and device, terminal, base station, and storage medium
EP3322230B1 (en) Communication method and device, terminal and base station
US20220399973A1 (en) Reference Signal Transmission Method and Related Device
WO2021109954A1 (zh) 波束失败恢复方法、终端及网络侧设备
WO2019154066A1 (zh) 下行信道的接收方法、发送方法、终端和基站
WO2023011349A1 (zh) 定位参考信号处理方法、终端及网络侧设备
WO2022268067A1 (zh) 定位方法、装置及相关设备
CN113875292B (zh) 发送和接收信号的方法和装置
WO2024027678A1 (zh) 扩展非连续接收的配置方法及装置、通信设备
CN114245427B (zh) 一种网络切换方法、装置及移动终端
US20240236707A9 (en) Spatial relation indication method and device
WO2023010349A1 (zh) 处理方法、终端设备、网络设备及存储介质
WO2023216984A1 (zh) 信号监听方法、配置方法、装置、终端及网络侧设备
WO2024140575A1 (zh) 信号监听方法、终端及网络侧设备
US20240137781A1 (en) Spatial relation indication method and device
WO2024022252A1 (zh) 接收方法、终端、网络侧设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875121

Country of ref document: EP

Kind code of ref document: A1